ide-io.c revision c6dfa867bb45f4bff2e48f3bc89ab1d6a7ab4c21
1/*
2 *	IDE I/O functions
3 *
4 *	Basic PIO and command management functionality.
5 *
6 * This code was split off from ide.c. See ide.c for history and original
7 * copyrights.
8 *
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2, or (at your option) any
12 * later version.
13 *
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17 * General Public License for more details.
18 *
19 * For the avoidance of doubt the "preferred form" of this code is one which
20 * is in an open non patent encumbered format. Where cryptographic key signing
21 * forms part of the process of creating an executable the information
22 * including keys needed to generate an equivalently functional executable
23 * are deemed to be part of the source code.
24 */
25
26
27#include <linux/module.h>
28#include <linux/types.h>
29#include <linux/string.h>
30#include <linux/kernel.h>
31#include <linux/timer.h>
32#include <linux/mm.h>
33#include <linux/interrupt.h>
34#include <linux/major.h>
35#include <linux/errno.h>
36#include <linux/genhd.h>
37#include <linux/blkpg.h>
38#include <linux/slab.h>
39#include <linux/init.h>
40#include <linux/pci.h>
41#include <linux/delay.h>
42#include <linux/ide.h>
43#include <linux/completion.h>
44#include <linux/reboot.h>
45#include <linux/cdrom.h>
46#include <linux/seq_file.h>
47#include <linux/device.h>
48#include <linux/kmod.h>
49#include <linux/scatterlist.h>
50#include <linux/bitops.h>
51
52#include <asm/byteorder.h>
53#include <asm/irq.h>
54#include <asm/uaccess.h>
55#include <asm/io.h>
56
57static int __ide_end_request(ide_drive_t *drive, struct request *rq,
58			     int uptodate, unsigned int nr_bytes, int dequeue)
59{
60	int ret = 1;
61	int error = 0;
62
63	if (uptodate <= 0)
64		error = uptodate ? uptodate : -EIO;
65
66	/*
67	 * if failfast is set on a request, override number of sectors and
68	 * complete the whole request right now
69	 */
70	if (blk_noretry_request(rq) && error)
71		nr_bytes = rq->hard_nr_sectors << 9;
72
73	if (!blk_fs_request(rq) && error && !rq->errors)
74		rq->errors = -EIO;
75
76	/*
77	 * decide whether to reenable DMA -- 3 is a random magic for now,
78	 * if we DMA timeout more than 3 times, just stay in PIO
79	 */
80	if (drive->state == DMA_PIO_RETRY && drive->retry_pio <= 3) {
81		drive->state = 0;
82		ide_dma_on(drive);
83	}
84
85	if (!__blk_end_request(rq, error, nr_bytes)) {
86		if (dequeue)
87			HWGROUP(drive)->rq = NULL;
88		ret = 0;
89	}
90
91	return ret;
92}
93
94/**
95 *	ide_end_request		-	complete an IDE I/O
96 *	@drive: IDE device for the I/O
97 *	@uptodate:
98 *	@nr_sectors: number of sectors completed
99 *
100 *	This is our end_request wrapper function. We complete the I/O
101 *	update random number input and dequeue the request, which if
102 *	it was tagged may be out of order.
103 */
104
105int ide_end_request (ide_drive_t *drive, int uptodate, int nr_sectors)
106{
107	unsigned int nr_bytes = nr_sectors << 9;
108	struct request *rq;
109	unsigned long flags;
110	int ret = 1;
111
112	/*
113	 * room for locking improvements here, the calls below don't
114	 * need the queue lock held at all
115	 */
116	spin_lock_irqsave(&ide_lock, flags);
117	rq = HWGROUP(drive)->rq;
118
119	if (!nr_bytes) {
120		if (blk_pc_request(rq))
121			nr_bytes = rq->data_len;
122		else
123			nr_bytes = rq->hard_cur_sectors << 9;
124	}
125
126	ret = __ide_end_request(drive, rq, uptodate, nr_bytes, 1);
127
128	spin_unlock_irqrestore(&ide_lock, flags);
129	return ret;
130}
131EXPORT_SYMBOL(ide_end_request);
132
133/*
134 * Power Management state machine. This one is rather trivial for now,
135 * we should probably add more, like switching back to PIO on suspend
136 * to help some BIOSes, re-do the door locking on resume, etc...
137 */
138
139enum {
140	ide_pm_flush_cache	= ide_pm_state_start_suspend,
141	idedisk_pm_standby,
142
143	idedisk_pm_restore_pio	= ide_pm_state_start_resume,
144	idedisk_pm_idle,
145	ide_pm_restore_dma,
146};
147
148static void ide_complete_power_step(ide_drive_t *drive, struct request *rq, u8 stat, u8 error)
149{
150	struct request_pm_state *pm = rq->data;
151
152	if (drive->media != ide_disk)
153		return;
154
155	switch (pm->pm_step) {
156	case ide_pm_flush_cache:	/* Suspend step 1 (flush cache) complete */
157		if (pm->pm_state == PM_EVENT_FREEZE)
158			pm->pm_step = ide_pm_state_completed;
159		else
160			pm->pm_step = idedisk_pm_standby;
161		break;
162	case idedisk_pm_standby:	/* Suspend step 2 (standby) complete */
163		pm->pm_step = ide_pm_state_completed;
164		break;
165	case idedisk_pm_restore_pio:	/* Resume step 1 complete */
166		pm->pm_step = idedisk_pm_idle;
167		break;
168	case idedisk_pm_idle:		/* Resume step 2 (idle) complete */
169		pm->pm_step = ide_pm_restore_dma;
170		break;
171	}
172}
173
174static ide_startstop_t ide_start_power_step(ide_drive_t *drive, struct request *rq)
175{
176	struct request_pm_state *pm = rq->data;
177	ide_task_t *args = rq->special;
178
179	memset(args, 0, sizeof(*args));
180
181	switch (pm->pm_step) {
182	case ide_pm_flush_cache:	/* Suspend step 1 (flush cache) */
183		if (drive->media != ide_disk)
184			break;
185		/* Not supported? Switch to next step now. */
186		if (!drive->wcache || !ide_id_has_flush_cache(drive->id)) {
187			ide_complete_power_step(drive, rq, 0, 0);
188			return ide_stopped;
189		}
190		if (ide_id_has_flush_cache_ext(drive->id))
191			args->tf.command = WIN_FLUSH_CACHE_EXT;
192		else
193			args->tf.command = WIN_FLUSH_CACHE;
194		goto out_do_tf;
195
196	case idedisk_pm_standby:	/* Suspend step 2 (standby) */
197		args->tf.command = WIN_STANDBYNOW1;
198		goto out_do_tf;
199
200	case idedisk_pm_restore_pio:	/* Resume step 1 (restore PIO) */
201		ide_set_max_pio(drive);
202		/*
203		 * skip idedisk_pm_idle for ATAPI devices
204		 */
205		if (drive->media != ide_disk)
206			pm->pm_step = ide_pm_restore_dma;
207		else
208			ide_complete_power_step(drive, rq, 0, 0);
209		return ide_stopped;
210
211	case idedisk_pm_idle:		/* Resume step 2 (idle) */
212		args->tf.command = WIN_IDLEIMMEDIATE;
213		goto out_do_tf;
214
215	case ide_pm_restore_dma:	/* Resume step 3 (restore DMA) */
216		/*
217		 * Right now, all we do is call ide_set_dma(drive),
218		 * we could be smarter and check for current xfer_speed
219		 * in struct drive etc...
