ide-io.c revision da206c9e68cb93fcab43592d46276c02889c1250
1/*
2 *	IDE I/O functions
3 *
4 *	Basic PIO and command management functionality.
5 *
6 * This code was split off from ide.c. See ide.c for history and original
7 * copyrights.
8 *
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2, or (at your option) any
12 * later version.
13 *
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17 * General Public License for more details.
18 *
19 * For the avoidance of doubt the "preferred form" of this code is one which
20 * is in an open non patent encumbered format. Where cryptographic key signing
21 * forms part of the process of creating an executable the information
22 * including keys needed to generate an equivalently functional executable
23 * are deemed to be part of the source code.
24 */
25
26
27#include <linux/config.h>
28#include <linux/module.h>
29#include <linux/types.h>
30#include <linux/string.h>
31#include <linux/kernel.h>
32#include <linux/timer.h>
33#include <linux/mm.h>
34#include <linux/interrupt.h>
35#include <linux/major.h>
36#include <linux/errno.h>
37#include <linux/genhd.h>
38#include <linux/blkpg.h>
39#include <linux/slab.h>
40#include <linux/init.h>
41#include <linux/pci.h>
42#include <linux/delay.h>
43#include <linux/ide.h>
44#include <linux/completion.h>
45#include <linux/reboot.h>
46#include <linux/cdrom.h>
47#include <linux/seq_file.h>
48#include <linux/device.h>
49#include <linux/kmod.h>
50#include <linux/scatterlist.h>
51
52#include <asm/byteorder.h>
53#include <asm/irq.h>
54#include <asm/uaccess.h>
55#include <asm/io.h>
56#include <asm/bitops.h>
57
58static int __ide_end_request(ide_drive_t *drive, struct request *rq,
59			     int uptodate, int nr_sectors)
60{
61	int ret = 1;
62
63	BUG_ON(!(rq->flags & REQ_STARTED));
64
65	/*
66	 * if failfast is set on a request, override number of sectors and
67	 * complete the whole request right now
68	 */
69	if (blk_noretry_request(rq) && end_io_error(uptodate))
70		nr_sectors = rq->hard_nr_sectors;
71
72	if (!blk_fs_request(rq) && end_io_error(uptodate) && !rq->errors)
73		rq->errors = -EIO;
74
75	/*
76	 * decide whether to reenable DMA -- 3 is a random magic for now,
77	 * if we DMA timeout more than 3 times, just stay in PIO
78	 */
79	if (drive->state == DMA_PIO_RETRY && drive->retry_pio <= 3) {
80		drive->state = 0;
81		HWGROUP(drive)->hwif->ide_dma_on(drive);
82	}
83
84	if (!end_that_request_first(rq, uptodate, nr_sectors)) {
85		add_disk_randomness(rq->rq_disk);
86		blkdev_dequeue_request(rq);
87		HWGROUP(drive)->rq = NULL;
88		end_that_request_last(rq, uptodate);
89		ret = 0;
90	}
91
92	return ret;
93}
94
95/**
96 *	ide_end_request		-	complete an IDE I/O
97 *	@drive: IDE device for the I/O
98 *	@uptodate:
99 *	@nr_sectors: number of sectors completed
100 *
101 *	This is our end_request wrapper function. We complete the I/O
102 *	update random number input and dequeue the request, which if
103 *	it was tagged may be out of order.
104 */
105
106int ide_end_request (ide_drive_t *drive, int uptodate, int nr_sectors)
107{
108	struct request *rq;
109	unsigned long flags;
110	int ret = 1;
111
112	/*
113	 * room for locking improvements here, the calls below don't
114	 * need the queue lock held at all
115	 */
116	spin_lock_irqsave(&ide_lock, flags);
117	rq = HWGROUP(drive)->rq;
118
119	if (!nr_sectors)
120		nr_sectors = rq->hard_cur_sectors;
121
122	ret = __ide_end_request(drive, rq, uptodate, nr_sectors);
123
124	spin_unlock_irqrestore(&ide_lock, flags);
125	return ret;
126}
127EXPORT_SYMBOL(ide_end_request);
128
129/*
130 * Power Management state machine. This one is rather trivial for now,
131 * we should probably add more, like switching back to PIO on suspend
132 * to help some BIOSes, re-do the door locking on resume, etc...
133 */
134
135enum {
136	ide_pm_flush_cache	= ide_pm_state_start_suspend,
137	idedisk_pm_standby,
138
139	idedisk_pm_idle		= ide_pm_state_start_resume,
140	ide_pm_restore_dma,
141};
142
143static void ide_complete_power_step(ide_drive_t *drive, struct request *rq, u8 stat, u8 error)
144{
145	struct request_pm_state *pm = rq->end_io_data;
146
147	if (drive->media != ide_disk)
148		return;
149
150	switch (pm->pm_step) {
151	case ide_pm_flush_cache:	/* Suspend step 1 (flush cache) complete */
152		if (pm->pm_state == PM_EVENT_FREEZE)
153			pm->pm_step = ide_pm_state_completed;
154		else
155			pm->pm_step = idedisk_pm_standby;
156		break;
157	case idedisk_pm_standby:	/* Suspend step 2 (standby) complete */
158		pm->pm_step = ide_pm_state_completed;
159		break;
160	case idedisk_pm_idle:		/* Resume step 1 (idle) complete */
161		pm->pm_step = ide_pm_restore_dma;
162		break;
163	}
164}
165
166static ide_startstop_t ide_start_power_step(ide_drive_t *drive, struct request *rq)
167{
168	struct request_pm_state *pm = rq->end_io_data;
169	ide_task_t *args = rq->special;
170
171	memset(args, 0, sizeof(*args));
172
173	if (drive->media != ide_disk) {
174		/* skip idedisk_pm_idle for ATAPI devices */
175		if (pm->pm_step == idedisk_pm_idle)
176			pm->pm_step = ide_pm_restore_dma;
177	}
178
179	switch (pm->pm_step) {
180	case ide_pm_flush_cache:	/* Suspend step 1 (flush cache) */
181		if (drive->media != ide_disk)
182			break;
183		/* Not supported? Switch to next step now. */
184		if (!drive->wcache || !ide_id_has_flush_cache(drive->id)) {
185			ide_complete_power_step(drive, rq, 0, 0);
186			return ide_stopped;
187		}
188		if (ide_id_has_flush_cache_ext(drive->id))
189			args->tfRegister[IDE_COMMAND_OFFSET] = WIN_FLUSH_CACHE_EXT;
190		else
191			args->tfRegister[IDE_COMMAND_OFFSET] = WIN_FLUSH_CACHE;
192		args->command_type = IDE_DRIVE_TASK_NO_DATA;
193		args->handler	   = &task_no_data_intr;
194		return do_rw_taskfile(drive, args);
195
196	case idedisk_pm_standby:	/* Suspend step 2 (standby) */
197		args->tfRegister[IDE_COMMAND_OFFSET] = WIN_STANDBYNOW1;
198		args->command_type = IDE_DRIVE_TASK_NO_DATA;
199		args->handler	   = &task_no_data_intr;
200		return do_rw_taskfile(drive, args);
201
202	case idedisk_pm_idle:		/* Resume step 1 (idle) */
203		args->tfRegister[IDE_COMMAND_OFFSET] = WIN_IDLEIMMEDIATE;
204		args->command_type = IDE_DRIVE_TASK_NO_DATA;
205		args->handler = task_no_data_intr;
206		return do_rw_taskfile(drive, args);
207
208	case ide_pm_restore_dma:	/* Resume step 2 (restore DMA) */
209		/*
210		 * Right now, all we do is call hwif->ide_dma_check(drive),
211		 * we could be smarter and check for current xfer_speed
212		 * in struct drive etc...
213		 */
214		if ((drive->id->capability & 1) == 0)
215			break;
216		if (drive->hwif->ide_dma_check == NULL)
217			break;
218		drive->hwif->ide_dma_check(drive);
219		break;
220	}
221	pm->pm_step = ide_pm_state_completed;
222	return ide_stopped;
223}
224
225/**
226 *	ide_end_dequeued_request	-	complete an IDE I/O
227 *	@drive: IDE device for the I/O
228 *	@uptodate:
229 *	@nr_sectors: number of sectors completed
230 *
231 *	Complete an I/O that is no longer on the request queue. This
232 *	typically occurs when we pull the request and issue a REQUEST_SENSE.
233 *	We must still finish the old request but we must not tamper with the
234 *	queue in the meantime.
235 *
236 *	NOTE: This path does not handle barrier, but barrier is not supported
237 *	on ide-cd anyway.
