ide-io.c revision c6dfa867bb45f4bff2e48f3bc89ab1d6a7ab4c21
1/* 2 * IDE I/O functions 3 * 4 * Basic PIO and command management functionality. 5 * 6 * This code was split off from ide.c. See ide.c for history and original 7 * copyrights. 8 * 9 * This program is free software; you can redistribute it and/or modify it 10 * under the terms of the GNU General Public License as published by the 11 * Free Software Foundation; either version 2, or (at your option) any 12 * later version. 13 * 14 * This program is distributed in the hope that it will be useful, but 15 * WITHOUT ANY WARRANTY; without even the implied warranty of 16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 17 * General Public License for more details. 18 * 19 * For the avoidance of doubt the "preferred form" of this code is one which 20 * is in an open non patent encumbered format. Where cryptographic key signing 21 * forms part of the process of creating an executable the information 22 * including keys needed to generate an equivalently functional executable 23 * are deemed to be part of the source code. 24 */ 25 26 27#include <linux/module.h> 28#include <linux/types.h> 29#include <linux/string.h> 30#include <linux/kernel.h> 31#include <linux/timer.h> 32#include <linux/mm.h> 33#include <linux/interrupt.h> 34#include <linux/major.h> 35#include <linux/errno.h> 36#include <linux/genhd.h> 37#include <linux/blkpg.h> 38#include <linux/slab.h> 39#include <linux/init.h> 40#include <linux/pci.h> 41#include <linux/delay.h> 42#include <linux/ide.h> 43#include <linux/completion.h> 44#include <linux/reboot.h> 45#include <linux/cdrom.h> 46#include <linux/seq_file.h> 47#include <linux/device.h> 48#include <linux/kmod.h> 49#include <linux/scatterlist.h> 50#include <linux/bitops.h> 51 52#include <asm/byteorder.h> 53#include <asm/irq.h> 54#include <asm/uaccess.h> 55#include <asm/io.h> 56 57static int __ide_end_request(ide_drive_t *drive, struct request *rq, 58 int uptodate, unsigned int nr_bytes, int dequeue) 59{ 60 int ret = 1; 61 int error = 0; 62 63 if (uptodate <= 0) 64 error = uptodate ? uptodate : -EIO; 65 66 /* 67 * if failfast is set on a request, override number of sectors and 68 * complete the whole request right now 69 */ 70 if (blk_noretry_request(rq) && error) 71 nr_bytes = rq->hard_nr_sectors << 9; 72 73 if (!blk_fs_request(rq) && error && !rq->errors) 74 rq->errors = -EIO; 75 76 /* 77 * decide whether to reenable DMA -- 3 is a random magic for now, 78 * if we DMA timeout more than 3 times, just stay in PIO 79 */ 80 if (drive->state == DMA_PIO_RETRY && drive->retry_pio <= 3) { 81 drive->state = 0; 82 ide_dma_on(drive); 83 } 84 85 if (!__blk_end_request(rq, error, nr_bytes)) { 86 if (dequeue) 87 HWGROUP(drive)->rq = NULL; 88 ret = 0; 89 } 90 91 return ret; 92} 93 94/** 95 * ide_end_request - complete an IDE I/O 96 * @drive: IDE device for the I/O 97 * @uptodate: 98 * @nr_sectors: number of sectors completed 99 * 100 * This is our end_request wrapper function. We complete the I/O 101 * update random number input and dequeue the request, which if 102 * it was tagged may be out of order. 103 */ 104 105int ide_end_request (ide_drive_t *drive, int uptodate, int nr_sectors) 106{ 107 unsigned int nr_bytes = nr_sectors << 9; 108 struct request *rq; 109 unsigned long flags; 110 int ret = 1; 111 112 /* 113 * room for locking improvements here, the calls below don't 114 * need the queue lock held at all 115 */ 116 spin_lock_irqsave(&ide_lock, flags); 117 rq = HWGROUP(drive)->rq; 118 119 if (!nr_bytes) { 120 if (blk_pc_request(rq)) 121 nr_bytes = rq->data_len; 122 else 123 nr_bytes = rq->hard_cur_sectors << 9; 124 } 125 126 ret = __ide_end_request(drive, rq, uptodate, nr_bytes, 1); 127 128 spin_unlock_irqrestore(&ide_lock, flags); 129 return ret; 130} 131EXPORT_SYMBOL(ide_end_request); 132 133/* 134 * Power Management state machine. This one is rather trivial for now, 135 * we should probably add more, like switching back to PIO on suspend 136 * to help some BIOSes, re-do the door locking on resume, etc... 137 */ 138 139enum { 140 ide_pm_flush_cache = ide_pm_state_start_suspend, 141 idedisk_pm_standby, 142 143 idedisk_pm_restore_pio = ide_pm_state_start_resume, 144 idedisk_pm_idle, 145 ide_pm_restore_dma, 146}; 147 148static void ide_complete_power_step(ide_drive_t *drive, struct request *rq, u8 stat, u8 error) 149{ 150 struct request_pm_state *pm = rq->data; 151 152 if (drive->media != ide_disk) 153 return; 154 155 switch (pm->pm_step) { 156 case ide_pm_flush_cache: /* Suspend step 1 (flush cache) complete */ 157 if (pm->pm_state == PM_EVENT_FREEZE) 158 pm->pm_step = ide_pm_state_completed; 159 else 160 pm->pm_step = idedisk_pm_standby; 161 break; 162 case idedisk_pm_standby: /* Suspend step 2 (standby) complete */ 163 pm->pm_step = ide_pm_state_completed; 164 break; 165 case idedisk_pm_restore_pio: /* Resume step 1 complete */ 166 pm->pm_step = idedisk_pm_idle; 167 break; 168 case idedisk_pm_idle: /* Resume step 2 (idle) complete */ 169 pm->pm_step = ide_pm_restore_dma; 170 break; 171 } 172} 173 174static ide_startstop_t ide_start_power_step(ide_drive_t *drive, struct request *rq) 175{ 176 struct request_pm_state *pm = rq->data; 177 ide_task_t *args = rq->special; 178 179 memset(args, 0, sizeof(*args)); 180 181 switch (pm->pm_step) { 182 case ide_pm_flush_cache: /* Suspend step 1 (flush cache) */ 183 if (drive->media != ide_disk) 184 break; 185 /* Not supported? Switch to next step now. */ 186 if (!drive->wcache || !ide_id_has_flush_cache(drive->id)) { 187 ide_complete_power_step(drive, rq, 0, 0); 188 return ide_stopped; 189 } 190 if (ide_id_has_flush_cache_ext(drive->id)) 191 args->tf.command = WIN_FLUSH_CACHE_EXT; 192 else 193 args->tf.command = WIN_FLUSH_CACHE; 194 goto out_do_tf; 195 196 case idedisk_pm_standby: /* Suspend step 2 (standby) */ 197 args->tf.command = WIN_STANDBYNOW1; 198 goto out_do_tf; 199 200 case idedisk_pm_restore_pio: /* Resume step 1 (restore PIO) */ 201 ide_set_max_pio(drive); 202 /* 203 * skip idedisk_pm_idle for ATAPI devices 204 */ 205 if (drive->media != ide_disk) 206 pm->pm_step = ide_pm_restore_dma; 207 else 208 ide_complete_power_step(drive, rq, 0, 0); 209 return ide_stopped; 210 211 case idedisk_pm_idle: /* Resume step 2 (idle) */ 212 args->tf.command = WIN_IDLEIMMEDIATE; 213 goto out_do_tf; 214 215 case ide_pm_restore_dma: /* Resume step 3 (restore DMA) */ 216 /* 217 * Right now, all we do is call ide_set_dma(drive), 218 * we could be smarter and check for current xfer_speed 219 * in struct drive etc... 220 */ 221 if (drive->hwif->dma_ops == NULL) 222 break; 223 /* 224 * TODO: respect ->using_dma setting 225 */ 226 ide_set_dma(drive); 227 break; 228 } 229 pm->pm_step = ide_pm_state_completed; 230 return ide_stopped; 231 232out_do_tf: 233 args->tf_flags = IDE_TFLAG_TF | IDE_TFLAG_DEVICE; 234 args->data_phase = TASKFILE_NO_DATA; 235 return do_rw_taskfile(drive, args); 236} 237 238/** 239 * ide_end_dequeued_request - complete an IDE I/O 240 * @drive: IDE device for the I/O 241 * @uptodate: 242 * @nr_sectors: number of sectors completed 243 * 244 * Complete an I/O that is no longer on the request queue. This 245 * typically occurs when we pull the request and issue a REQUEST_SENSE. 246 * We must still finish the old request but we must not tamper with the 247 * queue in the meantime. 248 * 249 * NOTE: This path does not handle barrier, but barrier is not supported 250 * on ide-cd anyway. 251 */ 252 253int ide_end_dequeued_request(ide_drive_t *drive, struct request *rq, 254 int uptodate, int nr_sectors) 255{ 256 unsigned long flags; 257 int ret; 258 259 spin_lock_irqsave(&ide_lock, flags); 260 BUG_ON(!blk_rq_started(rq)); 261 ret = __ide_end_request(drive, rq, uptodate, nr_sectors << 9, 0); 262 spin_unlock_irqrestore(&ide_lock, flags); 263 264 return ret; 265} 266EXPORT_SYMBOL_GPL(ide_end_dequeued_request); 267 268 269/** 270 * ide_complete_pm_request - end the current Power Management request 271 * @drive: target drive 272 * @rq: request 273 * 274 * This function cleans up the current PM request and stops the queue 275 * if necessary. 276 */ 277static void ide_complete_pm_request (ide_drive_t *drive, struct request *rq) 278{ 279 unsigned long flags; 280 281#ifdef DEBUG_PM 282 printk("%s: completing PM request, %s\n", drive->name, 283 blk_pm_suspend_request(rq) ? "suspend" : "resume"); 284#endif 285 spin_lock_irqsave(&ide_lock, flags); 286 if (blk_pm_suspend_request(rq)) { 287 blk_stop_queue(drive->queue); 288 } else { 289 drive->blocked = 0; 290 blk_start_queue(drive->queue); 291 } 292 HWGROUP(drive)->rq = NULL; 293 if (__blk_end_request(rq, 0, 0)) 294 BUG(); 295 spin_unlock_irqrestore(&ide_lock, flags); 296} 297 298/** 299 * ide_end_drive_cmd - end an explicit drive command 300 * @drive: command 301 * @stat: status bits 302 * @err: error bits 303 * 304 * Clean up after success/failure of an explicit drive command. 305 * These get thrown onto the queue so they are synchronized with 306 * real I/O operations on the drive. 307 * 308 * In LBA48 mode we have to read the register set twice to get 309 * all the extra information out. 310 */ 311 312void ide_end_drive_cmd (ide_drive_t *drive, u8 stat, u8 err) 313{ 314 unsigned long flags; 315 struct request *rq; 316 317 spin_lock_irqsave(&ide_lock, flags); 318 rq = HWGROUP(drive)->rq; 319 spin_unlock_irqrestore(&ide_lock, flags); 320 321 if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) { 322 ide_task_t *task = (ide_task_t *)rq->special; 323 324 if (rq->errors == 0) 325 rq->errors = !OK_STAT(stat, READY_STAT, BAD_STAT); 326 327 if (task) { 328 struct ide_taskfile *tf = &task->tf; 329 330 tf->error = err; 331 tf->status = stat; 332 333 drive->hwif->tf_read(drive, task); 334 335 if (task->tf_flags & IDE_TFLAG_DYN) 336 kfree(task); 337 } 338 } else if (blk_pm_request(rq)) { 339 struct request_pm_state *pm = rq->data; 340#ifdef DEBUG_PM 341 printk("%s: complete_power_step(step: %d, stat: %x, err: %x)\n", 342 drive->name, rq->pm->pm_step, stat, err); 343#endif 344 ide_complete_power_step(drive, rq, stat, err); 345 if (pm->pm_step == ide_pm_state_completed) 346 ide_complete_pm_request(drive, rq); 347 return; 348 } 349 350 spin_lock_irqsave(&ide_lock, flags); 351 HWGROUP(drive)->rq = NULL; 352 rq->errors = err; 353 if (unlikely(__blk_end_request(rq, (rq->errors ? -EIO : 0), 354 blk_rq_bytes(rq)))) 355 BUG(); 356 spin_unlock_irqrestore(&ide_lock, flags); 357} 358 359EXPORT_SYMBOL(ide_end_drive_cmd); 360 361static void ide_kill_rq(ide_drive_t *drive, struct request *rq) 362{ 363 if (rq->rq_disk) { 364 ide_driver_t *drv; 365 366 drv = *(ide_driver_t **)rq->rq_disk->private_data; 367 drv->end_request(drive, 0, 0); 368 } else 369 ide_end_request(drive, 0, 0); 370} 371 372static ide_startstop_t ide_ata_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err) 373{ 374 ide_hwif_t *hwif = drive->hwif; 375 376 if (stat & BUSY_STAT || ((stat & WRERR_STAT) && !drive->nowerr)) { 377 /* other bits are useless when BUSY */ 378 rq->errors |= ERROR_RESET; 379 } else if (stat & ERR_STAT) { 380 /* err has different meaning on cdrom and tape */ 381 if (err == ABRT_ERR) { 382 if (drive->select.b.lba && 383 /* some newer drives don't support WIN_SPECIFY */ 384 hwif->INB(hwif->io_ports.command_addr) == 385 WIN_SPECIFY) 386 return ide_stopped; 387 } else if ((err & BAD_CRC) == BAD_CRC) { 388 /* UDMA crc error, just retry the operation */ 389 drive->crc_count++; 390 } else if (err & (BBD_ERR | ECC_ERR)) { 391 /* retries won't help these */ 392 rq->errors = ERROR_MAX; 393 } else if (err & TRK0_ERR) { 394 /* help it find track zero */ 395 rq->errors |= ERROR_RECAL; 396 } 397 } 398 399 if ((stat & DRQ_STAT) && rq_data_dir(rq) == READ && 400 (hwif->host_flags & IDE_HFLAG_ERROR_STOPS_FIFO) == 0) { 401 int nsect = drive->mult_count ? drive->mult_count : 1; 402 403 ide_pad_transfer(drive, READ, nsect * SECTOR_SIZE); 404 } 405 406 if (rq->errors >= ERROR_MAX || blk_noretry_request(rq)) { 407 ide_kill_rq(drive, rq); 408 return ide_stopped; 409 } 410 411 if (ide_read_status(drive) & (BUSY_STAT | DRQ_STAT)) 412 rq->errors |= ERROR_RESET; 413 414 if ((rq->errors & ERROR_RESET) == ERROR_RESET) { 415 ++rq->errors; 416 return ide_do_reset(drive); 417 } 418 419 if ((rq->errors & ERROR_RECAL) == ERROR_RECAL) 420 drive->special.b.recalibrate = 1; 421 422 ++rq->errors; 423 424 return ide_stopped; 425} 426 427static ide_startstop_t ide_atapi_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err) 428{ 429 ide_hwif_t *hwif = drive->hwif; 430 431 if (stat & BUSY_STAT || ((stat & WRERR_STAT) && !drive->nowerr)) { 432 /* other bits are useless when BUSY */ 433 rq->errors |= ERROR_RESET; 434 } else { 435 /* add decoding error stuff */ 436 } 437 438 if (ide_read_status(drive) & (BUSY_STAT | DRQ_STAT)) 439 /* force an abort */ 440 hwif->exec_command(hwif, WIN_IDLEIMMEDIATE); 441 442 if (rq->errors >= ERROR_MAX) { 443 ide_kill_rq(drive, rq); 444 } else { 445 if ((rq->errors & ERROR_RESET) == ERROR_RESET) { 446 ++rq->errors; 447 return ide_do_reset(drive); 448 } 449 ++rq->errors; 450 } 451 452 return ide_stopped; 453} 454 455ide_startstop_t 456__ide_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err) 457{ 458 if (drive->media == ide_disk) 459 return ide_ata_error(drive, rq, stat, err); 460 return ide_atapi_error(drive, rq, stat, err); 461} 462 463EXPORT_SYMBOL_GPL(__ide_error); 464 465/** 466 * ide_error - handle an error on the IDE 467 * @drive: drive the error occurred on 468 * @msg: message to report 469 * @stat: status bits 470 * 471 * ide_error() takes action based on the error returned by the drive. 472 * For normal I/O that may well include retries. We deal with 473 * both new-style (taskfile) and old style command handling here. 474 * In the case of taskfile command handling there is work left to 475 * do 476 */ 477 478ide_startstop_t ide_error (ide_drive_t *drive, const char *msg, u8 stat) 479{ 480 struct request *rq; 481 u8 err; 482 483 err = ide_dump_status(drive, msg, stat); 484 485 if ((rq = HWGROUP(drive)->rq) == NULL) 486 return ide_stopped; 487 488 /* retry only "normal" I/O: */ 489 if (!blk_fs_request(rq)) { 490 rq->errors = 1; 491 ide_end_drive_cmd(drive, stat, err); 492 return ide_stopped; 493 } 494 495 if (rq->rq_disk) { 496 ide_driver_t *drv; 497 498 drv = *(ide_driver_t **)rq->rq_disk->private_data; 499 return drv->error(drive, rq, stat, err); 500 } else 501 return __ide_error(drive, rq, stat, err); 502} 503 504EXPORT_SYMBOL_GPL(ide_error); 505 506static void ide_tf_set_specify_cmd(ide_drive_t *drive, struct ide_taskfile *tf) 507{ 508 tf->nsect = drive->sect; 509 tf->lbal = drive->sect; 510 tf->lbam = drive->cyl; 511 tf->lbah = drive->cyl >> 8; 512 tf->device = ((drive->head - 1) | drive->select.all) & ~ATA_LBA; 513 tf->command = WIN_SPECIFY; 514} 515 516static void ide_tf_set_restore_cmd(ide_drive_t *drive, struct ide_taskfile *tf) 517{ 518 tf->nsect = drive->sect; 519 tf->command = WIN_RESTORE; 520} 521 522static void ide_tf_set_setmult_cmd(ide_drive_t *drive, struct ide_taskfile *tf) 523{ 524 tf->nsect = drive->mult_req; 525 tf->command = WIN_SETMULT; 526} 527 528static ide_startstop_t ide_disk_special(ide_drive_t *drive) 529{ 530 special_t *s = &drive->special; 531 ide_task_t args; 532 533 memset(&args, 0, sizeof(ide_task_t)); 534 args.data_phase = TASKFILE_NO_DATA; 535 536 if (s->b.set_geometry) { 537 s->b.set_geometry = 0; 538 ide_tf_set_specify_cmd(drive, &args.tf); 539 } else if (s->b.recalibrate) { 540 s->b.recalibrate = 0; 541 ide_tf_set_restore_cmd(drive, &args.tf); 542 } else if (s->b.set_multmode) { 543 s->b.set_multmode = 0; 544 if (drive->mult_req > drive->id->max_multsect) 545 drive->mult_req = drive->id->max_multsect; 546 ide_tf_set_setmult_cmd(drive, &args.tf); 547 } else if (s->all) { 548 int special = s->all; 549 s->all = 0; 550 printk(KERN_ERR "%s: bad special flag: 0x%02x\n", drive->name, special); 551 return ide_stopped; 552 } 553 554 args.tf_flags = IDE_TFLAG_TF | IDE_TFLAG_DEVICE | 555 IDE_TFLAG_CUSTOM_HANDLER; 556 557 do_rw_taskfile(drive, &args); 558 559 return ide_started; 560} 561 562/* 563 * handle HDIO_SET_PIO_MODE ioctl abusers here, eventually it will go away 564 */ 565static int set_pio_mode_abuse(ide_hwif_t *hwif, u8 req_pio) 566{ 567 switch (req_pio) { 568 case 202: 569 case 201: 570 case 200: 571 case 102: 572 case 101: 573 case 100: 574 return (hwif->host_flags & IDE_HFLAG_ABUSE_DMA_MODES) ? 1 : 0; 575 case 9: 576 case 8: 577 return (hwif->host_flags & IDE_HFLAG_ABUSE_PREFETCH) ? 1 : 0; 578 case 7: 579 case 6: 580 return (hwif->host_flags & IDE_HFLAG_ABUSE_FAST_DEVSEL) ? 1 : 0; 581 default: 582 return 0; 583 } 584} 585 586/** 587 * do_special - issue some special commands 588 * @drive: drive the command is for 589 * 590 * do_special() is used to issue WIN_SPECIFY, WIN_RESTORE, and WIN_SETMULT 591 * commands to a drive. It used to do much more, but has been scaled 592 * back. 593 */ 594 595static ide_startstop_t do_special (ide_drive_t *drive) 596{ 597 special_t *s = &drive->special; 598 599#ifdef DEBUG 600 printk("%s: do_special: 0x%02x\n", drive->name, s->all); 601#endif 602 if (s->b.set_tune) { 603 ide_hwif_t *hwif = drive->hwif; 604 const struct ide_port_ops *port_ops = hwif->port_ops; 605 u8 req_pio = drive->tune_req; 606 607 s->b.set_tune = 0; 608 609 if (set_pio_mode_abuse(drive->hwif, req_pio)) { 610 /* 611 * take ide_lock for drive->[no_]unmask/[no_]io_32bit 612 */ 613 if (req_pio == 8 || req_pio == 9) { 614 unsigned long flags; 615 616 spin_lock_irqsave(&ide_lock, flags); 617 port_ops->set_pio_mode(drive, req_pio); 618 spin_unlock_irqrestore(&ide_lock, flags); 619 } else 620 port_ops->set_pio_mode(drive, req_pio); 621 } else { 622 int keep_dma = drive->using_dma; 623 624 ide_set_pio(drive, req_pio); 625 626 if (hwif->host_flags & IDE_HFLAG_SET_PIO_MODE_KEEP_DMA) { 627 if (keep_dma) 628 ide_dma_on(drive); 629 } 630 } 631 632 return ide_stopped; 633 } else { 634 if (drive->media == ide_disk) 635 return ide_disk_special(drive); 636 637 s->all = 0; 638 drive->mult_req = 0; 639 return ide_stopped; 640 } 641} 642 643void ide_map_sg(ide_drive_t *drive, struct request *rq) 644{ 