raid5.c revision 35f2a591192d0a5d9f7fc696869c76f0b8e49c3d
1/*
2 * raid5.c : Multiple Devices driver for Linux
3 *	   Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4 *	   Copyright (C) 1999, 2000 Ingo Molnar
5 *	   Copyright (C) 2002, 2003 H. Peter Anvin
6 *
7 * RAID-4/5/6 management functions.
8 * Thanks to Penguin Computing for making the RAID-6 development possible
9 * by donating a test server!
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
21/*
22 * BITMAP UNPLUGGING:
23 *
24 * The sequencing for updating the bitmap reliably is a little
25 * subtle (and I got it wrong the first time) so it deserves some
26 * explanation.
27 *
28 * We group bitmap updates into batches.  Each batch has a number.
29 * We may write out several batches at once, but that isn't very important.
30 * conf->bm_write is the number of the last batch successfully written.
31 * conf->bm_flush is the number of the last batch that was closed to
32 *    new additions.
33 * When we discover that we will need to write to any block in a stripe
34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35 * the number of the batch it will be in. This is bm_flush+1.
36 * When we are ready to do a write, if that batch hasn't been written yet,
37 *   we plug the array and queue the stripe for later.
38 * When an unplug happens, we increment bm_flush, thus closing the current
39 *   batch.
40 * When we notice that bm_flush > bm_write, we write out all pending updates
41 * to the bitmap, and advance bm_write to where bm_flush was.
42 * This may occasionally write a bit out twice, but is sure never to
43 * miss any bits.
44 */
45
46#include <linux/blkdev.h>
47#include <linux/kthread.h>
48#include <linux/raid/pq.h>
49#include <linux/async_tx.h>
50#include <linux/async.h>
51#include <linux/seq_file.h>
52#include <linux/cpu.h>
53#include <linux/slab.h>
54#include "md.h"
55#include "raid5.h"
56#include "bitmap.h"
57
58/*
59 * Stripe cache
60 */
61
62#define NR_STRIPES		256
63#define STRIPE_SIZE		PAGE_SIZE
64#define STRIPE_SHIFT		(PAGE_SHIFT - 9)
65#define STRIPE_SECTORS		(STRIPE_SIZE>>9)
66#define	IO_THRESHOLD		1
67#define BYPASS_THRESHOLD	1
68#define NR_HASH			(PAGE_SIZE / sizeof(struct hlist_head))
69#define HASH_MASK		(NR_HASH - 1)
70
71#define stripe_hash(conf, sect)	(&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
72
73/* bio's attached to a stripe+device for I/O are linked together in bi_sector
74 * order without overlap.  There may be several bio's per stripe+device, and
75 * a bio could span several devices.
76 * When walking this list for a particular stripe+device, we must never proceed
77 * beyond a bio that extends past this device, as the next bio might no longer
78 * be valid.
79 * This macro is used to determine the 'next' bio in the list, given the sector
80 * of the current stripe+device
81 */
82#define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
83/*
84 * The following can be used to debug the driver
85 */
86#define RAID5_PARANOIA	1
87#if RAID5_PARANOIA && defined(CONFIG_SMP)
88# define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
89#else
90# define CHECK_DEVLOCK()
91#endif
92
93#ifdef DEBUG
94#define inline
95#define __inline__
96#endif
97
98#define printk_rl(args...) ((void) (printk_ratelimit() && printk(args)))
99
100/*
101 * We maintain a biased count of active stripes in the bottom 16 bits of
102 * bi_phys_segments, and a count of processed stripes in the upper 16 bits
103 */
104static inline int raid5_bi_phys_segments(struct bio *bio)
105{
106	return bio->bi_phys_segments & 0xffff;
107}
108
109static inline int raid5_bi_hw_segments(struct bio *bio)
110{
111	return (bio->bi_phys_segments >> 16) & 0xffff;
112}
113
114static inline int raid5_dec_bi_phys_segments(struct bio *bio)
115{
116	--bio->bi_phys_segments;
117	return raid5_bi_phys_segments(bio);
118}
119
120static inline int raid5_dec_bi_hw_segments(struct bio *bio)
121{
122	unsigned short val = raid5_bi_hw_segments(bio);
123
124	--val;
125	bio->bi_phys_segments = (val << 16) | raid5_bi_phys_segments(bio);
126	return val;
127}
128
129static inline void raid5_set_bi_hw_segments(struct bio *bio, unsigned int cnt)
130{
131	bio->bi_phys_segments = raid5_bi_phys_segments(bio) || (cnt << 16);
132}
133
134/* Find first data disk in a raid6 stripe */
135static inline int raid6_d0(struct stripe_head *sh)
136{
137	if (sh->ddf_layout)
138		/* ddf always start from first device */
139		return 0;
140	/* md starts just after Q block */
141	if (sh->qd_idx == sh->disks - 1)
142		return 0;
143	else
144		return sh->qd_idx + 1;
145}
146static inline int raid6_next_disk(int disk, int raid_disks)
147{
148	disk++;
149	return (disk < raid_disks) ? disk : 0;
150}
151
152/* When walking through the disks in a raid5, starting at raid6_d0,
153 * We need to map each disk to a 'slot', where the data disks are slot
154 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
155 * is raid_disks-1.  This help does that mapping.
156 */
157static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
158			     int *count, int syndrome_disks)
159{
160	int slot = *count;
161
162	if (sh->ddf_layout)
163		(*count)++;
164	if (idx == sh->pd_idx)
165		return syndrome_disks;
166	if (idx == sh->qd_idx)
167		return syndrome_disks + 1;
168	if (!sh->ddf_layout)
169		(*count)++;
170	return slot;
171}
172
173static void return_io(struct bio *return_bi)
174{
175	struct bio *bi = return_bi;
176	while (bi) {
177
178		return_bi = bi->bi_next;
179		bi->bi_next = NULL;
180		bi->bi_size = 0;
181		bio_endio(bi, 0);
182		bi = return_bi;
183	}
184}
185
186static void print_raid5_conf (raid5_conf_t *conf);
187
188static int stripe_operations_active(struct stripe_head *sh)
189{
190	return sh->check_state || sh->reconstruct_state ||
191	       test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
192	       test_bit(STRIPE_COMPUTE_RUN, &sh->state);
193}
194
195static void __release_stripe(raid5_conf_t *conf, struct stripe_head *sh)
196{
197	if (atomic_dec_and_test(&sh->count)) {
198		BUG_ON(!list_empty(&sh->lru));
199		BUG_ON(atomic_read(&conf->active_stripes)==0);
200		if (test_bit(STRIPE_HANDLE, &sh->state)) {
201			if (test_bit(STRIPE_DELAYED, &sh->state)) {
202				list_add_tail(&sh->lru, &conf->delayed_list);
203				blk_plug_device(conf->mddev->queue);
204			} else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
205				   sh->bm_seq - conf->seq_write > 0) {
206				list_add_tail(&sh->lru, &conf->bitmap_list);
207				blk_plug_device(conf->mddev->queue);
208			} else {
209				clear_bit(STRIPE_BIT_DELAY, &sh->state);
210				list_add_tail(&sh->lru, &conf->handle_list);
211			}
212			md_wakeup_thread(conf->mddev->thread);
213		} else {
214			BUG_ON(stripe_operations_active(sh));
215			if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
216				atomic_dec(&conf->preread_active_stripes);
217				if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
218					md_wakeup_thread(conf->mddev->thread);
219			}
220			atomic_dec(&conf->active_stripes);
221			if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
222				list_add_tail(&sh->lru, &conf->inactive_list);
223				wake_up(&conf->wait_for_stripe);
224				if (conf->retry_read_aligned)
225					md_wakeup_thread(conf->mddev->thread);
226			}
227		}
228	}
229}
230
231static void release_stripe(struct stripe_head *sh)
232{
233	raid5_conf_t *conf = sh->raid_conf;
234	unsigned long flags;
235
236	spin_lock_irqsave(&conf->device_lock, flags);
237	__release_stripe(conf, sh);
238	spin_unlock_irqrestore(&conf->device_lock, flags);
239}
240
241static inline void remove_hash(struct stripe_head *sh)
242{
243	pr_debug("remove_hash(), stripe %llu\n",
244		(unsigned long long)sh->sector);
245
246	hlist_del_init(&sh->hash);
247}
248
249static inline void insert_hash(raid5_conf_t *conf, struct stripe_head *sh)
250{
251	struct hlist_head *hp = stripe_hash(conf, sh->sector);
252
253	pr_debug("insert_hash(), stripe %llu\n",
254		(unsigned long long)sh->sector);
255
256	CHECK_DEVLOCK();
257	hlist_add_head(&sh->hash, hp);
258}
259
260
261/* find an idle stripe, make sure it is unhashed, and return it. */
262static struct stripe_head *get_free_stripe(raid5_conf_t *conf)
263{
264	struct stripe_head *sh = NULL;
265	struct list_head *first;
266
267	CHECK_DEVLOCK();
268	if (list_empty(&conf->inactive_list))
269		goto out;
270	first = conf->inactive_list.next;
271	sh = list_entry(first, struct stripe_head, lru);
272	list_del_init(first);
273	remove_hash(sh);
274	atomic_inc(&conf->active_stripes);
275out:
276	return sh;
277}
278
279static void shrink_buffers(struct stripe_head *sh, int num)
280{
281	struct page *p;
282	int i;
283
284	for (i=0; i<num ; i++) {
285		p = sh->dev[i].page;
286		if (!p)
287			continue;
288		sh->dev[i].page = NULL;
289		put_page(p);
290	}
291}
292
293static int grow_buffers(struct stripe_head *sh, int num)
294{
295	int i;
296
297	for (i=0; i<num; i++) {
298		struct page *page;
299
300		if (!(page = alloc_page(GFP_KERNEL))) {
301			return 1;
302		}
303		sh->dev[i].page = page;
304	}
305	return 0;
306}
307
308static void raid5_build_block(struct stripe_head *sh, int i, int previous);
309static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
310			    struct stripe_head *sh);
311
312static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
313{
314	raid5_conf_t *conf = sh->raid_conf;
315	int i;
316
317	BUG_ON(atomic_read(&sh->count) != 0);
318	BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
319	BUG_ON(stripe_operations_active(sh));
320
321	CHECK_DEVLOCK();
322	pr_debug("init_stripe called, stripe %llu\n",
323		(unsigned long long)sh->sector);
324
325	remove_hash(sh);
326
327	sh->generation = conf->generation - previous;
328	sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
329	sh->sector = sector;
330	stripe_set_idx(sector, conf, previous, sh);
331	sh->state = 0;
332
333
334	for (i = sh->disks; i--; ) {
335		struct r5dev *dev = &sh->dev[i];
336
337		if (dev->toread || dev->read || dev->towrite || dev->written ||
338		    test_bit(R5_LOCKED, &dev->flags)) {
339			printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
340			       (unsigned long long)sh->sector, i, dev->toread,
341			       dev->read, dev->towrite, dev->written,
342			       test_bit(R5_LOCKED, &dev->flags));
343			BUG();
344		}
345		dev->flags = 0;
346		raid5_build_block(sh, i, previous);
347	}
348	insert_hash(conf, sh);
349}
350
351static struct stripe_head *__find_stripe(raid5_conf_t *conf, sector_t sector,
352					 short generation)
353{
354	struct stripe_head *sh;
355	struct hlist_node *hn;
356
357	CHECK_DEVLOCK();
358	pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
359	hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
360		if (sh->sector == sector && sh->generation == generation)
361			return sh;
362	pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
363	return NULL;
364}
365
366static void unplug_slaves(mddev_t *mddev);
367static void raid5_unplug_device(struct request_queue *q);
368
369static struct stripe_head *
370get_active_stripe(raid5_conf_t *conf, sector_t sector,
371		  int previous, int noblock, int noquiesce)
372{
373	struct stripe_head *sh;
374
375	pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
376
377	spin_lock_irq(&conf->device_lock);
378
379	do {
380		wait_event_lock_irq(conf->wait_for_stripe,
381				    conf->quiesce == 0 || noquiesce,
382				    conf->device_lock, /* nothing */);
383		sh = __find_stripe(conf, sector, conf->generation - previous);
384		if (!sh) {
385			if (!conf->inactive_blocked)
386				sh = get_free_stripe(conf);
387			if (noblock && sh == NULL)
388				break;
389			if (!sh) {
390				conf->inactive_blocked = 1;
391				wait_event_lock_irq(conf->wait_for_stripe,
392						    !list_empty(&conf->inactive_list) &&
393						    (atomic_read(&conf->active_stripes)
394						     < (conf->max_nr_stripes *3/4)
395						     || !conf->inactive_blocked),
396						    conf->device_lock,
397						    raid5_unplug_device(conf->mddev->queue)
398					);
399				conf->inactive_blocked = 0;
400			} else
401				init_stripe(sh, sector, previous);
402		} else {
403			if (atomic_read(&sh->count)) {
404				BUG_ON(!list_empty(&sh->lru)
405				    && !test_bit(STRIPE_EXPANDING, &sh->state));
406			} else {
407				if (!test_bit(STRIPE_HANDLE, &sh->state))
408					atomic_inc(&conf->active_stripes);
409				if (list_empty(&sh->lru) &&
410				    !test_bit(STRIPE_EXPANDING, &sh->state))
411					BUG();
412				list_del_init(&sh->lru);
413			}
414		}
415	} while (sh == NULL);
416
417	if (sh)
418		atomic_inc(&sh->count);
419
420	spin_unlock_irq(&conf->device_lock);
421	return sh;
422}
423
424static void
425raid5_end_read_request(struct bio *bi, int error);
426static void
427raid5_end_write_request(struct bio *bi, int error);
428
429static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
430{
431	raid5_conf_t *conf = sh->raid_conf;
432	int i, disks = sh->disks;
433
434	might_sleep();
435
436	for (i = disks; i--; ) {
437		int rw;
438		struct bio *bi;
439		mdk_rdev_t *rdev;
440		if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags))
441			rw = WRITE;
442		else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
443			rw = READ;
444		else
445			continue;
446
447		bi = &sh->dev[i].req;
448
449		bi->bi_rw = rw;
450		if (rw == WRITE)
451			bi->bi_end_io = raid5_end_write_request;
452		else
453			bi->bi_end_io = raid5_end_read_request;
454
455		rcu_read_lock();
456		rdev = rcu_dereference(conf->disks[i].rdev);
457		if (rdev && test_bit(Faulty, &rdev->flags))
458			rdev = NULL;
459		if (rdev)
460			atomic_inc(&rdev->nr_pending);
461		rcu_read_unlock();
462
463		if (rdev) {
464			if (s->syncing || s->expanding || s->expanded)
465				md_sync_acct(rdev->bdev, STRIPE_SECTORS);
466
467			set_bit(STRIPE_IO_STARTED, &sh->state);
468
469			bi->bi_bdev = rdev->bdev;
470			pr_debug("%s: for %llu schedule op %ld on disc %d\n",
471				__func__, (unsigned long long)sh->sector,
472				bi->bi_rw, i);
473			atomic_inc(&sh->count);
474			bi->bi_sector = sh->sector + rdev->data_offset;
475			bi->bi_flags = 1 << BIO_UPTODATE;
476			bi->bi_vcnt = 1;
477			bi->bi_max_vecs = 1;
478			bi->bi_idx = 0;
479			bi->bi_io_vec = &sh->dev[i].vec;
480			bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
481			bi->bi_io_vec[0].bv_offset = 0;
482			bi->bi_size = STRIPE_SIZE;
483			bi->bi_next = NULL;
484			if (rw == WRITE &&
485			    test_bit(R5_ReWrite, &sh->dev[i].flags))
486				atomic_add(STRIPE_SECTORS,
487					&rdev->corrected_errors);
488			generic_make_request(bi);
489		} else {
490			if (rw == WRITE)
491				set_bit(STRIPE_DEGRADED, &sh->state);
492			pr_debug("skip op %ld on disc %d for sector %llu\n",
493				bi->bi_rw, i, (unsigned long long)sh->sector);
494			clear_bit(R5_LOCKED, &sh->dev[i].flags);
495			set_bit(STRIPE_HANDLE, &sh->state);
496		}
497	}
498}
499
500static struct dma_async_tx_descriptor *
501async_copy_data(int frombio, struct bio *bio, struct page *page,
502	sector_t sector, struct dma_async_tx_descriptor *tx)
503{
504	struct bio_vec *bvl;
505	struct page *bio_page;
506	int i;
507	int page_offset;
508	struct async_submit_ctl submit;
509	enum async_tx_flags flags = 0;
510
511	if (bio->bi_sector >= sector)
512		page_offset = (signed)(bio->bi_sector - sector) * 512;
513	else
514		page_offset = (signed)(sector - bio->bi_sector) * -512;
515
516	if (frombio)
517		flags |= ASYNC_TX_FENCE;
518	init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
519
520	bio_for_each_segment(bvl, bio, i) {
521		int len = bio_iovec_idx(bio, i)->bv_len;
522		int clen;
523		int b_offset = 0;
524
525		if (page_offset < 0) {
526			b_offset = -page_offset;
527			page_offset += b_offset;
528			len -= b_offset;
529		}
530
531		if (len > 0 && page_offset + len > STRIPE_SIZE)
532			clen = STRIPE_SIZE - page_offset;
533		else
534			clen = len;
535
536		if (clen > 0) {
537			b_offset += bio_iovec_idx(bio, i)->bv_offset;
538			bio_page = bio_iovec_idx(bio, i)->bv_page;
539			if (frombio)
540				tx = async_memcpy(page, bio_page, page_offset,
541						  b_offset, clen, &submit);
542			else
543				tx = async_memcpy(bio_page, page, b_offset,
544						  page_offset, clen, &submit);
545		}
546		/* chain the operations */
547		submit.depend_tx = tx;
548
549		if (clen < len) /* hit end of page */
550			break;
551		page_offset +=  len;
552	}
553
554	return tx;
555}
556
557static void ops_complete_biofill(void *stripe_head_ref)
558{
559	struct stripe_head *sh = stripe_head_ref;
