ide-io.c revision e3b29f05124b07303088795396ff858811d2acb8
1/*
2 *	IDE I/O functions
3 *
4 *	Basic PIO and command management functionality.
5 *
6 * This code was split off from ide.c. See ide.c for history and original
7 * copyrights.
8 *
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2, or (at your option) any
12 * later version.
13 *
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17 * General Public License for more details.
18 *
19 * For the avoidance of doubt the "preferred form" of this code is one which
20 * is in an open non patent encumbered format. Where cryptographic key signing
21 * forms part of the process of creating an executable the information
22 * including keys needed to generate an equivalently functional executable
23 * are deemed to be part of the source code.
24 */
25
26
27#include <linux/module.h>
28#include <linux/types.h>
29#include <linux/string.h>
30#include <linux/kernel.h>
31#include <linux/timer.h>
32#include <linux/mm.h>
33#include <linux/interrupt.h>
34#include <linux/major.h>
35#include <linux/errno.h>
36#include <linux/genhd.h>
37#include <linux/blkpg.h>
38#include <linux/slab.h>
39#include <linux/init.h>
40#include <linux/pci.h>
41#include <linux/delay.h>
42#include <linux/ide.h>
43#include <linux/completion.h>
44#include <linux/reboot.h>
45#include <linux/cdrom.h>
46#include <linux/seq_file.h>
47#include <linux/device.h>
48#include <linux/kmod.h>
49#include <linux/scatterlist.h>
50#include <linux/bitops.h>
51
52#include <asm/byteorder.h>
53#include <asm/irq.h>
54#include <asm/uaccess.h>
55#include <asm/io.h>
56
57int ide_end_rq(ide_drive_t *drive, struct request *rq, int error,
58	       unsigned int nr_bytes)
59{
60	/*
61	 * decide whether to reenable DMA -- 3 is a random magic for now,
62	 * if we DMA timeout more than 3 times, just stay in PIO
63	 */
64	if ((drive->dev_flags & IDE_DFLAG_DMA_PIO_RETRY) &&
65	    drive->retry_pio <= 3) {
66		drive->dev_flags &= ~IDE_DFLAG_DMA_PIO_RETRY;
67		ide_dma_on(drive);
68	}
69
70	return blk_end_request(rq, error, nr_bytes);
71}
72EXPORT_SYMBOL_GPL(ide_end_rq);
73
74void ide_complete_cmd(ide_drive_t *drive, struct ide_cmd *cmd, u8 stat, u8 err)
75{
76	const struct ide_tp_ops *tp_ops = drive->hwif->tp_ops;
77	struct ide_taskfile *tf = &cmd->tf;
78	struct request *rq = cmd->rq;
79	u8 tf_cmd = tf->command;
80
81	tf->error = err;
82	tf->status = stat;
83
84	if (cmd->ftf_flags & IDE_FTFLAG_IN_DATA) {
85		u8 data[2];
86
87		tp_ops->input_data(drive, cmd, data, 2);
88
89		cmd->tf.data  = data[0];
90		cmd->hob.data = data[1];
91	}
92
93	ide_tf_readback(drive, cmd);
94
95	if ((cmd->tf_flags & IDE_TFLAG_CUSTOM_HANDLER) &&
96	    tf_cmd == ATA_CMD_IDLEIMMEDIATE) {
97		if (tf->lbal != 0xc4) {
98			printk(KERN_ERR "%s: head unload failed!\n",
99			       drive->name);
100			ide_tf_dump(drive->name, cmd);
101		} else
102			drive->dev_flags |= IDE_DFLAG_PARKED;
103	}
104
105	if (rq && rq->cmd_type == REQ_TYPE_ATA_TASKFILE) {
106		struct ide_cmd *orig_cmd = rq->special;
107
108		if (cmd->tf_flags & IDE_TFLAG_DYN)
109			kfree(orig_cmd);
110		else
111			memcpy(orig_cmd, cmd, sizeof(*cmd));
112	}
113}
114
115/* obsolete, blk_rq_bytes() should be used instead */
