ide-io.c revision d309e0bb8e5f29692f10790f3e966f05bbfc9355
1/* 2 * IDE I/O functions 3 * 4 * Basic PIO and command management functionality. 5 * 6 * This code was split off from ide.c. See ide.c for history and original 7 * copyrights. 8 * 9 * This program is free software; you can redistribute it and/or modify it 10 * under the terms of the GNU General Public License as published by the 11 * Free Software Foundation; either version 2, or (at your option) any 12 * later version. 13 * 14 * This program is distributed in the hope that it will be useful, but 15 * WITHOUT ANY WARRANTY; without even the implied warranty of 16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 17 * General Public License for more details. 18 * 19 * For the avoidance of doubt the "preferred form" of this code is one which 20 * is in an open non patent encumbered format. Where cryptographic key signing 21 * forms part of the process of creating an executable the information 22 * including keys needed to generate an equivalently functional executable 23 * are deemed to be part of the source code. 24 */ 25 26 27#include <linux/module.h> 28#include <linux/types.h> 29#include <linux/string.h> 30#include <linux/kernel.h> 31#include <linux/timer.h> 32#include <linux/mm.h> 33#include <linux/interrupt.h> 34#include <linux/major.h> 35#include <linux/errno.h> 36#include <linux/genhd.h> 37#include <linux/blkpg.h> 38#include <linux/slab.h> 39#include <linux/init.h> 40#include <linux/pci.h> 41#include <linux/delay.h> 42#include <linux/ide.h> 43#include <linux/completion.h> 44#include <linux/reboot.h> 45#include <linux/cdrom.h> 46#include <linux/seq_file.h> 47#include <linux/device.h> 48#include <linux/kmod.h> 49#include <linux/scatterlist.h> 50#include <linux/bitops.h> 51 52#include <asm/byteorder.h> 53#include <asm/irq.h> 54#include <asm/uaccess.h> 55#include <asm/io.h> 56 57static int __ide_end_request(ide_drive_t *drive, struct request *rq, 58 int uptodate, unsigned int nr_bytes, int dequeue) 59{ 60 int ret = 1; 61 int error = 0; 62 63 if (uptodate <= 0) 64 error = uptodate ? uptodate : -EIO; 65 66 /* 67 * if failfast is set on a request, override number of sectors and 68 * complete the whole request right now 69 */ 70 if (blk_noretry_request(rq) && error) 71 nr_bytes = rq->hard_nr_sectors << 9; 72 73 if (!blk_fs_request(rq) && error && !rq->errors) 74 rq->errors = -EIO; 75 76 /* 77 * decide whether to reenable DMA -- 3 is a random magic for now, 78 * if we DMA timeout more than 3 times, just stay in PIO 79 */ 80 if (drive->state == DMA_PIO_RETRY && drive->retry_pio <= 3) { 81 drive->state = 0; 82 ide_dma_on(drive); 83 } 84 85 if (!__blk_end_request(rq, error, nr_bytes)) { 86 if (dequeue) 87 HWGROUP(drive)->rq = NULL; 88 ret = 0; 89 } 90 91 return ret; 92} 93 94/** 95 * ide_end_request - complete an IDE I/O 96 * @drive: IDE device for the I/O 97 * @uptodate: 98 * @nr_sectors: number of sectors completed 99 * 100 * This is our end_request wrapper function. We complete the I/O 101 * update random number input and dequeue the request, which if 102 * it was tagged may be out of order. 103 */ 104 105int ide_end_request (ide_drive_t *drive, int uptodate, int nr_sectors) 106{ 107 unsigned int nr_bytes = nr_sectors << 9; 108 struct request *rq; 109 unsigned long flags; 110 int ret = 1; 111 112 /* 113 * room for locking improvements here, the calls below don't 114 * need the queue lock held at all 115 */ 116 spin_lock_irqsave(&ide_lock, flags); 117 rq = HWGROUP(drive)->rq; 118 119 if (!nr_bytes) { 120 if (blk_pc_request(rq)) 121 nr_bytes = rq->data_len; 122 else 123 nr_bytes = rq->hard_cur_sectors << 9; 124 } 125 126 ret = __ide_end_request(drive, rq, uptodate, nr_bytes, 1); 127 128 spin_unlock_irqrestore(&ide_lock, flags); 129 return ret; 130} 131EXPORT_SYMBOL(ide_end_request); 132 133/* 134 * Power Management state machine. This one is rather trivial for now, 135 * we should probably add more, like switching back to PIO on suspend 136 * to help some BIOSes, re-do the door locking on resume, etc... 137 */ 138 139enum { 140 ide_pm_flush_cache = ide_pm_state_start_suspend, 141 idedisk_pm_standby, 142 143 idedisk_pm_restore_pio = ide_pm_state_start_resume, 144 idedisk_pm_idle, 145 ide_pm_restore_dma, 146}; 147 148static void ide_complete_power_step(ide_drive_t *drive, struct request *rq, u8 stat, u8 error) 149{ 150 struct request_pm_state *pm = rq->data; 151 152 if (drive->media != ide_disk) 153 return; 154 155 switch (pm->pm_step) { 156 case ide_pm_flush_cache: /* Suspend step 1 (flush cache) complete */ 157 if (pm->pm_state == PM_EVENT_FREEZE) 158 pm->pm_step = ide_pm_state_completed; 159 else 160 pm->pm_step = idedisk_pm_standby; 161 break; 162 case idedisk_pm_standby: /* Suspend step 2 (standby) complete */ 163 pm->pm_step = ide_pm_state_completed; 164 break; 165 case idedisk_pm_restore_pio: /* Resume step 1 complete */ 166 pm->pm_step = idedisk_pm_idle; 167 break; 168 case idedisk_pm_idle: /* Resume step 2 (idle) complete */ 169 pm->pm_step = ide_pm_restore_dma; 170 break; 171 } 172} 173 174static ide_startstop_t ide_start_power_step(ide_drive_t *drive, struct request *rq) 175{ 176 struct request_pm_state *pm = rq->data; 177 ide_task_t *args = rq->special; 178 179 memset(args, 0, sizeof(*args)); 180 181 switch (pm->pm_step) { 182 case ide_pm_flush_cache: /* Suspend step 1 (flush cache) */ 183 if (drive->media != ide_disk) 184 break; 185 /* Not supported? Switch to next step now. */ 186 if (!drive->wcache || !ide_id_has_flush_cache(drive->id)) { 187 ide_complete_power_step(drive, rq, 0, 0); 188 return ide_stopped; 189 } 190 if (ide_id_has_flush_cache_ext(drive->id)) 191 args->tf.command = WIN_FLUSH_CACHE_EXT; 192 else 193 args->tf.command = WIN_FLUSH_CACHE; 194 goto out_do_tf; 195 196 case idedisk_pm_standby: /* Suspend step 2 (standby) */ 197 args->tf.command = WIN_STANDBYNOW1; 198 goto out_do_tf; 199 200 case idedisk_pm_restore_pio: /* Resume step 1 (restore PIO) */ 201 ide_set_max_pio(drive); 202 /* 203 * skip idedisk_pm_idle for ATAPI devices 204 */ 205 if (drive->media != ide_disk) 206 pm->pm_step = ide_pm_restore_dma; 207 else 208 ide_complete_power_step(drive, rq, 0, 0); 209 return ide_stopped; 210 211 case idedisk_pm_idle: /* Resume step 2 (idle) */ 212 args->tf.command = WIN_IDLEIMMEDIATE; 213 goto out_do_tf; 214 215 case ide_pm_restore_dma: /* Resume step 3 (restore DMA) */ 216 /* 217 * Right now, all we do is call ide_set_dma(drive), 218 * we could be smarter and check for current xfer_speed 219 * in struct drive etc... 220 */ 221 if (drive->hwif->dma_ops == NULL) 222 break; 223 /* 224 * TODO: respect ->using_dma setting 225 */ 226 ide_set_dma(drive); 227 break; 228 } 229 pm->pm_step = ide_pm_state_completed; 230 return ide_stopped; 231 232out_do_tf: 233 args->tf_flags = IDE_TFLAG_TF | IDE_TFLAG_DEVICE; 234 args->data_phase = TASKFILE_NO_DATA; 235 return do_rw_taskfile(drive, args); 236} 237 238/** 239 * ide_end_dequeued_request - complete an IDE I/O 240 * @drive: IDE device for the I/O 241 * @uptodate: 242 * @nr_sectors: number of sectors completed 243 * 244 * Complete an I/O that is no longer on the request queue. This 245 * typically occurs when we pull the request and issue a REQUEST_SENSE. 