ide-io.c revision ce42f19137225d01be9388a73703df40fb7af80f
1/* 2 * IDE I/O functions 3 * 4 * Basic PIO and command management functionality. 5 * 6 * This code was split off from ide.c. See ide.c for history and original 7 * copyrights. 8 * 9 * This program is free software; you can redistribute it and/or modify it 10 * under the terms of the GNU General Public License as published by the 11 * Free Software Foundation; either version 2, or (at your option) any 12 * later version. 13 * 14 * This program is distributed in the hope that it will be useful, but 15 * WITHOUT ANY WARRANTY; without even the implied warranty of 16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 17 * General Public License for more details. 18 * 19 * For the avoidance of doubt the "preferred form" of this code is one which 20 * is in an open non patent encumbered format. Where cryptographic key signing 21 * forms part of the process of creating an executable the information 22 * including keys needed to generate an equivalently functional executable 23 * are deemed to be part of the source code. 24 */ 25 26 27#include <linux/module.h> 28#include <linux/types.h> 29#include <linux/string.h> 30#include <linux/kernel.h> 31#include <linux/timer.h> 32#include <linux/mm.h> 33#include <linux/interrupt.h> 34#include <linux/major.h> 35#include <linux/errno.h> 36#include <linux/genhd.h> 37#include <linux/blkpg.h> 38#include <linux/slab.h> 39#include <linux/init.h> 40#include <linux/pci.h> 41#include <linux/delay.h> 42#include <linux/ide.h> 43#include <linux/completion.h> 44#include <linux/reboot.h> 45#include <linux/cdrom.h> 46#include <linux/seq_file.h> 47#include <linux/device.h> 48#include <linux/kmod.h> 49#include <linux/scatterlist.h> 50 51#include <asm/byteorder.h> 52#include <asm/irq.h> 53#include <asm/uaccess.h> 54#include <asm/io.h> 55#include <asm/bitops.h> 56 57static int __ide_end_request(ide_drive_t *drive, struct request *rq, 58 int uptodate, int nr_sectors) 59{ 60 int ret = 1; 61 62 /* 63 * if failfast is set on a request, override number of sectors and 64 * complete the whole request right now 65 */ 66 if (blk_noretry_request(rq) && end_io_error(uptodate)) 67 nr_sectors = rq->hard_nr_sectors; 68 69 if (!blk_fs_request(rq) && end_io_error(uptodate) && !rq->errors) 70 rq->errors = -EIO; 71 72 /* 73 * decide whether to reenable DMA -- 3 is a random magic for now, 74 * if we DMA timeout more than 3 times, just stay in PIO 75 */ 76 if (drive->state == DMA_PIO_RETRY && drive->retry_pio <= 3) { 77 drive->state = 0; 78 HWGROUP(drive)->hwif->ide_dma_on(drive); 79 } 80 81 if (!end_that_request_first(rq, uptodate, nr_sectors)) { 82 add_disk_randomness(rq->rq_disk); 83 if (!list_empty(&rq->queuelist)) 84 blkdev_dequeue_request(rq); 85 HWGROUP(drive)->rq = NULL; 86 end_that_request_last(rq, uptodate); 87 ret = 0; 88 } 89 90 return ret; 91} 92 93/** 94 * ide_end_request - complete an IDE I/O 95 * @drive: IDE device for the I/O 96 * @uptodate: 97 * @nr_sectors: number of sectors completed 98 * 99 * This is our end_request wrapper function. We complete the I/O 100 * update random number input and dequeue the request, which if 101 * it was tagged may be out of order. 102 */ 103 104int ide_end_request (ide_drive_t *drive, int uptodate, int nr_sectors) 105{ 106 struct request *rq; 107 unsigned long flags; 108 int ret = 1; 109 110 /* 111 * room for locking improvements here, the calls below don't 112 * need the queue lock held at all 113 */ 114 spin_lock_irqsave(&ide_lock, flags); 115 rq = HWGROUP(drive)->rq; 116 117 if (!nr_sectors) 118 nr_sectors = rq->hard_cur_sectors; 119 120 ret = __ide_end_request(drive, rq, uptodate, nr_sectors); 121 122 spin_unlock_irqrestore(&ide_lock, flags); 123 return ret; 124} 125EXPORT_SYMBOL(ide_end_request); 126 127/* 128 * Power Management state machine. This one is rather trivial for now, 129 * we should probably add more, like switching back to PIO on suspend 130 * to help some BIOSes, re-do the door locking on resume, etc... 131 */ 132 133enum { 134 ide_pm_flush_cache = ide_pm_state_start_suspend, 135 idedisk_pm_standby, 136 137 idedisk_pm_idle = ide_pm_state_start_resume, 138 ide_pm_restore_dma, 139}; 140 141static void ide_complete_power_step(ide_drive_t *drive, struct request *rq, u8 stat, u8 error) 142{ 143 struct request_pm_state *pm = rq->data; 144 145 if (drive->media != ide_disk) 146 return; 147 148 switch (pm->pm_step) { 149 case ide_pm_flush_cache: /* Suspend step 1 (flush cache) complete */ 150 if (pm->pm_state == PM_EVENT_FREEZE) 151 pm->pm_step = ide_pm_state_completed; 152 else 153 pm->pm_step = idedisk_pm_standby; 154 break; 155 case idedisk_pm_standby: /* Suspend step 2 (standby) complete */ 156 pm->pm_step = ide_pm_state_completed; 157 break; 158 case idedisk_pm_idle: /* Resume step 1 (idle) complete */ 159 pm->pm_step = ide_pm_restore_dma; 160 break; 161 } 162} 163 164static ide_startstop_t ide_start_power_step(ide_drive_t *drive, struct request *rq) 165{ 166 struct request_pm_state *pm = rq->data; 167 ide_task_t *args = rq->special; 168 169 memset(args, 0, sizeof(*args)); 170 171 if (drive->media != ide_disk) { 172 /* skip idedisk_pm_idle for ATAPI devices */ 173 if (pm->pm_step == idedisk_pm_idle) 174 pm->pm_step = ide_pm_restore_dma; 175 } 176 177 switch (pm->pm_step) { 178 case ide_pm_flush_cache: /* Suspend step 1 (flush cache) */ 179 if (drive->media != ide_disk) 180 break; 181 /* Not supported? Switch to next step now. */ 182 if (!drive->wcache || !ide_id_has_flush_cache(drive->id)) { 183 ide_complete_power_step(drive, rq, 0, 0); 184 return ide_stopped; 185 } 186 if (ide_id_has_flush_cache_ext(drive->id)) 187 args->tfRegister[IDE_COMMAND_OFFSET] = WIN_FLUSH_CACHE_EXT; 188 else 189 args->tfRegister[IDE_COMMAND_OFFSET] = WIN_FLUSH_CACHE; 190 args->command_type = IDE_DRIVE_TASK_NO_DATA; 191 args->handler = &task_no_data_intr; 192 return do_rw_taskfile(drive, args); 193 194 case idedisk_pm_standby: /* Suspend step 2 (standby) */ 195 args->tfRegister[IDE_COMMAND_OFFSET] = WIN_STANDBYNOW1; 196 args->command_type = IDE_DRIVE_TASK_NO_DATA; 197 args->handler = &task_no_data_intr; 198 return do_rw_taskfile(drive, args); 199 200 case idedisk_pm_idle: /* Resume step 1 (idle) */ 201 args->tfRegister[IDE_COMMAND_OFFSET] = WIN_IDLEIMMEDIATE; 202 args->command_type = IDE_DRIVE_TASK_NO_DATA; 203 args->handler = task_no_data_intr; 204 return do_rw_taskfile(drive, args); 205 206 case ide_pm_restore_dma: /* Resume step 2 (restore DMA) */ 207 /* 208 * Right now, all we do is call hwif->ide_dma_check(drive), 209 * we could be smarter and check for current xfer_speed 210 * in struct drive etc... 211 */ 212 if ((drive->id->capability & 1) == 0) 213 break; 214 if (drive->hwif->ide_dma_check == NULL) 215 break; 216 drive->hwif->ide_dma_check(drive); 217 break; 218 } 219 pm->pm_step = ide_pm_state_completed; 220 return ide_stopped; 221} 222 223/** 224 * ide_end_dequeued_request - complete an IDE I/O 225 * @drive: IDE device for the I/O 226 * @uptodate: 227 * @nr_sectors: number of sectors completed 228 * 229 * Complete an I/O that is no longer on the request queue. This 230 * typically occurs when we pull the request and issue a REQUEST_SENSE. 