116unsigned int ide_rq_bytes(struct request *rq)
117{
118	if (blk_pc_request(rq))
119		return rq->data_len;
120	else
121		return rq->hard_cur_sectors << 9;
122}
123EXPORT_SYMBOL_GPL(ide_rq_bytes);
124
125int ide_complete_rq(ide_drive_t *drive, int error, unsigned int nr_bytes)
126{
127	ide_hwif_t *hwif = drive->hwif;
128	struct request *rq = hwif->rq;
129	int rc;
130
131	/*
132	 * if failfast is set on a request, override number of sectors
133	 * and complete the whole request right now
134	 */
135	if (blk_noretry_request(rq) && error <= 0)
136		nr_bytes = rq->hard_nr_sectors << 9;
137
138	rc = ide_end_rq(drive, rq, error, nr_bytes);
139	if (rc == 0)
140		hwif->rq = NULL;
141
142	return rc;
143}
144EXPORT_SYMBOL(ide_complete_rq);
145
146void ide_kill_rq(ide_drive_t *drive, struct request *rq)
147{
148	u8 drv_req = blk_special_request(rq) && rq->rq_disk;
149	u8 media = drive->media;
150
151	drive->failed_pc = NULL;
152
153	if ((media == ide_floppy || media == ide_tape) && drv_req) {
154		rq->errors = 0;
155		ide_complete_rq(drive, 0, blk_rq_bytes(rq));
156	} else {
157		if (media == ide_tape)
158			rq->errors = IDE_DRV_ERROR_GENERAL;
159		else if (blk_fs_request(rq) == 0 && rq->errors == 0)
160			rq->errors = -EIO;
161		ide_complete_rq(drive, -EIO, ide_rq_bytes(rq));
162	}
163}
164
165static void ide_tf_set_specify_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
166{
167	tf->nsect   = drive->sect;
168	tf->lbal    = drive->sect;
169	tf->lbam    = drive->cyl;
170	tf->lbah    = drive->cyl >> 8;
171	tf->device  = (drive->head - 1) | drive->select;
172	tf->command = ATA_CMD_INIT_DEV_PARAMS;
173}
174
175static void ide_tf_set_restore_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
176{
177	tf->nsect   = drive->sect;
178	tf->command = ATA_CMD_RESTORE;
179}
180
181static void ide_tf_set_setmult_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
182{
183	tf->nsect   = drive->mult_req;
184	tf->command = ATA_CMD_SET_MULTI;
185}
186
187static ide_startstop_t ide_disk_special(ide_drive_t *drive)
188{
189	special_t *s = &drive->special;
190	struct ide_cmd cmd;
191
192	memset(&cmd, 0, sizeof(cmd));
193	cmd.protocol = ATA_PROT_NODATA;
194
195	if (s->b.set_geometry) {
196		s->b.set_geometry = 0;
197		ide_tf_set_specify_cmd(drive, &cmd.tf);
198	} else if (s->b.recalibrate) {
199		s->b.recalibrate = 0;
200		ide_tf_set_restore_cmd(drive, &cmd.tf);
201	} else if (s->b.set_multmode) {
202		s->b.set_multmode = 0;
203		ide_tf_set_setmult_cmd(drive, &cmd.tf);
204	} else if (s->all) {
205		int special = s->all;
206		s->all = 0;
207		printk(KERN_ERR "%s: bad special flag: 0x%02x\n", drive->name, special);
208		return ide_stopped;
209	}
210
211	cmd.valid.out.tf = IDE_VALID_OUT_TF | IDE_VALID_DEVICE;
212	cmd.valid.in.tf  = IDE_VALID_IN_TF  | IDE_VALID_DEVICE;
213	cmd.tf_flags = IDE_TFLAG_CUSTOM_HANDLER;
214
215	do_rw_taskfile(drive, &cmd);
216
217	return ide_started;
218}
219
220/**
221 *	do_special		-	issue some special commands
222 *	@drive: drive the command is for
223 *
224 *	do_special() is used to issue ATA_CMD_INIT_DEV_PARAMS,
225 *	ATA_CMD_RESTORE and ATA_CMD_SET_MULTI commands to a drive.