560	struct bio *return_bi = NULL;
561	raid5_conf_t *conf = sh->raid_conf;
562	int i;
563
564	pr_debug("%s: stripe %llu\n", __func__,
565		(unsigned long long)sh->sector);
566
567	/* clear completed biofills */
568	spin_lock_irq(&conf->device_lock);
569	for (i = sh->disks; i--; ) {
570		struct r5dev *dev = &sh->dev[i];
571
572		/* acknowledge completion of a biofill operation */
573		/* and check if we need to reply to a read request,
574		 * new R5_Wantfill requests are held off until
575		 * !STRIPE_BIOFILL_RUN
576		 */
577		if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
578			struct bio *rbi, *rbi2;
579
580			BUG_ON(!dev->read);
581			rbi = dev->read;
582			dev->read = NULL;
583			while (rbi && rbi->bi_sector <
584				dev->sector + STRIPE_SECTORS) {
585				rbi2 = r5_next_bio(rbi, dev->sector);
586				if (!raid5_dec_bi_phys_segments(rbi)) {
587					rbi->bi_next = return_bi;
588					return_bi = rbi;
589				}
590				rbi = rbi2;
591			}
592		}
593	}
594	spin_unlock_irq(&conf->device_lock);
595	clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
596
597	return_io(return_bi);
598
599	set_bit(STRIPE_HANDLE, &sh->state);
600	release_stripe(sh);
601}
602
603static void ops_run_biofill(struct stripe_head *sh)
604{
605	struct dma_async_tx_descriptor *tx = NULL;
606	raid5_conf_t *conf = sh->raid_conf;
607	struct async_submit_ctl submit;
608	int i;
609
610	pr_debug("%s: stripe %llu\n", __func__,
611		(unsigned long long)sh->sector);
612
613	for (i = sh->disks; i--; ) {
614		struct r5dev *dev = &sh->dev[i];
615		if (test_bit(R5_Wantfill, &dev->flags)) {
616			struct bio *rbi;
617			spin_lock_irq(&conf->device_lock);
618			dev->read = rbi = dev->toread;
619			dev->toread = NULL;
620			spin_unlock_irq(&conf->device_lock);
621			while (rbi && rbi->bi_sector <
622				dev->sector + STRIPE_SECTORS) {
623				tx = async_copy_data(0, rbi, dev->page,
624					dev->sector, tx);
625				rbi = r5_next_bio(rbi, dev->sector);
626			}
627		}
628	}
629
630	atomic_inc(&sh->count);
631	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
632	async_trigger_callback(&submit);
633}
634
635static void mark_target_uptodate(struct stripe_head *sh, int target)
636{
637	struct r5dev *tgt;
638
639	if (target < 0)
640		return;
641
642	tgt = &sh->dev[target];
643	set_bit(R5_UPTODATE, &tgt->flags);
644	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
645	clear_bit(R5_Wantcompute, &tgt->flags);
646}
647
648static void ops_complete_compute(void *stripe_head_ref)
649{
650	struct stripe_head *sh = stripe_head_ref;
651
652	pr_debug("%s: stripe %llu\n", __func__,
653		(unsigned long long)sh->sector);
654
655	/* mark the computed target(s) as uptodate */
656	mark_target_uptodate(sh, sh->ops.target);
657	mark_target_uptodate(sh, sh->ops.target2);
658
659	clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
660	if (sh->check_state == check_state_compute_run)
661		sh->check_state = check_state_compute_result;
662	set_bit(STRIPE_HANDLE, &sh->state);
663	release_stripe(sh);
664}
665
666/* return a pointer to the address conversion region of the scribble buffer */
667static addr_conv_t *to_addr_conv(struct stripe_head *sh,
668				 struct raid5_percpu *percpu)
669{
670	return percpu->scribble + sizeof(struct page *) * (sh->disks + 2);
671}
672
673static struct dma_async_tx_descriptor *
674ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
675{
676	int disks = sh->disks;
677	struct page **xor_srcs = percpu->scribble;
678	int target = sh->ops.target;
679	struct r5dev *tgt = &sh->dev[target];
680	struct page *xor_dest = tgt->page;
681	int count = 0;
682	struct dma_async_tx_descriptor *tx;
683	struct async_submit_ctl submit;
684	int i;
685
686	pr_debug("%s: stripe %llu block: %d\n",
687		__func__, (unsigned long long)sh->sector, target);
688	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
689
690	for (i = disks; i--; )
691		if (i != target)
692			xor_srcs[count++] = sh->dev[i].page;
693
694	atomic_inc(&sh->count);
695
696	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
697			  ops_complete_compute, sh, to_addr_conv(sh, percpu));
698	if (unlikely(count == 1))
699		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
700	else
701		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
702
703	return tx;
704}
705
706/* set_syndrome_sources - populate source buffers for gen_syndrome
707 * @srcs - (struct page *) array of size sh->disks
708 * @sh - stripe_head to parse
709 *
710 * Populates srcs in proper layout order for the stripe and returns the
711 * 'count' of sources to be used in a call to async_gen_syndrome.  The P
712 * destination buffer is recorded in srcs[count] and the Q destination
713 * is recorded in srcs[count+1]].
714 */
715static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh)
716{
717	int disks = sh->disks;
718	int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
719	int d0_idx = raid6_d0(sh);
720	int count;
721	int i;
722
723	for (i = 0; i < disks; i++)
724		srcs[i] = NULL;
725
726	count = 0;
727	i = d0_idx;
728	do {
729		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
730
731		srcs[slot] = sh->dev[i].page;
732		i = raid6_next_disk(i, disks);
733	} while (i != d0_idx);
734
735	return syndrome_disks;
736}
737
738static struct dma_async_tx_descriptor *
739ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
740{
741	int disks = sh->disks;
742	struct page **blocks = percpu->scribble;
743	int target;
744	int qd_idx = sh->qd_idx;
745	struct dma_async_tx_descriptor *tx;
746	struct async_submit_ctl submit;
747	struct r5dev *tgt;
748	struct page *dest;
749	int i;
750	int count;
751
752	if (sh->ops.target < 0)
753		target = sh->ops.target2;
754	else if (sh->ops.target2 < 0)
755		target = sh->ops.target;
756	else
757		/* we should only have one valid target */
758		BUG();
759	BUG_ON(target < 0);
760	pr_debug("%s: stripe %llu block: %d\n",
761		__func__, (unsigned long long)sh->sector, target);
762
763	tgt = &sh->dev[target];
764	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
765	dest = tgt->page;
766
767	atomic_inc(&sh->count);
768
769	if (target == qd_idx) {
770		count = set_syndrome_sources(blocks, sh);
771		blocks[count] = NULL; /* regenerating p is not necessary */
772		BUG_ON(blocks[count+1] != dest); /* q should already be set */
773		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
774				  ops_complete_compute, sh,
775				  to_addr_conv(sh, percpu));
776		tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
777	} else {
778		/* Compute any data- or p-drive using XOR */
779		count = 0;
780		for (i = disks; i-- ; ) {
781			if (i == target || i == qd_idx)
782				continue;
783			blocks[count++] = sh->dev[i].page;
784		}
785
786		init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
787				  NULL, ops_complete_compute, sh,
788				  to_addr_conv(sh, percpu));
789		tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
790	}
791
792	return tx;
793}
794
795static struct dma_async_tx_descriptor *
796ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
797{
798	int i, count, disks = sh->disks;
799	int syndrome_disks = sh->ddf_layout ? disks : disks-2;
800	int d0_idx = raid6_d0(sh);
801	int faila = -1, failb = -1;
802	int target = sh->ops.target;
803	int target2 = sh->ops.target2;
804	struct r5dev *tgt = &sh->dev[target];
805	struct r5dev *tgt2 = &sh->dev[target2];
806	struct dma_async_tx_descriptor *tx;
807	struct page **blocks = percpu->scribble;
808	struct async_submit_ctl submit;
809
810	pr_debug("%s: stripe %llu block1: %d block2: %d\n",
811		 __func__, (unsigned long long)sh->sector, target, target2);
812	BUG_ON(target < 0 || target2 < 0);
813	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
814	BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
815
816	/* we need to open-code set_syndrome_sources to handle the
817	 * slot number conversion for 'faila' and 'failb'
818	 */
819	for (i = 0; i < disks ; i++)
820		blocks[i] = NULL;
821	count = 0;
822	i = d0_idx;
823	do {
824		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
825
826		blocks[slot] = sh->dev[i].page;
827
828		if (i == target)
829			faila = slot;
830		if (i == target2)
831			failb = slot;
832		i = raid6_next_disk(i, disks);
833	} while (i != d0_idx);
834
835	BUG_ON(faila == failb);
836	if (failb < faila)
837		swap(faila, failb);
838	pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
839		 __func__, (unsigned long long)sh->sector, faila, failb);
840
841	atomic_inc(&sh->count);
842
843	if (failb == syndrome_disks+1) {
844		/* Q disk is one of the missing disks */
845		if (faila == syndrome_disks) {
846			/* Missing P+Q, just recompute */
847			init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
848					  ops_complete_compute, sh,
849					  to_addr_conv(sh, percpu));
850			return async_gen_syndrome(blocks, 0, syndrome_disks+2,
851						  STRIPE_SIZE, &submit);
852		} else {
853			struct page *dest;
854			int data_target;
855			int qd_idx = sh->qd_idx;
856
857			/* Missing D+Q: recompute D from P, then recompute Q */
858			if (target == qd_idx)
859				data_target = target2;
860			else
861				data_target = target;
862
863			count = 0;
864			for (i = disks; i-- ; ) {
865				if (i == data_target || i == qd_idx)
866					continue;
867				blocks[count++] = sh->dev[i].page;
868			}
869			dest = sh->dev[data_target].page;
870			init_async_submit(&submit,
871					  ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
872					  NULL, NULL, NULL,
873					  to_addr_conv(sh, percpu));
874			tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
875				       &submit);
876
877			count = set_syndrome_sources(blocks, sh);
878			init_async_submit(&submit, ASYNC_TX_FENCE, tx,
879					  ops_complete_compute, sh,
880					  to_addr_conv(sh, percpu));
881			return async_gen_syndrome(blocks, 0, count+2,
882						  STRIPE_SIZE, &submit);
883		}
884	} else {
885		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
886				  ops_complete_compute, sh,
887				  to_addr_conv(sh, percpu));
888		if (failb == syndrome_disks) {
889			/* We're missing D+P. */
890			return async_raid6_datap_recov(syndrome_disks+2,
891						       STRIPE_SIZE, faila,
892						       blocks, &submit);
893		} else {
894			/* We're missing D+D. */
895			return async_raid6_2data_recov(syndrome_disks+2,
896						       STRIPE_SIZE, faila, failb,
897						       blocks, &submit);
898		}
899	}
900}
901
902
903static void ops_complete_prexor(void *stripe_head_ref)
904{
905	struct stripe_head *sh = stripe_head_ref;
906
907	pr_debug("%s: stripe %llu\n", __func__,
908		(unsigned long long)sh->sector);
909}
910
911static struct dma_async_tx_descriptor *
912ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
913	       struct dma_async_tx_descriptor *tx)
914{
915	int disks = sh->disks;
916	struct page **xor_srcs = percpu->scribble;
917	int count = 0, pd_idx = sh->pd_idx, i;
918	struct async_submit_ctl submit;
919
920	/* existing parity data subtracted */
921	struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
922
923	pr_debug("%s: stripe %llu\n", __func__,
924		(unsigned long long)sh->sector);
925
926	for (i = disks; i--; ) {
927		struct r5dev *dev = &sh->dev[i];
928		/* Only process blocks that are known to be uptodate */
929		if (test_bit(R5_Wantdrain, &dev->flags))
930			xor_srcs[count++] = dev->page;
931	}
932
933	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
934			  ops_complete_prexor, sh, to_addr_conv(sh, percpu));
935	tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
936
937	return tx;
938}
939
940static struct dma_async_tx_descriptor *
941ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
942{
943	int disks = sh->disks;
944	int i;
945
946	pr_debug("%s: stripe %llu\n", __func__,
947		(unsigned long long)sh->sector);
948
949	for (i = disks; i--; ) {
950		struct r5dev *dev = &sh->dev[i];
951		struct bio *chosen;
952
953		if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
954			struct bio *wbi;
955
956			spin_lock(&sh->lock);
957			chosen = dev->towrite;
958			dev->towrite = NULL;
959			BUG_ON(dev->written);
960			wbi = dev->written = chosen;
961			spin_unlock(&sh->lock);
962
963			while (wbi && wbi->bi_sector <
964				dev->sector + STRIPE_SECTORS) {
965				tx = async_copy_data(1, wbi, dev->page,
966					dev->sector, tx);
967				wbi = r5_next_bio(wbi, dev->sector);
968			}
969		}
970	}
971
972	return tx;
973}
974
975static void ops_complete_reconstruct(void *stripe_head_ref)
976{
977	struct stripe_head *sh = stripe_head_ref;
978	int disks = sh->disks;
979	int pd_idx = sh->pd_idx;
980	int qd_idx = sh->qd_idx;
981	int i;
982
983	pr_debug("%s: stripe %llu\n", __func__,
984		(unsigned long long)sh->sector);
985
986	for (i = disks; i--; ) {
987		struct r5dev *dev = &sh->dev[i];
988
989		if (dev->written || i == pd_idx || i == qd_idx)
990			set_bit(R5_UPTODATE, &dev->flags);
991	}
992
993	if (sh->reconstruct_state == reconstruct_state_drain_run)
994		sh->reconstruct_state = reconstruct_state_drain_result;
995	else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
996		sh->reconstruct_state = reconstruct_state_prexor_drain_result;
997	else {
998		BUG_ON(sh->reconstruct_state != reconstruct_state_run);
999		sh->reconstruct_state = reconstruct_state_result;
1000	}
1001
1002	set_bit(STRIPE_HANDLE, &sh->state);
1003	release_stripe(sh);
1004}
1005
1006static void
1007ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1008		     struct dma_async_tx_descriptor *tx)
1009{
1010	int disks = sh->disks;
1011	struct page **xor_srcs = percpu->scribble;
1012	struct async_submit_ctl submit;
1013	int count = 0, pd_idx = sh->pd_idx, i;
1014	struct page *xor_dest;
1015	int prexor = 0;
1016	unsigned long flags;
1017
1018	pr_debug("%s: stripe %llu\n", __func__,
1019		(unsigned long long)sh->sector);
1020
1021	/* check if prexor is active which means only process blocks
1022	 * that are part of a read-modify-write (written)
1023	 */
1024	if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1025		prexor = 1;
1026		xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1027		for (i = disks; i--; ) {
1028			struct r5dev *dev = &sh->dev[i];
1029			if (dev->written)
1030				xor_srcs[count++] = dev->page;
1031		}
1032	} else {
1033		xor_dest = sh->dev[pd_idx].page;
1034		for (i = disks; i--; ) {
1035			struct r5dev *dev = &sh->dev[i];
1036			if (i != pd_idx)
1037				xor_srcs[count++] = dev->page;
1038		}
1039	}
1040
1041	/* 1/ if we prexor'd then the dest is reused as a source
1042	 * 2/ if we did not prexor then we are redoing the parity
1043	 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1044	 * for the synchronous xor case
1045	 */
1046	flags = ASYNC_TX_ACK |
1047		(prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1048
1049	atomic_inc(&sh->count);
1050
1051	init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh,
1052			  to_addr_conv(sh, percpu));
1053	if (unlikely(count == 1))
1054		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1055	else
1056		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1057}
1058
1059static void
1060ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1061		     struct dma_async_tx_descriptor *tx)
1062{
1063	struct async_submit_ctl submit;
1064	struct page **blocks = percpu->scribble;
1065	int count;
1066
1067	pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1068
1069	count = set_syndrome_sources(blocks, sh);
1070
1071	atomic_inc(&sh->count);
1072
1073	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct,
1074			  sh, to_addr_conv(sh, percpu));
1075	async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1076}
1077
1078static void ops_complete_check(void *stripe_head_ref)
1079{
1080	struct stripe_head *sh = stripe_head_ref;
1081
1082	pr_debug("%s: stripe %llu\n", __func__,
1083		(unsigned long long)sh->sector);
1084
1085	sh->check_state = check_state_check_result;
1086	set_bit(STRIPE_HANDLE, &sh->state);
1087	release_stripe(sh);
1088}
1089
1090static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1091{
1092	int disks = sh->disks;
1093	int pd_idx = sh->pd_idx;
1094	int qd_idx = sh->qd_idx;
1095	struct page *xor_dest;
1096	struct page **xor_srcs = percpu->scribble;
1097	struct dma_async_tx_descriptor *tx;
1098	struct async_submit_ctl submit;
1099	int count;
1100	int i;
1101
1102	pr_debug("%s: stripe %llu\n", __func__,
1103		(unsigned long long)sh->sector);
1104
1105	count = 0;
1106	xor_dest = sh->dev[pd_idx].page;
1107	xor_srcs[count++] = xor_dest;
1108	for (i = disks; i--; ) {
1109		if (i == pd_idx || i == qd_idx)