231 * We must still finish the old request but we must not tamper with the 232 * queue in the meantime. 233 * 234 * NOTE: This path does not handle barrier, but barrier is not supported 235 * on ide-cd anyway. 236 */ 237 238int ide_end_dequeued_request(ide_drive_t *drive, struct request *rq, 239 int uptodate, int nr_sectors) 240{ 241 unsigned long flags; 242 int ret = 1; 243 244 spin_lock_irqsave(&ide_lock, flags); 245 246 BUG_ON(!blk_rq_started(rq)); 247 248 /* 249 * if failfast is set on a request, override number of sectors and 250 * complete the whole request right now 251 */ 252 if (blk_noretry_request(rq) && end_io_error(uptodate)) 253 nr_sectors = rq->hard_nr_sectors; 254 255 if (!blk_fs_request(rq) && end_io_error(uptodate) && !rq->errors) 256 rq->errors = -EIO; 257 258 /* 259 * decide whether to reenable DMA -- 3 is a random magic for now, 260 * if we DMA timeout more than 3 times, just stay in PIO 261 */ 262 if (drive->state == DMA_PIO_RETRY && drive->retry_pio <= 3) { 263 drive->state = 0; 264 HWGROUP(drive)->hwif->ide_dma_on(drive); 265 } 266 267 if (!end_that_request_first(rq, uptodate, nr_sectors)) { 268 add_disk_randomness(rq->rq_disk); 269 if (blk_rq_tagged(rq)) 270 blk_queue_end_tag(drive->queue, rq); 271 end_that_request_last(rq, uptodate); 272 ret = 0; 273 } 274 spin_unlock_irqrestore(&ide_lock, flags); 275 return ret; 276} 277EXPORT_SYMBOL_GPL(ide_end_dequeued_request); 278 279 280/** 281 * ide_complete_pm_request - end the current Power Management request 282 * @drive: target drive 283 * @rq: request 284 * 285 * This function cleans up the current PM request and stops the queue 286 * if necessary. 287 */ 288static void ide_complete_pm_request (ide_drive_t *drive, struct request *rq) 289{ 290 unsigned long flags; 291 292#ifdef DEBUG_PM 293 printk("%s: completing PM request, %s\n", drive->name, 294 blk_pm_suspend_request(rq) ? "suspend" : "resume"); 295#endif 296 spin_lock_irqsave(&ide_lock, flags); 297 if (blk_pm_suspend_request(rq)) { 298 blk_stop_queue(drive->queue); 299 } else { 300 drive->blocked = 0; 301 blk_start_queue(drive->queue); 302 } 303 blkdev_dequeue_request(rq); 304 HWGROUP(drive)->rq = NULL; 305 end_that_request_last(rq, 1); 306 spin_unlock_irqrestore(&ide_lock, flags); 307} 308 309/* 310 * FIXME: probably move this somewhere else, name is bad too :) 311 */ 312u64 ide_get_error_location(ide_drive_t *drive, char *args) 313{ 314 u32 high, low; 315 u8 hcyl, lcyl, sect; 316 u64 sector; 317 318 high = 0; 319 hcyl = args[5]; 320 lcyl = args[4]; 321 sect = args[3]; 322 323 if (ide_id_has_flush_cache_ext(drive->id)) { 324 low = (hcyl << 16) | (lcyl << 8) | sect; 325 HWIF(drive)->OUTB(drive->ctl|0x80, IDE_CONTROL_REG); 326 high = ide_read_24(drive); 327 } else { 328 u8 cur = HWIF(drive)->INB(IDE_SELECT_REG); 329 if (cur & 0x40) { 330 high = cur & 0xf; 331 low = (hcyl << 16) | (lcyl << 8) | sect; 332 } else { 333 low = hcyl * drive->head * drive->sect; 334 low += lcyl * drive->sect; 335 low += sect - 1; 336 } 337 } 338 339 sector = ((u64) high << 24) | low; 340 return sector; 341} 342EXPORT_SYMBOL(ide_get_error_location); 343 344/** 345 * ide_end_drive_cmd - end an explicit drive command 346 * @drive: command 347 * @stat: status bits 348 * @err: error bits 349 * 350 * Clean up after success/failure of an explicit drive command. 351 * These get thrown onto the queue so they are synchronized with 352 * real I/O operations on the drive. 353 * 354 * In LBA48 mode we have to read the register set twice to get 355 * all the extra information out. 356 */ 357 358void ide_end_drive_cmd (ide_drive_t *drive, u8 stat, u8 err) 359{ 360 ide_hwif_t *hwif = HWIF(drive); 361 unsigned long flags; 362 struct request *rq; 363 364 spin_lock_irqsave(&ide_lock, flags); 365 rq = HWGROUP(drive)->rq; 366 spin_unlock_irqrestore(&ide_lock, flags); 367 368 if (rq->cmd_type == REQ_TYPE_ATA_CMD) { 369 u8 *args = (u8 *) rq->buffer; 370 if (rq->errors == 0) 371 rq->errors = !OK_STAT(stat,READY_STAT,BAD_STAT); 372 373 if (args) { 374 args[0] = stat; 375 args[1] = err; 376 args[2] = hwif->INB(IDE_NSECTOR_REG); 377 } 378 } else if (rq->cmd_type == REQ_TYPE_ATA_TASK) { 379 u8 *args = (u8 *) rq->buffer; 380 if (rq->errors == 0) 381 rq->errors = !OK_STAT(stat,READY_STAT,BAD_STAT); 382 383 if (args) { 384 args[0] = stat; 385 args[1] = err; 386 args[2] = hwif->INB(IDE_NSECTOR_REG); 387 args[3] = hwif->INB(IDE_SECTOR_REG); 388 args[4] = hwif->INB(IDE_LCYL_REG); 389 args[5] = hwif->INB(IDE_HCYL_REG); 390 args[6] = hwif->INB(IDE_SELECT_REG); 391 } 392 } else if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) { 393 ide_task_t *args = (ide_task_t *) rq->special; 394 if (rq->errors == 0) 395 rq->errors = !OK_STAT(stat,READY_STAT,BAD_STAT); 396 397 if (args) { 398 if (args->tf_in_flags.b.data) { 399 u16 data = hwif->INW(IDE_DATA_REG); 400 args->tfRegister[IDE_DATA_OFFSET] = (data) & 0xFF; 401 args->hobRegister[IDE_DATA_OFFSET] = (data >> 8) & 0xFF; 402 } 403 args->tfRegister[IDE_ERROR_OFFSET] = err; 404 /* be sure we're looking at the low order bits */ 405 hwif->OUTB(drive->ctl & ~0x80, IDE_CONTROL_REG); 406 args->tfRegister[IDE_NSECTOR_OFFSET] = hwif->INB(IDE_NSECTOR_REG); 407 args->tfRegister[IDE_SECTOR_OFFSET] = hwif->INB(IDE_SECTOR_REG); 408 args->tfRegister[IDE_LCYL_OFFSET] = hwif->INB(IDE_LCYL_REG); 409 args->tfRegister[IDE_HCYL_OFFSET] = hwif->INB(IDE_HCYL_REG); 410 args->tfRegister[IDE_SELECT_OFFSET] = hwif->INB(IDE_SELECT_REG); 411 args->tfRegister[IDE_STATUS_OFFSET] = stat; 412 413 if (drive->addressing == 1) { 414 hwif->OUTB(drive->ctl|0x80, IDE_CONTROL_REG); 415 args->hobRegister[IDE_FEATURE_OFFSET] = hwif->INB(IDE_FEATURE_REG); 416 args->hobRegister[IDE_NSECTOR_OFFSET] = hwif->INB(IDE_NSECTOR_REG); 417 args->hobRegister[IDE_SECTOR_OFFSET] = hwif->INB(IDE_SECTOR_REG); 418 args->hobRegister[IDE_LCYL_OFFSET] = hwif->INB(IDE_LCYL_REG); 419 args->hobRegister[IDE_HCYL_OFFSET] = hwif->INB(IDE_HCYL_REG); 420 } 421 } 422 } else if (blk_pm_request(rq)) { 423 struct request_pm_state *pm = rq->data; 424#ifdef DEBUG_PM 425 printk("%s: complete_power_step(step: %d, stat: %x, err: %x)\n", 426 drive->name, rq->pm->pm_step, stat, err); 427#endif 428 ide_complete_power_step(drive, rq, stat, err); 429 if (pm->pm_step == ide_pm_state_completed) 430 ide_complete_pm_request(drive, rq); 431 return; 432 } 433 434 spin_lock_irqsave(&ide_lock, flags); 435 blkdev_dequeue_request(rq); 436 HWGROUP(drive)->rq = NULL; 437 rq->errors = err; 438 end_that_request_last(rq, !rq->errors); 439 spin_unlock_irqrestore(&ide_lock, flags); 440} 441 442EXPORT_SYMBOL(ide_end_drive_cmd); 443 444/** 445 * try_to_flush_leftover_data - flush junk 446 * @drive: drive to flush 447 * 448 * try_to_flush_leftover_data() is invoked in response to a drive 449 * unexpectedly having its DRQ_STAT bit set. As an alternative to 450 * resetting the drive, this routine tries to clear the condition 451 * by read a sector's worth of data from the drive. Of course, 452 * this may not help if the drive is *waiting* for data from *us*. 