raid5.c revision 1f403624bde3c678a166984b1e6a727a0ce06f2b
1/*
2 * raid5.c : Multiple Devices driver for Linux
3 *	   Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4 *	   Copyright (C) 1999, 2000 Ingo Molnar
5 *	   Copyright (C) 2002, 2003 H. Peter Anvin
6 *
7 * RAID-4/5/6 management functions.
8 * Thanks to Penguin Computing for making the RAID-6 development possible
9 * by donating a test server!
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
21/*
22 * BITMAP UNPLUGGING:
23 *
24 * The sequencing for updating the bitmap reliably is a little
25 * subtle (and I got it wrong the first time) so it deserves some
26 * explanation.
27 *
28 * We group bitmap updates into batches.  Each batch has a number.
29 * We may write out several batches at once, but that isn't very important.
30 * conf->bm_write is the number of the last batch successfully written.
31 * conf->bm_flush is the number of the last batch that was closed to
32 *    new additions.
33 * When we discover that we will need to write to any block in a stripe
34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35 * the number of the batch it will be in. This is bm_flush+1.
36 * When we are ready to do a write, if that batch hasn't been written yet,
37 *   we plug the array and queue the stripe for later.
38 * When an unplug happens, we increment bm_flush, thus closing the current
39 *   batch.
40 * When we notice that bm_flush > bm_write, we write out all pending updates
41 * to the bitmap, and advance bm_write to where bm_flush was.
42 * This may occasionally write a bit out twice, but is sure never to
43 * miss any bits.
44 */
45
46#include <linux/blkdev.h>
47#include <linux/kthread.h>
48#include <linux/async_tx.h>
49#include <linux/seq_file.h>
50#include "md.h"
51#include "raid5.h"
52#include "raid6.h"
53#include "bitmap.h"
54
55/*
56 * Stripe cache
57 */
58
59#define NR_STRIPES		256
60#define STRIPE_SIZE		PAGE_SIZE
61#define STRIPE_SHIFT		(PAGE_SHIFT - 9)
62#define STRIPE_SECTORS		(STRIPE_SIZE>>9)
63#define	IO_THRESHOLD		1
64#define BYPASS_THRESHOLD	1
65#define NR_HASH			(PAGE_SIZE / sizeof(struct hlist_head))
66#define HASH_MASK		(NR_HASH - 1)
67
68#define stripe_hash(conf, sect)	(&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
69
70/* bio's attached to a stripe+device for I/O are linked together in bi_sector
71 * order without overlap.  There may be several bio's per stripe+device, and
72 * a bio could span several devices.
73 * When walking this list for a particular stripe+device, we must never proceed
74 * beyond a bio that extends past this device, as the next bio might no longer
75 * be valid.
76 * This macro is used to determine the 'next' bio in the list, given the sector
77 * of the current stripe+device
78 */
79#define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
80/*
81 * The following can be used to debug the driver
82 */
83#define RAID5_PARANOIA	1
84#if RAID5_PARANOIA && defined(CONFIG_SMP)
85# define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
86#else
87# define CHECK_DEVLOCK()
88#endif
89
90#ifdef DEBUG
91#define inline
92#define __inline__
93#endif
94
95#define printk_rl(args...) ((void) (printk_ratelimit() && printk(args)))
96
97#if !RAID6_USE_EMPTY_ZERO_PAGE
98/* In .bss so it's zeroed */
99const char raid6_empty_zero_page[PAGE_SIZE] __attribute__((aligned(256)));
100#endif
101
102/*
103 * We maintain a biased count of active stripes in the bottom 16 bits of
104 * bi_phys_segments, and a count of processed stripes in the upper 16 bits
105 */
106static inline int raid5_bi_phys_segments(struct bio *bio)
107{
108	return bio->bi_phys_segments & 0xffff;
109}
110
111static inline int raid5_bi_hw_segments(struct bio *bio)
112{
113	return (bio->bi_phys_segments >> 16) & 0xffff;
114}
115
116static inline int raid5_dec_bi_phys_segments(struct bio *bio)
117{
118	--bio->bi_phys_segments;
119	return raid5_bi_phys_segments(bio);
120}
121
122static inline int raid5_dec_bi_hw_segments(struct bio *bio)
123{
124	unsigned short val = raid5_bi_hw_segments(bio);
125
126	--val;
127	bio->bi_phys_segments = (val << 16) | raid5_bi_phys_segments(bio);
128	return val;
129}
130
131static inline void raid5_set_bi_hw_segments(struct bio *bio, unsigned int cnt)
132{
133	bio->bi_phys_segments = raid5_bi_phys_segments(bio) || (cnt << 16);
134}
135
136/* Find first data disk in a raid6 stripe */
137static inline int raid6_d0(struct stripe_head *sh)
138{
139	if (sh->ddf_layout)
140		/* ddf always start from first device */
141		return 0;
142	/* md starts just after Q block */
143	if (sh->qd_idx == sh->disks - 1)
144		return 0;
145	else
146		return sh->qd_idx + 1;
147}
148static inline int raid6_next_disk(int disk, int raid_disks)
149{
150	disk++;
151	return (disk < raid_disks) ? disk : 0;
152}
153
154/* When walking through the disks in a raid5, starting at raid6_d0,
155 * We need to map each disk to a 'slot', where the data disks are slot
156 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
157 * is raid_disks-1.  This help does that mapping.
158 */
159static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
160			     int *count, int syndrome_disks)
161{
162	int slot;
163
164	if (idx == sh->pd_idx)
165		return syndrome_disks;
166	if (idx == sh->qd_idx)
167		return syndrome_disks + 1;
168	slot = (*count)++;
169	return slot;
170}
171
172static void return_io(struct bio *return_bi)
173{
174	struct bio *bi = return_bi;
175	while (bi) {
176
177		return_bi = bi->bi_next;
178		bi->bi_next = NULL;
179		bi->bi_size = 0;
180		bio_endio(bi, 0);
181		bi = return_bi;
182	}
183}
184
185static void print_raid5_conf (raid5_conf_t *conf);
186
187static int stripe_operations_active(struct stripe_head *sh)
188{
189	return sh->check_state || sh->reconstruct_state ||
190	       test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
191	       test_bit(STRIPE_COMPUTE_RUN, &sh->state);
192}
193
194static void __release_stripe(raid5_conf_t *conf, struct stripe_head *sh)
195{
196	if (atomic_dec_and_test(&sh->count)) {
197		BUG_ON(!list_empty(&sh->lru));
198		BUG_ON(atomic_read(&conf->active_stripes)==0);
199		if (test_bit(STRIPE_HANDLE, &sh->state)) {
200			if (test_bit(STRIPE_DELAYED, &sh->state)) {
201				list_add_tail(&sh->lru, &conf->delayed_list);
202				blk_plug_device(conf->mddev->queue);
203			} else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
204				   sh->bm_seq - conf->seq_write > 0) {
205				list_add_tail(&sh->lru, &conf->bitmap_list);
206				blk_plug_device(conf->mddev->queue);
207			} else {
208				clear_bit(STRIPE_BIT_DELAY, &sh->state);
209				list_add_tail(&sh->lru, &conf->handle_list);
210			}
211			md_wakeup_thread(conf->mddev->thread);
212		} else {
213			BUG_ON(stripe_operations_active(sh));
214			if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
215				atomic_dec(&conf->preread_active_stripes);
216				if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
217					md_wakeup_thread(conf->mddev->thread);
218			}
219			atomic_dec(&conf->active_stripes);
220			if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
221				list_add_tail(&sh->lru, &conf->inactive_list);
222				wake_up(&conf->wait_for_stripe);
223				if (conf->retry_read_aligned)
224					md_wakeup_thread(conf->mddev->thread);
225			}
226		}
227	}
228}
229
230static void release_stripe(struct stripe_head *sh)
231{
232	raid5_conf_t *conf = sh->raid_conf;
233	unsigned long flags;
234
235	spin_lock_irqsave(&conf->device_lock, flags);
236	__release_stripe(conf, sh);
237	spin_unlock_irqrestore(&conf->device_lock, flags);
238}
239
240static inline void remove_hash(struct stripe_head *sh)
241{
242	pr_debug("remove_hash(), stripe %llu\n",
243		(unsigned long long)sh->sector);
244
245	hlist_del_init(&sh->hash);
246}
247
248static inline void insert_hash(raid5_conf_t *conf, struct stripe_head *sh)
249{
250	struct hlist_head *hp = stripe_hash(conf, sh->sector);
251
252	pr_debug("insert_hash(), stripe %llu\n",
253		(unsigned long long)sh->sector);
254
255	CHECK_DEVLOCK();
256	hlist_add_head(&sh->hash, hp);
257}
258
259
260/* find an idle stripe, make sure it is unhashed, and return it. */
261static struct stripe_head *get_free_stripe(raid5_conf_t *conf)
262{
263	struct stripe_head *sh = NULL;
264	struct list_head *first;
265
266	CHECK_DEVLOCK();
267	if (list_empty(&conf->inactive_list))
268		goto out;
269	first = conf->inactive_list.next;
270	sh = list_entry(first, struct stripe_head, lru);
271	list_del_init(first);
272	remove_hash(sh);
273	atomic_inc(&conf->active_stripes);
274out:
275	return sh;
276}
277
278static void shrink_buffers(struct stripe_head *sh, int num)
279{
280	struct page *p;
281	int i;
282
283	for (i=0; i<num ; i++) {
284		p = sh->dev[i].page;
285		if (!p)
286			continue;
287		sh->dev[i].page = NULL;
288		put_page(p);
289	}
290}
291
292static int grow_buffers(struct stripe_head *sh, int num)
293{
294	int i;
295
296	for (i=0; i<num; i++) {
297		struct page *page;
298
299		if (!(page = alloc_page(GFP_KERNEL))) {
300			return 1;
301		}
302		sh->dev[i].page = page;
303	}
304	return 0;
305}
306
307static void raid5_build_block(struct stripe_head *sh, int i);
308static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
309			    struct stripe_head *sh);
310
311static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
312{
313	raid5_conf_t *conf = sh->raid_conf;
314	int i;
315
316	BUG_ON(atomic_read(&sh->count) != 0);
317	BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
318	BUG_ON(stripe_operations_active(sh));
319
320	CHECK_DEVLOCK();
321	pr_debug("init_stripe called, stripe %llu\n",
322		(unsigned long long)sh->sector);
323
324	remove_hash(sh);
325
326	sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
327	sh->sector = sector;
328	stripe_set_idx(sector, conf, previous, sh);
329	sh->state = 0;
330
331
332	for (i = sh->disks; i--; ) {
333		struct r5dev *dev = &sh->dev[i];
334
335		if (dev->toread || dev->read || dev->towrite || dev->written ||
336		    test_bit(R5_LOCKED, &dev->flags)) {
337			printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
338			       (unsigned long long)sh->sector, i, dev->toread,
339			       dev->read, dev->towrite, dev->written,
340			       test_bit(R5_LOCKED, &dev->flags));
341			BUG();
342		}
343		dev->flags = 0;
344		raid5_build_block(sh, i);
345	}
346	insert_hash(conf, sh);
347}
348
349static struct stripe_head *__find_stripe(raid5_conf_t *conf, sector_t sector, int disks)
350{
351	struct stripe_head *sh;
352	struct hlist_node *hn;
353
354	CHECK_DEVLOCK();
355	pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
356	hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
357		if (sh->sector == sector && sh->disks == disks)
358			return sh;
359	pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
360	return NULL;
361}
362
363static void unplug_slaves(mddev_t *mddev);
364static void raid5_unplug_device(struct request_queue *q);
365
366static struct stripe_head *
367get_active_stripe(raid5_conf_t *conf, sector_t sector,
368		  int previous, int noblock)
369{
370	struct stripe_head *sh;
371	int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
372
373	pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
374
375	spin_lock_irq(&conf->device_lock);
376
377	do {
378		wait_event_lock_irq(conf->wait_for_stripe,
379				    conf->quiesce == 0,
380				    conf->device_lock, /* nothing */);
381		sh = __find_stripe(conf, sector, disks);
382		if (!sh) {
383			if (!conf->inactive_blocked)
384				sh = get_free_stripe(conf);
385			if (noblock && sh == NULL)
386				break;
387			if (!sh) {
388				conf->inactive_blocked = 1;
389				wait_event_lock_irq(conf->wait_for_stripe,
390						    !list_empty(&conf->inactive_list) &&
391						    (atomic_read(&conf->active_stripes)
392						     < (conf->max_nr_stripes *3/4)
393						     || !conf->inactive_blocked),
394						    conf->device_lock,
395						    raid5_unplug_device(conf->mddev->queue)
396					);
397				conf->inactive_blocked = 0;
398			} else
399				init_stripe(sh, sector, previous);
400		} else {
401			if (atomic_read(&sh->count)) {
402			  BUG_ON(!list_empty(&sh->lru));
403			} else {
404				if (!test_bit(STRIPE_HANDLE, &sh->state))
405					atomic_inc(&conf->active_stripes);
406				if (list_empty(&sh->lru) &&
407				    !test_bit(STRIPE_EXPANDING, &sh->state))
408					BUG();
409				list_del_init(&sh->lru);
410			}
411		}
412	} while (sh == NULL);
413
414	if (sh)
415		atomic_inc(&sh->count);
416
417	spin_unlock_irq(&conf->device_lock);
418	return sh;
419}
420
421static void
422raid5_end_read_request(struct bio *bi, int error);
423static void
424raid5_end_write_request(struct bio *bi, int error);
425
426static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
427{
428	raid5_conf_t *conf = sh->raid_conf;
429	int i, disks = sh->disks;
430
431	might_sleep();
432
433	for (i = disks; i--; ) {
434		int rw;
435		struct bio *bi;
436		mdk_rdev_t *rdev;
437		if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags))
438			rw = WRITE;
439		else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
440			rw = READ;
441		else
442			continue;
443
444		bi = &sh->dev[i].req;
445
446		bi->bi_rw = rw;
447		if (rw == WRITE)
448			bi->bi_end_io = raid5_end_write_request;
449		else
450			bi->bi_end_io = raid5_end_read_request;
451
452		rcu_read_lock();
453		rdev = rcu_dereference(conf->disks[i].rdev);
454		if (rdev && test_bit(Faulty, &rdev->flags))
455			rdev = NULL;
456		if (rdev)
457			atomic_inc(&rdev->nr_pending);
458		rcu_read_unlock();
459
460		if (rdev) {
461			if (s->syncing || s->expanding || s->expanded)
462				md_sync_acct(rdev->bdev, STRIPE_SECTORS);
463
464			set_bit(STRIPE_IO_STARTED, &sh->state);
465
466			bi->bi_bdev = rdev->bdev;
467			pr_debug("%s: for %llu schedule op %ld on disc %d\n",
468				__func__, (unsigned long long)sh->sector,
469				bi->bi_rw, i);
470			atomic_inc(&sh->count);
471			bi->bi_sector = sh->sector + rdev->data_offset;
472			bi->bi_flags = 1 << BIO_UPTODATE;
473			bi->bi_vcnt = 1;
474			bi->bi_max_vecs = 1;
475			bi->bi_idx = 0;
476			bi->bi_io_vec = &sh->dev[i].vec;
477			bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
478			bi->bi_io_vec[0].bv_offset = 0;
479			bi->bi_size = STRIPE_SIZE;
480			bi->bi_next = NULL;
481			if (rw == WRITE &&
482			    test_bit(R5_ReWrite, &sh->dev[i].flags))
483				atomic_add(STRIPE_SECTORS,
484					&rdev->corrected_errors);
485			generic_make_request(bi);
486		} else {
487			if (rw == WRITE)
488				set_bit(STRIPE_DEGRADED, &sh->state);
489			pr_debug("skip op %ld on disc %d for sector %llu\n",
490				bi->bi_rw, i, (unsigned long long)sh->sector);
491			clear_bit(R5_LOCKED, &sh->dev[i].flags);
492			set_bit(STRIPE_HANDLE, &sh->state);
493		}
494	}
495}
496
497static struct dma_async_tx_descriptor *
498async_copy_data(int frombio, struct bio *bio, struct page *page,
499	sector_t sector, struct dma_async_tx_descriptor *tx)
500{
501	struct bio_vec *bvl;
502	struct page *bio_page;
503	int i;
504	int page_offset;
505
506	if (bio->bi_sector >= sector)
507		page_offset = (signed)(bio->bi_sector - sector) * 512;
508	else
509		page_offset = (signed)(sector - bio->bi_sector) * -512;
510	bio_for_each_segment(bvl, bio, i) {
511		int len = bio_iovec_idx(bio, i)->bv_len;
512		int clen;
513		int b_offset = 0;
514
515		if (page_offset < 0) {
516			b_offset = -page_offset;
517			page_offset += b_offset;
518			len -= b_offset;
519		}
520
521		if (len > 0 && page_offset + len > STRIPE_SIZE)
522			clen = STRIPE_SIZE - page_offset;
523		else
524			clen = len;
525
526		if (clen > 0) {
527			b_offset += bio_iovec_idx(bio, i)->bv_offset;
528			bio_page = bio_iovec_idx(bio, i)->bv_page;
529			if (frombio)
530				tx = async_memcpy(page, bio_page, page_offset,
531					b_offset, clen,
532					ASYNC_TX_DEP_ACK,
533					tx, NULL, NULL);
534			else
535				tx = async_memcpy(bio_page, page, b_offset,
536					page_offset, clen,
537					ASYNC_TX_DEP_ACK,
538					tx, NULL, NULL);
539		}
540		if (clen < len) /* hit end of page */
541			break;
542		page_offset +=  len;
543	}
544
545	return tx;
546}
547
548static void ops_complete_biofill(void *stripe_head_ref)
549{
550	struct stripe_head *sh = stripe_head_ref;
551	struct bio *return_bi = NULL;
552	raid5_conf_t *conf = sh->raid_conf;
553	int i;
554
555	pr_debug("%s: stripe %llu\n", __func__,
556		(unsigned long long)sh->sector);
557
558	/* clear completed biofills */
559	spin_lock_irq(&conf->device_lock);
560	for (i = sh->disks; i--; ) {
561		struct r5dev *dev = &sh->dev[i];
562
563		/* acknowledge completion of a biofill operation */
564		/* and check if we need to reply to a read request,
565		 * new R5_Wantfill requests are held off until
566		 * !STRIPE_BIOFILL_RUN
567		 */
568		if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
569			struct bio *rbi, *rbi2;
570
571			BUG_ON(!dev->read);
572			rbi = dev->read;
573			dev->read = NULL;
574			while (rbi && rbi->bi_sector <
575				dev->sector + STRIPE_SECTORS) {
576				rbi2 = r5_next_bio(rbi, dev->sector);
577				if (!raid5_dec_bi_phys_segments(rbi)) {
578					rbi->bi_next = return_bi;
579					return_bi = rbi;
580				}
581				rbi = rbi2;
582			}
583		}
584	}
585	spin_unlock_irq(&conf->device_lock);
586	clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
587
588	return_io(return_bi);
589
590	set_bit(STRIPE_HANDLE, &sh->state);
591	release_stripe(sh);
592}
593
594static void ops_run_biofill(struct stripe_head *sh)
595{
596	struct dma_async_tx_descriptor *tx = NULL;
597	raid5_conf_t *conf = sh->raid_conf;
598	int i;
599
600	pr_debug("%s: stripe %llu\n", __func__,
601		(unsigned long long)sh->sector);
602
603	for (i = sh->disks; i--; ) {
604		struct r5dev *dev = &sh->dev[i];
605		if (test_bit(R5_Wantfill, &dev->flags)) {
606			struct bio *rbi;
607			spin_lock_irq(&conf->device_lock);
608			dev->read = rbi = dev->toread;
609			dev->toread = NULL;
610			spin_unlock_irq(&conf->device_lock);
611			while (rbi && rbi->bi_sector <
612				dev->sector + STRIPE_SECTORS) {
613				tx = async_copy_data(0, rbi, dev->page,
614					dev->sector, tx);
615				rbi = r5_next_bio(rbi, dev->sector);
616			}
617		}
618	}
619
620	atomic_inc(&sh->count);
621	async_trigger_callback(ASYNC_TX_DEP_ACK | ASYNC_TX_ACK, tx,
622		ops_complete_biofill, sh);
623}
624
625static void ops_complete_compute5(void *stripe_head_ref)
626{
627	struct stripe_head *sh = stripe_head_ref;
628	int target = sh->ops.target;
629	struct r5dev *tgt = &sh->dev[target];
630
631	pr_debug("%s: stripe %llu\n", __func__,
632		(unsigned long long)sh->sector);
633
634	set_bit(R5_UPTODATE, &tgt->flags);
635	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
636	clear_bit(R5_Wantcompute, &tgt->flags);
637	clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
638	if (sh->check_state == check_state_compute_run)
639		sh->check_state = check_state_compute_result;
640	set_bit(STRIPE_HANDLE, &sh->state);
641	release_stripe(sh);
642}
643
644static struct dma_async_tx_descriptor *ops_run_compute5(struct stripe_head *sh)
645{
646	/* kernel stack size limits the total number of disks */
647	int disks = sh->disks;
648	struct page *xor_srcs[disks];
649	int target = sh->ops.target;
650	struct r5dev *tgt = &sh->dev[target];
651	struct page *xor_dest = tgt->page;
652	int count = 0;
653	struct dma_async_tx_descriptor *tx;
654	int i;
655
656	pr_debug("%s: stripe %llu block: %d\n",
657		__func__, (unsigned long long)sh->sector, target);
658	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
659
660	for (i = disks; i--; )
661		if (i != target)
662			xor_srcs[count++] = sh->dev[i].page;
663
664	atomic_inc(&sh->count);
665
666	if (unlikely(count == 1))
667		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE,
668			0, NULL, ops_complete_compute5, sh);
669	else
670		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
671			ASYNC_TX_XOR_ZERO_DST, NULL,
672			ops_complete_compute5, sh);
673
674	return tx;
675}
676
677static void ops_complete_prexor(void *stripe_head_ref)
678{
679	struct stripe_head *sh = stripe_head_ref;
680
681	pr_debug("%s: stripe %llu\n", __func__,
682		(unsigned long long)sh->sector);
683}
684
685static struct dma_async_tx_descriptor *
686ops_run_prexor(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
687{
688	/* kernel stack size limits the total number of disks */
689	int disks = sh->disks;
690	struct page *xor_srcs[disks];
691	int count = 0, pd_idx = sh->pd_idx, i;
692
693	/* existing parity data subtracted */
694	struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
695
696	pr_debug("%s: stripe %llu\n", __func__,
697		(unsigned long long)sh->sector);
698
699	for (i = disks; i--; ) {
700		struct r5dev *dev = &sh->dev[i];
701		/* Only process blocks that are known to be uptodate */
702		if (test_bit(R5_Wantdrain, &dev->flags))
703			xor_srcs[count++] = dev->page;
704	}
705
706	tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
707		ASYNC_TX_DEP_ACK | ASYNC_TX_XOR_DROP_DST, tx,
