ide-io.c revision ce42f19137225d01be9388a73703df40fb7af80f
1/*
2 *	IDE I/O functions
3 *
4 *	Basic PIO and command management functionality.
5 *
6 * This code was split off from ide.c. See ide.c for history and original
7 * copyrights.
8 *
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2, or (at your option) any
12 * later version.
13 *
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17 * General Public License for more details.
18 *
19 * For the avoidance of doubt the "preferred form" of this code is one which
20 * is in an open non patent encumbered format. Where cryptographic key signing
21 * forms part of the process of creating an executable the information
22 * including keys needed to generate an equivalently functional executable
23 * are deemed to be part of the source code.
24 */
25
26
27#include <linux/module.h>
28#include <linux/types.h>
29#include <linux/string.h>
30#include <linux/kernel.h>
31#include <linux/timer.h>
32#include <linux/mm.h>
33#include <linux/interrupt.h>
34#include <linux/major.h>
35#include <linux/errno.h>
36#include <linux/genhd.h>
37#include <linux/blkpg.h>
38#include <linux/slab.h>
39#include <linux/init.h>
40#include <linux/pci.h>
41#include <linux/delay.h>
42#include <linux/ide.h>
43#include <linux/completion.h>
44#include <linux/reboot.h>
45#include <linux/cdrom.h>
46#include <linux/seq_file.h>
47#include <linux/device.h>
48#include <linux/kmod.h>
49#include <linux/scatterlist.h>
50
51#include <asm/byteorder.h>
52#include <asm/irq.h>
53#include <asm/uaccess.h>
54#include <asm/io.h>
55#include <asm/bitops.h>
56
57static int __ide_end_request(ide_drive_t *drive, struct request *rq,
58			     int uptodate, int nr_sectors)
59{
60	int ret = 1;
61
62	/*
63	 * if failfast is set on a request, override number of sectors and
64	 * complete the whole request right now
65	 */
66	if (blk_noretry_request(rq) && end_io_error(uptodate))
67		nr_sectors = rq->hard_nr_sectors;
68
69	if (!blk_fs_request(rq) && end_io_error(uptodate) && !rq->errors)
70		rq->errors = -EIO;
71
72	/*
73	 * decide whether to reenable DMA -- 3 is a random magic for now,
74	 * if we DMA timeout more than 3 times, just stay in PIO
75	 */
76	if (drive->state == DMA_PIO_RETRY && drive->retry_pio <= 3) {
77		drive->state = 0;
78		HWGROUP(drive)->hwif->ide_dma_on(drive);
79	}
80
81	if (!end_that_request_first(rq, uptodate, nr_sectors)) {
82		add_disk_randomness(rq->rq_disk);
83		if (!list_empty(&rq->queuelist))
84			blkdev_dequeue_request(rq);
85		HWGROUP(drive)->rq = NULL;
86		end_that_request_last(rq, uptodate);
87		ret = 0;
88	}
89
90	return ret;
91}
92
93/**
94 *	ide_end_request		-	complete an IDE I/O
95 *	@drive: IDE device for the I/O
96 *	@uptodate:
97 *	@nr_sectors: number of sectors completed
98 *
99 *	This is our end_request wrapper function. We complete the I/O
100 *	update random number input and dequeue the request, which if
101 *	it was tagged may be out of order.
102 */
103
104int ide_end_request (ide_drive_t *drive, int uptodate, int nr_sectors)
105{
106	struct request *rq;
107	unsigned long flags;
108	int ret = 1;
109
110	/*
111	 * room for locking improvements here, the calls below don't
112	 * need the queue lock held at all
113	 */
114	spin_lock_irqsave(&ide_lock, flags);
115	rq = HWGROUP(drive)->rq;
116
117	if (!nr_sectors)
118		nr_sectors = rq->hard_cur_sectors;
119
120	ret = __ide_end_request(drive, rq, uptodate, nr_sectors);
121
122	spin_unlock_irqrestore(&ide_lock, flags);
123	return ret;
124}
125EXPORT_SYMBOL(ide_end_request);
126
127/*
128 * Power Management state machine. This one is rather trivial for now,
129 * we should probably add more, like switching back to PIO on suspend
130 * to help some BIOSes, re-do the door locking on resume, etc...
131 */
132
133enum {
134	ide_pm_flush_cache	= ide_pm_state_start_suspend,
135	idedisk_pm_standby,
136
137	idedisk_pm_idle		= ide_pm_state_start_resume,
138	ide_pm_restore_dma,
139};
140
141static void ide_complete_power_step(ide_drive_t *drive, struct request *rq, u8 stat, u8 error)
142{
143	struct request_pm_state *pm = rq->data;
144
145	if (drive->media != ide_disk)
146		return;
147
148	switch (pm->pm_step) {
149	case ide_pm_flush_cache:	/* Suspend step 1 (flush cache) complete */
150		if (pm->pm_state == PM_EVENT_FREEZE)
151			pm->pm_step = ide_pm_state_completed;
152		else
153			pm->pm_step = idedisk_pm_standby;
154		break;
155	case idedisk_pm_standby:	/* Suspend step 2 (standby) complete */
156		pm->pm_step = ide_pm_state_completed;
157		break;
158	case idedisk_pm_idle:		/* Resume step 1 (idle) complete */
159		pm->pm_step = ide_pm_restore_dma;
160		break;
161	}
162}
163
164static ide_startstop_t ide_start_power_step(ide_drive_t *drive, struct request *rq)
165{
166	struct request_pm_state *pm = rq->data;
167	ide_task_t *args = rq->special;
168
169	memset(args, 0, sizeof(*args));
170
171	if (drive->media != ide_disk) {
172		/* skip idedisk_pm_idle for ATAPI devices */
173		if (pm->pm_step == idedisk_pm_idle)
174			pm->pm_step = ide_pm_restore_dma;
175	}
176
177	switch (pm->pm_step) {
178	case ide_pm_flush_cache:	/* Suspend step 1 (flush cache) */
179		if (drive->media != ide_disk)
180			break;
181		/* Not supported? Switch to next step now. */
182		if (!drive->wcache || !ide_id_has_flush_cache(drive->id)) {
183			ide_complete_power_step(drive, rq, 0, 0);
184			return ide_stopped;
185		}
186		if (ide_id_has_flush_cache_ext(drive->id))
187			args->tfRegister[IDE_COMMAND_OFFSET] = WIN_FLUSH_CACHE_EXT;
188		else
189			args->tfRegister[IDE_COMMAND_OFFSET] = WIN_FLUSH_CACHE;
190		args->command_type = IDE_DRIVE_TASK_NO_DATA;
191		args->handler	   = &task_no_data_intr;
192		return do_rw_taskfile(drive, args);
193
194	case idedisk_pm_standby:	/* Suspend step 2 (standby) */
195		args->tfRegister[IDE_COMMAND_OFFSET] = WIN_STANDBYNOW1;
196		args->command_type = IDE_DRIVE_TASK_NO_DATA;
197		args->handler	   = &task_no_data_intr;
198		return do_rw_taskfile(drive, args);
199
200	case idedisk_pm_idle:		/* Resume step 1 (idle) */
201		args->tfRegister[IDE_COMMAND_OFFSET] = WIN_IDLEIMMEDIATE;
202		args->command_type = IDE_DRIVE_TASK_NO_DATA;
203		args->handler = task_no_data_intr;
204		return do_rw_taskfile(drive, args);
205
206	case ide_pm_restore_dma:	/* Resume step 2 (restore DMA) */
207		/*
208		 * Right now, all we do is call hwif->ide_dma_check(drive),
209		 * we could be smarter and check for current xfer_speed
210		 * in struct drive etc...
211		 */
212		if ((drive->id->capability & 1) == 0)
213			break;
214		if (drive->hwif->ide_dma_check == NULL)
215			break;
216		drive->hwif->ide_dma_check(drive);
217		break;
218	}
219	pm->pm_step = ide_pm_state_completed;
220	return ide_stopped;
221}
222
223/**
224 *	ide_end_dequeued_request	-	complete an IDE I/O
225 *	@drive: IDE device for the I/O
226 *	@uptodate:
227 *	@nr_sectors: number of sectors completed
228 *
229 *	Complete an I/O that is no longer on the request queue. This
230 *	typically occurs when we pull the request and issue a REQUEST_SENSE.
231 *	We must still finish the old request but we must not tamper with the
232 *	queue in the meantime.
233 *
234 *	NOTE: This path does not handle barrier, but barrier is not supported
235 *	on ide-cd anyway.