246 * We must still finish the old request but we must not tamper with the 247 * queue in the meantime. 248 * 249 * NOTE: This path does not handle barrier, but barrier is not supported 250 * on ide-cd anyway. 251 */ 252 253int ide_end_dequeued_request(ide_drive_t *drive, struct request *rq, 254 int uptodate, int nr_sectors) 255{ 256 unsigned long flags; 257 int ret; 258 259 spin_lock_irqsave(&ide_lock, flags); 260 BUG_ON(!blk_rq_started(rq)); 261 ret = __ide_end_request(drive, rq, uptodate, nr_sectors << 9, 0); 262 spin_unlock_irqrestore(&ide_lock, flags); 263 264 return ret; 265} 266EXPORT_SYMBOL_GPL(ide_end_dequeued_request); 267 268 269/** 270 * ide_complete_pm_request - end the current Power Management request 271 * @drive: target drive 272 * @rq: request 273 * 274 * This function cleans up the current PM request and stops the queue 275 * if necessary. 276 */ 277static void ide_complete_pm_request (ide_drive_t *drive, struct request *rq) 278{ 279 unsigned long flags; 280 281#ifdef DEBUG_PM 282 printk("%s: completing PM request, %s\n", drive->name, 283 blk_pm_suspend_request(rq) ? "suspend" : "resume"); 284#endif 285 spin_lock_irqsave(&ide_lock, flags); 286 if (blk_pm_suspend_request(rq)) { 287 blk_stop_queue(drive->queue); 288 } else { 289 drive->blocked = 0; 290 blk_start_queue(drive->queue); 291 } 292 HWGROUP(drive)->rq = NULL; 293 if (__blk_end_request(rq, 0, 0)) 294 BUG(); 295 spin_unlock_irqrestore(&ide_lock, flags); 296} 297 298/** 299 * ide_end_drive_cmd - end an explicit drive command 300 * @drive: command 301 * @stat: status bits 302 * @err: error bits 303 * 304 * Clean up after success/failure of an explicit drive command. 305 * These get thrown onto the queue so they are synchronized with 306 * real I/O operations on the drive. 307 * 308 * In LBA48 mode we have to read the register set twice to get 309 * all the extra information out. 310 */ 311 312void ide_end_drive_cmd (ide_drive_t *drive, u8 stat, u8 err) 313{ 314 unsigned long flags; 315 struct request *rq; 316 317 spin_lock_irqsave(&ide_lock, flags); 318 rq = HWGROUP(drive)->rq; 319 spin_unlock_irqrestore(&ide_lock, flags); 320 321 if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) { 322 ide_task_t *task = (ide_task_t *)rq->special; 323 324 if (rq->errors == 0) 325 rq->errors = !OK_STAT(stat, READY_STAT, BAD_STAT); 326 327 if (task) { 328 struct ide_taskfile *tf = &task->tf; 329 330 tf->error = err; 331 tf->status = stat; 332 333 ide_tf_read(drive, task); 334 335 if (task->tf_flags & IDE_TFLAG_DYN) 336 kfree(task); 337 } 338 } else if (blk_pm_request(rq)) { 339 struct request_pm_state *pm = rq->data; 340#ifdef DEBUG_PM 341 printk("%s: complete_power_step(step: %d, stat: %x, err: %x)\n", 342 drive->name, rq->pm->pm_step, stat, err); 343#endif 344 ide_complete_power_step(drive, rq, stat, err); 345 if (pm->pm_step == ide_pm_state_completed) 346 ide_complete_pm_request(drive, rq); 347 return; 348 } 349 350 spin_lock_irqsave(&ide_lock, flags); 351 HWGROUP(drive)->rq = NULL; 352 rq->errors = err; 353 if (unlikely(__blk_end_request(rq, (rq->errors ? -EIO : 0), 354 blk_rq_bytes(rq)))) 355 BUG(); 356 spin_unlock_irqrestore(&ide_lock, flags); 357} 358 359EXPORT_SYMBOL(ide_end_drive_cmd); 360 361/** 362 * try_to_flush_leftover_data - flush junk 363 * @drive: drive to flush 364 * 365 * try_to_flush_leftover_data() is invoked in response to a drive 366 * unexpectedly having its DRQ_STAT bit set. As an alternative to 367 * resetting the drive, this routine tries to clear the condition 368 * by read a sector's worth of data from the drive. Of course, 369 * this may not help if the drive is *waiting* for data from *us*. 370 */ 371static void try_to_flush_leftover_data (ide_drive_t *drive) 372{ 373 int i = (drive->mult_count ? drive->mult_count : 1) * SECTOR_WORDS; 374 375 if (drive->media != ide_disk) 376 return; 377 while (i > 0) { 378 u32 buffer[16]; 379 u32 wcount = (i > 16) ? 16 : i; 380 381 i -= wcount; 382 drive->hwif->input_data(drive, NULL, buffer, wcount * 4); 383 } 384} 385 386static void ide_kill_rq(ide_drive_t *drive, struct request *rq) 387{ 388 if (rq->rq_disk) { 389 ide_driver_t *drv; 390 391 drv = *(ide_driver_t **)rq->rq_disk->private_data; 392 drv->end_request(drive, 0, 0); 393 } else 394 ide_end_request(drive, 0, 0); 395} 396 397static ide_startstop_t ide_ata_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err) 398{ 399 ide_hwif_t *hwif = drive->hwif; 400 401 if (stat & BUSY_STAT || ((stat & WRERR_STAT) && !drive->nowerr)) { 402 /* other bits are useless when BUSY */ 403 rq->errors |= ERROR_RESET; 404 } else if (stat & ERR_STAT) { 405 /* err has different meaning on cdrom and tape */ 406 if (err == ABRT_ERR) { 407 if (drive->select.b.lba && 408 /* some newer drives don't support WIN_SPECIFY */ 409 hwif->INB(hwif->io_ports.command_addr) == 410 WIN_SPECIFY) 411 return ide_stopped; 412 } else if ((err & BAD_CRC) == BAD_CRC) { 413 /* UDMA crc error, just retry the operation */ 414 drive->crc_count++; 415 } else if (err & (BBD_ERR | ECC_ERR)) { 416 /* retries won't help these */ 417 rq->errors = ERROR_MAX; 418 } else if (err & TRK0_ERR) { 419 /* help it find track zero */ 420 rq->errors |= ERROR_RECAL; 421 } 422 } 423 424 if ((stat & DRQ_STAT) && rq_data_dir(rq) == READ && 425 (hwif->host_flags & IDE_HFLAG_ERROR_STOPS_FIFO) == 0) 426 try_to_flush_leftover_data(drive); 427 428 if (rq->errors >= ERROR_MAX || blk_noretry_request(rq)) { 429 ide_kill_rq(drive, rq); 430 return ide_stopped; 431 } 432 433 if (ide_read_status(drive) & (BUSY_STAT | DRQ_STAT)) 434 