220		 */
221		if (drive->hwif->dma_ops == NULL)
222			break;
223		/*
224		 * TODO: respect ->using_dma setting
225		 */
226		ide_set_dma(drive);
227		break;
228	}
229	pm->pm_step = ide_pm_state_completed;
230	return ide_stopped;
231
232out_do_tf:
233	args->tf_flags	 = IDE_TFLAG_TF | IDE_TFLAG_DEVICE;
234	args->data_phase = TASKFILE_NO_DATA;
235	return do_rw_taskfile(drive, args);
236}
237
238/**
239 *	ide_end_dequeued_request	-	complete an IDE I/O
240 *	@drive: IDE device for the I/O
241 *	@uptodate:
242 *	@nr_sectors: number of sectors completed
243 *
244 *	Complete an I/O that is no longer on the request queue. This
245 *	typically occurs when we pull the request and issue a REQUEST_SENSE.
246 *	We must still finish the old request but we must not tamper with the
247 *	queue in the meantime.
248 *
249 *	NOTE: This path does not handle barrier, but barrier is not supported
250 *	on ide-cd anyway.
251 */
252
253int ide_end_dequeued_request(ide_drive_t *drive, struct request *rq,
254			     int uptodate, int nr_sectors)
255{
256	unsigned long flags;
257	int ret;
258
259	spin_lock_irqsave(&ide_lock, flags);
260	BUG_ON(!blk_rq_started(rq));
261	ret = __ide_end_request(drive, rq, uptodate, nr_sectors << 9, 0);
262	spin_unlock_irqrestore(&ide_lock, flags);
263
264	return ret;
265}
266EXPORT_SYMBOL_GPL(ide_end_dequeued_request);
267
268
269/**
270 *	ide_complete_pm_request - end the current Power Management request
271 *	@drive: target drive
272 *	@rq: request
273 *
274 *	This function cleans up the current PM request and stops the queue
275 *	if necessary.
276 */
277static void ide_complete_pm_request (ide_drive_t *drive, struct request *rq)
278{
279	unsigned long flags;
280
281#ifdef DEBUG_PM
282	printk("%s: completing PM request, %s\n", drive->name,
283	       blk_pm_suspend_request(rq) ? "suspend" : "resume");
284#endif
285	spin_lock_irqsave(&ide_lock, flags);
286	if (blk_pm_suspend_request(rq)) {
287		blk_stop_queue(drive->queue);
288	} else {
289		drive->blocked = 0;
290		blk_start_queue(drive->queue);
291	}
292	HWGROUP(drive)->rq = NULL;
293	if (__blk_end_request(rq, 0, 0))
294		BUG();
295	spin_unlock_irqrestore(&ide_lock, flags);
296}
297
298/**
299 *	ide_end_drive_cmd	-	end an explicit drive command
300 *	@drive: command
301 *	@stat: status bits
302 *	@err: error bits
303 *
304 *	Clean up after success/failure of an explicit drive command.
305 *	These get thrown onto the queue so they are synchronized with
306 *	real I/O operations on the drive.
307 *
308 *	In LBA48 mode we have to read the register set twice to get
309 *	all the extra information out.
310 */
311
312void ide_end_drive_cmd (ide_drive_t *drive, u8 stat, u8 err)
313{
314	unsigned long flags;
315	struct request *rq;
316
317	spin_lock_irqsave(&ide_lock, flags);
318	rq = HWGROUP(drive)->rq;
319	spin_unlock_irqrestore(&ide_lock, flags);
320
321	if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) {
322		ide_task_t *task = (ide_task_t *)rq->special;
323
324		if (rq->errors == 0)
325			rq->errors = !OK_STAT(stat, READY_STAT, BAD_STAT);
326
327		if (task) {
328			struct ide_taskfile *tf = &task->tf;
329
330			tf->error = err;
331			tf->status = stat;
332
333			drive->hwif->tf_read(drive, task);
334
335			if (task->tf_flags & IDE_TFLAG_DYN)
336				kfree(task);
337		}
338	} else if (blk_pm_request(rq)) {
339		struct request_pm_state *pm = rq->data;
340#ifdef DEBUG_PM
341		printk("%s: complete_power_step(step: %d, stat: %x, err: %x)\n",
342			drive->name, rq->pm->pm_step, stat, err);
343#endif
344		ide_complete_power_step(drive, rq, stat, err);
345		if (pm->pm_step == ide_pm_state_completed)
346			ide_complete_pm_request(drive, rq);
347		return;
348	}
349
350	spin_lock_irqsave(&ide_lock, flags);
351	HWGROUP(drive)->rq = NULL;
352	rq->errors = err;
353	if (unlikely(__blk_end_request(rq, (rq->errors ? -EIO : 0),
354				       blk_rq_bytes(rq))))
355		BUG();
356	spin_unlock_irqrestore(&ide_lock, flags);
357}
358
359EXPORT_SYMBOL(ide_end_drive_cmd);
360
361static void ide_kill_rq(ide_drive_t *drive, struct request *rq)
362{
363	if (rq->rq_disk) {
364		ide_driver_t *drv;
365
366		drv = *(ide_driver_t **)rq->rq_disk->private_data;
367		drv->end_request(drive, 0, 0);
368	} else
369		ide_end_request(drive, 0, 0);
370}
371
372static ide_startstop_t ide_ata_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
373{
374	ide_hwif_t *hwif = drive->hwif;
375
376	if (stat & BUSY_STAT || ((stat & WRERR_STAT) && !drive->nowerr)) {
377		/* other bits are useless when BUSY */
378		rq->errors |= ERROR_RESET;
379	} else if (stat & ERR_STAT) {
380		/* err has different meaning on cdrom and tape */
381		if (err == ABRT_ERR) {
382			if (drive->select.b.lba &&
383			    /* some newer drives don't support WIN_SPECIFY */
384			    hwif->INB(hwif->io_ports.command_addr) ==
385				WIN_SPECIFY)
386				return ide_stopped;
387		} else if ((err & BAD_CRC) == BAD_CRC) {
388			/* UDMA crc error, just retry the operation */
389			drive->crc_count++;
390		} else if (err & (BBD_ERR | ECC_ERR)) {
391			/* retries won't help these */
392			rq->errors = ERROR_MAX;
393		} else if (err & TRK0_ERR) {
394			/* help it find track zero */
395			rq->errors |= ERROR_RECAL;
396		}
397	}
398
399	if ((stat & DRQ_STAT) && rq_data_dir(rq) == READ &&
400	    (hwif->host_flags & IDE_HFLAG_ERROR_STOPS_FIFO) == 0) {
401		int nsect = drive->mult_count ? drive->mult_count : 1;
402
403		ide_pad_transfer(drive, READ, nsect * SECTOR_SIZE);
404	}
405
406	if (rq->errors >= ERROR_MAX || blk_noretry_request(rq)) {
407		ide_kill_rq(drive, rq);
408		return ide_stopped;
409	}
410
411	if (ide_read_status(drive) & (BUSY_STAT | DRQ_STAT))
412		rq->errors |= ERROR_RESET;
413
414	if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
415		++rq->errors;
416		return ide_do_reset(drive);
417	}
418
419	if ((rq->errors & ERROR_RECAL) == ERROR_RECAL)
420		drive->special.b.recalibrate = 1;
421
422	++rq->errors;
423
424	return ide_stopped;
425}
426
427static ide_startstop_t ide_atapi_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
428{
429	ide_hwif_t *hwif = drive->hwif;
430
431	if (stat & BUSY_STAT || ((stat & WRERR_STAT) && !drive->nowerr)) {
432		/* other bits are useless when BUSY */
433		rq->errors |= ERROR_RESET;
434	} else {
435		/* add decoding error stuff */
436	}
437
438	if (ide_read_status(drive) & (BUSY_STAT | DRQ_STAT))
439		/* force an abort */
440		hwif->exec_command(hwif, WIN_IDLEIMMEDIATE);
441
442	if (rq->errors >= ERROR_MAX) {
443		ide_kill_rq(drive, rq);
444	} else {
445		if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
446			++rq->errors;
447			return ide_do_reset(drive);
448		}
449		++rq->errors;
450	}
451
452	return ide_stopped;
453}
454
455ide_startstop_t
456__ide_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
457{
458	if (drive->media == ide_disk)
459		return ide_ata_error(drive, rq, stat, err);
460	return ide_atapi_error(drive, rq, stat, err);
461}
462
463EXPORT_SYMBOL_GPL(__ide_error);
464
465/**
466 *	ide_error	-	handle an error on the IDE
467 *	@drive: drive the error occurred on
468 *	@msg: message to report
469 *	@stat: status bits
470 *
471 *	ide_error() takes action based on the error returned by the drive.