1110			continue;
1111		xor_srcs[count++] = sh->dev[i].page;
1112	}
1113
1114	init_async_submit(&submit, 0, NULL, NULL, NULL,
1115			  to_addr_conv(sh, percpu));
1116	tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1117			   &sh->ops.zero_sum_result, &submit);
1118
1119	atomic_inc(&sh->count);
1120	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1121	tx = async_trigger_callback(&submit);
1122}
1123
1124static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1125{
1126	struct page **srcs = percpu->scribble;
1127	struct async_submit_ctl submit;
1128	int count;
1129
1130	pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1131		(unsigned long long)sh->sector, checkp);
1132
1133	count = set_syndrome_sources(srcs, sh);
1134	if (!checkp)
1135		srcs[count] = NULL;
1136
1137	atomic_inc(&sh->count);
1138	init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1139			  sh, to_addr_conv(sh, percpu));
1140	async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1141			   &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1142}
1143
1144static void __raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1145{
1146	int overlap_clear = 0, i, disks = sh->disks;
1147	struct dma_async_tx_descriptor *tx = NULL;
1148	raid5_conf_t *conf = sh->raid_conf;
1149	int level = conf->level;
1150	struct raid5_percpu *percpu;
1151	unsigned long cpu;
1152
1153	cpu = get_cpu();
1154	percpu = per_cpu_ptr(conf->percpu, cpu);
1155	if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1156		ops_run_biofill(sh);
1157		overlap_clear++;
1158	}
1159
1160	if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1161		if (level < 6)
1162			tx = ops_run_compute5(sh, percpu);
1163		else {
1164			if (sh->ops.target2 < 0 || sh->ops.target < 0)
1165				tx = ops_run_compute6_1(sh, percpu);
1166			else
1167				tx = ops_run_compute6_2(sh, percpu);
1168		}
1169		/* terminate the chain if reconstruct is not set to be run */
1170		if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1171			async_tx_ack(tx);
1172	}
1173
1174	if (test_bit(STRIPE_OP_PREXOR, &ops_request))
1175		tx = ops_run_prexor(sh, percpu, tx);
1176
1177	if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1178		tx = ops_run_biodrain(sh, tx);
1179		overlap_clear++;
1180	}
1181
1182	if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1183		if (level < 6)
1184			ops_run_reconstruct5(sh, percpu, tx);
1185		else
1186			ops_run_reconstruct6(sh, percpu, tx);
1187	}
1188
1189	if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1190		if (sh->check_state == check_state_run)
1191			ops_run_check_p(sh, percpu);
1192		else if (sh->check_state == check_state_run_q)
1193			ops_run_check_pq(sh, percpu, 0);
1194		else if (sh->check_state == check_state_run_pq)
1195			ops_run_check_pq(sh, percpu, 1);
1196		else
1197			BUG();
1198	}
1199
1200	if (overlap_clear)
1201		for (i = disks; i--; ) {
1202			struct r5dev *dev = &sh->dev[i];
1203			if (test_and_clear_bit(R5_Overlap, &dev->flags))
1204				wake_up(&sh->raid_conf->wait_for_overlap);
1205		}
1206	put_cpu();
1207}
1208
1209#ifdef CONFIG_MULTICORE_RAID456
1210static void async_run_ops(void *param, async_cookie_t cookie)
1211{
1212	struct stripe_head *sh = param;
1213	unsigned long ops_request = sh->ops.request;
1214
1215	clear_bit_unlock(STRIPE_OPS_REQ_PENDING, &sh->state);
1216	wake_up(&sh->ops.wait_for_ops);
1217
1218	__raid_run_ops(sh, ops_request);
1219	release_stripe(sh);
1220}
1221
1222static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1223{
1224	/* since handle_stripe can be called outside of raid5d context
1225	 * we need to ensure sh->ops.request is de-staged before another
1226	 * request arrives
1227	 */
1228	wait_event(sh->ops.wait_for_ops,
1229		   !test_and_set_bit_lock(STRIPE_OPS_REQ_PENDING, &sh->state));
1230	sh->ops.request = ops_request;
1231
1232	atomic_inc(&sh->count);
1233	async_schedule(async_run_ops, sh);
1234}
1235#else
1236#define raid_run_ops __raid_run_ops
1237#endif
1238
1239static int grow_one_stripe(raid5_conf_t *conf)
1240{
1241	struct stripe_head *sh;
1242	int disks = max(conf->raid_disks, conf->previous_raid_disks);
1243	sh = kmem_cache_alloc(conf->slab_cache, GFP_KERNEL);
1244	if (!sh)
1245		return 0;
1246	memset(sh, 0, sizeof(*sh) + (disks-1)*sizeof(struct r5dev));
1247	sh->raid_conf = conf;
1248	spin_lock_init(&sh->lock);
1249	#ifdef CONFIG_MULTICORE_RAID456
1250	init_waitqueue_head(&sh->ops.wait_for_ops);
1251	#endif
1252
1253	if (grow_buffers(sh, disks)) {
1254		shrink_buffers(sh, disks);
1255		kmem_cache_free(conf->slab_cache, sh);
1256		return 0;
1257	}
1258	/* we just created an active stripe so... */
1259	atomic_set(&sh->count, 1);
1260	atomic_inc(&conf->active_stripes);
1261	INIT_LIST_HEAD(&sh->lru);
1262	release_stripe(sh);
1263	return 1;
1264}
1265
1266static int grow_stripes(raid5_conf_t *conf, int num)
1267{
1268	struct kmem_cache *sc;
1269	int devs = max(conf->raid_disks, conf->previous_raid_disks);
1270
1271	sprintf(conf->cache_name[0],
1272		"raid%d-%s", conf->level, mdname(conf->mddev));
1273	sprintf(conf->cache_name[1],
1274		"raid%d-%s-alt", conf->level, mdname(conf->mddev));
1275	conf->active_name = 0;
1276	sc = kmem_cache_create(conf->cache_name[conf->active_name],
1277			       sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
1278			       0, 0, NULL);
1279	if (!sc)
1280		return 1;
1281	conf->slab_cache = sc;
1282	conf->pool_size = devs;
1283	while (num--)
1284		if (!grow_one_stripe(conf))
1285			return 1;
1286	return 0;
1287}
1288
1289/**
1290 * scribble_len - return the required size of the scribble region
1291 * @num - total number of disks in the array
1292 *
1293 * The size must be enough to contain:
1294 * 1/ a struct page pointer for each device in the array +2
1295 * 2/ room to convert each entry in (1) to its corresponding dma
1296 *    (dma_map_page()) or page (page_address()) address.
1297 *
1298 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
1299 * calculate over all devices (not just the data blocks), using zeros in place
1300 * of the P and Q blocks.
1301 */
1302static size_t scribble_len(int num)
1303{
1304	size_t len;
1305
1306	len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
1307
1308	return len;
1309}
1310
1311static int resize_stripes(raid5_conf_t *conf, int newsize)
1312{
1313	/* Make all the stripes able to hold 'newsize' devices.
1314	 * New slots in each stripe get 'page' set to a new page.
1315	 *
1316	 * This happens in stages:
1317	 * 1/ create a new kmem_cache and allocate the required number of
1318	 *    stripe_heads.
1319	 * 2/ gather all the old stripe_heads and tranfer the pages across
1320	 *    to the new stripe_heads.  This will have the side effect of
1321	 *    freezing the array as once all stripe_heads have been collected,
1322	 *    no IO will be possible.  Old stripe heads are freed once their
1323	 *    pages have been transferred over, and the old kmem_cache is
1324	 *    freed when all stripes are done.
1325	 * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
1326	 *    we simple return a failre status - no need to clean anything up.
1327	 * 4/ allocate new pages for the new slots in the new stripe_heads.
1328	 *    If this fails, we don't bother trying the shrink the
1329	 *    stripe_heads down again, we just leave them as they are.
1330	 *    As each stripe_head is processed the new one is released into
1331	 *    active service.
1332	 *
1333	 * Once step2 is started, we cannot afford to wait for a write,
1334	 * so we use GFP_NOIO allocations.
1335	 */
1336	struct stripe_head *osh, *nsh;
1337	LIST_HEAD(newstripes);
1338	struct disk_info *ndisks;
1339	unsigned long cpu;
1340	int err;
1341	struct kmem_cache *sc;
1342	int i;
1343
1344	if (newsize <= conf->pool_size)
1345		return 0; /* never bother to shrink */
1346
1347	err = md_allow_write(conf->mddev);
1348	if (err)
1349		return err;
1350
1351	/* Step 1 */
1352	sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
1353			       sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
1354			       0, 0, NULL);
1355	if (!sc)
1356		return -ENOMEM;
1357
1358	for (i = conf->max_nr_stripes; i; i--) {
1359		nsh = kmem_cache_alloc(sc, GFP_KERNEL);
1360		if (!nsh)
1361			break;
1362
1363		memset(nsh, 0, sizeof(*nsh) + (newsize-1)*sizeof(struct r5dev));
1364
1365		nsh->raid_conf = conf;
1366		spin_lock_init(&nsh->lock);
1367		#ifdef CONFIG_MULTICORE_RAID456
1368		init_waitqueue_head(&nsh->ops.wait_for_ops);
1369		#endif
1370
1371		list_add(&nsh->lru, &newstripes);
1372	}
1373	if (i) {
1374		/* didn't get enough, give up */
1375		while (!list_empty(&newstripes)) {
1376			nsh = list_entry(newstripes.next, struct stripe_head, lru);
1377			list_del(&nsh->lru);
1378			kmem_cache_free(sc, nsh);
1379		}
1380		kmem_cache_destroy(sc);
1381		return -ENOMEM;
1382	}
1383	/* Step 2 - Must use GFP_NOIO now.
1384	 * OK, we have enough stripes, start collecting inactive
1385	 * stripes and copying them over
1386	 */
1387	list_for_each_entry(nsh, &newstripes, lru) {
1388		spin_lock_irq(&conf->device_lock);
1389		wait_event_lock_irq(conf->wait_for_stripe,
1390				    !list_empty(&conf->inactive_list),
1391				    conf->device_lock,
1392				    unplug_slaves(conf->mddev)
1393			);
1394		osh = get_free_stripe(conf);
1395		spin_unlock_irq(&conf->device_lock);
1396		atomic_set(&nsh->count, 1);
1397		for(i=0; i<conf->pool_size; i++)
1398			nsh->dev[i].page = osh->dev[i].page;
1399		for( ; i<newsize; i++)
1400			nsh->dev[i].page = NULL;
1401		kmem_cache_free(conf->slab_cache, osh);
1402	}
1403	kmem_cache_destroy(conf->slab_cache);
1404
1405	/* Step 3.
1406	 * At this point, we are holding all the stripes so the array
1407	 * is completely stalled, so now is a good time to resize
1408	 * conf->disks and the scribble region
1409	 */
1410	ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1411	if (ndisks) {
1412		for (i=0; i<conf->raid_disks; i++)
1413			ndisks[i] = conf->disks[i];
1414		kfree(conf->disks);
1415		conf->disks = ndisks;
1416	} else
1417		err = -ENOMEM;
1418
1419	get_online_cpus();
1420	conf->scribble_len = scribble_len(newsize);
1421	for_each_present_cpu(cpu) {
1422		struct raid5_percpu *percpu;
1423		void *scribble;
1424
1425		percpu = per_cpu_ptr(conf->percpu, cpu);
1426		scribble = kmalloc(conf->scribble_len, GFP_NOIO);
1427
1428		if (scribble) {
1429			kfree(percpu->scribble);
1430			percpu->scribble = scribble;
1431		} else {
1432			err = -ENOMEM;
1433			break;
1434		}
1435	}
1436	put_online_cpus();
1437
1438	/* Step 4, return new stripes to service */
1439	while(!list_empty(&newstripes)) {
1440		nsh = list_entry(newstripes.next, struct stripe_head, lru);
1441		list_del_init(&nsh->lru);
1442
1443		for (i=conf->raid_disks; i < newsize; i++)
1444			if (nsh->dev[i].page == NULL) {
1445				struct page *p = alloc_page(GFP_NOIO);
1446				nsh->dev[i].page = p;
1447				if (!p)
1448					err = -ENOMEM;
1449			}
1450		release_stripe(nsh);
1451	}
1452	/* critical section pass, GFP_NOIO no longer needed */
1453
1454	conf->slab_cache = sc;
1455	conf->active_name = 1-conf->active_name;
1456	conf->pool_size = newsize;
1457	return err;
1458}
1459
1460static int drop_one_stripe(raid5_conf_t *conf)
1461{
1462	struct stripe_head *sh;
1463
1464	spin_lock_irq(&conf->device_lock);
1465	sh = get_free_stripe(conf);
1466	spin_unlock_irq(&conf->device_lock);
1467	if (!sh)
1468		return 0;
1469	BUG_ON(atomic_read(&sh->count));
1470	shrink_buffers(sh, conf->pool_size);
1471	kmem_cache_free(conf->slab_cache, sh);
1472	atomic_dec(&conf->active_stripes);
1473	return 1;
1474}
1475
1476static void shrink_stripes(raid5_conf_t *conf)
1477{
1478	while (drop_one_stripe(conf))
1479		;
1480
1481	if (conf->slab_cache)
1482		kmem_cache_destroy(conf->slab_cache);
1483	conf->slab_cache = NULL;
1484}
1485
1486static void raid5_end_read_request(struct bio * bi, int error)
1487{
1488	struct stripe_head *sh = bi->bi_private;
1489	raid5_conf_t *conf = sh->raid_conf;
1490	int disks = sh->disks, i;
1491	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1492	char b[BDEVNAME_SIZE];
1493	mdk_rdev_t *rdev;
1494
1495
1496	for (i=0 ; i<disks; i++)
1497		if (bi == &sh->dev[i].req)
1498			break;
1499
1500	pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1501		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
1502		uptodate);
1503	if (i == disks) {
1504		BUG();
1505		return;
1506	}
1507
1508	if (uptodate) {
1509		set_bit(R5_UPTODATE, &sh->dev[i].flags);
1510		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1511			rdev = conf->disks[i].rdev;
1512			printk_rl(KERN_INFO "raid5:%s: read error corrected"
1513				  " (%lu sectors at %llu on %s)\n",
1514				  mdname(conf->mddev), STRIPE_SECTORS,
1515				  (unsigned long long)(sh->sector
1516						       + rdev->data_offset),
1517				  bdevname(rdev->bdev, b));
1518			clear_bit(R5_ReadError, &sh->dev[i].flags);
1519			clear_bit(R5_ReWrite, &sh->dev[i].flags);
1520		}
1521		if (atomic_read(&conf->disks[i].rdev->read_errors))
1522			atomic_set(&conf->disks[i].rdev->read_errors, 0);
1523	} else {
1524		const char *bdn = bdevname(conf->disks[i].rdev->bdev, b);
1525		int retry = 0;
1526		rdev = conf->disks[i].rdev;
1527
1528		clear_bit(R5_UPTODATE, &sh->dev[i].flags);
1529		atomic_inc(&rdev->read_errors);
1530		if (conf->mddev->degraded)
1531			printk_rl(KERN_WARNING
1532				  "raid5:%s: read error not correctable "
1533				  "(sector %llu on %s).\n",
1534				  mdname(conf->mddev),
1535				  (unsigned long long)(sh->sector
1536						       + rdev->data_offset),
1537				  bdn);
1538		else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
1539			/* Oh, no!!! */
1540			printk_rl(KERN_WARNING
1541				  "raid5:%s: read error NOT corrected!! "
1542				  "(sector %llu on %s).\n",
1543				  mdname(conf->mddev),
1544				  (unsigned long long)(sh->sector
1545						       + rdev->data_offset),
1546				  bdn);
1547		else if (atomic_read(&rdev->read_errors)
1548			 > conf->max_nr_stripes)
1549			printk(KERN_WARNING
1550			       "raid5:%s: Too many read errors, failing device %s.\n",
1551			       mdname(conf->mddev), bdn);
1552		else
1553			retry = 1;
1554		if (retry)
1555			set_bit(R5_ReadError, &sh->dev[i].flags);
1556		else {
1557			clear_bit(R5_ReadError, &sh->dev[i].flags);
1558			clear_bit(R5_ReWrite, &sh->dev[i].flags);
1559			md_error(conf->mddev, rdev);
1560		}
1561	}
1562	rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1563	clear_bit(R5_LOCKED, &sh->dev[i].flags);
1564	set_bit(STRIPE_HANDLE, &sh->state);
1565	release_stripe(sh);
1566}
1567
1568static void raid5_end_write_request(struct bio *bi, int error)
1569{
1570	struct stripe_head *sh = bi->bi_private;
1571	raid5_conf_t *conf = sh->raid_conf;
1572	int disks = sh->disks, i;
1573	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1574
1575	for (i=0 ; i<disks; i++)
1576		if (bi == &sh->dev[i].req)
1577			break;
1578
1579	pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1580		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
1581		uptodate);
1582	if (i == disks) {
1583		BUG();
1584		return;
1585	}
1586
1587	if (!uptodate)
1588		md_error(conf->mddev, conf->disks[i].rdev);
1589
1590	rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1591
1592	clear_bit(R5_LOCKED, &sh->dev[i].flags);
1593	set_bit(STRIPE_HANDLE, &sh->state);
1594	release_stripe(sh);
1595}
1596
1597
1598static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
1599
1600static void raid5_build_block(struct stripe_head *sh, int i, int previous)
1601{
1602	struct r5dev *dev = &sh->dev[i];
1603
1604	bio_init(&dev->req);
1605	dev->req.bi_io_vec = &dev->vec;
1606	dev->req.bi_vcnt++;
1607	dev->req.bi_max_vecs++;
1608	dev->vec.bv_page = dev->page;
1609	dev->vec.bv_len = STRIPE_SIZE;
1610	dev->vec.bv_offset = 0;
1611
1612	dev->req.bi_sector = sh->sector;
1613	dev->req.bi_private = sh;
1614
1615	dev->flags = 0;
1616	dev->sector = compute_blocknr(sh, i, previous);
1617}
1618
1619static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1620{
1621	char b[BDEVNAME_SIZE];
1622	raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
1623	pr_debug("raid5: error called\n");
1624
1625	if (!test_bit(Faulty, &rdev->flags)) {
1626		set_bit(MD_CHANGE_DEVS, &mddev->flags);
1627		if (test_and_clear_bit(In_sync, &rdev->flags)) {
1628			unsigned long flags;
1629			spin_lock_irqsave(&conf->device_lock, flags);
1630			mddev->degraded++;
1631			spin_unlock_irqrestore(&conf->device_lock, flags);
1632			/*
1633			 * if recovery was running, make sure it aborts.