rq->errors |= ERROR_RESET; 435 436 if ((rq->errors & ERROR_RESET) == ERROR_RESET) { 437 ++rq->errors; 438 return ide_do_reset(drive); 439 } 440 441 if ((rq->errors & ERROR_RECAL) == ERROR_RECAL) 442 drive->special.b.recalibrate = 1; 443 444 ++rq->errors; 445 446 return ide_stopped; 447} 448 449static ide_startstop_t ide_atapi_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err) 450{ 451 ide_hwif_t *hwif = drive->hwif; 452 453 if (stat & BUSY_STAT || ((stat & WRERR_STAT) && !drive->nowerr)) { 454 /* other bits are useless when BUSY */ 455 rq->errors |= ERROR_RESET; 456 } else { 457 /* add decoding error stuff */ 458 } 459 460 if (ide_read_status(drive) & (BUSY_STAT | DRQ_STAT)) 461 /* force an abort */ 462 hwif->OUTBSYNC(drive, WIN_IDLEIMMEDIATE, 463 hwif->io_ports.command_addr); 464 465 if (rq->errors >= ERROR_MAX) { 466 ide_kill_rq(drive, rq); 467 } else { 468 if ((rq->errors & ERROR_RESET) == ERROR_RESET) { 469 ++rq->errors; 470 return ide_do_reset(drive); 471 } 472 ++rq->errors; 473 } 474 475 return ide_stopped; 476} 477 478ide_startstop_t 479__ide_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err) 480{ 481 if (drive->media == ide_disk) 482 return ide_ata_error(drive, rq, stat, err); 483 return ide_atapi_error(drive, rq, stat, err); 484} 485 486EXPORT_SYMBOL_GPL(__ide_error); 487 488/** 489 * ide_error - handle an error on the IDE 490 * @drive: drive the error occurred on 491 * @msg: message to report 492 * @stat: status bits 493 * 494 * ide_error() takes action based on the error returned by the drive. 495 * For normal I/O that may well include retries. We deal with 496 * both new-style (taskfile) and old style command handling here. 497 * In the case of taskfile command handling there is work left to 498 * do 499 */ 500 501ide_startstop_t ide_error (ide_drive_t *drive, const char *msg, u8 stat) 502{ 503 struct request *rq; 504 u8 err; 505 506 err = ide_dump_status(drive, msg, stat); 507 508 if ((rq = HWGROUP(drive)->rq) == NULL) 509 return ide_stopped; 510 511 /* retry only "normal" I/O: */ 512 if (!blk_fs_request(rq)) { 513 rq->errors = 1; 514 ide_end_drive_cmd(drive, stat, err); 515 return ide_stopped; 516 } 517 518 if (rq->rq_disk) { 519 ide_driver_t *drv; 520 521 drv = *(ide_driver_t **)rq->rq_disk->private_data; 522 return drv->error(drive, rq, stat, err); 523 } else 524 return __ide_error(drive, rq, stat, err); 525} 526 527EXPORT_SYMBOL_GPL(ide_error); 528 529ide_startstop_t __ide_abort(ide_drive_t *drive, struct request *rq) 530{ 531 if (drive->media != ide_disk) 532 rq->errors |= ERROR_RESET; 533 534 ide_kill_rq(drive, rq); 535 536 return ide_stopped; 537} 538 539EXPORT_SYMBOL_GPL(__ide_abort); 540 541/** 542 * ide_abort - abort pending IDE operations 543 * @drive: drive the error occurred on 544 * @msg: message to report 545 * 546 * ide_abort kills and cleans up when we are about to do a 547 * host initiated reset on active commands. Longer term we 548 * want handlers to have sensible abort handling themselves 549 * 550 * This differs fundamentally from ide_error because in 551 * this case the command is doing just fine when we 552 * blow it away. 553 */ 554 555ide_startstop_t ide_abort(ide_drive_t *drive, const char *msg) 556{ 557 struct request *rq; 558 559 if (drive == NULL || (rq = HWGROUP(drive)->rq) == NULL) 560 return ide_stopped; 561 562 /* retry only "normal" I/O: */ 563 if (!blk_fs_request(rq)) { 564 rq->errors = 1; 565 ide_end_drive_cmd(drive, BUSY_STAT, 0); 566 return ide_stopped; 567 } 568 569 if (rq->rq_disk) { 570 ide_driver_t *drv; 571 572 drv = *(ide_driver_t **)rq->rq_disk->private_data; 573 return drv->abort(drive, rq); 574 } else 575 return __ide_abort(drive, rq); 576} 577 578static void ide_tf_set_specify_cmd(ide_drive_t *drive, struct ide_taskfile *tf) 579{ 580 tf->nsect = drive->sect; 581 tf->lbal = drive->sect; 582 tf->lbam = drive->cyl; 583 tf->lbah = drive->cyl >> 8; 584 tf->device = ((drive->head - 1) | drive->select.all) & ~ATA_LBA; 585 tf->command = WIN_SPECIFY; 586} 587 588static void ide_tf_set_restore_cmd(ide_drive_t *drive, struct ide_taskfile *tf) 589{ 590 tf->nsect = drive->sect; 591 tf->command = WIN_RESTORE; 592} 593 594static void ide_tf_set_setmult_cmd(ide_drive_t *drive, struct ide_taskfile *tf) 595{ 596 tf->nsect = drive->mult_req; 597 tf->command = WIN_SETMULT; 598} 599 600static ide_startstop_t ide_disk_special(ide_drive_t *drive) 601{ 602 special_t *s = &drive->special; 603 ide_task_t args; 604 605 memset(&args, 0, sizeof(ide_task_t)); 606 args.data_phase = TASKFILE_NO_DATA; 607 608 if (s->b.set_geometry) { 609 s->b.set_geometry = 0; 610 ide_tf_set_specify_cmd(drive, &args.tf); 611 } else if (s->b.recalibrate) { 612 s->b.recalibrate = 0; 613 ide_tf_set_restore_cmd(drive, &args.tf); 614 } else if (s->b.set_multmode) { 615 s->b.set_multmode = 0; 616 if (drive->mult_req > drive->id->max_multsect) 617 drive->mult_req = drive->id->max_multsect; 618 ide_tf_set_setmult_cmd(drive, &args.tf); 619 } else if (s->all) { 620 int special = s->all; 621 s->all = 0; 622 printk(KERN_ERR "%s: bad special flag: 0x%02x\n", drive->name, special); 623 return ide_stopped; 624 } 625 626 args.tf_flags = IDE_TFLAG_TF | IDE_TFLAG_DEVICE | 627 IDE_TFLAG_CUSTOM_HANDLER; 628 629 do_rw_taskfile(drive, &args); 630 631 return ide_started; 632} 633 634/* 635 * handle HDIO_SET_PIO_MODE ioctl abusers here, eventually it will go away 636 */ 637static int set_pio_mode_abuse(ide_hwif_t *hwif, u8 req_pio) 638{ 639 switch (req_pio) { 640 case 202: 641 case 201: 642 case 200: 643 case 102: 644 case 101: 645 case 100: 646 return (hwif->host_flags & IDE_HFLAG_ABUSE_DMA_MODES) ? 1 : 0; 647 case 9: 648 case 8: 649 return (hwif->host_flags & IDE_HFLAG_ABUSE_PREFETCH) ? 1 : 0; 650 case 7: 651 case 6: 652 return (hwif->host_flags & IDE_HFLAG_ABUSE_FAST_DEVSEL) ? 