472 *	For normal I/O that may well include retries. We deal with
473 *	both new-style (taskfile) and old style command handling here.
474 *	In the case of taskfile command handling there is work left to
475 *	do
476 */
477
478ide_startstop_t ide_error (ide_drive_t *drive, const char *msg, u8 stat)
479{
480	struct request *rq;
481	u8 err;
482
483	err = ide_dump_status(drive, msg, stat);
484
485	if ((rq = HWGROUP(drive)->rq) == NULL)
486		return ide_stopped;
487
488	/* retry only "normal" I/O: */
489	if (!blk_fs_request(rq)) {
490		rq->errors = 1;
491		ide_end_drive_cmd(drive, stat, err);
492		return ide_stopped;
493	}
494
495	if (rq->rq_disk) {
496		ide_driver_t *drv;
497
498		drv = *(ide_driver_t **)rq->rq_disk->private_data;
499		return drv->error(drive, rq, stat, err);
500	} else
501		return __ide_error(drive, rq, stat, err);
502}
503
504EXPORT_SYMBOL_GPL(ide_error);
505
506static void ide_tf_set_specify_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
507{
508	tf->nsect   = drive->sect;
509	tf->lbal    = drive->sect;
510	tf->lbam    = drive->cyl;
511	tf->lbah    = drive->cyl >> 8;
512	tf->device  = ((drive->head - 1) | drive->select.all) & ~ATA_LBA;
513	tf->command = WIN_SPECIFY;
514}
515
516static void ide_tf_set_restore_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
517{
518	tf->nsect   = drive->sect;
519	tf->command = WIN_RESTORE;
520}
521
522static void ide_tf_set_setmult_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
523{
524	tf->nsect   = drive->mult_req;
525	tf->command = WIN_SETMULT;
526}
527
528static ide_startstop_t ide_disk_special(ide_drive_t *drive)
529{
530	special_t *s = &drive->special;
531	ide_task_t args;
532
533	memset(&args, 0, sizeof(ide_task_t));
534	args.data_phase = TASKFILE_NO_DATA;
535
536	if (s->b.set_geometry) {
537		s->b.set_geometry = 0;
538		ide_tf_set_specify_cmd(drive, &args.tf);
539	} else if (s->b.recalibrate) {
540		s->b.recalibrate = 0;
541		ide_tf_set_restore_cmd(drive, &args.tf);
542	} else if (s->b.set_multmode) {
543		s->b.set_multmode = 0;
544		if (drive->mult_req > drive->id->max_multsect)
545			drive->mult_req = drive->id->max_multsect;
546		ide_tf_set_setmult_cmd(drive, &args.tf);
547	} else if (s->all) {
548		int special = s->all;
549		s->all = 0;
550		printk(KERN_ERR "%s: bad special flag: 0x%02x\n", drive->name, special);
551		return ide_stopped;
552	}
553
554	args.tf_flags = IDE_TFLAG_TF | IDE_TFLAG_DEVICE |
555			IDE_TFLAG_CUSTOM_HANDLER;
556
557	do_rw_taskfile(drive, &args);
558
559	return ide_started;
560}
561
562/*
563 * handle HDIO_SET_PIO_MODE ioctl abusers here, eventually it will go away
564 */
565static int set_pio_mode_abuse(ide_hwif_t *hwif, u8 req_pio)
566{
567	switch (req_pio) {
568	case 202:
569	case 201:
570	case 200:
571	case 102:
572	case 101:
573	case 100:
574		return (hwif->host_flags & IDE_HFLAG_ABUSE_DMA_MODES) ? 1 : 0;
575	case 9:
576	case 8:
577		return (hwif->host_flags & IDE_HFLAG_ABUSE_PREFETCH) ? 1 : 0;
578	case 7:
579	case 6:
580		return (hwif->host_flags & IDE_HFLAG_ABUSE_FAST_DEVSEL) ? 1 : 0;
581	default:
582		return 0;
583	}
584}
585
586/**
587 *	do_special		-	issue some special commands
588 *	@drive: drive the command is for
589 *
590 *	do_special() is used to issue WIN_SPECIFY, WIN_RESTORE, and WIN_SETMULT
591 *	commands to a drive.  It used to do much more, but has been scaled
592 *	back.