1634			 */
1635			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1636		}
1637		set_bit(Faulty, &rdev->flags);
1638		printk(KERN_ALERT
1639		       "raid5: Disk failure on %s, disabling device.\n"
1640		       "raid5: Operation continuing on %d devices.\n",
1641		       bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded);
1642	}
1643}
1644
1645/*
1646 * Input: a 'big' sector number,
1647 * Output: index of the data and parity disk, and the sector # in them.
1648 */
1649static sector_t raid5_compute_sector(raid5_conf_t *conf, sector_t r_sector,
1650				     int previous, int *dd_idx,
1651				     struct stripe_head *sh)
1652{
1653	sector_t stripe;
1654	sector_t chunk_number;
1655	unsigned int chunk_offset;
1656	int pd_idx, qd_idx;
1657	int ddf_layout = 0;
1658	sector_t new_sector;
1659	int algorithm = previous ? conf->prev_algo
1660				 : conf->algorithm;
1661	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
1662					 : conf->chunk_sectors;
1663	int raid_disks = previous ? conf->previous_raid_disks
1664				  : conf->raid_disks;
1665	int data_disks = raid_disks - conf->max_degraded;
1666
1667	/* First compute the information on this sector */
1668
1669	/*
1670	 * Compute the chunk number and the sector offset inside the chunk
1671	 */
1672	chunk_offset = sector_div(r_sector, sectors_per_chunk);
1673	chunk_number = r_sector;
1674
1675	/*
1676	 * Compute the stripe number
1677	 */
1678	stripe = chunk_number;
1679	*dd_idx = sector_div(stripe, data_disks);
1680
1681	/*
1682	 * Select the parity disk based on the user selected algorithm.
1683	 */
1684	pd_idx = qd_idx = ~0;
1685	switch(conf->level) {
1686	case 4:
1687		pd_idx = data_disks;
1688		break;
1689	case 5:
1690		switch (algorithm) {
1691		case ALGORITHM_LEFT_ASYMMETRIC:
1692			pd_idx = data_disks - stripe % raid_disks;
1693			if (*dd_idx >= pd_idx)
1694				(*dd_idx)++;
1695			break;
1696		case ALGORITHM_RIGHT_ASYMMETRIC:
1697			pd_idx = stripe % raid_disks;
1698			if (*dd_idx >= pd_idx)
1699				(*dd_idx)++;
1700			break;
1701		case ALGORITHM_LEFT_SYMMETRIC:
1702			pd_idx = data_disks - stripe % raid_disks;
1703			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1704			break;
1705		case ALGORITHM_RIGHT_SYMMETRIC:
1706			pd_idx = stripe % raid_disks;
1707			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1708			break;
1709		case ALGORITHM_PARITY_0:
1710			pd_idx = 0;
1711			(*dd_idx)++;
1712			break;
1713		case ALGORITHM_PARITY_N:
1714			pd_idx = data_disks;
1715			break;
1716		default:
1717			printk(KERN_ERR "raid5: unsupported algorithm %d\n",
1718				algorithm);
1719			BUG();
1720		}
1721		break;
1722	case 6:
1723
1724		switch (algorithm) {
1725		case ALGORITHM_LEFT_ASYMMETRIC:
1726			pd_idx = raid_disks - 1 - (stripe % raid_disks);
1727			qd_idx = pd_idx + 1;
1728			if (pd_idx == raid_disks-1) {
1729				(*dd_idx)++;	/* Q D D D P */
1730				qd_idx = 0;
1731			} else if (*dd_idx >= pd_idx)
1732				(*dd_idx) += 2; /* D D P Q D */
1733			break;
1734		case ALGORITHM_RIGHT_ASYMMETRIC:
1735			pd_idx = stripe % raid_disks;
1736			qd_idx = pd_idx + 1;
1737			if (pd_idx == raid_disks-1) {
1738				(*dd_idx)++;	/* Q D D D P */
1739				qd_idx = 0;
1740			} else if (*dd_idx >= pd_idx)
1741				(*dd_idx) += 2; /* D D P Q D */
1742			break;
1743		case ALGORITHM_LEFT_SYMMETRIC:
1744			pd_idx = raid_disks - 1 - (stripe % raid_disks);
1745			qd_idx = (pd_idx + 1) % raid_disks;
1746			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1747			break;
1748		case ALGORITHM_RIGHT_SYMMETRIC:
1749			pd_idx = stripe % raid_disks;
1750			qd_idx = (pd_idx + 1) % raid_disks;
1751			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1752			break;
1753
1754		case ALGORITHM_PARITY_0:
1755			pd_idx = 0;
1756			qd_idx = 1;
1757			(*dd_idx) += 2;
1758			break;
1759		case ALGORITHM_PARITY_N:
1760			pd_idx = data_disks;
1761			qd_idx = data_disks + 1;
1762			break;
1763
1764		case ALGORITHM_ROTATING_ZERO_RESTART:
1765			/* Exactly the same as RIGHT_ASYMMETRIC, but or
1766			 * of blocks for computing Q is different.
1767			 */
1768			pd_idx = stripe % raid_disks;
1769			qd_idx = pd_idx + 1;
1770			if (pd_idx == raid_disks-1) {
1771				(*dd_idx)++;	/* Q D D D P */
1772				qd_idx = 0;
1773			} else if (*dd_idx >= pd_idx)
1774				(*dd_idx) += 2; /* D D P Q D */
1775			ddf_layout = 1;
1776			break;
1777
1778		case ALGORITHM_ROTATING_N_RESTART:
1779			/* Same a left_asymmetric, by first stripe is
1780			 * D D D P Q  rather than
1781			 * Q D D D P
1782			 */
1783			pd_idx = raid_disks - 1 - ((stripe + 1) % raid_disks);
1784			qd_idx = pd_idx + 1;
1785			if (pd_idx == raid_disks-1) {
1786				(*dd_idx)++;	/* Q D D D P */
1787				qd_idx = 0;
1788			} else if (*dd_idx >= pd_idx)
1789				(*dd_idx) += 2; /* D D P Q D */
1790			ddf_layout = 1;
1791			break;
1792
1793		case ALGORITHM_ROTATING_N_CONTINUE:
1794			/* Same as left_symmetric but Q is before P */
1795			pd_idx = raid_disks - 1 - (stripe % raid_disks);
1796			qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
1797			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1798			ddf_layout = 1;
1799			break;
1800
1801		case ALGORITHM_LEFT_ASYMMETRIC_6:
1802			/* RAID5 left_asymmetric, with Q on last device */
1803			pd_idx = data_disks - stripe % (raid_disks-1);
1804			if (*dd_idx >= pd_idx)
1805				(*dd_idx)++;
1806			qd_idx = raid_disks - 1;
1807			break;
1808
1809		case ALGORITHM_RIGHT_ASYMMETRIC_6:
1810			pd_idx = stripe % (raid_disks-1);
1811			if (*dd_idx >= pd_idx)
1812				(*dd_idx)++;
1813			qd_idx = raid_disks - 1;
1814			break;
1815
1816		case ALGORITHM_LEFT_SYMMETRIC_6:
1817			pd_idx = data_disks - stripe % (raid_disks-1);
1818			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
1819			qd_idx = raid_disks - 1;
1820			break;
1821
1822		case ALGORITHM_RIGHT_SYMMETRIC_6:
1823			pd_idx = stripe % (raid_disks-1);
1824			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
1825			qd_idx = raid_disks - 1;
1826			break;
1827
1828		case ALGORITHM_PARITY_0_6:
1829			pd_idx = 0;
1830			(*dd_idx)++;
1831			qd_idx = raid_disks - 1;
1832			break;
1833
1834
1835		default:
1836			printk(KERN_CRIT "raid6: unsupported algorithm %d\n",
1837			       algorithm);
1838			BUG();
1839		}
1840		break;
1841	}
1842
1843	if (sh) {
1844		sh->pd_idx = pd_idx;
1845		sh->qd_idx = qd_idx;
1846		sh->ddf_layout = ddf_layout;
1847	}
1848	/*
1849	 * Finally, compute the new sector number
1850	 */
1851	new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
1852	return new_sector;
1853}
1854
1855
1856static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
1857{
1858	raid5_conf_t *conf = sh->raid_conf;
1859	int raid_disks = sh->disks;
1860	int data_disks = raid_disks - conf->max_degraded;
1861	sector_t new_sector = sh->sector, check;
1862	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
1863					 : conf->chunk_sectors;
1864	int algorithm = previous ? conf->prev_algo
1865				 : conf->algorithm;
1866	sector_t stripe;
1867	int chunk_offset;
1868	sector_t chunk_number;
1869	int dummy1, dd_idx = i;
1870	sector_t r_sector;
1871	struct stripe_head sh2;
1872
1873
1874	chunk_offset = sector_div(new_sector, sectors_per_chunk);
1875	stripe = new_sector;
1876
1877	if (i == sh->pd_idx)
1878		return 0;
1879	switch(conf->level) {
1880	case 4: break;
1881	case 5:
1882		switch (algorithm) {
1883		case ALGORITHM_LEFT_ASYMMETRIC:
1884		case ALGORITHM_RIGHT_ASYMMETRIC:
1885			if (i > sh->pd_idx)
1886				i--;
1887			break;
1888		case ALGORITHM_LEFT_SYMMETRIC:
1889		case ALGORITHM_RIGHT_SYMMETRIC:
1890			if (i < sh->pd_idx)
1891				i += raid_disks;
1892			i -= (sh->pd_idx + 1);
1893			break;
1894		case ALGORITHM_PARITY_0:
1895			i -= 1;
1896			break;
1897		case ALGORITHM_PARITY_N:
1898			break;
1899		default:
1900			printk(KERN_ERR "raid5: unsupported algorithm %d\n",
1901			       algorithm);
1902			BUG();
1903		}
1904		break;
1905	case 6:
1906		if (i == sh->qd_idx)
1907			return 0; /* It is the Q disk */
1908		switch (algorithm) {
1909		case ALGORITHM_LEFT_ASYMMETRIC:
1910		case ALGORITHM_RIGHT_ASYMMETRIC:
1911		case ALGORITHM_ROTATING_ZERO_RESTART:
1912		case ALGORITHM_ROTATING_N_RESTART:
1913			if (sh->pd_idx == raid_disks-1)
1914				i--;	/* Q D D D P */
1915			else if (i > sh->pd_idx)
1916				i -= 2; /* D D P Q D */
1917			break;
1918		case ALGORITHM_LEFT_SYMMETRIC:
1919		case ALGORITHM_RIGHT_SYMMETRIC:
1920			if (sh->pd_idx == raid_disks-1)
1921				i--; /* Q D D D P */
1922			else {
1923				/* D D P Q D */
1924				if (i < sh->pd_idx)
1925					i += raid_disks;
1926				i -= (sh->pd_idx + 2);
1927			}
1928			break;
1929		case ALGORITHM_PARITY_0:
1930			i -= 2;
1931			break;
1932		case ALGORITHM_PARITY_N:
1933			break;
1934		case ALGORITHM_ROTATING_N_CONTINUE:
1935			/* Like left_symmetric, but P is before Q */
1936			if (sh->pd_idx == 0)
1937				i--;	/* P D D D Q */
1938			else {
1939				/* D D Q P D */
1940				if (i < sh->pd_idx)
1941					i += raid_disks;
1942				i -= (sh->pd_idx + 1);
1943			}
1944			break;
1945		case ALGORITHM_LEFT_ASYMMETRIC_6:
1946		case ALGORITHM_RIGHT_ASYMMETRIC_6:
1947			if (i > sh->pd_idx)
1948				i--;
1949			break;
1950		case ALGORITHM_LEFT_SYMMETRIC_6:
1951		case ALGORITHM_RIGHT_SYMMETRIC_6:
1952			if (i < sh->pd_idx)
1953				i += data_disks + 1;
1954			i -= (sh->pd_idx + 1);
1955			break;
1956		case ALGORITHM_PARITY_0_6:
1957			i -= 1;
1958			break;
1959		default:
1960			printk(KERN_CRIT "raid6: unsupported algorithm %d\n",
1961			       algorithm);
1962			BUG();
1963		}
1964		break;
1965	}
1966
1967	chunk_number = stripe * data_disks + i;
1968	r_sector = chunk_number * sectors_per_chunk + chunk_offset;
1969
1970	check = raid5_compute_sector(conf, r_sector,
1971				     previous, &dummy1, &sh2);
1972	if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
1973		|| sh2.qd_idx != sh->qd_idx) {
1974		printk(KERN_ERR "compute_blocknr: map not correct\n");
1975		return 0;
1976	}
1977	return r_sector;
1978}
1979
1980
1981static void
1982schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
1983			 int rcw, int expand)
1984{
1985	int i, pd_idx = sh->pd_idx, disks = sh->disks;
1986	raid5_conf_t *conf = sh->raid_conf;
1987	int level = conf->level;
1988
1989	if (rcw) {
1990		/* if we are not expanding this is a proper write request, and
1991		 * there will be bios with new data to be drained into the
1992		 * stripe cache
1993		 */
1994		if (!expand) {
1995			sh->reconstruct_state = reconstruct_state_drain_run;
1996			set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
1997		} else
1998			sh->reconstruct_state = reconstruct_state_run;
1999
2000		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2001
2002		for (i = disks; i--; ) {
2003			struct r5dev *dev = &sh->dev[i];
2004
2005			if (dev->towrite) {
2006				set_bit(R5_LOCKED, &dev->flags);
2007				set_bit(R5_Wantdrain, &dev->flags);
2008				if (!expand)
2009					clear_bit(R5_UPTODATE, &dev->flags);
2010				s->locked++;
2011			}
2012		}
2013		if (s->locked + conf->max_degraded == disks)
2014			if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2015				atomic_inc(&conf->pending_full_writes);
2016	} else {
2017		BUG_ON(level == 6);
2018		BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2019			test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2020
2021		sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2022		set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2023		set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2024		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2025
2026		for (i = disks; i--; ) {
2027			struct r5dev *dev = &sh->dev[i];
2028			if (i == pd_idx)
2029				continue;
2030
2031			if (dev->towrite &&
2032			    (test_bit(R5_UPTODATE, &dev->flags) ||
2033			     test_bit(R5_Wantcompute, &dev->flags))) {
2034				set_bit(R5_Wantdrain, &dev->flags);
2035				set_bit(R5_LOCKED, &dev->flags);
2036				clear_bit(R5_UPTODATE, &dev->flags);
2037				s->locked++;
2038			}
2039		}
2040	}
2041
2042	/* keep the parity disk(s) locked while asynchronous operations
2043	 * are in flight
2044	 */
2045	set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2046	clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2047	s->locked++;
2048
2049	if (level == 6) {
2050		int qd_idx = sh->qd_idx;
2051		struct r5dev *dev = &sh->dev[qd_idx];
2052
2053		set_bit(R5_LOCKED, &dev->flags);
2054		clear_bit(R5_UPTODATE, &dev->flags);
2055		s->locked++;
2056	}
2057
2058	pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2059		__func__, (unsigned long long)sh->sector,
2060		s->locked, s->ops_request);
2061}
2062
2063/*
2064 * Each stripe/dev can have one or more bion attached.
2065 * toread/towrite point to the first in a chain.
2066 * The bi_next chain must be in order.