1 : 0; 653 default: 654 return 0; 655 } 656} 657 658/** 659 * do_special - issue some special commands 660 * @drive: drive the command is for 661 * 662 * do_special() is used to issue WIN_SPECIFY, WIN_RESTORE, and WIN_SETMULT 663 * commands to a drive. It used to do much more, but has been scaled 664 * back. 665 */ 666 667static ide_startstop_t do_special (ide_drive_t *drive) 668{ 669 special_t *s = &drive->special; 670 671#ifdef DEBUG 672 printk("%s: do_special: 0x%02x\n", drive->name, s->all); 673#endif 674 if (s->b.set_tune) { 675 ide_hwif_t *hwif = drive->hwif; 676 const struct ide_port_ops *port_ops = hwif->port_ops; 677 u8 req_pio = drive->tune_req; 678 679 s->b.set_tune = 0; 680 681 if (set_pio_mode_abuse(drive->hwif, req_pio)) { 682 /* 683 * take ide_lock for drive->[no_]unmask/[no_]io_32bit 684 */ 685 if (req_pio == 8 || req_pio == 9) { 686 unsigned long flags; 687 688 spin_lock_irqsave(&ide_lock, flags); 689 port_ops->set_pio_mode(drive, req_pio); 690 spin_unlock_irqrestore(&ide_lock, flags); 691 } else 692 port_ops->set_pio_mode(drive, req_pio); 693 } else { 694 int keep_dma = drive->using_dma; 695 696 ide_set_pio(drive, req_pio); 697 698 if (hwif->host_flags & IDE_HFLAG_SET_PIO_MODE_KEEP_DMA) { 699 if (keep_dma) 700 ide_dma_on(drive); 701 } 702 } 703 704 return ide_stopped; 705 } else { 706 if (drive->media == ide_disk) 707 return ide_disk_special(drive); 708 709 s->all = 0; 710 drive->mult_req = 0; 711 return ide_stopped; 712 } 713} 714 715void ide_map_sg(ide_drive_t *drive, struct request *rq) 716{ 717 ide_hwif_t *hwif = drive->hwif; 718 struct scatterlist *sg = hwif->sg_table; 719 720 if (hwif->sg_mapped) /* needed by ide-scsi */ 721 return; 722 723 if (rq->cmd_type != REQ_TYPE_ATA_TASKFILE) { 724 hwif->sg_nents = blk_rq_map_sg(drive->queue, rq, sg); 725 } else { 726 sg_init_one(sg, rq->buffer, rq->nr_sectors * SECTOR_SIZE); 727 hwif->sg_nents = 1; 728 } 729} 730 731EXPORT_SYMBOL_GPL(ide_map_sg); 732 733void ide_init_sg_cmd(ide_drive_t *drive, struct request *rq) 734{ 735 ide_hwif_t *hwif = drive->hwif; 736 737 hwif->nsect = hwif->nleft = rq->nr_sectors; 738 hwif->cursg_ofs = 0; 739 hwif->cursg = NULL; 740} 741 742EXPORT_SYMBOL_GPL(ide_init_sg_cmd); 743 744/** 745 * execute_drive_command - issue special drive command 746 * @drive: the drive to issue the command on 747 * @rq: the request structure holding the command 748 * 749 * execute_drive_cmd() issues a special drive command, usually 750 * initiated by ioctl() from the external hdparm program. The 751 * command can be a drive command, drive task or taskfile 752 * operation. Weirdly you can call it with NULL to wait for 753 * all commands to finish. Don't do this as that is due to change 754 */ 755 756static ide_startstop_t execute_drive_cmd (ide_drive_t *drive, 757 struct request *rq) 758{ 759 ide_hwif_t *hwif = HWIF(drive); 760 ide_task_t *task = rq->special; 761 762 if (task) { 763 hwif->data_phase = task->data_phase; 764 765 switch (hwif->data_phase) { 766 case TASKFILE_MULTI_OUT: 767 case TASKFILE_OUT: 768 case TASKFILE_MULTI_IN: 769 case TASKFILE_IN: 770 ide_init_sg_cmd(drive, rq); 771 ide_map_sg(drive, rq); 772 default: 773 break; 774 } 775 776 return do_rw_taskfile(drive, task); 777 } 778 779 /* 780 * NULL is actually a valid way of waiting for 781 * all current requests to be flushed from the queue. 782 */ 783#ifdef DEBUG 784 printk("%s: DRIVE_CMD (null)\n", drive->name); 785#endif 786 ide_end_drive_cmd(drive, ide_read_status(drive), ide_read_error(drive)); 787 788 return ide_stopped; 789} 790 791static void ide_check_pm_state(ide_drive_t *drive, struct request *rq) 792{ 793 struct request_pm_state *pm = rq->data; 794 795 if (blk_pm_suspend_request(rq) && 796 pm->pm_step == ide_pm_state_start_suspend) 797 /* Mark drive blocked when starting the suspend sequence. */ 798 drive->blocked = 1; 799 else if (blk_pm_resume_request(rq) && 800 pm->pm_step == ide_pm_state_start_resume) { 801 /* 802 * The first thing we do on wakeup is to wait for BSY bit to 803 * go away (with a looong timeout) as a drive on this hwif may 804 * just be POSTing itself. 805 * We do that before even selecting as the "other" device on 806 * the bus may be broken enough to walk on our toes at this 807 * point. 808 */ 809 int rc; 810#ifdef DEBUG_PM 811 printk("%s: Wakeup request inited, waiting for !BSY...\n", drive->name); 812#endif 813 rc = ide_wait_not_busy(HWIF(drive), 35000); 814 if (rc) 815 printk(KERN_WARNING "%s: bus not ready on wakeup\n", drive->name); 816 SELECT_DRIVE(drive); 817 ide_set_irq(drive, 1); 818 rc = ide_wait_not_busy(HWIF(drive), 100000); 819 if (rc) 820 printk(KERN_WARNING "%s: drive not ready on wakeup\n", drive->name); 821 } 822} 823 824/** 825 * start_request - start of I/O and command issuing for IDE 826 * 827 * start_request() initiates handling of a new I/O request. It 828 * accepts commands and I/O (read/write) requests. It also does 829 * the final remapping for weird stuff like EZDrive. Once 830 * device mapper can work sector level the EZDrive stuff can go away 831 * 832 * FIXME: this function needs a rename 833 */ 834 835static ide_startstop_t start_request (ide_drive_t *drive, struct request *rq) 836{ 837 ide_startstop_t startstop; 838 sector_t block; 839 840 BUG_ON(!blk_rq_started(rq)); 841 842#ifdef DEBUG 843 printk("%s: start_request: current=0x%08lx\n", 844 HWIF(drive)->name, (unsigned long) rq); 845#endif 846 847 /* bail early if we've exceeded max_failures */ 848 if (drive->max_failures && (drive->failures > drive->max_failures)) { 849 rq->cmd_flags |= REQ_FAILED; 850 goto kill_rq; 851 } 852 853 block = rq->sector; 854 if (blk_fs_request(rq) && 855 (drive->media == ide_disk || drive->media == ide_floppy)) { 856 block += drive->sect0; 857 } 858 /* Yecch - this will shift the entire interval, 859 possibly killing some innocent following sector */ 860 if (block == 0 && drive->remap_0_to_1 == 1) 861 block = 1; /* redirect MBR access to EZ-Drive partn table */ 862 863 if (blk_pm_request(rq)) 864 ide_check_pm_state(drive, rq); 865 866 SELECT_DRIVE(drive); 867 if (ide_wait_stat(&startstop, drive, drive->ready_stat, BUSY_STAT|DRQ_STAT, WAIT_READY)) { 868 printk(KERN_ERR "%s: drive not ready for command\n", drive->name); 869 return startstop; 870 } 871 if (!drive->special.all) { 872 ide_driver_t *drv; 873 874 /* 875 * We reset the drive so we need to issue a SETFEATURES. 876 * Do it _after_ do_special() restored device parameters. 