236 */
237
238int ide_end_dequeued_request(ide_drive_t *drive, struct request *rq,
239			     int uptodate, int nr_sectors)
240{
241	unsigned long flags;
242	int ret = 1;
243
244	spin_lock_irqsave(&ide_lock, flags);
245
246	BUG_ON(!blk_rq_started(rq));
247
248	/*
249	 * if failfast is set on a request, override number of sectors and
250	 * complete the whole request right now
251	 */
252	if (blk_noretry_request(rq) && end_io_error(uptodate))
253		nr_sectors = rq->hard_nr_sectors;
254
255	if (!blk_fs_request(rq) && end_io_error(uptodate) && !rq->errors)
256		rq->errors = -EIO;
257
258	/*
259	 * decide whether to reenable DMA -- 3 is a random magic for now,
260	 * if we DMA timeout more than 3 times, just stay in PIO
261	 */
262	if (drive->state == DMA_PIO_RETRY && drive->retry_pio <= 3) {
263		drive->state = 0;
264		HWGROUP(drive)->hwif->ide_dma_on(drive);
265	}
266
267	if (!end_that_request_first(rq, uptodate, nr_sectors)) {
268		add_disk_randomness(rq->rq_disk);
269		if (blk_rq_tagged(rq))
270			blk_queue_end_tag(drive->queue, rq);
271		end_that_request_last(rq, uptodate);
272		ret = 0;
273	}
274	spin_unlock_irqrestore(&ide_lock, flags);
275	return ret;
276}
277EXPORT_SYMBOL_GPL(ide_end_dequeued_request);
278
279
280/**
281 *	ide_complete_pm_request - end the current Power Management request
282 *	@drive: target drive
283 *	@rq: request
284 *
285 *	This function cleans up the current PM request and stops the queue
286 *	if necessary.
287 */
288static void ide_complete_pm_request (ide_drive_t *drive, struct request *rq)
289{
290	unsigned long flags;
291
292#ifdef DEBUG_PM
293	printk("%s: completing PM request, %s\n", drive->name,
294	       blk_pm_suspend_request(rq) ? "suspend" : "resume");
295#endif
296	spin_lock_irqsave(&ide_lock, flags);
297	if (blk_pm_suspend_request(rq)) {
298		blk_stop_queue(drive->queue);
299	} else {
300		drive->blocked = 0;
301		blk_start_queue(drive->queue);
302	}
303	blkdev_dequeue_request(rq);
304	HWGROUP(drive)->rq = NULL;
305	end_that_request_last(rq, 1);
306	spin_unlock_irqrestore(&ide_lock, flags);
307}
308
309/*
310 * FIXME: probably move this somewhere else, name is bad too :)
311 */
312u64 ide_get_error_location(ide_drive_t *drive, char *args)
313{
314	u32 high, low;
315	u8 hcyl, lcyl, sect;
316	u64 sector;
317
318	high = 0;
319	hcyl = args[5];
320	lcyl = args[4];
321	sect = args[3];
322
323	if (ide_id_has_flush_cache_ext(drive->id)) {
324		low = (hcyl << 16) | (lcyl << 8) | sect;
325		HWIF(drive)->OUTB(drive->ctl|0x80, IDE_CONTROL_REG);
326		high = ide_read_24(drive);
327	} else {
328		u8 cur = HWIF(drive)->INB(IDE_SELECT_REG);
329		if (cur & 0x40) {
330			high = cur & 0xf;
331			low = (hcyl << 16) | (lcyl << 8) | sect;
332		} else {
333			low = hcyl * drive->head * drive->sect;
334			low += lcyl * drive->sect;
335			low += sect - 1;
336		}
337	}
338
339	sector = ((u64) high << 24) | low;
340	return sector;
341}
342EXPORT_SYMBOL(ide_get_error_location);
343
344/**
345 *	ide_end_drive_cmd	-	end an explicit drive command
346 *	@drive: command
347 *	@stat: status bits
348 *	@err: error bits
349 *
350 *	Clean up after success/failure of an explicit drive command.
351 *	These get thrown onto the queue so they are synchronized with
352 *	real I/O operations on the drive.
353 *
354 *	In LBA48 mode we have to read the register set twice to get
355 *	all the extra information out.
356 */
357
358void ide_end_drive_cmd (ide_drive_t *drive, u8 stat, u8 err)
359{
360	ide_hwif_t *hwif = HWIF(drive);
361	unsigned long flags;
362	struct request *rq;
363
364	spin_lock_irqsave(&ide_lock, flags);
365	rq = HWGROUP(drive)->rq;
366	spin_unlock_irqrestore(&ide_lock, flags);
367
368	if (rq->cmd_type == REQ_TYPE_ATA_CMD) {
369		u8 *args = (u8 *) rq->buffer;
370		if (rq->errors == 0)
371			rq->errors = !OK_STAT(stat,READY_STAT,BAD_STAT);
372
373		if (args) {
374			args[0] = stat;
375			args[1] = err;
376			args[2] = hwif->INB(IDE_NSECTOR_REG);
377		}
378	} else if (rq->cmd_type == REQ_TYPE_ATA_TASK) {
379		u8 *args = (u8 *) rq->buffer;
380		if (rq->errors == 0)
381			rq->errors = !OK_STAT(stat,READY_STAT,BAD_STAT);
382
383		if (args) {
384			args[0] = stat;
385			args[1] = err;
386			args[2] = hwif->INB(IDE_NSECTOR_REG);
387			args[3] = hwif->INB(IDE_SECTOR_REG);
388			args[4] = hwif->INB(IDE_LCYL_REG);
389			args[5] = hwif->INB(IDE_HCYL_REG);
390			args[6] = hwif->INB(IDE_SELECT_REG);
391		}
392	} else if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) {
393		ide_task_t *args = (ide_task_t *) rq->special;
394		if (rq->errors == 0)
395			rq->errors = !OK_STAT(stat,READY_STAT,BAD_STAT);
396
397		if (args) {
398			if (args->tf_in_flags.b.data) {
399				u16 data				= hwif->INW(IDE_DATA_REG);
400				args->tfRegister[IDE_DATA_OFFSET]	= (data) & 0xFF;
401				args->hobRegister[IDE_DATA_OFFSET]	= (data >> 8) & 0xFF;
402			}
403			args->tfRegister[IDE_ERROR_OFFSET]   = err;
404			/* be sure we're looking at the low order bits */
405			hwif->OUTB(drive->ctl & ~0x80, IDE_CONTROL_REG);
406			args->tfRegister[IDE_NSECTOR_OFFSET] = hwif->INB(IDE_NSECTOR_REG);
407			args->tfRegister[IDE_SECTOR_OFFSET]  = hwif->INB(IDE_SECTOR_REG);
408			args->tfRegister[IDE_LCYL_OFFSET]    = hwif->INB(IDE_LCYL_REG);
409			args->tfRegister[IDE_HCYL_OFFSET]    = hwif->INB(IDE_HCYL_REG);
410			args->tfRegister[IDE_SELECT_OFFSET]  = hwif->INB(IDE_SELECT_REG);
411			args->tfRegister[IDE_STATUS_OFFSET]  = stat;
412
413			if (drive->addressing == 1) {
414				hwif->OUTB(drive->ctl|0x80, IDE_CONTROL_REG);
415				args->hobRegister[IDE_FEATURE_OFFSET]	= hwif->INB(IDE_FEATURE_REG);
416				args->hobRegister[IDE_NSECTOR_OFFSET]	= hwif->INB(IDE_NSECTOR_REG);
417				args->hobRegister[IDE_SECTOR_OFFSET]	= hwif->INB(IDE_SECTOR_REG);
418				args->hobRegister[IDE_LCYL_OFFSET]	= hwif->INB(IDE_LCYL_REG);
419				args->hobRegister[IDE_HCYL_OFFSET]	= hwif->INB(IDE_HCYL_REG);
420			}
421		}
422	} else if (blk_pm_request(rq)) {
423		struct request_pm_state *pm = rq->data;
424#ifdef DEBUG_PM
425		printk("%s: complete_power_step(step: %d, stat: %x, err: %x)\n",
426			drive->name, rq->pm->pm_step, stat, err);
427#endif
428		ide_complete_power_step(drive, rq, stat, err);
429		if (pm->pm_step == ide_pm_state_completed)
430			ide_complete_pm_request(drive, rq);
431		return;
432	}
433
434	spin_lock_irqsave(&ide_lock, flags);
435	blkdev_dequeue_request(rq);
436	HWGROUP(drive)->rq = NULL;
437	rq->errors = err;
438	end_that_request_last(rq, !rq->errors);
439	spin_unlock_irqrestore(&ide_lock, flags);
440}
441
442EXPORT_SYMBOL(ide_end_drive_cmd);
443
444/**
445 *	try_to_flush_leftover_data	-	flush junk
446 *	@drive: drive to flush
447 *
448 *	try_to_flush_leftover_data() is invoked in response to a drive
449 *	unexpectedly having its DRQ_STAT bit set.  As an alternative to
450 *	resetting the drive, this routine tries to clear the condition
451 *	by read a sector's worth of data from the drive.  Of course,
452 *	this may not help if the drive is *waiting* for data from *us*.