645 ide_hwif_t *hwif = drive->hwif; 646 struct scatterlist *sg = hwif->sg_table; 647 648 if (hwif->sg_mapped) /* needed by ide-scsi */ 649 return; 650 651 if (rq->cmd_type != REQ_TYPE_ATA_TASKFILE) { 652 hwif->sg_nents = blk_rq_map_sg(drive->queue, rq, sg); 653 } else { 654 sg_init_one(sg, rq->buffer, rq->nr_sectors * SECTOR_SIZE); 655 hwif->sg_nents = 1; 656 } 657} 658 659EXPORT_SYMBOL_GPL(ide_map_sg); 660 661void ide_init_sg_cmd(ide_drive_t *drive, struct request *rq) 662{ 663 ide_hwif_t *hwif = drive->hwif; 664 665 hwif->nsect = hwif->nleft = rq->nr_sectors; 666 hwif->cursg_ofs = 0; 667 hwif->cursg = NULL; 668} 669 670EXPORT_SYMBOL_GPL(ide_init_sg_cmd); 671 672/** 673 * execute_drive_command - issue special drive command 674 * @drive: the drive to issue the command on 675 * @rq: the request structure holding the command 676 * 677 * execute_drive_cmd() issues a special drive command, usually 678 * initiated by ioctl() from the external hdparm program. The 679 * command can be a drive command, drive task or taskfile 680 * operation. Weirdly you can call it with NULL to wait for 681 * all commands to finish. Don't do this as that is due to change 682 */ 683 684static ide_startstop_t execute_drive_cmd (ide_drive_t *drive, 685 struct request *rq) 686{ 687 ide_hwif_t *hwif = HWIF(drive); 688 ide_task_t *task = rq->special; 689 690 if (task) { 691 hwif->data_phase = task->data_phase; 692 693 switch (hwif->data_phase) { 694 case TASKFILE_MULTI_OUT: 695 case TASKFILE_OUT: 696 case TASKFILE_MULTI_IN: 697 case TASKFILE_IN: 698 ide_init_sg_cmd(drive, rq); 699 ide_map_sg(drive, rq); 700 default: 701 break; 702 } 703 704 return do_rw_taskfile(drive, task); 705 } 706 707 /* 708 * NULL is actually a valid way of waiting for 709 * all current requests to be flushed from the queue. 710 */ 711#ifdef DEBUG 712 printk("%s: DRIVE_CMD (null)\n", drive->name); 713#endif 714 ide_end_drive_cmd(drive, ide_read_status(drive), ide_read_error(drive)); 715 716 return ide_stopped; 717} 718 719static ide_startstop_t ide_special_rq(ide_drive_t *drive, struct request *rq) 720{ 721 switch (rq->cmd[0]) { 722 case REQ_DRIVE_RESET: 723 return ide_do_reset(drive); 724 default: 725 blk_dump_rq_flags(rq, "ide_special_rq - bad request"); 726 ide_end_request(drive, 0, 0); 727 return ide_stopped; 728 } 729} 730 731static void ide_check_pm_state(ide_drive_t *drive, struct request *rq) 732{ 733 struct request_pm_state *pm = rq->data; 734 735 if (blk_pm_suspend_request(rq) && 736 pm->pm_step == ide_pm_state_start_suspend) 737 /* Mark drive blocked when starting the suspend sequence. */ 738 drive->blocked = 1; 739 else if (blk_pm_resume_request(rq) && 740 pm->pm_step == ide_pm_state_start_resume) { 741 /* 742 * The first thing we do on wakeup is to wait for BSY bit to 743 * go away (with a looong timeout) as a drive on this hwif may 744 * just be POSTing itself. 745 * We do that before even selecting as the "other" device on 746 * the bus may be broken enough to walk on our toes at this 747 * point. 748 */ 749 int rc; 750#ifdef DEBUG_PM 751 printk("%s: Wakeup request inited, waiting for !BSY...\n", drive->name); 752#endif 753 rc = ide_wait_not_busy(HWIF(drive), 35000); 754 if (rc) 755 printk(KERN_WARNING "%s: bus not ready on wakeup\n", drive->name); 756 SELECT_DRIVE(drive); 757 ide_set_irq(drive, 1); 758 rc = ide_wait_not_busy(HWIF(drive), 100000); 759 if (rc) 760 printk(KERN_WARNING "%s: drive not ready on wakeup\n", drive->name); 761 } 762} 763 764/** 765 * start_request - start of I/O and command issuing for IDE 766 * 767 * start_request() initiates handling of a new I/O request. It 768 * accepts commands and I/O (read/write) requests. It also does 769 * the final remapping for weird stuff like EZDrive. Once 770 * device mapper can work sector level the EZDrive stuff can go away 771 * 772 * FIXME: this function needs a rename 773 */ 774 775static ide_startstop_t start_request (ide_drive_t *drive, struct request *rq) 776{ 777 ide_startstop_t startstop; 778 sector_t block; 779 780 BUG_ON(!blk_rq_started(rq)); 781 782#ifdef DEBUG 783 printk("%s: start_request: current=0x%08lx\n", 784 HWIF(drive)->name, (unsigned long) rq); 785#endif 786 787 /* bail early if we've exceeded max_failures */ 788 if (drive->max_failures && (drive->failures > drive->max_failures)) { 789 rq->cmd_flags |= REQ_FAILED; 790 goto kill_rq; 791 } 792 793 block = rq->sector; 794 if (blk_fs_request(rq) && 795 (drive->media == ide_disk || drive->media == ide_floppy)) { 796 block += drive->sect0; 797 } 798 /* Yecch - this will shift the entire interval, 799 possibly killing some innocent following sector */ 800 if (block == 0 && drive->remap_0_to_1 == 1) 801 block = 1; /* redirect MBR access to EZ-Drive partn table */ 802 803 if (blk_pm_request(rq)) 804 ide_check_pm_state(drive, rq); 805 806 SELECT_DRIVE(drive); 807 if (ide_wait_stat(&startstop, drive, drive->ready_stat, BUSY_STAT|DRQ_STAT, WAIT_READY)) { 808 printk(KERN_ERR "%s: drive not ready for command\n", drive->name); 809 return startstop; 810 } 811 if (!drive->special.all) { 812 ide_driver_t *drv; 813 814 /* 815 * We reset the drive so we need to issue a SETFEATURES. 816 * Do it _after_ do_special() restored device parameters. 817 */ 818 if (drive->current_speed == 0xff) 819 ide_config_drive_speed(drive, drive->desired_speed); 820 821 if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) 822 return execute_drive_cmd(drive, rq); 823 else if (blk_pm_request(rq)) { 824 struct request_pm_state *pm = rq->data; 825#ifdef DEBUG_PM 826 printk("%s: start_power_step(step: %d)\n", 827 drive->name, rq->pm->pm_step); 828#endif 829 startstop = ide_start_power_step(drive, rq); 830 if (startstop == ide_stopped && 831 pm->pm_step == ide_pm_state_completed) 832 ide_complete_pm_request(drive, rq); 833 return startstop; 834 } else if (!rq->rq_disk && blk_special_request(rq)) 835 /* 836 * TODO: Once all ULDs have been modified to 837 * check for specific op codes rather than 838 * blindly accepting any special request, the 839 * check for ->rq_disk above may be replaced 840 * by a more suitable mechanism or even 841 * dropped entirely. 