877 */ 878 if (drive->current_speed == 0xff) 879 ide_config_drive_speed(drive, drive->desired_speed); 880 881 if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) 882 return execute_drive_cmd(drive, rq); 883 else if (blk_pm_request(rq)) { 884 struct request_pm_state *pm = rq->data; 885#ifdef DEBUG_PM 886 printk("%s: start_power_step(step: %d)\n", 887 drive->name, rq->pm->pm_step); 888#endif 889 startstop = ide_start_power_step(drive, rq); 890 if (startstop == ide_stopped && 891 pm->pm_step == ide_pm_state_completed) 892 ide_complete_pm_request(drive, rq); 893 return startstop; 894 } 895 896 drv = *(ide_driver_t **)rq->rq_disk->private_data; 897 return drv->do_request(drive, rq, block); 898 } 899 return do_special(drive); 900kill_rq: 901 ide_kill_rq(drive, rq); 902 return ide_stopped; 903} 904 905/** 906 * ide_stall_queue - pause an IDE device 907 * @drive: drive to stall 908 * @timeout: time to stall for (jiffies) 909 * 910 * ide_stall_queue() can be used by a drive to give excess bandwidth back 911 * to the hwgroup by sleeping for timeout jiffies. 912 */ 913 914void ide_stall_queue (ide_drive_t *drive, unsigned long timeout) 915{ 916 if (timeout > WAIT_WORSTCASE) 917 timeout = WAIT_WORSTCASE; 918 drive->sleep = timeout + jiffies; 919 drive->sleeping = 1; 920} 921 922EXPORT_SYMBOL(ide_stall_queue); 923 924#define WAKEUP(drive) ((drive)->service_start + 2 * (drive)->service_time) 925 926/** 927 * choose_drive - select a drive to service 928 * @hwgroup: hardware group to select on 929 * 930 * choose_drive() selects the next drive which will be serviced. 931 * This is necessary because the IDE layer can't issue commands 932 * to both drives on the same cable, unlike SCSI. 933 */ 934 935static inline ide_drive_t *choose_drive (ide_hwgroup_t *hwgroup) 936{ 937 ide_drive_t *drive, *best; 938 939repeat: 940 best = NULL; 941 drive = hwgroup->drive; 942 943 /* 944 * drive is doing pre-flush, ordered write, post-flush sequence. even 945 * though that is 3 requests, it must be seen as a single transaction. 946 * we must not preempt this drive until that is complete 947 */ 948 if (blk_queue_flushing(drive->queue)) { 949 /* 950 * small race where queue could get replugged during 951 * the 3-request flush cycle, just yank the plug since 952 * we want it to finish asap 953 */ 954 blk_remove_plug(drive->queue); 955 return drive; 956 } 957 958 do { 959 if ((!drive->sleeping || time_after_eq(jiffies, drive->sleep)) 960 && !elv_queue_empty(drive->queue)) { 961 if (!best 962 || (drive->sleeping && (!best->sleeping || time_before(drive->sleep, best->sleep))) 963 || (!best->sleeping && time_before(WAKEUP(drive), WAKEUP(best)))) 964 { 965 if (!blk_queue_plugged(drive->queue)) 966 best = drive; 967 } 968 } 969 } while ((drive = drive->next) != hwgroup->drive); 970 if (best && best->nice1 && !best->sleeping && best != hwgroup->drive && best->service_time > WAIT_MIN_SLEEP) { 971 long t = (signed long)(WAKEUP(best) - jiffies); 972 if (t >= WAIT_MIN_SLEEP) { 973 /* 974 * We *may* have some time to spare, but first let's see if 975 * someone can potentially benefit from our nice mood today.. 976 */ 977 drive = best->next; 978 do { 979 if (!drive->sleeping 980 && time_before(jiffies - best->service_time, WAKEUP(drive)) 981 && time_before(WAKEUP(drive), jiffies + t)) 982 { 983 ide_stall_queue(best, min_t(long, t, 10 * WAIT_MIN_SLEEP)); 984 goto repeat; 985 } 986 } while ((drive = drive->next) != best); 987 } 988 } 989 return best; 990} 991 992/* 993 * Issue a new request to a drive from hwgroup 994 * Caller must have already done spin_lock_irqsave(&ide_lock, ..); 995 * 996 * A hwgroup is a serialized group of IDE interfaces. Usually there is 997 * exactly one hwif (interface) per hwgroup, but buggy controllers (eg. CMD640) 998 * may have both interfaces in a single hwgroup to "serialize" access. 999 * Or possibly multiple ISA interfaces can share a common IRQ by being grouped 1000 * together into one hwgroup for serialized access. 1001 * 1002 * Note also that several hwgroups can end up sharing a single IRQ, 1003 * possibly along with many other devices. This is especially common in 1004 * PCI-based systems with off-board IDE controller cards. 1005 * 1006 * The IDE driver uses the single global ide_lock spinlock to protect 1007 * access to the request queues, and to protect the hwgroup->busy flag. 1008 * 1009 * The first thread into the driver for a particular hwgroup sets the 1010 * hwgroup->busy flag to indicate that this hwgroup is now active, 1011 * and then initiates processing of the top request from the request queue. 1012 * 1013 * Other threads attempting entry notice the busy setting, and will simply 1014 * queue their new requests and exit immediately. Note that hwgroup->busy 1015 * remains set even when the driver is merely awaiting the next interrupt. 1016 * Thus, the meaning is "this hwgroup is busy processing a request". 1017 * 1018 * When processing of a request completes, the completing thread or IRQ-handler 1019 * will start the next request from the queue. If no more work remains, 1020 * the driver will clear the hwgroup->busy flag and exit. 1021 * 1022 * The ide_lock (spinlock) is used to protect all access to the 1023 * hwgroup->busy flag, but is otherwise not needed for most processing in 1024 * the driver. This makes the driver much more friendlier to shared IRQs 1025 * than previous designs, while remaining 100% (?) SMP safe and capable. 1026 */ 1027static void ide_do_request (ide_hwgroup_t *hwgroup, int masked_irq) 1028{ 1029 ide_drive_t *drive; 1030 ide_hwif_t *hwif; 1031 struct request *rq; 1032 ide_startstop_t startstop; 1033 int loops = 0; 1034 1035 /* for atari only: POSSIBLY BROKEN HERE(?) */ 1036 ide_get_lock(ide_intr, hwgroup); 1037 1038 /* caller must own ide_lock */ 1039 BUG_ON(!irqs_disabled()); 1040 1041 while (!hwgroup->busy) { 1042 hwgroup->busy = 1; 1043 drive = choose_drive(hwgroup); 1044 if (drive == NULL) { 1045 int sleeping = 0; 1046 unsigned long sleep = 0; /* shut up, gcc */ 1047 hwgroup->rq = NULL; 1048 drive = hwgroup->drive; 1049 do { 1050 if (drive->sleeping && (!sleeping || time_before(drive->sleep, sleep))) { 1051 sleeping = 1; 1052 sleep = drive->sleep; 1053 } 1054 } while ((drive = drive->next) != hwgroup->drive); 1055 if (sleeping) { 1056 /* 1057 * Take a short snooze, and then wake up this hwgroup again. 