238 */
239
240int ide_end_dequeued_request(ide_drive_t *drive, struct request *rq,
241			     int uptodate, int nr_sectors)
242{
243	unsigned long flags;
244	int ret = 1;
245
246	spin_lock_irqsave(&ide_lock, flags);
247
248	BUG_ON(!(rq->flags & REQ_STARTED));
249
250	/*
251	 * if failfast is set on a request, override number of sectors and
252	 * complete the whole request right now
253	 */
254	if (blk_noretry_request(rq) && end_io_error(uptodate))
255		nr_sectors = rq->hard_nr_sectors;
256
257	if (!blk_fs_request(rq) && end_io_error(uptodate) && !rq->errors)
258		rq->errors = -EIO;
259
260	/*
261	 * decide whether to reenable DMA -- 3 is a random magic for now,
262	 * if we DMA timeout more than 3 times, just stay in PIO
263	 */
264	if (drive->state == DMA_PIO_RETRY && drive->retry_pio <= 3) {
265		drive->state = 0;
266		HWGROUP(drive)->hwif->ide_dma_on(drive);
267	}
268
269	if (!end_that_request_first(rq, uptodate, nr_sectors)) {
270		add_disk_randomness(rq->rq_disk);
271		if (blk_rq_tagged(rq))
272			blk_queue_end_tag(drive->queue, rq);
273		end_that_request_last(rq, uptodate);
274		ret = 0;
275	}
276	spin_unlock_irqrestore(&ide_lock, flags);
277	return ret;
278}
279EXPORT_SYMBOL_GPL(ide_end_dequeued_request);
280
281
282/**
283 *	ide_complete_pm_request - end the current Power Management request
284 *	@drive: target drive
285 *	@rq: request
286 *
287 *	This function cleans up the current PM request and stops the queue
288 *	if necessary.
289 */
290static void ide_complete_pm_request (ide_drive_t *drive, struct request *rq)
291{
292	unsigned long flags;
293
294#ifdef DEBUG_PM
295	printk("%s: completing PM request, %s\n", drive->name,
296	       blk_pm_suspend_request(rq) ? "suspend" : "resume");
297#endif
298	spin_lock_irqsave(&ide_lock, flags);
299	if (blk_pm_suspend_request(rq)) {
300		blk_stop_queue(drive->queue);
301	} else {
302		drive->blocked = 0;
303		blk_start_queue(drive->queue);
304	}
305	blkdev_dequeue_request(rq);
306	HWGROUP(drive)->rq = NULL;
307	end_that_request_last(rq, 1);
308	spin_unlock_irqrestore(&ide_lock, flags);
309}
310
311/*
312 * FIXME: probably move this somewhere else, name is bad too :)
313 */
314u64 ide_get_error_location(ide_drive_t *drive, char *args)
315{
316	u32 high, low;
317	u8 hcyl, lcyl, sect;
318	u64 sector;
319
320	high = 0;
321	hcyl = args[5];
322	lcyl = args[4];
323	sect = args[3];
324
325	if (ide_id_has_flush_cache_ext(drive->id)) {
326		low = (hcyl << 16) | (lcyl << 8) | sect;
327		HWIF(drive)->OUTB(drive->ctl|0x80, IDE_CONTROL_REG);
328		high = ide_read_24(drive);
329	} else {
330		u8 cur = HWIF(drive)->INB(IDE_SELECT_REG);
331		if (cur & 0x40) {
332			high = cur & 0xf;
333			low = (hcyl << 16) | (lcyl << 8) | sect;
334		} else {
335			low = hcyl * drive->head * drive->sect;
336			low += lcyl * drive->sect;
337			low += sect - 1;
338		}
339	}
340
341	sector = ((u64) high << 24) | low;
342	return sector;
343}
344EXPORT_SYMBOL(ide_get_error_location);
345
346/**
347 *	ide_end_drive_cmd	-	end an explicit drive command
348 *	@drive: command
349 *	@stat: status bits
350 *	@err: error bits
351 *
352 *	Clean up after success/failure of an explicit drive command.
353 *	These get thrown onto the queue so they are synchronized with
354 *	real I/O operations on the drive.
355 *
356 *	In LBA48 mode we have to read the register set twice to get
357 *	all the extra information out.
358 */
359
360void ide_end_drive_cmd (ide_drive_t *drive, u8 stat, u8 err)
361{
362	ide_hwif_t *hwif = HWIF(drive);
363	unsigned long flags;
364	struct request *rq;
365
366	spin_lock_irqsave(&ide_lock, flags);
367	rq = HWGROUP(drive)->rq;
368	spin_unlock_irqrestore(&ide_lock, flags);
369
370	if (rq->flags & REQ_DRIVE_CMD) {
371		u8 *args = (u8 *) rq->buffer;
372		if (rq->errors == 0)
373			rq->errors = !OK_STAT(stat,READY_STAT,BAD_STAT);
374
375		if (args) {
376			args[0] = stat;
377			args[1] = err;
378			args[2] = hwif->INB(IDE_NSECTOR_REG);
379		}
380	} else if (rq->flags & REQ_DRIVE_TASK) {
381		u8 *args = (u8 *) rq->buffer;
382		if (rq->errors == 0)
383			rq->errors = !OK_STAT(stat,READY_STAT,BAD_STAT);
384
385		if (args) {
386			args[0] = stat;
387			args[1] = err;
388			args[2] = hwif->INB(IDE_NSECTOR_REG);
389			args[3] = hwif->INB(IDE_SECTOR_REG);
390			args[4] = hwif->INB(IDE_LCYL_REG);
391			args[5] = hwif->INB(IDE_HCYL_REG);
392			args[6] = hwif->INB(IDE_SELECT_REG);
393		}
394	} else if (rq->flags & REQ_DRIVE_TASKFILE) {
395		ide_task_t *args = (ide_task_t *) rq->special;
396		if (rq->errors == 0)
397			rq->errors = !OK_STAT(stat,READY_STAT,BAD_STAT);
398
399		if (args) {
400			if (args->tf_in_flags.b.data) {
401				u16 data				= hwif->INW(IDE_DATA_REG);
402				args->tfRegister[IDE_DATA_OFFSET]	= (data) & 0xFF;
403				args->hobRegister[IDE_DATA_OFFSET]	= (data >> 8) & 0xFF;
404			}
405			args->tfRegister[IDE_ERROR_OFFSET]   = err;
406			/* be sure we're looking at the low order bits */
407			hwif->OUTB(drive->ctl & ~0x80, IDE_CONTROL_REG);
408			args->tfRegister[IDE_NSECTOR_OFFSET] = hwif->INB(IDE_NSECTOR_REG);
409			args->tfRegister[IDE_SECTOR_OFFSET]  = hwif->INB(IDE_SECTOR_REG);
410			args->tfRegister[IDE_LCYL_OFFSET]    = hwif->INB(IDE_LCYL_REG);
411			args->tfRegister[IDE_HCYL_OFFSET]    = hwif->INB(IDE_HCYL_REG);
412			args->tfRegister[IDE_SELECT_OFFSET]  = hwif->INB(IDE_SELECT_REG);
413			args->tfRegister[IDE_STATUS_OFFSET]  = stat;
414
415			if (drive->addressing == 1) {
416				hwif->OUTB(drive->ctl|0x80, IDE_CONTROL_REG);
417				args->hobRegister[IDE_FEATURE_OFFSET]	= hwif->INB(IDE_FEATURE_REG);
418				args->hobRegister[IDE_NSECTOR_OFFSET]	= hwif->INB(IDE_NSECTOR_REG);
419				args->hobRegister[IDE_SECTOR_OFFSET]	= hwif->INB(IDE_SECTOR_REG);
420				args->hobRegister[IDE_LCYL_OFFSET]	= hwif->INB(IDE_LCYL_REG);
421				args->hobRegister[IDE_HCYL_OFFSET]	= hwif->INB(IDE_HCYL_REG);
422			}
423		}
424	} else if (blk_pm_request(rq)) {
425		struct request_pm_state *pm = rq->end_io_data;
426#ifdef DEBUG_PM
427		printk("%s: complete_power_step(step: %d, stat: %x, err: %x)\n",
428			drive->name, rq->pm->pm_step, stat, err);
429#endif
430		ide_complete_power_step(drive, rq, stat, err);
431		if (pm->pm_step == ide_pm_state_completed)
432			ide_complete_pm_request(drive, rq);
433		return;
434	}
435
436	spin_lock_irqsave(&ide_lock, flags);
437	blkdev_dequeue_request(rq);
438	HWGROUP(drive)->rq = NULL;
439	rq->errors = err;
440	end_that_request_last(rq, !rq->errors);
441	spin_unlock_irqrestore(&ide_lock, flags);
442}
443
444EXPORT_SYMBOL(ide_end_drive_cmd);
445
446/**
447 *	try_to_flush_leftover_data	-	flush junk
448 *	@drive: drive to flush
449 *
450 *	try_to_flush_leftover_data() is invoked in response to a drive
451 *	unexpectedly having its DRQ_STAT bit set.  As an alternative to
452 *	resetting the drive, this routine tries to clear the condition
453 *	by read a sector's worth of data from the drive.  Of course,
454 *	this may not help if the drive is *waiting* for data from *us*.