226 *
227 *	It used to do much more, but has been scaled back.
228 */
229
230static ide_startstop_t do_special (ide_drive_t *drive)
231{
232	special_t *s = &drive->special;
233
234#ifdef DEBUG
235	printk("%s: do_special: 0x%02x\n", drive->name, s->all);
236#endif
237	if (drive->media == ide_disk)
238		return ide_disk_special(drive);
239
240	s->all = 0;
241	drive->mult_req = 0;
242	return ide_stopped;
243}
244
245void ide_map_sg(ide_drive_t *drive, struct ide_cmd *cmd)
246{
247	ide_hwif_t *hwif = drive->hwif;
248	struct scatterlist *sg = hwif->sg_table;
249	struct request *rq = cmd->rq;
250
251	if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) {
252		sg_init_one(sg, rq->buffer, rq->nr_sectors * SECTOR_SIZE);
253		cmd->sg_nents = 1;
254	} else if (!rq->bio) {
255		sg_init_one(sg, rq->data, rq->data_len);
256		cmd->sg_nents = 1;
257	} else
258		cmd->sg_nents = blk_rq_map_sg(drive->queue, rq, sg);
259}
260EXPORT_SYMBOL_GPL(ide_map_sg);
261
262void ide_init_sg_cmd(struct ide_cmd *cmd, unsigned int nr_bytes)
263{
264	cmd->nbytes = cmd->nleft = nr_bytes;
265	cmd->cursg_ofs = 0;
266	cmd->cursg = NULL;
267}
268EXPORT_SYMBOL_GPL(ide_init_sg_cmd);
269
270/**
271 *	execute_drive_command	-	issue special drive command
272 *	@drive: the drive to issue the command on
273 *	@rq: the request structure holding the command
274 *
275 *	execute_drive_cmd() issues a special drive command,  usually
276 *	initiated by ioctl() from the external hdparm program. The
277 *	command can be a drive command, drive task or taskfile
278 *	operation. Weirdly you can call it with NULL to wait for
279 *	all commands to finish. Don't do this as that is due to change
280 */
281
282static ide_startstop_t execute_drive_cmd (ide_drive_t *drive,
283		struct request *rq)
284{
285	struct ide_cmd *cmd = rq->special;
286
287	if (cmd) {
288		if (cmd->protocol == ATA_PROT_PIO) {
289			ide_init_sg_cmd(cmd, rq->nr_sectors << 9);
290			ide_map_sg(drive, cmd);
291		}
292
293		return do_rw_taskfile(drive, cmd);
294	}
295
296 	/*
297 	 * NULL is actually a valid way of waiting for
298 	 * all current requests to be flushed from the queue.
299 	 */
300#ifdef DEBUG
301 	printk("%s: DRIVE_CMD (null)\n", drive->name);
302#endif
303	rq->errors = 0;
304	ide_complete_rq(drive, 0, blk_rq_bytes(rq));
305
306 	return ide_stopped;
307}
308
309static ide_startstop_t ide_special_rq(ide_drive_t *drive, struct request *rq)
310{
311	u8 cmd = rq->cmd[0];
312
313	switch (cmd) {
314	case REQ_PARK_HEADS:
315	case REQ_UNPARK_HEADS:
316		return ide_do_park_unpark(drive, rq);
317	case REQ_DEVSET_EXEC:
318		return ide_do_devset(drive, rq);
319	case REQ_DRIVE_RESET:
320		return ide_do_reset(drive);
321	default:
322		BUG();
323	}
324}
325
326/**
327 *	start_request	-	start of I/O and command issuing for IDE
328 *
329 *	start_request() initiates handling of a new I/O request. It
330 *	accepts commands and I/O (read/write) requests.