453 */
454static void try_to_flush_leftover_data (ide_drive_t *drive)
455{
456	int i = (drive->mult_count ? drive->mult_count : 1) * SECTOR_WORDS;
457
458	if (drive->media != ide_disk)
459		return;
460	while (i > 0) {
461		u32 buffer[16];
462		u32 wcount = (i > 16) ? 16 : i;
463
464		i -= wcount;
465		HWIF(drive)->ata_input_data(drive, buffer, wcount);
466	}
467}
468
469static void ide_kill_rq(ide_drive_t *drive, struct request *rq)
470{
471	if (rq->rq_disk) {
472		ide_driver_t *drv;
473
474		drv = *(ide_driver_t **)rq->rq_disk->private_data;
475		drv->end_request(drive, 0, 0);
476	} else
477		ide_end_request(drive, 0, 0);
478}
479
480static ide_startstop_t ide_ata_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
481{
482	ide_hwif_t *hwif = drive->hwif;
483
484	if (stat & BUSY_STAT || ((stat & WRERR_STAT) && !drive->nowerr)) {
485		/* other bits are useless when BUSY */
486		rq->errors |= ERROR_RESET;
487	} else if (stat & ERR_STAT) {
488		/* err has different meaning on cdrom and tape */
489		if (err == ABRT_ERR) {
490			if (drive->select.b.lba &&
491			    /* some newer drives don't support WIN_SPECIFY */
492			    hwif->INB(IDE_COMMAND_REG) == WIN_SPECIFY)
493				return ide_stopped;
494		} else if ((err & BAD_CRC) == BAD_CRC) {
495			/* UDMA crc error, just retry the operation */
496			drive->crc_count++;
497		} else if (err & (BBD_ERR | ECC_ERR)) {
498			/* retries won't help these */
499			rq->errors = ERROR_MAX;
500		} else if (err & TRK0_ERR) {
501			/* help it find track zero */
502			rq->errors |= ERROR_RECAL;
503		}
504	}
505
506	if ((stat & DRQ_STAT) && rq_data_dir(rq) == READ && hwif->err_stops_fifo == 0)
507		try_to_flush_leftover_data(drive);
508
509	if (hwif->INB(IDE_STATUS_REG) & (BUSY_STAT|DRQ_STAT))
510		/* force an abort */
511		hwif->OUTB(WIN_IDLEIMMEDIATE, IDE_COMMAND_REG);
512
513	if (rq->errors >= ERROR_MAX || blk_noretry_request(rq))
514		ide_kill_rq(drive, rq);
515	else {
516		if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
517			++rq->errors;
518			return ide_do_reset(drive);
519		}
520		if ((rq->errors & ERROR_RECAL) == ERROR_RECAL)
521			drive->special.b.recalibrate = 1;
522		++rq->errors;
523	}
524	return ide_stopped;
525}
526
527static ide_startstop_t ide_atapi_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
528{
529	ide_hwif_t *hwif = drive->hwif;
530
531	if (stat & BUSY_STAT || ((stat & WRERR_STAT) && !drive->nowerr)) {
532		/* other bits are useless when BUSY */
533		rq->errors |= ERROR_RESET;
534	} else {
535		/* add decoding error stuff */
536	}
537
538	if (hwif->INB(IDE_STATUS_REG) & (BUSY_STAT|DRQ_STAT))
539		/* force an abort */
540		hwif->OUTB(WIN_IDLEIMMEDIATE, IDE_COMMAND_REG);
541
542	if (rq->errors >= ERROR_MAX) {
543		ide_kill_rq(drive, rq);
544	} else {
545		if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
546			++rq->errors;
547			return ide_do_reset(drive);
548		}
549		++rq->errors;
550	}
551
552	return ide_stopped;
553}
554
555ide_startstop_t
556__ide_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
557{
558	if (drive->media == ide_disk)
559		return ide_ata_error(drive, rq, stat, err);
560	return ide_atapi_error(drive, rq, stat, err);
561}
562
563EXPORT_SYMBOL_GPL(__ide_error);
564
565/**
566 *	ide_error	-	handle an error on the IDE
567 *	@drive: drive the error occurred on
568 *	@msg: message to report
569 *	@stat: status bits
570 *
571 *	ide_error() takes action based on the error returned by the drive.
572 *	For normal I/O that may well include retries. We deal with
573 *	both new-style (taskfile) and old style command handling here.
574 *	In the case of taskfile command handling there is work left to
575 *	do
576 */
577
578ide_startstop_t ide_error (ide_drive_t *drive, const char *msg, u8 stat)
579{
580	struct request *rq;
581	u8 err;
582
583	err = ide_dump_status(drive, msg, stat);
584
585	if ((rq = HWGROUP(drive)->rq) == NULL)
586		return ide_stopped;
587
588	/* retry only "normal" I/O: */
589	if (!blk_fs_request(rq)) {
590		rq->errors = 1;
591		ide_end_drive_cmd(drive, stat, err);
592		return ide_stopped;
593	}
594
595	if (rq->rq_disk) {
596		ide_driver_t *drv;
597
598		drv = *(ide_driver_t **)rq->rq_disk->private_data;
599		return drv->error(drive, rq, stat, err);
600	} else
601		return __ide_error(drive, rq, stat, err);
602}
603
604EXPORT_SYMBOL_GPL(ide_error);
605
606ide_startstop_t __ide_abort(ide_drive_t *drive, struct request *rq)
607{
608	if (drive->media != ide_disk)
609		rq->errors |= ERROR_RESET;
610
611	ide_kill_rq(drive, rq);
612
613	return ide_stopped;
614}
615
616EXPORT_SYMBOL_GPL(__ide_abort);
617
618/**
619 *	ide_abort	-	abort pending IDE operations
620 *	@drive: drive the error occurred on
621 *	@msg: message to report
622 *
623 *	ide_abort kills and cleans up when we are about to do a
624 *	host initiated reset on active commands. Longer term we
625 *	want handlers to have sensible abort handling themselves
626 *
627 *	This differs fundamentally from ide_error because in
628 *	this case the command is doing just fine when we
629 *	blow it away.
630 */
631
632ide_startstop_t ide_abort(ide_drive_t *drive, const char *msg)
633{
634	struct request *rq;
635
636	if (drive == NULL || (rq = HWGROUP(drive)->rq) == NULL)
637		return ide_stopped;
638
639	/* retry only "normal" I/O: */
640	if (!blk_fs_request(rq)) {
641		rq->errors = 1;
642		ide_end_drive_cmd(drive, BUSY_STAT, 0);
643		return ide_stopped;
644	}
645
646	if (rq->rq_disk) {
647		ide_driver_t *drv;
648
649		drv = *(ide_driver_t **)rq->rq_disk->private_data;
650		return drv->abort(drive, rq);
651	} else
652		return __ide_abort(drive, rq);
653}
654
655/**
656 *	ide_cmd		-	issue a simple drive command
657 *	@drive: drive the command is for
658 *	@cmd: command byte
659 *	@nsect: sector byte
660 *	@handler: handler for the command completion
661 *
662 *	Issue a simple drive command with interrupts.
663 *	The drive must be selected beforehand.
664 */
665
666static void ide_cmd (ide_drive_t *drive, u8 cmd, u8 nsect,
667		ide_handler_t *handler)
668{
669	ide_hwif_t *hwif = HWIF(drive);
670	if (IDE_CONTROL_REG)
671		hwif->OUTB(drive->ctl,IDE_CONTROL_REG);	/* clear nIEN */
672	SELECT_MASK(drive,0);
673	hwif->OUTB(nsect,IDE_NSECTOR_REG);
674	ide_execute_command(drive, cmd, handler, WAIT_CMD, NULL);
675}
676
677/**
678 *	drive_cmd_intr		- 	drive command completion interrupt
679 *	@drive: drive the completion interrupt occurred on
680 *
681 *	drive_cmd_intr() is invoked on completion of a special DRIVE_CMD.