455 */
456static void try_to_flush_leftover_data (ide_drive_t *drive)
457{
458	int i = (drive->mult_count ? drive->mult_count : 1) * SECTOR_WORDS;
459
460	if (drive->media != ide_disk)
461		return;
462	while (i > 0) {
463		u32 buffer[16];
464		u32 wcount = (i > 16) ? 16 : i;
465
466		i -= wcount;
467		HWIF(drive)->ata_input_data(drive, buffer, wcount);
468	}
469}
470
471static void ide_kill_rq(ide_drive_t *drive, struct request *rq)
472{
473	if (rq->rq_disk) {
474		ide_driver_t *drv;
475
476		drv = *(ide_driver_t **)rq->rq_disk->private_data;
477		drv->end_request(drive, 0, 0);
478	} else
479		ide_end_request(drive, 0, 0);
480}
481
482static ide_startstop_t ide_ata_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
483{
484	ide_hwif_t *hwif = drive->hwif;
485
486	if (stat & BUSY_STAT || ((stat & WRERR_STAT) && !drive->nowerr)) {
487		/* other bits are useless when BUSY */
488		rq->errors |= ERROR_RESET;
489	} else if (stat & ERR_STAT) {
490		/* err has different meaning on cdrom and tape */
491		if (err == ABRT_ERR) {
492			if (drive->select.b.lba &&
493			    /* some newer drives don't support WIN_SPECIFY */
494			    hwif->INB(IDE_COMMAND_REG) == WIN_SPECIFY)
495				return ide_stopped;
496		} else if ((err & BAD_CRC) == BAD_CRC) {
497			/* UDMA crc error, just retry the operation */
498			drive->crc_count++;
499		} else if (err & (BBD_ERR | ECC_ERR)) {
500			/* retries won't help these */
501			rq->errors = ERROR_MAX;
502		} else if (err & TRK0_ERR) {
503			/* help it find track zero */
504			rq->errors |= ERROR_RECAL;
505		}
506	}
507
508	if ((stat & DRQ_STAT) && rq_data_dir(rq) == READ)
509		try_to_flush_leftover_data(drive);
510
511	if (hwif->INB(IDE_STATUS_REG) & (BUSY_STAT|DRQ_STAT))
512		/* force an abort */
513		hwif->OUTB(WIN_IDLEIMMEDIATE, IDE_COMMAND_REG);
514
515	if (rq->errors >= ERROR_MAX || blk_noretry_request(rq))
516		ide_kill_rq(drive, rq);
517	else {
518		if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
519			++rq->errors;
520			return ide_do_reset(drive);
521		}
522		if ((rq->errors & ERROR_RECAL) == ERROR_RECAL)
523			drive->special.b.recalibrate = 1;
524		++rq->errors;
525	}
526	return ide_stopped;
527}
528
529static ide_startstop_t ide_atapi_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
530{
531	ide_hwif_t *hwif = drive->hwif;
532
533	if (stat & BUSY_STAT || ((stat & WRERR_STAT) && !drive->nowerr)) {
534		/* other bits are useless when BUSY */
535		rq->errors |= ERROR_RESET;
536	} else {
537		/* add decoding error stuff */
538	}
539
540	if (hwif->INB(IDE_STATUS_REG) & (BUSY_STAT|DRQ_STAT))
541		/* force an abort */
542		hwif->OUTB(WIN_IDLEIMMEDIATE, IDE_COMMAND_REG);
543
544	if (rq->errors >= ERROR_MAX) {
545		ide_kill_rq(drive, rq);
546	} else {
547		if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
548			++rq->errors;
549			return ide_do_reset(drive);
550		}
551		++rq->errors;
552	}
553
554	return ide_stopped;
555}
556
557ide_startstop_t
558__ide_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
559{
560	if (drive->media == ide_disk)
561		return ide_ata_error(drive, rq, stat, err);
562	return ide_atapi_error(drive, rq, stat, err);
563}
564
565EXPORT_SYMBOL_GPL(__ide_error);
566
567/**
568 *	ide_error	-	handle an error on the IDE
569 *	@drive: drive the error occurred on
570 *	@msg: message to report
571 *	@stat: status bits
572 *
573 *	ide_error() takes action based on the error returned by the drive.
574 *	For normal I/O that may well include retries. We deal with
575 *	both new-style (taskfile) and old style command handling here.
576 *	In the case of taskfile command handling there is work left to
577 *	do
578 */
579
580ide_startstop_t ide_error (ide_drive_t *drive, const char *msg, u8 stat)
581{
582	struct request *rq;
583	u8 err;
584
585	err = ide_dump_status(drive, msg, stat);
586
587	if ((rq = HWGROUP(drive)->rq) == NULL)
588		return ide_stopped;
589
590	/* retry only "normal" I/O: */
591	if (rq->flags & (REQ_DRIVE_CMD | REQ_DRIVE_TASK | REQ_DRIVE_TASKFILE)) {
592		rq->errors = 1;
593		ide_end_drive_cmd(drive, stat, err);
594		return ide_stopped;
595	}
596
597	if (rq->rq_disk) {
598		ide_driver_t *drv;
599
600		drv = *(ide_driver_t **)rq->rq_disk->private_data;
601		return drv->error(drive, rq, stat, err);
602	} else
603		return __ide_error(drive, rq, stat, err);
604}
605
606EXPORT_SYMBOL_GPL(ide_error);
607
608ide_startstop_t __ide_abort(ide_drive_t *drive, struct request *rq)
609{
610	if (drive->media != ide_disk)
611		rq->errors |= ERROR_RESET;
612
613	ide_kill_rq(drive, rq);
614
615	return ide_stopped;
616}
617
618EXPORT_SYMBOL_GPL(__ide_abort);
619
620/**
621 *	ide_abort	-	abort pending IDE operations
622 *	@drive: drive the error occurred on
623 *	@msg: message to report
624 *
625 *	ide_abort kills and cleans up when we are about to do a
626 *	host initiated reset on active commands. Longer term we
627 *	want handlers to have sensible abort handling themselves
628 *
629 *	This differs fundamentally from ide_error because in
630 *	this case the command is doing just fine when we
631 *	blow it away.
632 */
633
634ide_startstop_t ide_abort(ide_drive_t *drive, const char *msg)
635{
636	struct request *rq;
637
638	if (drive == NULL || (rq = HWGROUP(drive)->rq) == NULL)
639		return ide_stopped;
640
641	/* retry only "normal" I/O: */
642	if (rq->flags & (REQ_DRIVE_CMD | REQ_DRIVE_TASK | REQ_DRIVE_TASKFILE)) {
643		rq->errors = 1;
644		ide_end_drive_cmd(drive, BUSY_STAT, 0);
645		return ide_stopped;
646	}
647
648	if (rq->rq_disk) {
649		ide_driver_t *drv;
650
651		drv = *(ide_driver_t **)rq->rq_disk->private_data;
652		return drv->abort(drive, rq);
653	} else
654		return __ide_abort(drive, rq);
655}
656
657/**
658 *	ide_cmd		-	issue a simple drive command
659 *	@drive: drive the command is for
660 *	@cmd: command byte
661 *	@nsect: sector byte
662 *	@handler: handler for the command completion
663 *
664 *	Issue a simple drive command with interrupts.
665 *	The drive must be selected beforehand.
666 */
667
668static void ide_cmd (ide_drive_t *drive, u8 cmd, u8 nsect,
669		ide_handler_t *handler)
670{
671	ide_hwif_t *hwif = HWIF(drive);
672	if (IDE_CONTROL_REG)
673		hwif->OUTB(drive->ctl,IDE_CONTROL_REG);	/* clear nIEN */
674	SELECT_MASK(drive,0);
675	hwif->OUTB(nsect,IDE_NSECTOR_REG);
676	ide_execute_command(drive, cmd, handler, WAIT_CMD, NULL);
677}
678
679/**
680 *	drive_cmd_intr		- 	drive command completion interrupt
681 *	@drive: drive the completion interrupt occurred on
682 *
683 *	drive_cmd_intr() is invoked on completion of a special DRIVE_CMD.