331 *
332 *	FIXME: this function needs a rename
333 */
334
335static ide_startstop_t start_request (ide_drive_t *drive, struct request *rq)
336{
337	ide_startstop_t startstop;
338
339	BUG_ON(!blk_rq_started(rq));
340
341#ifdef DEBUG
342	printk("%s: start_request: current=0x%08lx\n",
343		drive->hwif->name, (unsigned long) rq);
344#endif
345
346	/* bail early if we've exceeded max_failures */
347	if (drive->max_failures && (drive->failures > drive->max_failures)) {
348		rq->cmd_flags |= REQ_FAILED;
349		goto kill_rq;
350	}
351
352	if (blk_pm_request(rq))
353		ide_check_pm_state(drive, rq);
354
355	drive->hwif->tp_ops->dev_select(drive);
356	if (ide_wait_stat(&startstop, drive, drive->ready_stat,
357			  ATA_BUSY | ATA_DRQ, WAIT_READY)) {
358		printk(KERN_ERR "%s: drive not ready for command\n", drive->name);
359		return startstop;
360	}
361	if (!drive->special.all) {
362		struct ide_driver *drv;
363
364		/*
365		 * We reset the drive so we need to issue a SETFEATURES.
366		 * Do it _after_ do_special() restored device parameters.
367		 */
368		if (drive->current_speed == 0xff)
369			ide_config_drive_speed(drive, drive->desired_speed);
370
371		if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE)
372			return execute_drive_cmd(drive, rq);
373		else if (blk_pm_request(rq)) {
374			struct request_pm_state *pm = rq->data;
375#ifdef DEBUG_PM
376			printk("%s: start_power_step(step: %d)\n",
377				drive->name, pm->pm_step);
378#endif
379			startstop = ide_start_power_step(drive, rq);
380			if (startstop == ide_stopped &&
381			    pm->pm_step == IDE_PM_COMPLETED)
382				ide_complete_pm_rq(drive, rq);
383			return startstop;
384		} else if (!rq->rq_disk && blk_special_request(rq))
385			/*
386			 * TODO: Once all ULDs have been modified to
387			 * check for specific op codes rather than
388			 * blindly accepting any special request, the
389			 * check for ->rq_disk above may be replaced
390			 * by a more suitable mechanism or even
391			 * dropped entirely.
392			 */
393			return ide_special_rq(drive, rq);
394
395		drv = *(struct ide_driver **)rq->rq_disk->private_data;
396
397		return drv->do_request(drive, rq, rq->sector);
398	}
399	return do_special(drive);
400kill_rq:
401	ide_kill_rq(drive, rq);
402	return ide_stopped;
403}
404
405/**
406 *	ide_stall_queue		-	pause an IDE device
407 *	@drive: drive to stall
408 *	@timeout: time to stall for (jiffies)
409 *
410 *	ide_stall_queue() can be used by a drive to give excess bandwidth back
411 *	to the port by sleeping for timeout jiffies.
412 */
413
414void ide_stall_queue (ide_drive_t *drive, unsigned long timeout)
415{
416	if (timeout > WAIT_WORSTCASE)
417		timeout = WAIT_WORSTCASE;
418	drive->sleep = timeout + jiffies;
419	drive->dev_flags |= IDE_DFLAG_SLEEPING;
420}
421EXPORT_SYMBOL(ide_stall_queue);
422
423static inline int ide_lock_port(ide_hwif_t *hwif)
424{
425	if (hwif->busy)
426		return 1;
427
428	hwif->busy = 1;
429
430	return 0;
431}
432
433static inline void ide_unlock_port(ide_hwif_t *hwif)
434{
435	hwif->busy = 0;
436}
437
438static inline int ide_lock_host(struct ide_host *host, ide_hwif_t *hwif)
439{
440	int rc = 0;
441
442	if (host->host_flags & IDE_HFLAG_SERIALIZE) {
443		rc = test_and_set_bit_lock(IDE_HOST_BUSY, &host->host_busy);
444		if (rc == 0) {
445			if (host->get_lock)
446				host->get_lock(ide_intr, hwif);
447		}
448	}
449	return rc;
450}
451
452static inline void ide_unlock_host(struct ide_host *host)
453{
454	if (host->host_flags & IDE_HFLAG_SERIALIZE) {
455		if (host->release_lock)
456			host->release_lock();
457		clear_bit_unlock(IDE_HOST_BUSY, &host->host_busy);
458	}
459}
460
461/*
462 * Issue a new request to a device.