593 */
594
595static ide_startstop_t do_special (ide_drive_t *drive)
596{
597	special_t *s = &drive->special;
598
599#ifdef DEBUG
600	printk("%s: do_special: 0x%02x\n", drive->name, s->all);
601#endif
602	if (s->b.set_tune) {
603		ide_hwif_t *hwif = drive->hwif;
604		const struct ide_port_ops *port_ops = hwif->port_ops;
605		u8 req_pio = drive->tune_req;
606
607		s->b.set_tune = 0;
608
609		if (set_pio_mode_abuse(drive->hwif, req_pio)) {
610			/*
611			 * take ide_lock for drive->[no_]unmask/[no_]io_32bit
612			 */
613			if (req_pio == 8 || req_pio == 9) {
614				unsigned long flags;
615
616				spin_lock_irqsave(&ide_lock, flags);
617				port_ops->set_pio_mode(drive, req_pio);
618				spin_unlock_irqrestore(&ide_lock, flags);
619			} else
620				port_ops->set_pio_mode(drive, req_pio);
621		} else {
622			int keep_dma = drive->using_dma;
623
624			ide_set_pio(drive, req_pio);
625
626			if (hwif->host_flags & IDE_HFLAG_SET_PIO_MODE_KEEP_DMA) {
627				if (keep_dma)
628					ide_dma_on(drive);
629			}
630		}
631
632		return ide_stopped;
633	} else {
634		if (drive->media == ide_disk)
635			return ide_disk_special(drive);
636
637		s->all = 0;
638		drive->mult_req = 0;
639		return ide_stopped;
640	}
641}
642
643void ide_map_sg(ide_drive_t *drive, struct request *rq)
644{
645	ide_hwif_t *hwif = drive->hwif;
646	struct scatterlist *sg = hwif->sg_table;
647
648	if (hwif->sg_mapped)	/* needed by ide-scsi */
649		return;
650
651	if (rq->cmd_type != REQ_TYPE_ATA_TASKFILE) {
652		hwif->sg_nents = blk_rq_map_sg(drive->queue, rq, sg);
653	} else {
654		sg_init_one(sg, rq->buffer, rq->nr_sectors * SECTOR_SIZE);
655		hwif->sg_nents = 1;
656	}
657}
658
659EXPORT_SYMBOL_GPL(ide_map_sg);
660
661void ide_init_sg_cmd(ide_drive_t *drive, struct request *rq)
662{
663	ide_hwif_t *hwif = drive->hwif;
664
665	hwif->nsect = hwif->nleft = rq->nr_sectors;
666	hwif->cursg_ofs = 0;
667	hwif->cursg = NULL;
668}
669
670EXPORT_SYMBOL_GPL(ide_init_sg_cmd);
671
672/**
673 *	execute_drive_command	-	issue special drive command
674 *	@drive: the drive to issue the command on
675 *	@rq: the request structure holding the command
676 *
677 *	execute_drive_cmd() issues a special drive command,  usually
678 *	initiated by ioctl() from the external hdparm program. The
679 *	command can be a drive command, drive task or taskfile
680 *	operation. Weirdly you can call it with NULL to wait for
681 *	all commands to finish. Don't do this as that is due to change
682 */
683
684static ide_startstop_t execute_drive_cmd (ide_drive_t *drive,
685		struct request *rq)
686{
687	ide_hwif_t *hwif = HWIF(drive);
688	ide_task_t *task = rq->special;
689
690	if (task) {
691		hwif->data_phase = task->data_phase;
692
693		switch (hwif->data_phase) {
694		case TASKFILE_MULTI_OUT:
695		case TASKFILE_OUT:
696		case TASKFILE_MULTI_IN:
697		case TASKFILE_IN:
698			ide_init_sg_cmd(drive, rq);
699			ide_map_sg(drive, rq);
700		default:
701			break;
702		}
703
704		return do_rw_taskfile(drive, task);
705	}
706
707 	/*
708 	 * NULL is actually a valid way of waiting for
709 	 * all current requests to be flushed from the queue.
710 	 */
711#ifdef DEBUG
712 	printk("%s: DRIVE_CMD (null)\n", drive->name);
713#endif
714	ide_end_drive_cmd(drive, ide_read_status(drive), ide_read_error(drive));
715
716 	return ide_stopped;
717}
718
719static ide_startstop_t ide_special_rq(ide_drive_t *drive, struct request *rq)
720{
721	switch (rq->cmd[0]) {
722	case REQ_DRIVE_RESET:
723		return ide_do_reset(drive);
724	default:
725		blk_dump_rq_flags(rq, "ide_special_rq - bad request");
726		ide_end_request(drive, 0, 0);
727		return ide_stopped;
728	}
729}
730
731static void ide_check_pm_state(ide_drive_t *drive, struct request *rq)
732{
733	struct request_pm_state *pm = rq->data;
734
735	if (blk_pm_suspend_request(rq) &&
736	    pm->pm_step == ide_pm_state_start_suspend)
737		/* Mark drive blocked when starting the suspend sequence. */
738		drive->blocked = 1;
739	else if (blk_pm_resume_request(rq) &&
740		 pm->pm_step == ide_pm_state_start_resume) {
741		/*
742		 * The first thing we do on wakeup is to wait for BSY bit to
743		 * go away (with a looong timeout) as a drive on this hwif may
744		 * just be POSTing itself.
745		 * We do that before even selecting as the "other" device on
746		 * the bus may be broken enough to walk on our toes at this
747		 * point.
748		 */
749		int rc;
750#ifdef DEBUG_PM
751		printk("%s: Wakeup request inited, waiting for !BSY...\n", drive->name);
752#endif
753		rc = ide_wait_not_busy(HWIF(drive), 35000);
754		if (rc)
755			printk(KERN_WARNING "%s: bus not ready on wakeup\n", drive->name);
756		SELECT_DRIVE(drive);
757		ide_set_irq(drive, 1);
758		rc = ide_wait_not_busy(HWIF(drive), 100000);
759		if (rc)
760			printk(KERN_WARNING "%s: drive not ready on wakeup\n", drive->name);
761	}
762}
763
764/**
765 *	start_request	-	start of I/O and command issuing for IDE
766 *
767 *	start_request() initiates handling of a new I/O request. It
768 *	accepts commands and I/O (read/write) requests. It also does
769 *	the final remapping for weird stuff like EZDrive. Once
770 *	device mapper can work sector level the EZDrive stuff can go away
771 *
772 *	FIXME: this function needs a rename
773 */
774
775static ide_startstop_t start_request (ide_drive_t *drive, struct request *rq)
776{
777	ide_startstop_t startstop;
778	sector_t block;
779
780	BUG_ON(!blk_rq_started(rq));
781
782#ifdef DEBUG
783	printk("%s: start_request: current=0x%08lx\n",
784		HWIF(drive)->name, (unsigned long) rq);
785#endif
786
787	/* bail early if we've exceeded max_failures */
788	if (drive->max_failures && (drive->failures > drive->max_failures)) {
789		rq->cmd_flags |= REQ_FAILED;
790		goto kill_rq;
791	}
792
793	block    = rq->sector;
794	if (blk_fs_request(rq) &&
795	    (drive->media == ide_disk || drive->media == ide_floppy)) {
796		block += drive->sect0;
797	}
798	/* Yecch - this will shift the entire interval,
799	   possibly killing some innocent following sector */
800	if (block == 0 && drive->remap_0_to_1 == 1)
801		block = 1;  /* redirect MBR access to EZ-Drive partn table */
802
803	if (blk_pm_request(rq))
804		ide_check_pm_state(drive, rq);
805
806	SELECT_DRIVE(drive);
807	if (ide_wait_stat(&startstop, drive, drive->ready_stat, BUSY_STAT|DRQ_STAT, WAIT_READY)) {
808		printk(KERN_ERR "%s: drive not ready for command\n", drive->name);
809		return startstop;
810	}
811	if (!drive->special.all) {
812		ide_driver_t *drv;
813
814		/*
815		 * We reset the drive so we need to issue a SETFEATURES.
816		 * Do it _after_ do_special() restored device parameters.
817		 */
818		if (drive->current_speed == 0xff)
819			ide_config_drive_speed(drive, drive->desired_speed);
820
821		if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE)
822			return execute_drive_cmd(drive, rq);
823		else if (blk_pm_request(rq)) {
824			struct request_pm_state *pm = rq->data;
825#ifdef DEBUG_PM
826			printk("%s: start_power_step(step: %d)\n",
827				drive->name, rq->pm->pm_step);
828#endif
829			startstop = ide_start_power_step(drive, rq);
830			if (startstop == ide_stopped &&
831			    pm->pm_step == ide_pm_state_completed)
832				ide_complete_pm_request(drive, rq);
833			return startstop;
834		} else if (!rq->rq_disk && blk_special_request(rq))
835			/*
836			 * TODO: Once all ULDs have been modified to
837			 * check for specific op codes rather than
838			 * blindly accepting any special request, the
839			 * check for ->rq_disk above may be replaced
840			 * by a more suitable mechanism or even
841			 * dropped entirely.