684 *	We do any necessary data reading and then wait for the drive to
685 *	go non busy. At that point we may read the error data and complete
686 *	the request
687 */
688
689static ide_startstop_t drive_cmd_intr (ide_drive_t *drive)
690{
691	struct request *rq = HWGROUP(drive)->rq;
692	ide_hwif_t *hwif = HWIF(drive);
693	u8 *args = (u8 *) rq->buffer;
694	u8 stat = hwif->INB(IDE_STATUS_REG);
695	int retries = 10;
696
697	local_irq_enable();
698	if ((stat & DRQ_STAT) && args && args[3]) {
699		u8 io_32bit = drive->io_32bit;
700		drive->io_32bit = 0;
701		hwif->ata_input_data(drive, &args[4], args[3] * SECTOR_WORDS);
702		drive->io_32bit = io_32bit;
703		while (((stat = hwif->INB(IDE_STATUS_REG)) & BUSY_STAT) && retries--)
704			udelay(100);
705	}
706
707	if (!OK_STAT(stat, READY_STAT, BAD_STAT))
708		return ide_error(drive, "drive_cmd", stat);
709		/* calls ide_end_drive_cmd */
710	ide_end_drive_cmd(drive, stat, hwif->INB(IDE_ERROR_REG));
711	return ide_stopped;
712}
713
714static void ide_init_specify_cmd(ide_drive_t *drive, ide_task_t *task)
715{
716	task->tfRegister[IDE_NSECTOR_OFFSET] = drive->sect;
717	task->tfRegister[IDE_SECTOR_OFFSET]  = drive->sect;
718	task->tfRegister[IDE_LCYL_OFFSET]    = drive->cyl;
719	task->tfRegister[IDE_HCYL_OFFSET]    = drive->cyl>>8;
720	task->tfRegister[IDE_SELECT_OFFSET]  = ((drive->head-1)|drive->select.all)&0xBF;
721	task->tfRegister[IDE_COMMAND_OFFSET] = WIN_SPECIFY;
722
723	task->handler = &set_geometry_intr;
724}
725
726static void ide_init_restore_cmd(ide_drive_t *drive, ide_task_t *task)
727{
728	task->tfRegister[IDE_NSECTOR_OFFSET] = drive->sect;
729	task->tfRegister[IDE_COMMAND_OFFSET] = WIN_RESTORE;
730
731	task->handler = &recal_intr;
732}
733
734static void ide_init_setmult_cmd(ide_drive_t *drive, ide_task_t *task)
735{
736	task->tfRegister[IDE_NSECTOR_OFFSET] = drive->mult_req;
737	task->tfRegister[IDE_COMMAND_OFFSET] = WIN_SETMULT;
738
739	task->handler = &set_multmode_intr;
740}
741
742static ide_startstop_t ide_disk_special(ide_drive_t *drive)
743{
744	special_t *s = &drive->special;
745	ide_task_t args;
746
747	memset(&args, 0, sizeof(ide_task_t));
748	args.command_type = IDE_DRIVE_TASK_NO_DATA;
749
750	if (s->b.set_geometry) {
751		s->b.set_geometry = 0;
752		ide_init_specify_cmd(drive, &args);
753	} else if (s->b.recalibrate) {
754		s->b.recalibrate = 0;
755		ide_init_restore_cmd(drive, &args);
756	} else if (s->b.set_multmode) {
757		s->b.set_multmode = 0;
758		if (drive->mult_req > drive->id->max_multsect)
759			drive->mult_req = drive->id->max_multsect;
760		ide_init_setmult_cmd(drive, &args);
761	} else if (s->all) {
762		int special = s->all;
763		s->all = 0;
764		printk(KERN_ERR "%s: bad special flag: 0x%02x\n", drive->name, special);
765		return ide_stopped;
766	}
767
768	do_rw_taskfile(drive, &args);
769
770	return ide_started;
771}
772
773/**
774 *	do_special		-	issue some special commands
775 *	@drive: drive the command is for
776 *
777 *	do_special() is used to issue WIN_SPECIFY, WIN_RESTORE, and WIN_SETMULT
778 *	commands to a drive.  It used to do much more, but has been scaled
779 *	back.
780 */
781
782static ide_startstop_t do_special (ide_drive_t *drive)
783{
784	special_t *s = &drive->special;
785
786#ifdef DEBUG
787	printk("%s: do_special: 0x%02x\n", drive->name, s->all);
788#endif
789	if (s->b.set_tune) {
790		s->b.set_tune = 0;
791		if (HWIF(drive)->tuneproc != NULL)
792			HWIF(drive)->tuneproc(drive, drive->tune_req);
793		return ide_stopped;
794	} else {
795		if (drive->media == ide_disk)
796			return ide_disk_special(drive);
797
798		s->all = 0;
799		drive->mult_req = 0;
800		return ide_stopped;
801	}
802}
803
804void ide_map_sg(ide_drive_t *drive, struct request *rq)
805{
806	ide_hwif_t *hwif = drive->hwif;
807	struct scatterlist *sg = hwif->sg_table;
808
809	if (hwif->sg_mapped)	/* needed by ide-scsi */
810		return;
811
812	if ((rq->flags & REQ_DRIVE_TASKFILE) == 0) {
813		hwif->sg_nents = blk_rq_map_sg(drive->queue, rq, sg);
814	} else {
815		sg_init_one(sg, rq->buffer, rq->nr_sectors * SECTOR_SIZE);
816		hwif->sg_nents = 1;
817	}
818}
819
820EXPORT_SYMBOL_GPL(ide_map_sg);
821
822void ide_init_sg_cmd(ide_drive_t *drive, struct request *rq)
823{
824	ide_hwif_t *hwif = drive->hwif;
825
826	hwif->nsect = hwif->nleft = rq->nr_sectors;
827	hwif->cursg = hwif->cursg_ofs = 0;
828}
829
830EXPORT_SYMBOL_GPL(ide_init_sg_cmd);
831
832/**
833 *	execute_drive_command	-	issue special drive command
834 *	@drive: the drive to issue the command on
835 *	@rq: the request structure holding the command
836 *
837 *	execute_drive_cmd() issues a special drive command,  usually
838 *	initiated by ioctl() from the external hdparm program. The
839 *	command can be a drive command, drive task or taskfile
840 *	operation. Weirdly you can call it with NULL to wait for
841 *	all commands to finish. Don't do this as that is due to change
842 */
843
844static ide_startstop_t execute_drive_cmd (ide_drive_t *drive,
845		struct request *rq)
846{
847	ide_hwif_t *hwif = HWIF(drive);
848	if (rq->flags & REQ_DRIVE_TASKFILE) {
849 		ide_task_t *args = rq->special;
850
851		if (!args)
852			goto done;
853
854		hwif->data_phase = args->data_phase;
855
856		switch (hwif->data_phase) {
857		case TASKFILE_MULTI_OUT:
858		case TASKFILE_OUT:
859		case TASKFILE_MULTI_IN:
860		case TASKFILE_IN:
861			ide_init_sg_cmd(drive, rq);
862			ide_map_sg(drive, rq);
863		default:
864			break;
865		}
866
867		if (args->tf_out_flags.all != 0)
868			return flagged_taskfile(drive, args);
869		return do_rw_taskfile(drive, args);
870	} else if (rq->flags & REQ_DRIVE_TASK) {
871		u8 *args = rq->buffer;
872		u8 sel;
873
874		if (!args)
875			goto done;
876#ifdef DEBUG
877 		printk("%s: DRIVE_TASK_CMD ", drive->name);
878 		printk("cmd=0x%02x ", args[0]);
879 		printk("fr=0x%02x ", args[1]);
880 		printk("ns=0x%02x ", args[2]);
881 		printk("sc=0x%02x ", args[3]);
882 		printk("lcyl=0x%02x ", args[4]);
883 		printk("hcyl=0x%02x ", args[5]);
884 		printk("sel=0x%02x\n", args[6]);
885#endif
886 		hwif->OUTB(args[1], IDE_FEATURE_REG);
887 		hwif->OUTB(args[3], IDE_SECTOR_REG);
888 		hwif->OUTB(args[4], IDE_LCYL_REG);
889 		hwif->OUTB(args[5], IDE_HCYL_REG);
890 		sel = (args[6] & ~0x10);
891 		if (drive->select.b.unit)
892 			sel |= 0x10;
893 		hwif->OUTB(sel, IDE_SELECT_REG);
894 		ide_cmd(drive, args[0], args[2], &drive_cmd_intr);
895 		return ide_started;
896 	} else if (rq->flags & REQ_DRIVE_CMD) {
897 		u8 *args = rq->buffer;
898
899		if (!args)
900			goto done;
901#ifdef DEBUG
902 		printk("%s: DRIVE_CMD ", drive->name);
903 		printk("cmd=0x%02x ", args[0]);
904 		printk("sc=0x%02x ", args[1]);
905 		printk("fr=0x%02x ", args[2]);
906 		printk("xx=0x%02x\n", args[3]);
907#endif
908 		if (args[0] == WIN_SMART) {
909 			hwif->OUTB(0x4f, IDE_LCYL_REG);
910 			hwif->OUTB(0xc2, IDE_HCYL_REG);
911 			hwif->OUTB(args[2],IDE_FEATURE_REG);
912 			hwif->OUTB(args[1],IDE_SECTOR_REG);
913 			ide_cmd(drive, args[0], args[3], &drive_cmd_intr);
914 			return ide_started;
915 		}
916 		hwif->OUTB(args[2],IDE_FEATURE_REG);
917 		ide_cmd(drive, args[0], args[1], &drive_cmd_intr);
918 		return ide_started;
919 	}
920
921done:
922 	/*
923 	 * NULL is actually a valid way of waiting for
924 	 * all current requests to be flushed from the queue.