2067 */
2068static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
2069{
2070	struct bio **bip;
2071	raid5_conf_t *conf = sh->raid_conf;
2072	int firstwrite=0;
2073
2074	pr_debug("adding bh b#%llu to stripe s#%llu\n",
2075		(unsigned long long)bi->bi_sector,
2076		(unsigned long long)sh->sector);
2077
2078
2079	spin_lock(&sh->lock);
2080	spin_lock_irq(&conf->device_lock);
2081	if (forwrite) {
2082		bip = &sh->dev[dd_idx].towrite;
2083		if (*bip == NULL && sh->dev[dd_idx].written == NULL)
2084			firstwrite = 1;
2085	} else
2086		bip = &sh->dev[dd_idx].toread;
2087	while (*bip && (*bip)->bi_sector < bi->bi_sector) {
2088		if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
2089			goto overlap;
2090		bip = & (*bip)->bi_next;
2091	}
2092	if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
2093		goto overlap;
2094
2095	BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
2096	if (*bip)
2097		bi->bi_next = *bip;
2098	*bip = bi;
2099	bi->bi_phys_segments++;
2100	spin_unlock_irq(&conf->device_lock);
2101	spin_unlock(&sh->lock);
2102
2103	pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
2104		(unsigned long long)bi->bi_sector,
2105		(unsigned long long)sh->sector, dd_idx);
2106
2107	if (conf->mddev->bitmap && firstwrite) {
2108		bitmap_startwrite(conf->mddev->bitmap, sh->sector,
2109				  STRIPE_SECTORS, 0);
2110		sh->bm_seq = conf->seq_flush+1;
2111		set_bit(STRIPE_BIT_DELAY, &sh->state);
2112	}
2113
2114	if (forwrite) {
2115		/* check if page is covered */
2116		sector_t sector = sh->dev[dd_idx].sector;
2117		for (bi=sh->dev[dd_idx].towrite;
2118		     sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
2119			     bi && bi->bi_sector <= sector;
2120		     bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
2121			if (bi->bi_sector + (bi->bi_size>>9) >= sector)
2122				sector = bi->bi_sector + (bi->bi_size>>9);
2123		}
2124		if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
2125			set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
2126	}
2127	return 1;
2128
2129 overlap:
2130	set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
2131	spin_unlock_irq(&conf->device_lock);
2132	spin_unlock(&sh->lock);
2133	return 0;
2134}
2135
2136static void end_reshape(raid5_conf_t *conf);
2137
2138static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
2139			    struct stripe_head *sh)
2140{
2141	int sectors_per_chunk =
2142		previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
2143	int dd_idx;
2144	int chunk_offset = sector_div(stripe, sectors_per_chunk);
2145	int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2146
2147	raid5_compute_sector(conf,
2148			     stripe * (disks - conf->max_degraded)
2149			     *sectors_per_chunk + chunk_offset,
2150			     previous,
2151			     &dd_idx, sh);
2152}
2153
2154static void
2155handle_failed_stripe(raid5_conf_t *conf, struct stripe_head *sh,
2156				struct stripe_head_state *s, int disks,
2157				struct bio **return_bi)
2158{
2159	int i;
2160	for (i = disks; i--; ) {
2161		struct bio *bi;
2162		int bitmap_end = 0;
2163
2164		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2165			mdk_rdev_t *rdev;
2166			rcu_read_lock();
2167			rdev = rcu_dereference(conf->disks[i].rdev);
2168			if (rdev && test_bit(In_sync, &rdev->flags))
2169				/* multiple read failures in one stripe */
2170				md_error(conf->mddev, rdev);
2171			rcu_read_unlock();
2172		}
2173		spin_lock_irq(&conf->device_lock);
2174		/* fail all writes first */
2175		bi = sh->dev[i].towrite;
2176		sh->dev[i].towrite = NULL;
2177		if (bi) {
2178			s->to_write--;
2179			bitmap_end = 1;
2180		}
2181
2182		if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2183			wake_up(&conf->wait_for_overlap);
2184
2185		while (bi && bi->bi_sector <
2186			sh->dev[i].sector + STRIPE_SECTORS) {
2187			struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2188			clear_bit(BIO_UPTODATE, &bi->bi_flags);
2189			if (!raid5_dec_bi_phys_segments(bi)) {
2190				md_write_end(conf->mddev);
2191				bi->bi_next = *return_bi;
2192				*return_bi = bi;
2193			}
2194			bi = nextbi;
2195		}
2196		/* and fail all 'written' */
2197		bi = sh->dev[i].written;
2198		sh->dev[i].written = NULL;
2199		if (bi) bitmap_end = 1;
2200		while (bi && bi->bi_sector <
2201		       sh->dev[i].sector + STRIPE_SECTORS) {
2202			struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
2203			clear_bit(BIO_UPTODATE, &bi->bi_flags);
2204			if (!raid5_dec_bi_phys_segments(bi)) {
2205				md_write_end(conf->mddev);
2206				bi->bi_next = *return_bi;
2207				*return_bi = bi;
2208			}
2209			bi = bi2;
2210		}
2211
2212		/* fail any reads if this device is non-operational and
2213		 * the data has not reached the cache yet.
2214		 */
2215		if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
2216		    (!test_bit(R5_Insync, &sh->dev[i].flags) ||
2217		      test_bit(R5_ReadError, &sh->dev[i].flags))) {
2218			bi = sh->dev[i].toread;
2219			sh->dev[i].toread = NULL;
2220			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2221				wake_up(&conf->wait_for_overlap);
2222			if (bi) s->to_read--;
2223			while (bi && bi->bi_sector <
2224			       sh->dev[i].sector + STRIPE_SECTORS) {
2225				struct bio *nextbi =
2226					r5_next_bio(bi, sh->dev[i].sector);
2227				clear_bit(BIO_UPTODATE, &bi->bi_flags);
2228				if (!raid5_dec_bi_phys_segments(bi)) {
2229					bi->bi_next = *return_bi;
2230					*return_bi = bi;
2231				}
2232				bi = nextbi;
2233			}
2234		}
2235		spin_unlock_irq(&conf->device_lock);
2236		if (bitmap_end)
2237			bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2238					STRIPE_SECTORS, 0, 0);
2239	}
2240
2241	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2242		if (atomic_dec_and_test(&conf->pending_full_writes))
2243			md_wakeup_thread(conf->mddev->thread);
2244}
2245
2246/* fetch_block5 - checks the given member device to see if its data needs
2247 * to be read or computed to satisfy a request.
2248 *
2249 * Returns 1 when no more member devices need to be checked, otherwise returns
2250 * 0 to tell the loop in handle_stripe_fill5 to continue
2251 */
2252static int fetch_block5(struct stripe_head *sh, struct stripe_head_state *s,
2253			int disk_idx, int disks)
2254{
2255	struct r5dev *dev = &sh->dev[disk_idx];
2256	struct r5dev *failed_dev = &sh->dev[s->failed_num];
2257
2258	/* is the data in this block needed, and can we get it? */
2259	if (!test_bit(R5_LOCKED, &dev->flags) &&
2260	    !test_bit(R5_UPTODATE, &dev->flags) &&
2261	    (dev->toread ||
2262	     (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2263	     s->syncing || s->expanding ||
2264	     (s->failed &&
2265	      (failed_dev->toread ||
2266	       (failed_dev->towrite &&
2267		!test_bit(R5_OVERWRITE, &failed_dev->flags)))))) {
2268		/* We would like to get this block, possibly by computing it,
2269		 * otherwise read it if the backing disk is insync
2270		 */
2271		if ((s->uptodate == disks - 1) &&
2272		    (s->failed && disk_idx == s->failed_num)) {
2273			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2274			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2275			set_bit(R5_Wantcompute, &dev->flags);
2276			sh->ops.target = disk_idx;
2277			sh->ops.target2 = -1;
2278			s->req_compute = 1;
2279			/* Careful: from this point on 'uptodate' is in the eye
2280			 * of raid_run_ops which services 'compute' operations
2281			 * before writes. R5_Wantcompute flags a block that will
2282			 * be R5_UPTODATE by the time it is needed for a
2283			 * subsequent operation.
2284			 */
2285			s->uptodate++;
2286			return 1; /* uptodate + compute == disks */
2287		} else if (test_bit(R5_Insync, &dev->flags)) {
2288			set_bit(R5_LOCKED, &dev->flags);
2289			set_bit(R5_Wantread, &dev->flags);
2290			s->locked++;
2291			pr_debug("Reading block %d (sync=%d)\n", disk_idx,
2292				s->syncing);
2293		}
2294	}
2295
2296	return 0;
2297}
2298
2299/**
2300 * handle_stripe_fill5 - read or compute data to satisfy pending requests.
2301 */
2302static void handle_stripe_fill5(struct stripe_head *sh,
2303			struct stripe_head_state *s, int disks)
2304{
2305	int i;
2306
2307	/* look for blocks to read/compute, skip this if a compute
2308	 * is already in flight, or if the stripe contents are in the
2309	 * midst of changing due to a write
2310	 */
2311	if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2312	    !sh->reconstruct_state)
2313		for (i = disks; i--; )
2314			if (fetch_block5(sh, s, i, disks))
2315				break;
2316	set_bit(STRIPE_HANDLE, &sh->state);
2317}
2318
2319/* fetch_block6 - checks the given member device to see if its data needs
2320 * to be read or computed to satisfy a request.
2321 *
2322 * Returns 1 when no more member devices need to be checked, otherwise returns
2323 * 0 to tell the loop in handle_stripe_fill6 to continue
2324 */
2325static int fetch_block6(struct stripe_head *sh, struct stripe_head_state *s,
2326			 struct r6_state *r6s, int disk_idx, int disks)
2327{
2328	struct r5dev *dev = &sh->dev[disk_idx];
2329	struct r5dev *fdev[2] = { &sh->dev[r6s->failed_num[0]],
2330				  &sh->dev[r6s->failed_num[1]] };
2331
2332	if (!test_bit(R5_LOCKED, &dev->flags) &&
2333	    !test_bit(R5_UPTODATE, &dev->flags) &&
2334	    (dev->toread ||
2335	     (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2336	     s->syncing || s->expanding ||
2337	     (s->failed >= 1 &&
2338	      (fdev[0]->toread || s->to_write)) ||
2339	     (s->failed >= 2 &&
2340	      (fdev[1]->toread || s->to_write)))) {
2341		/* we would like to get this block, possibly by computing it,
2342		 * otherwise read it if the backing disk is insync
2343		 */
2344		BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
2345		BUG_ON(test_bit(R5_Wantread, &dev->flags));
2346		if ((s->uptodate == disks - 1) &&
2347		    (s->failed && (disk_idx == r6s->failed_num[0] ||
2348				   disk_idx == r6s->failed_num[1]))) {
2349			/* have disk failed, and we're requested to fetch it;
2350			 * do compute it
2351			 */
2352			pr_debug("Computing stripe %llu block %d\n",
2353			       (unsigned long long)sh->sector, disk_idx);
2354			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2355			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2356			set_bit(R5_Wantcompute, &dev->flags);
2357			sh->ops.target = disk_idx;
2358			sh->ops.target2 = -1; /* no 2nd target */
2359			s->req_compute = 1;
2360			s->uptodate++;
2361			return 1;
2362		} else if (s->uptodate == disks-2 && s->failed >= 2) {
2363			/* Computing 2-failure is *very* expensive; only
2364			 * do it if failed >= 2
2365			 */
2366			int other;
2367			for (other = disks; other--; ) {
2368				if (other == disk_idx)
2369					continue;
2370				if (!test_bit(R5_UPTODATE,
2371				      &sh->dev[other].flags))
2372					break;
2373			}
2374			BUG_ON(other < 0);
2375			pr_debug("Computing stripe %llu blocks %d,%d\n",
2376			       (unsigned long long)sh->sector,
2377			       disk_idx, other);
2378			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2379			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2380			set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
2381			set_bit(R5_Wantcompute, &sh->dev[other].flags);
2382			sh->ops.target = disk_idx;
2383			sh->ops.target2 = other;
2384			s->uptodate += 2;
2385			s->req_compute = 1;
2386			return 1;
2387		} else if (test_bit(R5_Insync, &dev->flags)) {
2388			set_bit(R5_LOCKED, &dev->flags);
2389			set_bit(R5_Wantread, &dev->flags);
2390			s->locked++;
2391			pr_debug("Reading block %d (sync=%d)\n",
2392				disk_idx, s->syncing);
2393		}
2394	}
2395
2396	return 0;
2397}
2398
2399/**
2400 * handle_stripe_fill6 - read or compute data to satisfy pending requests.
2401 */
2402static void handle_stripe_fill6(struct stripe_head *sh,
2403			struct stripe_head_state *s, struct r6_state *r6s,
2404			int disks)
2405{
2406	int i;
2407
2408	/* look for blocks to read/compute, skip this if a compute
2409	 * is already in flight, or if the stripe contents are in the
2410	 * midst of changing due to a write
2411	 */
2412	if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2413	    !sh->reconstruct_state)
2414		for (i = disks; i--; )
2415			if (fetch_block6(sh, s, r6s, i, disks))
2416				break;
2417	set_bit(STRIPE_HANDLE, &sh->state);
2418}
2419
2420
2421/* handle_stripe_clean_event
2422 * any written block on an uptodate or failed drive can be returned.
2423 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2424 * never LOCKED, so we don't need to test 'failed' directly.
2425 */
2426static void handle_stripe_clean_event(raid5_conf_t *conf,
2427	struct stripe_head *sh, int disks, struct bio **return_bi)
2428{
2429	int i;
2430	struct r5dev *dev;
2431
2432	for (i = disks; i--; )
2433		if (sh->dev[i].written) {
2434			dev = &sh->dev[i];
2435			if (!test_bit(R5_LOCKED, &dev->flags) &&
2436				test_bit(R5_UPTODATE, &dev->flags)) {
2437				/* We can return any write requests */
2438				struct bio *wbi, *wbi2;
2439				int bitmap_end = 0;
2440				pr_debug("Return write for disc %d\n", i);
2441				spin_lock_irq(&conf->device_lock);
2442				wbi = dev->written;
2443				dev->written = NULL;
2444				while (wbi && wbi->bi_sector <
2445					dev->sector + STRIPE_SECTORS) {
2446					wbi2 = r5_next_bio(wbi, dev->sector);
2447					if (!raid5_dec_bi_phys_segments(wbi)) {
2448						md_write_end(conf->mddev);
2449						wbi->bi_next = *return_bi;
2450						*return_bi = wbi;
2451					}
2452					wbi = wbi2;
2453				}
2454				if (dev->towrite == NULL)
2455					bitmap_end = 1;
2456				spin_unlock_irq(&conf->device_lock);
2457				if (bitmap_end)
2458					bitmap_endwrite(conf->mddev->bitmap,
2459							sh->sector,
2460							STRIPE_SECTORS,
2461					 !test_bit(STRIPE_DEGRADED, &sh->state),
2462							0);
2463			}
2464		}
2465
2466	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2467		if (atomic_dec_and_test(&conf->pending_full_writes))
2468			md_wakeup_thread(conf->mddev->thread);
2469}
2470
2471static void handle_stripe_dirtying5(raid5_conf_t *conf,
2472		struct stripe_head *sh,	struct stripe_head_state *s, int disks)
2473{
2474	int rmw = 0, rcw = 0, i;
2475	for (i = disks; i--; ) {
2476		/* would I have to read this buffer for read_modify_write */
2477		struct r5dev *dev = &sh->dev[i];
2478		if ((dev->towrite || i == sh->pd_idx) &&
2479		    !test_bit(R5_LOCKED, &dev->flags) &&
2480		    !(test_bit(R5_UPTODATE, &dev->flags) ||
2481		      test_bit(R5_Wantcompute, &dev->flags))) {
2482			if (test_bit(R5_Insync, &dev->flags))
2483				rmw++;
2484			else
2485				rmw += 2*disks;  /* cannot read it */
2486		}
2487		/* Would I have to read this buffer for reconstruct_write */
2488		if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
2489		    !test_bit(R5_LOCKED, &dev->flags) &&
2490		    !(test_bit(R5_UPTODATE, &dev->flags) ||
2491		    test_bit(R5_Wantcompute, &dev->flags))) {
2492			if (test_bit(R5_Insync, &dev->flags)) rcw++;
2493			else
2494				rcw += 2*disks;
2495		}
2496	}
2497	pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2498		(unsigned long long)sh->sector, rmw, rcw);
2499	set_bit(STRIPE_HANDLE, &sh->state);
2500	if (rmw < rcw && rmw > 0)
2501		/* prefer read-modify-write, but need to get some data */
2502		for (i = disks; i--; ) {
2503			struct r5dev *dev = &sh->dev[i];
2504			if ((dev->towrite || i == sh->pd_idx) &&
2505			    !test_bit(R5_LOCKED, &dev->flags) &&
2506			    !(test_bit(R5_UPTODATE, &dev->flags) ||
2507			    test_bit(R5_Wantcompute, &dev->flags)) &&
2508			    test_bit(R5_Insync, &dev->flags)) {
2509				if (
2510				  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2511					pr_debug("Read_old block "
2512						"%d for r-m-w\n", i);
2513					set_bit(R5_LOCKED, &dev->flags);
2514					set_bit(R5_Wantread, &dev->flags);
2515					s->locked++;
2516				} else {
2517					set_bit(STRIPE_DELAYED, &sh->state);
2518					set_bit(STRIPE_HANDLE, &sh->state);
2519				}
2520			}
2521		}
2522	if (rcw <= rmw && rcw > 0)
2523		/* want reconstruct write, but need to get some data */
2524		for (i = disks; i--; ) {
2525			struct r5dev *dev = &sh->dev[i];
2526			if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2527			    i != sh->pd_idx &&
2528			    !test_bit(R5_LOCKED, &dev->flags) &&
2529			    !(test_bit(R5_UPTODATE, &dev->flags) ||
2530			    test_bit(R5_Wantcompute, &dev->flags)) &&
2531			    test_bit(R5_Insync, &dev->flags)) {
2532				if (
2533				  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2534					pr_debug("Read_old block "
2535						"%d for Reconstruct\n", i);
2536					set_bit(R5_LOCKED, &dev->flags);
2537					set_bit(R5_Wantread, &dev->flags);
2538					s->locked++;
2539				} else {
2540					set_bit(STRIPE_DELAYED, &sh->state);
2541					set_bit(STRIPE_HANDLE, &sh->state);
2542				}
2543			}
2544		}
2545	/* now if nothing is locked, and if we have enough data,
2546	 * we can start a write request
2547	 */
2548	/* since handle_stripe can be called at any time we need to handle the
2549	 * case where a compute block operation has been submitted and then a
2550	 * subsequent call wants to start a write request.  raid_run_ops only
2551	 * handles the case where compute block and reconstruct are requested
2552	 * simultaneously.  If this is not the case then new writes need to be
2553	 * held off until the compute completes.