708		ops_complete_prexor, sh);
709
710	return tx;
711}
712
713static struct dma_async_tx_descriptor *
714ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
715{
716	int disks = sh->disks;
717	int i;
718
719	pr_debug("%s: stripe %llu\n", __func__,
720		(unsigned long long)sh->sector);
721
722	for (i = disks; i--; ) {
723		struct r5dev *dev = &sh->dev[i];
724		struct bio *chosen;
725
726		if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
727			struct bio *wbi;
728
729			spin_lock(&sh->lock);
730			chosen = dev->towrite;
731			dev->towrite = NULL;
732			BUG_ON(dev->written);
733			wbi = dev->written = chosen;
734			spin_unlock(&sh->lock);
735
736			while (wbi && wbi->bi_sector <
737				dev->sector + STRIPE_SECTORS) {
738				tx = async_copy_data(1, wbi, dev->page,
739					dev->sector, tx);
740				wbi = r5_next_bio(wbi, dev->sector);
741			}
742		}
743	}
744
745	return tx;
746}
747
748static void ops_complete_postxor(void *stripe_head_ref)
749{
750	struct stripe_head *sh = stripe_head_ref;
751	int disks = sh->disks, i, pd_idx = sh->pd_idx;
752
753	pr_debug("%s: stripe %llu\n", __func__,
754		(unsigned long long)sh->sector);
755
756	for (i = disks; i--; ) {
757		struct r5dev *dev = &sh->dev[i];
758		if (dev->written || i == pd_idx)
759			set_bit(R5_UPTODATE, &dev->flags);
760	}
761
762	if (sh->reconstruct_state == reconstruct_state_drain_run)
763		sh->reconstruct_state = reconstruct_state_drain_result;
764	else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
765		sh->reconstruct_state = reconstruct_state_prexor_drain_result;
766	else {
767		BUG_ON(sh->reconstruct_state != reconstruct_state_run);
768		sh->reconstruct_state = reconstruct_state_result;
769	}
770
771	set_bit(STRIPE_HANDLE, &sh->state);
772	release_stripe(sh);
773}
774
775static void
776ops_run_postxor(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
777{
778	/* kernel stack size limits the total number of disks */
779	int disks = sh->disks;
780	struct page *xor_srcs[disks];
781
782	int count = 0, pd_idx = sh->pd_idx, i;
783	struct page *xor_dest;
784	int prexor = 0;
785	unsigned long flags;
786
787	pr_debug("%s: stripe %llu\n", __func__,
788		(unsigned long long)sh->sector);
789
790	/* check if prexor is active which means only process blocks
791	 * that are part of a read-modify-write (written)
792	 */
793	if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
794		prexor = 1;
795		xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
796		for (i = disks; i--; ) {
797			struct r5dev *dev = &sh->dev[i];
798			if (dev->written)
799				xor_srcs[count++] = dev->page;
800		}
801	} else {
802		xor_dest = sh->dev[pd_idx].page;
803		for (i = disks; i--; ) {
804			struct r5dev *dev = &sh->dev[i];
805			if (i != pd_idx)
806				xor_srcs[count++] = dev->page;
807		}
808	}
809
810	/* 1/ if we prexor'd then the dest is reused as a source
811	 * 2/ if we did not prexor then we are redoing the parity
812	 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
813	 * for the synchronous xor case
814	 */
815	flags = ASYNC_TX_DEP_ACK | ASYNC_TX_ACK |
816		(prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
817
818	atomic_inc(&sh->count);
819
820	if (unlikely(count == 1)) {
821		flags &= ~(ASYNC_TX_XOR_DROP_DST | ASYNC_TX_XOR_ZERO_DST);
822		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE,
823			flags, tx, ops_complete_postxor, sh);
824	} else
825		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
826			flags, tx, ops_complete_postxor, sh);
827}
828
829static void ops_complete_check(void *stripe_head_ref)
830{
831	struct stripe_head *sh = stripe_head_ref;
832
833	pr_debug("%s: stripe %llu\n", __func__,
834		(unsigned long long)sh->sector);
835
836	sh->check_state = check_state_check_result;
837	set_bit(STRIPE_HANDLE, &sh->state);
838	release_stripe(sh);
839}
840
841static void ops_run_check(struct stripe_head *sh)
842{
843	/* kernel stack size limits the total number of disks */
844	int disks = sh->disks;
845	struct page *xor_srcs[disks];
846	struct dma_async_tx_descriptor *tx;
847
848	int count = 0, pd_idx = sh->pd_idx, i;
849	struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
850
851	pr_debug("%s: stripe %llu\n", __func__,
852		(unsigned long long)sh->sector);
853
854	for (i = disks; i--; ) {
855		struct r5dev *dev = &sh->dev[i];
856		if (i != pd_idx)
857			xor_srcs[count++] = dev->page;
858	}
859
860	tx = async_xor_zero_sum(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
861		&sh->ops.zero_sum_result, 0, NULL, NULL, NULL);
862
863	atomic_inc(&sh->count);
864	tx = async_trigger_callback(ASYNC_TX_DEP_ACK | ASYNC_TX_ACK, tx,
865		ops_complete_check, sh);
866}
867
868static void raid5_run_ops(struct stripe_head *sh, unsigned long ops_request)
869{
870	int overlap_clear = 0, i, disks = sh->disks;
871	struct dma_async_tx_descriptor *tx = NULL;
872
873	if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
874		ops_run_biofill(sh);
875		overlap_clear++;
876	}
877
878	if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
879		tx = ops_run_compute5(sh);
880		/* terminate the chain if postxor is not set to be run */
881		if (tx && !test_bit(STRIPE_OP_POSTXOR, &ops_request))
882			async_tx_ack(tx);
883	}
884
885	if (test_bit(STRIPE_OP_PREXOR, &ops_request))
886		tx = ops_run_prexor(sh, tx);
887
888	if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
889		tx = ops_run_biodrain(sh, tx);
890		overlap_clear++;
891	}
892
893	if (test_bit(STRIPE_OP_POSTXOR, &ops_request))
894		ops_run_postxor(sh, tx);
895
896	if (test_bit(STRIPE_OP_CHECK, &ops_request))
897		ops_run_check(sh);
898
899	if (overlap_clear)
900		for (i = disks; i--; ) {
901			struct r5dev *dev = &sh->dev[i];
902			if (test_and_clear_bit(R5_Overlap, &dev->flags))
903				wake_up(&sh->raid_conf->wait_for_overlap);
904		}
905}
906
907static int grow_one_stripe(raid5_conf_t *conf)
908{
909	struct stripe_head *sh;
910	sh = kmem_cache_alloc(conf->slab_cache, GFP_KERNEL);
911	if (!sh)
912		return 0;
913	memset(sh, 0, sizeof(*sh) + (conf->raid_disks-1)*sizeof(struct r5dev));
914	sh->raid_conf = conf;
915	spin_lock_init(&sh->lock);
916
917	if (grow_buffers(sh, conf->raid_disks)) {
918		shrink_buffers(sh, conf->raid_disks);
919		kmem_cache_free(conf->slab_cache, sh);
920		return 0;
921	}
922	sh->disks = conf->raid_disks;
923	/* we just created an active stripe so... */
924	atomic_set(&sh->count, 1);
925	atomic_inc(&conf->active_stripes);
926	INIT_LIST_HEAD(&sh->lru);
927	release_stripe(sh);
928	return 1;
929}
930
931static int grow_stripes(raid5_conf_t *conf, int num)
932{
933	struct kmem_cache *sc;
934	int devs = conf->raid_disks;
935
936	sprintf(conf->cache_name[0],
937		"raid%d-%s", conf->level, mdname(conf->mddev));
938	sprintf(conf->cache_name[1],
939		"raid%d-%s-alt", conf->level, mdname(conf->mddev));
940	conf->active_name = 0;
941	sc = kmem_cache_create(conf->cache_name[conf->active_name],
942			       sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
943			       0, 0, NULL);
944	if (!sc)
945		return 1;
946	conf->slab_cache = sc;
947	conf->pool_size = devs;
948	while (num--)
949		if (!grow_one_stripe(conf))
950			return 1;
951	return 0;
952}
953
954#ifdef CONFIG_MD_RAID5_RESHAPE
955static int resize_stripes(raid5_conf_t *conf, int newsize)
956{
957	/* Make all the stripes able to hold 'newsize' devices.
958	 * New slots in each stripe get 'page' set to a new page.
959	 *
960	 * This happens in stages:
961	 * 1/ create a new kmem_cache and allocate the required number of
962	 *    stripe_heads.
963	 * 2/ gather all the old stripe_heads and tranfer the pages across
964	 *    to the new stripe_heads.  This will have the side effect of
965	 *    freezing the array as once all stripe_heads have been collected,
966	 *    no IO will be possible.  Old stripe heads are freed once their
967	 *    pages have been transferred over, and the old kmem_cache is
968	 *    freed when all stripes are done.
969	 * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
970	 *    we simple return a failre status - no need to clean anything up.
971	 * 4/ allocate new pages for the new slots in the new stripe_heads.
972	 *    If this fails, we don't bother trying the shrink the
973	 *    stripe_heads down again, we just leave them as they are.
974	 *    As each stripe_head is processed the new one is released into
975	 *    active service.
976	 *
977	 * Once step2 is started, we cannot afford to wait for a write,
978	 * so we use GFP_NOIO allocations.
979	 */
980	struct stripe_head *osh, *nsh;
981	LIST_HEAD(newstripes);
982	struct disk_info *ndisks;
983	int err;
984	struct kmem_cache *sc;
985	int i;
986
987	if (newsize <= conf->pool_size)
988		return 0; /* never bother to shrink */
989
990	err = md_allow_write(conf->mddev);
991	if (err)
992		return err;
993
994	/* Step 1 */
995	sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
996			       sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
997			       0, 0, NULL);
998	if (!sc)
999		return -ENOMEM;
1000
1001	for (i = conf->max_nr_stripes; i; i--) {
1002		nsh = kmem_cache_alloc(sc, GFP_KERNEL);
1003		if (!nsh)
1004			break;
1005
1006		memset(nsh, 0, sizeof(*nsh) + (newsize-1)*sizeof(struct r5dev));
1007
1008		nsh->raid_conf = conf;
1009		spin_lock_init(&nsh->lock);
1010
1011		list_add(&nsh->lru, &newstripes);
1012	}
1013	if (i) {
1014		/* didn't get enough, give up */
1015		while (!list_empty(&newstripes)) {
1016			nsh = list_entry(newstripes.next, struct stripe_head, lru);
1017			list_del(&nsh->lru);
1018			kmem_cache_free(sc, nsh);
1019		}
1020		kmem_cache_destroy(sc);
1021		return -ENOMEM;
1022	}
1023	/* Step 2 - Must use GFP_NOIO now.
1024	 * OK, we have enough stripes, start collecting inactive
1025	 * stripes and copying them over
1026	 */
1027	list_for_each_entry(nsh, &newstripes, lru) {
1028		spin_lock_irq(&conf->device_lock);
1029		wait_event_lock_irq(conf->wait_for_stripe,
1030				    !list_empty(&conf->inactive_list),
1031				    conf->device_lock,
1032				    unplug_slaves(conf->mddev)
1033			);
1034		osh = get_free_stripe(conf);
1035		spin_unlock_irq(&conf->device_lock);
1036		atomic_set(&nsh->count, 1);
1037		for(i=0; i<conf->pool_size; i++)
1038			nsh->dev[i].page = osh->dev[i].page;
1039		for( ; i<newsize; i++)
1040			nsh->dev[i].page = NULL;
1041		kmem_cache_free(conf->slab_cache, osh);
1042	}
1043	kmem_cache_destroy(conf->slab_cache);
1044
1045	/* Step 3.
1046	 * At this point, we are holding all the stripes so the array
1047	 * is completely stalled, so now is a good time to resize
1048	 * conf->disks.
1049	 */
1050	ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1051	if (ndisks) {
1052		for (i=0; i<conf->raid_disks; i++)
1053			ndisks[i] = conf->disks[i];
1054		kfree(conf->disks);
1055		conf->disks = ndisks;
1056	} else
1057		err = -ENOMEM;
1058
1059	/* Step 4, return new stripes to service */
1060	while(!list_empty(&newstripes)) {
1061		nsh = list_entry(newstripes.next, struct stripe_head, lru);
1062		list_del_init(&nsh->lru);
1063		for (i=conf->raid_disks; i < newsize; i++)
1064			if (nsh->dev[i].page == NULL) {
1065				struct page *p = alloc_page(GFP_NOIO);
1066				nsh->dev[i].page = p;
1067				if (!p)
1068					err = -ENOMEM;
1069			}
1070		release_stripe(nsh);
1071	}
1072	/* critical section pass, GFP_NOIO no longer needed */
1073
1074	conf->slab_cache = sc;
1075	conf->active_name = 1-conf->active_name;
1076	conf->pool_size = newsize;
1077	return err;
1078}
1079#endif
1080
1081static int drop_one_stripe(raid5_conf_t *conf)
1082{
1083	struct stripe_head *sh;
1084
1085	spin_lock_irq(&conf->device_lock);
1086	sh = get_free_stripe(conf);
1087	spin_unlock_irq(&conf->device_lock);
1088	if (!sh)
1089		return 0;
1090	BUG_ON(atomic_read(&sh->count));
1091	shrink_buffers(sh, conf->pool_size);
1092	kmem_cache_free(conf->slab_cache, sh);
1093	atomic_dec(&conf->active_stripes);
1094	return 1;
1095}
1096
1097static void shrink_stripes(raid5_conf_t *conf)
1098{
1099	while (drop_one_stripe(conf))
1100		;
1101
1102	if (conf->slab_cache)
1103		kmem_cache_destroy(conf->slab_cache);
1104	conf->slab_cache = NULL;
1105}
1106
1107static void raid5_end_read_request(struct bio * bi, int error)
1108{
1109	struct stripe_head *sh = bi->bi_private;
1110	raid5_conf_t *conf = sh->raid_conf;
1111	int disks = sh->disks, i;
1112	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1113	char b[BDEVNAME_SIZE];
1114	mdk_rdev_t *rdev;
1115
1116
1117	for (i=0 ; i<disks; i++)
1118		if (bi == &sh->dev[i].req)
1119			break;
1120
1121	pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1122		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
1123		uptodate);
1124	if (i == disks) {
1125		BUG();
1126		return;
1127	}
1128
1129	if (uptodate) {
1130		set_bit(R5_UPTODATE, &sh->dev[i].flags);
1131		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1132			rdev = conf->disks[i].rdev;
1133			printk_rl(KERN_INFO "raid5:%s: read error corrected"
1134				  " (%lu sectors at %llu on %s)\n",
1135				  mdname(conf->mddev), STRIPE_SECTORS,
1136				  (unsigned long long)(sh->sector
1137						       + rdev->data_offset),
1138				  bdevname(rdev->bdev, b));
1139			clear_bit(R5_ReadError, &sh->dev[i].flags);
1140			clear_bit(R5_ReWrite, &sh->dev[i].flags);
1141		}
1142		if (atomic_read(&conf->disks[i].rdev->read_errors))
1143			atomic_set(&conf->disks[i].rdev->read_errors, 0);
1144	} else {
1145		const char *bdn = bdevname(conf->disks[i].rdev->bdev, b);
1146		int retry = 0;
1147		rdev = conf->disks[i].rdev;
1148
1149		clear_bit(R5_UPTODATE, &sh->dev[i].flags);
1150		atomic_inc(&rdev->read_errors);
1151		if (conf->mddev->degraded)
1152			printk_rl(KERN_WARNING
1153				  "raid5:%s: read error not correctable "
1154				  "(sector %llu on %s).\n",
1155				  mdname(conf->mddev),
1156				  (unsigned long long)(sh->sector
1157						       + rdev->data_offset),
1158				  bdn);
1159		else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
1160			/* Oh, no!!! */
1161			printk_rl(KERN_WARNING
1162				  "raid5:%s: read error NOT corrected!! "
1163				  "(sector %llu on %s).\n",
1164				  mdname(conf->mddev),
1165				  (unsigned long long)(sh->sector
1166						       + rdev->data_offset),
1167				  bdn);
1168		else if (atomic_read(&rdev->read_errors)
1169			 > conf->max_nr_stripes)
1170			printk(KERN_WARNING
1171			       "raid5:%s: Too many read errors, failing device %s.\n",
1172			       mdname(conf->mddev), bdn);
1173		else
1174			retry = 1;
1175		if (retry)
1176			set_bit(R5_ReadError, &sh->dev[i].flags);
1177		else {
1178			clear_bit(R5_ReadError, &sh->dev[i].flags);
1179			clear_bit(R5_ReWrite, &sh->dev[i].flags);
1180			md_error(conf->mddev, rdev);
1181		}
1182	}
1183	rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1184	clear_bit(R5_LOCKED, &sh->dev[i].flags);
1185	set_bit(STRIPE_HANDLE, &sh->state);
1186	release_stripe(sh);
1187}
1188
1189static void raid5_end_write_request(struct bio *bi, int error)
1190{
1191	struct stripe_head *sh = bi->bi_private;
1192	raid5_conf_t *conf = sh->raid_conf;
1193	int disks = sh->disks, i;
1194	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1195
1196	for (i=0 ; i<disks; i++)
1197		if (bi == &sh->dev[i].req)
1198			break;
1199
1200	pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1201		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
1202		uptodate);
1203	if (i == disks) {
1204		BUG();
1205		return;
1206	}
1207
1208	if (!uptodate)
1209		md_error(conf->mddev, conf->disks[i].rdev);
1210
1211	rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1212
1213	clear_bit(R5_LOCKED, &sh->dev[i].flags);
1214	set_bit(STRIPE_HANDLE, &sh->state);
1215	release_stripe(sh);
1216}
1217
1218
1219static sector_t compute_blocknr(struct stripe_head *sh, int i);
1220
1221static void raid5_build_block(struct stripe_head *sh, int i)
1222{
1223	struct r5dev *dev = &sh->dev[i];
1224
1225	bio_init(&dev->req);
1226	dev->req.bi_io_vec = &dev->vec;
1227	dev->req.bi_vcnt++;
1228	dev->req.bi_max_vecs++;
1229	dev->vec.bv_page = dev->page;
1230	dev->vec.bv_len = STRIPE_SIZE;
1231	dev->vec.bv_offset = 0;
1232
1233	dev->req.bi_sector = sh->sector;
1234	dev->req.bi_private = sh;
1235
1236	dev->flags = 0;
1237	dev->sector = compute_blocknr(sh, i);
1238}
1239
1240static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1241{
1242	char b[BDEVNAME_SIZE];
1243	raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
1244	pr_debug("raid5: error called\n");
1245
1246	if (!test_bit(Faulty, &rdev->flags)) {
1247		set_bit(MD_CHANGE_DEVS, &mddev->flags);
1248		if (test_and_clear_bit(In_sync, &rdev->flags)) {
1249			unsigned long flags;
1250			spin_lock_irqsave(&conf->device_lock, flags);
1251			mddev->degraded++;
1252			spin_unlock_irqrestore(&conf->device_lock, flags);
1253			/*
1254			 * if recovery was running, make sure it aborts.
1255			 */
1256			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1257		}
1258		set_bit(Faulty, &rdev->flags);
1259		printk(KERN_ALERT
1260		       "raid5: Disk failure on %s, disabling device.\n"
1261		       "raid5: Operation continuing on %d devices.\n",
1262		       bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded);
1263	}
1264}
1265
1266/*
1267 * Input: a 'big' sector number,
1268 * Output: index of the data and parity disk, and the sector # in them.
1269 */
1270static sector_t raid5_compute_sector(raid5_conf_t *conf, sector_t r_sector,
1271				     int previous, int *dd_idx,
1272				     struct stripe_head *sh)
1273{
1274	long stripe;
1275	unsigned long chunk_number;
1276	unsigned int chunk_offset;
1277	int pd_idx, qd_idx;
1278	int ddf_layout = 0;
1279	sector_t new_sector;
1280	int sectors_per_chunk = conf->chunk_size >> 9;
1281	int raid_disks = previous ? conf->previous_raid_disks
1282				  : conf->raid_disks;
1283	int data_disks = raid_disks - conf->max_degraded;
1284
1285	/* First compute the information on this sector */
1286
1287	/*
1288	 * Compute the chunk number and the sector offset inside the chunk
1289	 */
1290	chunk_offset = sector_div(r_sector, sectors_per_chunk);
1291	chunk_number = r_sector;
1292	BUG_ON(r_sector != chunk_number);
1293
1294	/*
1295	 * Compute the stripe number
1296	 */
1297	stripe = chunk_number / data_disks;
1298
1299	/*
1300	 * Compute the data disk and parity disk indexes inside the stripe
1301	 */
1302	*dd_idx = chunk_number % data_disks;
1303
1304	/*
1305	 * Select the parity disk based on the user selected algorithm.
1306	 */
1307	pd_idx = qd_idx = ~0;
1308	switch(conf->level) {
1309	case 4:
1310		pd_idx = data_disks;
1311		break;
1312	case 5:
1313		switch (conf->algorithm) {
1314		case ALGORITHM_LEFT_ASYMMETRIC:
1315			pd_idx = data_disks - stripe % raid_disks;
1316			if (*dd_idx >= pd_idx)
1317				(*dd_idx)++;
1318			break;
1319		case ALGORITHM_RIGHT_ASYMMETRIC:
1320			pd_idx = stripe % raid_disks;
1321			if (*dd_idx >= pd_idx)
1322				(*dd_idx)++;
1323			break;
1324		case ALGORITHM_LEFT_SYMMETRIC:
1325			pd_idx = data_disks - stripe % raid_disks;
1326			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1327			break;
1328		case ALGORITHM_RIGHT_SYMMETRIC:
1329			pd_idx = stripe % raid_disks;
1330			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1331			break;
1332		case ALGORITHM_PARITY_0:
1333			pd_idx = 0;
1334			(*dd_idx)++;
1335			break;
1336		case ALGORITHM_PARITY_N:
1337			pd_idx = data_disks;
1338			break;
1339		default:
1340			printk(KERN_ERR "raid5: unsupported algorithm %d\n",
1341				conf->algorithm);
1342			BUG();
1343		}
1344		break;
1345	case 6:
1346
1347		switch (conf->algorithm) {
1348		case ALGORITHM_LEFT_ASYMMETRIC:
1349			pd_idx = raid_disks - 1 - (stripe % raid_disks);
1350			qd_idx = pd_idx + 1;
1351			if (pd_idx == raid_disks-1) {
1352				(*dd_idx)++;	/* Q D D D P */
1353				qd_idx = 0;
1354			} else if (*dd_idx >= pd_idx)
1355				(*dd_idx) += 2; /* D D P Q D */
1356			break;
1357		case ALGORITHM_RIGHT_ASYMMETRIC:
1358			pd_idx = stripe % raid_disks;
1359			qd_idx = pd_idx + 1;
1360			if (pd_idx == raid_disks-1) {
1361				(*dd_idx)++;	/* Q D D D P */
1362				qd_idx = 0;
1363			} else if (*dd_idx >= pd_idx)
1364				(*dd_idx) += 2; /* D D P Q D */
1365			break;
1366		case ALGORITHM_LEFT_SYMMETRIC:
1367			pd_idx = raid_disks - 1 - (stripe % raid_disks);
1368			qd_idx = (pd_idx + 1) % raid_disks;
1369			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1370			break;
1371		case ALGORITHM_RIGHT_SYMMETRIC:
1372			pd_idx = stripe % raid_disks;
1373			qd_idx = (pd_idx + 1) % raid_disks;
1374			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1375			break;
1376
1377		case ALGORITHM_PARITY_0:
1378			pd_idx = 0;
1379			qd_idx = 1;
1380			(*dd_idx) += 2;
1381			break;
1382		case ALGORITHM_PARITY_N:
1383			pd_idx = data_disks;
1384			qd_idx = data_disks + 1;
1385			break;
1386
1387		case ALGORITHM_ROTATING_ZERO_RESTART:
1388			/* Exactly the same as RIGHT_ASYMMETRIC, but or
1389			 * of blocks for computing Q is different.