842 */ 843 return ide_special_rq(drive, rq); 844 845 drv = *(ide_driver_t **)rq->rq_disk->private_data; 846 return drv->do_request(drive, rq, block); 847 } 848 return do_special(drive); 849kill_rq: 850 ide_kill_rq(drive, rq); 851 return ide_stopped; 852} 853 854/** 855 * ide_stall_queue - pause an IDE device 856 * @drive: drive to stall 857 * @timeout: time to stall for (jiffies) 858 * 859 * ide_stall_queue() can be used by a drive to give excess bandwidth back 860 * to the hwgroup by sleeping for timeout jiffies. 861 */ 862 863void ide_stall_queue (ide_drive_t *drive, unsigned long timeout) 864{ 865 if (timeout > WAIT_WORSTCASE) 866 timeout = WAIT_WORSTCASE; 867 drive->sleep = timeout + jiffies; 868 drive->sleeping = 1; 869} 870 871EXPORT_SYMBOL(ide_stall_queue); 872 873#define WAKEUP(drive) ((drive)->service_start + 2 * (drive)->service_time) 874 875/** 876 * choose_drive - select a drive to service 877 * @hwgroup: hardware group to select on 878 * 879 * choose_drive() selects the next drive which will be serviced. 880 * This is necessary because the IDE layer can't issue commands 881 * to both drives on the same cable, unlike SCSI. 882 */ 883 884static inline ide_drive_t *choose_drive (ide_hwgroup_t *hwgroup) 885{ 886 ide_drive_t *drive, *best; 887 888repeat: 889 best = NULL; 890 drive = hwgroup->drive; 891 892 /* 893 * drive is doing pre-flush, ordered write, post-flush sequence. even 894 * though that is 3 requests, it must be seen as a single transaction. 895 * we must not preempt this drive until that is complete 896 */ 897 if (blk_queue_flushing(drive->queue)) { 898 /* 899 * small race where queue could get replugged during 900 * the 3-request flush cycle, just yank the plug since 901 * we want it to finish asap 902 */ 903 blk_remove_plug(drive->queue); 904 return drive; 905 } 906 907 do { 908 if ((!drive->sleeping || time_after_eq(jiffies, drive->sleep)) 909 && !elv_queue_empty(drive->queue)) { 910 if (!best 911 || (drive->sleeping && (!best->sleeping || time_before(drive->sleep, best->sleep))) 912 || (!best->sleeping && time_before(WAKEUP(drive), WAKEUP(best)))) 913 { 914 if (!blk_queue_plugged(drive->queue)) 915 best = drive; 916 } 917 } 918 } while ((drive = drive->next) != hwgroup->drive); 919 if (best && best->nice1 && !best->sleeping && best != hwgroup->drive && best->service_time > WAIT_MIN_SLEEP) { 920 long t = (signed long)(WAKEUP(best) - jiffies); 921 if (t >= WAIT_MIN_SLEEP) { 922 /* 923 * We *may* have some time to spare, but first let's see if 924 * someone can potentially benefit from our nice mood today.. 925 */ 926 drive = best->next; 927 do { 928 if (!drive->sleeping 929 && time_before(jiffies - best->service_time, WAKEUP(drive)) 930 && time_before(WAKEUP(drive), jiffies + t)) 931 { 932 ide_stall_queue(best, min_t(long, t, 10 * WAIT_MIN_SLEEP)); 933 goto repeat; 934 } 935 } while ((drive = drive->next) != best); 936 } 937 } 938 return best; 939} 940 941/* 942 * Issue a new request to a drive from hwgroup 943 * Caller must have already done spin_lock_irqsave(&ide_lock, ..); 944 * 945 * A hwgroup is a serialized group of IDE interfaces. Usually there is 946 * exactly one hwif (interface) per hwgroup, but buggy controllers (eg. CMD640) 947 * may have both interfaces in a single hwgroup to "serialize" access. 948 * Or possibly multiple ISA interfaces can share a common IRQ by being grouped 949 * together into one hwgroup for serialized access. 950 * 951 * Note also that several hwgroups can end up sharing a single IRQ, 952 * possibly along with many other devices. This is especially common in 953 * PCI-based systems with off-board IDE controller cards. 954 * 955 * The IDE driver uses the single global ide_lock spinlock to protect 956 * access to the request queues, and to protect the hwgroup->busy flag. 957 * 958 * The first thread into the driver for a particular hwgroup sets the 959 * hwgroup->busy flag to indicate that this hwgroup is now active, 960 * and then initiates processing of the top request from the request queue. 961 * 962 * Other threads attempting entry notice the busy setting, and will simply 963 * queue their new requests and exit immediately. Note that hwgroup->busy 964 * remains set even when the driver is merely awaiting the next interrupt. 965 * Thus, the meaning is "this hwgroup is busy processing a request". 966 * 967 * When processing of a request completes, the completing thread or IRQ-handler 968 * will start the next request from the queue. If no more work remains, 969 * the driver will clear the hwgroup->busy flag and exit. 970 * 971 * The ide_lock (spinlock) is used to protect all access to the 972 * hwgroup->busy flag, but is otherwise not needed for most processing in 973 * the driver. This makes the driver much more friendlier to shared IRQs 974 * than previous designs, while remaining 100% (?) SMP safe and capable. 975 */ 976static void ide_do_request (ide_hwgroup_t *hwgroup, int masked_irq) 977{ 978 ide_drive_t *drive; 979 ide_hwif_t *hwif; 980 struct request *rq; 981 ide_startstop_t startstop; 982 int loops = 0; 983 984 /* for atari only: POSSIBLY BROKEN HERE(?) */ 985 ide_get_lock(ide_intr, hwgroup); 986 987 /* caller must own ide_lock */ 988 BUG_ON(!irqs_disabled()); 989 990 while (!hwgroup->busy) { 991 hwgroup->busy = 1; 992 drive = choose_drive(hwgroup); 993 if (drive == NULL) { 994 int sleeping = 0; 995 unsigned long sleep = 0; /* shut up, gcc */ 996 hwgroup->rq = NULL; 997 drive = hwgroup->drive; 998 do { 999 if (drive->sleeping && (!sleeping || time_before(drive->sleep, sleep))) { 1000 sleeping = 1; 1001 sleep = drive->sleep; 1002 } 1003 } while ((drive = drive->next) != hwgroup->drive); 1004 if (sleeping) { 1005 /* 1006 * Take a short snooze, and then wake up this hwgroup again. 