463 */
464void do_ide_request(struct request_queue *q)
465{
466	ide_drive_t	*drive = q->queuedata;
467	ide_hwif_t	*hwif = drive->hwif;
468	struct ide_host *host = hwif->host;
469	struct request	*rq = NULL;
470	ide_startstop_t	startstop;
471
472	/*
473	 * drive is doing pre-flush, ordered write, post-flush sequence. even
474	 * though that is 3 requests, it must be seen as a single transaction.
475	 * we must not preempt this drive until that is complete
476	 */
477	if (blk_queue_flushing(q))
478		/*
479		 * small race where queue could get replugged during
480		 * the 3-request flush cycle, just yank the plug since
481		 * we want it to finish asap
482		 */
483		blk_remove_plug(q);
484
485	spin_unlock_irq(q->queue_lock);
486
487	if (ide_lock_host(host, hwif))
488		goto plug_device_2;
489
490	spin_lock_irq(&hwif->lock);
491
492	if (!ide_lock_port(hwif)) {
493		ide_hwif_t *prev_port;
494repeat:
495		prev_port = hwif->host->cur_port;
496		hwif->rq = NULL;
497
498		if (drive->dev_flags & IDE_DFLAG_SLEEPING &&
499		    time_after(drive->sleep, jiffies)) {
500			ide_unlock_port(hwif);
501			goto plug_device;
502		}
503
504		if ((hwif->host->host_flags & IDE_HFLAG_SERIALIZE) &&
505		    hwif != prev_port) {
506			/*
507			 * set nIEN for previous port, drives in the
508			 * quirk_list may not like intr setups/cleanups
509			 */
510			if (prev_port && prev_port->cur_dev->quirk_list == 0)
511				prev_port->tp_ops->write_devctl(prev_port,
512								ATA_NIEN |
513								ATA_DEVCTL_OBS);
514
515			hwif->host->cur_port = hwif;
516		}
517		hwif->cur_dev = drive;
518		drive->dev_flags &= ~(IDE_DFLAG_SLEEPING | IDE_DFLAG_PARKED);
519
520		spin_unlock_irq(&hwif->lock);
521		spin_lock_irq(q->queue_lock);
522		/*
523		 * we know that the queue isn't empty, but this can happen
524		 * if the q->prep_rq_fn() decides to kill a request
525		 */
526		rq = elv_next_request(drive->queue);
527		spin_unlock_irq(q->queue_lock);
528		spin_lock_irq(&hwif->lock);
529
530		if (!rq) {
531			ide_unlock_port(hwif);
532			goto out;
533		}
534
535		/*
536		 * Sanity: don't accept a request that isn't a PM request
537		 * if we are currently power managed. This is very important as
538		 * blk_stop_queue() doesn't prevent the elv_next_request()
539		 * above to return us whatever is in the queue. Since we call
540		 * ide_do_request() ourselves, we end up taking requests while
541		 * the queue is blocked...
542		 *
543		 * We let requests forced at head of queue with ide-preempt
544		 * though. I hope that doesn't happen too much, hopefully not
545		 * unless the subdriver triggers such a thing in its own PM
546		 * state machine.