2554	 */
2555	if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2556	    (s->locked == 0 && (rcw == 0 || rmw == 0) &&
2557	    !test_bit(STRIPE_BIT_DELAY, &sh->state)))
2558		schedule_reconstruction(sh, s, rcw == 0, 0);
2559}
2560
2561static void handle_stripe_dirtying6(raid5_conf_t *conf,
2562		struct stripe_head *sh,	struct stripe_head_state *s,
2563		struct r6_state *r6s, int disks)
2564{
2565	int rcw = 0, pd_idx = sh->pd_idx, i;
2566	int qd_idx = sh->qd_idx;
2567
2568	set_bit(STRIPE_HANDLE, &sh->state);
2569	for (i = disks; i--; ) {
2570		struct r5dev *dev = &sh->dev[i];
2571		/* check if we haven't enough data */
2572		if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2573		    i != pd_idx && i != qd_idx &&
2574		    !test_bit(R5_LOCKED, &dev->flags) &&
2575		    !(test_bit(R5_UPTODATE, &dev->flags) ||
2576		      test_bit(R5_Wantcompute, &dev->flags))) {
2577			rcw++;
2578			if (!test_bit(R5_Insync, &dev->flags))
2579				continue; /* it's a failed drive */
2580
2581			if (
2582			  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2583				pr_debug("Read_old stripe %llu "
2584					"block %d for Reconstruct\n",
2585				     (unsigned long long)sh->sector, i);
2586				set_bit(R5_LOCKED, &dev->flags);
2587				set_bit(R5_Wantread, &dev->flags);
2588				s->locked++;
2589			} else {
2590				pr_debug("Request delayed stripe %llu "
2591					"block %d for Reconstruct\n",
2592				     (unsigned long long)sh->sector, i);
2593				set_bit(STRIPE_DELAYED, &sh->state);
2594				set_bit(STRIPE_HANDLE, &sh->state);
2595			}
2596		}
2597	}
2598	/* now if nothing is locked, and if we have enough data, we can start a
2599	 * write request
2600	 */
2601	if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2602	    s->locked == 0 && rcw == 0 &&
2603	    !test_bit(STRIPE_BIT_DELAY, &sh->state)) {
2604		schedule_reconstruction(sh, s, 1, 0);
2605	}
2606}
2607
2608static void handle_parity_checks5(raid5_conf_t *conf, struct stripe_head *sh,
2609				struct stripe_head_state *s, int disks)
2610{
2611	struct r5dev *dev = NULL;
2612
2613	set_bit(STRIPE_HANDLE, &sh->state);
2614
2615	switch (sh->check_state) {
2616	case check_state_idle:
2617		/* start a new check operation if there are no failures */
2618		if (s->failed == 0) {
2619			BUG_ON(s->uptodate != disks);
2620			sh->check_state = check_state_run;
2621			set_bit(STRIPE_OP_CHECK, &s->ops_request);
2622			clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
2623			s->uptodate--;
2624			break;
2625		}
2626		dev = &sh->dev[s->failed_num];
2627		/* fall through */
2628	case check_state_compute_result:
2629		sh->check_state = check_state_idle;
2630		if (!dev)
2631			dev = &sh->dev[sh->pd_idx];
2632
2633		/* check that a write has not made the stripe insync */
2634		if (test_bit(STRIPE_INSYNC, &sh->state))
2635			break;
2636
2637		/* either failed parity check, or recovery is happening */
2638		BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
2639		BUG_ON(s->uptodate != disks);
2640
2641		set_bit(R5_LOCKED, &dev->flags);
2642		s->locked++;
2643		set_bit(R5_Wantwrite, &dev->flags);
2644
2645		clear_bit(STRIPE_DEGRADED, &sh->state);
2646		set_bit(STRIPE_INSYNC, &sh->state);
2647		break;
2648	case check_state_run:
2649		break; /* we will be called again upon completion */
2650	case check_state_check_result:
2651		sh->check_state = check_state_idle;
2652
2653		/* if a failure occurred during the check operation, leave
2654		 * STRIPE_INSYNC not set and let the stripe be handled again
2655		 */
2656		if (s->failed)
2657			break;
2658
2659		/* handle a successful check operation, if parity is correct
2660		 * we are done.  Otherwise update the mismatch count and repair
2661		 * parity if !MD_RECOVERY_CHECK
2662		 */
2663		if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
2664			/* parity is correct (on disc,
2665			 * not in buffer any more)
2666			 */
2667			set_bit(STRIPE_INSYNC, &sh->state);
2668		else {
2669			conf->mddev->resync_mismatches += STRIPE_SECTORS;
2670			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2671				/* don't try to repair!! */
2672				set_bit(STRIPE_INSYNC, &sh->state);
2673			else {
2674				sh->check_state = check_state_compute_run;
2675				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2676				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2677				set_bit(R5_Wantcompute,
2678					&sh->dev[sh->pd_idx].flags);
2679				sh->ops.target = sh->pd_idx;
2680				sh->ops.target2 = -1;
2681				s->uptodate++;
2682			}
2683		}
2684		break;
2685	case check_state_compute_run:
2686		break;
2687	default:
2688		printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2689		       __func__, sh->check_state,
2690		       (unsigned long long) sh->sector);
2691		BUG();
2692	}
2693}
2694
2695
2696static void handle_parity_checks6(raid5_conf_t *conf, struct stripe_head *sh,
2697				  struct stripe_head_state *s,
2698				  struct r6_state *r6s, int disks)
2699{
2700	int pd_idx = sh->pd_idx;
2701	int qd_idx = sh->qd_idx;
2702	struct r5dev *dev;
2703
2704	set_bit(STRIPE_HANDLE, &sh->state);
2705
2706	BUG_ON(s->failed > 2);
2707
2708	/* Want to check and possibly repair P and Q.
2709	 * However there could be one 'failed' device, in which
2710	 * case we can only check one of them, possibly using the
2711	 * other to generate missing data
2712	 */
2713
2714	switch (sh->check_state) {
2715	case check_state_idle:
2716		/* start a new check operation if there are < 2 failures */
2717		if (s->failed == r6s->q_failed) {
2718			/* The only possible failed device holds Q, so it
2719			 * makes sense to check P (If anything else were failed,
2720			 * we would have used P to recreate it).
2721			 */
2722			sh->check_state = check_state_run;
2723		}
2724		if (!r6s->q_failed && s->failed < 2) {
2725			/* Q is not failed, and we didn't use it to generate
2726			 * anything, so it makes sense to check it
2727			 */
2728			if (sh->check_state == check_state_run)
2729				sh->check_state = check_state_run_pq;
2730			else
2731				sh->check_state = check_state_run_q;
2732		}
2733
2734		/* discard potentially stale zero_sum_result */
2735		sh->ops.zero_sum_result = 0;
2736
2737		if (sh->check_state == check_state_run) {
2738			/* async_xor_zero_sum destroys the contents of P */
2739			clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2740			s->uptodate--;
2741		}
2742		if (sh->check_state >= check_state_run &&
2743		    sh->check_state <= check_state_run_pq) {
2744			/* async_syndrome_zero_sum preserves P and Q, so
2745			 * no need to mark them !uptodate here
2746			 */
2747			set_bit(STRIPE_OP_CHECK, &s->ops_request);
2748			break;
2749		}
2750
2751		/* we have 2-disk failure */
2752		BUG_ON(s->failed != 2);
2753		/* fall through */
2754	case check_state_compute_result:
2755		sh->check_state = check_state_idle;
2756
2757		/* check that a write has not made the stripe insync */
2758		if (test_bit(STRIPE_INSYNC, &sh->state))
2759			break;
2760
2761		/* now write out any block on a failed drive,
2762		 * or P or Q if they were recomputed
2763		 */
2764		BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
2765		if (s->failed == 2) {
2766			dev = &sh->dev[r6s->failed_num[1]];
2767			s->locked++;
2768			set_bit(R5_LOCKED, &dev->flags);
2769			set_bit(R5_Wantwrite, &dev->flags);
2770		}
2771		if (s->failed >= 1) {
2772			dev = &sh->dev[r6s->failed_num[0]];
2773			s->locked++;
2774			set_bit(R5_LOCKED, &dev->flags);
2775			set_bit(R5_Wantwrite, &dev->flags);
2776		}
2777		if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
2778			dev = &sh->dev[pd_idx];
2779			s->locked++;
2780			set_bit(R5_LOCKED, &dev->flags);
2781			set_bit(R5_Wantwrite, &dev->flags);
2782		}
2783		if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
2784			dev = &sh->dev[qd_idx];
2785			s->locked++;
2786			set_bit(R5_LOCKED, &dev->flags);
2787			set_bit(R5_Wantwrite, &dev->flags);
2788		}
2789		clear_bit(STRIPE_DEGRADED, &sh->state);
2790
2791		set_bit(STRIPE_INSYNC, &sh->state);
2792		break;
2793	case check_state_run:
2794	case check_state_run_q:
2795	case check_state_run_pq:
2796		break; /* we will be called again upon completion */
2797	case check_state_check_result:
2798		sh->check_state = check_state_idle;
2799
2800		/* handle a successful check operation, if parity is correct
2801		 * we are done.  Otherwise update the mismatch count and repair
2802		 * parity if !MD_RECOVERY_CHECK
2803		 */
2804		if (sh->ops.zero_sum_result == 0) {
2805			/* both parities are correct */
2806			if (!s->failed)
2807				set_bit(STRIPE_INSYNC, &sh->state);
2808			else {
2809				/* in contrast to the raid5 case we can validate
2810				 * parity, but still have a failure to write
2811				 * back
2812				 */
2813				sh->check_state = check_state_compute_result;
2814				/* Returning at this point means that we may go
2815				 * off and bring p and/or q uptodate again so
2816				 * we make sure to check zero_sum_result again
2817				 * to verify if p or q need writeback
2818				 */
2819			}
2820		} else {
2821			conf->mddev->resync_mismatches += STRIPE_SECTORS;
2822			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2823				/* don't try to repair!! */
2824				set_bit(STRIPE_INSYNC, &sh->state);
2825			else {
2826				int *target = &sh->ops.target;
2827
2828				sh->ops.target = -1;
2829				sh->ops.target2 = -1;
2830				sh->check_state = check_state_compute_run;
2831				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2832				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2833				if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
2834					set_bit(R5_Wantcompute,
2835						&sh->dev[pd_idx].flags);
2836					*target = pd_idx;
2837					target = &sh->ops.target2;
2838					s->uptodate++;
2839				}
2840				if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
2841					set_bit(R5_Wantcompute,
2842						&sh->dev[qd_idx].flags);
2843					*target = qd_idx;
2844					s->uptodate++;
2845				}
2846			}
2847		}
2848		break;
2849	case check_state_compute_run:
2850		break;
2851	default:
2852		printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2853		       __func__, sh->check_state,
2854		       (unsigned long long) sh->sector);
2855		BUG();
2856	}
2857}
2858
2859static void handle_stripe_expansion(raid5_conf_t *conf, struct stripe_head *sh,
2860				struct r6_state *r6s)
2861{
2862	int i;
2863
2864	/* We have read all the blocks in this stripe and now we need to
2865	 * copy some of them into a target stripe for expand.
2866	 */
2867	struct dma_async_tx_descriptor *tx = NULL;
2868	clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2869	for (i = 0; i < sh->disks; i++)
2870		if (i != sh->pd_idx && i != sh->qd_idx) {
2871			int dd_idx, j;
2872			struct stripe_head *sh2;
2873			struct async_submit_ctl submit;
2874
2875			sector_t bn = compute_blocknr(sh, i, 1);
2876			sector_t s = raid5_compute_sector(conf, bn, 0,
2877							  &dd_idx, NULL);
2878			sh2 = get_active_stripe(conf, s, 0, 1, 1);
2879			if (sh2 == NULL)
2880				/* so far only the early blocks of this stripe
2881				 * have been requested.  When later blocks
2882				 * get requested, we will try again
2883				 */
2884				continue;
2885			if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
2886			   test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
2887				/* must have already done this block */
2888				release_stripe(sh2);
2889				continue;
2890			}
2891
2892			/* place all the copies on one channel */
2893			init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
2894			tx = async_memcpy(sh2->dev[dd_idx].page,
2895					  sh->dev[i].page, 0, 0, STRIPE_SIZE,
2896					  &submit);
2897
2898			set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
2899			set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
2900			for (j = 0; j < conf->raid_disks; j++)
2901				if (j != sh2->pd_idx &&
2902				    (!r6s || j != sh2->qd_idx) &&
2903				    !test_bit(R5_Expanded, &sh2->dev[j].flags))
2904					break;
2905			if (j == conf->raid_disks) {
2906				set_bit(STRIPE_EXPAND_READY, &sh2->state);
2907				set_bit(STRIPE_HANDLE, &sh2->state);
2908			}
2909			release_stripe(sh2);
2910
2911		}
2912	/* done submitting copies, wait for them to complete */
2913	if (tx) {
2914		async_tx_ack(tx);
2915		dma_wait_for_async_tx(tx);
2916	}
2917}
2918
2919
2920/*
2921 * handle_stripe - do things to a stripe.
2922 *
2923 * We lock the stripe and then examine the state of various bits
2924 * to see what needs to be done.
2925 * Possible results:
2926 *    return some read request which now have data
2927 *    return some write requests which are safely on disc
2928 *    schedule a read on some buffers
2929 *    schedule a write of some buffers
2930 *    return confirmation of parity correctness
2931 *
2932 * buffers are taken off read_list or write_list, and bh_cache buffers
2933 * get BH_Lock set before the stripe lock is released.
2934 *
2935 */
2936
2937static void handle_stripe5(struct stripe_head *sh)
2938{
2939	raid5_conf_t *conf = sh->raid_conf;
2940	int disks = sh->disks, i;
2941	struct bio *return_bi = NULL;
2942	struct stripe_head_state s;
2943	struct r5dev *dev;
2944	mdk_rdev_t *blocked_rdev = NULL;
2945	int prexor;
2946	int dec_preread_active = 0;
2947
2948	memset(&s, 0, sizeof(s));
2949	pr_debug("handling stripe %llu, state=%#lx cnt=%d, pd_idx=%d check:%d "
2950		 "reconstruct:%d\n", (unsigned long long)sh->sector, sh->state,
2951		 atomic_read(&sh->count), sh->pd_idx, sh->check_state,
2952		 sh->reconstruct_state);
2953
2954	spin_lock(&sh->lock);
2955	clear_bit(STRIPE_HANDLE, &sh->state);
2956	clear_bit(STRIPE_DELAYED, &sh->state);
2957
2958	s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
2959	s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2960	s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
2961
2962	/* Now to look around and see what can be done */
2963	rcu_read_lock();
2964	for (i=disks; i--; ) {
2965		mdk_rdev_t *rdev;
2966
2967		dev = &sh->dev[i];
2968		clear_bit(R5_Insync, &dev->flags);
2969
2970		pr_debug("check %d: state 0x%lx toread %p read %p write %p "
2971			"written %p\n",	i, dev->flags, dev->toread, dev->read,
2972			dev->towrite, dev->written);
2973
2974		/* maybe we can request a biofill operation
2975		 *
2976		 * new wantfill requests are only permitted while
2977		 * ops_complete_biofill is guaranteed to be inactive
2978		 */
2979		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
2980		    !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
2981			set_bit(R5_Wantfill, &dev->flags);
2982
2983		/* now count some things */
2984		if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
2985		if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
2986		if (test_bit(R5_Wantcompute, &dev->flags)) s.compute++;
2987
2988		if (test_bit(R5_Wantfill, &dev->flags))
2989			s.to_fill++;
2990		else if (dev->toread)
2991			s.to_read++;
2992		if (dev->towrite) {
2993			s.to_write++;
2994			if (!test_bit(R5_OVERWRITE, &dev->flags))
2995				s.non_overwrite++;
2996		}
2997		if (dev->written)
2998			s.written++;
2999		rdev = rcu_dereference(conf->disks[i].rdev);
3000		if (blocked_rdev == NULL &&
3001		    rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
3002			blocked_rdev = rdev;
3003			atomic_inc(&rdev->nr_pending);
3004		}
3005		if (!rdev || !test_bit(In_sync, &rdev->flags)) {
3006			/* The ReadError flag will just be confusing now */
3007			clear_bit(R5_ReadError, &dev->flags);
3008			clear_bit(R5_ReWrite, &dev->flags);
3009		}
3010		if (!rdev || !test_bit(In_sync, &rdev->flags)
3011		    || test_bit(R5_ReadError, &dev->flags)) {
3012			s.failed++;
3013			s.failed_num = i;
3014		} else
3015			set_bit(R5_Insync, &dev->flags);
3016	}
3017	rcu_read_unlock();
3018
3019	if (unlikely(blocked_rdev)) {
3020		if (s.syncing || s.expanding || s.expanded ||
3021		    s.to_write || s.written) {
3022			set_bit(STRIPE_HANDLE, &sh->state);
3023			goto unlock;
3024		}
3025		/* There is nothing for the blocked_rdev to block */
3026		rdev_dec_pending(blocked_rdev, conf->mddev);
3027		blocked_rdev = NULL;
3028	}
3029
3030	if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3031		set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
3032		set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3033	}
3034
3035	pr_debug("locked=%d uptodate=%d to_read=%d"
3036		" to_write=%d failed=%d failed_num=%d\n",
3037		s.locked, s.uptodate, s.to_read, s.to_write,
3038		s.failed, s.failed_num);
3039	/* check if the array has lost two devices and, if so, some requests might
3040	 * need to be failed
3041	 */
3042	if (s.failed > 1 && s.to_read+s.to_write+s.written)
3043		handle_failed_stripe(conf, sh, &s, disks, &return_bi);
3044	if (s.failed > 1 && s.syncing) {
3045		md_done_sync(conf->mddev, STRIPE_SECTORS,0);
3046		clear_bit(STRIPE_SYNCING, &sh->state);
3047		s.syncing = 0;
3048	}
3049
3050	/* might be able to return some write requests if the parity block
3051	 * is safe, or on a failed drive
3052	 */
3053	dev = &sh->dev[sh->pd_idx];
3054	if ( s.written &&
3055	     ((test_bit(R5_Insync, &dev->flags) &&
3056	       !test_bit(R5_LOCKED, &dev->flags) &&
3057	       test_bit(R5_UPTODATE, &dev->flags)) ||
3058	       (s.failed == 1 && s.failed_num == sh->pd_idx)))
3059		handle_stripe_clean_event(conf, sh, disks, &return_bi);
3060
3061	/* Now we might consider reading some blocks, either to check/generate
3062	 * parity, or to satisfy requests
3063	 * or to load a block that is being partially written.