1007 * This gives other hwgroups on the same a chance to 1008 * play fairly with us, just in case there are big differences 1009 * in relative throughputs.. don't want to hog the cpu too much. 1010 */ 1011 if (time_before(sleep, jiffies + WAIT_MIN_SLEEP)) 1012 sleep = jiffies + WAIT_MIN_SLEEP; 1013#if 1 1014 if (timer_pending(&hwgroup->timer)) 1015 printk(KERN_CRIT "ide_set_handler: timer already active\n"); 1016#endif 1017 /* so that ide_timer_expiry knows what to do */ 1018 hwgroup->sleeping = 1; 1019 hwgroup->req_gen_timer = hwgroup->req_gen; 1020 mod_timer(&hwgroup->timer, sleep); 1021 /* we purposely leave hwgroup->busy==1 1022 * while sleeping */ 1023 } else { 1024 /* Ugly, but how can we sleep for the lock 1025 * otherwise? perhaps from tq_disk? 1026 */ 1027 1028 /* for atari only */ 1029 ide_release_lock(); 1030 hwgroup->busy = 0; 1031 } 1032 1033 /* no more work for this hwgroup (for now) */ 1034 return; 1035 } 1036 again: 1037 hwif = HWIF(drive); 1038 if (hwgroup->hwif->sharing_irq && hwif != hwgroup->hwif) { 1039 /* 1040 * set nIEN for previous hwif, drives in the 1041 * quirk_list may not like intr setups/cleanups 1042 */ 1043 if (drive->quirk_list != 1) 1044 ide_set_irq(drive, 0); 1045 } 1046 hwgroup->hwif = hwif; 1047 hwgroup->drive = drive; 1048 drive->sleeping = 0; 1049 drive->service_start = jiffies; 1050 1051 if (blk_queue_plugged(drive->queue)) { 1052 printk(KERN_ERR "ide: huh? queue was plugged!\n"); 1053 break; 1054 } 1055 1056 /* 1057 * we know that the queue isn't empty, but this can happen 1058 * if the q->prep_rq_fn() decides to kill a request 1059 */ 1060 rq = elv_next_request(drive->queue); 1061 if (!rq) { 1062 hwgroup->busy = 0; 1063 break; 1064 } 1065 1066 /* 1067 * Sanity: don't accept a request that isn't a PM request 1068 * if we are currently power managed. This is very important as 1069 * blk_stop_queue() doesn't prevent the elv_next_request() 1070 * above to return us whatever is in the queue. Since we call 1071 * ide_do_request() ourselves, we end up taking requests while 1072 * the queue is blocked... 1073 * 1074 * We let requests forced at head of queue with ide-preempt 1075 * though. I hope that doesn't happen too much, hopefully not 1076 * unless the subdriver triggers such a thing in its own PM 1077 * state machine. 1078 * 1079 * We count how many times we loop here to make sure we service 1080 * all drives in the hwgroup without looping for ever 1081 */ 1082 if (drive->blocked && !blk_pm_request(rq) && !(rq->cmd_flags & REQ_PREEMPT)) { 1083 drive = drive->next ? drive->next : hwgroup->drive; 1084 if (loops++ < 4 && !blk_queue_plugged(drive->queue)) 1085 goto again; 1086 /* We clear busy, there should be no pending ATA command at this point. */ 1087 hwgroup->busy = 0; 1088 break; 1089 } 1090 1091 hwgroup->rq = rq; 1092 1093 /* 1094 * Some systems have trouble with IDE IRQs arriving while 1095 * the driver is still setting things up. So, here we disable 1096 * the IRQ used by this interface while the request is being started. 1097 * This may look bad at first, but pretty much the same thing 1098 * happens anyway when any interrupt comes in, IDE or otherwise 1099 * -- the kernel masks the IRQ while it is being handled. 1100 */ 1101 if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq) 1102 disable_irq_nosync(hwif->irq); 1103 spin_unlock(&ide_lock); 1104 local_irq_enable_in_hardirq(); 1105 /* allow other IRQs while we start this request */ 1106 startstop = start_request(drive, rq); 1107 spin_lock_irq(&ide_lock); 1108 if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq) 1109 enable_irq(hwif->irq); 1110 if (startstop == ide_stopped) 1111 hwgroup->busy = 0; 1112 } 1113} 1114 1115/* 1116 * Passes the stuff to ide_do_request 1117 */ 1118void do_ide_request(struct request_queue *q) 1119{ 1120 ide_drive_t *drive = q->queuedata; 1121 1122 ide_do_request(HWGROUP(drive), IDE_NO_IRQ); 1123} 1124 1125/* 1126 * un-busy the hwgroup etc, and clear any pending DMA status. we want to 1127 * retry the current request in pio mode instead of risking tossing it 1128 * all away 1129 */ 1130static ide_startstop_t ide_dma_timeout_retry(ide_drive_t *drive, int error) 1131{ 1132 ide_hwif_t *hwif = HWIF(drive); 1133 struct request *rq; 1134 ide_startstop_t ret = ide_stopped; 1135 1136 /* 1137 * end current dma transaction 1138 */ 1139 1140 if (error < 0) { 1141 printk(KERN_WARNING "%s: DMA timeout error\n", drive->name); 1142 (void)hwif->dma_ops->dma_end(drive); 1143 ret = ide_error(drive, "dma timeout error", 1144 ide_read_status(drive)); 1145 } else { 1146 printk(KERN_WARNING "%s: DMA timeout retry\n", drive->name); 1147 hwif->dma_ops->dma_timeout(drive); 1148 } 1149 1150 /* 1151 * disable dma for now, but remember that we did so because of 1152 * a timeout -- we'll reenable after we finish this next request 1153 * (or rather the first chunk of it) in pio. 1154 */ 1155 drive->retry_pio++; 1156 drive->state = DMA_PIO_RETRY; 1157 ide_dma_off_quietly(drive); 1158 1159 /* 1160 * un-busy drive etc (hwgroup->busy is cleared on return) and 1161 * make sure request is sane 1162 */ 1163 rq = HWGROUP(drive)->rq; 1164 1165 if (!rq) 1166 goto out; 1167 1168 HWGROUP(drive)->rq = NULL; 1169 1170 rq->errors = 0; 1171 1172 if (!rq->bio) 1173 goto out; 1174 1175 rq->sector = rq->bio->bi_sector; 1176 rq->current_nr_sectors = bio_iovec(rq->bio)->bv_len >> 9; 1177 rq->hard_cur_sectors = rq->current_nr_sectors; 1178 rq->buffer = bio_data(rq->bio); 1179out: 1180 return ret; 1181} 1182 1183/** 1184 * ide_timer_expiry - handle lack of an IDE interrupt 1185 * @data: timer callback magic (hwgroup) 1186 * 1187 * An IDE command has timed out before the expected drive return 1188 * occurred. At this point we attempt to clean up the current 1189 * mess. If the current handler includes an expiry handler then 1190 * we invoke the expiry handler, and providing it is happy the 1191 * work is done. If that fails we apply generic recovery rules 1192 * invoking the handler and checking the drive DMA status. We 1193 * have an excessively incestuous relationship with the DMA 1194 * logic that wants cleaning up. 1195 */ 1196 1197void ide_timer_expiry (unsigned long data) 1198{ 1199 ide_hwgroup_t *hwgroup = (ide_hwgroup_t *) data; 1200 ide_handler_t *handler; 1201 ide_expiry_t *expiry; 1202 unsigned long flags; 1203 unsigned long wait = -1; 1204 1205 spin_lock_irqsave(&ide_lock, flags); 1206 1207 if (((handler = hwgroup->handler) == NULL) || 1208 (hwgroup->req_gen != hwgroup->req_gen_timer)) { 1209 /* 1210 * Either a marginal timeout occurred 1211 * (got the interrupt just as timer expired), 1212 * or we were "sleeping" to give other devices a chance. 