682 *	We do any necessary data reading and then wait for the drive to
683 *	go non busy. At that point we may read the error data and complete
684 *	the request
685 */
686
687static ide_startstop_t drive_cmd_intr (ide_drive_t *drive)
688{
689	struct request *rq = HWGROUP(drive)->rq;
690	ide_hwif_t *hwif = HWIF(drive);
691	u8 *args = (u8 *) rq->buffer;
692	u8 stat = hwif->INB(IDE_STATUS_REG);
693	int retries = 10;
694
695	local_irq_enable_in_hardirq();
696	if ((stat & DRQ_STAT) && args && args[3]) {
697		u8 io_32bit = drive->io_32bit;
698		drive->io_32bit = 0;
699		hwif->ata_input_data(drive, &args[4], args[3] * SECTOR_WORDS);
700		drive->io_32bit = io_32bit;
701		while (((stat = hwif->INB(IDE_STATUS_REG)) & BUSY_STAT) && retries--)
702			udelay(100);
703	}
704
705	if (!OK_STAT(stat, READY_STAT, BAD_STAT))
706		return ide_error(drive, "drive_cmd", stat);
707		/* calls ide_end_drive_cmd */
708	ide_end_drive_cmd(drive, stat, hwif->INB(IDE_ERROR_REG));
709	return ide_stopped;
710}
711
712static void ide_init_specify_cmd(ide_drive_t *drive, ide_task_t *task)
713{
714	task->tfRegister[IDE_NSECTOR_OFFSET] = drive->sect;
715	task->tfRegister[IDE_SECTOR_OFFSET]  = drive->sect;
716	task->tfRegister[IDE_LCYL_OFFSET]    = drive->cyl;
717	task->tfRegister[IDE_HCYL_OFFSET]    = drive->cyl>>8;
718	task->tfRegister[IDE_SELECT_OFFSET]  = ((drive->head-1)|drive->select.all)&0xBF;
719	task->tfRegister[IDE_COMMAND_OFFSET] = WIN_SPECIFY;
720
721	task->handler = &set_geometry_intr;
722}
723
724static void ide_init_restore_cmd(ide_drive_t *drive, ide_task_t *task)
725{
726	task->tfRegister[IDE_NSECTOR_OFFSET] = drive->sect;
727	task->tfRegister[IDE_COMMAND_OFFSET] = WIN_RESTORE;
728
729	task->handler = &recal_intr;
730}
731
732static void ide_init_setmult_cmd(ide_drive_t *drive, ide_task_t *task)
733{
734	task->tfRegister[IDE_NSECTOR_OFFSET] = drive->mult_req;
735	task->tfRegister[IDE_COMMAND_OFFSET] = WIN_SETMULT;
736
737	task->handler = &set_multmode_intr;
738}
739
740static ide_startstop_t ide_disk_special(ide_drive_t *drive)
741{
742	special_t *s = &drive->special;
743	ide_task_t args;
744
745	memset(&args, 0, sizeof(ide_task_t));
746	args.command_type = IDE_DRIVE_TASK_NO_DATA;
747
748	if (s->b.set_geometry) {
749		s->b.set_geometry = 0;
750		ide_init_specify_cmd(drive, &args);
751	} else if (s->b.recalibrate) {
752		s->b.recalibrate = 0;
753		ide_init_restore_cmd(drive, &args);
754	} else if (s->b.set_multmode) {
755		s->b.set_multmode = 0;
756		if (drive->mult_req > drive->id->max_multsect)
757			drive->mult_req = drive->id->max_multsect;
758		ide_init_setmult_cmd(drive, &args);
759	} else if (s->all) {
760		int special = s->all;
761		s->all = 0;
762		printk(KERN_ERR "%s: bad special flag: 0x%02x\n", drive->name, special);
763		return ide_stopped;
764	}
765
766	do_rw_taskfile(drive, &args);
767
768	return ide_started;
769}
770
771/**
772 *	do_special		-	issue some special commands
773 *	@drive: drive the command is for
774 *
775 *	do_special() is used to issue WIN_SPECIFY, WIN_RESTORE, and WIN_SETMULT
776 *	commands to a drive.  It used to do much more, but has been scaled
777 *	back.
778 */
779
780static ide_startstop_t do_special (ide_drive_t *drive)
781{
782	special_t *s = &drive->special;
783
784#ifdef DEBUG
785	printk("%s: do_special: 0x%02x\n", drive->name, s->all);
786#endif
787	if (s->b.set_tune) {
788		s->b.set_tune = 0;
789		if (HWIF(drive)->tuneproc != NULL)
790			HWIF(drive)->tuneproc(drive, drive->tune_req);
791		return ide_stopped;
792	} else {
793		if (drive->media == ide_disk)
794			return ide_disk_special(drive);
795
796		s->all = 0;
797		drive->mult_req = 0;
798		return ide_stopped;
799	}
800}
801
802void ide_map_sg(ide_drive_t *drive, struct request *rq)
803{
804	ide_hwif_t *hwif = drive->hwif;
805	struct scatterlist *sg = hwif->sg_table;
806
807	if (hwif->sg_mapped)	/* needed by ide-scsi */
808		return;
809
810	if (rq->cmd_type != REQ_TYPE_ATA_TASKFILE) {
811		hwif->sg_nents = blk_rq_map_sg(drive->queue, rq, sg);
812	} else {
813		sg_init_one(sg, rq->buffer, rq->nr_sectors * SECTOR_SIZE);
814		hwif->sg_nents = 1;
815	}
816}
817
818EXPORT_SYMBOL_GPL(ide_map_sg);
819
820void ide_init_sg_cmd(ide_drive_t *drive, struct request *rq)
821{
822	ide_hwif_t *hwif = drive->hwif;
823
824	hwif->nsect = hwif->nleft = rq->nr_sectors;
825	hwif->cursg = hwif->cursg_ofs = 0;
826}
827
828EXPORT_SYMBOL_GPL(ide_init_sg_cmd);
829
830/**
831 *	execute_drive_command	-	issue special drive command
832 *	@drive: the drive to issue the command on
833 *	@rq: the request structure holding the command
834 *
835 *	execute_drive_cmd() issues a special drive command,  usually
836 *	initiated by ioctl() from the external hdparm program. The
837 *	command can be a drive command, drive task or taskfile
838 *	operation. Weirdly you can call it with NULL to wait for
839 *	all commands to finish. Don't do this as that is due to change
840 */
841
842static ide_startstop_t execute_drive_cmd (ide_drive_t *drive,
843		struct request *rq)
844{
845	ide_hwif_t *hwif = HWIF(drive);
846	if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) {
847 		ide_task_t *args = rq->special;
848
849		if (!args)
850			goto done;
851
852		hwif->data_phase = args->data_phase;
853
854		switch (hwif->data_phase) {
855		case TASKFILE_MULTI_OUT:
856		case TASKFILE_OUT:
857		case TASKFILE_MULTI_IN:
858		case TASKFILE_IN:
859			ide_init_sg_cmd(drive, rq);
860			ide_map_sg(drive, rq);
861		default:
862			break;
863		}
864
865		if (args->tf_out_flags.all != 0)
866			return flagged_taskfile(drive, args);
867		return do_rw_taskfile(drive, args);
868	} else if (rq->cmd_type == REQ_TYPE_ATA_TASK) {
869		u8 *args = rq->buffer;
870		u8 sel;
871
872		if (!args)
873			goto done;
874#ifdef DEBUG
875 		printk("%s: DRIVE_TASK_CMD ", drive->name);
876 		printk("cmd=0x%02x ", args[0]);
877 		printk("fr=0x%02x ", args[1]);
878 		printk("ns=0x%02x ", args[2]);
879 		printk("sc=0x%02x ", args[3]);
880 		printk("lcyl=0x%02x ", args[4]);
881 		printk("hcyl=0x%02x ", args[5]);
882 		printk("sel=0x%02x\n", args[6]);
883#endif
884 		hwif->OUTB(args[1], IDE_FEATURE_REG);
885 		hwif->OUTB(args[3], IDE_SECTOR_REG);
886 		hwif->OUTB(args[4], IDE_LCYL_REG);
887 		hwif->OUTB(args[5], IDE_HCYL_REG);
888 		sel = (args[6] & ~0x10);
889 		if (drive->select.b.unit)
890 			sel |= 0x10;
891 		hwif->OUTB(sel, IDE_SELECT_REG);
892 		ide_cmd(drive, args[0], args[2], &drive_cmd_intr);
893 		return ide_started;
894 	} else if (rq->cmd_type == REQ_TYPE_ATA_CMD) {
895 		u8 *args = rq->buffer;
896
897		if (!args)
898			goto done;
899#ifdef DEBUG
900 		printk("%s: DRIVE_CMD ", drive->name);
901 		printk("cmd=0x%02x ", args[0]);
902 		printk("sc=0x%02x ", args[1]);
903 		printk("fr=0x%02x ", args[2]);
904 		printk("xx=0x%02x\n", args[3]);
905#endif
906 		if (args[0] == WIN_SMART) {
907 			hwif->OUTB(0x4f, IDE_LCYL_REG);
908 			hwif->OUTB(0xc2, IDE_HCYL_REG);
909 			hwif->OUTB(args[2],IDE_FEATURE_REG);
910 			hwif->OUTB(args[1],IDE_SECTOR_REG);
911 			ide_cmd(drive, args[0], args[3], &drive_cmd_intr);
912 			return ide_started;
913 		}
914 		hwif->OUTB(args[2],IDE_FEATURE_REG);
915 		ide_cmd(drive, args[0], args[1], &drive_cmd_intr);
916 		return ide_started;
917 	}
918
919done:
920 	/*
921 	 * NULL is actually a valid way of waiting for
922 	 * all current requests to be flushed from the queue.