3064	 */
3065	if (s.to_read || s.non_overwrite ||
3066	    (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding)
3067		handle_stripe_fill5(sh, &s, disks);
3068
3069	/* Now we check to see if any write operations have recently
3070	 * completed
3071	 */
3072	prexor = 0;
3073	if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
3074		prexor = 1;
3075	if (sh->reconstruct_state == reconstruct_state_drain_result ||
3076	    sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
3077		sh->reconstruct_state = reconstruct_state_idle;
3078
3079		/* All the 'written' buffers and the parity block are ready to
3080		 * be written back to disk
3081		 */
3082		BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
3083		for (i = disks; i--; ) {
3084			dev = &sh->dev[i];
3085			if (test_bit(R5_LOCKED, &dev->flags) &&
3086				(i == sh->pd_idx || dev->written)) {
3087				pr_debug("Writing block %d\n", i);
3088				set_bit(R5_Wantwrite, &dev->flags);
3089				if (prexor)
3090					continue;
3091				if (!test_bit(R5_Insync, &dev->flags) ||
3092				    (i == sh->pd_idx && s.failed == 0))
3093					set_bit(STRIPE_INSYNC, &sh->state);
3094			}
3095		}
3096		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3097			dec_preread_active = 1;
3098	}
3099
3100	/* Now to consider new write requests and what else, if anything
3101	 * should be read.  We do not handle new writes when:
3102	 * 1/ A 'write' operation (copy+xor) is already in flight.
3103	 * 2/ A 'check' operation is in flight, as it may clobber the parity
3104	 *    block.
3105	 */
3106	if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3107		handle_stripe_dirtying5(conf, sh, &s, disks);
3108
3109	/* maybe we need to check and possibly fix the parity for this stripe
3110	 * Any reads will already have been scheduled, so we just see if enough
3111	 * data is available.  The parity check is held off while parity
3112	 * dependent operations are in flight.
3113	 */
3114	if (sh->check_state ||
3115	    (s.syncing && s.locked == 0 &&
3116	     !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3117	     !test_bit(STRIPE_INSYNC, &sh->state)))
3118		handle_parity_checks5(conf, sh, &s, disks);
3119
3120	if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
3121		md_done_sync(conf->mddev, STRIPE_SECTORS,1);
3122		clear_bit(STRIPE_SYNCING, &sh->state);
3123	}
3124
3125	/* If the failed drive is just a ReadError, then we might need to progress
3126	 * the repair/check process
3127	 */
3128	if (s.failed == 1 && !conf->mddev->ro &&
3129	    test_bit(R5_ReadError, &sh->dev[s.failed_num].flags)
3130	    && !test_bit(R5_LOCKED, &sh->dev[s.failed_num].flags)
3131	    && test_bit(R5_UPTODATE, &sh->dev[s.failed_num].flags)
3132		) {
3133		dev = &sh->dev[s.failed_num];
3134		if (!test_bit(R5_ReWrite, &dev->flags)) {
3135			set_bit(R5_Wantwrite, &dev->flags);
3136			set_bit(R5_ReWrite, &dev->flags);
3137			set_bit(R5_LOCKED, &dev->flags);
3138			s.locked++;
3139		} else {
3140			/* let's read it back */
3141			set_bit(R5_Wantread, &dev->flags);
3142			set_bit(R5_LOCKED, &dev->flags);
3143			s.locked++;
3144		}
3145	}
3146
3147	/* Finish reconstruct operations initiated by the expansion process */
3148	if (sh->reconstruct_state == reconstruct_state_result) {
3149		struct stripe_head *sh2
3150			= get_active_stripe(conf, sh->sector, 1, 1, 1);
3151		if (sh2 && test_bit(STRIPE_EXPAND_SOURCE, &sh2->state)) {
3152			/* sh cannot be written until sh2 has been read.
3153			 * so arrange for sh to be delayed a little
3154			 */
3155			set_bit(STRIPE_DELAYED, &sh->state);
3156			set_bit(STRIPE_HANDLE, &sh->state);
3157			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3158					      &sh2->state))
3159				atomic_inc(&conf->preread_active_stripes);
3160			release_stripe(sh2);
3161			goto unlock;
3162		}
3163		if (sh2)
3164			release_stripe(sh2);
3165
3166		sh->reconstruct_state = reconstruct_state_idle;
3167		clear_bit(STRIPE_EXPANDING, &sh->state);
3168		for (i = conf->raid_disks; i--; ) {
3169			set_bit(R5_Wantwrite, &sh->dev[i].flags);
3170			set_bit(R5_LOCKED, &sh->dev[i].flags);
3171			s.locked++;
3172		}
3173	}
3174
3175	if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3176	    !sh->reconstruct_state) {
3177		/* Need to write out all blocks after computing parity */
3178		sh->disks = conf->raid_disks;
3179		stripe_set_idx(sh->sector, conf, 0, sh);
3180		schedule_reconstruction(sh, &s, 1, 1);
3181	} else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3182		clear_bit(STRIPE_EXPAND_READY, &sh->state);
3183		atomic_dec(&conf->reshape_stripes);
3184		wake_up(&conf->wait_for_overlap);
3185		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3186	}
3187
3188	if (s.expanding && s.locked == 0 &&
3189	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3190		handle_stripe_expansion(conf, sh, NULL);
3191
3192 unlock:
3193	spin_unlock(&sh->lock);
3194
3195	/* wait for this device to become unblocked */
3196	if (unlikely(blocked_rdev))
3197		md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);
3198
3199	if (s.ops_request)
3200		raid_run_ops(sh, s.ops_request);
3201
3202	ops_run_io(sh, &s);
3203
3204	if (dec_preread_active) {
3205		/* We delay this until after ops_run_io so that if make_request
3206		 * is waiting on a barrier, it won't continue until the writes
3207		 * have actually been submitted.
3208		 */
3209		atomic_dec(&conf->preread_active_stripes);
3210		if (atomic_read(&conf->preread_active_stripes) <
3211		    IO_THRESHOLD)
3212			md_wakeup_thread(conf->mddev->thread);
3213	}
3214	return_io(return_bi);
3215}
3216
3217static void handle_stripe6(struct stripe_head *sh)
3218{
3219	raid5_conf_t *conf = sh->raid_conf;
3220	int disks = sh->disks;
3221	struct bio *return_bi = NULL;
3222	int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx;
3223	struct stripe_head_state s;
3224	struct r6_state r6s;
3225	struct r5dev *dev, *pdev, *qdev;
3226	mdk_rdev_t *blocked_rdev = NULL;
3227	int dec_preread_active = 0;
3228
3229	pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3230		"pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
3231	       (unsigned long long)sh->sector, sh->state,
3232	       atomic_read(&sh->count), pd_idx, qd_idx,
3233	       sh->check_state, sh->reconstruct_state);
3234	memset(&s, 0, sizeof(s));
3235
3236	spin_lock(&sh->lock);
3237	clear_bit(STRIPE_HANDLE, &sh->state);
3238	clear_bit(STRIPE_DELAYED, &sh->state);
3239
3240	s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
3241	s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3242	s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
3243	/* Now to look around and see what can be done */
3244
3245	rcu_read_lock();
3246	for (i=disks; i--; ) {
3247		mdk_rdev_t *rdev;
3248		dev = &sh->dev[i];
3249		clear_bit(R5_Insync, &dev->flags);
3250
3251		pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3252			i, dev->flags, dev->toread, dev->towrite, dev->written);
3253		/* maybe we can reply to a read
3254		 *
3255		 * new wantfill requests are only permitted while
3256		 * ops_complete_biofill is guaranteed to be inactive
3257		 */
3258		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
3259		    !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
3260			set_bit(R5_Wantfill, &dev->flags);
3261
3262		/* now count some things */
3263		if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
3264		if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
3265		if (test_bit(R5_Wantcompute, &dev->flags)) {
3266			s.compute++;
3267			BUG_ON(s.compute > 2);
3268		}
3269
3270		if (test_bit(R5_Wantfill, &dev->flags)) {
3271			s.to_fill++;
3272		} else if (dev->toread)
3273			s.to_read++;
3274		if (dev->towrite) {
3275			s.to_write++;
3276			if (!test_bit(R5_OVERWRITE, &dev->flags))
3277				s.non_overwrite++;
3278		}
3279		if (dev->written)
3280			s.written++;
3281		rdev = rcu_dereference(conf->disks[i].rdev);
3282		if (blocked_rdev == NULL &&
3283		    rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
3284			blocked_rdev = rdev;
3285			atomic_inc(&rdev->nr_pending);
3286		}
3287		if (!rdev || !test_bit(In_sync, &rdev->flags)) {
3288			/* The ReadError flag will just be confusing now */
3289			clear_bit(R5_ReadError, &dev->flags);
3290			clear_bit(R5_ReWrite, &dev->flags);
3291		}
3292		if (!rdev || !test_bit(In_sync, &rdev->flags)
3293		    || test_bit(R5_ReadError, &dev->flags)) {
3294			if (s.failed < 2)
3295				r6s.failed_num[s.failed] = i;
3296			s.failed++;
3297		} else
3298			set_bit(R5_Insync, &dev->flags);
3299	}
3300	rcu_read_unlock();
3301
3302	if (unlikely(blocked_rdev)) {
3303		if (s.syncing || s.expanding || s.expanded ||
3304		    s.to_write || s.written) {
3305			set_bit(STRIPE_HANDLE, &sh->state);
3306			goto unlock;
3307		}
3308		/* There is nothing for the blocked_rdev to block */
3309		rdev_dec_pending(blocked_rdev, conf->mddev);
3310		blocked_rdev = NULL;
3311	}
3312
3313	if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3314		set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
3315		set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3316	}
3317
3318	pr_debug("locked=%d uptodate=%d to_read=%d"
3319	       " to_write=%d failed=%d failed_num=%d,%d\n",
3320	       s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
3321	       r6s.failed_num[0], r6s.failed_num[1]);
3322	/* check if the array has lost >2 devices and, if so, some requests
3323	 * might need to be failed
3324	 */
3325	if (s.failed > 2 && s.to_read+s.to_write+s.written)
3326		handle_failed_stripe(conf, sh, &s, disks, &return_bi);
3327	if (s.failed > 2 && s.syncing) {
3328		md_done_sync(conf->mddev, STRIPE_SECTORS,0);
3329		clear_bit(STRIPE_SYNCING, &sh->state);
3330		s.syncing = 0;
3331	}
3332
3333	/*
3334	 * might be able to return some write requests if the parity blocks
3335	 * are safe, or on a failed drive
3336	 */
3337	pdev = &sh->dev[pd_idx];
3338	r6s.p_failed = (s.failed >= 1 && r6s.failed_num[0] == pd_idx)
3339		|| (s.failed >= 2 && r6s.failed_num[1] == pd_idx);
3340	qdev = &sh->dev[qd_idx];
3341	r6s.q_failed = (s.failed >= 1 && r6s.failed_num[0] == qd_idx)
3342		|| (s.failed >= 2 && r6s.failed_num[1] == qd_idx);
3343
3344	if ( s.written &&
3345	     ( r6s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
3346			     && !test_bit(R5_LOCKED, &pdev->flags)
3347			     && test_bit(R5_UPTODATE, &pdev->flags)))) &&
3348	     ( r6s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3349			     && !test_bit(R5_LOCKED, &qdev->flags)
3350			     && test_bit(R5_UPTODATE, &qdev->flags)))))
3351		handle_stripe_clean_event(conf, sh, disks, &return_bi);
3352
3353	/* Now we might consider reading some blocks, either to check/generate
3354	 * parity, or to satisfy requests
3355	 * or to load a block that is being partially written.
3356	 */
3357	if (s.to_read || s.non_overwrite || (s.to_write && s.failed) ||
3358	    (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding)
3359		handle_stripe_fill6(sh, &s, &r6s, disks);
3360
3361	/* Now we check to see if any write operations have recently
3362	 * completed
3363	 */
3364	if (sh->reconstruct_state == reconstruct_state_drain_result) {
3365
3366		sh->reconstruct_state = reconstruct_state_idle;
3367		/* All the 'written' buffers and the parity blocks are ready to
3368		 * be written back to disk
3369		 */
3370		BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
3371		BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags));
3372		for (i = disks; i--; ) {
3373			dev = &sh->dev[i];
3374			if (test_bit(R5_LOCKED, &dev->flags) &&
3375			    (i == sh->pd_idx || i == qd_idx ||
3376			     dev->written)) {
3377				pr_debug("Writing block %d\n", i);
3378				BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
3379				set_bit(R5_Wantwrite, &dev->flags);
3380				if (!test_bit(R5_Insync, &dev->flags) ||
3381				    ((i == sh->pd_idx || i == qd_idx) &&
3382				      s.failed == 0))
3383					set_bit(STRIPE_INSYNC, &sh->state);
3384			}
3385		}
3386		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3387			dec_preread_active = 1;
3388	}
3389
3390	/* Now to consider new write requests and what else, if anything
3391	 * should be read.  We do not handle new writes when:
3392	 * 1/ A 'write' operation (copy+gen_syndrome) is already in flight.
3393	 * 2/ A 'check' operation is in flight, as it may clobber the parity
3394	 *    block.
3395	 */
3396	if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3397		handle_stripe_dirtying6(conf, sh, &s, &r6s, disks);
3398
3399	/* maybe we need to check and possibly fix the parity for this stripe
3400	 * Any reads will already have been scheduled, so we just see if enough
3401	 * data is available.  The parity check is held off while parity
3402	 * dependent operations are in flight.
3403	 */
3404	if (sh->check_state ||
3405	    (s.syncing && s.locked == 0 &&
3406	     !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3407	     !test_bit(STRIPE_INSYNC, &sh->state)))
3408		handle_parity_checks6(conf, sh, &s, &r6s, disks);
3409
3410	if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
3411		md_done_sync(conf->mddev, STRIPE_SECTORS,1);
3412		clear_bit(STRIPE_SYNCING, &sh->state);
3413	}
3414
3415	/* If the failed drives are just a ReadError, then we might need
3416	 * to progress the repair/check process
3417	 */
3418	if (s.failed <= 2 && !conf->mddev->ro)
3419		for (i = 0; i < s.failed; i++) {
3420			dev = &sh->dev[r6s.failed_num[i]];
3421			if (test_bit(R5_ReadError, &dev->flags)
3422			    && !test_bit(R5_LOCKED, &dev->flags)
3423			    && test_bit(R5_UPTODATE, &dev->flags)
3424				) {
3425				if (!test_bit(R5_ReWrite, &dev->flags)) {
3426					set_bit(R5_Wantwrite, &dev->flags);
3427					set_bit(R5_ReWrite, &dev->flags);
3428					set_bit(R5_LOCKED, &dev->flags);
3429					s.locked++;
3430				} else {
3431					/* let's read it back */
3432					set_bit(R5_Wantread, &dev->flags);
3433					set_bit(R5_LOCKED, &dev->flags);
3434					s.locked++;
3435				}
3436			}
3437		}
3438
3439	/* Finish reconstruct operations initiated by the expansion process */
3440	if (sh->reconstruct_state == reconstruct_state_result) {
3441		sh->reconstruct_state = reconstruct_state_idle;
3442		clear_bit(STRIPE_EXPANDING, &sh->state);
3443		for (i = conf->raid_disks; i--; ) {
3444			set_bit(R5_Wantwrite, &sh->dev[i].flags);
3445			set_bit(R5_LOCKED, &sh->dev[i].flags);
3446			s.locked++;
3447		}
3448	}
3449
3450	if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3451	    !sh->reconstruct_state) {
3452		struct stripe_head *sh2
3453			= get_active_stripe(conf, sh->sector, 1, 1, 1);
3454		if (sh2 && test_bit(STRIPE_EXPAND_SOURCE, &sh2->state)) {
3455			/* sh cannot be written until sh2 has been read.
3456			 * so arrange for sh to be delayed a little
3457			 */
3458			set_bit(STRIPE_DELAYED, &sh->state);
3459			set_bit(STRIPE_HANDLE, &sh->state);
3460			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3461					      &sh2->state))
3462				atomic_inc(&conf->preread_active_stripes);
3463			release_stripe(sh2);
3464			goto unlock;
3465		}
3466		if (sh2)
3467			release_stripe(sh2);
3468
3469		/* Need to write out all blocks after computing P&Q */
3470		sh->disks = conf->raid_disks;
3471		stripe_set_idx(sh->sector, conf, 0, sh);
3472		schedule_reconstruction(sh, &s, 1, 1);
3473	} else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3474		clear_bit(STRIPE_EXPAND_READY, &sh->state);
3475		atomic_dec(&conf->reshape_stripes);
3476		wake_up(&conf->wait_for_overlap);
3477		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3478	}
3479
3480	if (s.expanding && s.locked == 0 &&
3481	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3482		handle_stripe_expansion(conf, sh, &r6s);
3483
3484 unlock:
3485	spin_unlock(&sh->lock);
3486
3487	/* wait for this device to become unblocked */
3488	if (unlikely(blocked_rdev))
3489		md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);
3490
3491	if (s.ops_request)
3492		raid_run_ops(sh, s.ops_request);
3493
3494	ops_run_io(sh, &s);
3495
3496
3497	if (dec_preread_active) {
3498		/* We delay this until after ops_run_io so that if make_request
3499		 * is waiting on a barrier, it won't continue until the writes
3500		 * have actually been submitted.