925 	 */
926#ifdef DEBUG
927 	printk("%s: DRIVE_CMD (null)\n", drive->name);
928#endif
929 	ide_end_drive_cmd(drive,
930			hwif->INB(IDE_STATUS_REG),
931			hwif->INB(IDE_ERROR_REG));
932 	return ide_stopped;
933}
934
935static void ide_check_pm_state(ide_drive_t *drive, struct request *rq)
936{
937	struct request_pm_state *pm = rq->end_io_data;
938
939	if (blk_pm_suspend_request(rq) &&
940	    pm->pm_step == ide_pm_state_start_suspend)
941		/* Mark drive blocked when starting the suspend sequence. */
942		drive->blocked = 1;
943	else if (blk_pm_resume_request(rq) &&
944		 pm->pm_step == ide_pm_state_start_resume) {
945		/*
946		 * The first thing we do on wakeup is to wait for BSY bit to
947		 * go away (with a looong timeout) as a drive on this hwif may
948		 * just be POSTing itself.
949		 * We do that before even selecting as the "other" device on
950		 * the bus may be broken enough to walk on our toes at this
951		 * point.
952		 */
953		int rc;
954#ifdef DEBUG_PM
955		printk("%s: Wakeup request inited, waiting for !BSY...\n", drive->name);
956#endif
957		rc = ide_wait_not_busy(HWIF(drive), 35000);
958		if (rc)
959			printk(KERN_WARNING "%s: bus not ready on wakeup\n", drive->name);
960		SELECT_DRIVE(drive);
961		HWIF(drive)->OUTB(8, HWIF(drive)->io_ports[IDE_CONTROL_OFFSET]);
962		rc = ide_wait_not_busy(HWIF(drive), 100000);
963		if (rc)
964			printk(KERN_WARNING "%s: drive not ready on wakeup\n", drive->name);
965	}
966}
967
968/**
969 *	start_request	-	start of I/O and command issuing for IDE
970 *
971 *	start_request() initiates handling of a new I/O request. It
972 *	accepts commands and I/O (read/write) requests. It also does
973 *	the final remapping for weird stuff like EZDrive. Once
974 *	device mapper can work sector level the EZDrive stuff can go away
975 *
976 *	FIXME: this function needs a rename
977 */
978
979static ide_startstop_t start_request (ide_drive_t *drive, struct request *rq)
980{
981	ide_startstop_t startstop;
982	sector_t block;
983
984	BUG_ON(!(rq->flags & REQ_STARTED));
985
986#ifdef DEBUG
987	printk("%s: start_request: current=0x%08lx\n",
988		HWIF(drive)->name, (unsigned long) rq);
989#endif
990
991	/* bail early if we've exceeded max_failures */
992	if (drive->max_failures && (drive->failures > drive->max_failures)) {
993		goto kill_rq;
994	}
995
996	block    = rq->sector;
997	if (blk_fs_request(rq) &&
998	    (drive->media == ide_disk || drive->media == ide_floppy)) {
999		block += drive->sect0;
1000	}
1001	/* Yecch - this will shift the entire interval,
1002	   possibly killing some innocent following sector */
1003	if (block == 0 && drive->remap_0_to_1 == 1)
1004		block = 1;  /* redirect MBR access to EZ-Drive partn table */
1005
1006	if (blk_pm_request(rq))
1007		ide_check_pm_state(drive, rq);
1008
1009	SELECT_DRIVE(drive);
1010	if (ide_wait_stat(&startstop, drive, drive->ready_stat, BUSY_STAT|DRQ_STAT, WAIT_READY)) {
1011		printk(KERN_ERR "%s: drive not ready for command\n", drive->name);
1012		return startstop;
1013	}
1014	if (!drive->special.all) {
1015		ide_driver_t *drv;
1016
1017		if (rq->flags & (REQ_DRIVE_CMD | REQ_DRIVE_TASK))
1018			return execute_drive_cmd(drive, rq);
1019		else if (rq->flags & REQ_DRIVE_TASKFILE)
1020			return execute_drive_cmd(drive, rq);
1021		else if (blk_pm_request(rq)) {
1022			struct request_pm_state *pm = rq->end_io_data;
1023#ifdef DEBUG_PM
1024			printk("%s: start_power_step(step: %d)\n",
1025				drive->name, rq->pm->pm_step);
1026#endif
1027			startstop = ide_start_power_step(drive, rq);
1028			if (startstop == ide_stopped &&
1029			    pm->pm_step == ide_pm_state_completed)
1030				ide_complete_pm_request(drive, rq);
1031			return startstop;
1032		}
1033
1034		drv = *(ide_driver_t **)rq->rq_disk->private_data;
1035		return drv->do_request(drive, rq, block);
1036	}
1037	return do_special(drive);
1038kill_rq:
1039	ide_kill_rq(drive, rq);
1040	return ide_stopped;
1041}
1042
1043/**
1044 *	ide_stall_queue		-	pause an IDE device
1045 *	@drive: drive to stall
1046 *	@timeout: time to stall for (jiffies)
1047 *
1048 *	ide_stall_queue() can be used by a drive to give excess bandwidth back
1049 *	to the hwgroup by sleeping for timeout jiffies.
1050 */
1051
1052void ide_stall_queue (ide_drive_t *drive, unsigned long timeout)
1053{
1054	if (timeout > WAIT_WORSTCASE)
1055		timeout = WAIT_WORSTCASE;
1056	drive->sleep = timeout + jiffies;
1057	drive->sleeping = 1;
1058}
1059
1060EXPORT_SYMBOL(ide_stall_queue);
1061
1062#define WAKEUP(drive)	((drive)->service_start + 2 * (drive)->service_time)
1063
1064/**
1065 *	choose_drive		-	select a drive to service
1066 *	@hwgroup: hardware group to select on
1067 *
1068 *	choose_drive() selects the next drive which will be serviced.
1069 *	This is necessary because the IDE layer can't issue commands
1070 *	to both drives on the same cable, unlike SCSI.
1071 */
1072
1073static inline ide_drive_t *choose_drive (ide_hwgroup_t *hwgroup)
1074{
1075	ide_drive_t *drive, *best;
1076
1077repeat:
1078	best = NULL;
1079	drive = hwgroup->drive;
1080
1081	/*
1082	 * drive is doing pre-flush, ordered write, post-flush sequence. even
1083	 * though that is 3 requests, it must be seen as a single transaction.
1084	 * we must not preempt this drive until that is complete
1085	 */
1086	if (blk_queue_flushing(drive->queue)) {
1087		/*
1088		 * small race where queue could get replugged during
1089		 * the 3-request flush cycle, just yank the plug since
1090		 * we want it to finish asap
1091		 */
1092		blk_remove_plug(drive->queue);
1093		return drive;
1094	}
1095
1096	do {
1097		if ((!drive->sleeping || time_after_eq(jiffies, drive->sleep))
1098		    && !elv_queue_empty(drive->queue)) {
1099			if (!best
1100			 || (drive->sleeping && (!best->sleeping || time_before(drive->sleep, best->sleep)))
1101			 || (!best->sleeping && time_before(WAKEUP(drive), WAKEUP(best))))
1102			{
1103				if (!blk_queue_plugged(drive->queue))
1104					best = drive;
1105			}
1106		}
1107	} while ((drive = drive->next) != hwgroup->drive);
1108	if (best && best->nice1 && !best->sleeping && best != hwgroup->drive && best->service_time > WAIT_MIN_SLEEP) {
1109		long t = (signed long)(WAKEUP(best) - jiffies);
1110		if (t >= WAIT_MIN_SLEEP) {
1111		/*
1112		 * We *may* have some time to spare, but first let's see if
1113		 * someone can potentially benefit from our nice mood today..