1390			 */
1391			pd_idx = stripe % raid_disks;
1392			qd_idx = pd_idx + 1;
1393			if (pd_idx == raid_disks-1) {
1394				(*dd_idx)++;	/* Q D D D P */
1395				qd_idx = 0;
1396			} else if (*dd_idx >= pd_idx)
1397				(*dd_idx) += 2; /* D D P Q D */
1398			ddf_layout = 1;
1399			break;
1400
1401		case ALGORITHM_ROTATING_N_RESTART:
1402			/* Same a left_asymmetric, by first stripe is
1403			 * D D D P Q  rather than
1404			 * Q D D D P
1405			 */
1406			pd_idx = raid_disks - 1 - ((stripe + 1) % raid_disks);
1407			qd_idx = pd_idx + 1;
1408			if (pd_idx == raid_disks-1) {
1409				(*dd_idx)++;	/* Q D D D P */
1410				qd_idx = 0;
1411			} else if (*dd_idx >= pd_idx)
1412				(*dd_idx) += 2; /* D D P Q D */
1413			ddf_layout = 1;
1414			break;
1415
1416		case ALGORITHM_ROTATING_N_CONTINUE:
1417			/* Same as left_symmetric but Q is before P */
1418			pd_idx = raid_disks - 1 - (stripe % raid_disks);
1419			qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
1420			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1421			ddf_layout = 1;
1422			break;
1423
1424		case ALGORITHM_LEFT_ASYMMETRIC_6:
1425			/* RAID5 left_asymmetric, with Q on last device */
1426			pd_idx = data_disks - stripe % (raid_disks-1);
1427			if (*dd_idx >= pd_idx)
1428				(*dd_idx)++;
1429			qd_idx = raid_disks - 1;
1430			break;
1431
1432		case ALGORITHM_RIGHT_ASYMMETRIC_6:
1433			pd_idx = stripe % (raid_disks-1);
1434			if (*dd_idx >= pd_idx)
1435				(*dd_idx)++;
1436			qd_idx = raid_disks - 1;
1437			break;
1438
1439		case ALGORITHM_LEFT_SYMMETRIC_6:
1440			pd_idx = data_disks - stripe % (raid_disks-1);
1441			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
1442			qd_idx = raid_disks - 1;
1443			break;
1444
1445		case ALGORITHM_RIGHT_SYMMETRIC_6:
1446			pd_idx = stripe % (raid_disks-1);
1447			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
1448			qd_idx = raid_disks - 1;
1449			break;
1450
1451		case ALGORITHM_PARITY_0_6:
1452			pd_idx = 0;
1453			(*dd_idx)++;
1454			qd_idx = raid_disks - 1;
1455			break;
1456
1457
1458		default:
1459			printk(KERN_CRIT "raid6: unsupported algorithm %d\n",
1460			       conf->algorithm);
1461			BUG();
1462		}
1463		break;
1464	}
1465
1466	if (sh) {
1467		sh->pd_idx = pd_idx;
1468		sh->qd_idx = qd_idx;
1469		sh->ddf_layout = ddf_layout;
1470	}
1471	/*
1472	 * Finally, compute the new sector number
1473	 */
1474	new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
1475	return new_sector;
1476}
1477
1478
1479static sector_t compute_blocknr(struct stripe_head *sh, int i)
1480{
1481	raid5_conf_t *conf = sh->raid_conf;
1482	int raid_disks = sh->disks;
1483	int data_disks = raid_disks - conf->max_degraded;
1484	sector_t new_sector = sh->sector, check;
1485	int sectors_per_chunk = conf->chunk_size >> 9;
1486	sector_t stripe;
1487	int chunk_offset;
1488	int chunk_number, dummy1, dd_idx = i;
1489	sector_t r_sector;
1490	struct stripe_head sh2;
1491
1492
1493	chunk_offset = sector_div(new_sector, sectors_per_chunk);
1494	stripe = new_sector;
1495	BUG_ON(new_sector != stripe);
1496
1497	if (i == sh->pd_idx)
1498		return 0;
1499	switch(conf->level) {
1500	case 4: break;
1501	case 5:
1502		switch (conf->algorithm) {
1503		case ALGORITHM_LEFT_ASYMMETRIC:
1504		case ALGORITHM_RIGHT_ASYMMETRIC:
1505			if (i > sh->pd_idx)
1506				i--;
1507			break;
1508		case ALGORITHM_LEFT_SYMMETRIC:
1509		case ALGORITHM_RIGHT_SYMMETRIC:
1510			if (i < sh->pd_idx)
1511				i += raid_disks;
1512			i -= (sh->pd_idx + 1);
1513			break;
1514		case ALGORITHM_PARITY_0:
1515			i -= 1;
1516			break;
1517		case ALGORITHM_PARITY_N:
1518			break;
1519		default:
1520			printk(KERN_ERR "raid5: unsupported algorithm %d\n",
1521			       conf->algorithm);
1522			BUG();
1523		}
1524		break;
1525	case 6:
1526		if (i == sh->qd_idx)
1527			return 0; /* It is the Q disk */
1528		switch (conf->algorithm) {
1529		case ALGORITHM_LEFT_ASYMMETRIC:
1530		case ALGORITHM_RIGHT_ASYMMETRIC:
1531		case ALGORITHM_ROTATING_ZERO_RESTART:
1532		case ALGORITHM_ROTATING_N_RESTART:
1533			if (sh->pd_idx == raid_disks-1)
1534				i--;	/* Q D D D P */
1535			else if (i > sh->pd_idx)
1536				i -= 2; /* D D P Q D */
1537			break;
1538		case ALGORITHM_LEFT_SYMMETRIC:
1539		case ALGORITHM_RIGHT_SYMMETRIC:
1540			if (sh->pd_idx == raid_disks-1)
1541				i--; /* Q D D D P */
1542			else {
1543				/* D D P Q D */
1544				if (i < sh->pd_idx)
1545					i += raid_disks;
1546				i -= (sh->pd_idx + 2);
1547			}
1548			break;
1549		case ALGORITHM_PARITY_0:
1550			i -= 2;
1551			break;
1552		case ALGORITHM_PARITY_N:
1553			break;
1554		case ALGORITHM_ROTATING_N_CONTINUE:
1555			if (sh->pd_idx == 0)
1556				i--;	/* P D D D Q */
1557			else if (i > sh->pd_idx)
1558				i -= 2; /* D D Q P D */
1559			break;
1560		case ALGORITHM_LEFT_ASYMMETRIC_6:
1561		case ALGORITHM_RIGHT_ASYMMETRIC_6:
1562			if (i > sh->pd_idx)
1563				i--;
1564			break;
1565		case ALGORITHM_LEFT_SYMMETRIC_6:
1566		case ALGORITHM_RIGHT_SYMMETRIC_6:
1567			if (i < sh->pd_idx)
1568				i += data_disks + 1;
1569			i -= (sh->pd_idx + 1);
1570			break;
1571		case ALGORITHM_PARITY_0_6:
1572			i -= 1;
1573			break;
1574		default:
1575			printk(KERN_CRIT "raid6: unsupported algorithm %d\n",
1576			       conf->algorithm);
1577			BUG();
1578		}
1579		break;
1580	}
1581
1582	chunk_number = stripe * data_disks + i;
1583	r_sector = (sector_t)chunk_number * sectors_per_chunk + chunk_offset;
1584
1585	check = raid5_compute_sector(conf, r_sector,
1586				     (raid_disks != conf->raid_disks),
1587				     &dummy1, &sh2);
1588	if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
1589		|| sh2.qd_idx != sh->qd_idx) {
1590		printk(KERN_ERR "compute_blocknr: map not correct\n");
1591		return 0;
1592	}
1593	return r_sector;
1594}
1595
1596
1597
1598/*
1599 * Copy data between a page in the stripe cache, and one or more bion
1600 * The page could align with the middle of the bio, or there could be
1601 * several bion, each with several bio_vecs, which cover part of the page
1602 * Multiple bion are linked together on bi_next.  There may be extras
1603 * at the end of this list.  We ignore them.
1604 */
1605static void copy_data(int frombio, struct bio *bio,
1606		     struct page *page,
1607		     sector_t sector)
1608{
1609	char *pa = page_address(page);
1610	struct bio_vec *bvl;
1611	int i;
1612	int page_offset;
1613
1614	if (bio->bi_sector >= sector)
1615		page_offset = (signed)(bio->bi_sector - sector) * 512;
1616	else
1617		page_offset = (signed)(sector - bio->bi_sector) * -512;
1618	bio_for_each_segment(bvl, bio, i) {
1619		int len = bio_iovec_idx(bio,i)->bv_len;
1620		int clen;
1621		int b_offset = 0;
1622
1623		if (page_offset < 0) {
1624			b_offset = -page_offset;
1625			page_offset += b_offset;
1626			len -= b_offset;
1627		}
1628
1629		if (len > 0 && page_offset + len > STRIPE_SIZE)
1630			clen = STRIPE_SIZE - page_offset;
1631		else clen = len;
1632
1633		if (clen > 0) {
1634			char *ba = __bio_kmap_atomic(bio, i, KM_USER0);
1635			if (frombio)
1636				memcpy(pa+page_offset, ba+b_offset, clen);
1637			else
1638				memcpy(ba+b_offset, pa+page_offset, clen);
1639			__bio_kunmap_atomic(ba, KM_USER0);
1640		}
1641		if (clen < len) /* hit end of page */
1642			break;
1643		page_offset +=  len;
1644	}
1645}
1646
1647#define check_xor()	do {						  \
1648				if (count == MAX_XOR_BLOCKS) {		  \
1649				xor_blocks(count, STRIPE_SIZE, dest, ptr);\
1650				count = 0;				  \
1651			   }						  \
1652			} while(0)
1653
1654static void compute_parity6(struct stripe_head *sh, int method)
1655{
1656	raid5_conf_t *conf = sh->raid_conf;
1657	int i, pd_idx, qd_idx, d0_idx, disks = sh->disks, count;
1658	int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1659	struct bio *chosen;
1660	/**** FIX THIS: This could be very bad if disks is close to 256 ****/
1661	void *ptrs[syndrome_disks+2];
1662
1663	pd_idx = sh->pd_idx;
1664	qd_idx = sh->qd_idx;
1665	d0_idx = raid6_d0(sh);
1666
1667	pr_debug("compute_parity, stripe %llu, method %d\n",
1668		(unsigned long long)sh->sector, method);
1669
1670	switch(method) {
1671	case READ_MODIFY_WRITE:
1672		BUG();		/* READ_MODIFY_WRITE N/A for RAID-6 */
1673	case RECONSTRUCT_WRITE:
1674		for (i= disks; i-- ;)
1675			if ( i != pd_idx && i != qd_idx && sh->dev[i].towrite ) {
1676				chosen = sh->dev[i].towrite;
1677				sh->dev[i].towrite = NULL;
1678
1679				if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1680					wake_up(&conf->wait_for_overlap);
1681
1682				BUG_ON(sh->dev[i].written);
1683				sh->dev[i].written = chosen;
1684			}
1685		break;
1686	case CHECK_PARITY:
1687		BUG();		/* Not implemented yet */
1688	}
1689
1690	for (i = disks; i--;)
1691		if (sh->dev[i].written) {
1692			sector_t sector = sh->dev[i].sector;
1693			struct bio *wbi = sh->dev[i].written;
1694			while (wbi && wbi->bi_sector < sector + STRIPE_SECTORS) {
1695				copy_data(1, wbi, sh->dev[i].page, sector);
1696				wbi = r5_next_bio(wbi, sector);
1697			}
1698
1699			set_bit(R5_LOCKED, &sh->dev[i].flags);
1700			set_bit(R5_UPTODATE, &sh->dev[i].flags);
1701		}
1702
1703	/* Note that unlike RAID-5, the ordering of the disks matters greatly.*/
1704
1705	for (i = 0; i < disks; i++)
1706		ptrs[i] = (void *)raid6_empty_zero_page;
1707
1708	count = 0;
1709	i = d0_idx;
1710	do {
1711		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1712
1713		ptrs[slot] = page_address(sh->dev[i].page);
1714		if (slot < syndrome_disks &&
1715		    !test_bit(R5_UPTODATE, &sh->dev[i].flags)) {
1716			printk(KERN_ERR "block %d/%d not uptodate "
1717			       "on parity calc\n", i, count);
1718			BUG();
1719		}
1720
1721		i = raid6_next_disk(i, disks);
1722	} while (i != d0_idx);
1723	BUG_ON(count != syndrome_disks);
1724
1725	raid6_call.gen_syndrome(syndrome_disks+2, STRIPE_SIZE, ptrs);
1726
1727	switch(method) {
1728	case RECONSTRUCT_WRITE:
1729		set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1730		set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags);
1731		set_bit(R5_LOCKED,   &sh->dev[pd_idx].flags);
1732		set_bit(R5_LOCKED,   &sh->dev[qd_idx].flags);
1733		break;
1734	case UPDATE_PARITY:
1735		set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1736		set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags);
1737		break;
1738	}
1739}
1740
1741
1742/* Compute one missing block */
1743static void compute_block_1(struct stripe_head *sh, int dd_idx, int nozero)
1744{
1745	int i, count, disks = sh->disks;
1746	void *ptr[MAX_XOR_BLOCKS], *dest, *p;
1747	int qd_idx = sh->qd_idx;
1748
1749	pr_debug("compute_block_1, stripe %llu, idx %d\n",
1750		(unsigned long long)sh->sector, dd_idx);
1751
1752	if ( dd_idx == qd_idx ) {
1753		/* We're actually computing the Q drive */
1754		compute_parity6(sh, UPDATE_PARITY);
1755	} else {
1756		dest = page_address(sh->dev[dd_idx].page);
1757		if (!nozero) memset(dest, 0, STRIPE_SIZE);
1758		count = 0;
1759		for (i = disks ; i--; ) {
1760			if (i == dd_idx || i == qd_idx)
1761				continue;
1762			p = page_address(sh->dev[i].page);
1763			if (test_bit(R5_UPTODATE, &sh->dev[i].flags))
1764				ptr[count++] = p;
1765			else
1766				printk("compute_block() %d, stripe %llu, %d"
1767				       " not present\n", dd_idx,
1768				       (unsigned long long)sh->sector, i);
1769
1770			check_xor();
1771		}
1772		if (count)
1773			xor_blocks(count, STRIPE_SIZE, dest, ptr);
1774		if (!nozero) set_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
1775		else clear_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
1776	}
1777}
1778
1779/* Compute two missing blocks */
1780static void compute_block_2(struct stripe_head *sh, int dd_idx1, int dd_idx2)
1781{
1782	int i, count, disks = sh->disks;
1783	int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1784	int d0_idx = raid6_d0(sh);
1785	int faila = -1, failb = -1;
1786	/**** FIX THIS: This could be very bad if disks is close to 256 ****/
1787	void *ptrs[syndrome_disks+2];
1788
1789	for (i = 0; i < disks ; i++)
1790		ptrs[i] = (void *)raid6_empty_zero_page;
1791	count = 0;
1792	i = d0_idx;
1793	do {
1794		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1795
1796		ptrs[slot] = page_address(sh->dev[i].page);
1797
1798		if (i == dd_idx1)
1799			faila = slot;
1800		if (i == dd_idx2)
1801			failb = slot;
1802		i = raid6_next_disk(i, disks);
1803	} while (i != d0_idx);
1804	BUG_ON(count != syndrome_disks);
1805
1806	BUG_ON(faila == failb);
1807	if ( failb < faila ) { int tmp = faila; faila = failb; failb = tmp; }
1808
1809	pr_debug("compute_block_2, stripe %llu, idx %d,%d (%d,%d)\n",
1810		 (unsigned long long)sh->sector, dd_idx1, dd_idx2,
1811		 faila, failb);
1812
1813	if (failb == syndrome_disks+1) {
1814		/* Q disk is one of the missing disks */
1815		if (faila == syndrome_disks) {
1816			/* Missing P+Q, just recompute */
1817			compute_parity6(sh, UPDATE_PARITY);
1818			return;
1819		} else {
1820			/* We're missing D+Q; recompute D from P */
1821			compute_block_1(sh, ((dd_idx1 == sh->qd_idx) ?
1822					     dd_idx2 : dd_idx1),
1823					0);
1824			compute_parity6(sh, UPDATE_PARITY); /* Is this necessary? */
1825			return;
1826		}
1827	}
1828
1829	/* We're missing D+P or D+D; */
1830	if (failb == syndrome_disks) {
1831		/* We're missing D+P. */
1832		raid6_datap_recov(syndrome_disks+2, STRIPE_SIZE, faila, ptrs);
1833	} else {
1834		/* We're missing D+D. */
1835		raid6_2data_recov(syndrome_disks+2, STRIPE_SIZE, faila, failb,
1836				  ptrs);
1837	}
1838
1839	/* Both the above update both missing blocks */
1840	set_bit(R5_UPTODATE, &sh->dev[dd_idx1].flags);
1841	set_bit(R5_UPTODATE, &sh->dev[dd_idx2].flags);
1842}
1843
1844static void
1845schedule_reconstruction5(struct stripe_head *sh, struct stripe_head_state *s,
1846			 int rcw, int expand)
1847{
1848	int i, pd_idx = sh->pd_idx, disks = sh->disks;
1849
1850	if (rcw) {
1851		/* if we are not expanding this is a proper write request, and
1852		 * there will be bios with new data to be drained into the
1853		 * stripe cache
1854		 */
1855		if (!expand) {
1856			sh->reconstruct_state = reconstruct_state_drain_run;
1857			set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
1858		} else
1859			sh->reconstruct_state = reconstruct_state_run;
1860
1861		set_bit(STRIPE_OP_POSTXOR, &s->ops_request);
1862
1863		for (i = disks; i--; ) {
1864			struct r5dev *dev = &sh->dev[i];
1865
1866			if (dev->towrite) {
1867				set_bit(R5_LOCKED, &dev->flags);
1868				set_bit(R5_Wantdrain, &dev->flags);
1869				if (!expand)
1870					clear_bit(R5_UPTODATE, &dev->flags);
1871				s->locked++;
1872			}
1873		}
1874		if (s->locked + 1 == disks)
1875			if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
1876				atomic_inc(&sh->raid_conf->pending_full_writes);
1877	} else {
1878		BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
1879			test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
1880
1881		sh->reconstruct_state = reconstruct_state_prexor_drain_run;
1882		set_bit(STRIPE_OP_PREXOR, &s->ops_request);
1883		set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
1884		set_bit(STRIPE_OP_POSTXOR, &s->ops_request);
1885
1886		for (i = disks; i--; ) {
1887			struct r5dev *dev = &sh->dev[i];
1888			if (i == pd_idx)
1889				continue;
1890
1891			if (dev->towrite &&
1892			    (test_bit(R5_UPTODATE, &dev->flags) ||
1893			     test_bit(R5_Wantcompute, &dev->flags))) {
1894				set_bit(R5_Wantdrain, &dev->flags);
1895				set_bit(R5_LOCKED, &dev->flags);
1896				clear_bit(R5_UPTODATE, &dev->flags);
1897				s->locked++;
1898			}
1899		}
1900	}
1901
1902	/* keep the parity disk locked while asynchronous operations
1903	 * are in flight
1904	 */
1905	set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
1906	clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1907	s->locked++;
1908
1909	pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
1910		__func__, (unsigned long long)sh->sector,
1911		s->locked, s->ops_request);
1912}
1913
1914/*
1915 * Each stripe/dev can have one or more bion attached.
1916 * toread/towrite point to the first in a chain.
1917 * The bi_next chain must be in order.
1918 */
1919static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
1920{
1921	struct bio **bip;
1922	raid5_conf_t *conf = sh->raid_conf;
1923	int firstwrite=0;
1924
1925	pr_debug("adding bh b#%llu to stripe s#%llu\n",
1926		(unsigned long long)bi->bi_sector,
1927		(unsigned long long)sh->sector);
1928
1929
1930	spin_lock(&sh->lock);
1931	spin_lock_irq(&conf->device_lock);
1932	if (forwrite) {
1933		bip = &sh->dev[dd_idx].towrite;
1934		if (*bip == NULL && sh->dev[dd_idx].written == NULL)
1935			firstwrite = 1;
1936	} else
1937		bip = &sh->dev[dd_idx].toread;
1938	while (*bip && (*bip)->bi_sector < bi->bi_sector) {
1939		if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
1940			goto overlap;
1941		bip = & (*bip)->bi_next;
1942	}
1943	if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
1944		goto overlap;
1945
1946	BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
1947	if (*bip)
1948		bi->bi_next = *bip;
1949	*bip = bi;
1950	bi->bi_phys_segments++;
1951	spin_unlock_irq(&conf->device_lock);
1952	spin_unlock(&sh->lock);
1953
1954	pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
1955		(unsigned long long)bi->bi_sector,
1956		(unsigned long long)sh->sector, dd_idx);
1957
1958	if (conf->mddev->bitmap && firstwrite) {
1959		bitmap_startwrite(conf->mddev->bitmap, sh->sector,
1960				  STRIPE_SECTORS, 0);
1961		sh->bm_seq = conf->seq_flush+1;
1962		set_bit(STRIPE_BIT_DELAY, &sh->state);
1963	}
1964
1965	if (forwrite) {
1966		/* check if page is covered */
1967		sector_t sector = sh->dev[dd_idx].sector;
1968		for (bi=sh->dev[dd_idx].towrite;
1969		     sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
1970			     bi && bi->bi_sector <= sector;
1971		     bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
1972			if (bi->bi_sector + (bi->bi_size>>9) >= sector)
1973				sector = bi->bi_sector + (bi->bi_size>>9);
1974		}
1975		if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
1976			set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
1977	}
1978	return 1;
1979
1980 overlap:
1981	set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
1982	spin_unlock_irq(&conf->device_lock);
1983	spin_unlock(&sh->lock);
1984	return 0;
1985}
1986
1987static void end_reshape(raid5_conf_t *conf);
1988
1989static int page_is_zero(struct page *p)
1990{
1991	char *a = page_address(p);
1992	return ((*(u32*)a) == 0 &&
1993		memcmp(a, a+4, STRIPE_SIZE-4)==0);
1994}
1995
1996static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
1997			    struct stripe_head *sh)
1998{
1999	int sectors_per_chunk = conf->chunk_size >> 9;
2000	int dd_idx;
2001	int chunk_offset = sector_div(stripe, sectors_per_chunk);
2002	int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2003
2004	raid5_compute_sector(conf,
2005			     stripe * (disks - conf->max_degraded)
2006			     *sectors_per_chunk + chunk_offset,
2007			     previous,
2008			     &dd_idx, sh);
2009}
2010
2011static void
2012handle_failed_stripe(raid5_conf_t *conf, struct stripe_head *sh,
2013				struct stripe_head_state *s, int disks,
2014				struct bio **return_bi)
2015{
2016	int i;
2017	for (i = disks; i--; ) {
2018		struct bio *bi;
2019		int bitmap_end = 0;
2020
2021		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2022			mdk_rdev_t *rdev;
2023			rcu_read_lock();
2024			rdev = rcu_dereference(conf->disks[i].rdev);
2025			if (rdev && test_bit(In_sync, &rdev->flags))
2026				/* multiple read failures in one stripe */
2027				md_error(conf->mddev, rdev);
2028			rcu_read_unlock();
2029		}
2030		spin_lock_irq(&conf->device_lock);
2031		/* fail all writes first */
2032		bi = sh->dev[i].towrite;
2033		sh->dev[i].towrite = NULL;
2034		if (bi) {
2035			s->to_write--;
2036			bitmap_end = 1;
2037		}
2038
2039		if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2040			wake_up(&conf->wait_for_overlap);
2041
2042		while (bi && bi->bi_sector <
2043			sh->dev[i].sector + STRIPE_SECTORS) {
2044			struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2045			clear_bit(BIO_UPTODATE, &bi->bi_flags);
2046			if (!raid5_dec_bi_phys_segments(bi)) {
2047				md_write_end(conf->mddev);
2048				bi->bi_next = *return_bi;
2049				*return_bi = bi;
2050			}
2051			bi = nextbi;
2052		}
2053		/* and fail all 'written' */
2054		bi = sh->dev[i].written;
2055		sh->dev[i].written = NULL;
2056		if (bi) bitmap_end = 1;
2057		while (bi && bi->bi_sector <
2058		       sh->dev[i].sector + STRIPE_SECTORS) {
2059			struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
2060			clear_bit(BIO_UPTODATE, &bi->bi_flags);
2061			if (!raid5_dec_bi_phys_segments(bi)) {
2062				md_write_end(conf->mddev);
2063				bi->bi_next = *return_bi;
2064				*return_bi = bi;
2065			}
2066			bi = bi2;
2067		}
2068
2069		/* fail any reads if this device is non-operational and
2070		 * the data has not reached the cache yet.