842			 */
843			return ide_special_rq(drive, rq);
844
845		drv = *(ide_driver_t **)rq->rq_disk->private_data;
846		return drv->do_request(drive, rq, block);
847	}
848	return do_special(drive);
849kill_rq:
850	ide_kill_rq(drive, rq);
851	return ide_stopped;
852}
853
854/**
855 *	ide_stall_queue		-	pause an IDE device
856 *	@drive: drive to stall
857 *	@timeout: time to stall for (jiffies)
858 *
859 *	ide_stall_queue() can be used by a drive to give excess bandwidth back
860 *	to the hwgroup by sleeping for timeout jiffies.
861 */
862
863void ide_stall_queue (ide_drive_t *drive, unsigned long timeout)
864{
865	if (timeout > WAIT_WORSTCASE)
866		timeout = WAIT_WORSTCASE;
867	drive->sleep = timeout + jiffies;
868	drive->sleeping = 1;
869}
870
871EXPORT_SYMBOL(ide_stall_queue);
872
873#define WAKEUP(drive)	((drive)->service_start + 2 * (drive)->service_time)
874
875/**
876 *	choose_drive		-	select a drive to service
877 *	@hwgroup: hardware group to select on
878 *
879 *	choose_drive() selects the next drive which will be serviced.
880 *	This is necessary because the IDE layer can't issue commands
881 *	to both drives on the same cable, unlike SCSI.
882 */
883
884static inline ide_drive_t *choose_drive (ide_hwgroup_t *hwgroup)
885{
886	ide_drive_t *drive, *best;
887
888repeat:
889	best = NULL;
890	drive = hwgroup->drive;
891
892	/*
893	 * drive is doing pre-flush, ordered write, post-flush sequence. even
894	 * though that is 3 requests, it must be seen as a single transaction.
895	 * we must not preempt this drive until that is complete
896	 */
897	if (blk_queue_flushing(drive->queue)) {
898		/*
899		 * small race where queue could get replugged during
900		 * the 3-request flush cycle, just yank the plug since
901		 * we want it to finish asap
902		 */
903		blk_remove_plug(drive->queue);
904		return drive;
905	}
906
907	do {
908		if ((!drive->sleeping || time_after_eq(jiffies, drive->sleep))
909		    && !elv_queue_empty(drive->queue)) {
910			if (!best
911			 || (drive->sleeping && (!best->sleeping || time_before(drive->sleep, best->sleep)))
912			 || (!best->sleeping && time_before(WAKEUP(drive), WAKEUP(best))))
913			{
914				if (!blk_queue_plugged(drive->queue))
915					best = drive;
916			}
917		}
918	} while ((drive = drive->next) != hwgroup->drive);
919	if (best && best->nice1 && !best->sleeping && best != hwgroup->drive && best->service_time > WAIT_MIN_SLEEP) {
920		long t = (signed long)(WAKEUP(best) - jiffies);
921		if (t >= WAIT_MIN_SLEEP) {
922		/*
923		 * We *may* have some time to spare, but first let's see if
924		 * someone can potentially benefit from our nice mood today..
925		 */
926			drive = best->next;
927			do {
928				if (!drive->sleeping
929				 && time_before(jiffies - best->service_time, WAKEUP(drive))
930				 && time_before(WAKEUP(drive), jiffies + t))
931				{
932					ide_stall_queue(best, min_t(long, t, 10 * WAIT_MIN_SLEEP));
933					goto repeat;
934				}
935			} while ((drive = drive->next) != best);
936		}
937	}
938	return best;
939}
940
941/*
942 * Issue a new request to a drive from hwgroup
943 * Caller must have already done spin_lock_irqsave(&ide_lock, ..);
944 *
945 * A hwgroup is a serialized group of IDE interfaces.  Usually there is
946 * exactly one hwif (interface) per hwgroup, but buggy controllers (eg. CMD640)
947 * may have both interfaces in a single hwgroup to "serialize" access.
948 * Or possibly multiple ISA interfaces can share a common IRQ by being grouped
949 * together into one hwgroup for serialized access.
950 *
951 * Note also that several hwgroups can end up sharing a single IRQ,
952 * possibly along with many other devices.  This is especially common in
953 * PCI-based systems with off-board IDE controller cards.
954 *
955 * The IDE driver uses the single global ide_lock spinlock to protect
956 * access to the request queues, and to protect the hwgroup->busy flag.
957 *
958 * The first thread into the driver for a particular hwgroup sets the
959 * hwgroup->busy flag to indicate that this hwgroup is now active,
960 * and then initiates processing of the top request from the request queue.
961 *
962 * Other threads attempting entry notice the busy setting, and will simply
963 * queue their new requests and exit immediately.  Note that hwgroup->busy
964 * remains set even when the driver is merely awaiting the next interrupt.
965 * Thus, the meaning is "this hwgroup is busy processing a request".
966 *
967 * When processing of a request completes, the completing thread or IRQ-handler
968 * will start the next request from the queue.  If no more work remains,
969 * the driver will clear the hwgroup->busy flag and exit.
970 *
971 * The ide_lock (spinlock) is used to protect all access to the
972 * hwgroup->busy flag, but is otherwise not needed for most processing in
973 * the driver.  This makes the driver much more friendlier to shared IRQs
974 * than previous designs, while remaining 100% (?) SMP safe and capable.
975 */
976static void ide_do_request (ide_hwgroup_t *hwgroup, int masked_irq)
977{
978	ide_drive_t	*drive;
979	ide_hwif_t	*hwif;
980	struct request	*rq;
981	ide_startstop_t	startstop;
982	int             loops = 0;
983
984	/* for atari only: POSSIBLY BROKEN HERE(?) */
985	ide_get_lock(ide_intr, hwgroup);
986
987	/* caller must own ide_lock */
988	BUG_ON(!irqs_disabled());
989
990	while (!hwgroup->busy) {
991		hwgroup->busy = 1;
992		drive = choose_drive(hwgroup);
993		if (drive == NULL) {
994			int sleeping = 0;
995			unsigned long sleep = 0; /* shut up, gcc */
996			hwgroup->rq = NULL;
997			drive = hwgroup->drive;
998			do {
999				if (drive->sleeping && (!sleeping || time_before(drive->sleep, sleep))) {
1000					sleeping = 1;
1001					sleep = drive->sleep;
1002				}
1003			} while ((drive = drive->next) != hwgroup->drive);
1004			if (sleeping) {
1005		/*
1006		 * Take a short snooze, and then wake up this hwgroup again.
1007		 * This gives other hwgroups on the same a chance to
1008		 * play fairly with us, just in case there are big differences
1009		 * in relative throughputs.. don't want to hog the cpu too much.