1114		 */
1115			drive = best->next;
1116			do {
1117				if (!drive->sleeping
1118				 && time_before(jiffies - best->service_time, WAKEUP(drive))
1119				 && time_before(WAKEUP(drive), jiffies + t))
1120				{
1121					ide_stall_queue(best, min_t(long, t, 10 * WAIT_MIN_SLEEP));
1122					goto repeat;
1123				}
1124			} while ((drive = drive->next) != best);
1125		}
1126	}
1127	return best;
1128}
1129
1130/*
1131 * Issue a new request to a drive from hwgroup
1132 * Caller must have already done spin_lock_irqsave(&ide_lock, ..);
1133 *
1134 * A hwgroup is a serialized group of IDE interfaces.  Usually there is
1135 * exactly one hwif (interface) per hwgroup, but buggy controllers (eg. CMD640)
1136 * may have both interfaces in a single hwgroup to "serialize" access.
1137 * Or possibly multiple ISA interfaces can share a common IRQ by being grouped
1138 * together into one hwgroup for serialized access.
1139 *
1140 * Note also that several hwgroups can end up sharing a single IRQ,
1141 * possibly along with many other devices.  This is especially common in
1142 * PCI-based systems with off-board IDE controller cards.
1143 *
1144 * The IDE driver uses the single global ide_lock spinlock to protect
1145 * access to the request queues, and to protect the hwgroup->busy flag.
1146 *
1147 * The first thread into the driver for a particular hwgroup sets the
1148 * hwgroup->busy flag to indicate that this hwgroup is now active,
1149 * and then initiates processing of the top request from the request queue.
1150 *
1151 * Other threads attempting entry notice the busy setting, and will simply
1152 * queue their new requests and exit immediately.  Note that hwgroup->busy
1153 * remains set even when the driver is merely awaiting the next interrupt.
1154 * Thus, the meaning is "this hwgroup is busy processing a request".
1155 *
1156 * When processing of a request completes, the completing thread or IRQ-handler
1157 * will start the next request from the queue.  If no more work remains,
1158 * the driver will clear the hwgroup->busy flag and exit.
1159 *
1160 * The ide_lock (spinlock) is used to protect all access to the
1161 * hwgroup->busy flag, but is otherwise not needed for most processing in
1162 * the driver.  This makes the driver much more friendlier to shared IRQs
1163 * than previous designs, while remaining 100% (?) SMP safe and capable.
1164 */
1165static void ide_do_request (ide_hwgroup_t *hwgroup, int masked_irq)
1166{
1167	ide_drive_t	*drive;
1168	ide_hwif_t	*hwif;
1169	struct request	*rq;
1170	ide_startstop_t	startstop;
1171	int             loops = 0;
1172
1173	/* for atari only: POSSIBLY BROKEN HERE(?) */
1174	ide_get_lock(ide_intr, hwgroup);
1175
1176	/* caller must own ide_lock */
1177	BUG_ON(!irqs_disabled());
1178
1179	while (!hwgroup->busy) {
1180		hwgroup->busy = 1;
1181		drive = choose_drive(hwgroup);
1182		if (drive == NULL) {
1183			int sleeping = 0;
1184			unsigned long sleep = 0; /* shut up, gcc */
1185			hwgroup->rq = NULL;
1186			drive = hwgroup->drive;
1187			do {
1188				if (drive->sleeping && (!sleeping || time_before(drive->sleep, sleep))) {
1189					sleeping = 1;
1190					sleep = drive->sleep;
1191				}
1192			} while ((drive = drive->next) != hwgroup->drive);
1193			if (sleeping) {
1194		/*
1195		 * Take a short snooze, and then wake up this hwgroup again.
1196		 * This gives other hwgroups on the same a chance to
1197		 * play fairly with us, just in case there are big differences
1198		 * in relative throughputs.. don't want to hog the cpu too much.
1199		 */
1200				if (time_before(sleep, jiffies + WAIT_MIN_SLEEP))
1201					sleep = jiffies + WAIT_MIN_SLEEP;
1202#if 1
1203				if (timer_pending(&hwgroup->timer))
1204					printk(KERN_CRIT "ide_set_handler: timer already active\n");
1205#endif
1206				/* so that ide_timer_expiry knows what to do */
1207				hwgroup->sleeping = 1;
1208				mod_timer(&hwgroup->timer, sleep);
1209				/* we purposely leave hwgroup->busy==1
1210				 * while sleeping */
1211			} else {
1212				/* Ugly, but how can we sleep for the lock
1213				 * otherwise? perhaps from tq_disk?
1214				 */
1215
1216				/* for atari only */
1217				ide_release_lock();
1218				hwgroup->busy = 0;
1219			}
1220
1221			/* no more work for this hwgroup (for now) */
1222			return;
1223		}
1224	again:
1225		hwif = HWIF(drive);
1226		if (hwgroup->hwif->sharing_irq &&
1227		    hwif != hwgroup->hwif &&
1228		    hwif->io_ports[IDE_CONTROL_OFFSET]) {
1229			/* set nIEN for previous hwif */
1230			SELECT_INTERRUPT(drive);
1231		}
1232		hwgroup->hwif = hwif;
1233		hwgroup->drive = drive;
1234		drive->sleeping = 0;
1235		drive->service_start = jiffies;
1236
1237		if (blk_queue_plugged(drive->queue)) {
1238			printk(KERN_ERR "ide: huh? queue was plugged!\n");
1239			break;
1240		}
1241
1242		/*
1243		 * we know that the queue isn't empty, but this can happen
1244		 * if the q->prep_rq_fn() decides to kill a request
1245		 */
1246		rq = elv_next_request(drive->queue);
1247		if (!rq) {
1248			hwgroup->busy = 0;
1249			break;
1250		}
1251
1252		/*
1253		 * Sanity: don't accept a request that isn't a PM request
1254		 * if we are currently power managed. This is very important as
1255		 * blk_stop_queue() doesn't prevent the elv_next_request()
1256		 * above to return us whatever is in the queue. Since we call
1257		 * ide_do_request() ourselves, we end up taking requests while
1258		 * the queue is blocked...
1259		 *
1260		 * We let requests forced at head of queue with ide-preempt
1261		 * though. I hope that doesn't happen too much, hopefully not
1262		 * unless the subdriver triggers such a thing in its own PM
1263		 * state machine.
1264		 *
1265		 * We count how many times we loop here to make sure we service
1266		 * all drives in the hwgroup without looping for ever
1267		 */
1268		if (drive->blocked && !blk_pm_request(rq) && !(rq->flags & REQ_PREEMPT)) {
1269			drive = drive->next ? drive->next : hwgroup->drive;
1270			if (loops++ < 4 && !blk_queue_plugged(drive->queue))
1271				goto again;
1272			/* We clear busy, there should be no pending ATA command at this point. */
1273			hwgroup->busy = 0;
1274			break;
1275		}
1276
1277		hwgroup->rq = rq;
1278
1279		/*
1280		 * Some systems have trouble with IDE IRQs arriving while
1281		 * the driver is still setting things up.  So, here we disable
1282		 * the IRQ used by this interface while the request is being started.
1283		 * This may look bad at first, but pretty much the same thing
1284		 * happens anyway when any interrupt comes in, IDE or otherwise
1285		 *  -- the kernel masks the IRQ while it is being handled.
1286		 */
1287		if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq)
1288			disable_irq_nosync(hwif->irq);
1289		spin_unlock(&ide_lock);
1290		local_irq_enable();
1291			/* allow other IRQs while we start this request */
1292		startstop = start_request(drive, rq);
1293		spin_lock_irq(&ide_lock);
1294		if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq)
1295			enable_irq(hwif->irq);
1296		if (startstop == ide_stopped)
1297			hwgroup->busy = 0;
1298	}
1299}
1300
1301/*
1302 * Passes the stuff to ide_do_request
1303 */
1304void do_ide_request(request_queue_t *q)
1305{
1306	ide_drive_t *drive = q->queuedata;
1307
1308	ide_do_request(HWGROUP(drive), IDE_NO_IRQ);
1309}
1310
1311/*
1312 * un-busy the hwgroup etc, and clear any pending DMA status. we want to
1313 * retry the current request in pio mode instead of risking tossing it
1314 * all away
1315 */
1316static ide_startstop_t ide_dma_timeout_retry(ide_drive_t *drive, int error)
1317{
1318	ide_hwif_t *hwif = HWIF(drive);
1319	struct request *rq;
1320	ide_startstop_t ret = ide_stopped;
1321
1322	/*
1323	 * end current dma transaction
1324	 */
1325
1326	if (error < 0) {
1327		printk(KERN_WARNING "%s: DMA timeout error\n", drive->name);
1328		(void)HWIF(drive)->ide_dma_end(drive);
1329		ret = ide_error(drive, "dma timeout error",
1330						hwif->INB(IDE_STATUS_REG));
1331	} else {
1332		printk(KERN_WARNING "%s: DMA timeout retry\n", drive->name);
1333		(void) hwif->ide_dma_timeout(drive);
1334	}
1335
1336	/*
1337	 * disable dma for now, but remember that we did so because of
1338	 * a timeout -- we'll reenable after we finish this next request
1339	 * (or rather the first chunk of it) in pio.