2071		 */
2072		if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
2073		    (!test_bit(R5_Insync, &sh->dev[i].flags) ||
2074		      test_bit(R5_ReadError, &sh->dev[i].flags))) {
2075			bi = sh->dev[i].toread;
2076			sh->dev[i].toread = NULL;
2077			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2078				wake_up(&conf->wait_for_overlap);
2079			if (bi) s->to_read--;
2080			while (bi && bi->bi_sector <
2081			       sh->dev[i].sector + STRIPE_SECTORS) {
2082				struct bio *nextbi =
2083					r5_next_bio(bi, sh->dev[i].sector);
2084				clear_bit(BIO_UPTODATE, &bi->bi_flags);
2085				if (!raid5_dec_bi_phys_segments(bi)) {
2086					bi->bi_next = *return_bi;
2087					*return_bi = bi;
2088				}
2089				bi = nextbi;
2090			}
2091		}
2092		spin_unlock_irq(&conf->device_lock);
2093		if (bitmap_end)
2094			bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2095					STRIPE_SECTORS, 0, 0);
2096	}
2097
2098	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2099		if (atomic_dec_and_test(&conf->pending_full_writes))
2100			md_wakeup_thread(conf->mddev->thread);
2101}
2102
2103/* fetch_block5 - checks the given member device to see if its data needs
2104 * to be read or computed to satisfy a request.
2105 *
2106 * Returns 1 when no more member devices need to be checked, otherwise returns
2107 * 0 to tell the loop in handle_stripe_fill5 to continue
2108 */
2109static int fetch_block5(struct stripe_head *sh, struct stripe_head_state *s,
2110			int disk_idx, int disks)
2111{
2112	struct r5dev *dev = &sh->dev[disk_idx];
2113	struct r5dev *failed_dev = &sh->dev[s->failed_num];
2114
2115	/* is the data in this block needed, and can we get it? */
2116	if (!test_bit(R5_LOCKED, &dev->flags) &&
2117	    !test_bit(R5_UPTODATE, &dev->flags) &&
2118	    (dev->toread ||
2119	     (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2120	     s->syncing || s->expanding ||
2121	     (s->failed &&
2122	      (failed_dev->toread ||
2123	       (failed_dev->towrite &&
2124		!test_bit(R5_OVERWRITE, &failed_dev->flags)))))) {
2125		/* We would like to get this block, possibly by computing it,
2126		 * otherwise read it if the backing disk is insync
2127		 */
2128		if ((s->uptodate == disks - 1) &&
2129		    (s->failed && disk_idx == s->failed_num)) {
2130			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2131			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2132			set_bit(R5_Wantcompute, &dev->flags);
2133			sh->ops.target = disk_idx;
2134			s->req_compute = 1;
2135			/* Careful: from this point on 'uptodate' is in the eye
2136			 * of raid5_run_ops which services 'compute' operations
2137			 * before writes. R5_Wantcompute flags a block that will
2138			 * be R5_UPTODATE by the time it is needed for a
2139			 * subsequent operation.
2140			 */
2141			s->uptodate++;
2142			return 1; /* uptodate + compute == disks */
2143		} else if (test_bit(R5_Insync, &dev->flags)) {
2144			set_bit(R5_LOCKED, &dev->flags);
2145			set_bit(R5_Wantread, &dev->flags);
2146			s->locked++;
2147			pr_debug("Reading block %d (sync=%d)\n", disk_idx,
2148				s->syncing);
2149		}
2150	}
2151
2152	return 0;
2153}
2154
2155/**
2156 * handle_stripe_fill5 - read or compute data to satisfy pending requests.
2157 */
2158static void handle_stripe_fill5(struct stripe_head *sh,
2159			struct stripe_head_state *s, int disks)
2160{
2161	int i;
2162
2163	/* look for blocks to read/compute, skip this if a compute
2164	 * is already in flight, or if the stripe contents are in the
2165	 * midst of changing due to a write
2166	 */
2167	if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2168	    !sh->reconstruct_state)
2169		for (i = disks; i--; )
2170			if (fetch_block5(sh, s, i, disks))
2171				break;
2172	set_bit(STRIPE_HANDLE, &sh->state);
2173}
2174
2175static void handle_stripe_fill6(struct stripe_head *sh,
2176			struct stripe_head_state *s, struct r6_state *r6s,
2177			int disks)
2178{
2179	int i;
2180	for (i = disks; i--; ) {
2181		struct r5dev *dev = &sh->dev[i];
2182		if (!test_bit(R5_LOCKED, &dev->flags) &&
2183		    !test_bit(R5_UPTODATE, &dev->flags) &&
2184		    (dev->toread || (dev->towrite &&
2185		     !test_bit(R5_OVERWRITE, &dev->flags)) ||
2186		     s->syncing || s->expanding ||
2187		     (s->failed >= 1 &&
2188		      (sh->dev[r6s->failed_num[0]].toread ||
2189		       s->to_write)) ||
2190		     (s->failed >= 2 &&
2191		      (sh->dev[r6s->failed_num[1]].toread ||
2192		       s->to_write)))) {
2193			/* we would like to get this block, possibly
2194			 * by computing it, but we might not be able to
2195			 */
2196			if ((s->uptodate == disks - 1) &&
2197			    (s->failed && (i == r6s->failed_num[0] ||
2198					   i == r6s->failed_num[1]))) {
2199				pr_debug("Computing stripe %llu block %d\n",
2200				       (unsigned long long)sh->sector, i);
2201				compute_block_1(sh, i, 0);
2202				s->uptodate++;
2203			} else if ( s->uptodate == disks-2 && s->failed >= 2 ) {
2204				/* Computing 2-failure is *very* expensive; only
2205				 * do it if failed >= 2
2206				 */
2207				int other;
2208				for (other = disks; other--; ) {
2209					if (other == i)
2210						continue;
2211					if (!test_bit(R5_UPTODATE,
2212					      &sh->dev[other].flags))
2213						break;
2214				}
2215				BUG_ON(other < 0);
2216				pr_debug("Computing stripe %llu blocks %d,%d\n",
2217				       (unsigned long long)sh->sector,
2218				       i, other);
2219				compute_block_2(sh, i, other);
2220				s->uptodate += 2;
2221			} else if (test_bit(R5_Insync, &dev->flags)) {
2222				set_bit(R5_LOCKED, &dev->flags);
2223				set_bit(R5_Wantread, &dev->flags);
2224				s->locked++;
2225				pr_debug("Reading block %d (sync=%d)\n",
2226					i, s->syncing);
2227			}
2228		}
2229	}
2230	set_bit(STRIPE_HANDLE, &sh->state);
2231}
2232
2233
2234/* handle_stripe_clean_event
2235 * any written block on an uptodate or failed drive can be returned.
2236 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2237 * never LOCKED, so we don't need to test 'failed' directly.
2238 */
2239static void handle_stripe_clean_event(raid5_conf_t *conf,
2240	struct stripe_head *sh, int disks, struct bio **return_bi)
2241{
2242	int i;
2243	struct r5dev *dev;
2244
2245	for (i = disks; i--; )
2246		if (sh->dev[i].written) {
2247			dev = &sh->dev[i];
2248			if (!test_bit(R5_LOCKED, &dev->flags) &&
2249				test_bit(R5_UPTODATE, &dev->flags)) {
2250				/* We can return any write requests */
2251				struct bio *wbi, *wbi2;
2252				int bitmap_end = 0;
2253				pr_debug("Return write for disc %d\n", i);
2254				spin_lock_irq(&conf->device_lock);
2255				wbi = dev->written;
2256				dev->written = NULL;
2257				while (wbi && wbi->bi_sector <
2258					dev->sector + STRIPE_SECTORS) {
2259					wbi2 = r5_next_bio(wbi, dev->sector);
2260					if (!raid5_dec_bi_phys_segments(wbi)) {
2261						md_write_end(conf->mddev);
2262						wbi->bi_next = *return_bi;
2263						*return_bi = wbi;
2264					}
2265					wbi = wbi2;
2266				}
2267				if (dev->towrite == NULL)
2268					bitmap_end = 1;
2269				spin_unlock_irq(&conf->device_lock);
2270				if (bitmap_end)
2271					bitmap_endwrite(conf->mddev->bitmap,
2272							sh->sector,
2273							STRIPE_SECTORS,
2274					 !test_bit(STRIPE_DEGRADED, &sh->state),
2275							0);
2276			}
2277		}
2278
2279	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2280		if (atomic_dec_and_test(&conf->pending_full_writes))
2281			md_wakeup_thread(conf->mddev->thread);
2282}
2283
2284static void handle_stripe_dirtying5(raid5_conf_t *conf,
2285		struct stripe_head *sh,	struct stripe_head_state *s, int disks)
2286{
2287	int rmw = 0, rcw = 0, i;
2288	for (i = disks; i--; ) {
2289		/* would I have to read this buffer for read_modify_write */
2290		struct r5dev *dev = &sh->dev[i];
2291		if ((dev->towrite || i == sh->pd_idx) &&
2292		    !test_bit(R5_LOCKED, &dev->flags) &&
2293		    !(test_bit(R5_UPTODATE, &dev->flags) ||
2294		      test_bit(R5_Wantcompute, &dev->flags))) {
2295			if (test_bit(R5_Insync, &dev->flags))
2296				rmw++;
2297			else
2298				rmw += 2*disks;  /* cannot read it */
2299		}
2300		/* Would I have to read this buffer for reconstruct_write */
2301		if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
2302		    !test_bit(R5_LOCKED, &dev->flags) &&
2303		    !(test_bit(R5_UPTODATE, &dev->flags) ||
2304		    test_bit(R5_Wantcompute, &dev->flags))) {
2305			if (test_bit(R5_Insync, &dev->flags)) rcw++;
2306			else
2307				rcw += 2*disks;
2308		}
2309	}
2310	pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2311		(unsigned long long)sh->sector, rmw, rcw);
2312	set_bit(STRIPE_HANDLE, &sh->state);
2313	if (rmw < rcw && rmw > 0)
2314		/* prefer read-modify-write, but need to get some data */
2315		for (i = disks; i--; ) {
2316			struct r5dev *dev = &sh->dev[i];
2317			if ((dev->towrite || i == sh->pd_idx) &&
2318			    !test_bit(R5_LOCKED, &dev->flags) &&
2319			    !(test_bit(R5_UPTODATE, &dev->flags) ||
2320			    test_bit(R5_Wantcompute, &dev->flags)) &&
2321			    test_bit(R5_Insync, &dev->flags)) {
2322				if (
2323				  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2324					pr_debug("Read_old block "
2325						"%d for r-m-w\n", i);
2326					set_bit(R5_LOCKED, &dev->flags);
2327					set_bit(R5_Wantread, &dev->flags);
2328					s->locked++;
2329				} else {
2330					set_bit(STRIPE_DELAYED, &sh->state);
2331					set_bit(STRIPE_HANDLE, &sh->state);
2332				}
2333			}
2334		}
2335	if (rcw <= rmw && rcw > 0)
2336		/* want reconstruct write, but need to get some data */
2337		for (i = disks; i--; ) {
2338			struct r5dev *dev = &sh->dev[i];
2339			if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2340			    i != sh->pd_idx &&
2341			    !test_bit(R5_LOCKED, &dev->flags) &&
2342			    !(test_bit(R5_UPTODATE, &dev->flags) ||
2343			    test_bit(R5_Wantcompute, &dev->flags)) &&
2344			    test_bit(R5_Insync, &dev->flags)) {
2345				if (
2346				  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2347					pr_debug("Read_old block "
2348						"%d for Reconstruct\n", i);
2349					set_bit(R5_LOCKED, &dev->flags);
2350					set_bit(R5_Wantread, &dev->flags);
2351					s->locked++;
2352				} else {
2353					set_bit(STRIPE_DELAYED, &sh->state);
2354					set_bit(STRIPE_HANDLE, &sh->state);
2355				}
2356			}
2357		}
2358	/* now if nothing is locked, and if we have enough data,
2359	 * we can start a write request
2360	 */
2361	/* since handle_stripe can be called at any time we need to handle the
2362	 * case where a compute block operation has been submitted and then a
2363	 * subsequent call wants to start a write request.  raid5_run_ops only
2364	 * handles the case where compute block and postxor are requested
2365	 * simultaneously.  If this is not the case then new writes need to be
2366	 * held off until the compute completes.
2367	 */
2368	if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2369	    (s->locked == 0 && (rcw == 0 || rmw == 0) &&
2370	    !test_bit(STRIPE_BIT_DELAY, &sh->state)))
2371		schedule_reconstruction5(sh, s, rcw == 0, 0);
2372}
2373
2374static void handle_stripe_dirtying6(raid5_conf_t *conf,
2375		struct stripe_head *sh,	struct stripe_head_state *s,
2376		struct r6_state *r6s, int disks)
2377{
2378	int rcw = 0, must_compute = 0, pd_idx = sh->pd_idx, i;
2379	int qd_idx = r6s->qd_idx;
2380	for (i = disks; i--; ) {
2381		struct r5dev *dev = &sh->dev[i];
2382		/* Would I have to read this buffer for reconstruct_write */
2383		if (!test_bit(R5_OVERWRITE, &dev->flags)
2384		    && i != pd_idx && i != qd_idx
2385		    && (!test_bit(R5_LOCKED, &dev->flags)
2386			    ) &&
2387		    !test_bit(R5_UPTODATE, &dev->flags)) {
2388			if (test_bit(R5_Insync, &dev->flags)) rcw++;
2389			else {
2390				pr_debug("raid6: must_compute: "
2391					"disk %d flags=%#lx\n", i, dev->flags);
2392				must_compute++;
2393			}
2394		}
2395	}
2396	pr_debug("for sector %llu, rcw=%d, must_compute=%d\n",
2397	       (unsigned long long)sh->sector, rcw, must_compute);
2398	set_bit(STRIPE_HANDLE, &sh->state);
2399
2400	if (rcw > 0)
2401		/* want reconstruct write, but need to get some data */
2402		for (i = disks; i--; ) {
2403			struct r5dev *dev = &sh->dev[i];
2404			if (!test_bit(R5_OVERWRITE, &dev->flags)
2405			    && !(s->failed == 0 && (i == pd_idx || i == qd_idx))
2406			    && !test_bit(R5_LOCKED, &dev->flags) &&
2407			    !test_bit(R5_UPTODATE, &dev->flags) &&
2408			    test_bit(R5_Insync, &dev->flags)) {
2409				if (
2410				  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2411					pr_debug("Read_old stripe %llu "
2412						"block %d for Reconstruct\n",
2413					     (unsigned long long)sh->sector, i);
2414					set_bit(R5_LOCKED, &dev->flags);
2415					set_bit(R5_Wantread, &dev->flags);
2416					s->locked++;
2417				} else {
2418					pr_debug("Request delayed stripe %llu "
2419						"block %d for Reconstruct\n",
2420					     (unsigned long long)sh->sector, i);
2421					set_bit(STRIPE_DELAYED, &sh->state);
2422					set_bit(STRIPE_HANDLE, &sh->state);
2423				}
2424			}
2425		}
2426	/* now if nothing is locked, and if we have enough data, we can start a
2427	 * write request
2428	 */
2429	if (s->locked == 0 && rcw == 0 &&
2430	    !test_bit(STRIPE_BIT_DELAY, &sh->state)) {
2431		if (must_compute > 0) {
2432			/* We have failed blocks and need to compute them */
2433			switch (s->failed) {
2434			case 0:
2435				BUG();
2436			case 1:
2437				compute_block_1(sh, r6s->failed_num[0], 0);
2438				break;
2439			case 2:
2440				compute_block_2(sh, r6s->failed_num[0],
2441						r6s->failed_num[1]);
2442				break;
2443			default: /* This request should have been failed? */
2444				BUG();
2445			}
2446		}
2447
2448		pr_debug("Computing parity for stripe %llu\n",
2449			(unsigned long long)sh->sector);
2450		compute_parity6(sh, RECONSTRUCT_WRITE);
2451		/* now every locked buffer is ready to be written */
2452		for (i = disks; i--; )
2453			if (test_bit(R5_LOCKED, &sh->dev[i].flags)) {
2454				pr_debug("Writing stripe %llu block %d\n",
2455				       (unsigned long long)sh->sector, i);
2456				s->locked++;
2457				set_bit(R5_Wantwrite, &sh->dev[i].flags);
2458			}
2459		if (s->locked == disks)
2460			if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2461				atomic_inc(&conf->pending_full_writes);
2462		/* after a RECONSTRUCT_WRITE, the stripe MUST be in-sync */
2463		set_bit(STRIPE_INSYNC, &sh->state);
2464
2465		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2466			atomic_dec(&conf->preread_active_stripes);
2467			if (atomic_read(&conf->preread_active_stripes) <
2468			    IO_THRESHOLD)
2469				md_wakeup_thread(conf->mddev->thread);
2470		}
2471	}
2472}
2473
2474static void handle_parity_checks5(raid5_conf_t *conf, struct stripe_head *sh,
2475				struct stripe_head_state *s, int disks)
2476{
2477	struct r5dev *dev = NULL;
2478
2479	set_bit(STRIPE_HANDLE, &sh->state);
2480
2481	switch (sh->check_state) {
2482	case check_state_idle:
2483		/* start a new check operation if there are no failures */
2484		if (s->failed == 0) {
2485			BUG_ON(s->uptodate != disks);
2486			sh->check_state = check_state_run;
2487			set_bit(STRIPE_OP_CHECK, &s->ops_request);
2488			clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
2489			s->uptodate--;
2490			break;
2491		}
2492		dev = &sh->dev[s->failed_num];
2493		/* fall through */
2494	case check_state_compute_result:
2495		sh->check_state = check_state_idle;
2496		if (!dev)
2497			dev = &sh->dev[sh->pd_idx];
2498
2499		/* check that a write has not made the stripe insync */
2500		if (test_bit(STRIPE_INSYNC, &sh->state))
2501			break;
2502
2503		/* either failed parity check, or recovery is happening */
2504		BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
2505		BUG_ON(s->uptodate != disks);
2506
2507		set_bit(R5_LOCKED, &dev->flags);
2508		s->locked++;
2509		set_bit(R5_Wantwrite, &dev->flags);
2510
2511		clear_bit(STRIPE_DEGRADED, &sh->state);
2512		set_bit(STRIPE_INSYNC, &sh->state);
2513		break;
2514	case check_state_run:
2515		break; /* we will be called again upon completion */
2516	case check_state_check_result:
2517		sh->check_state = check_state_idle;
2518
2519		/* if a failure occurred during the check operation, leave
2520		 * STRIPE_INSYNC not set and let the stripe be handled again
2521		 */
2522		if (s->failed)
2523			break;
2524
2525		/* handle a successful check operation, if parity is correct
2526		 * we are done.  Otherwise update the mismatch count and repair
2527		 * parity if !MD_RECOVERY_CHECK
2528		 */
2529		if (sh->ops.zero_sum_result == 0)
2530			/* parity is correct (on disc,
2531			 * not in buffer any more)
2532			 */
2533			set_bit(STRIPE_INSYNC, &sh->state);
2534		else {
2535			conf->mddev->resync_mismatches += STRIPE_SECTORS;
2536			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2537				/* don't try to repair!! */
2538				set_bit(STRIPE_INSYNC, &sh->state);
2539			else {
2540				sh->check_state = check_state_compute_run;
2541				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2542				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2543				set_bit(R5_Wantcompute,
2544					&sh->dev[sh->pd_idx].flags);
2545				sh->ops.target = sh->pd_idx;
2546				s->uptodate++;
2547			}
2548		}
2549		break;
2550	case check_state_compute_run:
2551		break;
2552	default:
2553		printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2554		       __func__, sh->check_state,
2555		       (unsigned long long) sh->sector);
2556		BUG();
2557	}
2558}
2559
2560
2561static void handle_parity_checks6(raid5_conf_t *conf, struct stripe_head *sh,
2562				struct stripe_head_state *s,
2563				struct r6_state *r6s, struct page *tmp_page,
2564				int disks)
2565{
2566	int update_p = 0, update_q = 0;
2567	struct r5dev *dev;
2568	int pd_idx = sh->pd_idx;
2569	int qd_idx = r6s->qd_idx;
2570
2571	set_bit(STRIPE_HANDLE, &sh->state);
2572
2573	BUG_ON(s->failed > 2);
2574	BUG_ON(s->uptodate < disks);
2575	/* Want to check and possibly repair P and Q.
2576	 * However there could be one 'failed' device, in which
2577	 * case we can only check one of them, possibly using the
2578	 * other to generate missing data
2579	 */
2580
2581	/* If !tmp_page, we cannot do the calculations,
2582	 * but as we have set STRIPE_HANDLE, we will soon be called
2583	 * by stripe_handle with a tmp_page - just wait until then.
2584	 */
2585	if (tmp_page) {
2586		if (s->failed == r6s->q_failed) {
2587			/* The only possible failed device holds 'Q', so it
2588			 * makes sense to check P (If anything else were failed,
2589			 * we would have used P to recreate it).
2590			 */
2591			compute_block_1(sh, pd_idx, 1);
2592			if (!page_is_zero(sh->dev[pd_idx].page)) {
2593				compute_block_1(sh, pd_idx, 0);
2594				update_p = 1;
2595			}
2596		}
2597		if (!r6s->q_failed && s->failed < 2) {
2598			/* q is not failed, and we didn't use it to generate
2599			 * anything, so it makes sense to check it
2600			 */
2601			memcpy(page_address(tmp_page),
2602			       page_address(sh->dev[qd_idx].page),
2603			       STRIPE_SIZE);
2604			compute_parity6(sh, UPDATE_PARITY);
2605			if (memcmp(page_address(tmp_page),
2606				   page_address(sh->dev[qd_idx].page),
2607				   STRIPE_SIZE) != 0) {
2608				clear_bit(STRIPE_INSYNC, &sh->state);
2609				update_q = 1;
2610			}
2611		}
2612		if (update_p || update_q) {
2613			conf->mddev->resync_mismatches += STRIPE_SECTORS;
2614			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2615				/* don't try to repair!! */
2616				update_p = update_q = 0;
2617		}
2618
2619		/* now write out any block on a failed drive,
2620		 * or P or Q if they need it
2621		 */
2622
2623		if (s->failed == 2) {
2624			dev = &sh->dev[r6s->failed_num[1]];
2625			s->locked++;
2626			set_bit(R5_LOCKED, &dev->flags);
2627			set_bit(R5_Wantwrite, &dev->flags);
2628		}
2629		if (s->failed >= 1) {
2630			dev = &sh->dev[r6s->failed_num[0]];
2631			s->locked++;
2632			set_bit(R5_LOCKED, &dev->flags);
2633			set_bit(R5_Wantwrite, &dev->flags);
2634		}
2635
2636		if (update_p) {
2637			dev = &sh->dev[pd_idx];
2638			s->locked++;
2639			set_bit(R5_LOCKED, &dev->flags);
2640			set_bit(R5_Wantwrite, &dev->flags);
2641		}
2642		if (update_q) {
2643			dev = &sh->dev[qd_idx];
2644			s->locked++;
2645			set_bit(R5_LOCKED, &dev->flags);
2646			set_bit(R5_Wantwrite, &dev->flags);
2647		}
2648		clear_bit(STRIPE_DEGRADED, &sh->state);
2649
2650		set_bit(STRIPE_INSYNC, &sh->state);
2651	}
2652}
2653
2654static void handle_stripe_expansion(raid5_conf_t *conf, struct stripe_head *sh,
2655				struct r6_state *r6s)
2656{
2657	int i;
2658
2659	/* We have read all the blocks in this stripe and now we need to
2660	 * copy some of them into a target stripe for expand.