1213 * Either way, we don't really want to complain about anything. 1214 */ 1215 if (hwgroup->sleeping) { 1216 hwgroup->sleeping = 0; 1217 hwgroup->busy = 0; 1218 } 1219 } else { 1220 ide_drive_t *drive = hwgroup->drive; 1221 if (!drive) { 1222 printk(KERN_ERR "ide_timer_expiry: hwgroup->drive was NULL\n"); 1223 hwgroup->handler = NULL; 1224 } else { 1225 ide_hwif_t *hwif; 1226 ide_startstop_t startstop = ide_stopped; 1227 if (!hwgroup->busy) { 1228 hwgroup->busy = 1; /* paranoia */ 1229 printk(KERN_ERR "%s: ide_timer_expiry: hwgroup->busy was 0 ??\n", drive->name); 1230 } 1231 if ((expiry = hwgroup->expiry) != NULL) { 1232 /* continue */ 1233 if ((wait = expiry(drive)) > 0) { 1234 /* reset timer */ 1235 hwgroup->timer.expires = jiffies + wait; 1236 hwgroup->req_gen_timer = hwgroup->req_gen; 1237 add_timer(&hwgroup->timer); 1238 spin_unlock_irqrestore(&ide_lock, flags); 1239 return; 1240 } 1241 } 1242 hwgroup->handler = NULL; 1243 /* 1244 * We need to simulate a real interrupt when invoking 1245 * the handler() function, which means we need to 1246 * globally mask the specific IRQ: 1247 */ 1248 spin_unlock(&ide_lock); 1249 hwif = HWIF(drive); 1250 /* disable_irq_nosync ?? */ 1251 disable_irq(hwif->irq); 1252 /* local CPU only, 1253 * as if we were handling an interrupt */ 1254 local_irq_disable(); 1255 if (hwgroup->polling) { 1256 startstop = handler(drive); 1257 } else if (drive_is_ready(drive)) { 1258 if (drive->waiting_for_dma) 1259 hwif->dma_ops->dma_lost_irq(drive); 1260 (void)ide_ack_intr(hwif); 1261 printk(KERN_WARNING "%s: lost interrupt\n", drive->name); 1262 startstop = handler(drive); 1263 } else { 1264 if (drive->waiting_for_dma) { 1265 startstop = ide_dma_timeout_retry(drive, wait); 1266 } else 1267 startstop = 1268 ide_error(drive, "irq timeout", 1269 ide_read_status(drive)); 1270 } 1271 drive->service_time = jiffies - drive->service_start; 1272 spin_lock_irq(&ide_lock); 1273 enable_irq(hwif->irq); 1274 if (startstop == ide_stopped) 1275 hwgroup->busy = 0; 1276 } 1277 } 1278 ide_do_request(hwgroup, IDE_NO_IRQ); 1279 spin_unlock_irqrestore(&ide_lock, flags); 1280} 1281 1282/** 1283 * unexpected_intr - handle an unexpected IDE interrupt 1284 * @irq: interrupt line 1285 * @hwgroup: hwgroup being processed 1286 * 1287 * There's nothing really useful we can do with an unexpected interrupt, 1288 * other than reading the status register (to clear it), and logging it. 1289 * There should be no way that an irq can happen before we're ready for it, 1290 * so we needn't worry much about losing an "important" interrupt here. 1291 * 1292 * On laptops (and "green" PCs), an unexpected interrupt occurs whenever 1293 * the drive enters "idle", "standby", or "sleep" mode, so if the status 1294 * looks "good", we just ignore the interrupt completely. 1295 * 1296 * This routine assumes __cli() is in effect when called. 1297 * 1298 * If an unexpected interrupt happens on irq15 while we are handling irq14 1299 * and if the two interfaces are "serialized" (CMD640), then it looks like 1300 * we could screw up by interfering with a new request being set up for 1301 * irq15. 1302 * 1303 * In reality, this is a non-issue. The new command is not sent unless 1304 * the drive is ready to accept one, in which case we know the drive is 1305 * not trying to interrupt us. And ide_set_handler() is always invoked 1306 * before completing the issuance of any new drive command, so we will not 1307 * be accidentally invoked as a result of any valid command completion 1308 * interrupt. 1309 * 1310 * Note that we must walk the entire hwgroup here. We know which hwif 1311 * is doing the current command, but we don't know which hwif burped 1312 * mysteriously. 1313 */ 1314 1315static void unexpected_intr (int irq, ide_hwgroup_t *hwgroup) 1316{ 1317 u8 stat; 1318 ide_hwif_t *hwif = hwgroup->hwif; 1319 1320 /* 1321 * handle the unexpected interrupt 1322 */ 1323 do { 1324 if (hwif->irq == irq) { 1325 stat = hwif->INB(hwif->io_ports.status_addr); 1326 if (!OK_STAT(stat, READY_STAT, BAD_STAT)) { 1327 /* Try to not flood the console with msgs */ 1328 static unsigned long last_msgtime, count; 1329 ++count; 1330 if (time_after(jiffies, last_msgtime + HZ)) { 1331 last_msgtime = jiffies; 1332 printk(KERN_ERR "%s%s: unexpected interrupt, " 1333 "status=0x%02x, count=%ld\n", 1334 hwif->name, 1335 (hwif->next==hwgroup->hwif) ? "" : "(?)", stat, count); 1336 } 1337 } 1338 } 1339 } while ((hwif = hwif->next) != hwgroup->hwif); 1340} 1341 1342/** 1343 * ide_intr - default IDE interrupt handler 1344 * @irq: interrupt number 1345 * @dev_id: hwif group 1346 * @regs: unused weirdness from the kernel irq layer 1347 * 1348 * This is the default IRQ handler for the IDE layer. You should 1349 * not need to override it. If you do be aware it is subtle in 1350 * places 1351 * 1352 * hwgroup->hwif is the interface in the group currently performing 1353 * a command. hwgroup->drive is the drive and hwgroup->handler is 1354 * the IRQ handler to call. As we issue a command the handlers 1355 * step through multiple states, reassigning the handler to the 1356 * next step in the process. Unlike a smart SCSI controller IDE 1357 * expects the main processor to sequence the various transfer 1358 * stages. We also manage a poll timer to catch up with most 1359 * timeout situations. There are still a few where the handlers 1360 * don't ever decide to give up. 1361 * 1362 * The handler eventually returns ide_stopped to indicate the 1363 * request completed. At this point we issue the next request 1364 * on the hwgroup and the process begins again. 