453 */ 454static void try_to_flush_leftover_data (ide_drive_t *drive) 455{ 456 int i = (drive->mult_count ? drive->mult_count : 1) * SECTOR_WORDS; 457 458 if (drive->media != ide_disk) 459 return; 460 while (i > 0) { 461 u32 buffer[16]; 462 u32 wcount = (i > 16) ? 16 : i; 463 464 i -= wcount; 465 HWIF(drive)->ata_input_data(drive, buffer, wcount); 466 } 467} 468 469static void ide_kill_rq(ide_drive_t *drive, struct request *rq) 470{ 471 if (rq->rq_disk) { 472 ide_driver_t *drv; 473 474 drv = *(ide_driver_t **)rq->rq_disk->private_data; 475 drv->end_request(drive, 0, 0); 476 } else 477 ide_end_request(drive, 0, 0); 478} 479 480static ide_startstop_t ide_ata_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err) 481{ 482 ide_hwif_t *hwif = drive->hwif; 483 484 if (stat & BUSY_STAT || ((stat & WRERR_STAT) && !drive->nowerr)) { 485 /* other bits are useless when BUSY */ 486 rq->errors |= ERROR_RESET; 487 } else if (stat & ERR_STAT) { 488 /* err has different meaning on cdrom and tape */ 489 if (err == ABRT_ERR) { 490 if (drive->select.b.lba && 491 /* some newer drives don't support WIN_SPECIFY */ 492 hwif->INB(IDE_COMMAND_REG) == WIN_SPECIFY) 493 return ide_stopped; 494 } else if ((err & BAD_CRC) == BAD_CRC) { 495 /* UDMA crc error, just retry the operation */ 496 drive->crc_count++; 497 } else if (err & (BBD_ERR | ECC_ERR)) { 498 /* retries won't help these */ 499 rq->errors = ERROR_MAX; 500 } else if (err & TRK0_ERR) { 501 /* help it find track zero */ 502 rq->errors |= ERROR_RECAL; 503 } 504 } 505 506 if ((stat & DRQ_STAT) && rq_data_dir(rq) == READ && hwif->err_stops_fifo == 0) 507 try_to_flush_leftover_data(drive); 508 509 if (hwif->INB(IDE_STATUS_REG) & (BUSY_STAT|DRQ_STAT)) 510 /* force an abort */ 511 hwif->OUTB(WIN_IDLEIMMEDIATE, IDE_COMMAND_REG); 512 513 if (rq->errors >= ERROR_MAX || blk_noretry_request(rq)) 514 ide_kill_rq(drive, rq); 515 else { 516 if ((rq->errors & ERROR_RESET) == ERROR_RESET) { 517 ++rq->errors; 518 return ide_do_reset(drive); 519 } 520 if ((rq->errors & ERROR_RECAL) == ERROR_RECAL) 521 drive->special.b.recalibrate = 1; 522 ++rq->errors; 523 } 524 return ide_stopped; 525} 526 527static ide_startstop_t ide_atapi_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err) 528{ 529 ide_hwif_t *hwif = drive->hwif; 530 531 if (stat & BUSY_STAT || ((stat & WRERR_STAT) && !drive->nowerr)) { 532 /* other bits are useless when BUSY */ 533 rq->errors |= ERROR_RESET; 534 } else { 535 /* add decoding error stuff */ 536 } 537 538 if (hwif->INB(IDE_STATUS_REG) & (BUSY_STAT|DRQ_STAT)) 539 /* force an abort */ 540 hwif->OUTB(WIN_IDLEIMMEDIATE, IDE_COMMAND_REG); 541 542 if (rq->errors >= ERROR_MAX) { 543 ide_kill_rq(drive, rq); 544 } else { 545 if ((rq->errors & ERROR_RESET) == ERROR_RESET) { 546 ++rq->errors; 547 return ide_do_reset(drive); 548 } 549 ++rq->errors; 550 } 551 552 return ide_stopped; 553} 554 555ide_startstop_t 556__ide_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err) 557{ 558 if (drive->media == ide_disk) 559 return ide_ata_error(drive, rq, stat, err); 560 return ide_atapi_error(drive, rq, stat, err); 561} 562 563EXPORT_SYMBOL_GPL(__ide_error); 564 565/** 566 * ide_error - handle an error on the IDE 567 * @drive: drive the error occurred on 568 * @msg: message to report 569 * @stat: status bits 570 * 571 * ide_error() takes action based on the error returned by the drive. 572 * For normal I/O that may well include retries. We deal with 573 * both new-style (taskfile) and old style command handling here. 574 * In the case of taskfile command handling there is work left to 575 * do 576 */ 577 578ide_startstop_t ide_error (ide_drive_t *drive, const char *msg, u8 stat) 579{ 580 struct request *rq; 581 u8 err; 582 583 err = ide_dump_status(drive, msg, stat); 584 585 if ((rq = HWGROUP(drive)->rq) == NULL) 586 return ide_stopped; 587 588 /* retry only "normal" I/O: */ 589 if (!blk_fs_request(rq)) { 590 rq->errors = 1; 591 ide_end_drive_cmd(drive, stat, err); 592 return ide_stopped; 593 } 594 595 if (rq->rq_disk) { 596 ide_driver_t *drv; 597 598 drv = *(ide_driver_t **)rq->rq_disk->private_data; 599 return drv->error(drive, rq, stat, err); 600 } else 601 return __ide_error(drive, rq, stat, err); 602} 603 604EXPORT_SYMBOL_GPL(ide_error); 605 606ide_startstop_t __ide_abort(ide_drive_t *drive, struct request *rq) 607{ 608 if (drive->media != ide_disk) 609 rq->errors |= ERROR_RESET; 610 611 ide_kill_rq(drive, rq); 612 613 return ide_stopped; 614} 615 616EXPORT_SYMBOL_GPL(__ide_abort); 617 618/** 619 * ide_abort - abort pending IDE operations 620 * @drive: drive the error occurred on 621 * @msg: message to report 622 * 623 * ide_abort kills and cleans up when we are about to do a 624 * host initiated reset on active commands. Longer term we 625 * want handlers to have sensible abort handling themselves 626 * 627 * This differs fundamentally from ide_error because in 628 * this case the command is doing just fine when we 629 * blow it away. 630 */ 631 632ide_startstop_t ide_abort(ide_drive_t *drive, const char *msg) 633{ 634 struct request *rq; 635 636 if (drive == NULL || (rq = HWGROUP(drive)->rq) == NULL) 637 return ide_stopped; 638 639 /* retry only "normal" I/O: */ 640 if (!blk_fs_request(rq)) { 641 rq->errors = 1; 642 ide_end_drive_cmd(drive, BUSY_STAT, 0); 643 return ide_stopped; 644 } 645 646 if (rq->rq_disk) { 647 ide_driver_t *drv; 648 649 drv = *(ide_driver_t **)rq->rq_disk->private_data; 650 return drv->abort(drive, rq); 651 } else 652 return __ide_abort(drive, rq); 653} 654 655/** 656 * ide_cmd - issue a simple drive command 657 * @drive: drive the command is for 658 * @cmd: command byte 659 * @nsect: sector byte 660 * @handler: handler for the command completion 661 * 662 * Issue a simple drive command with interrupts. 663 * The drive must be selected beforehand. 