923 	 */
924#ifdef DEBUG
925 	printk("%s: DRIVE_CMD (null)\n", drive->name);
926#endif
927 	ide_end_drive_cmd(drive,
928			hwif->INB(IDE_STATUS_REG),
929			hwif->INB(IDE_ERROR_REG));
930 	return ide_stopped;
931}
932
933static void ide_check_pm_state(ide_drive_t *drive, struct request *rq)
934{
935	struct request_pm_state *pm = rq->data;
936
937	if (blk_pm_suspend_request(rq) &&
938	    pm->pm_step == ide_pm_state_start_suspend)
939		/* Mark drive blocked when starting the suspend sequence. */
940		drive->blocked = 1;
941	else if (blk_pm_resume_request(rq) &&
942		 pm->pm_step == ide_pm_state_start_resume) {
943		/*
944		 * The first thing we do on wakeup is to wait for BSY bit to
945		 * go away (with a looong timeout) as a drive on this hwif may
946		 * just be POSTing itself.
947		 * We do that before even selecting as the "other" device on
948		 * the bus may be broken enough to walk on our toes at this
949		 * point.
950		 */
951		int rc;
952#ifdef DEBUG_PM
953		printk("%s: Wakeup request inited, waiting for !BSY...\n", drive->name);
954#endif
955		rc = ide_wait_not_busy(HWIF(drive), 35000);
956		if (rc)
957			printk(KERN_WARNING "%s: bus not ready on wakeup\n", drive->name);
958		SELECT_DRIVE(drive);
959		HWIF(drive)->OUTB(8, HWIF(drive)->io_ports[IDE_CONTROL_OFFSET]);
960		rc = ide_wait_not_busy(HWIF(drive), 100000);
961		if (rc)
962			printk(KERN_WARNING "%s: drive not ready on wakeup\n", drive->name);
963	}
964}
965
966/**
967 *	start_request	-	start of I/O and command issuing for IDE
968 *
969 *	start_request() initiates handling of a new I/O request. It
970 *	accepts commands and I/O (read/write) requests. It also does
971 *	the final remapping for weird stuff like EZDrive. Once
972 *	device mapper can work sector level the EZDrive stuff can go away
973 *
974 *	FIXME: this function needs a rename
975 */
976
977static ide_startstop_t start_request (ide_drive_t *drive, struct request *rq)
978{
979	ide_startstop_t startstop;
980	sector_t block;
981
982	BUG_ON(!blk_rq_started(rq));
983
984#ifdef DEBUG
985	printk("%s: start_request: current=0x%08lx\n",
986		HWIF(drive)->name, (unsigned long) rq);
987#endif
988
989	/* bail early if we've exceeded max_failures */
990	if (drive->max_failures && (drive->failures > drive->max_failures)) {
991		goto kill_rq;
992	}
993
994	block    = rq->sector;
995	if (blk_fs_request(rq) &&
996	    (drive->media == ide_disk || drive->media == ide_floppy)) {
997		block += drive->sect0;
998	}
999	/* Yecch - this will shift the entire interval,
1000	   possibly killing some innocent following sector */
1001	if (block == 0 && drive->remap_0_to_1 == 1)
1002		block = 1;  /* redirect MBR access to EZ-Drive partn table */
1003
1004	if (blk_pm_request(rq))
1005		ide_check_pm_state(drive, rq);
1006
1007	SELECT_DRIVE(drive);
1008	if (ide_wait_stat(&startstop, drive, drive->ready_stat, BUSY_STAT|DRQ_STAT, WAIT_READY)) {
1009		printk(KERN_ERR "%s: drive not ready for command\n", drive->name);
1010		return startstop;
1011	}
1012	if (!drive->special.all) {
1013		ide_driver_t *drv;
1014
1015		if (rq->cmd_type == REQ_TYPE_ATA_CMD ||
1016		    rq->cmd_type == REQ_TYPE_ATA_TASK ||
1017		    rq->cmd_type == REQ_TYPE_ATA_TASKFILE)
1018			return execute_drive_cmd(drive, rq);
1019		else if (blk_pm_request(rq)) {
1020			struct request_pm_state *pm = rq->data;
1021#ifdef DEBUG_PM
1022			printk("%s: start_power_step(step: %d)\n",
1023				drive->name, rq->pm->pm_step);
1024#endif
1025			startstop = ide_start_power_step(drive, rq);
1026			if (startstop == ide_stopped &&
1027			    pm->pm_step == ide_pm_state_completed)
1028				ide_complete_pm_request(drive, rq);
1029			return startstop;
1030		}
1031
1032		drv = *(ide_driver_t **)rq->rq_disk->private_data;
1033		return drv->do_request(drive, rq, block);
1034	}
1035	return do_special(drive);
1036kill_rq:
1037	ide_kill_rq(drive, rq);
1038	return ide_stopped;
1039}
1040
1041/**
1042 *	ide_stall_queue		-	pause an IDE device
1043 *	@drive: drive to stall
1044 *	@timeout: time to stall for (jiffies)
1045 *
1046 *	ide_stall_queue() can be used by a drive to give excess bandwidth back
1047 *	to the hwgroup by sleeping for timeout jiffies.
1048 */
1049
1050void ide_stall_queue (ide_drive_t *drive, unsigned long timeout)
1051{
1052	if (timeout > WAIT_WORSTCASE)
1053		timeout = WAIT_WORSTCASE;
1054	drive->sleep = timeout + jiffies;
1055	drive->sleeping = 1;
1056}
1057
1058EXPORT_SYMBOL(ide_stall_queue);
1059
1060#define WAKEUP(drive)	((drive)->service_start + 2 * (drive)->service_time)
1061
1062/**
1063 *	choose_drive		-	select a drive to service
1064 *	@hwgroup: hardware group to select on
1065 *
1066 *	choose_drive() selects the next drive which will be serviced.
1067 *	This is necessary because the IDE layer can't issue commands
1068 *	to both drives on the same cable, unlike SCSI.
1069 */
1070
1071static inline ide_drive_t *choose_drive (ide_hwgroup_t *hwgroup)
1072{
1073	ide_drive_t *drive, *best;
1074
1075repeat:
1076	best = NULL;
1077	drive = hwgroup->drive;
1078
1079	/*
1080	 * drive is doing pre-flush, ordered write, post-flush sequence. even
1081	 * though that is 3 requests, it must be seen as a single transaction.
1082	 * we must not preempt this drive until that is complete
1083	 */
1084	if (blk_queue_flushing(drive->queue)) {
1085		/*
1086		 * small race where queue could get replugged during
1087		 * the 3-request flush cycle, just yank the plug since
1088		 * we want it to finish asap
1089		 */
1090		blk_remove_plug(drive->queue);
1091		return drive;
1092	}
1093
1094	do {
1095		if ((!drive->sleeping || time_after_eq(jiffies, drive->sleep))
1096		    && !elv_queue_empty(drive->queue)) {
1097			if (!best
1098			 || (drive->sleeping && (!best->sleeping || time_before(drive->sleep, best->sleep)))
1099			 || (!best->sleeping && time_before(WAKEUP(drive), WAKEUP(best))))
1100			{
1101				if (!blk_queue_plugged(drive->queue))
1102					best = drive;
1103			}
1104		}
1105	} while ((drive = drive->next) != hwgroup->drive);
1106	if (best && best->nice1 && !best->sleeping && best != hwgroup->drive && best->service_time > WAIT_MIN_SLEEP) {
1107		long t = (signed long)(WAKEUP(best) - jiffies);
1108		if (t >= WAIT_MIN_SLEEP) {
1109		/*
1110		 * We *may* have some time to spare, but first let's see if
1111		 * someone can potentially benefit from our nice mood today..