1340	 */
1341	drive->retry_pio++;
1342	drive->state = DMA_PIO_RETRY;
1343	(void) hwif->ide_dma_off_quietly(drive);
1344
1345	/*
1346	 * un-busy drive etc (hwgroup->busy is cleared on return) and
1347	 * make sure request is sane
1348	 */
1349	rq = HWGROUP(drive)->rq;
1350	HWGROUP(drive)->rq = NULL;
1351
1352	rq->errors = 0;
1353
1354	if (!rq->bio)
1355		goto out;
1356
1357	rq->sector = rq->bio->bi_sector;
1358	rq->current_nr_sectors = bio_iovec(rq->bio)->bv_len >> 9;
1359	rq->hard_cur_sectors = rq->current_nr_sectors;
1360	rq->buffer = bio_data(rq->bio);
1361out:
1362	return ret;
1363}
1364
1365/**
1366 *	ide_timer_expiry	-	handle lack of an IDE interrupt
1367 *	@data: timer callback magic (hwgroup)
1368 *
1369 *	An IDE command has timed out before the expected drive return
1370 *	occurred. At this point we attempt to clean up the current
1371 *	mess. If the current handler includes an expiry handler then
1372 *	we invoke the expiry handler, and providing it is happy the
1373 *	work is done. If that fails we apply generic recovery rules
1374 *	invoking the handler and checking the drive DMA status. We
1375 *	have an excessively incestuous relationship with the DMA
1376 *	logic that wants cleaning up.
1377 */
1378
1379void ide_timer_expiry (unsigned long data)
1380{
1381	ide_hwgroup_t	*hwgroup = (ide_hwgroup_t *) data;
1382	ide_handler_t	*handler;
1383	ide_expiry_t	*expiry;
1384	unsigned long	flags;
1385	unsigned long	wait = -1;
1386
1387	spin_lock_irqsave(&ide_lock, flags);
1388
1389	if ((handler = hwgroup->handler) == NULL) {
1390		/*
1391		 * Either a marginal timeout occurred
1392		 * (got the interrupt just as timer expired),
1393		 * or we were "sleeping" to give other devices a chance.
1394		 * Either way, we don't really want to complain about anything.
1395		 */
1396		if (hwgroup->sleeping) {
1397			hwgroup->sleeping = 0;
1398			hwgroup->busy = 0;
1399		}
1400	} else {
1401		ide_drive_t *drive = hwgroup->drive;
1402		if (!drive) {
1403			printk(KERN_ERR "ide_timer_expiry: hwgroup->drive was NULL\n");
1404			hwgroup->handler = NULL;
1405		} else {
1406			ide_hwif_t *hwif;
1407			ide_startstop_t startstop = ide_stopped;
1408			if (!hwgroup->busy) {
1409				hwgroup->busy = 1;	/* paranoia */
1410				printk(KERN_ERR "%s: ide_timer_expiry: hwgroup->busy was 0 ??\n", drive->name);
1411			}
1412			if ((expiry = hwgroup->expiry) != NULL) {
1413				/* continue */
1414				if ((wait = expiry(drive)) > 0) {
1415					/* reset timer */
1416					hwgroup->timer.expires  = jiffies + wait;
1417					add_timer(&hwgroup->timer);
1418					spin_unlock_irqrestore(&ide_lock, flags);
1419					return;
1420				}
1421			}
1422			hwgroup->handler = NULL;
1423			/*
1424			 * We need to simulate a real interrupt when invoking
1425			 * the handler() function, which means we need to
1426			 * globally mask the specific IRQ:
1427			 */
1428			spin_unlock(&ide_lock);
1429			hwif  = HWIF(drive);
1430#if DISABLE_IRQ_NOSYNC
1431			disable_irq_nosync(hwif->irq);
1432#else
1433			/* disable_irq_nosync ?? */
1434			disable_irq(hwif->irq);
1435#endif /* DISABLE_IRQ_NOSYNC */
1436			/* local CPU only,
1437			 * as if we were handling an interrupt */
1438			local_irq_disable();
1439			if (hwgroup->polling) {
1440				startstop = handler(drive);
1441			} else if (drive_is_ready(drive)) {
1442				if (drive->waiting_for_dma)
1443					(void) hwgroup->hwif->ide_dma_lostirq(drive);
1444				(void)ide_ack_intr(hwif);
1445				printk(KERN_WARNING "%s: lost interrupt\n", drive->name);
1446				startstop = handler(drive);
1447			} else {
1448				if (drive->waiting_for_dma) {
1449					startstop = ide_dma_timeout_retry(drive, wait);
1450				} else
1451					startstop =
1452					ide_error(drive, "irq timeout", hwif->INB(IDE_STATUS_REG));
1453			}
1454			drive->service_time = jiffies - drive->service_start;
1455			spin_lock_irq(&ide_lock);
1456			enable_irq(hwif->irq);
1457			if (startstop == ide_stopped)
1458				hwgroup->busy = 0;
1459		}
1460	}
1461	ide_do_request(hwgroup, IDE_NO_IRQ);
1462	spin_unlock_irqrestore(&ide_lock, flags);
1463}
1464
1465/**
1466 *	unexpected_intr		-	handle an unexpected IDE interrupt
1467 *	@irq: interrupt line
1468 *	@hwgroup: hwgroup being processed
1469 *
1470 *	There's nothing really useful we can do with an unexpected interrupt,
1471 *	other than reading the status register (to clear it), and logging it.
1472 *	There should be no way that an irq can happen before we're ready for it,
1473 *	so we needn't worry much about losing an "important" interrupt here.
1474 *
1475 *	On laptops (and "green" PCs), an unexpected interrupt occurs whenever
1476 *	the drive enters "idle", "standby", or "sleep" mode, so if the status
1477 *	looks "good", we just ignore the interrupt completely.
1478 *
1479 *	This routine assumes __cli() is in effect when called.
1480 *
1481 *	If an unexpected interrupt happens on irq15 while we are handling irq14
1482 *	and if the two interfaces are "serialized" (CMD640), then it looks like
1483 *	we could screw up by interfering with a new request being set up for
1484 *	irq15.
1485 *
1486 *	In reality, this is a non-issue.  The new command is not sent unless
1487 *	the drive is ready to accept one, in which case we know the drive is
1488 *	not trying to interrupt us.  And ide_set_handler() is always invoked
1489 *	before completing the issuance of any new drive command, so we will not
1490 *	be accidentally invoked as a result of any valid command completion
1491 *	interrupt.
1492 *
1493 *	Note that we must walk the entire hwgroup here. We know which hwif
1494 *	is doing the current command, but we don't know which hwif burped
1495 *	mysteriously.
1496 */
1497
1498static void unexpected_intr (int irq, ide_hwgroup_t *hwgroup)
1499{
1500	u8 stat;
1501	ide_hwif_t *hwif = hwgroup->hwif;
1502
1503	/*
1504	 * handle the unexpected interrupt
1505	 */
1506	do {
1507		if (hwif->irq == irq) {
1508			stat = hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]);
1509			if (!OK_STAT(stat, READY_STAT, BAD_STAT)) {
1510				/* Try to not flood the console with msgs */
1511				static unsigned long last_msgtime, count;
1512				++count;
1513				if (time_after(jiffies, last_msgtime + HZ)) {
1514					last_msgtime = jiffies;
1515					printk(KERN_ERR "%s%s: unexpected interrupt, "
1516						"status=0x%02x, count=%ld\n",
1517						hwif->name,
1518						(hwif->next==hwgroup->hwif) ? "" : "(?)", stat, count);
1519				}
1520			}
1521		}
1522	} while ((hwif = hwif->next) != hwgroup->hwif);
1523}
1524
1525/**
1526 *	ide_intr	-	default IDE interrupt handler
1527 *	@irq: interrupt number
1528 *	@dev_id: hwif group
1529 *	@regs: unused weirdness from the kernel irq layer
1530 *
1531 *	This is the default IRQ handler for the IDE layer. You should
1532 *	not need to override it. If you do be aware it is subtle in
1533 *	places
1534 *
1535 *	hwgroup->hwif is the interface in the group currently performing
1536 *	a command. hwgroup->drive is the drive and hwgroup->handler is
1537 *	the IRQ handler to call. As we issue a command the handlers
1538 *	step through multiple states, reassigning the handler to the
1539 *	next step in the process. Unlike a smart SCSI controller IDE
1540 *	expects the main processor to sequence the various transfer
1541 *	stages. We also manage a poll timer to catch up with most
1542 *	timeout situations. There are still a few where the handlers
1543 *	don't ever decide to give up.