664 */ 665 666static void ide_cmd (ide_drive_t *drive, u8 cmd, u8 nsect, 667 ide_handler_t *handler) 668{ 669 ide_hwif_t *hwif = HWIF(drive); 670 if (IDE_CONTROL_REG) 671 hwif->OUTB(drive->ctl,IDE_CONTROL_REG); /* clear nIEN */ 672 SELECT_MASK(drive,0); 673 hwif->OUTB(nsect,IDE_NSECTOR_REG); 674 ide_execute_command(drive, cmd, handler, WAIT_CMD, NULL); 675} 676 677/** 678 * drive_cmd_intr - drive command completion interrupt 679 * @drive: drive the completion interrupt occurred on 680 * 681 * drive_cmd_intr() is invoked on completion of a special DRIVE_CMD. 682 * We do any necessary data reading and then wait for the drive to 683 * go non busy. At that point we may read the error data and complete 684 * the request 685 */ 686 687static ide_startstop_t drive_cmd_intr (ide_drive_t *drive) 688{ 689 struct request *rq = HWGROUP(drive)->rq; 690 ide_hwif_t *hwif = HWIF(drive); 691 u8 *args = (u8 *) rq->buffer; 692 u8 stat = hwif->INB(IDE_STATUS_REG); 693 int retries = 10; 694 695 local_irq_enable_in_hardirq(); 696 if ((stat & DRQ_STAT) && args && args[3]) { 697 u8 io_32bit = drive->io_32bit; 698 drive->io_32bit = 0; 699 hwif->ata_input_data(drive, &args[4], args[3] * SECTOR_WORDS); 700 drive->io_32bit = io_32bit; 701 while (((stat = hwif->INB(IDE_STATUS_REG)) & BUSY_STAT) && retries--) 702 udelay(100); 703 } 704 705 if (!OK_STAT(stat, READY_STAT, BAD_STAT)) 706 return ide_error(drive, "drive_cmd", stat); 707 /* calls ide_end_drive_cmd */ 708 ide_end_drive_cmd(drive, stat, hwif->INB(IDE_ERROR_REG)); 709 return ide_stopped; 710} 711 712static void ide_init_specify_cmd(ide_drive_t *drive, ide_task_t *task) 713{ 714 task->tfRegister[IDE_NSECTOR_OFFSET] = drive->sect; 715 task->tfRegister[IDE_SECTOR_OFFSET] = drive->sect; 716 task->tfRegister[IDE_LCYL_OFFSET] = drive->cyl; 717 task->tfRegister[IDE_HCYL_OFFSET] = drive->cyl>>8; 718 task->tfRegister[IDE_SELECT_OFFSET] = ((drive->head-1)|drive->select.all)&0xBF; 719 task->tfRegister[IDE_COMMAND_OFFSET] = WIN_SPECIFY; 720 721 task->handler = &set_geometry_intr; 722} 723 724static void ide_init_restore_cmd(ide_drive_t *drive, ide_task_t *task) 725{ 726 task->tfRegister[IDE_NSECTOR_OFFSET] = drive->sect; 727 task->tfRegister[IDE_COMMAND_OFFSET] = WIN_RESTORE; 728 729 task->handler = &recal_intr; 730} 731 732static void ide_init_setmult_cmd(ide_drive_t *drive, ide_task_t *task) 733{ 734 task->tfRegister[IDE_NSECTOR_OFFSET] = drive->mult_req; 735 task->tfRegister[IDE_COMMAND_OFFSET] = WIN_SETMULT; 736 737 task->handler = &set_multmode_intr; 738} 739 740static ide_startstop_t ide_disk_special(ide_drive_t *drive) 741{ 742 special_t *s = &drive->special; 743 ide_task_t args; 744 745 memset(&args, 0, sizeof(ide_task_t)); 746 args.command_type = IDE_DRIVE_TASK_NO_DATA; 747 748 if (s->b.set_geometry) { 749 s->b.set_geometry = 0; 750 ide_init_specify_cmd(drive, &args); 751 } else if (s->b.recalibrate) { 752 s->b.recalibrate = 0; 753 ide_init_restore_cmd(drive, &args); 754 } else if (s->b.set_multmode) { 755 s->b.set_multmode = 0; 756 if (drive->mult_req > drive->id->max_multsect) 757 drive->mult_req = drive->id->max_multsect; 758 ide_init_setmult_cmd(drive, &args); 759 } else if (s->all) { 760 int special = s->all; 761 s->all = 0; 762 printk(KERN_ERR "%s: bad special flag: 0x%02x\n", drive->name, special); 763 return ide_stopped; 764 } 765 766 do_rw_taskfile(drive, &args); 767 768 return ide_started; 769} 770 771/** 772 * do_special - issue some special commands 773 * @drive: drive the command is for 774 * 775 * do_special() is used to issue WIN_SPECIFY, WIN_RESTORE, and WIN_SETMULT 776 * commands to a drive. It used to do much more, but has been scaled 777 * back. 778 */ 779 780static ide_startstop_t do_special (ide_drive_t *drive) 781{ 782 special_t *s = &drive->special; 783 784#ifdef DEBUG 785 printk("%s: do_special: 0x%02x\n", drive->name, s->all); 786#endif 787 if (s->b.set_tune) { 788 s->b.set_tune = 0; 789 if (HWIF(drive)->tuneproc != NULL) 790 HWIF(drive)->tuneproc(drive, drive->tune_req); 791 return ide_stopped; 792 } else { 793 if (drive->media == ide_disk) 794 return ide_disk_special(drive); 795 796 s->all = 0; 797 drive->mult_req = 0; 798 return ide_stopped; 799 } 800} 801 802void ide_map_sg(ide_drive_t *drive, struct request *rq) 803{ 804 ide_hwif_t *hwif = drive->hwif; 805 struct scatterlist *sg = hwif->sg_table; 806 807 if (hwif->sg_mapped) /* needed by ide-scsi */ 808 return; 809 810 if (rq->cmd_type != REQ_TYPE_ATA_TASKFILE) { 811 hwif->sg_nents = blk_rq_map_sg(drive->queue, rq, sg); 812 } else { 813 sg_init_one(sg, rq->buffer, rq->nr_sectors * SECTOR_SIZE); 814 hwif->sg_nents = 1; 815 } 816} 817 818EXPORT_SYMBOL_GPL(ide_map_sg); 819 820void ide_init_sg_cmd(ide_drive_t *drive, struct request *rq) 821{ 822 ide_hwif_t *hwif = drive->hwif; 823 824 hwif->nsect = hwif->nleft = rq->nr_sectors; 825 hwif->cursg = hwif->cursg_ofs = 0; 826} 827 828EXPORT_SYMBOL_GPL(ide_init_sg_cmd); 829 830/** 831 * execute_drive_command - issue special drive command 832 * @drive: the drive to issue the command on 833 * @rq: the request structure holding the command 834 * 835 * execute_drive_cmd() issues a special drive command, usually 836 * initiated by ioctl() from the external hdparm program. The 837 * command can be a drive command, drive task or taskfile 838 * operation. Weirdly you can call it with NULL to wait for 839 * all commands to finish. Don't do this as that is due to change 840 */ 841 842static ide_startstop_t execute_drive_cmd (ide_drive_t *drive, 843 struct request *rq) 844{ 845 ide_hwif_t *hwif = HWIF(drive); 846 if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) { 847 ide_task_t *args = rq->special; 848 849 if (!args) 850 goto done; 851 852 hwif->data_phase = args->data_phase; 853 854 switch (hwif->data_phase) { 855 case TASKFILE_MULTI_OUT: 856 case TASKFILE_OUT: 857 case TASKFILE_MULTI_IN: 858 case TASKFILE_IN: 859 ide_init_sg_cmd(drive, rq); 860 ide_map_sg(drive, rq); 861 default: 862 break; 863 } 864 865 if (args->tf_out_flags.all != 0) 866 return flagged_taskfile(drive, args); 867 return do_rw_taskfile(drive, args); 868 } else if (rq->cmd_type == REQ_TYPE_ATA_TASK) { 869 u8 *args = rq->buffer; 870 u8 sel; 871 872 if (!args) 873 goto done; 874#ifdef DEBUG 875 printk("%s: DRIVE_TASK_CMD ", drive->name); 876 printk("cmd=0x%02x ", args[0]); 877 printk("fr=0x%02x ", args[1]); 878 printk("ns=0x%02x ", args[2]); 879 printk("sc=0x%02x ", args[3]); 880 printk("lcyl=0x%02x ", args[4]); 881 printk("hcyl=0x%02x ", args[5]); 882 printk("sel=0x%02x\n", args[6]); 883#endif 884 hwif->OUTB(args[1], IDE_FEATURE_REG); 885 hwif->OUTB(args[3], IDE_SECTOR_REG); 886 hwif->OUTB(args[4], IDE_LCYL_REG); 887 hwif->OUTB(args[5], IDE_HCYL_REG); 888 sel = (args[6] & ~0x10); 889 if (drive->select.b.unit) 890 sel |= 0x10; 891 hwif->OUTB(sel, IDE_SELECT_REG); 892 ide_cmd(drive, args[0], args[2], &drive_cmd_intr); 893 return ide_started; 894 } else if (rq->cmd_type == REQ_TYPE_ATA_CMD) { 895 u8 *args = rq->buffer; 896 897 if (!args) 898 goto done; 899#ifdef DEBUG 900 printk("%s: DRIVE_CMD ", drive->name); 901 printk("cmd=0x%02x ", args[0]); 902 printk("sc=0x%02x ", args[1]); 903 printk("fr=0x%02x ", args[2]); 904 printk("xx=0x%02x\n", args[3]); 905#endif 906 if (args[0] == WIN_SMART) { 907 hwif->OUTB(0x4f, IDE_LCYL_REG); 908 hwif->OUTB(0xc2, IDE_HCYL_REG); 909 hwif->OUTB(args[2],IDE_FEATURE_REG); 910 hwif->OUTB(args[1],IDE_SECTOR_REG); 911 ide_cmd(drive, args[0], args[3], &drive_cmd_intr); 912 return ide_started; 913 } 914 hwif->OUTB(args[2],IDE_FEATURE_REG); 915 ide_cmd(drive, args[0], args[1], &drive_cmd_intr); 916 return ide_started; 917 } 918 919done: 920 /* 921 * NULL is actually a valid way of waiting for 922 * all current requests to be flushed from the queue. 