547		 */
548		if ((drive->dev_flags & IDE_DFLAG_BLOCKED) &&
549		    blk_pm_request(rq) == 0 &&
550		    (rq->cmd_flags & REQ_PREEMPT) == 0) {
551			/* there should be no pending command at this point */
552			ide_unlock_port(hwif);
553			goto plug_device;
554		}
555
556		hwif->rq = rq;
557
558		spin_unlock_irq(&hwif->lock);
559		startstop = start_request(drive, rq);
560		spin_lock_irq(&hwif->lock);
561
562		if (startstop == ide_stopped)
563			goto repeat;
564	} else
565		goto plug_device;
566out:
567	spin_unlock_irq(&hwif->lock);
568	if (rq == NULL)
569		ide_unlock_host(host);
570	spin_lock_irq(q->queue_lock);
571	return;
572
573plug_device:
574	spin_unlock_irq(&hwif->lock);
575	ide_unlock_host(host);
576plug_device_2:
577	spin_lock_irq(q->queue_lock);
578
579	if (!elv_queue_empty(q))
580		blk_plug_device(q);
581}
582
583static void ide_plug_device(ide_drive_t *drive)
584{
585	struct request_queue *q = drive->queue;
586	unsigned long flags;
587
588	spin_lock_irqsave(q->queue_lock, flags);
589	if (!elv_queue_empty(q))
590		blk_plug_device(q);
591	spin_unlock_irqrestore(q->queue_lock, flags);
592}
593
594static int drive_is_ready(ide_drive_t *drive)
595{
596	ide_hwif_t *hwif = drive->hwif;
597	u8 stat = 0;
598
599	if (drive->waiting_for_dma)
600		return hwif->dma_ops->dma_test_irq(drive);
601
602	if (hwif->io_ports.ctl_addr &&
603	    (hwif->host_flags & IDE_HFLAG_BROKEN_ALTSTATUS) == 0)
604		stat = hwif->tp_ops->read_altstatus(hwif);
605	else
606		/* Note: this may clear a pending IRQ!! */
607		stat = hwif->tp_ops->read_status(hwif);
608
609	if (stat & ATA_BUSY)
610		/* drive busy: definitely not interrupting */
611		return 0;
612
613	/* drive ready: *might* be interrupting */
614	return 1;
615}
616
617/**
618 *	ide_timer_expiry	-	handle lack of an IDE interrupt
619 *	@data: timer callback magic (hwif)
620 *
621 *	An IDE command has timed out before the expected drive return
622 *	occurred. At this point we attempt to clean up the current
623 *	mess. If the current handler includes an expiry handler then
624 *	we invoke the expiry handler, and providing it is happy the
625 *	work is done. If that fails we apply generic recovery rules
626 *	invoking the handler and checking the drive DMA status. We
627 *	have an excessively incestuous relationship with the DMA
628 *	logic that wants cleaning up.
629 */
630
631void ide_timer_expiry (unsigned long data)
632{
633	ide_hwif_t	*hwif = (ide_hwif_t *)data;
634	ide_drive_t	*uninitialized_var(drive);
635	ide_handler_t	*handler;
636	unsigned long	flags;
637	int		wait = -1;
638	int		plug_device = 0;
639
640	spin_lock_irqsave(&hwif->lock, flags);
641
642	handler = hwif->handler;
643
644	if (handler == NULL || hwif->req_gen != hwif->req_gen_timer) {
645		/*
646		 * Either a marginal timeout occurred
647		 * (got the interrupt just as timer expired),
648		 * or we were "sleeping" to give other devices a chance.
649		 * Either way, we don't really want to complain about anything.
650		 */
651	} else {
652		ide_expiry_t *expiry = hwif->expiry;
653		ide_startstop_t startstop = ide_stopped;
654
655		drive = hwif->cur_dev;
656
657		if (expiry) {
658			wait = expiry(drive);
659			if (wait > 0) { /* continue */
660				/* reset timer */
661				hwif->timer.expires = jiffies + wait;
662				hwif->req_gen_timer = hwif->req_gen;
663				add_timer(&hwif->timer);
664				spin_unlock_irqrestore(&hwif->lock, flags);
665				return;
666			}
667		}
668		hwif->handler = NULL;
669		hwif->expiry = NULL;
670		/*
671		 * We need to simulate a real interrupt when invoking
672		 * the handler() function, which means we need to
673		 * globally mask the specific IRQ:
674		 */
675		spin_unlock(&hwif->lock);
676		/* disable_irq_nosync ?? */
677		disable_irq(hwif->irq);
678		/* local CPU only, as if we were handling an interrupt */
679		local_irq_disable();
680		if (hwif->polling) {
681			startstop = handler(drive);
682		} else if (drive_is_ready(drive)) {
683			if (drive->waiting_for_dma)
684				hwif->dma_ops->dma_lost_irq(drive);
685			if (hwif->ack_intr)
686				hwif->ack_intr(hwif);
687			printk(KERN_WARNING "%s: lost interrupt\n",
688				drive->name);
689			startstop = handler(drive);
690		} else {
691			if (drive->waiting_for_dma)
692				startstop = ide_dma_timeout_retry(drive, wait);
693			else
694				startstop = ide_error(drive, "irq timeout",
695					hwif->tp_ops->read_status(hwif));
696		}
697		spin_lock_irq(&hwif->lock);
698		enable_irq(hwif->irq);
699		if (startstop == ide_stopped && hwif->polling == 0) {
700			ide_unlock_port(hwif);
701			plug_device = 1;
702		}
703	}
704	spin_unlock_irqrestore(&hwif->lock, flags);
705
706	if (plug_device) {
707		ide_unlock_host(hwif->host);
708		ide_plug_device(drive);
709	}
710}
711
712/**
713 *	unexpected_intr		-	handle an unexpected IDE interrupt
714 *	@irq: interrupt line
715 *	@hwif: port being processed
716 *
717 *	There's nothing really useful we can do with an unexpected interrupt,
718 *	other than reading the status register (to clear it), and logging it.