2661	 */
2662	struct dma_async_tx_descriptor *tx = NULL;
2663	clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2664	for (i = 0; i < sh->disks; i++)
2665		if (i != sh->pd_idx && (!r6s || i != r6s->qd_idx)) {
2666			int dd_idx, j;
2667			struct stripe_head *sh2;
2668
2669			sector_t bn = compute_blocknr(sh, i);
2670			sector_t s = raid5_compute_sector(conf, bn, 0,
2671							  &dd_idx, NULL);
2672			sh2 = get_active_stripe(conf, s, 0, 1);
2673			if (sh2 == NULL)
2674				/* so far only the early blocks of this stripe
2675				 * have been requested.  When later blocks
2676				 * get requested, we will try again
2677				 */
2678				continue;
2679			if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
2680			   test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
2681				/* must have already done this block */
2682				release_stripe(sh2);
2683				continue;
2684			}
2685
2686			/* place all the copies on one channel */
2687			tx = async_memcpy(sh2->dev[dd_idx].page,
2688				sh->dev[i].page, 0, 0, STRIPE_SIZE,
2689				ASYNC_TX_DEP_ACK, tx, NULL, NULL);
2690
2691			set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
2692			set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
2693			for (j = 0; j < conf->raid_disks; j++)
2694				if (j != sh2->pd_idx &&
2695				    (!r6s || j != sh2->qd_idx) &&
2696				    !test_bit(R5_Expanded, &sh2->dev[j].flags))
2697					break;
2698			if (j == conf->raid_disks) {
2699				set_bit(STRIPE_EXPAND_READY, &sh2->state);
2700				set_bit(STRIPE_HANDLE, &sh2->state);
2701			}
2702			release_stripe(sh2);
2703
2704		}
2705	/* done submitting copies, wait for them to complete */
2706	if (tx) {
2707		async_tx_ack(tx);
2708		dma_wait_for_async_tx(tx);
2709	}
2710}
2711
2712
2713/*
2714 * handle_stripe - do things to a stripe.
2715 *
2716 * We lock the stripe and then examine the state of various bits
2717 * to see what needs to be done.
2718 * Possible results:
2719 *    return some read request which now have data
2720 *    return some write requests which are safely on disc
2721 *    schedule a read on some buffers
2722 *    schedule a write of some buffers
2723 *    return confirmation of parity correctness
2724 *
2725 * buffers are taken off read_list or write_list, and bh_cache buffers
2726 * get BH_Lock set before the stripe lock is released.
2727 *
2728 */
2729
2730static bool handle_stripe5(struct stripe_head *sh)
2731{
2732	raid5_conf_t *conf = sh->raid_conf;
2733	int disks = sh->disks, i;
2734	struct bio *return_bi = NULL;
2735	struct stripe_head_state s;
2736	struct r5dev *dev;
2737	mdk_rdev_t *blocked_rdev = NULL;
2738	int prexor;
2739
2740	memset(&s, 0, sizeof(s));
2741	pr_debug("handling stripe %llu, state=%#lx cnt=%d, pd_idx=%d check:%d "
2742		 "reconstruct:%d\n", (unsigned long long)sh->sector, sh->state,
2743		 atomic_read(&sh->count), sh->pd_idx, sh->check_state,
2744		 sh->reconstruct_state);
2745
2746	spin_lock(&sh->lock);
2747	clear_bit(STRIPE_HANDLE, &sh->state);
2748	clear_bit(STRIPE_DELAYED, &sh->state);
2749
2750	s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
2751	s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2752	s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
2753
2754	/* Now to look around and see what can be done */
2755	rcu_read_lock();
2756	for (i=disks; i--; ) {
2757		mdk_rdev_t *rdev;
2758		struct r5dev *dev = &sh->dev[i];
2759		clear_bit(R5_Insync, &dev->flags);
2760
2761		pr_debug("check %d: state 0x%lx toread %p read %p write %p "
2762			"written %p\n",	i, dev->flags, dev->toread, dev->read,
2763			dev->towrite, dev->written);
2764
2765		/* maybe we can request a biofill operation
2766		 *
2767		 * new wantfill requests are only permitted while
2768		 * ops_complete_biofill is guaranteed to be inactive
2769		 */
2770		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
2771		    !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
2772			set_bit(R5_Wantfill, &dev->flags);
2773
2774		/* now count some things */
2775		if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
2776		if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
2777		if (test_bit(R5_Wantcompute, &dev->flags)) s.compute++;
2778
2779		if (test_bit(R5_Wantfill, &dev->flags))
2780			s.to_fill++;
2781		else if (dev->toread)
2782			s.to_read++;
2783		if (dev->towrite) {
2784			s.to_write++;
2785			if (!test_bit(R5_OVERWRITE, &dev->flags))
2786				s.non_overwrite++;
2787		}
2788		if (dev->written)
2789			s.written++;
2790		rdev = rcu_dereference(conf->disks[i].rdev);
2791		if (blocked_rdev == NULL &&
2792		    rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
2793			blocked_rdev = rdev;
2794			atomic_inc(&rdev->nr_pending);
2795		}
2796		if (!rdev || !test_bit(In_sync, &rdev->flags)) {
2797			/* The ReadError flag will just be confusing now */
2798			clear_bit(R5_ReadError, &dev->flags);
2799			clear_bit(R5_ReWrite, &dev->flags);
2800		}
2801		if (!rdev || !test_bit(In_sync, &rdev->flags)
2802		    || test_bit(R5_ReadError, &dev->flags)) {
2803			s.failed++;
2804			s.failed_num = i;
2805		} else
2806			set_bit(R5_Insync, &dev->flags);
2807	}
2808	rcu_read_unlock();
2809
2810	if (unlikely(blocked_rdev)) {
2811		if (s.syncing || s.expanding || s.expanded ||
2812		    s.to_write || s.written) {
2813			set_bit(STRIPE_HANDLE, &sh->state);
2814			goto unlock;
2815		}
2816		/* There is nothing for the blocked_rdev to block */
2817		rdev_dec_pending(blocked_rdev, conf->mddev);
2818		blocked_rdev = NULL;
2819	}
2820
2821	if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
2822		set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
2823		set_bit(STRIPE_BIOFILL_RUN, &sh->state);
2824	}
2825
2826	pr_debug("locked=%d uptodate=%d to_read=%d"
2827		" to_write=%d failed=%d failed_num=%d\n",
2828		s.locked, s.uptodate, s.to_read, s.to_write,
2829		s.failed, s.failed_num);
2830	/* check if the array has lost two devices and, if so, some requests might
2831	 * need to be failed
2832	 */
2833	if (s.failed > 1 && s.to_read+s.to_write+s.written)
2834		handle_failed_stripe(conf, sh, &s, disks, &return_bi);
2835	if (s.failed > 1 && s.syncing) {
2836		md_done_sync(conf->mddev, STRIPE_SECTORS,0);
2837		clear_bit(STRIPE_SYNCING, &sh->state);
2838		s.syncing = 0;
2839	}
2840
2841	/* might be able to return some write requests if the parity block
2842	 * is safe, or on a failed drive
2843	 */
2844	dev = &sh->dev[sh->pd_idx];
2845	if ( s.written &&
2846	     ((test_bit(R5_Insync, &dev->flags) &&
2847	       !test_bit(R5_LOCKED, &dev->flags) &&
2848	       test_bit(R5_UPTODATE, &dev->flags)) ||
2849	       (s.failed == 1 && s.failed_num == sh->pd_idx)))
2850		handle_stripe_clean_event(conf, sh, disks, &return_bi);
2851
2852	/* Now we might consider reading some blocks, either to check/generate
2853	 * parity, or to satisfy requests
2854	 * or to load a block that is being partially written.
2855	 */
2856	if (s.to_read || s.non_overwrite ||
2857	    (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding)
2858		handle_stripe_fill5(sh, &s, disks);
2859
2860	/* Now we check to see if any write operations have recently
2861	 * completed
2862	 */
2863	prexor = 0;
2864	if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
2865		prexor = 1;
2866	if (sh->reconstruct_state == reconstruct_state_drain_result ||
2867	    sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
2868		sh->reconstruct_state = reconstruct_state_idle;
2869
2870		/* All the 'written' buffers and the parity block are ready to
2871		 * be written back to disk
2872		 */
2873		BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
2874		for (i = disks; i--; ) {
2875			dev = &sh->dev[i];
2876			if (test_bit(R5_LOCKED, &dev->flags) &&
2877				(i == sh->pd_idx || dev->written)) {
2878				pr_debug("Writing block %d\n", i);
2879				set_bit(R5_Wantwrite, &dev->flags);
2880				if (prexor)
2881					continue;
2882				if (!test_bit(R5_Insync, &dev->flags) ||
2883				    (i == sh->pd_idx && s.failed == 0))
2884					set_bit(STRIPE_INSYNC, &sh->state);
2885			}
2886		}
2887		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2888			atomic_dec(&conf->preread_active_stripes);
2889			if (atomic_read(&conf->preread_active_stripes) <
2890				IO_THRESHOLD)
2891				md_wakeup_thread(conf->mddev->thread);
2892		}
2893	}
2894
2895	/* Now to consider new write requests and what else, if anything
2896	 * should be read.  We do not handle new writes when:
2897	 * 1/ A 'write' operation (copy+xor) is already in flight.
2898	 * 2/ A 'check' operation is in flight, as it may clobber the parity
2899	 *    block.
2900	 */
2901	if (s.to_write && !sh->reconstruct_state && !sh->check_state)
2902		handle_stripe_dirtying5(conf, sh, &s, disks);
2903
2904	/* maybe we need to check and possibly fix the parity for this stripe
2905	 * Any reads will already have been scheduled, so we just see if enough
2906	 * data is available.  The parity check is held off while parity
2907	 * dependent operations are in flight.
2908	 */
2909	if (sh->check_state ||
2910	    (s.syncing && s.locked == 0 &&
2911	     !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
2912	     !test_bit(STRIPE_INSYNC, &sh->state)))
2913		handle_parity_checks5(conf, sh, &s, disks);
2914
2915	if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
2916		md_done_sync(conf->mddev, STRIPE_SECTORS,1);
2917		clear_bit(STRIPE_SYNCING, &sh->state);
2918	}
2919
2920	/* If the failed drive is just a ReadError, then we might need to progress
2921	 * the repair/check process
2922	 */
2923	if (s.failed == 1 && !conf->mddev->ro &&
2924	    test_bit(R5_ReadError, &sh->dev[s.failed_num].flags)
2925	    && !test_bit(R5_LOCKED, &sh->dev[s.failed_num].flags)
2926	    && test_bit(R5_UPTODATE, &sh->dev[s.failed_num].flags)
2927		) {
2928		dev = &sh->dev[s.failed_num];
2929		if (!test_bit(R5_ReWrite, &dev->flags)) {
2930			set_bit(R5_Wantwrite, &dev->flags);
2931			set_bit(R5_ReWrite, &dev->flags);
2932			set_bit(R5_LOCKED, &dev->flags);
2933			s.locked++;
2934		} else {
2935			/* let's read it back */
2936			set_bit(R5_Wantread, &dev->flags);
2937			set_bit(R5_LOCKED, &dev->flags);
2938			s.locked++;
2939		}
2940	}
2941
2942	/* Finish reconstruct operations initiated by the expansion process */
2943	if (sh->reconstruct_state == reconstruct_state_result) {
2944		sh->reconstruct_state = reconstruct_state_idle;
2945		clear_bit(STRIPE_EXPANDING, &sh->state);
2946		for (i = conf->raid_disks; i--; ) {
2947			set_bit(R5_Wantwrite, &sh->dev[i].flags);
2948			set_bit(R5_LOCKED, &sh->dev[i].flags);
2949			s.locked++;
2950		}
2951	}
2952
2953	if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
2954	    !sh->reconstruct_state) {
2955		/* Need to write out all blocks after computing parity */
2956		sh->disks = conf->raid_disks;
2957		stripe_set_idx(sh->sector, conf, 0, sh);
2958		schedule_reconstruction5(sh, &s, 1, 1);
2959	} else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
2960		clear_bit(STRIPE_EXPAND_READY, &sh->state);
2961		atomic_dec(&conf->reshape_stripes);
2962		wake_up(&conf->wait_for_overlap);
2963		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
2964	}
2965
2966	if (s.expanding && s.locked == 0 &&
2967	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
2968		handle_stripe_expansion(conf, sh, NULL);
2969
2970 unlock:
2971	spin_unlock(&sh->lock);
2972
2973	/* wait for this device to become unblocked */
2974	if (unlikely(blocked_rdev))
2975		md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);
2976
2977	if (s.ops_request)
2978		raid5_run_ops(sh, s.ops_request);
2979
2980	ops_run_io(sh, &s);
2981
2982	return_io(return_bi);
2983
2984	return blocked_rdev == NULL;
2985}
2986
2987static bool handle_stripe6(struct stripe_head *sh, struct page *tmp_page)
2988{
2989	raid5_conf_t *conf = sh->raid_conf;
2990	int disks = sh->disks;
2991	struct bio *return_bi = NULL;
2992	int i, pd_idx = sh->pd_idx;
2993	struct stripe_head_state s;
2994	struct r6_state r6s;
2995	struct r5dev *dev, *pdev, *qdev;
2996	mdk_rdev_t *blocked_rdev = NULL;
2997
2998	r6s.qd_idx = sh->qd_idx;
2999	pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3000		"pd_idx=%d, qd_idx=%d\n",
3001	       (unsigned long long)sh->sector, sh->state,
3002	       atomic_read(&sh->count), pd_idx, r6s.qd_idx);
3003	memset(&s, 0, sizeof(s));
3004
3005	spin_lock(&sh->lock);
3006	clear_bit(STRIPE_HANDLE, &sh->state);
3007	clear_bit(STRIPE_DELAYED, &sh->state);
3008
3009	s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
3010	s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3011	s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
3012	/* Now to look around and see what can be done */
3013
3014	rcu_read_lock();
3015	for (i=disks; i--; ) {
3016		mdk_rdev_t *rdev;
3017		dev = &sh->dev[i];
3018		clear_bit(R5_Insync, &dev->flags);
3019
3020		pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3021			i, dev->flags, dev->toread, dev->towrite, dev->written);
3022		/* maybe we can reply to a read */
3023		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread) {
3024			struct bio *rbi, *rbi2;
3025			pr_debug("Return read for disc %d\n", i);
3026			spin_lock_irq(&conf->device_lock);
3027			rbi = dev->toread;
3028			dev->toread = NULL;
3029			if (test_and_clear_bit(R5_Overlap, &dev->flags))
3030				wake_up(&conf->wait_for_overlap);
3031			spin_unlock_irq(&conf->device_lock);
3032			while (rbi && rbi->bi_sector < dev->sector + STRIPE_SECTORS) {
3033				copy_data(0, rbi, dev->page, dev->sector);
3034				rbi2 = r5_next_bio(rbi, dev->sector);
3035				spin_lock_irq(&conf->device_lock);
3036				if (!raid5_dec_bi_phys_segments(rbi)) {
3037					rbi->bi_next = return_bi;
3038					return_bi = rbi;
3039				}
3040				spin_unlock_irq(&conf->device_lock);
3041				rbi = rbi2;
3042			}
3043		}
3044
3045		/* now count some things */
3046		if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
3047		if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
3048
3049
3050		if (dev->toread)
3051			s.to_read++;
3052		if (dev->towrite) {
3053			s.to_write++;
3054			if (!test_bit(R5_OVERWRITE, &dev->flags))
3055				s.non_overwrite++;
3056		}
3057		if (dev->written)
3058			s.written++;
3059		rdev = rcu_dereference(conf->disks[i].rdev);
3060		if (blocked_rdev == NULL &&
3061		    rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
3062			blocked_rdev = rdev;
3063			atomic_inc(&rdev->nr_pending);
3064		}
3065		if (!rdev || !test_bit(In_sync, &rdev->flags)) {
3066			/* The ReadError flag will just be confusing now */
3067			clear_bit(R5_ReadError, &dev->flags);
3068			clear_bit(R5_ReWrite, &dev->flags);
3069		}
3070		if (!rdev || !test_bit(In_sync, &rdev->flags)
3071		    || test_bit(R5_ReadError, &dev->flags)) {
3072			if (s.failed < 2)
3073				r6s.failed_num[s.failed] = i;
3074			s.failed++;
3075		} else
3076			set_bit(R5_Insync, &dev->flags);
3077	}
3078	rcu_read_unlock();
3079
3080	if (unlikely(blocked_rdev)) {
3081		if (s.syncing || s.expanding || s.expanded ||
3082		    s.to_write || s.written) {
3083			set_bit(STRIPE_HANDLE, &sh->state);
3084			goto unlock;
3085		}
3086		/* There is nothing for the blocked_rdev to block */
3087		rdev_dec_pending(blocked_rdev, conf->mddev);
3088		blocked_rdev = NULL;
3089	}
3090
3091	pr_debug("locked=%d uptodate=%d to_read=%d"
3092	       " to_write=%d failed=%d failed_num=%d,%d\n",
3093	       s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
3094	       r6s.failed_num[0], r6s.failed_num[1]);
3095	/* check if the array has lost >2 devices and, if so, some requests
3096	 * might need to be failed
3097	 */
3098	if (s.failed > 2 && s.to_read+s.to_write+s.written)
3099		handle_failed_stripe(conf, sh, &s, disks, &return_bi);
3100	if (s.failed > 2 && s.syncing) {
3101		md_done_sync(conf->mddev, STRIPE_SECTORS,0);
3102		clear_bit(STRIPE_SYNCING, &sh->state);
3103		s.syncing = 0;
3104	}
3105
3106	/*
3107	 * might be able to return some write requests if the parity blocks
3108	 * are safe, or on a failed drive
3109	 */
3110	pdev = &sh->dev[pd_idx];
3111	r6s.p_failed = (s.failed >= 1 && r6s.failed_num[0] == pd_idx)
3112		|| (s.failed >= 2 && r6s.failed_num[1] == pd_idx);
3113	qdev = &sh->dev[r6s.qd_idx];
3114	r6s.q_failed = (s.failed >= 1 && r6s.failed_num[0] == r6s.qd_idx)
3115		|| (s.failed >= 2 && r6s.failed_num[1] == r6s.qd_idx);
3116
3117	if ( s.written &&
3118	     ( r6s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
3119			     && !test_bit(R5_LOCKED, &pdev->flags)
3120			     && test_bit(R5_UPTODATE, &pdev->flags)))) &&
3121	     ( r6s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3122			     && !test_bit(R5_LOCKED, &qdev->flags)
3123			     && test_bit(R5_UPTODATE, &qdev->flags)))))
3124		handle_stripe_clean_event(conf, sh, disks, &return_bi);
3125
3126	/* Now we might consider reading some blocks, either to check/generate
3127	 * parity, or to satisfy requests
3128	 * or to load a block that is being partially written.
3129	 */
3130	if (s.to_read || s.non_overwrite || (s.to_write && s.failed) ||
3131	    (s.syncing && (s.uptodate < disks)) || s.expanding)
3132		handle_stripe_fill6(sh, &s, &r6s, disks);
3133
3134	/* now to consider writing and what else, if anything should be read */
3135	if (s.to_write)
3136		handle_stripe_dirtying6(conf, sh, &s, &r6s, disks);
3137
3138	/* maybe we need to check and possibly fix the parity for this stripe
3139	 * Any reads will already have been scheduled, so we just see if enough
3140	 * data is available
3141	 */
3142	if (s.syncing && s.locked == 0 && !test_bit(STRIPE_INSYNC, &sh->state))
3143		handle_parity_checks6(conf, sh, &s, &r6s, tmp_page, disks);
3144
3145	if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
3146		md_done_sync(conf->mddev, STRIPE_SECTORS,1);
3147		clear_bit(STRIPE_SYNCING, &sh->state);
3148	}
3149
3150	/* If the failed drives are just a ReadError, then we might need
3151	 * to progress the repair/check process
3152	 */
3153	if (s.failed <= 2 && !conf->mddev->ro)
3154		for (i = 0; i < s.failed; i++) {
3155			dev = &sh->dev[r6s.failed_num[i]];
3156			if (test_bit(R5_ReadError, &dev->flags)
3157			    && !test_bit(R5_LOCKED, &dev->flags)
3158			    && test_bit(R5_UPTODATE, &dev->flags)
3159				) {
3160				if (!test_bit(R5_ReWrite, &dev->flags)) {
3161					set_bit(R5_Wantwrite, &dev->flags);
3162					set_bit(R5_ReWrite, &dev->flags);
3163					set_bit(R5_LOCKED, &dev->flags);
3164				} else {
3165					/* let's read it back */
3166					set_bit(R5_Wantread, &dev->flags);
3167					set_bit(R5_LOCKED, &dev->flags);
3168				}
3169			}
3170		}
3171
3172	if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state)) {
3173		/* Need to write out all blocks after computing P&Q */
3174		sh->disks = conf->raid_disks;
3175		stripe_set_idx(sh->sector, conf, 0, sh);
3176		compute_parity6(sh, RECONSTRUCT_WRITE);
3177		for (i = conf->raid_disks ; i-- ;  ) {
3178			set_bit(R5_LOCKED, &sh->dev[i].flags);
3179			s.locked++;
3180			set_bit(R5_Wantwrite, &sh->dev[i].flags);
3181		}
3182		clear_bit(STRIPE_EXPANDING, &sh->state);
3183	} else if (s.expanded) {
3184		clear_bit(STRIPE_EXPAND_READY, &sh->state);
3185		atomic_dec(&conf->reshape_stripes);
3186		wake_up(&conf->wait_for_overlap);
3187		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3188	}
3189
3190	if (s.expanding && s.locked == 0 &&
3191	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3192		handle_stripe_expansion(conf, sh, &r6s);
3193
3194 unlock:
3195	spin_unlock(&sh->lock);
3196
3197	/* wait for this device to become unblocked */
3198	if (unlikely(blocked_rdev))
3199		md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);
3200
3201	ops_run_io(sh, &s);
3202
3203	return_io(return_bi);
3204
3205	return blocked_rdev == NULL;
3206}
3207
3208/* returns true if the stripe was handled */
3209static bool handle_stripe(struct stripe_head *sh, struct page *tmp_page)
3210{
3211	if (sh->raid_conf->level == 6)
3212		return handle_stripe6(sh, tmp_page);
3213	else
3214		return handle_stripe5(sh);
3215}
3216
3217
3218
3219static void raid5_activate_delayed(raid5_conf_t *conf)
3220{
3221	if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
3222		while (!list_empty(&conf->delayed_list)) {
3223			struct list_head *l = conf->delayed_list.next;
3224			struct stripe_head *sh;
3225			sh = list_entry(l, struct stripe_head, lru);
3226			list_del_init(l);
3227			clear_bit(STRIPE_DELAYED, &sh->state);
3228			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3229				atomic_inc(&conf->preread_active_stripes);
3230			list_add_tail(&sh->lru, &conf->hold_list);
3231		}
3232	} else
3233		blk_plug_device(conf->mddev->queue);
3234}
3235
3236static void activate_bit_delay(raid5_conf_t *conf)
3237{
3238	/* device_lock is held */
3239	struct list_head head;
3240	list_add(&head, &conf->bitmap_list);
3241	list_del_init(&conf->bitmap_list);
3242	while (!list_empty(&head)) {
3243		struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
3244		list_del_init(&sh->lru);
3245		atomic_inc(&sh->count);
3246		__release_stripe(conf, sh);
3247	}
3248}
3249
3250static void unplug_slaves(mddev_t *mddev)
3251{
3252	raid5_conf_t *conf = mddev_to_conf(mddev);
3253	int i;
3254
3255	rcu_read_lock();
3256	for (i=0; i<mddev->raid_disks; i++) {
3257		mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
3258		if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
3259			struct request_queue *r_queue = bdev_get_queue(rdev->bdev);
3260
3261			atomic_inc(&rdev->nr_pending);
3262			rcu_read_unlock();
3263
3264			blk_unplug(r_queue);
3265
3266			rdev_dec_pending(rdev, mddev);
3267			rcu_read_lock();
3268		}
3269	}
3270	rcu_read_unlock();
3271}
3272
3273static void raid5_unplug_device(struct request_queue *q)
3274{
3275	mddev_t *mddev = q->queuedata;
3276	raid5_conf_t *conf = mddev_to_conf(mddev);
3277	unsigned long flags;
3278
3279	spin_lock_irqsave(&conf->device_lock, flags);
3280
3281	if (blk_remove_plug(q)) {
3282		conf->seq_flush++;
3283		raid5_activate_delayed(conf);
3284	}
3285	md_wakeup_thread(mddev->thread);
3286
3287	spin_unlock_irqrestore(&conf->device_lock, flags);
3288
3289	unplug_slaves(mddev);
3290}
3291
3292static int raid5_congested(void *data, int bits)
3293{
3294	mddev_t *mddev = data;
3295	raid5_conf_t *conf = mddev_to_conf(mddev);
3296
3297	/* No difference between reads and writes.  Just check
3298	 * how busy the stripe_cache is
3299	 */
3300	if (conf->inactive_blocked)
3301		return 1;
3302	if (conf->quiesce)
3303		return 1;
3304	if (list_empty_careful(&conf->inactive_list))
3305		return 1;
3306
3307	return 0;
3308}
3309
3310/* We want read requests to align with chunks where possible,
3311 * but write requests don't need to.