1010		 */
1011				if (time_before(sleep, jiffies + WAIT_MIN_SLEEP))
1012					sleep = jiffies + WAIT_MIN_SLEEP;
1013#if 1
1014				if (timer_pending(&hwgroup->timer))
1015					printk(KERN_CRIT "ide_set_handler: timer already active\n");
1016#endif
1017				/* so that ide_timer_expiry knows what to do */
1018				hwgroup->sleeping = 1;
1019				hwgroup->req_gen_timer = hwgroup->req_gen;
1020				mod_timer(&hwgroup->timer, sleep);
1021				/* we purposely leave hwgroup->busy==1
1022				 * while sleeping */
1023			} else {
1024				/* Ugly, but how can we sleep for the lock
1025				 * otherwise? perhaps from tq_disk?
1026				 */
1027
1028				/* for atari only */
1029				ide_release_lock();
1030				hwgroup->busy = 0;
1031			}
1032
1033			/* no more work for this hwgroup (for now) */
1034			return;
1035		}
1036	again:
1037		hwif = HWIF(drive);
1038		if (hwgroup->hwif->sharing_irq && hwif != hwgroup->hwif) {
1039			/*
1040			 * set nIEN for previous hwif, drives in the
1041			 * quirk_list may not like intr setups/cleanups
1042			 */
1043			if (drive->quirk_list != 1)
1044				ide_set_irq(drive, 0);
1045		}
1046		hwgroup->hwif = hwif;
1047		hwgroup->drive = drive;
1048		drive->sleeping = 0;
1049		drive->service_start = jiffies;
1050
1051		if (blk_queue_plugged(drive->queue)) {
1052			printk(KERN_ERR "ide: huh? queue was plugged!\n");
1053			break;
1054		}
1055
1056		/*
1057		 * we know that the queue isn't empty, but this can happen
1058		 * if the q->prep_rq_fn() decides to kill a request
1059		 */
1060		rq = elv_next_request(drive->queue);
1061		if (!rq) {
1062			hwgroup->busy = 0;
1063			break;
1064		}
1065
1066		/*
1067		 * Sanity: don't accept a request that isn't a PM request
1068		 * if we are currently power managed. This is very important as
1069		 * blk_stop_queue() doesn't prevent the elv_next_request()
1070		 * above to return us whatever is in the queue. Since we call
1071		 * ide_do_request() ourselves, we end up taking requests while
1072		 * the queue is blocked...
1073		 *
1074		 * We let requests forced at head of queue with ide-preempt
1075		 * though. I hope that doesn't happen too much, hopefully not
1076		 * unless the subdriver triggers such a thing in its own PM
1077		 * state machine.
1078		 *
1079		 * We count how many times we loop here to make sure we service
1080		 * all drives in the hwgroup without looping for ever
1081		 */
1082		if (drive->blocked && !blk_pm_request(rq) && !(rq->cmd_flags & REQ_PREEMPT)) {
1083			drive = drive->next ? drive->next : hwgroup->drive;
1084			if (loops++ < 4 && !blk_queue_plugged(drive->queue))
1085				goto again;
1086			/* We clear busy, there should be no pending ATA command at this point. */
1087			hwgroup->busy = 0;
1088			break;
1089		}
1090
1091		hwgroup->rq = rq;
1092
1093		/*
1094		 * Some systems have trouble with IDE IRQs arriving while
1095		 * the driver is still setting things up.  So, here we disable
1096		 * the IRQ used by this interface while the request is being started.
1097		 * This may look bad at first, but pretty much the same thing
1098		 * happens anyway when any interrupt comes in, IDE or otherwise
1099		 *  -- the kernel masks the IRQ while it is being handled.
1100		 */
1101		if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq)
1102			disable_irq_nosync(hwif->irq);
1103		spin_unlock(&ide_lock);
1104		local_irq_enable_in_hardirq();
1105			/* allow other IRQs while we start this request */
1106		startstop = start_request(drive, rq);
1107		spin_lock_irq(&ide_lock);
1108		if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq)
1109			enable_irq(hwif->irq);
1110		if (startstop == ide_stopped)
1111			hwgroup->busy = 0;
1112	}
1113}
1114
1115/*
1116 * Passes the stuff to ide_do_request
1117 */
1118void do_ide_request(struct request_queue *q)
1119{
1120	ide_drive_t *drive = q->queuedata;
1121
1122	ide_do_request(HWGROUP(drive), IDE_NO_IRQ);
1123}
1124
1125/*
1126 * un-busy the hwgroup etc, and clear any pending DMA status. we want to
1127 * retry the current request in pio mode instead of risking tossing it
1128 * all away
1129 */
1130static ide_startstop_t ide_dma_timeout_retry(ide_drive_t *drive, int error)
1131{
1132	ide_hwif_t *hwif = HWIF(drive);
1133	struct request *rq;
1134	ide_startstop_t ret = ide_stopped;
1135
1136	/*
1137	 * end current dma transaction
1138	 */
1139
1140	if (error < 0) {
1141		printk(KERN_WARNING "%s: DMA timeout error\n", drive->name);
1142		(void)hwif->dma_ops->dma_end(drive);
1143		ret = ide_error(drive, "dma timeout error",
1144				ide_read_status(drive));
1145	} else {
1146		printk(KERN_WARNING "%s: DMA timeout retry\n", drive->name);
1147		hwif->dma_ops->dma_timeout(drive);
1148	}
1149
1150	/*
1151	 * disable dma for now, but remember that we did so because of
1152	 * a timeout -- we'll reenable after we finish this next request
1153	 * (or rather the first chunk of it) in pio.
1154	 */
1155	drive->retry_pio++;
1156	drive->state = DMA_PIO_RETRY;
1157	ide_dma_off_quietly(drive);
1158
1159	/*
1160	 * un-busy drive etc (hwgroup->busy is cleared on return) and
1161	 * make sure request is sane
1162	 */
1163	rq = HWGROUP(drive)->rq;
1164
1165	if (!rq)
1166		goto out;
1167
1168	HWGROUP(drive)->rq = NULL;
1169
1170	rq->errors = 0;
1171
1172	if (!rq->bio)
1173		goto out;
1174
1175	rq->sector = rq->bio->bi_sector;
1176	rq->current_nr_sectors = bio_iovec(rq->bio)->bv_len >> 9;
1177	rq->hard_cur_sectors = rq->current_nr_sectors;
1178	rq->buffer = bio_data(rq->bio);
1179out:
1180	return ret;
1181}
1182
1183/**
1184 *	ide_timer_expiry	-	handle lack of an IDE interrupt
1185 *	@data: timer callback magic (hwgroup)
1186 *
1187 *	An IDE command has timed out before the expected drive return
1188 *	occurred. At this point we attempt to clean up the current
1189 *	mess. If the current handler includes an expiry handler then
1190 *	we invoke the expiry handler, and providing it is happy the
1191 *	work is done. If that fails we apply generic recovery rules
1192 *	invoking the handler and checking the drive DMA status. We
1193 *	have an excessively incestuous relationship with the DMA
1194 *	logic that wants cleaning up.
1195 */
1196
1197void ide_timer_expiry (unsigned long data)
1198{
1199	ide_hwgroup_t	*hwgroup = (ide_hwgroup_t *) data;
1200	ide_handler_t	*handler;
1201	ide_expiry_t	*expiry;
1202	unsigned long	flags;
1203	unsigned long	wait = -1;
1204
1205	spin_lock_irqsave(&ide_lock, flags);
1206
1207	if (((handler = hwgroup->handler) == NULL) ||
1208	    (hwgroup->req_gen != hwgroup->req_gen_timer)) {
1209		/*
1210		 * Either a marginal timeout occurred
1211		 * (got the interrupt just as timer expired),
1212		 * or we were "sleeping" to give other devices a chance.