719 *	There should be no way that an irq can happen before we're ready for it,
720 *	so we needn't worry much about losing an "important" interrupt here.
721 *
722 *	On laptops (and "green" PCs), an unexpected interrupt occurs whenever
723 *	the drive enters "idle", "standby", or "sleep" mode, so if the status
724 *	looks "good", we just ignore the interrupt completely.
725 *
726 *	This routine assumes __cli() is in effect when called.
727 *
728 *	If an unexpected interrupt happens on irq15 while we are handling irq14
729 *	and if the two interfaces are "serialized" (CMD640), then it looks like
730 *	we could screw up by interfering with a new request being set up for
731 *	irq15.
732 *
733 *	In reality, this is a non-issue.  The new command is not sent unless
734 *	the drive is ready to accept one, in which case we know the drive is
735 *	not trying to interrupt us.  And ide_set_handler() is always invoked
736 *	before completing the issuance of any new drive command, so we will not
737 *	be accidentally invoked as a result of any valid command completion
738 *	interrupt.
739 */
740
741static void unexpected_intr(int irq, ide_hwif_t *hwif)
742{
743	u8 stat = hwif->tp_ops->read_status(hwif);
744
745	if (!OK_STAT(stat, ATA_DRDY, BAD_STAT)) {
746		/* Try to not flood the console with msgs */
747		static unsigned long last_msgtime, count;
748		++count;
749
750		if (time_after(jiffies, last_msgtime + HZ)) {
751			last_msgtime = jiffies;
752			printk(KERN_ERR "%s: unexpected interrupt, "
753				"status=0x%02x, count=%ld\n",
754				hwif->name, stat, count);
755		}
756	}
757}
758
759/**
760 *	ide_intr	-	default IDE interrupt handler
761 *	@irq: interrupt number
762 *	@dev_id: hwif
763 *	@regs: unused weirdness from the kernel irq layer
764 *
765 *	This is the default IRQ handler for the IDE layer. You should
766 *	not need to override it. If you do be aware it is subtle in
767 *	places
768 *
769 *	hwif is the interface in the group currently performing
770 *	a command. hwif->cur_dev is the drive and hwif->handler is
771 *	the IRQ handler to call. As we issue a command the handlers
772 *	step through multiple states, reassigning the handler to the
773 *	next step in the process. Unlike a smart SCSI controller IDE
774 *	expects the main processor to sequence the various transfer
775 *	stages. We also manage a poll timer to catch up with most
776 *	timeout situations. There are still a few where the handlers
777 *	don't ever decide to give up.
778 *
779 *	The handler eventually returns ide_stopped to indicate the
780 *	request completed. At this point we issue the next request
781 *	on the port and the process begins again.