3312 */
3313static int raid5_mergeable_bvec(struct request_queue *q,
3314				struct bvec_merge_data *bvm,
3315				struct bio_vec *biovec)
3316{
3317	mddev_t *mddev = q->queuedata;
3318	sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
3319	int max;
3320	unsigned int chunk_sectors = mddev->chunk_size >> 9;
3321	unsigned int bio_sectors = bvm->bi_size >> 9;
3322
3323	if ((bvm->bi_rw & 1) == WRITE)
3324		return biovec->bv_len; /* always allow writes to be mergeable */
3325
3326	max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
3327	if (max < 0) max = 0;
3328	if (max <= biovec->bv_len && bio_sectors == 0)
3329		return biovec->bv_len;
3330	else
3331		return max;
3332}
3333
3334
3335static int in_chunk_boundary(mddev_t *mddev, struct bio *bio)
3336{
3337	sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3338	unsigned int chunk_sectors = mddev->chunk_size >> 9;
3339	unsigned int bio_sectors = bio->bi_size >> 9;
3340
3341	return  chunk_sectors >=
3342		((sector & (chunk_sectors - 1)) + bio_sectors);
3343}
3344
3345/*
3346 *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
3347 *  later sampled by raid5d.
3348 */
3349static void add_bio_to_retry(struct bio *bi,raid5_conf_t *conf)
3350{
3351	unsigned long flags;
3352
3353	spin_lock_irqsave(&conf->device_lock, flags);
3354
3355	bi->bi_next = conf->retry_read_aligned_list;
3356	conf->retry_read_aligned_list = bi;
3357
3358	spin_unlock_irqrestore(&conf->device_lock, flags);
3359	md_wakeup_thread(conf->mddev->thread);
3360}
3361
3362
3363static struct bio *remove_bio_from_retry(raid5_conf_t *conf)
3364{
3365	struct bio *bi;
3366
3367	bi = conf->retry_read_aligned;
3368	if (bi) {
3369		conf->retry_read_aligned = NULL;
3370		return bi;
3371	}
3372	bi = conf->retry_read_aligned_list;
3373	if(bi) {
3374		conf->retry_read_aligned_list = bi->bi_next;
3375		bi->bi_next = NULL;
3376		/*
3377		 * this sets the active strip count to 1 and the processed
3378		 * strip count to zero (upper 8 bits)
3379		 */
3380		bi->bi_phys_segments = 1; /* biased count of active stripes */
3381	}
3382
3383	return bi;
3384}
3385
3386
3387/*
3388 *  The "raid5_align_endio" should check if the read succeeded and if it
3389 *  did, call bio_endio on the original bio (having bio_put the new bio
3390 *  first).
3391 *  If the read failed..
3392 */
3393static void raid5_align_endio(struct bio *bi, int error)
3394{
3395	struct bio* raid_bi  = bi->bi_private;
3396	mddev_t *mddev;
3397	raid5_conf_t *conf;
3398	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3399	mdk_rdev_t *rdev;
3400
3401	bio_put(bi);
3402
3403	mddev = raid_bi->bi_bdev->bd_disk->queue->queuedata;
3404	conf = mddev_to_conf(mddev);
3405	rdev = (void*)raid_bi->bi_next;
3406	raid_bi->bi_next = NULL;
3407
3408	rdev_dec_pending(rdev, conf->mddev);
3409
3410	if (!error && uptodate) {
3411		bio_endio(raid_bi, 0);
3412		if (atomic_dec_and_test(&conf->active_aligned_reads))
3413			wake_up(&conf->wait_for_stripe);
3414		return;
3415	}
3416
3417
3418	pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3419
3420	add_bio_to_retry(raid_bi, conf);
3421}
3422
3423static int bio_fits_rdev(struct bio *bi)
3424{
3425	struct request_queue *q = bdev_get_queue(bi->bi_bdev);
3426
3427	if ((bi->bi_size>>9) > q->max_sectors)
3428		return 0;
3429	blk_recount_segments(q, bi);
3430	if (bi->bi_phys_segments > q->max_phys_segments)
3431		return 0;
3432
3433	if (q->merge_bvec_fn)
3434		/* it's too hard to apply the merge_bvec_fn at this stage,
3435		 * just just give up
3436		 */
3437		return 0;
3438
3439	return 1;
3440}
3441
3442
3443static int chunk_aligned_read(struct request_queue *q, struct bio * raid_bio)
3444{
3445	mddev_t *mddev = q->queuedata;
3446	raid5_conf_t *conf = mddev_to_conf(mddev);
3447	unsigned int dd_idx;
3448	struct bio* align_bi;
3449	mdk_rdev_t *rdev;
3450
3451	if (!in_chunk_boundary(mddev, raid_bio)) {
3452		pr_debug("chunk_aligned_read : non aligned\n");
3453		return 0;
3454	}
3455	/*
3456	 * use bio_clone to make a copy of the bio
3457	 */
3458	align_bi = bio_clone(raid_bio, GFP_NOIO);
3459	if (!align_bi)
3460		return 0;
3461	/*
3462	 *   set bi_end_io to a new function, and set bi_private to the
3463	 *     original bio.
3464	 */
3465	align_bi->bi_end_io  = raid5_align_endio;
3466	align_bi->bi_private = raid_bio;
3467	/*
3468	 *	compute position
3469	 */
3470	align_bi->bi_sector =  raid5_compute_sector(conf, raid_bio->bi_sector,
3471						    0,
3472						    &dd_idx, NULL);
3473
3474	rcu_read_lock();
3475	rdev = rcu_dereference(conf->disks[dd_idx].rdev);
3476	if (rdev && test_bit(In_sync, &rdev->flags)) {
3477		atomic_inc(&rdev->nr_pending);
3478		rcu_read_unlock();
3479		raid_bio->bi_next = (void*)rdev;
3480		align_bi->bi_bdev =  rdev->bdev;
3481		align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
3482		align_bi->bi_sector += rdev->data_offset;
3483
3484		if (!bio_fits_rdev(align_bi)) {
3485			/* too big in some way */
3486			bio_put(align_bi);
3487			rdev_dec_pending(rdev, mddev);
3488			return 0;
3489		}
3490
3491		spin_lock_irq(&conf->device_lock);
3492		wait_event_lock_irq(conf->wait_for_stripe,
3493				    conf->quiesce == 0,
3494				    conf->device_lock, /* nothing */);
3495		atomic_inc(&conf->active_aligned_reads);
3496		spin_unlock_irq(&conf->device_lock);
3497
3498		generic_make_request(align_bi);
3499		return 1;
3500	} else {
3501		rcu_read_unlock();
3502		bio_put(align_bi);
3503		return 0;
3504	}
3505}
3506
3507/* __get_priority_stripe - get the next stripe to process
3508 *
3509 * Full stripe writes are allowed to pass preread active stripes up until
3510 * the bypass_threshold is exceeded.  In general the bypass_count
3511 * increments when the handle_list is handled before the hold_list; however, it
3512 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
3513 * stripe with in flight i/o.  The bypass_count will be reset when the
3514 * head of the hold_list has changed, i.e. the head was promoted to the
3515 * handle_list.
3516 */
3517static struct stripe_head *__get_priority_stripe(raid5_conf_t *conf)
3518{
3519	struct stripe_head *sh;
3520
3521	pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
3522		  __func__,
3523		  list_empty(&conf->handle_list) ? "empty" : "busy",
3524		  list_empty(&conf->hold_list) ? "empty" : "busy",
3525		  atomic_read(&conf->pending_full_writes), conf->bypass_count);
3526
3527	if (!list_empty(&conf->handle_list)) {
3528		sh = list_entry(conf->handle_list.next, typeof(*sh), lru);
3529
3530		if (list_empty(&conf->hold_list))
3531			conf->bypass_count = 0;
3532		else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
3533			if (conf->hold_list.next == conf->last_hold)
3534				conf->bypass_count++;
3535			else {
3536				conf->last_hold = conf->hold_list.next;
3537				conf->bypass_count -= conf->bypass_threshold;
3538				if (conf->bypass_count < 0)
3539					conf->bypass_count = 0;
3540			}
3541		}
3542	} else if (!list_empty(&conf->hold_list) &&
3543		   ((conf->bypass_threshold &&
3544		     conf->bypass_count > conf->bypass_threshold) ||
3545		    atomic_read(&conf->pending_full_writes) == 0)) {
3546		sh = list_entry(conf->hold_list.next,
3547				typeof(*sh), lru);
3548		conf->bypass_count -= conf->bypass_threshold;
3549		if (conf->bypass_count < 0)
3550			conf->bypass_count = 0;
3551	} else
3552		return NULL;
3553
3554	list_del_init(&sh->lru);
3555	atomic_inc(&sh->count);
3556	BUG_ON(atomic_read(&sh->count) != 1);
3557	return sh;
3558}
3559
3560static int make_request(struct request_queue *q, struct bio * bi)
3561{
3562	mddev_t *mddev = q->queuedata;
3563	raid5_conf_t *conf = mddev_to_conf(mddev);
3564	int dd_idx;
3565	sector_t new_sector;
3566	sector_t logical_sector, last_sector;
3567	struct stripe_head *sh;
3568	const int rw = bio_data_dir(bi);
3569	int cpu, remaining;
3570
3571	if (unlikely(bio_barrier(bi))) {
3572		bio_endio(bi, -EOPNOTSUPP);
3573		return 0;
3574	}
3575
3576	md_write_start(mddev, bi);
3577
3578	cpu = part_stat_lock();
3579	part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
3580	part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw],
3581		      bio_sectors(bi));
3582	part_stat_unlock();
3583
3584	if (rw == READ &&
3585	     mddev->reshape_position == MaxSector &&
3586	     chunk_aligned_read(q,bi))
3587		return 0;
3588
3589	logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
3590	last_sector = bi->bi_sector + (bi->bi_size>>9);
3591	bi->bi_next = NULL;
3592	bi->bi_phys_segments = 1;	/* over-loaded to count active stripes */
3593
3594	for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
3595		DEFINE_WAIT(w);
3596		int disks, data_disks;
3597		int previous;
3598
3599	retry:
3600		previous = 0;
3601		prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
3602		if (likely(conf->expand_progress == MaxSector))
3603			disks = conf->raid_disks;
3604		else {
3605			/* spinlock is needed as expand_progress may be
3606			 * 64bit on a 32bit platform, and so it might be
3607			 * possible to see a half-updated value
3608			 * Ofcourse expand_progress could change after
3609			 * the lock is dropped, so once we get a reference
3610			 * to the stripe that we think it is, we will have
3611			 * to check again.
3612			 */
3613			spin_lock_irq(&conf->device_lock);
3614			disks = conf->raid_disks;
3615			if (logical_sector >= conf->expand_progress) {
3616				disks = conf->previous_raid_disks;
3617				previous = 1;
3618			} else {
3619				if (logical_sector >= conf->expand_lo) {
3620					spin_unlock_irq(&conf->device_lock);
3621					schedule();
3622					goto retry;
3623				}
3624			}
3625			spin_unlock_irq(&conf->device_lock);
3626		}
3627		data_disks = disks - conf->max_degraded;
3628
3629		new_sector = raid5_compute_sector(conf, logical_sector,
3630						  previous,
3631						  &dd_idx, NULL);
3632		pr_debug("raid5: make_request, sector %llu logical %llu\n",
3633			(unsigned long long)new_sector,
3634			(unsigned long long)logical_sector);
3635
3636		sh = get_active_stripe(conf, new_sector, previous,
3637				       (bi->bi_rw&RWA_MASK));
3638		if (sh) {
3639			if (unlikely(conf->expand_progress != MaxSector)) {
3640				/* expansion might have moved on while waiting for a
3641				 * stripe, so we must do the range check again.
3642				 * Expansion could still move past after this
3643				 * test, but as we are holding a reference to
3644				 * 'sh', we know that if that happens,
3645				 *  STRIPE_EXPANDING will get set and the expansion
3646				 * won't proceed until we finish with the stripe.
3647				 */
3648				int must_retry = 0;
3649				spin_lock_irq(&conf->device_lock);
3650				if (logical_sector <  conf->expand_progress &&
3651				    disks == conf->previous_raid_disks)
3652					/* mismatch, need to try again */
3653					must_retry = 1;
3654				spin_unlock_irq(&conf->device_lock);
3655				if (must_retry) {
3656					release_stripe(sh);
3657					goto retry;
3658				}
3659			}
3660			/* FIXME what if we get a false positive because these
3661			 * are being updated.
3662			 */
3663			if (logical_sector >= mddev->suspend_lo &&
3664			    logical_sector < mddev->suspend_hi) {
3665				release_stripe(sh);
3666				schedule();
3667				goto retry;
3668			}
3669
3670			if (test_bit(STRIPE_EXPANDING, &sh->state) ||
3671			    !add_stripe_bio(sh, bi, dd_idx, (bi->bi_rw&RW_MASK))) {
3672				/* Stripe is busy expanding or
3673				 * add failed due to overlap.  Flush everything
3674				 * and wait a while
3675				 */
3676				raid5_unplug_device(mddev->queue);
3677				release_stripe(sh);
3678				schedule();
3679				goto retry;
3680			}
3681			finish_wait(&conf->wait_for_overlap, &w);
3682			set_bit(STRIPE_HANDLE, &sh->state);
3683			clear_bit(STRIPE_DELAYED, &sh->state);
3684			release_stripe(sh);
3685		} else {
3686			/* cannot get stripe for read-ahead, just give-up */
3687			clear_bit(BIO_UPTODATE, &bi->bi_flags);
3688			finish_wait(&conf->wait_for_overlap, &w);
3689			break;
3690		}
3691
3692	}
3693	spin_lock_irq(&conf->device_lock);
3694	remaining = raid5_dec_bi_phys_segments(bi);
3695	spin_unlock_irq(&conf->device_lock);
3696	if (remaining == 0) {
3697
3698		if ( rw == WRITE )
3699			md_write_end(mddev);
3700
3701		bio_endio(bi, 0);
3702	}
3703	return 0;
3704}
3705
3706static sector_t reshape_request(mddev_t *mddev, sector_t sector_nr, int *skipped)
3707{
3708	/* reshaping is quite different to recovery/resync so it is
3709	 * handled quite separately ... here.
3710	 *
3711	 * On each call to sync_request, we gather one chunk worth of
3712	 * destination stripes and flag them as expanding.
3713	 * Then we find all the source stripes and request reads.
3714	 * As the reads complete, handle_stripe will copy the data
3715	 * into the destination stripe and release that stripe.
3716	 */
3717	raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
3718	struct stripe_head *sh;
3719	sector_t first_sector, last_sector;
3720	int raid_disks = conf->previous_raid_disks;
3721	int data_disks = raid_disks - conf->max_degraded;
3722	int new_data_disks = conf->raid_disks - conf->max_degraded;
3723	int i;
3724	int dd_idx;
3725	sector_t writepos, safepos, gap;
3726
3727	if (sector_nr == 0 &&
3728	    conf->expand_progress != 0) {
3729		/* restarting in the middle, skip the initial sectors */
3730		sector_nr = conf->expand_progress;
3731		sector_div(sector_nr, new_data_disks);
3732		*skipped = 1;
3733		return sector_nr;
3734	}
3735
3736	/* we update the metadata when there is more than 3Meg
3737	 * in the block range (that is rather arbitrary, should
3738	 * probably be time based) or when the data about to be
3739	 * copied would over-write the source of the data at
3740	 * the front of the range.
3741	 * i.e. one new_stripe forward from expand_progress new_maps
3742	 * to after where expand_lo old_maps to
3743	 */
3744	writepos = conf->expand_progress +
3745		conf->chunk_size/512*(new_data_disks);
3746	sector_div(writepos, new_data_disks);
3747	safepos = conf->expand_lo;
3748	sector_div(safepos, data_disks);
3749	gap = conf->expand_progress - conf->expand_lo;
3750
3751	if (writepos >= safepos ||
3752	    gap > (new_data_disks)*3000*2 /*3Meg*/) {
3753		/* Cannot proceed until we've updated the superblock... */
3754		wait_event(conf->wait_for_overlap,
3755			   atomic_read(&conf->reshape_stripes)==0);
3756		mddev->reshape_position = conf->expand_progress;
3757		set_bit(MD_CHANGE_DEVS, &mddev->flags);
3758		md_wakeup_thread(mddev->thread);
3759		wait_event(mddev->sb_wait, mddev->flags == 0 ||
3760			   kthread_should_stop());
3761		spin_lock_irq(&conf->device_lock);
3762		conf->expand_lo = mddev->reshape_position;
3763		spin_unlock_irq(&conf->device_lock);
3764		wake_up(&conf->wait_for_overlap);
3765	}
3766
3767	for (i=0; i < conf->chunk_size/512; i+= STRIPE_SECTORS) {
3768		int j;
3769		int skipped = 0;
3770		sh = get_active_stripe(conf, sector_nr+i, 0, 0);
3771		set_bit(STRIPE_EXPANDING, &sh->state);
3772		atomic_inc(&conf->reshape_stripes);
3773		/* If any of this stripe is beyond the end of the old
3774		 * array, then we need to zero those blocks
3775		 */
3776		for (j=sh->disks; j--;) {
3777			sector_t s;
3778			if (j == sh->pd_idx)
3779				continue;
3780			if (conf->level == 6 &&
3781			    j == sh->qd_idx)
3782				continue;
3783			s = compute_blocknr(sh, j);
3784			if (s < mddev->array_sectors) {
3785				skipped = 1;
3786				continue;
3787			}
3788			memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
3789			set_bit(R5_Expanded, &sh->dev[j].flags);
3790			set_bit(R5_UPTODATE, &sh->dev[j].flags);
3791		}
3792		if (!skipped) {
3793			set_bit(STRIPE_EXPAND_READY, &sh->state);
3794			set_bit(STRIPE_HANDLE, &sh->state);
3795		}
3796		release_stripe(sh);
3797	}
3798	spin_lock_irq(&conf->device_lock);
3799	conf->expand_progress = (sector_nr + i) * new_data_disks;
3800	spin_unlock_irq(&conf->device_lock);
3801	/* Ok, those stripe are ready. We can start scheduling
3802	 * reads on the source stripes.
3803	 * The source stripes are determined by mapping the first and last
3804	 * block on the destination stripes.
3805	 */
3806	first_sector =
3807		raid5_compute_sector(conf, sector_nr*(new_data_disks),
3808				     1, &dd_idx, NULL);
3809	last_sector =
3810		raid5_compute_sector(conf, ((sector_nr+conf->chunk_size/512)
3811					    *(new_data_disks) - 1),
3812				     1, &dd_idx, NULL);
3813	if (last_sector >= mddev->dev_sectors)
3814		last_sector = mddev->dev_sectors - 1;
3815	while (first_sector <= last_sector) {
3816		sh = get_active_stripe(conf, first_sector, 1, 0);
3817		set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3818		set_bit(STRIPE_HANDLE, &sh->state);
3819		release_stripe(sh);
3820		first_sector += STRIPE_SECTORS;
3821	}
3822	/* If this takes us to the resync_max point where we have to pause,
3823	 * then we need to write out the superblock.
3824	 */
3825	sector_nr += conf->chunk_size>>9;
3826	if (sector_nr >= mddev->resync_max) {
3827		/* Cannot proceed until we've updated the superblock... */
3828		wait_event(conf->wait_for_overlap,
3829			   atomic_read(&conf->reshape_stripes) == 0);
3830		mddev->reshape_position = conf->expand_progress;
3831		set_bit(MD_CHANGE_DEVS, &mddev->flags);
3832		md_wakeup_thread(mddev->thread);
3833		wait_event(mddev->sb_wait,
3834			   !test_bit(MD_CHANGE_DEVS, &mddev->flags)
3835			   || kthread_should_stop());
3836		spin_lock_irq(&conf->device_lock);
3837		conf->expand_lo = mddev->reshape_position;
3838		spin_unlock_irq(&conf->device_lock);
3839		wake_up(&conf->wait_for_overlap);
3840	}
3841	return conf->chunk_size>>9;
3842}
3843
3844/* FIXME go_faster isn't used */
3845static inline sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
3846{
3847	raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
3848	struct stripe_head *sh;
3849	sector_t max_sector = mddev->dev_sectors;
3850	int sync_blocks;
3851	int still_degraded = 0;
3852	int i;
3853
3854	if (sector_nr >= max_sector) {
3855		/* just being told to finish up .. nothing much to do */
3856		unplug_slaves(mddev);
3857		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
3858			end_reshape(conf);
3859			return 0;
3860		}
3861
3862		if (mddev->curr_resync < max_sector) /* aborted */
3863			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
3864					&sync_blocks, 1);
3865		else /* completed sync */
3866			conf->fullsync = 0;
3867		bitmap_close_sync(mddev->bitmap);
3868
3869		return 0;
3870	}
3871
3872	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3873		return reshape_request(mddev, sector_nr, skipped);
3874
3875	/* No need to check resync_max as we never do more than one
3876	 * stripe, and as resync_max will always be on a chunk boundary,
3877	 * if the check in md_do_sync didn't fire, there is no chance
3878	 * of overstepping resync_max here
3879	 */
3880
3881	/* if there is too many failed drives and we are trying
3882	 * to resync, then assert that we are finished, because there is
3883	 * nothing we can do.