1213		 * Either way, we don't really want to complain about anything.
1214		 */
1215		if (hwgroup->sleeping) {
1216			hwgroup->sleeping = 0;
1217			hwgroup->busy = 0;
1218		}
1219	} else {
1220		ide_drive_t *drive = hwgroup->drive;
1221		if (!drive) {
1222			printk(KERN_ERR "ide_timer_expiry: hwgroup->drive was NULL\n");
1223			hwgroup->handler = NULL;
1224		} else {
1225			ide_hwif_t *hwif;
1226			ide_startstop_t startstop = ide_stopped;
1227			if (!hwgroup->busy) {
1228				hwgroup->busy = 1;	/* paranoia */
1229				printk(KERN_ERR "%s: ide_timer_expiry: hwgroup->busy was 0 ??\n", drive->name);
1230			}
1231			if ((expiry = hwgroup->expiry) != NULL) {
1232				/* continue */
1233				if ((wait = expiry(drive)) > 0) {
1234					/* reset timer */
1235					hwgroup->timer.expires  = jiffies + wait;
1236					hwgroup->req_gen_timer = hwgroup->req_gen;
1237					add_timer(&hwgroup->timer);
1238					spin_unlock_irqrestore(&ide_lock, flags);
1239					return;
1240				}
1241			}
1242			hwgroup->handler = NULL;
1243			/*
1244			 * We need to simulate a real interrupt when invoking
1245			 * the handler() function, which means we need to
1246			 * globally mask the specific IRQ:
1247			 */
1248			spin_unlock(&ide_lock);
1249			hwif  = HWIF(drive);
1250			/* disable_irq_nosync ?? */
1251			disable_irq(hwif->irq);
1252			/* local CPU only,
1253			 * as if we were handling an interrupt */
1254			local_irq_disable();
1255			if (hwgroup->polling) {
1256				startstop = handler(drive);
1257			} else if (drive_is_ready(drive)) {
1258				if (drive->waiting_for_dma)
1259					hwif->dma_ops->dma_lost_irq(drive);
1260				(void)ide_ack_intr(hwif);
1261				printk(KERN_WARNING "%s: lost interrupt\n", drive->name);
1262				startstop = handler(drive);
1263			} else {
1264				if (drive->waiting_for_dma) {
1265					startstop = ide_dma_timeout_retry(drive, wait);
1266				} else
1267					startstop =
1268					ide_error(drive, "irq timeout",
1269						  ide_read_status(drive));
1270			}
1271			drive->service_time = jiffies - drive->service_start;
1272			spin_lock_irq(&ide_lock);
1273			enable_irq(hwif->irq);
1274			if (startstop == ide_stopped)
1275				hwgroup->busy = 0;
1276		}
1277	}
1278	ide_do_request(hwgroup, IDE_NO_IRQ);
1279	spin_unlock_irqrestore(&ide_lock, flags);
1280}
1281
1282/**
1283 *	unexpected_intr		-	handle an unexpected IDE interrupt
1284 *	@irq: interrupt line
1285 *	@hwgroup: hwgroup being processed
1286 *
1287 *	There's nothing really useful we can do with an unexpected interrupt,
1288 *	other than reading the status register (to clear it), and logging it.
1289 *	There should be no way that an irq can happen before we're ready for it,
1290 *	so we needn't worry much about losing an "important" interrupt here.
1291 *
1292 *	On laptops (and "green" PCs), an unexpected interrupt occurs whenever
1293 *	the drive enters "idle", "standby", or "sleep" mode, so if the status
1294 *	looks "good", we just ignore the interrupt completely.
1295 *
1296 *	This routine assumes __cli() is in effect when called.
1297 *
1298 *	If an unexpected interrupt happens on irq15 while we are handling irq14
1299 *	and if the two interfaces are "serialized" (CMD640), then it looks like
1300 *	we could screw up by interfering with a new request being set up for
1301 *	irq15.
1302 *
1303 *	In reality, this is a non-issue.  The new command is not sent unless
1304 *	the drive is ready to accept one, in which case we know the drive is
1305 *	not trying to interrupt us.  And ide_set_handler() is always invoked
1306 *	before completing the issuance of any new drive command, so we will not
1307 *	be accidentally invoked as a result of any valid command completion
1308 *	interrupt.
1309 *
1310 *	Note that we must walk the entire hwgroup here. We know which hwif
1311 *	is doing the current command, but we don't know which hwif burped
1312 *	mysteriously.
1313 */
1314
1315static void unexpected_intr (int irq, ide_hwgroup_t *hwgroup)
1316{
1317	u8 stat;
1318	ide_hwif_t *hwif = hwgroup->hwif;
1319
1320	/*
1321	 * handle the unexpected interrupt
1322	 */
1323	do {
1324		if (hwif->irq == irq) {
1325			stat = hwif->INB(hwif->io_ports.status_addr);
1326			if (!OK_STAT(stat, READY_STAT, BAD_STAT)) {
1327				/* Try to not flood the console with msgs */
1328				static unsigned long last_msgtime, count;
1329				++count;
1330				if (time_after(jiffies, last_msgtime + HZ)) {
1331					last_msgtime = jiffies;
1332					printk(KERN_ERR "%s%s: unexpected interrupt, "
1333						"status=0x%02x, count=%ld\n",
1334						hwif->name,
1335						(hwif->next==hwgroup->hwif) ? "" : "(?)", stat, count);
1336				}
1337			}
1338		}
1339	} while ((hwif = hwif->next) != hwgroup->hwif);
1340}
1341
1342/**
1343 *	ide_intr	-	default IDE interrupt handler
1344 *	@irq: interrupt number
1345 *	@dev_id: hwif group
1346 *	@regs: unused weirdness from the kernel irq layer
1347 *
1348 *	This is the default IRQ handler for the IDE layer. You should
1349 *	not need to override it. If you do be aware it is subtle in
1350 *	places
1351 *
1352 *	hwgroup->hwif is the interface in the group currently performing
1353 *	a command. hwgroup->drive is the drive and hwgroup->handler is
1354 *	the IRQ handler to call. As we issue a command the handlers
1355 *	step through multiple states, reassigning the handler to the
1356 *	next step in the process. Unlike a smart SCSI controller IDE
1357 *	expects the main processor to sequence the various transfer
1358 *	stages. We also manage a poll timer to catch up with most
1359 *	timeout situations. There are still a few where the handlers
1360 *	don't ever decide to give up.
1361 *
1362 *	The handler eventually returns ide_stopped to indicate the
1363 *	request completed. At this point we issue the next request
1364 *	on the hwgroup and the process begins again.
1365 */
1366
1367irqreturn_t ide_intr (int irq, void *dev_id)
1368{
1369	unsigned long flags;
1370	ide_hwgroup_t *hwgroup = (ide_hwgroup_t *)dev_id;
1371	ide_hwif_t *hwif;
1372	ide_drive_t *drive;
1373	ide_handler_t *handler;
1374	ide_startstop_t startstop;
1375
1376	spin_lock_irqsave(&ide_lock, flags);
1377	hwif = hwgroup->hwif;
1378
1379	if (!ide_ack_intr(hwif)) {
1380		spin_unlock_irqrestore(&ide_lock, flags);
1381		return IRQ_NONE;
1382	}
1383
1384	if ((handler = hwgroup->handler) == NULL || hwgroup->polling) {
1385		/*
1386		 * Not expecting an interrupt from this drive.