1112		 */
1113			drive = best->next;
1114			do {
1115				if (!drive->sleeping
1116				 && time_before(jiffies - best->service_time, WAKEUP(drive))
1117				 && time_before(WAKEUP(drive), jiffies + t))
1118				{
1119					ide_stall_queue(best, min_t(long, t, 10 * WAIT_MIN_SLEEP));
1120					goto repeat;
1121				}
1122			} while ((drive = drive->next) != best);
1123		}
1124	}
1125	return best;
1126}
1127
1128/*
1129 * Issue a new request to a drive from hwgroup
1130 * Caller must have already done spin_lock_irqsave(&ide_lock, ..);
1131 *
1132 * A hwgroup is a serialized group of IDE interfaces.  Usually there is
1133 * exactly one hwif (interface) per hwgroup, but buggy controllers (eg. CMD640)
1134 * may have both interfaces in a single hwgroup to "serialize" access.
1135 * Or possibly multiple ISA interfaces can share a common IRQ by being grouped
1136 * together into one hwgroup for serialized access.
1137 *
1138 * Note also that several hwgroups can end up sharing a single IRQ,
1139 * possibly along with many other devices.  This is especially common in
1140 * PCI-based systems with off-board IDE controller cards.
1141 *
1142 * The IDE driver uses the single global ide_lock spinlock to protect
1143 * access to the request queues, and to protect the hwgroup->busy flag.
1144 *
1145 * The first thread into the driver for a particular hwgroup sets the
1146 * hwgroup->busy flag to indicate that this hwgroup is now active,
1147 * and then initiates processing of the top request from the request queue.
1148 *
1149 * Other threads attempting entry notice the busy setting, and will simply
1150 * queue their new requests and exit immediately.  Note that hwgroup->busy
1151 * remains set even when the driver is merely awaiting the next interrupt.
1152 * Thus, the meaning is "this hwgroup is busy processing a request".
1153 *
1154 * When processing of a request completes, the completing thread or IRQ-handler
1155 * will start the next request from the queue.  If no more work remains,
1156 * the driver will clear the hwgroup->busy flag and exit.
1157 *
1158 * The ide_lock (spinlock) is used to protect all access to the
1159 * hwgroup->busy flag, but is otherwise not needed for most processing in
1160 * the driver.  This makes the driver much more friendlier to shared IRQs
1161 * than previous designs, while remaining 100% (?) SMP safe and capable.
1162 */
1163static void ide_do_request (ide_hwgroup_t *hwgroup, int masked_irq)
1164{
1165	ide_drive_t	*drive;
1166	ide_hwif_t	*hwif;
1167	struct request	*rq;
1168	ide_startstop_t	startstop;
1169	int             loops = 0;
1170
1171	/* for atari only: POSSIBLY BROKEN HERE(?) */
1172	ide_get_lock(ide_intr, hwgroup);
1173
1174	/* caller must own ide_lock */
1175	BUG_ON(!irqs_disabled());
1176
1177	while (!hwgroup->busy) {
1178		hwgroup->busy = 1;
1179		drive = choose_drive(hwgroup);
1180		if (drive == NULL) {
1181			int sleeping = 0;
1182			unsigned long sleep = 0; /* shut up, gcc */
1183			hwgroup->rq = NULL;
1184			drive = hwgroup->drive;
1185			do {
1186				if (drive->sleeping && (!sleeping || time_before(drive->sleep, sleep))) {
1187					sleeping = 1;
1188					sleep = drive->sleep;
1189				}
1190			} while ((drive = drive->next) != hwgroup->drive);
1191			if (sleeping) {
1192		/*
1193		 * Take a short snooze, and then wake up this hwgroup again.
1194		 * This gives other hwgroups on the same a chance to
1195		 * play fairly with us, just in case there are big differences
1196		 * in relative throughputs.. don't want to hog the cpu too much.
1197		 */
1198				if (time_before(sleep, jiffies + WAIT_MIN_SLEEP))
1199					sleep = jiffies + WAIT_MIN_SLEEP;
1200#if 1
1201				if (timer_pending(&hwgroup->timer))
1202					printk(KERN_CRIT "ide_set_handler: timer already active\n");
1203#endif
1204				/* so that ide_timer_expiry knows what to do */
1205				hwgroup->sleeping = 1;
1206				mod_timer(&hwgroup->timer, sleep);
1207				/* we purposely leave hwgroup->busy==1
1208				 * while sleeping */
1209			} else {
1210				/* Ugly, but how can we sleep for the lock
1211				 * otherwise? perhaps from tq_disk?
1212				 */
1213
1214				/* for atari only */
1215				ide_release_lock();
1216				hwgroup->busy = 0;
1217			}
1218
1219			/* no more work for this hwgroup (for now) */
1220			return;
1221		}
1222	again:
1223		hwif = HWIF(drive);
1224		if (hwgroup->hwif->sharing_irq &&
1225		    hwif != hwgroup->hwif &&
1226		    hwif->io_ports[IDE_CONTROL_OFFSET]) {
1227			/* set nIEN for previous hwif */
1228			SELECT_INTERRUPT(drive);
1229		}
1230		hwgroup->hwif = hwif;
1231		hwgroup->drive = drive;
1232		drive->sleeping = 0;
1233		drive->service_start = jiffies;
1234
1235		if (blk_queue_plugged(drive->queue)) {
1236			printk(KERN_ERR "ide: huh? queue was plugged!\n");
1237			break;
1238		}
1239
1240		/*
1241		 * we know that the queue isn't empty, but this can happen
1242		 * if the q->prep_rq_fn() decides to kill a request
1243		 */
1244		rq = elv_next_request(drive->queue);
1245		if (!rq) {
1246			hwgroup->busy = 0;
1247			break;
1248		}
1249
1250		/*
1251		 * Sanity: don't accept a request that isn't a PM request
1252		 * if we are currently power managed. This is very important as
1253		 * blk_stop_queue() doesn't prevent the elv_next_request()
1254		 * above to return us whatever is in the queue. Since we call
1255		 * ide_do_request() ourselves, we end up taking requests while
1256		 * the queue is blocked...
1257		 *
1258		 * We let requests forced at head of queue with ide-preempt
1259		 * though. I hope that doesn't happen too much, hopefully not
1260		 * unless the subdriver triggers such a thing in its own PM
1261		 * state machine.
1262		 *
1263		 * We count how many times we loop here to make sure we service
1264		 * all drives in the hwgroup without looping for ever
1265		 */
1266		if (drive->blocked && !blk_pm_request(rq) && !(rq->cmd_flags & REQ_PREEMPT)) {
1267			drive = drive->next ? drive->next : hwgroup->drive;
1268			if (loops++ < 4 && !blk_queue_plugged(drive->queue))
1269				goto again;
1270			/* We clear busy, there should be no pending ATA command at this point. */
1271			hwgroup->busy = 0;
1272			break;
1273		}
1274
1275		hwgroup->rq = rq;
1276
1277		/*
1278		 * Some systems have trouble with IDE IRQs arriving while
1279		 * the driver is still setting things up.  So, here we disable
1280		 * the IRQ used by this interface while the request is being started.
1281		 * This may look bad at first, but pretty much the same thing
1282		 * happens anyway when any interrupt comes in, IDE or otherwise
1283		 *  -- the kernel masks the IRQ while it is being handled.
1284		 */
1285		if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq)
1286			disable_irq_nosync(hwif->irq);
1287		spin_unlock(&ide_lock);
1288		local_irq_enable_in_hardirq();
1289			/* allow other IRQs while we start this request */
1290		startstop = start_request(drive, rq);
1291		spin_lock_irq(&ide_lock);
1292		if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq)
1293			enable_irq(hwif->irq);
1294		if (startstop == ide_stopped)
1295			hwgroup->busy = 0;
1296	}
1297}
1298
1299/*
1300 * Passes the stuff to ide_do_request
1301 */
1302void do_ide_request(request_queue_t *q)
1303{
1304	ide_drive_t *drive = q->queuedata;
1305
1306	ide_do_request(HWGROUP(drive), IDE_NO_IRQ);
1307}
1308
1309/*
1310 * un-busy the hwgroup etc, and clear any pending DMA status. we want to
1311 * retry the current request in pio mode instead of risking tossing it
1312 * all away
1313 */
1314static ide_startstop_t ide_dma_timeout_retry(ide_drive_t *drive, int error)
1315{
1316	ide_hwif_t *hwif = HWIF(drive);
1317	struct request *rq;
1318	ide_startstop_t ret = ide_stopped;
1319
1320	/*
1321	 * end current dma transaction
1322	 */
1323
1324	if (error < 0) {
1325		printk(KERN_WARNING "%s: DMA timeout error\n", drive->name);
1326		(void)HWIF(drive)->ide_dma_end(drive);
1327		ret = ide_error(drive, "dma timeout error",
1328						hwif->INB(IDE_STATUS_REG));
1329	} else {
1330		printk(KERN_WARNING "%s: DMA timeout retry\n", drive->name);
1331		(void) hwif->ide_dma_timeout(drive);
1332	}
1333
1334	/*
1335	 * disable dma for now, but remember that we did so because of
1336	 * a timeout -- we'll reenable after we finish this next request
1337	 * (or rather the first chunk of it) in pio.