3884	 */
3885	if (mddev->degraded >= conf->max_degraded &&
3886	    test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3887		sector_t rv = mddev->dev_sectors - sector_nr;
3888		*skipped = 1;
3889		return rv;
3890	}
3891	if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
3892	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
3893	    !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
3894		/* we can skip this block, and probably more */
3895		sync_blocks /= STRIPE_SECTORS;
3896		*skipped = 1;
3897		return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
3898	}
3899
3900
3901	bitmap_cond_end_sync(mddev->bitmap, sector_nr);
3902
3903	sh = get_active_stripe(conf, sector_nr, 0, 1);
3904	if (sh == NULL) {
3905		sh = get_active_stripe(conf, sector_nr, 0, 0);
3906		/* make sure we don't swamp the stripe cache if someone else
3907		 * is trying to get access
3908		 */
3909		schedule_timeout_uninterruptible(1);
3910	}
3911	/* Need to check if array will still be degraded after recovery/resync
3912	 * We don't need to check the 'failed' flag as when that gets set,
3913	 * recovery aborts.
3914	 */
3915	for (i=0; i<mddev->raid_disks; i++)
3916		if (conf->disks[i].rdev == NULL)
3917			still_degraded = 1;
3918
3919	bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
3920
3921	spin_lock(&sh->lock);
3922	set_bit(STRIPE_SYNCING, &sh->state);
3923	clear_bit(STRIPE_INSYNC, &sh->state);
3924	spin_unlock(&sh->lock);
3925
3926	/* wait for any blocked device to be handled */
3927	while(unlikely(!handle_stripe(sh, NULL)))
3928		;
3929	release_stripe(sh);
3930
3931	return STRIPE_SECTORS;
3932}
3933
3934static int  retry_aligned_read(raid5_conf_t *conf, struct bio *raid_bio)
3935{
3936	/* We may not be able to submit a whole bio at once as there
3937	 * may not be enough stripe_heads available.
3938	 * We cannot pre-allocate enough stripe_heads as we may need
3939	 * more than exist in the cache (if we allow ever large chunks).
3940	 * So we do one stripe head at a time and record in
3941	 * ->bi_hw_segments how many have been done.
3942	 *
3943	 * We *know* that this entire raid_bio is in one chunk, so
3944	 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
3945	 */
3946	struct stripe_head *sh;
3947	int dd_idx;
3948	sector_t sector, logical_sector, last_sector;
3949	int scnt = 0;
3950	int remaining;
3951	int handled = 0;
3952
3953	logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
3954	sector = raid5_compute_sector(conf, logical_sector,
3955				      0, &dd_idx, NULL);
3956	last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);
3957
3958	for (; logical_sector < last_sector;
3959	     logical_sector += STRIPE_SECTORS,
3960		     sector += STRIPE_SECTORS,
3961		     scnt++) {
3962
3963		if (scnt < raid5_bi_hw_segments(raid_bio))
3964			/* already done this stripe */
3965			continue;
3966
3967		sh = get_active_stripe(conf, sector, 0, 1);
3968
3969		if (!sh) {
3970			/* failed to get a stripe - must wait */
3971			raid5_set_bi_hw_segments(raid_bio, scnt);
3972			conf->retry_read_aligned = raid_bio;
3973			return handled;
3974		}
3975
3976		set_bit(R5_ReadError, &sh->dev[dd_idx].flags);
3977		if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
3978			release_stripe(sh);
3979			raid5_set_bi_hw_segments(raid_bio, scnt);
3980			conf->retry_read_aligned = raid_bio;
3981			return handled;
3982		}
3983
3984		handle_stripe(sh, NULL);
3985		release_stripe(sh);
3986		handled++;
3987	}
3988	spin_lock_irq(&conf->device_lock);
3989	remaining = raid5_dec_bi_phys_segments(raid_bio);
3990	spin_unlock_irq(&conf->device_lock);
3991	if (remaining == 0)
3992		bio_endio(raid_bio, 0);
3993	if (atomic_dec_and_test(&conf->active_aligned_reads))
3994		wake_up(&conf->wait_for_stripe);
3995	return handled;
3996}
3997
3998
3999
4000/*
4001 * This is our raid5 kernel thread.
4002 *
4003 * We scan the hash table for stripes which can be handled now.
4004 * During the scan, completed stripes are saved for us by the interrupt
4005 * handler, so that they will not have to wait for our next wakeup.
4006 */
4007static void raid5d(mddev_t *mddev)
4008{
4009	struct stripe_head *sh;
4010	raid5_conf_t *conf = mddev_to_conf(mddev);
4011	int handled;
4012
4013	pr_debug("+++ raid5d active\n");
4014
4015	md_check_recovery(mddev);
4016
4017	handled = 0;
4018	spin_lock_irq(&conf->device_lock);
4019	while (1) {
4020		struct bio *bio;
4021
4022		if (conf->seq_flush != conf->seq_write) {
4023			int seq = conf->seq_flush;
4024			spin_unlock_irq(&conf->device_lock);
4025			bitmap_unplug(mddev->bitmap);
4026			spin_lock_irq(&conf->device_lock);
4027			conf->seq_write = seq;
4028			activate_bit_delay(conf);
4029		}
4030
4031		while ((bio = remove_bio_from_retry(conf))) {
4032			int ok;
4033			spin_unlock_irq(&conf->device_lock);
4034			ok = retry_aligned_read(conf, bio);
4035			spin_lock_irq(&conf->device_lock);
4036			if (!ok)
4037				break;
4038			handled++;
4039		}
4040
4041		sh = __get_priority_stripe(conf);
4042
4043		if (!sh)
4044			break;
4045		spin_unlock_irq(&conf->device_lock);
4046
4047		handled++;
4048		handle_stripe(sh, conf->spare_page);
4049		release_stripe(sh);
4050
4051		spin_lock_irq(&conf->device_lock);
4052	}
4053	pr_debug("%d stripes handled\n", handled);
4054
4055	spin_unlock_irq(&conf->device_lock);
4056
4057	async_tx_issue_pending_all();
4058	unplug_slaves(mddev);
4059
4060	pr_debug("--- raid5d inactive\n");
4061}
4062
4063static ssize_t
4064raid5_show_stripe_cache_size(mddev_t *mddev, char *page)
4065{
4066	raid5_conf_t *conf = mddev_to_conf(mddev);
4067	if (conf)
4068		return sprintf(page, "%d\n", conf->max_nr_stripes);
4069	else
4070		return 0;
4071}
4072
4073static ssize_t
4074raid5_store_stripe_cache_size(mddev_t *mddev, const char *page, size_t len)
4075{
4076	raid5_conf_t *conf = mddev_to_conf(mddev);
4077	unsigned long new;
4078	int err;
4079
4080	if (len >= PAGE_SIZE)
4081		return -EINVAL;
4082	if (!conf)
4083		return -ENODEV;
4084
4085	if (strict_strtoul(page, 10, &new))
4086		return -EINVAL;
4087	if (new <= 16 || new > 32768)
4088		return -EINVAL;
4089	while (new < conf->max_nr_stripes) {
4090		if (drop_one_stripe(conf))
4091			conf->max_nr_stripes--;
4092		else
4093			break;
4094	}
4095	err = md_allow_write(mddev);
4096	if (err)
4097		return err;
4098	while (new > conf->max_nr_stripes) {
4099		if (grow_one_stripe(conf))
4100			conf->max_nr_stripes++;
4101		else break;
4102	}
4103	return len;
4104}
4105
4106static struct md_sysfs_entry
4107raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
4108				raid5_show_stripe_cache_size,
4109				raid5_store_stripe_cache_size);
4110
4111static ssize_t
4112raid5_show_preread_threshold(mddev_t *mddev, char *page)
4113{
4114	raid5_conf_t *conf = mddev_to_conf(mddev);
4115	if (conf)
4116		return sprintf(page, "%d\n", conf->bypass_threshold);
4117	else
4118		return 0;
4119}
4120
4121static ssize_t
4122raid5_store_preread_threshold(mddev_t *mddev, const char *page, size_t len)
4123{
4124	raid5_conf_t *conf = mddev_to_conf(mddev);
4125	unsigned long new;
4126	if (len >= PAGE_SIZE)
4127		return -EINVAL;
4128	if (!conf)
4129		return -ENODEV;
4130
4131	if (strict_strtoul(page, 10, &new))
4132		return -EINVAL;
4133	if (new > conf->max_nr_stripes)
4134		return -EINVAL;
4135	conf->bypass_threshold = new;
4136	return len;
4137}
4138
4139static struct md_sysfs_entry
4140raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
4141					S_IRUGO | S_IWUSR,
4142					raid5_show_preread_threshold,
4143					raid5_store_preread_threshold);
4144
4145static ssize_t
4146stripe_cache_active_show(mddev_t *mddev, char *page)
4147{
4148	raid5_conf_t *conf = mddev_to_conf(mddev);
4149	if (conf)
4150		return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
4151	else
4152		return 0;
4153}
4154
4155static struct md_sysfs_entry
4156raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
4157
4158static struct attribute *raid5_attrs[] =  {
4159	&raid5_stripecache_size.attr,
4160	&raid5_stripecache_active.attr,
4161	&raid5_preread_bypass_threshold.attr,
4162	NULL,
4163};
4164static struct attribute_group raid5_attrs_group = {
4165	.name = NULL,
4166	.attrs = raid5_attrs,
4167};
4168
4169static sector_t
4170raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks)
4171{
4172	raid5_conf_t *conf = mddev_to_conf(mddev);
4173
4174	if (!sectors)
4175		sectors = mddev->dev_sectors;
4176	if (!raid_disks)
4177		raid_disks = conf->previous_raid_disks;
4178
4179	sectors &= ~((sector_t)mddev->chunk_size/512 - 1);
4180	return sectors * (raid_disks - conf->max_degraded);
4181}
4182
4183static raid5_conf_t *setup_conf(mddev_t *mddev)
4184{
4185	raid5_conf_t *conf;
4186	int raid_disk, memory;
4187	mdk_rdev_t *rdev;
4188	struct disk_info *disk;
4189
4190	if (mddev->new_level != 5
4191	    && mddev->new_level != 4
4192	    && mddev->new_level != 6) {
4193		printk(KERN_ERR "raid5: %s: raid level not set to 4/5/6 (%d)\n",
4194		       mdname(mddev), mddev->new_level);
4195		return ERR_PTR(-EIO);
4196	}
4197	if ((mddev->new_level == 5
4198	     && !algorithm_valid_raid5(mddev->new_layout)) ||
4199	    (mddev->new_level == 6
4200	     && !algorithm_valid_raid6(mddev->new_layout))) {
4201		printk(KERN_ERR "raid5: %s: layout %d not supported\n",
4202		       mdname(mddev), mddev->new_layout);
4203		return ERR_PTR(-EIO);
4204	}
4205	if (mddev->new_level == 6 && mddev->raid_disks < 4) {
4206		printk(KERN_ERR "raid6: not enough configured devices for %s (%d, minimum 4)\n",
4207		       mdname(mddev), mddev->raid_disks);
4208		return ERR_PTR(-EINVAL);
4209	}
4210
4211	if (!mddev->new_chunk || mddev->new_chunk % PAGE_SIZE) {
4212		printk(KERN_ERR "raid5: invalid chunk size %d for %s\n",
4213			mddev->new_chunk, mdname(mddev));
4214		return ERR_PTR(-EINVAL);
4215	}
4216
4217	conf = kzalloc(sizeof(raid5_conf_t), GFP_KERNEL);
4218	if (conf == NULL)
4219		goto abort;
4220
4221	conf->raid_disks = mddev->raid_disks;
4222	if (mddev->reshape_position == MaxSector)
4223		conf->previous_raid_disks = mddev->raid_disks;
4224	else
4225		conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
4226
4227	conf->disks = kzalloc(conf->raid_disks * sizeof(struct disk_info),
4228			      GFP_KERNEL);
4229	if (!conf->disks)
4230		goto abort;
4231
4232	conf->mddev = mddev;
4233
4234	if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
4235		goto abort;
4236
4237	if (mddev->new_level == 6) {
4238		conf->spare_page = alloc_page(GFP_KERNEL);
4239		if (!conf->spare_page)
4240			goto abort;
4241	}
4242	spin_lock_init(&conf->device_lock);
4243	init_waitqueue_head(&conf->wait_for_stripe);
4244	init_waitqueue_head(&conf->wait_for_overlap);
4245	INIT_LIST_HEAD(&conf->handle_list);
4246	INIT_LIST_HEAD(&conf->hold_list);
4247	INIT_LIST_HEAD(&conf->delayed_list);
4248	INIT_LIST_HEAD(&conf->bitmap_list);
4249	INIT_LIST_HEAD(&conf->inactive_list);
4250	atomic_set(&conf->active_stripes, 0);
4251	atomic_set(&conf->preread_active_stripes, 0);
4252	atomic_set(&conf->active_aligned_reads, 0);
4253	conf->bypass_threshold = BYPASS_THRESHOLD;
4254
4255	pr_debug("raid5: run(%s) called.\n", mdname(mddev));
4256
4257	list_for_each_entry(rdev, &mddev->disks, same_set) {
4258		raid_disk = rdev->raid_disk;
4259		if (raid_disk >= conf->raid_disks
4260		    || raid_disk < 0)
4261			continue;
4262		disk = conf->disks + raid_disk;
4263
4264		disk->rdev = rdev;
4265
4266		if (test_bit(In_sync, &rdev->flags)) {
4267			char b[BDEVNAME_SIZE];
4268			printk(KERN_INFO "raid5: device %s operational as raid"
4269				" disk %d\n", bdevname(rdev->bdev,b),
4270				raid_disk);
4271		} else
4272			/* Cannot rely on bitmap to complete recovery */
4273			conf->fullsync = 1;
4274	}
4275
4276	conf->chunk_size = mddev->new_chunk;
4277	conf->level = mddev->new_level;
4278	if (conf->level == 6)
4279		conf->max_degraded = 2;
4280	else
4281		conf->max_degraded = 1;
4282	conf->algorithm = mddev->new_layout;
4283	conf->max_nr_stripes = NR_STRIPES;
4284	conf->expand_progress = mddev->reshape_position;
4285
4286	memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
4287		 conf->raid_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
4288	if (grow_stripes(conf, conf->max_nr_stripes)) {
4289		printk(KERN_ERR
4290			"raid5: couldn't allocate %dkB for buffers\n", memory);
4291		goto abort;
4292	} else
4293		printk(KERN_INFO "raid5: allocated %dkB for %s\n",
4294			memory, mdname(mddev));
4295
4296	conf->thread = md_register_thread(raid5d, mddev, "%s_raid5");
4297	if (!conf->thread) {
4298		printk(KERN_ERR
4299		       "raid5: couldn't allocate thread for %s\n",
4300		       mdname(mddev));
4301		goto abort;
4302	}
4303
4304	return conf;
4305
4306 abort:
4307	if (conf) {
4308		shrink_stripes(conf);
4309		safe_put_page(conf->spare_page);
4310		kfree(conf->disks);
4311		kfree(conf->stripe_hashtbl);
4312		kfree(conf);
4313		return ERR_PTR(-EIO);
4314	} else
4315		return ERR_PTR(-ENOMEM);
4316}
4317
4318static int run(mddev_t *mddev)
4319{
4320	raid5_conf_t *conf;
4321	int working_disks = 0;
4322	mdk_rdev_t *rdev;
4323
4324	if (mddev->reshape_position != MaxSector) {
4325		/* Check that we can continue the reshape.
4326		 * Currently only disks can change, it must
4327		 * increase, and we must be past the point where
4328		 * a stripe over-writes itself
4329		 */
4330		sector_t here_new, here_old;
4331		int old_disks;
4332		int max_degraded = (mddev->level == 5 ? 1 : 2);
4333
4334		if (mddev->new_level != mddev->level ||
4335		    mddev->new_layout != mddev->layout ||
4336		    mddev->new_chunk != mddev->chunk_size) {
4337			printk(KERN_ERR "raid5: %s: unsupported reshape "
4338			       "required - aborting.\n",
4339			       mdname(mddev));
4340			return -EINVAL;
4341		}
4342		if (mddev->delta_disks <= 0) {
4343			printk(KERN_ERR "raid5: %s: unsupported reshape "
4344			       "(reduce disks) required - aborting.\n",
4345			       mdname(mddev));
4346			return -EINVAL;
4347		}
4348		old_disks = mddev->raid_disks - mddev->delta_disks;
4349		/* reshape_position must be on a new-stripe boundary, and one
4350		 * further up in new geometry must map after here in old
4351		 * geometry.
4352		 */
4353		here_new = mddev->reshape_position;
4354		if (sector_div(here_new, (mddev->chunk_size>>9)*
4355			       (mddev->raid_disks - max_degraded))) {
4356			printk(KERN_ERR "raid5: reshape_position not "
4357			       "on a stripe boundary\n");
4358			return -EINVAL;
4359		}
4360		/* here_new is the stripe we will write to */
4361		here_old = mddev->reshape_position;
4362		sector_div(here_old, (mddev->chunk_size>>9)*
4363			   (old_disks-max_degraded));
4364		/* here_old is the first stripe that we might need to read
4365		 * from */
4366		if (here_new >= here_old) {
4367			/* Reading from the same stripe as writing to - bad */
4368			printk(KERN_ERR "raid5: reshape_position too early for "
4369			       "auto-recovery - aborting.\n");
4370			return -EINVAL;
4371		}
4372		printk(KERN_INFO "raid5: reshape will continue\n");
4373		/* OK, we should be able to continue; */
4374	} else {
4375		BUG_ON(mddev->level != mddev->new_level);
4376		BUG_ON(mddev->layout != mddev->new_layout);
4377		BUG_ON(mddev->chunk_size != mddev->new_chunk);
4378		BUG_ON(mddev->delta_disks != 0);
4379	}
4380
4381	if (mddev->private == NULL)
4382		conf = setup_conf(mddev);
4383	else
4384		conf = mddev->private;
4385
4386	if (IS_ERR(conf))
4387		return PTR_ERR(conf);
4388
4389	mddev->thread = conf->thread;
4390	conf->thread = NULL;
4391	mddev->private = conf;
4392
4393	/*
4394	 * 0 for a fully functional array, 1 or 2 for a degraded array.
4395	 */
4396	list_for_each_entry(rdev, &mddev->disks, same_set)
4397		if (rdev->raid_disk >= 0 &&
4398		    test_bit(In_sync, &rdev->flags))
4399			working_disks++;
4400
4401	mddev->degraded = conf->raid_disks - working_disks;
4402
4403	if (mddev->degraded > conf->max_degraded) {
4404		printk(KERN_ERR "raid5: not enough operational devices for %s"
4405			" (%d/%d failed)\n",
4406			mdname(mddev), mddev->degraded, conf->raid_disks);
4407		goto abort;
4408	}
4409
4410	/* device size must be a multiple of chunk size */
4411	mddev->dev_sectors &= ~(mddev->chunk_size / 512 - 1);
4412	mddev->resync_max_sectors = mddev->dev_sectors;
4413
4414	if (mddev->degraded > 0 &&
4415	    mddev->recovery_cp != MaxSector) {
4416		if (mddev->ok_start_degraded)
4417			printk(KERN_WARNING
4418			       "raid5: starting dirty degraded array: %s"
4419			       "- data corruption possible.\n",
4420			       mdname(mddev));
4421		else {
4422			printk(KERN_ERR
4423			       "raid5: cannot start dirty degraded array for %s\n",
4424			       mdname(mddev));
4425			goto abort;
4426		}
4427	}
4428
4429	if (mddev->degraded == 0)
4430		printk("raid5: raid level %d set %s active with %d out of %d"
4431			" devices, algorithm %d\n", conf->level, mdname(mddev),
4432			mddev->raid_disks-mddev->degraded, mddev->raid_disks,
4433			conf->algorithm);
4434	else
4435		printk(KERN_ALERT "raid5: raid level %d set %s active with %d"
4436			" out of %d devices, algorithm %d\n", conf->level,
4437			mdname(mddev), mddev->raid_disks - mddev->degraded,
4438			mddev->raid_disks, conf->algorithm);
4439
4440	print_raid5_conf(conf);
4441
4442	if (conf->expand_progress != MaxSector) {
4443		printk("...ok start reshape thread\n");
4444		conf->expand_lo = conf->expand_progress;
4445		atomic_set(&conf->reshape_stripes, 0);
4446		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4447		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4448		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4449		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4450		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4451							"%s_reshape");
4452	}
4453
4454	/* read-ahead size must cover two whole stripes, which is
4455	 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4456	 */
4457	{
4458		int data_disks = conf->previous_raid_disks - conf->max_degraded;
4459		int stripe = data_disks *
4460			(mddev->chunk_size / PAGE_SIZE);
4461		if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4462			mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4463	}
4464
4465	/* Ok, everything is just fine now */
4466	if (sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
4467		printk(KERN_WARNING
4468		       "raid5: failed to create sysfs attributes for %s\n",
4469		       mdname(mddev));
4470
4471	mddev->queue->queue_lock = &conf->device_lock;
4472
4473	mddev->queue->unplug_fn = raid5_unplug_device;
4474	mddev->queue->backing_dev_info.congested_data = mddev;
4475	mddev->queue->backing_dev_info.congested_fn = raid5_congested;
4476
4477	md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
4478
4479	blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
4480
4481	return 0;
4482abort:
4483	md_unregister_thread(mddev->thread);
4484	mddev->thread = NULL;
4485	if (conf) {
4486		shrink_stripes(conf);
4487		print_raid5_conf(conf);
4488		safe_put_page(conf->spare_page);
4489		kfree(conf->disks);
4490		kfree(conf->stripe_hashtbl);
4491		kfree(conf);
4492	}
4493	mddev->private = NULL;
4494	printk(KERN_ALERT "raid5: failed to run raid set %s\n", mdname(mddev));
4495	return -EIO;
4496}
4497
4498
4499
4500static int stop(mddev_t *mddev)
4501{
4502	raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
4503
4504	md_unregister_thread(mddev->thread);
4505	mddev->thread = NULL;
4506	shrink_stripes(conf);
4507	kfree(conf->stripe_hashtbl);
4508	mddev->queue->backing_dev_info.congested_fn = NULL;
4509	blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
4510	sysfs_remove_group(&mddev->kobj, &raid5_attrs_group);
4511	kfree(conf->disks);
4512	kfree(conf);
4513	mddev->private = NULL;
4514	return 0;
4515}
4516
4517#ifdef DEBUG
4518static void print_sh(struct seq_file *seq, struct stripe_head *sh)
4519{
4520	int i;
4521
4522	seq_printf(seq, "sh %llu, pd_idx %d, state %ld.\n",
4523		   (unsigned long long)sh->sector, sh->pd_idx, sh->state);
4524	seq_printf(seq, "sh %llu,  count %d.\n",
4525		   (unsigned long long)sh->sector, atomic_read(&sh->count));
4526	seq_printf(seq, "sh %llu, ", (unsigned long long)sh->sector);
4527	for (i = 0; i < sh->disks; i++) {
4528		seq_printf(seq, "(cache%d: %p %ld) ",
4529			   i, sh->dev[i].page, sh->dev[i].flags);
4530	}
4531	seq_printf(seq, "\n");
4532}
4533
4534static void printall(struct seq_file *seq, raid5_conf_t *conf)
4535{
4536	struct stripe_head *sh;
4537	struct hlist_node *hn;
4538	int i;
4539
4540	spin_lock_irq(&conf->device_lock);
4541	for (i = 0; i < NR_HASH; i++) {
4542		hlist_for_each_entry(sh, hn, &conf->stripe_hashtbl[i], hash) {
4543			if (sh->raid_conf != conf)
4544				continue;
4545			print_sh(seq, sh);
4546		}
4547	}
4548	spin_unlock_irq(&conf->device_lock);
4549}
4550#endif
4551
4552static void status(struct seq_file *seq, mddev_t *mddev)
4553{
4554	raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
4555	int i;
4556
4557	seq_printf (seq, " level %d, %dk chunk, algorithm %d", mddev->level, mddev->chunk_size >> 10, mddev->layout);
4558	seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
4559	for (i = 0; i < conf->raid_disks; i++)
4560		seq_printf (seq, "%s",
4561			       conf->disks[i].rdev &&
4562			       test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
4563	seq_printf (seq, "]");
4564#ifdef DEBUG
4565	seq_printf (seq, "\n");
4566	printall(seq, conf);
4567#endif
4568}
4569
4570static void print_raid5_conf (raid5_conf_t *conf)
4571{
4572	int i;
4573	struct disk_info *tmp;
4574
4575	printk("RAID5 conf printout:\n");
4576	if (!conf) {
4577		printk("(conf==NULL)\n");
4578		return;
4579	}
4580	printk(" --- rd:%d wd:%d\n", conf->raid_disks,
4581		 conf->raid_disks - conf->mddev->degraded);
4582
4583	for (i = 0; i < conf->raid_disks; i++) {
4584		char b[BDEVNAME_SIZE];
4585		tmp = conf->disks + i;
4586		if (tmp->rdev)
4587		printk(" disk %d, o:%d, dev:%s\n",
4588			i, !test_bit(Faulty, &tmp->rdev->flags),
4589			bdevname(tmp->rdev->bdev,b));
4590	}
4591}
4592
4593static int raid5_spare_active(mddev_t *mddev)
4594{
4595	int i;
4596	raid5_conf_t *conf = mddev->private;
4597	struct disk_info *tmp;
4598
4599	for (i = 0; i < conf->raid_disks; i++) {
4600		tmp = conf->disks + i;
4601		if (tmp->rdev
4602		    && !test_bit(Faulty, &tmp->rdev->flags)
4603		    && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
4604			unsigned long flags;
4605			spin_lock_irqsave(&conf->device_lock, flags);
4606			mddev->degraded--;
4607			spin_unlock_irqrestore(&conf->device_lock, flags);
4608		}
4609	}
4610	print_raid5_conf(conf);
4611	return 0;
4612}
4613
4614static int raid5_remove_disk(mddev_t *mddev, int number)
4615{
4616	raid5_conf_t *conf = mddev->private;
4617	int err = 0;
4618	mdk_rdev_t *rdev;
4619	struct disk_info *p = conf->disks + number;
4620
4621	print_raid5_conf(conf);
4622	rdev = p->rdev;
4623	if (rdev) {
4624		if (test_bit(In_sync, &rdev->flags) ||
4625		    atomic_read(&rdev->nr_pending)) {
4626			err = -EBUSY;
4627			goto abort;
4628		}
4629		/* Only remove non-faulty devices if recovery
4630		 * isn't possible.