1365 */ 1366 1367irqreturn_t ide_intr (int irq, void *dev_id) 1368{ 1369 unsigned long flags; 1370 ide_hwgroup_t *hwgroup = (ide_hwgroup_t *)dev_id; 1371 ide_hwif_t *hwif; 1372 ide_drive_t *drive; 1373 ide_handler_t *handler; 1374 ide_startstop_t startstop; 1375 1376 spin_lock_irqsave(&ide_lock, flags); 1377 hwif = hwgroup->hwif; 1378 1379 if (!ide_ack_intr(hwif)) { 1380 spin_unlock_irqrestore(&ide_lock, flags); 1381 return IRQ_NONE; 1382 } 1383 1384 if ((handler = hwgroup->handler) == NULL || hwgroup->polling) { 1385 /* 1386 * Not expecting an interrupt from this drive. 1387 * That means this could be: 1388 * (1) an interrupt from another PCI device 1389 * sharing the same PCI INT# as us. 1390 * or (2) a drive just entered sleep or standby mode, 1391 * and is interrupting to let us know. 1392 * or (3) a spurious interrupt of unknown origin. 1393 * 1394 * For PCI, we cannot tell the difference, 1395 * so in that case we just ignore it and hope it goes away. 1396 * 1397 * FIXME: unexpected_intr should be hwif-> then we can 1398 * remove all the ifdef PCI crap 1399 */ 1400#ifdef CONFIG_BLK_DEV_IDEPCI 1401 if (hwif->chipset != ide_pci) 1402#endif /* CONFIG_BLK_DEV_IDEPCI */ 1403 { 1404 /* 1405 * Probably not a shared PCI interrupt, 1406 * so we can safely try to do something about it: 1407 */ 1408 unexpected_intr(irq, hwgroup); 1409#ifdef CONFIG_BLK_DEV_IDEPCI 1410 } else { 1411 /* 1412 * Whack the status register, just in case 1413 * we have a leftover pending IRQ. 1414 */ 1415 (void) hwif->INB(hwif->io_ports.status_addr); 1416#endif /* CONFIG_BLK_DEV_IDEPCI */ 1417 } 1418 spin_unlock_irqrestore(&ide_lock, flags); 1419 return IRQ_NONE; 1420 } 1421 drive = hwgroup->drive; 1422 if (!drive) { 1423 /* 1424 * This should NEVER happen, and there isn't much 1425 * we could do about it here. 1426 * 1427 * [Note - this can occur if the drive is hot unplugged] 1428 */ 1429 spin_unlock_irqrestore(&ide_lock, flags); 1430 return IRQ_HANDLED; 1431 } 1432 if (!drive_is_ready(drive)) { 1433 /* 1434 * This happens regularly when we share a PCI IRQ with 1435 * another device. Unfortunately, it can also happen 1436 * with some buggy drives that trigger the IRQ before 1437 * their status register is up to date. Hopefully we have 1438 * enough advance overhead that the latter isn't a problem. 1439 */ 1440 spin_unlock_irqrestore(&ide_lock, flags); 1441 return IRQ_NONE; 1442 } 1443 if (!hwgroup->busy) { 1444 hwgroup->busy = 1; /* paranoia */ 1445 printk(KERN_ERR "%s: ide_intr: hwgroup->busy was 0 ??\n", drive->name); 1446 } 1447 hwgroup->handler = NULL; 1448 hwgroup->req_gen++; 1449 del_timer(&hwgroup->timer); 1450 spin_unlock(&ide_lock); 1451 1452 /* Some controllers might set DMA INTR no matter DMA or PIO; 1453 * bmdma status might need to be cleared even for 1454 * PIO interrupts to prevent spurious/lost irq. 1455 */ 1456 if (hwif->ide_dma_clear_irq && !(drive->waiting_for_dma)) 1457 /* ide_dma_end() needs bmdma status for error checking. 1458 * So, skip clearing bmdma status here and leave it 1459 * to ide_dma_end() if this is dma interrupt. 1460 */ 1461 hwif->ide_dma_clear_irq(drive); 1462 1463 if (drive->unmask) 1464 local_irq_enable_in_hardirq(); 1465 /* service this interrupt, may set handler for next interrupt */ 1466 startstop = handler(drive); 1467 spin_lock_irq(&ide_lock); 1468 1469 /* 1470 * Note that handler() may have set things up for another 1471 * interrupt to occur soon, but it cannot happen until 1472 * we exit from this routine, because it will be the 1473 * same irq as is currently being serviced here, and Linux 1474 * won't allow another of the same (on any CPU) until we return. 1475 */ 1476 drive->service_time = jiffies - drive->service_start; 1477 if (startstop == ide_stopped) { 1478 if (hwgroup->handler == NULL) { /* paranoia */ 1479 hwgroup->busy = 0; 1480 ide_do_request(hwgroup, hwif->irq); 1481 } else { 1482 printk(KERN_ERR "%s: ide_intr: huh? expected NULL handler " 1483 "on exit\n", drive->name); 1484 } 1485 } 1486 spin_unlock_irqrestore(&ide_lock, flags); 1487 return IRQ_HANDLED; 1488} 1489 1490/** 1491 * ide_do_drive_cmd - issue IDE special command 1492 * @drive: device to issue command 1493 * @rq: request to issue 1494 * 1495 * This function issues a special IDE device request 1496 * onto the request queue. 1497 * 1498 * the rq is queued at the head of the request queue, displacing 1499 * the currently-being-processed request and this function 1500 * returns immediately without waiting for the new rq to be 1501 * completed. This is VERY DANGEROUS, and is intended for 1502 * careful use by the ATAPI tape/cdrom driver code. 1503 */ 1504 1505void ide_do_drive_cmd(ide_drive_t *drive, struct request *rq) 1506{ 1507 unsigned long flags; 1508 ide_hwgroup_t *hwgroup = HWGROUP(drive); 1509 1510 spin_lock_irqsave(&ide_lock, flags); 1511 hwgroup->rq = NULL; 1512 __elv_add_request(drive->queue, rq, ELEVATOR_INSERT_FRONT, 1); 1513 __generic_unplug_device(drive->queue); 1514 spin_unlock_irqrestore(&ide_lock, flags); 1515} 1516 1517EXPORT_SYMBOL(ide_do_drive_cmd); 1518 1519void ide_pktcmd_tf_load(ide_drive_t *drive, u32 tf_flags, u16 bcount, u8 dma) 1520{ 1521 ide_task_t task; 1522 1523 memset(&task, 0, sizeof(task)); 1524 task.tf_flags = IDE_TFLAG_OUT_LBAH | IDE_TFLAG_OUT_LBAM | 1525 IDE_TFLAG_OUT_FEATURE | tf_flags; 1526 task.tf.feature = dma; /* Use PIO/DMA */ 1527 task.tf.lbam = bcount & 0xff; 1528 task.tf.lbah = (bcount >> 8) & 0xff; 1529 1530 ide_tf_dump(drive->name, &task.tf); 1531 ide_set_irq(drive, 1); 1532 SELECT_MASK(drive, 0); 1533 drive->hwif->tf_load(drive, &task); 1534} 1535 1536EXPORT_SYMBOL_GPL(ide_pktcmd_tf_load); 1537 1538void ide_pad_transfer(ide_drive_t *drive, int write, int len) 1539{ 1540 ide_hwif_t *hwif = drive->hwif; 1541 u8 buf[4] = { 0 }; 1542 1543 while (len > 0) { 1544 if (write) 1545 hwif->output_data(drive, NULL, buf, min(4, len)); 1546 else 1547 hwif->input_data(drive, NULL, buf, min(4, len)); 1548 len -= 4; 1549 } 1550} 1551EXPORT_SYMBOL_GPL(ide_pad_transfer); 1552