923 */ 924#ifdef DEBUG 925 printk("%s: DRIVE_CMD (null)\n", drive->name); 926#endif 927 ide_end_drive_cmd(drive, 928 hwif->INB(IDE_STATUS_REG), 929 hwif->INB(IDE_ERROR_REG)); 930 return ide_stopped; 931} 932 933static void ide_check_pm_state(ide_drive_t *drive, struct request *rq) 934{ 935 struct request_pm_state *pm = rq->data; 936 937 if (blk_pm_suspend_request(rq) && 938 pm->pm_step == ide_pm_state_start_suspend) 939 /* Mark drive blocked when starting the suspend sequence. */ 940 drive->blocked = 1; 941 else if (blk_pm_resume_request(rq) && 942 pm->pm_step == ide_pm_state_start_resume) { 943 /* 944 * The first thing we do on wakeup is to wait for BSY bit to 945 * go away (with a looong timeout) as a drive on this hwif may 946 * just be POSTing itself. 947 * We do that before even selecting as the "other" device on 948 * the bus may be broken enough to walk on our toes at this 949 * point. 950 */ 951 int rc; 952#ifdef DEBUG_PM 953 printk("%s: Wakeup request inited, waiting for !BSY...\n", drive->name); 954#endif 955 rc = ide_wait_not_busy(HWIF(drive), 35000); 956 if (rc) 957 printk(KERN_WARNING "%s: bus not ready on wakeup\n", drive->name); 958 SELECT_DRIVE(drive); 959 HWIF(drive)->OUTB(8, HWIF(drive)->io_ports[IDE_CONTROL_OFFSET]); 960 rc = ide_wait_not_busy(HWIF(drive), 100000); 961 if (rc) 962 printk(KERN_WARNING "%s: drive not ready on wakeup\n", drive->name); 963 } 964} 965 966/** 967 * start_request - start of I/O and command issuing for IDE 968 * 969 * start_request() initiates handling of a new I/O request. It 970 * accepts commands and I/O (read/write) requests. It also does 971 * the final remapping for weird stuff like EZDrive. Once 972 * device mapper can work sector level the EZDrive stuff can go away 973 * 974 * FIXME: this function needs a rename 975 */ 976 977static ide_startstop_t start_request (ide_drive_t *drive, struct request *rq) 978{ 979 ide_startstop_t startstop; 980 sector_t block; 981 982 BUG_ON(!blk_rq_started(rq)); 983 984#ifdef DEBUG 985 printk("%s: start_request: current=0x%08lx\n", 986 HWIF(drive)->name, (unsigned long) rq); 987#endif 988 989 /* bail early if we've exceeded max_failures */ 990 if (drive->max_failures && (drive->failures > drive->max_failures)) { 991 goto kill_rq; 992 } 993 994 block = rq->sector; 995 if (blk_fs_request(rq) && 996 (drive->media == ide_disk || drive->media == ide_floppy)) { 997 block += drive->sect0; 998 } 999 /* Yecch - this will shift the entire interval, 1000 possibly killing some innocent following sector */ 1001 if (block == 0 && drive->remap_0_to_1 == 1) 1002 block = 1; /* redirect MBR access to EZ-Drive partn table */ 1003 1004 if (blk_pm_request(rq)) 1005 ide_check_pm_state(drive, rq); 1006 1007 SELECT_DRIVE(drive); 1008 if (ide_wait_stat(&startstop, drive, drive->ready_stat, BUSY_STAT|DRQ_STAT, WAIT_READY)) { 1009 printk(KERN_ERR "%s: drive not ready for command\n", drive->name); 1010 return startstop; 1011 } 1012 if (!drive->special.all) { 1013 ide_driver_t *drv; 1014 1015 if (rq->cmd_type == REQ_TYPE_ATA_CMD || 1016 rq->cmd_type == REQ_TYPE_ATA_TASK || 1017 rq->cmd_type == REQ_TYPE_ATA_TASKFILE) 1018 return execute_drive_cmd(drive, rq); 1019 else if (blk_pm_request(rq)) { 1020 struct request_pm_state *pm = rq->data; 1021#ifdef DEBUG_PM 1022 printk("%s: start_power_step(step: %d)\n", 1023 drive->name, rq->pm->pm_step); 1024#endif 1025 startstop = ide_start_power_step(drive, rq); 1026 if (startstop == ide_stopped && 1027 pm->pm_step == ide_pm_state_completed) 1028 ide_complete_pm_request(drive, rq); 1029 return startstop; 1030 } 1031 1032 drv = *(ide_driver_t **)rq->rq_disk->private_data; 1033 return drv->do_request(drive, rq, block); 1034 } 1035 return do_special(drive); 1036kill_rq: 1037 ide_kill_rq(drive, rq); 1038 return ide_stopped; 1039} 1040 1041/** 1042 * ide_stall_queue - pause an IDE device 1043 * @drive: drive to stall 1044 * @timeout: time to stall for (jiffies) 1045 * 1046 * ide_stall_queue() can be used by a drive to give excess bandwidth back 1047 * to the hwgroup by sleeping for timeout jiffies. 1048 */ 1049 1050void ide_stall_queue (ide_drive_t *drive, unsigned long timeout) 1051{ 1052 if (timeout > WAIT_WORSTCASE) 1053 timeout = WAIT_WORSTCASE; 1054 drive->sleep = timeout + jiffies; 1055 drive->sleeping = 1; 1056} 1057 1058EXPORT_SYMBOL(ide_stall_queue); 1059 1060#define WAKEUP(drive) ((drive)->service_start + 2 * (drive)->service_time) 1061 1062/** 1063 * choose_drive - select a drive to service 1064 * @hwgroup: hardware group to select on 1065 * 1066 * choose_drive() selects the next drive which will be serviced. 1067 * This is necessary because the IDE layer can't issue commands 1068 * to both drives on the same cable, unlike SCSI. 1069 */ 1070 1071static inline ide_drive_t *choose_drive (ide_hwgroup_t *hwgroup) 1072{ 1073 ide_drive_t *drive, *best; 1074 1075repeat: 1076 best = NULL; 1077 drive = hwgroup->drive; 1078 1079 /* 1080 * drive is doing pre-flush, ordered write, post-flush sequence. even 1081 * though that is 3 requests, it must be seen as a single transaction. 1082 * we must not preempt this drive until that is complete 1083 */ 1084 if (blk_queue_flushing(drive->queue)) { 1085 /* 1086 * small race where queue could get replugged during 1087 * the 3-request flush cycle, just yank the plug since 1088 * we want it to finish asap 1089 */ 1090 blk_remove_plug(drive->queue); 1091 return drive; 1092 } 1093 1094 do { 1095 if ((!drive->sleeping || time_after_eq(jiffies, drive->sleep)) 1096 && !elv_queue_empty(drive->queue)) { 1097 if (!best 1098 || (drive->sleeping && (!best->sleeping || time_before(drive->sleep, best->sleep))) 1099 || (!best->sleeping && time_before(WAKEUP(drive), WAKEUP(best)))) 1100 { 1101 if (!blk_queue_plugged(drive->queue)) 1102 best = drive; 1103 } 1104 } 1105 } while ((drive = drive->next) != hwgroup->drive); 1106 if (best && best->nice1 && !best->sleeping && best != hwgroup->drive && best->service_time > WAIT_MIN_SLEEP) { 1107 long t = (signed long)(WAKEUP(best) - jiffies); 1108 if (t >= WAIT_MIN_SLEEP) { 1109 /* 1110 * We *may* have some time to spare, but first let's see if 1111 * someone can potentially benefit from our nice mood today.. 1112 */ 1113 drive = best->next; 1114 do { 1115 if (!drive->sleeping 1116 && time_before(jiffies - best->service_time, WAKEUP(drive)) 1117 && time_before(WAKEUP(drive), jiffies + t)) 1118 { 1119 ide_stall_queue(best, min_t(long, t, 10 * WAIT_MIN_SLEEP)); 1120 goto repeat; 1121 } 1122 } while ((drive = drive->next) != best); 1123 } 1124 } 1125 return best; 1126} 1127 1128/* 1129 * Issue a new request to a drive from hwgroup 1130 * Caller must have already done spin_lock_irqsave(&ide_lock, ..); 1131 * 1132 * A hwgroup is a serialized group of IDE interfaces. Usually there is 1133 * exactly one hwif (interface) per hwgroup, but buggy controllers (eg. CMD640) 1134 * may have both interfaces in a single hwgroup to "serialize" access. 1135 * Or possibly multiple ISA interfaces can share a common IRQ by being grouped 1136 * together into one hwgroup for serialized access. 1137 * 1138 * Note also that several hwgroups can end up sharing a single IRQ, 1139 * possibly along with many other devices. This is especially common in 1140 * PCI-based systems with off-board IDE controller cards. 