4631		 */
4632		if (!test_bit(Faulty, &rdev->flags) &&
4633		    mddev->degraded <= conf->max_degraded) {
4634			err = -EBUSY;
4635			goto abort;
4636		}
4637		p->rdev = NULL;
4638		synchronize_rcu();
4639		if (atomic_read(&rdev->nr_pending)) {
4640			/* lost the race, try later */
4641			err = -EBUSY;
4642			p->rdev = rdev;
4643		}
4644	}
4645abort:
4646
4647	print_raid5_conf(conf);
4648	return err;
4649}
4650
4651static int raid5_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
4652{
4653	raid5_conf_t *conf = mddev->private;
4654	int err = -EEXIST;
4655	int disk;
4656	struct disk_info *p;
4657	int first = 0;
4658	int last = conf->raid_disks - 1;
4659
4660	if (mddev->degraded > conf->max_degraded)
4661		/* no point adding a device */
4662		return -EINVAL;
4663
4664	if (rdev->raid_disk >= 0)
4665		first = last = rdev->raid_disk;
4666
4667	/*
4668	 * find the disk ... but prefer rdev->saved_raid_disk
4669	 * if possible.
4670	 */
4671	if (rdev->saved_raid_disk >= 0 &&
4672	    rdev->saved_raid_disk >= first &&
4673	    conf->disks[rdev->saved_raid_disk].rdev == NULL)
4674		disk = rdev->saved_raid_disk;
4675	else
4676		disk = first;
4677	for ( ; disk <= last ; disk++)
4678		if ((p=conf->disks + disk)->rdev == NULL) {
4679			clear_bit(In_sync, &rdev->flags);
4680			rdev->raid_disk = disk;
4681			err = 0;
4682			if (rdev->saved_raid_disk != disk)
4683				conf->fullsync = 1;
4684			rcu_assign_pointer(p->rdev, rdev);
4685			break;
4686		}
4687	print_raid5_conf(conf);
4688	return err;
4689}
4690
4691static int raid5_resize(mddev_t *mddev, sector_t sectors)
4692{
4693	/* no resync is happening, and there is enough space
4694	 * on all devices, so we can resize.
4695	 * We need to make sure resync covers any new space.
4696	 * If the array is shrinking we should possibly wait until
4697	 * any io in the removed space completes, but it hardly seems
4698	 * worth it.
4699	 */
4700	sectors &= ~((sector_t)mddev->chunk_size/512 - 1);
4701	md_set_array_sectors(mddev, raid5_size(mddev, sectors,
4702					       mddev->raid_disks));
4703	set_capacity(mddev->gendisk, mddev->array_sectors);
4704	mddev->changed = 1;
4705	if (sectors > mddev->dev_sectors && mddev->recovery_cp == MaxSector) {
4706		mddev->recovery_cp = mddev->dev_sectors;
4707		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4708	}
4709	mddev->dev_sectors = sectors;
4710	mddev->resync_max_sectors = sectors;
4711	return 0;
4712}
4713
4714#ifdef CONFIG_MD_RAID5_RESHAPE
4715static int raid5_check_reshape(mddev_t *mddev)
4716{
4717	raid5_conf_t *conf = mddev_to_conf(mddev);
4718	int err;
4719
4720	if (mddev->delta_disks < 0 ||
4721	    mddev->new_level != mddev->level)
4722		return -EINVAL; /* Cannot shrink array or change level yet */
4723	if (mddev->delta_disks == 0)
4724		return 0; /* nothing to do */
4725	if (mddev->bitmap)
4726		/* Cannot grow a bitmap yet */
4727		return -EBUSY;
4728
4729	/* Can only proceed if there are plenty of stripe_heads.
4730	 * We need a minimum of one full stripe,, and for sensible progress
4731	 * it is best to have about 4 times that.
4732	 * If we require 4 times, then the default 256 4K stripe_heads will
4733	 * allow for chunk sizes up to 256K, which is probably OK.
4734	 * If the chunk size is greater, user-space should request more
4735	 * stripe_heads first.
4736	 */
4737	if ((mddev->chunk_size / STRIPE_SIZE) * 4 > conf->max_nr_stripes ||
4738	    (mddev->new_chunk / STRIPE_SIZE) * 4 > conf->max_nr_stripes) {
4739		printk(KERN_WARNING "raid5: reshape: not enough stripes.  Needed %lu\n",
4740		       (mddev->chunk_size / STRIPE_SIZE)*4);
4741		return -ENOSPC;
4742	}
4743
4744	err = resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
4745	if (err)
4746		return err;
4747
4748	if (mddev->degraded > conf->max_degraded)
4749		return -EINVAL;
4750	/* looks like we might be able to manage this */
4751	return 0;
4752}
4753
4754static int raid5_start_reshape(mddev_t *mddev)
4755{
4756	raid5_conf_t *conf = mddev_to_conf(mddev);
4757	mdk_rdev_t *rdev;
4758	int spares = 0;
4759	int added_devices = 0;
4760	unsigned long flags;
4761
4762	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4763		return -EBUSY;
4764
4765	list_for_each_entry(rdev, &mddev->disks, same_set)
4766		if (rdev->raid_disk < 0 &&
4767		    !test_bit(Faulty, &rdev->flags))
4768			spares++;
4769
4770	if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
4771		/* Not enough devices even to make a degraded array
4772		 * of that size
4773		 */
4774		return -EINVAL;
4775
4776	atomic_set(&conf->reshape_stripes, 0);
4777	spin_lock_irq(&conf->device_lock);
4778	conf->previous_raid_disks = conf->raid_disks;
4779	conf->raid_disks += mddev->delta_disks;
4780	conf->expand_progress = 0;
4781	conf->expand_lo = 0;
4782	spin_unlock_irq(&conf->device_lock);
4783
4784	/* Add some new drives, as many as will fit.
4785	 * We know there are enough to make the newly sized array work.
4786	 */
4787	list_for_each_entry(rdev, &mddev->disks, same_set)
4788		if (rdev->raid_disk < 0 &&
4789		    !test_bit(Faulty, &rdev->flags)) {
4790			if (raid5_add_disk(mddev, rdev) == 0) {
4791				char nm[20];
4792				set_bit(In_sync, &rdev->flags);
4793				added_devices++;
4794				rdev->recovery_offset = 0;
4795				sprintf(nm, "rd%d", rdev->raid_disk);
4796				if (sysfs_create_link(&mddev->kobj,
4797						      &rdev->kobj, nm))
4798					printk(KERN_WARNING
4799					       "raid5: failed to create "
4800					       " link %s for %s\n",
4801					       nm, mdname(mddev));
4802			} else
4803				break;
4804		}
4805
4806	spin_lock_irqsave(&conf->device_lock, flags);
4807	mddev->degraded = (conf->raid_disks - conf->previous_raid_disks) - added_devices;
4808	spin_unlock_irqrestore(&conf->device_lock, flags);
4809	mddev->raid_disks = conf->raid_disks;
4810	mddev->reshape_position = 0;
4811	set_bit(MD_CHANGE_DEVS, &mddev->flags);
4812
4813	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4814	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4815	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4816	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4817	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4818						"%s_reshape");
4819	if (!mddev->sync_thread) {
4820		mddev->recovery = 0;
4821		spin_lock_irq(&conf->device_lock);
4822		mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
4823		conf->expand_progress = MaxSector;
4824		spin_unlock_irq(&conf->device_lock);
4825		return -EAGAIN;
4826	}
4827	md_wakeup_thread(mddev->sync_thread);
4828	md_new_event(mddev);
4829	return 0;
4830}
4831#endif
4832
4833static void end_reshape(raid5_conf_t *conf)
4834{
4835	struct block_device *bdev;
4836
4837	if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
4838		mddev_t *mddev = conf->mddev;
4839
4840		md_set_array_sectors(mddev, raid5_size(mddev, 0,
4841						       conf->raid_disks));
4842		set_capacity(mddev->gendisk, mddev->array_sectors);
4843		mddev->changed = 1;
4844		conf->previous_raid_disks = conf->raid_disks;
4845
4846		bdev = bdget_disk(conf->mddev->gendisk, 0);
4847		if (bdev) {
4848			mutex_lock(&bdev->bd_inode->i_mutex);
4849			i_size_write(bdev->bd_inode,
4850				     (loff_t)conf->mddev->array_sectors << 9);
4851			mutex_unlock(&bdev->bd_inode->i_mutex);
4852			bdput(bdev);
4853		}
4854		spin_lock_irq(&conf->device_lock);
4855		conf->expand_progress = MaxSector;
4856		spin_unlock_irq(&conf->device_lock);
4857		conf->mddev->reshape_position = MaxSector;
4858
4859		/* read-ahead size must cover two whole stripes, which is
4860		 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4861		 */
4862		{
4863			int data_disks = conf->previous_raid_disks - conf->max_degraded;
4864			int stripe = data_disks *
4865				(conf->mddev->chunk_size / PAGE_SIZE);
4866			if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4867				conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4868		}
4869	}
4870}
4871
4872static void raid5_quiesce(mddev_t *mddev, int state)
4873{
4874	raid5_conf_t *conf = mddev_to_conf(mddev);
4875
4876	switch(state) {
4877	case 2: /* resume for a suspend */
4878		wake_up(&conf->wait_for_overlap);
4879		break;
4880
4881	case 1: /* stop all writes */
4882		spin_lock_irq(&conf->device_lock);
4883		conf->quiesce = 1;
4884		wait_event_lock_irq(conf->wait_for_stripe,
4885				    atomic_read(&conf->active_stripes) == 0 &&
4886				    atomic_read(&conf->active_aligned_reads) == 0,
4887				    conf->device_lock, /* nothing */);
4888		spin_unlock_irq(&conf->device_lock);
4889		break;
4890
4891	case 0: /* re-enable writes */
4892		spin_lock_irq(&conf->device_lock);
4893		conf->quiesce = 0;
4894		wake_up(&conf->wait_for_stripe);
4895		wake_up(&conf->wait_for_overlap);
4896		spin_unlock_irq(&conf->device_lock);
4897		break;
4898	}
4899}
4900
4901
4902static void *raid5_takeover_raid1(mddev_t *mddev)
4903{
4904	int chunksect;
4905
4906	if (mddev->raid_disks != 2 ||
4907	    mddev->degraded > 1)
4908		return ERR_PTR(-EINVAL);
4909
4910	/* Should check if there are write-behind devices? */
4911
4912	chunksect = 64*2; /* 64K by default */
4913
4914	/* The array must be an exact multiple of chunksize */
4915	while (chunksect && (mddev->array_sectors & (chunksect-1)))
4916		chunksect >>= 1;
4917
4918	if ((chunksect<<9) < STRIPE_SIZE)
4919		/* array size does not allow a suitable chunk size */
4920		return ERR_PTR(-EINVAL);
4921
4922	mddev->new_level = 5;
4923	mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
4924	mddev->new_chunk = chunksect << 9;
4925
4926	return setup_conf(mddev);
4927}
4928
4929static void *raid5_takeover_raid6(mddev_t *mddev)
4930{
4931	int new_layout;
4932
4933	switch (mddev->layout) {
4934	case ALGORITHM_LEFT_ASYMMETRIC_6:
4935		new_layout = ALGORITHM_LEFT_ASYMMETRIC;
4936		break;
4937	case ALGORITHM_RIGHT_ASYMMETRIC_6:
4938		new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
4939		break;
4940	case ALGORITHM_LEFT_SYMMETRIC_6:
4941		new_layout = ALGORITHM_LEFT_SYMMETRIC;
4942		break;
4943	case ALGORITHM_RIGHT_SYMMETRIC_6:
4944		new_layout = ALGORITHM_RIGHT_SYMMETRIC;
4945		break;
4946	case ALGORITHM_PARITY_0_6:
4947		new_layout = ALGORITHM_PARITY_0;
4948		break;
4949	case ALGORITHM_PARITY_N:
4950		new_layout = ALGORITHM_PARITY_N;
4951		break;
4952	default:
4953		return ERR_PTR(-EINVAL);
4954	}
4955	mddev->new_level = 5;
4956	mddev->new_layout = new_layout;
4957	mddev->delta_disks = -1;
4958	mddev->raid_disks -= 1;
4959	return setup_conf(mddev);
4960}
4961
4962
4963static int raid5_reconfig(mddev_t *mddev, int new_layout, int new_chunk)
4964{
4965	/* Currently the layout and chunk size can only be changed
4966	 * for a 2-drive raid array, as in that case no data shuffling
4967	 * is required.
4968	 * Later we might validate these and set new_* so a reshape
4969	 * can complete the change.
4970	 */
4971	raid5_conf_t *conf = mddev_to_conf(mddev);
4972
4973	if (new_layout >= 0 && !algorithm_valid_raid5(new_layout))
4974		return -EINVAL;
4975	if (new_chunk > 0) {
4976		if (new_chunk & (new_chunk-1))
4977			/* not a power of 2 */
4978			return -EINVAL;
4979		if (new_chunk < PAGE_SIZE)
4980			return -EINVAL;
4981		if (mddev->array_sectors & ((new_chunk>>9)-1))
4982			/* not factor of array size */
4983			return -EINVAL;
4984	}
4985
4986	/* They look valid */
4987
4988	if (mddev->raid_disks != 2)
4989		return -EINVAL;
4990
4991	if (new_layout >= 0) {
4992		conf->algorithm = new_layout;
4993		mddev->layout = mddev->new_layout = new_layout;
4994	}
4995	if (new_chunk > 0) {
4996		conf->chunk_size = new_chunk;
4997		mddev->chunk_size = mddev->new_chunk = new_chunk;
4998	}
4999	set_bit(MD_CHANGE_DEVS, &mddev->flags);
5000	md_wakeup_thread(mddev->thread);
5001	return 0;
5002}
5003
5004static void *raid5_takeover(mddev_t *mddev)
5005{
5006	/* raid5 can take over:
5007	 *  raid0 - if all devices are the same - make it a raid4 layout
5008	 *  raid1 - if there are two drives.  We need to know the chunk size
5009	 *  raid4 - trivial - just use a raid4 layout.
5010	 *  raid6 - Providing it is a *_6 layout
5011	 *
5012	 * For now, just do raid1
5013	 */
5014
5015	if (mddev->level == 1)
5016		return raid5_takeover_raid1(mddev);
5017	if (mddev->level == 4) {
5018		mddev->new_layout = ALGORITHM_PARITY_N;
5019		mddev->new_level = 5;
5020		return setup_conf(mddev);
5021	}
5022	if (mddev->level == 6)
5023		return raid5_takeover_raid6(mddev);
5024
5025	return ERR_PTR(-EINVAL);
5026}
5027
5028
5029static struct mdk_personality raid5_personality;
5030
5031static void *raid6_takeover(mddev_t *mddev)
5032{
5033	/* Currently can only take over a raid5.  We map the
5034	 * personality to an equivalent raid6 personality
5035	 * with the Q block at the end.
5036	 */
5037	int new_layout;
5038
5039	if (mddev->pers != &raid5_personality)
5040		return ERR_PTR(-EINVAL);
5041	if (mddev->degraded > 1)
5042		return ERR_PTR(-EINVAL);
5043	if (mddev->raid_disks > 253)
5044		return ERR_PTR(-EINVAL);
5045	if (mddev->raid_disks < 3)
5046		return ERR_PTR(-EINVAL);
5047
5048	switch (mddev->layout) {
5049	case ALGORITHM_LEFT_ASYMMETRIC:
5050		new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
5051		break;
5052	case ALGORITHM_RIGHT_ASYMMETRIC:
5053		new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
5054		break;
5055	case ALGORITHM_LEFT_SYMMETRIC:
5056		new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
5057		break;
5058	case ALGORITHM_RIGHT_SYMMETRIC:
5059		new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
5060		break;
5061	case ALGORITHM_PARITY_0:
5062		new_layout = ALGORITHM_PARITY_0_6;
5063		break;
5064	case ALGORITHM_PARITY_N:
5065		new_layout = ALGORITHM_PARITY_N;
5066		break;
5067	default:
5068		return ERR_PTR(-EINVAL);
5069	}
5070	mddev->new_level = 6;
5071	mddev->new_layout = new_layout;
5072	mddev->delta_disks = 1;
5073	mddev->raid_disks += 1;
5074	return setup_conf(mddev);
5075}
5076
5077
5078static struct mdk_personality raid6_personality =
5079{
5080	.name		= "raid6",
5081	.level		= 6,
5082	.owner		= THIS_MODULE,
5083	.make_request	= make_request,
5084	.run		= run,
5085	.stop		= stop,
5086	.status		= status,
5087	.error_handler	= error,
5088	.hot_add_disk	= raid5_add_disk,
5089	.hot_remove_disk= raid5_remove_disk,
5090	.spare_active	= raid5_spare_active,
5091	.sync_request	= sync_request,
5092	.resize		= raid5_resize,
5093	.size		= raid5_size,
5094#ifdef CONFIG_MD_RAID5_RESHAPE
5095	.check_reshape	= raid5_check_reshape,
5096	.start_reshape  = raid5_start_reshape,
5097#endif
5098	.quiesce	= raid5_quiesce,
5099	.takeover	= raid6_takeover,
5100};
5101static struct mdk_personality raid5_personality =
5102{
5103	.name		= "raid5",
5104	.level		= 5,
5105	.owner		= THIS_MODULE,
5106	.make_request	= make_request,
5107	.run		= run,
5108	.stop		= stop,
5109	.status		= status,
5110	.error_handler	= error,
5111	.hot_add_disk	= raid5_add_disk,
5112	.hot_remove_disk= raid5_remove_disk,
5113	.spare_active	= raid5_spare_active,
5114	.sync_request	= sync_request,
5115	.resize		= raid5_resize,
5116	.size		= raid5_size,
5117#ifdef CONFIG_MD_RAID5_RESHAPE
5118	.check_reshape	= raid5_check_reshape,
5119	.start_reshape  = raid5_start_reshape,
5120#endif
5121	.quiesce	= raid5_quiesce,
5122	.takeover	= raid5_takeover,
5123	.reconfig	= raid5_reconfig,
5124};
5125
5126static struct mdk_personality raid4_personality =
5127{
5128	.name		= "raid4",
5129	.level		= 4,
5130	.owner		= THIS_MODULE,
5131	.make_request	= make_request,
5132	.run		= run,
5133	.stop		= stop,
5134	.status		= status,
5135	.error_handler	= error,
5136	.hot_add_disk	= raid5_add_disk,
5137	.hot_remove_disk= raid5_remove_disk,
5138	.spare_active	= raid5_spare_active,
5139	.sync_request	= sync_request,
5140	.resize		= raid5_resize,
5141	.size		= raid5_size,
5142#ifdef CONFIG_MD_RAID5_RESHAPE
5143	.check_reshape	= raid5_check_reshape,
5144	.start_reshape  = raid5_start_reshape,
5145#endif
5146	.quiesce	= raid5_quiesce,
5147};
5148
5149static int __init raid5_init(void)
5150{
5151	int e;
5152
5153	e = raid6_select_algo();
5154	if ( e )
5155		return e;
5156	register_md_personality(&raid6_personality);
5157	register_md_personality(&raid5_personality);
5158	register_md_personality(&raid4_personality);
5159	return 0;
5160}
5161
5162static void raid5_exit(void)
5163{
5164	unregister_md_personality(&raid6_personality);
5165	unregister_md_personality(&raid5_personality);
5166	unregister_md_personality(&raid4_personality);
5167}
5168
5169module_init(raid5_init);
5170module_exit(raid5_exit);
5171MODULE_LICENSE("GPL");
5172MODULE_ALIAS("md-personality-4"); /* RAID5 */
5173MODULE_ALIAS("md-raid5");
5174MODULE_ALIAS("md-raid4");
5175MODULE_ALIAS("md-level-5");
5176MODULE_ALIAS("md-level-4");
5177MODULE_ALIAS("md-personality-8"); /* RAID6 */
5178MODULE_ALIAS("md-raid6");
5179MODULE_ALIAS("md-level-6");
5180
5181/* This used to be two separate modules, they were: */
5182MODULE_ALIAS("raid5");
5183MODULE_ALIAS("raid6");
5184