1544 *
1545 *	The handler eventually returns ide_stopped to indicate the
1546 *	request completed. At this point we issue the next request
1547 *	on the hwgroup and the process begins again.
1548 */
1549
1550irqreturn_t ide_intr (int irq, void *dev_id, struct pt_regs *regs)
1551{
1552	unsigned long flags;
1553	ide_hwgroup_t *hwgroup = (ide_hwgroup_t *)dev_id;
1554	ide_hwif_t *hwif;
1555	ide_drive_t *drive;
1556	ide_handler_t *handler;
1557	ide_startstop_t startstop;
1558
1559	spin_lock_irqsave(&ide_lock, flags);
1560	hwif = hwgroup->hwif;
1561
1562	if (!ide_ack_intr(hwif)) {
1563		spin_unlock_irqrestore(&ide_lock, flags);
1564		return IRQ_NONE;
1565	}
1566
1567	if ((handler = hwgroup->handler) == NULL || hwgroup->polling) {
1568		/*
1569		 * Not expecting an interrupt from this drive.
1570		 * That means this could be:
1571		 *	(1) an interrupt from another PCI device
1572		 *	sharing the same PCI INT# as us.
1573		 * or	(2) a drive just entered sleep or standby mode,
1574		 *	and is interrupting to let us know.
1575		 * or	(3) a spurious interrupt of unknown origin.
1576		 *
1577		 * For PCI, we cannot tell the difference,
1578		 * so in that case we just ignore it and hope it goes away.
1579		 *
1580		 * FIXME: unexpected_intr should be hwif-> then we can
1581		 * remove all the ifdef PCI crap
1582		 */
1583#ifdef CONFIG_BLK_DEV_IDEPCI
1584		if (hwif->pci_dev && !hwif->pci_dev->vendor)
1585#endif	/* CONFIG_BLK_DEV_IDEPCI */
1586		{
1587			/*
1588			 * Probably not a shared PCI interrupt,
1589			 * so we can safely try to do something about it:
1590			 */
1591			unexpected_intr(irq, hwgroup);
1592#ifdef CONFIG_BLK_DEV_IDEPCI
1593		} else {
1594			/*
1595			 * Whack the status register, just in case
1596			 * we have a leftover pending IRQ.
1597			 */
1598			(void) hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]);
1599#endif /* CONFIG_BLK_DEV_IDEPCI */
1600		}
1601		spin_unlock_irqrestore(&ide_lock, flags);
1602		return IRQ_NONE;
1603	}
1604	drive = hwgroup->drive;
1605	if (!drive) {
1606		/*
1607		 * This should NEVER happen, and there isn't much
1608		 * we could do about it here.
1609		 *
1610		 * [Note - this can occur if the drive is hot unplugged]
1611		 */
1612		spin_unlock_irqrestore(&ide_lock, flags);
1613		return IRQ_HANDLED;
1614	}
1615	if (!drive_is_ready(drive)) {
1616		/*
1617		 * This happens regularly when we share a PCI IRQ with
1618		 * another device.  Unfortunately, it can also happen
1619		 * with some buggy drives that trigger the IRQ before
1620		 * their status register is up to date.  Hopefully we have
1621		 * enough advance overhead that the latter isn't a problem.
1622		 */
1623		spin_unlock_irqrestore(&ide_lock, flags);
1624		return IRQ_NONE;
1625	}
1626	if (!hwgroup->busy) {
1627		hwgroup->busy = 1;	/* paranoia */
1628		printk(KERN_ERR "%s: ide_intr: hwgroup->busy was 0 ??\n", drive->name);
1629	}
1630	hwgroup->handler = NULL;
1631	del_timer(&hwgroup->timer);
1632	spin_unlock(&ide_lock);
1633
1634	if (drive->unmask)
1635		local_irq_enable();
1636	/* service this interrupt, may set handler for next interrupt */
1637	startstop = handler(drive);
1638	spin_lock_irq(&ide_lock);
1639
1640	/*
1641	 * Note that handler() may have set things up for another
1642	 * interrupt to occur soon, but it cannot happen until
1643	 * we exit from this routine, because it will be the
1644	 * same irq as is currently being serviced here, and Linux
1645	 * won't allow another of the same (on any CPU) until we return.
1646	 */
1647	drive->service_time = jiffies - drive->service_start;
1648	if (startstop == ide_stopped) {
1649		if (hwgroup->handler == NULL) {	/* paranoia */
1650			hwgroup->busy = 0;
1651			ide_do_request(hwgroup, hwif->irq);
1652		} else {
1653			printk(KERN_ERR "%s: ide_intr: huh? expected NULL handler "
1654				"on exit\n", drive->name);
1655		}
1656	}
1657	spin_unlock_irqrestore(&ide_lock, flags);
1658	return IRQ_HANDLED;
1659}
1660
1661/**
1662 *	ide_init_drive_cmd	-	initialize a drive command request
1663 *	@rq: request object
1664 *
1665 *	Initialize a request before we fill it in and send it down to
1666 *	ide_do_drive_cmd. Commands must be set up by this function. Right
1667 *	now it doesn't do a lot, but if that changes abusers will have a
1668 *	nasty surprise.
1669 */
1670
1671void ide_init_drive_cmd (struct request *rq)
1672{
1673	memset(rq, 0, sizeof(*rq));
1674	rq->flags = REQ_DRIVE_CMD;
1675	rq->ref_count = 1;
1676}
1677
1678EXPORT_SYMBOL(ide_init_drive_cmd);
1679
1680/**
1681 *	ide_do_drive_cmd	-	issue IDE special command
1682 *	@drive: device to issue command
1683 *	@rq: request to issue
1684 *	@action: action for processing
1685 *
1686 *	This function issues a special IDE device request
1687 *	onto the request queue.
1688 *
1689 *	If action is ide_wait, then the rq is queued at the end of the
1690 *	request queue, and the function sleeps until it has been processed.
1691 *	This is for use when invoked from an ioctl handler.
1692 *
1693 *	If action is ide_preempt, then the rq is queued at the head of
1694 *	the request queue, displacing the currently-being-processed
1695 *	request and this function returns immediately without waiting
1696 *	for the new rq to be completed.  This is VERY DANGEROUS, and is
1697 *	intended for careful use by the ATAPI tape/cdrom driver code.
1698 *
1699 *	If action is ide_end, then the rq is queued at the end of the
1700 *	request queue, and the function returns immediately without waiting
1701 *	for the new rq to be completed. This is again intended for careful
1702 *	use by the ATAPI tape/cdrom driver code.
1703 */
1704
1705int ide_do_drive_cmd (ide_drive_t *drive, struct request *rq, ide_action_t action)
1706{
1707	unsigned long flags;
1708	ide_hwgroup_t *hwgroup = HWGROUP(drive);
1709	DECLARE_COMPLETION(wait);
1710	int where = ELEVATOR_INSERT_BACK, err;
1711	int must_wait = (action == ide_wait || action == ide_head_wait);
1712
1713	rq->errors = 0;
1714	rq->rq_status = RQ_ACTIVE;
1715
1716	/*
1717	 * we need to hold an extra reference to request for safe inspection
1718	 * after completion
1719	 */
1720	if (must_wait) {
1721		rq->ref_count++;
1722		rq->waiting = &wait;
1723		rq->end_io = blk_end_sync_rq;
1724	}
1725
1726	spin_lock_irqsave(&ide_lock, flags);
1727	if (action == ide_preempt)
1728		hwgroup->rq = NULL;
1729	if (action == ide_preempt || action == ide_head_wait) {
1730		where = ELEVATOR_INSERT_FRONT;
1731		rq->flags |= REQ_PREEMPT;
1732	}
1733	__elv_add_request(drive->queue, rq, where, 0);
1734	ide_do_request(hwgroup, IDE_NO_IRQ);
1735	spin_unlock_irqrestore(&ide_lock, flags);
1736
1737	err = 0;
1738	if (must_wait) {
1739		wait_for_completion(&wait);
1740		rq->waiting = NULL;
1741		if (rq->errors)
1742			err = -EIO;
1743
1744		blk_put_request(rq);
1745	}
1746
1747	return err;
1748}
1749
1750EXPORT_SYMBOL(ide_do_drive_cmd);
1751