1058 * This gives other hwgroups on the same a chance to 1059 * play fairly with us, just in case there are big differences 1060 * in relative throughputs.. don't want to hog the cpu too much. 1061 */ 1062 if (time_before(sleep, jiffies + WAIT_MIN_SLEEP)) 1063 sleep = jiffies + WAIT_MIN_SLEEP; 1064#if 1 1065 if (timer_pending(&hwgroup->timer)) 1066 printk(KERN_CRIT "ide_set_handler: timer already active\n"); 1067#endif 1068 /* so that ide_timer_expiry knows what to do */ 1069 hwgroup->sleeping = 1; 1070 hwgroup->req_gen_timer = hwgroup->req_gen; 1071 mod_timer(&hwgroup->timer, sleep); 1072 /* we purposely leave hwgroup->busy==1 1073 * while sleeping */ 1074 } else { 1075 /* Ugly, but how can we sleep for the lock 1076 * otherwise? perhaps from tq_disk? 1077 */ 1078 1079 /* for atari only */ 1080 ide_release_lock(); 1081 hwgroup->busy = 0; 1082 } 1083 1084 /* no more work for this hwgroup (for now) */ 1085 return; 1086 } 1087 again: 1088 hwif = HWIF(drive); 1089 if (hwgroup->hwif->sharing_irq && hwif != hwgroup->hwif) { 1090 /* 1091 * set nIEN for previous hwif, drives in the 1092 * quirk_list may not like intr setups/cleanups 1093 */ 1094 if (drive->quirk_list != 1) 1095 ide_set_irq(drive, 0); 1096 } 1097 hwgroup->hwif = hwif; 1098 hwgroup->drive = drive; 1099 drive->sleeping = 0; 1100 drive->service_start = jiffies; 1101 1102 if (blk_queue_plugged(drive->queue)) { 1103 printk(KERN_ERR "ide: huh? queue was plugged!\n"); 1104 break; 1105 } 1106 1107 /* 1108 * we know that the queue isn't empty, but this can happen 1109 * if the q->prep_rq_fn() decides to kill a request 1110 */ 1111 rq = elv_next_request(drive->queue); 1112 if (!rq) { 1113 hwgroup->busy = 0; 1114 break; 1115 } 1116 1117 /* 1118 * Sanity: don't accept a request that isn't a PM request 1119 * if we are currently power managed. This is very important as 1120 * blk_stop_queue() doesn't prevent the elv_next_request() 1121 * above to return us whatever is in the queue. Since we call 1122 * ide_do_request() ourselves, we end up taking requests while 1123 * the queue is blocked... 1124 * 1125 * We let requests forced at head of queue with ide-preempt 1126 * though. I hope that doesn't happen too much, hopefully not 1127 * unless the subdriver triggers such a thing in its own PM 1128 * state machine. 1129 * 1130 * We count how many times we loop here to make sure we service 1131 * all drives in the hwgroup without looping for ever 1132 */ 1133 if (drive->blocked && !blk_pm_request(rq) && !(rq->cmd_flags & REQ_PREEMPT)) { 1134 drive = drive->next ? drive->next : hwgroup->drive; 1135 if (loops++ < 4 && !blk_queue_plugged(drive->queue)) 1136 goto again; 1137 /* We clear busy, there should be no pending ATA command at this point. */ 1138 hwgroup->busy = 0; 1139 break; 1140 } 1141 1142 hwgroup->rq = rq; 1143 1144 /* 1145 * Some systems have trouble with IDE IRQs arriving while 1146 * the driver is still setting things up. So, here we disable 1147 * the IRQ used by this interface while the request is being started. 1148 * This may look bad at first, but pretty much the same thing 1149 * happens anyway when any interrupt comes in, IDE or otherwise 1150 * -- the kernel masks the IRQ while it is being handled. 1151 */ 1152 if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq) 1153 disable_irq_nosync(hwif->irq); 1154 spin_unlock(&ide_lock); 1155 local_irq_enable_in_hardirq(); 1156 /* allow other IRQs while we start this request */ 1157 startstop = start_request(drive, rq); 1158 spin_lock_irq(&ide_lock); 1159 if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq) 1160 enable_irq(hwif->irq); 1161 if (startstop == ide_stopped) 1162 hwgroup->busy = 0; 1163 } 1164} 1165 1166/* 1167 * Passes the stuff to ide_do_request 1168 */ 1169void do_ide_request(struct request_queue *q) 1170{ 1171 ide_drive_t *drive = q->queuedata; 1172 1173 ide_do_request(HWGROUP(drive), IDE_NO_IRQ); 1174} 1175 1176/* 1177 * un-busy the hwgroup etc, and clear any pending DMA status. we want to 1178 * retry the current request in pio mode instead of risking tossing it 1179 * all away 1180 */ 1181static ide_startstop_t ide_dma_timeout_retry(ide_drive_t *drive, int error) 1182{ 1183 ide_hwif_t *hwif = HWIF(drive); 1184 struct request *rq; 1185 ide_startstop_t ret = ide_stopped; 1186 1187 /* 1188 * end current dma transaction 1189 */ 1190 1191 if (error < 0) { 1192 printk(KERN_WARNING "%s: DMA timeout error\n", drive->name); 1193 (void)hwif->dma_ops->dma_end(drive); 1194 ret = ide_error(drive, "dma timeout error", 1195 ide_read_status(drive)); 1196 } else { 1197 printk(KERN_WARNING "%s: DMA timeout retry\n", drive->name); 1198 hwif->dma_ops->dma_timeout(drive); 1199 } 1200 1201 /* 1202 * disable dma for now, but remember that we did so because of 1203 * a timeout -- we'll reenable after we finish this next request 1204 * (or rather the first chunk of it) in pio. 1205 */ 1206 drive->retry_pio++; 1207 drive->state = DMA_PIO_RETRY; 1208 ide_dma_off_quietly(drive); 1209 1210 /* 1211 * un-busy drive etc (hwgroup->busy is cleared on return) and 1212 * make sure request is sane 1213 */ 1214 rq = HWGROUP(drive)->rq; 1215 1216 if (!rq) 1217 goto out; 1218 1219 HWGROUP(drive)->rq = NULL; 1220 1221 rq->errors = 0; 1222 1223 if (!rq->bio) 1224 goto out; 1225 1226 rq->sector = rq->bio->bi_sector; 1227 rq->current_nr_sectors = bio_iovec(rq->bio)->bv_len >> 9; 1228 rq->hard_cur_sectors = rq->current_nr_sectors; 1229 rq->buffer = bio_data(rq->bio); 1230out: 1231 return ret; 1232} 1233 1234/** 1235 * ide_timer_expiry - handle lack of an IDE interrupt 1236 * @data: timer callback magic (hwgroup) 1237 * 1238 * An IDE command has timed out before the expected drive return 1239 * occurred. At this point we attempt to clean up the current 1240 * mess. If the current handler includes an expiry handler then 1241 * we invoke the expiry handler, and providing it is happy the 1242 * work is done. If that fails we apply generic recovery rules 1243 * invoking the handler and checking the drive DMA status. We 1244 * have an excessively incestuous relationship with the DMA 1245 * logic that wants cleaning up. 1246 */ 1247 1248void ide_timer_expiry (unsigned long data) 1249{ 1250 ide_hwgroup_t *hwgroup = (ide_hwgroup_t *) data; 1251 ide_handler_t *handler; 1252 ide_expiry_t *expiry; 1253 unsigned long flags; 1254 unsigned long wait = -1; 1255 1256 spin_lock_irqsave(&ide_lock, flags); 1257 1258 if (((handler = hwgroup->handler) == NULL) || 1259 (hwgroup->req_gen != hwgroup->req_gen_timer)) { 1260 /* 1261 * Either a marginal timeout occurred 1262 * (got the interrupt just as timer expired), 1263 * or we were "sleeping" to give other devices a chance. 1264 * Either way, we don't really want to complain about anything. 