1141 * 1142 * The IDE driver uses the single global ide_lock spinlock to protect 1143 * access to the request queues, and to protect the hwgroup->busy flag. 1144 * 1145 * The first thread into the driver for a particular hwgroup sets the 1146 * hwgroup->busy flag to indicate that this hwgroup is now active, 1147 * and then initiates processing of the top request from the request queue. 1148 * 1149 * Other threads attempting entry notice the busy setting, and will simply 1150 * queue their new requests and exit immediately. Note that hwgroup->busy 1151 * remains set even when the driver is merely awaiting the next interrupt. 1152 * Thus, the meaning is "this hwgroup is busy processing a request". 1153 * 1154 * When processing of a request completes, the completing thread or IRQ-handler 1155 * will start the next request from the queue. If no more work remains, 1156 * the driver will clear the hwgroup->busy flag and exit. 1157 * 1158 * The ide_lock (spinlock) is used to protect all access to the 1159 * hwgroup->busy flag, but is otherwise not needed for most processing in 1160 * the driver. This makes the driver much more friendlier to shared IRQs 1161 * than previous designs, while remaining 100% (?) SMP safe and capable. 1162 */ 1163static void ide_do_request (ide_hwgroup_t *hwgroup, int masked_irq) 1164{ 1165 ide_drive_t *drive; 1166 ide_hwif_t *hwif; 1167 struct request *rq; 1168 ide_startstop_t startstop; 1169 int loops = 0; 1170 1171 /* for atari only: POSSIBLY BROKEN HERE(?) */ 1172 ide_get_lock(ide_intr, hwgroup); 1173 1174 /* caller must own ide_lock */ 1175 BUG_ON(!irqs_disabled()); 1176 1177 while (!hwgroup->busy) { 1178 hwgroup->busy = 1; 1179 drive = choose_drive(hwgroup); 1180 if (drive == NULL) { 1181 int sleeping = 0; 1182 unsigned long sleep = 0; /* shut up, gcc */ 1183 hwgroup->rq = NULL; 1184 drive = hwgroup->drive; 1185 do { 1186 if (drive->sleeping && (!sleeping || time_before(drive->sleep, sleep))) { 1187 sleeping = 1; 1188 sleep = drive->sleep; 1189 } 1190 } while ((drive = drive->next) != hwgroup->drive); 1191 if (sleeping) { 1192 /* 1193 * Take a short snooze, and then wake up this hwgroup again. 1194 * This gives other hwgroups on the same a chance to 1195 * play fairly with us, just in case there are big differences 1196 * in relative throughputs.. don't want to hog the cpu too much. 1197 */ 1198 if (time_before(sleep, jiffies + WAIT_MIN_SLEEP)) 1199 sleep = jiffies + WAIT_MIN_SLEEP; 1200#if 1 1201 if (timer_pending(&hwgroup->timer)) 1202 printk(KERN_CRIT "ide_set_handler: timer already active\n"); 1203#endif 1204 /* so that ide_timer_expiry knows what to do */ 1205 hwgroup->sleeping = 1; 1206 mod_timer(&hwgroup->timer, sleep); 1207 /* we purposely leave hwgroup->busy==1 1208 * while sleeping */ 1209 } else { 1210 /* Ugly, but how can we sleep for the lock 1211 * otherwise? perhaps from tq_disk? 1212 */ 1213 1214 /* for atari only */ 1215 ide_release_lock(); 1216 hwgroup->busy = 0; 1217 } 1218 1219 /* no more work for this hwgroup (for now) */ 1220 return; 1221 } 1222 again: 1223 hwif = HWIF(drive); 1224 if (hwgroup->hwif->sharing_irq && 1225 hwif != hwgroup->hwif && 1226 hwif->io_ports[IDE_CONTROL_OFFSET]) { 1227 /* set nIEN for previous hwif */ 1228 SELECT_INTERRUPT(drive); 1229 } 1230 hwgroup->hwif = hwif; 1231 hwgroup->drive = drive; 1232 drive->sleeping = 0; 1233 drive->service_start = jiffies; 1234 1235 if (blk_queue_plugged(drive->queue)) { 1236 printk(KERN_ERR "ide: huh? queue was plugged!\n"); 1237 break; 1238 } 1239 1240 /* 1241 * we know that the queue isn't empty, but this can happen 1242 * if the q->prep_rq_fn() decides to kill a request 1243 */ 1244 rq = elv_next_request(drive->queue); 1245 if (!rq) { 1246 hwgroup->busy = 0; 1247 break; 1248 } 1249 1250 /* 1251 * Sanity: don't accept a request that isn't a PM request 1252 * if we are currently power managed. This is very important as 1253 * blk_stop_queue() doesn't prevent the elv_next_request() 1254 * above to return us whatever is in the queue. Since we call 1255 * ide_do_request() ourselves, we end up taking requests while 1256 * the queue is blocked... 1257 * 1258 * We let requests forced at head of queue with ide-preempt 1259 * though. I hope that doesn't happen too much, hopefully not 1260 * unless the subdriver triggers such a thing in its own PM 1261 * state machine. 1262 * 1263 * We count how many times we loop here to make sure we service 1264 * all drives in the hwgroup without looping for ever 1265 */ 1266 if (drive->blocked && !blk_pm_request(rq) && !(rq->cmd_flags & REQ_PREEMPT)) { 1267 drive = drive->next ? drive->next : hwgroup->drive; 1268 if (loops++ < 4 && !blk_queue_plugged(drive->queue)) 1269 goto again; 1270 /* We clear busy, there should be no pending ATA command at this point. */ 1271 hwgroup->busy = 0; 1272 break; 1273 } 1274 1275 hwgroup->rq = rq; 1276 1277 /* 1278 * Some systems have trouble with IDE IRQs arriving while 1279 * the driver is still setting things up. So, here we disable 1280 * the IRQ used by this interface while the request is being started. 1281 * This may look bad at first, but pretty much the same thing 1282 * happens anyway when any interrupt comes in, IDE or otherwise 1283 * -- the kernel masks the IRQ while it is being handled. 1284 */ 1285 if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq) 1286 disable_irq_nosync(hwif->irq); 1287 spin_unlock(&ide_lock); 1288 local_irq_enable_in_hardirq(); 1289 /* allow other IRQs while we start this request */ 1290 startstop = start_request(drive, rq); 1291 spin_lock_irq(&ide_lock); 1292 if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq) 1293 enable_irq(hwif->irq); 1294 if (startstop == ide_stopped) 1295 hwgroup->busy = 0; 1296 } 1297} 1298 1299/* 1300 * Passes the stuff to ide_do_request 1301 */ 1302void do_ide_request(request_queue_t *q) 1303{ 1304 ide_drive_t *drive = q->queuedata; 1305 1306 ide_do_request(HWGROUP(drive), IDE_NO_IRQ); 1307} 1308 1309/* 1310 * un-busy the hwgroup etc, and clear any pending DMA status. we want to 1311 * retry the current request in pio mode instead of risking tossing it 1312 * all away 1313 */ 1314static ide_startstop_t ide_dma_timeout_retry(ide_drive_t *drive, int error) 1315{ 1316 ide_hwif_t *hwif = HWIF(drive); 1317 struct request *rq; 1318 ide_startstop_t ret = ide_stopped; 1319 1320 /* 1321 * end current dma transaction 1322 */ 1323 1324 if (error < 0) { 1325 printk(KERN_WARNING "%s: DMA timeout error\n", drive->name); 1326 (void)HWIF(drive)->ide_dma_end(drive); 1327 ret = ide_error(drive, "dma timeout error", 1328 hwif->INB(IDE_STATUS_REG)); 1329 } else { 1330 printk(KERN_WARNING "%s: DMA timeout retry\n", drive->name); 1331 (void) hwif->ide_dma_timeout(drive); 1332 } 1333 1334 /* 1335 * disable dma for now, but remember that we did so because of 1336 * a timeout -- we'll reenable after we finish this next request 1337 * (or