1338	 */
1339	drive->retry_pio++;
1340	drive->state = DMA_PIO_RETRY;
1341	(void) hwif->ide_dma_off_quietly(drive);
1342
1343	/*
1344	 * un-busy drive etc (hwgroup->busy is cleared on return) and
1345	 * make sure request is sane
1346	 */
1347	rq = HWGROUP(drive)->rq;
1348
1349	if (!rq)
1350		goto out;
1351
1352	HWGROUP(drive)->rq = NULL;
1353
1354	rq->errors = 0;
1355
1356	if (!rq->bio)
1357		goto out;
1358
1359	rq->sector = rq->bio->bi_sector;
1360	rq->current_nr_sectors = bio_iovec(rq->bio)->bv_len >> 9;
1361	rq->hard_cur_sectors = rq->current_nr_sectors;
1362	rq->buffer = bio_data(rq->bio);
1363out:
1364	return ret;
1365}
1366
1367/**
1368 *	ide_timer_expiry	-	handle lack of an IDE interrupt
1369 *	@data: timer callback magic (hwgroup)
1370 *
1371 *	An IDE command has timed out before the expected drive return
1372 *	occurred. At this point we attempt to clean up the current
1373 *	mess. If the current handler includes an expiry handler then
1374 *	we invoke the expiry handler, and providing it is happy the
1375 *	work is done. If that fails we apply generic recovery rules
1376 *	invoking the handler and checking the drive DMA status. We
1377 *	have an excessively incestuous relationship with the DMA
1378 *	logic that wants cleaning up.
1379 */
1380
1381void ide_timer_expiry (unsigned long data)
1382{
1383	ide_hwgroup_t	*hwgroup = (ide_hwgroup_t *) data;
1384	ide_handler_t	*handler;
1385	ide_expiry_t	*expiry;
1386	unsigned long	flags;
1387	unsigned long	wait = -1;
1388
1389	spin_lock_irqsave(&ide_lock, flags);
1390
1391	if ((handler = hwgroup->handler) == NULL) {
1392		/*
1393		 * Either a marginal timeout occurred
1394		 * (got the interrupt just as timer expired),
1395		 * or we were "sleeping" to give other devices a chance.
1396		 * Either way, we don't really want to complain about anything.
1397		 */
1398		if (hwgroup->sleeping) {
1399			hwgroup->sleeping = 0;
1400			hwgroup->busy = 0;
1401		}
1402	} else {
1403		ide_drive_t *drive = hwgroup->drive;
1404		if (!drive) {
1405			printk(KERN_ERR "ide_timer_expiry: hwgroup->drive was NULL\n");
1406			hwgroup->handler = NULL;
1407		} else {
1408			ide_hwif_t *hwif;
1409			ide_startstop_t startstop = ide_stopped;
1410			if (!hwgroup->busy) {
1411				hwgroup->busy = 1;	/* paranoia */
1412				printk(KERN_ERR "%s: ide_timer_expiry: hwgroup->busy was 0 ??\n", drive->name);
1413			}
1414			if ((expiry = hwgroup->expiry) != NULL) {
1415				/* continue */
1416				if ((wait = expiry(drive)) > 0) {
1417					/* reset timer */
1418					hwgroup->timer.expires  = jiffies + wait;
1419					add_timer(&hwgroup->timer);
1420					spin_unlock_irqrestore(&ide_lock, flags);
1421					return;
1422				}
1423			}
1424			hwgroup->handler = NULL;
1425			/*
1426			 * We need to simulate a real interrupt when invoking
1427			 * the handler() function, which means we need to
1428			 * globally mask the specific IRQ:
1429			 */
1430			spin_unlock(&ide_lock);
1431			hwif  = HWIF(drive);
1432#if DISABLE_IRQ_NOSYNC
1433			disable_irq_nosync(hwif->irq);
1434#else
1435			/* disable_irq_nosync ?? */
1436			disable_irq(hwif->irq);
1437#endif /* DISABLE_IRQ_NOSYNC */
1438			/* local CPU only,
1439			 * as if we were handling an interrupt */
1440			local_irq_disable();
1441			if (hwgroup->polling) {
1442				startstop = handler(drive);
1443			} else if (drive_is_ready(drive)) {
1444				if (drive->waiting_for_dma)
1445					(void) hwgroup->hwif->ide_dma_lostirq(drive);
1446				(void)ide_ack_intr(hwif);
1447				printk(KERN_WARNING "%s: lost interrupt\n", drive->name);
1448				startstop = handler(drive);
1449			} else {
1450				if (drive->waiting_for_dma) {
1451					startstop = ide_dma_timeout_retry(drive, wait);
1452				} else
1453					startstop =
1454					ide_error(drive, "irq timeout", hwif->INB(IDE_STATUS_REG));
1455			}
1456			drive->service_time = jiffies - drive->service_start;
1457			spin_lock_irq(&ide_lock);
1458			enable_irq(hwif->irq);
1459			if (startstop == ide_stopped)
1460				hwgroup->busy = 0;
1461		}
1462	}
1463	ide_do_request(hwgroup, IDE_NO_IRQ);
1464	spin_unlock_irqrestore(&ide_lock, flags);
1465}
1466
1467/**
1468 *	unexpected_intr		-	handle an unexpected IDE interrupt
1469 *	@irq: interrupt line
1470 *	@hwgroup: hwgroup being processed
1471 *
1472 *	There's nothing really useful we can do with an unexpected interrupt,
1473 *	other than reading the status register (to clear it), and logging it.
1474 *	There should be no way that an irq can happen before we're ready for it,
1475 *	so we needn't worry much about losing an "important" interrupt here.
1476 *
1477 *	On laptops (and "green" PCs), an unexpected interrupt occurs whenever
1478 *	the drive enters "idle", "standby", or "sleep" mode, so if the status
1479 *	looks "good", we just ignore the interrupt completely.
1480 *
1481 *	This routine assumes __cli() is in effect when called.
1482 *
1483 *	If an unexpected interrupt happens on irq15 while we are handling irq14
1484 *	and if the two interfaces are "serialized" (CMD640), then it looks like
1485 *	we could screw up by interfering with a new request being set up for
1486 *	irq15.
1487 *
1488 *	In reality, this is a non-issue.  The new command is not sent unless
1489 *	the drive is ready to accept one, in which case we know the drive is
1490 *	not trying to interrupt us.  And ide_set_handler() is always invoked
1491 *	before completing the issuance of any new drive command, so we will not
1492 *	be accidentally invoked as a result of any valid command completion
1493 *	interrupt.
1494 *
1495 *	Note that we must walk the entire hwgroup here. We know which hwif
1496 *	is doing the current command, but we don't know which hwif burped
1497 *	mysteriously.
1498 */
1499
1500static void unexpected_intr (int irq, ide_hwgroup_t *hwgroup)
1501{
1502	u8 stat;
1503	ide_hwif_t *hwif = hwgroup->hwif;
1504
1505	/*
1506	 * handle the unexpected interrupt
1507	 */
1508	do {
1509		if (hwif->irq == irq) {
1510			stat = hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]);
1511			if (!OK_STAT(stat, READY_STAT, BAD_STAT)) {
1512				/* Try to not flood the console with msgs */
1513				static unsigned long last_msgtime, count;
1514				++count;
1515				if (time_after(jiffies, last_msgtime + HZ)) {
1516					last_msgtime = jiffies;
1517					printk(KERN_ERR "%s%s: unexpected interrupt, "
1518						"status=0x%02x, count=%ld\n",
1519						hwif->name,
1520						(hwif->next==hwgroup->hwif) ? "" : "(?)", stat, count);
1521				}
1522			}
1523		}
1524	} while ((hwif = hwif->next) != hwgroup->hwif);
1525}
1526
1527/**
1528 *	ide_intr	-	default IDE interrupt handler
1529 *	@irq: interrupt number
1530 *	@dev_id: hwif group
1531 *	@regs: unused weirdness from the kernel irq layer
1532 *
1533 *	This is the default IRQ handler for the IDE layer. You should
1534 *	not need to override it. If you do be aware it is subtle in
1535 *	places
1536 *
1537 *	hwgroup->hwif is the interface in the group currently performing
1538 *	a command. hwgroup->drive is the drive and hwgroup->handler is
1539 *	the IRQ handler to call. As we issue a command the handlers
1540 *	step through multiple states, reassigning the handler to the
1541 *	next step in the process. Unlike a smart SCSI controller IDE
1542 *	expects the main processor to sequence the various transfer
1543 *	stages. We also manage a poll timer to catch up with most
1544 *	timeout situations. There are still a few where the handlers
1545 *	don't ever decide to give up.