1265 */ 1266 if (hwgroup->sleeping) { 1267 hwgroup->sleeping = 0; 1268 hwgroup->busy = 0; 1269 } 1270 } else { 1271 ide_drive_t *drive = hwgroup->drive; 1272 if (!drive) { 1273 printk(KERN_ERR "ide_timer_expiry: hwgroup->drive was NULL\n"); 1274 hwgroup->handler = NULL; 1275 } else { 1276 ide_hwif_t *hwif; 1277 ide_startstop_t startstop = ide_stopped; 1278 if (!hwgroup->busy) { 1279 hwgroup->busy = 1; /* paranoia */ 1280 printk(KERN_ERR "%s: ide_timer_expiry: hwgroup->busy was 0 ??\n", drive->name); 1281 } 1282 if ((expiry = hwgroup->expiry) != NULL) { 1283 /* continue */ 1284 if ((wait = expiry(drive)) > 0) { 1285 /* reset timer */ 1286 hwgroup->timer.expires = jiffies + wait; 1287 hwgroup->req_gen_timer = hwgroup->req_gen; 1288 add_timer(&hwgroup->timer); 1289 spin_unlock_irqrestore(&ide_lock, flags); 1290 return; 1291 } 1292 } 1293 hwgroup->handler = NULL; 1294 /* 1295 * We need to simulate a real interrupt when invoking 1296 * the handler() function, which means we need to 1297 * globally mask the specific IRQ: 1298 */ 1299 spin_unlock(&ide_lock); 1300 hwif = HWIF(drive); 1301 /* disable_irq_nosync ?? */ 1302 disable_irq(hwif->irq); 1303 /* local CPU only, 1304 * as if we were handling an interrupt */ 1305 local_irq_disable(); 1306 if (hwgroup->polling) { 1307 startstop = handler(drive); 1308 } else if (drive_is_ready(drive)) { 1309 if (drive->waiting_for_dma) 1310 hwif->dma_ops->dma_lost_irq(drive); 1311 (void)ide_ack_intr(hwif); 1312 printk(KERN_WARNING "%s: lost interrupt\n", drive->name); 1313 startstop = handler(drive); 1314 } else { 1315 if (drive->waiting_for_dma) { 1316 startstop = ide_dma_timeout_retry(drive, wait); 1317 } else 1318 startstop = 1319 ide_error(drive, "irq timeout", 1320 ide_read_status(drive)); 1321 } 1322 drive->service_time = jiffies - drive->service_start; 1323 spin_lock_irq(&ide_lock); 1324 enable_irq(hwif->irq); 1325 if (startstop == ide_stopped) 1326 hwgroup->busy = 0; 1327 } 1328 } 1329 ide_do_request(hwgroup, IDE_NO_IRQ); 1330 spin_unlock_irqrestore(&ide_lock, flags); 1331} 1332 1333/** 1334 * unexpected_intr - handle an unexpected IDE interrupt 1335 * @irq: interrupt line 1336 * @hwgroup: hwgroup being processed 1337 * 1338 * There's nothing really useful we can do with an unexpected interrupt, 1339 * other than reading the status register (to clear it), and logging it. 1340 * There should be no way that an irq can happen before we're ready for it, 1341 * so we needn't worry much about losing an "important" interrupt here. 1342 * 1343 * On laptops (and "green" PCs), an unexpected interrupt occurs whenever 1344 * the drive enters "idle", "standby", or "sleep" mode, so if the status 1345 * looks "good", we just ignore the interrupt completely. 1346 * 1347 * This routine assumes __cli() is in effect when called. 1348 * 1349 * If an unexpected interrupt happens on irq15 while we are handling irq14 1350 * and if the two interfaces are "serialized" (CMD640), then it looks like 1351 * we could screw up by interfering with a new request being set up for 1352 * irq15. 1353 * 1354 * In reality, this is a non-issue. The new command is not sent unless 1355 * the drive is ready to accept one, in which case we know the drive is 1356 * not trying to interrupt us. And ide_set_handler() is always invoked 1357 * before completing the issuance of any new drive command, so we will not 1358 * be accidentally invoked as a result of any valid command completion 1359 * interrupt. 1360 * 1361 * Note that we must walk the entire hwgroup here. We know which hwif 1362 * is doing the current command, but we don't know which hwif burped 1363 * mysteriously. 1364 */ 1365 1366static void unexpected_intr (int irq, ide_hwgroup_t *hwgroup) 1367{ 1368 u8 stat; 1369 ide_hwif_t *hwif = hwgroup->hwif; 1370 1371 /* 1372 * handle the unexpected interrupt 1373 */ 1374 do { 1375 if (hwif->irq == irq) { 1376 stat = hwif->INB(hwif->io_ports.status_addr); 1377 if (!OK_STAT(stat, READY_STAT, BAD_STAT)) { 1378 /* Try to not flood the console with msgs */ 1379 static unsigned long last_msgtime, count; 1380 ++count; 1381 if (time_after(jiffies, last_msgtime + HZ)) { 1382 last_msgtime = jiffies; 1383 printk(KERN_ERR "%s%s: unexpected interrupt, " 1384 "status=0x%02x, count=%ld\n", 1385 hwif->name, 1386 (hwif->next==hwgroup->hwif) ? "" : "(?)", stat, count); 1387 } 1388 } 1389 } 1390 } while ((hwif = hwif->next) != hwgroup->hwif); 1391} 1392 1393/** 1394 * ide_intr - default IDE interrupt handler 1395 * @irq: interrupt number 1396 * @dev_id: hwif group 1397 * @regs: unused weirdness from the kernel irq layer 1398 * 1399 * This is the default IRQ handler for the IDE layer. You should 1400 * not need to override it. If you do be aware it is subtle in 1401 * places 1402 * 1403 * hwgroup->hwif is the interface in the group currently performing 1404 * a command. hwgroup->drive is the drive and hwgroup->handler is 1405 * the IRQ handler to call. As we issue a command the handlers 1406 * step through multiple states, reassigning the handler to the 1407 * next step in the process. Unlike a smart SCSI controller IDE 1408 * expects the main processor to sequence the various transfer 1409 * stages. We also manage a poll timer to catch up with most 1410 * timeout situations. There are still a few where the handlers 1411 * don't ever decide to give up. 1412 * 1413 * The handler eventually returns ide_stopped to indicate the 1414 * request completed. At this point we issue the next request 1415 * on the hwgroup and the process begins again. 1416 */ 1417 1418irqreturn_t ide_intr (int irq, void *dev_id) 1419{ 1420 unsigned long flags; 1421 ide_hwgroup_t *hwgroup = (ide_hwgroup_t *)dev_id; 1422 ide_hwif_t *hwif; 1423 ide_drive_t *drive; 1424 ide_handler_t *handler; 1425 ide_startstop_t startstop; 1426 1427 spin_lock_irqsave(&ide_lock, flags); 1428 hwif = hwgroup->hwif; 1429 1430 if (!ide_ack_intr(hwif)) { 1431 spin_unlock_irqrestore(&ide_lock, flags); 1432 return IRQ_NONE; 1433 } 1434 1435 if ((handler = hwgroup->handler) == NULL || hwgroup->polling) { 1436 /* 1437 * Not expecting an interrupt from this drive. 1438 * That means this could be: 1439 * (1) an interrupt from another PCI device 1440 * sharing the same PCI INT# as us. 1441 * or (2) a drive just entered sleep or standby mode, 1442 * and is interrupting to let us know. 1443 * or (3) a spurious interrupt of unknown origin. 