rather the first chunk of it) in pio. 1338 */ 1339 drive->retry_pio++; 1340 drive->state = DMA_PIO_RETRY; 1341 (void) hwif->ide_dma_off_quietly(drive); 1342 1343 /* 1344 * un-busy drive etc (hwgroup->busy is cleared on return) and 1345 * make sure request is sane 1346 */ 1347 rq = HWGROUP(drive)->rq; 1348 1349 if (!rq) 1350 goto out; 1351 1352 HWGROUP(drive)->rq = NULL; 1353 1354 rq->errors = 0; 1355 1356 if (!rq->bio) 1357 goto out; 1358 1359 rq->sector = rq->bio->bi_sector; 1360 rq->current_nr_sectors = bio_iovec(rq->bio)->bv_len >> 9; 1361 rq->hard_cur_sectors = rq->current_nr_sectors; 1362 rq->buffer = bio_data(rq->bio); 1363out: 1364 return ret; 1365} 1366 1367/** 1368 * ide_timer_expiry - handle lack of an IDE interrupt 1369 * @data: timer callback magic (hwgroup) 1370 * 1371 * An IDE command has timed out before the expected drive return 1372 * occurred. At this point we attempt to clean up the current 1373 * mess. If the current handler includes an expiry handler then 1374 * we invoke the expiry handler, and providing it is happy the 1375 * work is done. If that fails we apply generic recovery rules 1376 * invoking the handler and checking the drive DMA status. We 1377 * have an excessively incestuous relationship with the DMA 1378 * logic that wants cleaning up. 1379 */ 1380 1381void ide_timer_expiry (unsigned long data) 1382{ 1383 ide_hwgroup_t *hwgroup = (ide_hwgroup_t *) data; 1384 ide_handler_t *handler; 1385 ide_expiry_t *expiry; 1386 unsigned long flags; 1387 unsigned long wait = -1; 1388 1389 spin_lock_irqsave(&ide_lock, flags); 1390 1391 if ((handler = hwgroup->handler) == NULL) { 1392 /* 1393 * Either a marginal timeout occurred 1394 * (got the interrupt just as timer expired), 1395 * or we were "sleeping" to give other devices a chance. 1396 * Either way, we don't really want to complain about anything. 1397 */ 1398 if (hwgroup->sleeping) { 1399 hwgroup->sleeping = 0; 1400 hwgroup->busy = 0; 1401 } 1402 } else { 1403 ide_drive_t *drive = hwgroup->drive; 1404 if (!drive) { 1405 printk(KERN_ERR "ide_timer_expiry: hwgroup->drive was NULL\n"); 1406 hwgroup->handler = NULL; 1407 } else { 1408 ide_hwif_t *hwif; 1409 ide_startstop_t startstop = ide_stopped; 1410 if (!hwgroup->busy) { 1411 hwgroup->busy = 1; /* paranoia */ 1412 printk(KERN_ERR "%s: ide_timer_expiry: hwgroup->busy was 0 ??\n", drive->name); 1413 } 1414 if ((expiry = hwgroup->expiry) != NULL) { 1415 /* continue */ 1416 if ((wait = expiry(drive)) > 0) { 1417 /* reset timer */ 1418 hwgroup->timer.expires = jiffies + wait; 1419 add_timer(&hwgroup->timer); 1420 spin_unlock_irqrestore(&ide_lock, flags); 1421 return; 1422 } 1423 } 1424 hwgroup->handler = NULL; 1425 /* 1426 * We need to simulate a real interrupt when invoking 1427 * the handler() function, which means we need to 1428 * globally mask the specific IRQ: 1429 */ 1430 spin_unlock(&ide_lock); 1431 hwif = HWIF(drive); 1432#if DISABLE_IRQ_NOSYNC 1433 disable_irq_nosync(hwif->irq); 1434#else 1435 /* disable_irq_nosync ?? */ 1436 disable_irq(hwif->irq); 1437#endif /* DISABLE_IRQ_NOSYNC */ 1438 /* local CPU only, 1439 * as if we were handling an interrupt */ 1440 local_irq_disable(); 1441 if (hwgroup->polling) { 1442 startstop = handler(drive); 1443 } else if (drive_is_ready(drive)) { 1444 if (drive->waiting_for_dma) 1445 (void) hwgroup->hwif->ide_dma_lostirq(drive); 1446 (void)ide_ack_intr(hwif); 1447 printk(KERN_WARNING "%s: lost interrupt\n", drive->name); 1448 startstop = handler(drive); 1449 } else { 1450 if (drive->waiting_for_dma) { 1451 startstop = ide_dma_timeout_retry(drive, wait); 1452 } else 1453 startstop = 1454 ide_error(drive, "irq timeout", hwif->INB(IDE_STATUS_REG)); 1455 } 1456 drive->service_time = jiffies - drive->service_start; 1457 spin_lock_irq(&ide_lock); 1458 enable_irq(hwif->irq); 1459 if (startstop == ide_stopped) 1460 hwgroup->busy = 0; 1461 } 1462 } 1463 ide_do_request(hwgroup, IDE_NO_IRQ); 1464 spin_unlock_irqrestore(&ide_lock, flags); 1465} 1466 1467/** 1468 * unexpected_intr - handle an unexpected IDE interrupt 1469 * @irq: interrupt line 1470 * @hwgroup: hwgroup being processed 1471 * 1472 * There's nothing really useful we can do with an unexpected interrupt, 1473 * other than reading the status register (to clear it), and logging it. 1474 * There should be no way that an irq can happen before we're ready for it, 1475 * so we needn't worry much about losing an "important" interrupt here. 1476 * 1477 * On laptops (and "green" PCs), an unexpected interrupt occurs whenever 1478 * the drive enters "idle", "standby", or "sleep" mode, so if the status 1479 * looks "good", we just ignore the interrupt completely. 1480 * 1481 * This routine assumes __cli() is in effect when called. 1482 * 1483 * If an unexpected interrupt happens on irq15 while we are handling irq14 1484 * and if the two interfaces are "serialized" (CMD640), then it looks like 1485 * we could screw up by interfering with a new request being set up for 1486 * irq15. 1487 * 1488 * In reality, this is a non-issue. The new command is not sent unless 1489 * the drive is ready to accept one, in which case we know the drive is 1490 * not trying to interrupt us. And ide_set_handler() is always invoked 1491 * before completing the issuance of any new drive command, so we will not 1492 * be accidentally invoked as a result of any valid command completion 1493 * interrupt. 1494 * 1495 * Note that we must walk the entire hwgroup here. We know which hwif 1496 * is doing the current command, but we don't know which hwif burped 1497 * mysteriously. 1498 */ 1499 1500static void unexpected_intr (int irq, ide_hwgroup_t *hwgroup) 1501{ 1502 u8 stat; 1503 ide_hwif_t *hwif = hwgroup->hwif; 1504 1505 /* 1506 * handle the unexpected interrupt 1507 */ 1508 do { 1509 if (hwif->irq == irq) { 1510 stat = hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]); 1511 if (!OK_STAT(stat, READY_STAT, BAD_STAT)) { 1512 /* Try to not flood the console with msgs */ 1513 static unsigned long last_msgtime, count; 1514 ++count; 1515 if (time_after(jiffies, last_msgtime + HZ)) { 1516 last_msgtime = jiffies; 1517 printk(KERN_ERR "%s%s: unexpected interrupt, " 1518 "status=0x%02x, count=%ld\n", 1519 hwif->name, 1520 (hwif->next==hwgroup->hwif) ? "" : "(?)", stat, count); 1521 } 1522 } 1523 } 1524 } while ((hwif = hwif->next) != hwgroup->hwif); 1525} 1526 1527/** 1528 * ide_intr - default IDE interrupt handler 1529 * @irq: interrupt number 1530 * @dev_id: hwif group 1531 * @regs: unused weirdness from the kernel irq layer 1532 * 1533 * This is the default IRQ handler for the IDE layer. You should 1534 * not need to override it. If you do be aware it is subtle in 1535 * places 1536 * 1537 * hwgroup->hwif is the interface in the group currently performing 1538 * a command. hwgroup->drive is the drive and hwgroup->handler is 1539 * the IRQ handler to call. As we issue a command the handlers 1540 * step through multiple states, reassigning the handler to the 1541 * next step in the process. Unlike a smart SCSI controller IDE 1542 * expects the main processor to sequence the various transfer 1543 * stages. We also manage a poll timer to catch up with most 1544 * timeout situations. There are still a few where the handlers 1545 * don't ever decide to give up. 1546 * 1547 * The handler eventually returns ide_stopped to indicate the 1548 * request completed. At this point we issue the next request 1549 * on the hwgroup and the process begins again. 