1546 *
1547 *	The handler eventually returns ide_stopped to indicate the
1548 *	request completed. At this point we issue the next request
1549 *	on the hwgroup and the process begins again.
1550 */
1551
1552irqreturn_t ide_intr (int irq, void *dev_id, struct pt_regs *regs)
1553{
1554	unsigned long flags;
1555	ide_hwgroup_t *hwgroup = (ide_hwgroup_t *)dev_id;
1556	ide_hwif_t *hwif;
1557	ide_drive_t *drive;
1558	ide_handler_t *handler;
1559	ide_startstop_t startstop;
1560
1561	spin_lock_irqsave(&ide_lock, flags);
1562	hwif = hwgroup->hwif;
1563
1564	if (!ide_ack_intr(hwif)) {
1565		spin_unlock_irqrestore(&ide_lock, flags);
1566		return IRQ_NONE;
1567	}
1568
1569	if ((handler = hwgroup->handler) == NULL || hwgroup->polling) {
1570		/*
1571		 * Not expecting an interrupt from this drive.
1572		 * That means this could be:
1573		 *	(1) an interrupt from another PCI device
1574		 *	sharing the same PCI INT# as us.
1575		 * or	(2) a drive just entered sleep or standby mode,
1576		 *	and is interrupting to let us know.
1577		 * or	(3) a spurious interrupt of unknown origin.
1578		 *
1579		 * For PCI, we cannot tell the difference,
1580		 * so in that case we just ignore it and hope it goes away.
1581		 *
1582		 * FIXME: unexpected_intr should be hwif-> then we can
1583		 * remove all the ifdef PCI crap
1584		 */
1585#ifdef CONFIG_BLK_DEV_IDEPCI
1586		if (hwif->pci_dev && !hwif->pci_dev->vendor)
1587#endif	/* CONFIG_BLK_DEV_IDEPCI */
1588		{
1589			/*
1590			 * Probably not a shared PCI interrupt,
1591			 * so we can safely try to do something about it:
1592			 */
1593			unexpected_intr(irq, hwgroup);
1594#ifdef CONFIG_BLK_DEV_IDEPCI
1595		} else {
1596			/*
1597			 * Whack the status register, just in case
1598			 * we have a leftover pending IRQ.
1599			 */
1600			(void) hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]);
1601#endif /* CONFIG_BLK_DEV_IDEPCI */
1602		}
1603		spin_unlock_irqrestore(&ide_lock, flags);
1604		return IRQ_NONE;
1605	}
1606	drive = hwgroup->drive;
1607	if (!drive) {
1608		/*
1609		 * This should NEVER happen, and there isn't much
1610		 * we could do about it here.
1611		 *
1612		 * [Note - this can occur if the drive is hot unplugged]
1613		 */
1614		spin_unlock_irqrestore(&ide_lock, flags);
1615		return IRQ_HANDLED;
1616	}
1617	if (!drive_is_ready(drive)) {
1618		/*
1619		 * This happens regularly when we share a PCI IRQ with
1620		 * another device.  Unfortunately, it can also happen
1621		 * with some buggy drives that trigger the IRQ before
1622		 * their status register is up to date.  Hopefully we have
1623		 * enough advance overhead that the latter isn't a problem.
1624		 */
1625		spin_unlock_irqrestore(&ide_lock, flags);
1626		return IRQ_NONE;
1627	}
1628	if (!hwgroup->busy) {
1629		hwgroup->busy = 1;	/* paranoia */
1630		printk(KERN_ERR "%s: ide_intr: hwgroup->busy was 0 ??\n", drive->name);
1631	}
1632	hwgroup->handler = NULL;
1633	del_timer(&hwgroup->timer);
1634	spin_unlock(&ide_lock);
1635
1636	if (drive->unmask)
1637		local_irq_enable_in_hardirq();
1638	/* service this interrupt, may set handler for next interrupt */
1639	startstop = handler(drive);
1640	spin_lock_irq(&ide_lock);
1641
1642	/*
1643	 * Note that handler() may have set things up for another
1644	 * interrupt to occur soon, but it cannot happen until
1645	 * we exit from this routine, because it will be the
1646	 * same irq as is currently being serviced here, and Linux
1647	 * won't allow another of the same (on any CPU) until we return.
1648	 */
1649	drive->service_time = jiffies - drive->service_start;
1650	if (startstop == ide_stopped) {
1651		if (hwgroup->handler == NULL) {	/* paranoia */
1652			hwgroup->busy = 0;
1653			ide_do_request(hwgroup, hwif->irq);
1654		} else {
1655			printk(KERN_ERR "%s: ide_intr: huh? expected NULL handler "
1656				"on exit\n", drive->name);
1657		}
1658	}
1659	spin_unlock_irqrestore(&ide_lock, flags);
1660	return IRQ_HANDLED;
1661}
1662
1663/**
1664 *	ide_init_drive_cmd	-	initialize a drive command request
1665 *	@rq: request object
1666 *
1667 *	Initialize a request before we fill it in and send it down to
1668 *	ide_do_drive_cmd. Commands must be set up by this function. Right
1669 *	now it doesn't do a lot, but if that changes abusers will have a
1670 *	nasty surprise.
1671 */
1672
1673void ide_init_drive_cmd (struct request *rq)
1674{
1675	memset(rq, 0, sizeof(*rq));
1676	rq->cmd_type = REQ_TYPE_ATA_CMD;
1677	rq->ref_count = 1;
1678}
1679
1680EXPORT_SYMBOL(ide_init_drive_cmd);
1681
1682/**
1683 *	ide_do_drive_cmd	-	issue IDE special command
1684 *	@drive: device to issue command
1685 *	@rq: request to issue
1686 *	@action: action for processing
1687 *
1688 *	This function issues a special IDE device request
1689 *	onto the request queue.
1690 *
1691 *	If action is ide_wait, then the rq is queued at the end of the
1692 *	request queue, and the function sleeps until it has been processed.
1693 *	This is for use when invoked from an ioctl handler.
1694 *
1695 *	If action is ide_preempt, then the rq is queued at the head of
1696 *	the request queue, displacing the currently-being-processed
1697 *	request and this function returns immediately without waiting
1698 *	for the new rq to be completed.  This is VERY DANGEROUS, and is
1699 *	intended for careful use by the ATAPI tape/cdrom driver code.
1700 *
1701 *	If action is ide_end, then the rq is queued at the end of the
1702 *	request queue, and the function returns immediately without waiting
1703 *	for the new rq to be completed. This is again intended for careful
1704 *	use by the ATAPI tape/cdrom driver code.
1705 */
1706
1707int ide_do_drive_cmd (ide_drive_t *drive, struct request *rq, ide_action_t action)
1708{
1709	unsigned long flags;
1710	ide_hwgroup_t *hwgroup = HWGROUP(drive);
1711	DECLARE_COMPLETION_ONSTACK(wait);
1712	int where = ELEVATOR_INSERT_BACK, err;
1713	int must_wait = (action == ide_wait || action == ide_head_wait);
1714
1715	rq->errors = 0;
1716
1717	/*
1718	 * we need to hold an extra reference to request for safe inspection
1719	 * after completion
1720	 */
1721	if (must_wait) {
1722		rq->ref_count++;
1723		rq->end_io_data = &wait;
1724		rq->end_io = blk_end_sync_rq;
1725	}
1726
1727	spin_lock_irqsave(&ide_lock, flags);
1728	if (action == ide_preempt)
1729		hwgroup->rq = NULL;
1730	if (action == ide_preempt || action == ide_head_wait) {
1731		where = ELEVATOR_INSERT_FRONT;
1732		rq->cmd_flags |= REQ_PREEMPT;
1733	}
1734	__elv_add_request(drive->queue, rq, where, 0);
1735	ide_do_request(hwgroup, IDE_NO_IRQ);
1736	spin_unlock_irqrestore(&ide_lock, flags);
1737
1738	err = 0;
1739	if (must_wait) {
1740		wait_for_completion(&wait);
1741		if (rq->errors)
1742			err = -EIO;
1743
1744		blk_put_request(rq);
1745	}
1746
1747	return err;
1748}
1749
1750EXPORT_SYMBOL(ide_do_drive_cmd);
1751