1387		 * That means this could be:
1388		 *	(1) an interrupt from another PCI device
1389		 *	sharing the same PCI INT# as us.
1390		 * or	(2) a drive just entered sleep or standby mode,
1391		 *	and is interrupting to let us know.
1392		 * or	(3) a spurious interrupt of unknown origin.
1393		 *
1394		 * For PCI, we cannot tell the difference,
1395		 * so in that case we just ignore it and hope it goes away.
1396		 *
1397		 * FIXME: unexpected_intr should be hwif-> then we can
1398		 * remove all the ifdef PCI crap
1399		 */
1400#ifdef CONFIG_BLK_DEV_IDEPCI
1401		if (hwif->chipset != ide_pci)
1402#endif	/* CONFIG_BLK_DEV_IDEPCI */
1403		{
1404			/*
1405			 * Probably not a shared PCI interrupt,
1406			 * so we can safely try to do something about it:
1407			 */
1408			unexpected_intr(irq, hwgroup);
1409#ifdef CONFIG_BLK_DEV_IDEPCI
1410		} else {
1411			/*
1412			 * Whack the status register, just in case
1413			 * we have a leftover pending IRQ.
1414			 */
1415			(void) hwif->INB(hwif->io_ports.status_addr);
1416#endif /* CONFIG_BLK_DEV_IDEPCI */
1417		}
1418		spin_unlock_irqrestore(&ide_lock, flags);
1419		return IRQ_NONE;
1420	}
1421	drive = hwgroup->drive;
1422	if (!drive) {
1423		/*
1424		 * This should NEVER happen, and there isn't much
1425		 * we could do about it here.
1426		 *
1427		 * [Note - this can occur if the drive is hot unplugged]
1428		 */
1429		spin_unlock_irqrestore(&ide_lock, flags);
1430		return IRQ_HANDLED;
1431	}
1432	if (!drive_is_ready(drive)) {
1433		/*
1434		 * This happens regularly when we share a PCI IRQ with
1435		 * another device.  Unfortunately, it can also happen
1436		 * with some buggy drives that trigger the IRQ before
1437		 * their status register is up to date.  Hopefully we have
1438		 * enough advance overhead that the latter isn't a problem.
1439		 */
1440		spin_unlock_irqrestore(&ide_lock, flags);
1441		return IRQ_NONE;
1442	}
1443	if (!hwgroup->busy) {
1444		hwgroup->busy = 1;	/* paranoia */
1445		printk(KERN_ERR "%s: ide_intr: hwgroup->busy was 0 ??\n", drive->name);
1446	}
1447	hwgroup->handler = NULL;
1448	hwgroup->req_gen++;
1449	del_timer(&hwgroup->timer);
1450	spin_unlock(&ide_lock);
1451
1452	/* Some controllers might set DMA INTR no matter DMA or PIO;
1453	 * bmdma status might need to be cleared even for
1454	 * PIO interrupts to prevent spurious/lost irq.
1455	 */
1456	if (hwif->ide_dma_clear_irq && !(drive->waiting_for_dma))
1457		/* ide_dma_end() needs bmdma status for error checking.
1458		 * So, skip clearing bmdma status here and leave it
1459		 * to ide_dma_end() if this is dma interrupt.
1460		 */
1461		hwif->ide_dma_clear_irq(drive);
1462
1463	if (drive->unmask)
1464		local_irq_enable_in_hardirq();
1465	/* service this interrupt, may set handler for next interrupt */
1466	startstop = handler(drive);
1467	spin_lock_irq(&ide_lock);
1468
1469	/*
1470	 * Note that handler() may have set things up for another
1471	 * interrupt to occur soon, but it cannot happen until
1472	 * we exit from this routine, because it will be the
1473	 * same irq as is currently being serviced here, and Linux
1474	 * won't allow another of the same (on any CPU) until we return.
1475	 */
1476	drive->service_time = jiffies - drive->service_start;
1477	if (startstop == ide_stopped) {
1478		if (hwgroup->handler == NULL) {	/* paranoia */
1479			hwgroup->busy = 0;
1480			ide_do_request(hwgroup, hwif->irq);
1481		} else {
1482			printk(KERN_ERR "%s: ide_intr: huh? expected NULL handler "
1483				"on exit\n", drive->name);
1484		}
1485	}
1486	spin_unlock_irqrestore(&ide_lock, flags);
1487	return IRQ_HANDLED;
1488}
1489
1490/**
1491 *	ide_do_drive_cmd	-	issue IDE special command
1492 *	@drive: device to issue command
1493 *	@rq: request to issue
1494 *
1495 *	This function issues a special IDE device request
1496 *	onto the request queue.
1497 *
1498 *	the rq is queued at the head of the request queue, displacing
1499 *	the currently-being-processed request and this function
1500 *	returns immediately without waiting for the new rq to be
1501 *	completed.  This is VERY DANGEROUS, and is intended for
1502 *	careful use by the ATAPI tape/cdrom driver code.
1503 */
1504
1505void ide_do_drive_cmd(ide_drive_t *drive, struct request *rq)
1506{
1507	unsigned long flags;
1508	ide_hwgroup_t *hwgroup = HWGROUP(drive);
1509
1510	spin_lock_irqsave(&ide_lock, flags);
1511	hwgroup->rq = NULL;
1512	__elv_add_request(drive->queue, rq, ELEVATOR_INSERT_FRONT, 1);
1513	__generic_unplug_device(drive->queue);
1514	spin_unlock_irqrestore(&ide_lock, flags);
1515}
1516
1517EXPORT_SYMBOL(ide_do_drive_cmd);
1518
1519void ide_pktcmd_tf_load(ide_drive_t *drive, u32 tf_flags, u16 bcount, u8 dma)
1520{
1521	ide_task_t task;
1522
1523	memset(&task, 0, sizeof(task));
1524	task.tf_flags = IDE_TFLAG_OUT_LBAH | IDE_TFLAG_OUT_LBAM |
1525			IDE_TFLAG_OUT_FEATURE | tf_flags;
1526	task.tf.feature = dma;		/* Use PIO/DMA */
1527	task.tf.lbam    = bcount & 0xff;
1528	task.tf.lbah    = (bcount >> 8) & 0xff;
1529
1530	ide_tf_dump(drive->name, &task.tf);
1531	ide_set_irq(drive, 1);
1532	SELECT_MASK(drive, 0);
1533	drive->hwif->tf_load(drive, &task);
1534}
1535
1536EXPORT_SYMBOL_GPL(ide_pktcmd_tf_load);
1537
1538void ide_pad_transfer(ide_drive_t *drive, int write, int len)
1539{
1540	ide_hwif_t *hwif = drive->hwif;
1541	u8 buf[4] = { 0 };
1542
1543	while (len > 0) {
1544		if (write)
1545			hwif->output_data(drive, NULL, buf, min(4, len));
1546		else
1547			hwif->input_data(drive, NULL, buf, min(4, len));
1548		len -= 4;
1549	}
1550}
1551EXPORT_SYMBOL_GPL(ide_pad_transfer);
1552