782 */
783
784irqreturn_t ide_intr (int irq, void *dev_id)
785{
786	ide_hwif_t *hwif = (ide_hwif_t *)dev_id;
787	struct ide_host *host = hwif->host;
788	ide_drive_t *uninitialized_var(drive);
789	ide_handler_t *handler;
790	unsigned long flags;
791	ide_startstop_t startstop;
792	irqreturn_t irq_ret = IRQ_NONE;
793	int plug_device = 0;
794
795	if (host->host_flags & IDE_HFLAG_SERIALIZE) {
796		if (hwif != host->cur_port)
797			goto out_early;
798	}
799
800	spin_lock_irqsave(&hwif->lock, flags);
801
802	if (hwif->ack_intr && hwif->ack_intr(hwif) == 0)
803		goto out;
804
805	handler = hwif->handler;
806
807	if (handler == NULL || hwif->polling) {
808		/*
809		 * Not expecting an interrupt from this drive.
810		 * That means this could be:
811		 *	(1) an interrupt from another PCI device
812		 *	sharing the same PCI INT# as us.
813		 * or	(2) a drive just entered sleep or standby mode,
814		 *	and is interrupting to let us know.
815		 * or	(3) a spurious interrupt of unknown origin.
816		 *
817		 * For PCI, we cannot tell the difference,
818		 * so in that case we just ignore it and hope it goes away.
819		 */
820		if ((host->irq_flags & IRQF_SHARED) == 0) {
821			/*
822			 * Probably not a shared PCI interrupt,
823			 * so we can safely try to do something about it:
824			 */
825			unexpected_intr(irq, hwif);
826		} else {
827			/*
828			 * Whack the status register, just in case
829			 * we have a leftover pending IRQ.
830			 */
831			(void)hwif->tp_ops->read_status(hwif);
832		}
833		goto out;
834	}
835
836	drive = hwif->cur_dev;
837
838	if (!drive_is_ready(drive))
839		/*
840		 * This happens regularly when we share a PCI IRQ with
841		 * another device.  Unfortunately, it can also happen
842		 * with some buggy drives that trigger the IRQ before
843		 * their status register is up to date.  Hopefully we have
844		 * enough advance overhead that the latter isn't a problem.
845		 */
846		goto out;
847
848	hwif->handler = NULL;
849	hwif->expiry = NULL;
850	hwif->req_gen++;
851	del_timer(&hwif->timer);
852	spin_unlock(&hwif->lock);
853
854	if (hwif->port_ops && hwif->port_ops->clear_irq)
855		hwif->port_ops->clear_irq(drive);
856
857	if (drive->dev_flags & IDE_DFLAG_UNMASK)
858		local_irq_enable_in_hardirq();
859
860	/* service this interrupt, may set handler for next interrupt */
861	startstop = handler(drive);
862
863	spin_lock_irq(&hwif->lock);
864	/*
865	 * Note that handler() may have set things up for another
866	 * interrupt to occur soon, but it cannot happen until
867	 * we exit from this routine, because it will be the
868	 * same irq as is currently being serviced here, and Linux
869	 * won't allow another of the same (on any CPU) until we return.
870	 */
871	if (startstop == ide_stopped && hwif->polling == 0) {
872		BUG_ON(hwif->handler);
873		ide_unlock_port(hwif);
874		plug_device = 1;
875	}
876	irq_ret = IRQ_HANDLED;
877out:
878	spin_unlock_irqrestore(&hwif->lock, flags);
879out_early:
880	if (plug_device) {
881		ide_unlock_host(hwif->host);
882		ide_plug_device(drive);
883	}
884
885	return irq_ret;
886}
887EXPORT_SYMBOL_GPL(ide_intr);
888
889void ide_pad_transfer(ide_drive_t *drive, int write, int len)
890{
891	ide_hwif_t *hwif = drive->hwif;
892	u8 buf[4] = { 0 };
893
894	while (len > 0) {
895		if (write)
896			hwif->tp_ops->output_data(drive, NULL, buf, min(4, len));
897		else
898			hwif->tp_ops->input_data(drive, NULL, buf, min(4, len));
899		len -= 4;
900	}
901}
902EXPORT_SYMBOL_GPL(ide_pad_transfer);
903