1444 * 1445 * For PCI, we cannot tell the difference, 1446 * so in that case we just ignore it and hope it goes away. 1447 * 1448 * FIXME: unexpected_intr should be hwif-> then we can 1449 * remove all the ifdef PCI crap 1450 */ 1451#ifdef CONFIG_BLK_DEV_IDEPCI 1452 if (hwif->chipset != ide_pci) 1453#endif /* CONFIG_BLK_DEV_IDEPCI */ 1454 { 1455 /* 1456 * Probably not a shared PCI interrupt, 1457 * so we can safely try to do something about it: 1458 */ 1459 unexpected_intr(irq, hwgroup); 1460#ifdef CONFIG_BLK_DEV_IDEPCI 1461 } else { 1462 /* 1463 * Whack the status register, just in case 1464 * we have a leftover pending IRQ. 1465 */ 1466 (void) hwif->INB(hwif->io_ports.status_addr); 1467#endif /* CONFIG_BLK_DEV_IDEPCI */ 1468 } 1469 spin_unlock_irqrestore(&ide_lock, flags); 1470 return IRQ_NONE; 1471 } 1472 drive = hwgroup->drive; 1473 if (!drive) { 1474 /* 1475 * This should NEVER happen, and there isn't much 1476 * we could do about it here. 1477 * 1478 * [Note - this can occur if the drive is hot unplugged] 1479 */ 1480 spin_unlock_irqrestore(&ide_lock, flags); 1481 return IRQ_HANDLED; 1482 } 1483 if (!drive_is_ready(drive)) { 1484 /* 1485 * This happens regularly when we share a PCI IRQ with 1486 * another device. Unfortunately, it can also happen 1487 * with some buggy drives that trigger the IRQ before 1488 * their status register is up to date. Hopefully we have 1489 * enough advance overhead that the latter isn't a problem. 1490 */ 1491 spin_unlock_irqrestore(&ide_lock, flags); 1492 return IRQ_NONE; 1493 } 1494 if (!hwgroup->busy) { 1495 hwgroup->busy = 1; /* paranoia */ 1496 printk(KERN_ERR "%s: ide_intr: hwgroup->busy was 0 ??\n", drive->name); 1497 } 1498 hwgroup->handler = NULL; 1499 hwgroup->req_gen++; 1500 del_timer(&hwgroup->timer); 1501 spin_unlock(&ide_lock); 1502 1503 /* Some controllers might set DMA INTR no matter DMA or PIO; 1504 * bmdma status might need to be cleared even for 1505 * PIO interrupts to prevent spurious/lost irq. 1506 */ 1507 if (hwif->ide_dma_clear_irq && !(drive->waiting_for_dma)) 1508 /* ide_dma_end() needs bmdma status for error checking. 1509 * So, skip clearing bmdma status here and leave it 1510 * to ide_dma_end() if this is dma interrupt. 1511 */ 1512 hwif->ide_dma_clear_irq(drive); 1513 1514 if (drive->unmask) 1515 local_irq_enable_in_hardirq(); 1516 /* service this interrupt, may set handler for next interrupt */ 1517 startstop = handler(drive); 1518 spin_lock_irq(&ide_lock); 1519 1520 /* 1521 * Note that handler() may have set things up for another 1522 * interrupt to occur soon, but it cannot happen until 1523 * we exit from this routine, because it will be the 1524 * same irq as is currently being serviced here, and Linux 1525 * won't allow another of the same (on any CPU) until we return. 1526 */ 1527 drive->service_time = jiffies - drive->service_start; 1528 if (startstop == ide_stopped) { 1529 if (hwgroup->handler == NULL) { /* paranoia */ 1530 hwgroup->busy = 0; 1531 ide_do_request(hwgroup, hwif->irq); 1532 } else { 1533 printk(KERN_ERR "%s: ide_intr: huh? expected NULL handler " 1534 "on exit\n", drive->name); 1535 } 1536 } 1537 spin_unlock_irqrestore(&ide_lock, flags); 1538 return IRQ_HANDLED; 1539} 1540 1541/** 1542 * ide_init_drive_cmd - initialize a drive command request 1543 * @rq: request object 1544 * 1545 * Initialize a request before we fill it in and send it down to 1546 * ide_do_drive_cmd. Commands must be set up by this function. Right 1547 * now it doesn't do a lot, but if that changes abusers will have a 1548 * nasty surprise. 1549 */ 1550 1551void ide_init_drive_cmd (struct request *rq) 1552{ 1553 memset(rq, 0, sizeof(*rq)); 1554 rq->ref_count = 1; 1555} 1556 1557EXPORT_SYMBOL(ide_init_drive_cmd); 1558 1559/** 1560 * ide_do_drive_cmd - issue IDE special command 1561 * @drive: device to issue command 1562 * @rq: request to issue 1563 * @action: action for processing 1564 * 1565 * This function issues a special IDE device request 1566 * onto the request queue. 1567 * 1568 * If action is ide_wait, then the rq is queued at the end of the 1569 * request queue, and the function sleeps until it has been processed. 1570 * This is for use when invoked from an ioctl handler. 1571 * 1572 * If action is ide_preempt, then the rq is queued at the head of 1573 * the request queue, displacing the currently-being-processed 1574 * request and this function returns immediately without waiting 1575 * for the new rq to be completed. This is VERY DANGEROUS, and is 1576 * intended for careful use by the ATAPI tape/cdrom driver code. 1577 * 1578 * If action is ide_end, then the rq is queued at the end of the 1579 * request queue, and the function returns immediately without waiting 1580 * for the new rq to be completed. This is again intended for careful 1581 * use by the ATAPI tape/cdrom driver code. 1582 */ 1583 1584int ide_do_drive_cmd (ide_drive_t *drive, struct request *rq, ide_action_t action) 1585{ 1586 unsigned long flags; 1587 ide_hwgroup_t *hwgroup = HWGROUP(drive); 1588 DECLARE_COMPLETION_ONSTACK(wait); 1589 int where = ELEVATOR_INSERT_BACK, err; 1590 int must_wait = (action == ide_wait || action == ide_head_wait); 1591 1592 rq->errors = 0; 1593 1594 /* 1595 * we need to hold an extra reference to request for safe inspection 1596 * after completion 1597 */ 1598 if (must_wait) { 1599 rq->ref_count++; 1600 rq->end_io_data = &wait; 1601 rq->end_io = blk_end_sync_rq; 1602 } 1603 1604 spin_lock_irqsave(&ide_lock, flags); 1605 if (action == ide_preempt) 1606 hwgroup->rq = NULL; 1607 if (action == ide_preempt || action == ide_head_wait) { 1608 where = ELEVATOR_INSERT_FRONT; 1609 rq->cmd_flags |= REQ_PREEMPT; 1610 } 1611 __elv_add_request(drive->queue, rq, where, 0); 1612 ide_do_request(hwgroup, IDE_NO_IRQ); 1613 spin_unlock_irqrestore(&ide_lock, flags); 1614 1615 err = 0; 1616 if (must_wait) { 1617 wait_for_completion(&wait); 1618 if (rq->errors) 1619 err = -EIO; 1620 1621 blk_put_request(rq); 1622 } 1623 1624 return err; 1625} 1626 1627EXPORT_SYMBOL(ide_do_drive_cmd); 1628 1629void ide_pktcmd_tf_load(ide_drive_t *drive, u32 tf_flags, u16 bcount, u8 dma) 1630{ 1631 ide_task_t task; 1632 1633 memset(&task, 0, sizeof(task)); 1634 task.tf_flags = IDE_TFLAG_OUT_LBAH | IDE_TFLAG_OUT_LBAM | 1635 IDE_TFLAG_OUT_FEATURE | tf_flags; 1636 task.tf.feature = dma; /* Use PIO/DMA */ 1637 task.tf.lbam = bcount & 0xff; 1638 task.tf.lbah = (bcount >> 8) & 0xff; 1639 1640 ide_tf_dump(drive->name, &task.tf); 1641 ide_tf_load(drive, &task); 1642} 1643 1644EXPORT_SYMBOL_GPL(ide_pktcmd_tf_load); 1645