1550 */ 1551 1552irqreturn_t ide_intr (int irq, void *dev_id, struct pt_regs *regs) 1553{ 1554 unsigned long flags; 1555 ide_hwgroup_t *hwgroup = (ide_hwgroup_t *)dev_id; 1556 ide_hwif_t *hwif; 1557 ide_drive_t *drive; 1558 ide_handler_t *handler; 1559 ide_startstop_t startstop; 1560 1561 spin_lock_irqsave(&ide_lock, flags); 1562 hwif = hwgroup->hwif; 1563 1564 if (!ide_ack_intr(hwif)) { 1565 spin_unlock_irqrestore(&ide_lock, flags); 1566 return IRQ_NONE; 1567 } 1568 1569 if ((handler = hwgroup->handler) == NULL || hwgroup->polling) { 1570 /* 1571 * Not expecting an interrupt from this drive. 1572 * That means this could be: 1573 * (1) an interrupt from another PCI device 1574 * sharing the same PCI INT# as us. 1575 * or (2) a drive just entered sleep or standby mode, 1576 * and is interrupting to let us know. 1577 * or (3) a spurious interrupt of unknown origin. 1578 * 1579 * For PCI, we cannot tell the difference, 1580 * so in that case we just ignore it and hope it goes away. 1581 * 1582 * FIXME: unexpected_intr should be hwif-> then we can 1583 * remove all the ifdef PCI crap 1584 */ 1585#ifdef CONFIG_BLK_DEV_IDEPCI 1586 if (hwif->pci_dev && !hwif->pci_dev->vendor) 1587#endif /* CONFIG_BLK_DEV_IDEPCI */ 1588 { 1589 /* 1590 * Probably not a shared PCI interrupt, 1591 * so we can safely try to do something about it: 1592 */ 1593 unexpected_intr(irq, hwgroup); 1594#ifdef CONFIG_BLK_DEV_IDEPCI 1595 } else { 1596 /* 1597 * Whack the status register, just in case 1598 * we have a leftover pending IRQ. 1599 */ 1600 (void) hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]); 1601#endif /* CONFIG_BLK_DEV_IDEPCI */ 1602 } 1603 spin_unlock_irqrestore(&ide_lock, flags); 1604 return IRQ_NONE; 1605 } 1606 drive = hwgroup->drive; 1607 if (!drive) { 1608 /* 1609 * This should NEVER happen, and there isn't much 1610 * we could do about it here. 1611 * 1612 * [Note - this can occur if the drive is hot unplugged] 1613 */ 1614 spin_unlock_irqrestore(&ide_lock, flags); 1615 return IRQ_HANDLED; 1616 } 1617 if (!drive_is_ready(drive)) { 1618 /* 1619 * This happens regularly when we share a PCI IRQ with 1620 * another device. Unfortunately, it can also happen 1621 * with some buggy drives that trigger the IRQ before 1622 * their status register is up to date. Hopefully we have 1623 * enough advance overhead that the latter isn't a problem. 1624 */ 1625 spin_unlock_irqrestore(&ide_lock, flags); 1626 return IRQ_NONE; 1627 } 1628 if (!hwgroup->busy) { 1629 hwgroup->busy = 1; /* paranoia */ 1630 printk(KERN_ERR "%s: ide_intr: hwgroup->busy was 0 ??\n", drive->name); 1631 } 1632 hwgroup->handler = NULL; 1633 del_timer(&hwgroup->timer); 1634 spin_unlock(&ide_lock); 1635 1636 if (drive->unmask) 1637 local_irq_enable_in_hardirq(); 1638 /* service this interrupt, may set handler for next interrupt */ 1639 startstop = handler(drive); 1640 spin_lock_irq(&ide_lock); 1641 1642 /* 1643 * Note that handler() may have set things up for another 1644 * interrupt to occur soon, but it cannot happen until 1645 * we exit from this routine, because it will be the 1646 * same irq as is currently being serviced here, and Linux 1647 * won't allow another of the same (on any CPU) until we return. 1648 */ 1649 drive->service_time = jiffies - drive->service_start; 1650 if (startstop == ide_stopped) { 1651 if (hwgroup->handler == NULL) { /* paranoia */ 1652 hwgroup->busy = 0; 1653 ide_do_request(hwgroup, hwif->irq); 1654 } else { 1655 printk(KERN_ERR "%s: ide_intr: huh? expected NULL handler " 1656 "on exit\n", drive->name); 1657 } 1658 } 1659 spin_unlock_irqrestore(&ide_lock, flags); 1660 return IRQ_HANDLED; 1661} 1662 1663/** 1664 * ide_init_drive_cmd - initialize a drive command request 1665 * @rq: request object 1666 * 1667 * Initialize a request before we fill it in and send it down to 1668 * ide_do_drive_cmd. Commands must be set up by this function. Right 1669 * now it doesn't do a lot, but if that changes abusers will have a 1670 * nasty surprise. 1671 */ 1672 1673void ide_init_drive_cmd (struct request *rq) 1674{ 1675 memset(rq, 0, sizeof(*rq)); 1676 rq->cmd_type = REQ_TYPE_ATA_CMD; 1677 rq->ref_count = 1; 1678} 1679 1680EXPORT_SYMBOL(ide_init_drive_cmd); 1681 1682/** 1683 * ide_do_drive_cmd - issue IDE special command 1684 * @drive: device to issue command 1685 * @rq: request to issue 1686 * @action: action for processing 1687 * 1688 * This function issues a special IDE device request 1689 * onto the request queue. 1690 * 1691 * If action is ide_wait, then the rq is queued at the end of the 1692 * request queue, and the function sleeps until it has been processed. 1693 * This is for use when invoked from an ioctl handler. 1694 * 1695 * If action is ide_preempt, then the rq is queued at the head of 1696 * the request queue, displacing the currently-being-processed 1697 * request and this function returns immediately without waiting 1698 * for the new rq to be completed. This is VERY DANGEROUS, and is 1699 * intended for careful use by the ATAPI tape/cdrom driver code. 1700 * 1701 * If action is ide_end, then the rq is queued at the end of the 1702 * request queue, and the function returns immediately without waiting 1703 * for the new rq to be completed. This is again intended for careful 1704 * use by the ATAPI tape/cdrom driver code. 1705 */ 1706 1707int ide_do_drive_cmd (ide_drive_t *drive, struct request *rq, ide_action_t action) 1708{ 1709 unsigned long flags; 1710 ide_hwgroup_t *hwgroup = HWGROUP(drive); 1711 DECLARE_COMPLETION_ONSTACK(wait); 1712 int where = ELEVATOR_INSERT_BACK, err; 1713 int must_wait = (action == ide_wait || action == ide_head_wait); 1714 1715 rq->errors = 0; 1716 1717 /* 1718 * we need to hold an extra reference to request for safe inspection 1719 * after completion 1720 */ 1721 if (must_wait) { 1722 rq->ref_count++; 1723 rq->end_io_data = &wait; 1724 rq->end_io = blk_end_sync_rq; 1725 } 1726 1727 spin_lock_irqsave(&ide_lock, flags); 1728 if (action == ide_preempt) 1729 hwgroup->rq = NULL; 1730 if (action == ide_preempt || action == ide_head_wait) { 1731 where = ELEVATOR_INSERT_FRONT; 1732 rq->cmd_flags |= REQ_PREEMPT; 1733 } 1734 __elv_add_request(drive->queue, rq, where, 0); 1735 ide_do_request(hwgroup, IDE_NO_IRQ); 1736 spin_unlock_irqrestore(&ide_lock, flags); 1737 1738 err = 0; 1739 if (must_wait) { 1740 wait_for_completion(&wait); 1741 if (rq->errors) 1742 err = -EIO; 1743 1744 blk_put_request(rq); 1745 } 1746 1747 return err; 1748} 1749 1750EXPORT_SYMBOL(ide_do_drive_cmd); 1751