3501		 */
3502		atomic_dec(&conf->preread_active_stripes);
3503		if (atomic_read(&conf->preread_active_stripes) <
3504		    IO_THRESHOLD)
3505			md_wakeup_thread(conf->mddev->thread);
3506	}
3507
3508	return_io(return_bi);
3509}
3510
3511static void handle_stripe(struct stripe_head *sh)
3512{
3513	if (sh->raid_conf->level == 6)
3514		handle_stripe6(sh);
3515	else
3516		handle_stripe5(sh);
3517}
3518
3519static void raid5_activate_delayed(raid5_conf_t *conf)
3520{
3521	if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
3522		while (!list_empty(&conf->delayed_list)) {
3523			struct list_head *l = conf->delayed_list.next;
3524			struct stripe_head *sh;
3525			sh = list_entry(l, struct stripe_head, lru);
3526			list_del_init(l);
3527			clear_bit(STRIPE_DELAYED, &sh->state);
3528			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3529				atomic_inc(&conf->preread_active_stripes);
3530			list_add_tail(&sh->lru, &conf->hold_list);
3531		}
3532	} else
3533		blk_plug_device(conf->mddev->queue);
3534}
3535
3536static void activate_bit_delay(raid5_conf_t *conf)
3537{
3538	/* device_lock is held */
3539	struct list_head head;
3540	list_add(&head, &conf->bitmap_list);
3541	list_del_init(&conf->bitmap_list);
3542	while (!list_empty(&head)) {
3543		struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
3544		list_del_init(&sh->lru);
3545		atomic_inc(&sh->count);
3546		__release_stripe(conf, sh);
3547	}
3548}
3549
3550static void unplug_slaves(mddev_t *mddev)
3551{
3552	raid5_conf_t *conf = mddev->private;
3553	int i;
3554	int devs = max(conf->raid_disks, conf->previous_raid_disks);
3555
3556	rcu_read_lock();
3557	for (i = 0; i < devs; i++) {
3558		mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
3559		if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
3560			struct request_queue *r_queue = bdev_get_queue(rdev->bdev);
3561
3562			atomic_inc(&rdev->nr_pending);
3563			rcu_read_unlock();
3564
3565			blk_unplug(r_queue);
3566
3567			rdev_dec_pending(rdev, mddev);
3568			rcu_read_lock();
3569		}
3570	}
3571	rcu_read_unlock();
3572}
3573
3574static void raid5_unplug_device(struct request_queue *q)
3575{
3576	mddev_t *mddev = q->queuedata;
3577	raid5_conf_t *conf = mddev->private;
3578	unsigned long flags;
3579
3580	spin_lock_irqsave(&conf->device_lock, flags);
3581
3582	if (blk_remove_plug(q)) {
3583		conf->seq_flush++;
3584		raid5_activate_delayed(conf);
3585	}
3586	md_wakeup_thread(mddev->thread);
3587
3588	spin_unlock_irqrestore(&conf->device_lock, flags);
3589
3590	unplug_slaves(mddev);
3591}
3592
3593static int raid5_congested(void *data, int bits)
3594{
3595	mddev_t *mddev = data;
3596	raid5_conf_t *conf = mddev->private;
3597
3598	/* No difference between reads and writes.  Just check
3599	 * how busy the stripe_cache is
3600	 */
3601
3602	if (mddev_congested(mddev, bits))
3603		return 1;
3604	if (conf->inactive_blocked)
3605		return 1;
3606	if (conf->quiesce)
3607		return 1;
3608	if (list_empty_careful(&conf->inactive_list))
3609		return 1;
3610
3611	return 0;
3612}
3613
3614/* We want read requests to align with chunks where possible,
3615 * but write requests don't need to.
3616 */
3617static int raid5_mergeable_bvec(struct request_queue *q,
3618				struct bvec_merge_data *bvm,
3619				struct bio_vec *biovec)
3620{
3621	mddev_t *mddev = q->queuedata;
3622	sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
3623	int max;
3624	unsigned int chunk_sectors = mddev->chunk_sectors;
3625	unsigned int bio_sectors = bvm->bi_size >> 9;
3626
3627	if ((bvm->bi_rw & 1) == WRITE)
3628		return biovec->bv_len; /* always allow writes to be mergeable */
3629
3630	if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3631		chunk_sectors = mddev->new_chunk_sectors;
3632	max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
3633	if (max < 0) max = 0;
3634	if (max <= biovec->bv_len && bio_sectors == 0)
3635		return biovec->bv_len;
3636	else
3637		return max;
3638}
3639
3640
3641static int in_chunk_boundary(mddev_t *mddev, struct bio *bio)
3642{
3643	sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3644	unsigned int chunk_sectors = mddev->chunk_sectors;
3645	unsigned int bio_sectors = bio->bi_size >> 9;
3646
3647	if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3648		chunk_sectors = mddev->new_chunk_sectors;
3649	return  chunk_sectors >=
3650		((sector & (chunk_sectors - 1)) + bio_sectors);
3651}
3652
3653/*
3654 *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
3655 *  later sampled by raid5d.
3656 */
3657static void add_bio_to_retry(struct bio *bi,raid5_conf_t *conf)
3658{
3659	unsigned long flags;
3660
3661	spin_lock_irqsave(&conf->device_lock, flags);
3662
3663	bi->bi_next = conf->retry_read_aligned_list;
3664	conf->retry_read_aligned_list = bi;
3665
3666	spin_unlock_irqrestore(&conf->device_lock, flags);
3667	md_wakeup_thread(conf->mddev->thread);
3668}
3669
3670
3671static struct bio *remove_bio_from_retry(raid5_conf_t *conf)
3672{
3673	struct bio *bi;
3674
3675	bi = conf->retry_read_aligned;
3676	if (bi) {
3677		conf->retry_read_aligned = NULL;
3678		return bi;
3679	}
3680	bi = conf->retry_read_aligned_list;
3681	if(bi) {
3682		conf->retry_read_aligned_list = bi->bi_next;
3683		bi->bi_next = NULL;
3684		/*
3685		 * this sets the active strip count to 1 and the processed
3686		 * strip count to zero (upper 8 bits)
3687		 */
3688		bi->bi_phys_segments = 1; /* biased count of active stripes */
3689	}
3690
3691	return bi;
3692}
3693
3694
3695/*
3696 *  The "raid5_align_endio" should check if the read succeeded and if it
3697 *  did, call bio_endio on the original bio (having bio_put the new bio
3698 *  first).
3699 *  If the read failed..
3700 */
3701static void raid5_align_endio(struct bio *bi, int error)
3702{
3703	struct bio* raid_bi  = bi->bi_private;
3704	mddev_t *mddev;
3705	raid5_conf_t *conf;
3706	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3707	mdk_rdev_t *rdev;
3708
3709	bio_put(bi);
3710
3711	mddev = raid_bi->bi_bdev->bd_disk->queue->queuedata;
3712	conf = mddev->private;
3713	rdev = (void*)raid_bi->bi_next;
3714	raid_bi->bi_next = NULL;
3715
3716	rdev_dec_pending(rdev, conf->mddev);
3717
3718	if (!error && uptodate) {
3719		bio_endio(raid_bi, 0);
3720		if (atomic_dec_and_test(&conf->active_aligned_reads))
3721			wake_up(&conf->wait_for_stripe);
3722		return;
3723	}
3724
3725
3726	pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3727
3728	add_bio_to_retry(raid_bi, conf);
3729}
3730
3731static int bio_fits_rdev(struct bio *bi)
3732{
3733	struct request_queue *q = bdev_get_queue(bi->bi_bdev);
3734
3735	if ((bi->bi_size>>9) > queue_max_sectors(q))
3736		return 0;
3737	blk_recount_segments(q, bi);
3738	if (bi->bi_phys_segments > queue_max_segments(q))
3739		return 0;
3740
3741	if (q->merge_bvec_fn)
3742		/* it's too hard to apply the merge_bvec_fn at this stage,
3743		 * just just give up
3744		 */
3745		return 0;
3746
3747	return 1;
3748}
3749
3750
3751static int chunk_aligned_read(struct request_queue *q, struct bio * raid_bio)
3752{
3753	mddev_t *mddev = q->queuedata;
3754	raid5_conf_t *conf = mddev->private;
3755	int dd_idx;
3756	struct bio* align_bi;
3757	mdk_rdev_t *rdev;
3758
3759	if (!in_chunk_boundary(mddev, raid_bio)) {
3760		pr_debug("chunk_aligned_read : non aligned\n");
3761		return 0;
3762	}
3763	/*
3764	 * use bio_clone to make a copy of the bio
3765	 */
3766	align_bi = bio_clone(raid_bio, GFP_NOIO);
3767	if (!align_bi)
3768		return 0;
3769	/*
3770	 *   set bi_end_io to a new function, and set bi_private to the
3771	 *     original bio.
3772	 */
3773	align_bi->bi_end_io  = raid5_align_endio;
3774	align_bi->bi_private = raid_bio;
3775	/*
3776	 *	compute position
3777	 */
3778	align_bi->bi_sector =  raid5_compute_sector(conf, raid_bio->bi_sector,
3779						    0,
3780						    &dd_idx, NULL);
3781
3782	rcu_read_lock();
3783	rdev = rcu_dereference(conf->disks[dd_idx].rdev);
3784	if (rdev && test_bit(In_sync, &rdev->flags)) {
3785		atomic_inc(&rdev->nr_pending);
3786		rcu_read_unlock();
3787		raid_bio->bi_next = (void*)rdev;
3788		align_bi->bi_bdev =  rdev->bdev;
3789		align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
3790		align_bi->bi_sector += rdev->data_offset;
3791
3792		if (!bio_fits_rdev(align_bi)) {
3793			/* too big in some way */
3794			bio_put(align_bi);
3795			rdev_dec_pending(rdev, mddev);
3796			return 0;
3797		}
3798
3799		spin_lock_irq(&conf->device_lock);
3800		wait_event_lock_irq(conf->wait_for_stripe,
3801				    conf->quiesce == 0,
3802				    conf->device_lock, /* nothing */);
3803		atomic_inc(&conf->active_aligned_reads);
3804		spin_unlock_irq(&conf->device_lock);
3805
3806		generic_make_request(align_bi);
3807		return 1;
3808	} else {
3809		rcu_read_unlock();
3810		bio_put(align_bi);
3811		return 0;
3812	}
3813}
3814
3815/* __get_priority_stripe - get the next stripe to process
3816 *
3817 * Full stripe writes are allowed to pass preread active stripes up until
3818 * the bypass_threshold is exceeded.  In general the bypass_count
3819 * increments when the handle_list is handled before the hold_list; however, it
3820 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
3821 * stripe with in flight i/o.  The bypass_count will be reset when the
3822 * head of the hold_list has changed, i.e. the head was promoted to the
3823 * handle_list.
3824 */
3825static struct stripe_head *__get_priority_stripe(raid5_conf_t *conf)
3826{
3827	struct stripe_head *sh;
3828
3829	pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
3830		  __func__,
3831		  list_empty(&conf->handle_list) ? "empty" : "busy",
3832		  list_empty(&conf->hold_list) ? "empty" : "busy",
3833		  atomic_read(&conf->pending_full_writes), conf->bypass_count);
3834
3835	if (!list_empty(&conf->handle_list)) {
3836		sh = list_entry(conf->handle_list.next, typeof(*sh), lru);
3837
3838		if (list_empty(&conf->hold_list))
3839			conf->bypass_count = 0;
3840		else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
3841			if (conf->hold_list.next == conf->last_hold)
3842				conf->bypass_count++;
3843			else {
3844				conf->last_hold = conf->hold_list.next;
3845				conf->bypass_count -= conf->bypass_threshold;
3846				if (conf->bypass_count < 0)
3847					conf->bypass_count = 0;
3848			}
3849		}
3850	} else if (!list_empty(&conf->hold_list) &&
3851		   ((conf->bypass_threshold &&
3852		     conf->bypass_count > conf->bypass_threshold) ||
3853		    atomic_read(&conf->pending_full_writes) == 0)) {
3854		sh = list_entry(conf->hold_list.next,
3855				typeof(*sh), lru);
3856		conf->bypass_count -= conf->bypass_threshold;
3857		if (conf->bypass_count < 0)
3858			conf->bypass_count = 0;
3859	} else
3860		return NULL;
3861
3862	list_del_init(&sh->lru);
3863	atomic_inc(&sh->count);
3864	BUG_ON(atomic_read(&sh->count) != 1);
3865	return sh;
3866}
3867
3868static int make_request(struct request_queue *q, struct bio * bi)
3869{
3870	mddev_t *mddev = q->queuedata;
3871	raid5_conf_t *conf = mddev->private;
3872	int dd_idx;
3873	sector_t new_sector;
3874	sector_t logical_sector, last_sector;
3875	struct stripe_head *sh;
3876	const int rw = bio_data_dir(bi);
3877	int cpu, remaining;
3878
3879	if (unlikely(bio_rw_flagged(bi, BIO_RW_BARRIER))) {
3880		/* Drain all pending writes.  We only really need
3881		 * to ensure they have been submitted, but this is
3882		 * easier.
3883		 */
3884		mddev->pers->quiesce(mddev, 1);
3885		mddev->pers->quiesce(mddev, 0);
3886		md_barrier_request(mddev, bi);
3887		return 0;
3888	}
3889
3890	md_write_start(mddev, bi);
3891
3892	cpu = part_stat_lock();
3893	part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
3894	part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw],
3895		      bio_sectors(bi));
3896	part_stat_unlock();
3897
3898	if (rw == READ &&
3899	     mddev->reshape_position == MaxSector &&
3900	     chunk_aligned_read(q,bi))
3901		return 0;
3902
3903	logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
3904	last_sector = bi->bi_sector + (bi->bi_size>>9);
3905	bi->bi_next = NULL;
3906	bi->bi_phys_segments = 1;	/* over-loaded to count active stripes */
3907
3908	for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
3909		DEFINE_WAIT(w);
3910		int disks, data_disks;
3911		int previous;
3912
3913	retry:
3914		previous = 0;
3915		disks = conf->raid_disks;
3916		prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
3917		if (unlikely(conf->reshape_progress != MaxSector)) {
3918			/* spinlock is needed as reshape_progress may be
3919			 * 64bit on a 32bit platform, and so it might be
3920			 * possible to see a half-updated value
3921			 * Ofcourse reshape_progress could change after
3922			 * the lock is dropped, so once we get a reference
3923			 * to the stripe that we think it is, we will have
3924			 * to check again.
3925			 */
3926			spin_lock_irq(&conf->device_lock);
3927			if (mddev->delta_disks < 0
3928			    ? logical_sector < conf->reshape_progress
3929			    : logical_sector >= conf->reshape_progress) {
3930				disks = conf->previous_raid_disks;
3931				previous = 1;
3932			} else {
3933				if (mddev->delta_disks < 0
3934				    ? logical_sector < conf->reshape_safe
3935				    : logical_sector >= conf->reshape_safe) {
3936					spin_unlock_irq(&conf->device_lock);
3937					schedule();
3938					goto retry;
3939				}
3940			}
3941			spin_unlock_irq(&conf->device_lock);
3942		}
3943		data_disks = disks - conf->max_degraded;
3944
3945		new_sector = raid5_compute_sector(conf, logical_sector,
3946						  previous,
3947						  &dd_idx, NULL);
3948		pr_debug("raid5: make_request, sector %llu logical %llu\n",
3949			(unsigned long long)new_sector,
3950			(unsigned long long)logical_sector);
3951
3952		sh = get_active_stripe(conf, new_sector, previous,
3953				       (bi->bi_rw&RWA_MASK), 0);
3954		if (sh) {
3955			if (unlikely(previous)) {
3956				/* expansion might have moved on while waiting for a
3957				 * stripe, so we must do the range check again.
3958				 * Expansion could still move past after this
3959				 * test, but as we are holding a reference to
3960				 * 'sh', we know that if that happens,
3961				 *  STRIPE_EXPANDING will get set and the expansion
3962				 * won't proceed until we finish with the stripe.
3963				 */
3964				int must_retry = 0;
3965				spin_lock_irq(&conf->device_lock);
3966				if (mddev->delta_disks < 0
3967				    ? logical_sector >= conf->reshape_progress
3968				    : logical_sector < conf->reshape_progress)
3969					/* mismatch, need to try again */
3970					must_retry = 1;
3971				spin_unlock_irq(&conf->device_lock);
3972				if (must_retry) {
3973					release_stripe(sh);
3974					schedule();
3975					goto retry;
3976				}
3977			}
3978
3979			if (bio_data_dir(bi) == WRITE &&
3980			    logical_sector >= mddev->suspend_lo &&
3981			    logical_sector < mddev->suspend_hi) {
3982				release_stripe(sh);
3983				/* As the suspend_* range is controlled by
3984				 * userspace, we want an interruptible
3985				 * wait.
3986				 */
3987				flush_signals(current);
3988				prepare_to_wait(&conf->wait_for_overlap,
3989						&w, TASK_INTERRUPTIBLE);
3990				if (logical_sector >= mddev->suspend_lo &&
3991				    logical_sector < mddev->suspend_hi)
3992					schedule();
3993				goto retry;
3994			}
3995
3996			if (test_bit(STRIPE_EXPANDING, &sh->state) ||
3997			    !add_stripe_bio(sh, bi, dd_idx, (bi->bi_rw&RW_MASK))) {
3998				/* Stripe is busy expanding or
3999				 * add failed due to overlap.  Flush everything
4000				 * and wait a while
4001				 */
4002				raid5_unplug_device(mddev->queue);
4003				release_stripe(sh);
4004				schedule();
4005				goto retry;
4006			}
4007			finish_wait(&conf->wait_for_overlap, &w);
4008			set_bit(STRIPE_HANDLE, &sh->state);
4009			clear_bit(STRIPE_DELAYED, &sh->state);
4010			if (mddev->barrier &&
4011			    !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4012				atomic_inc(&conf->preread_active_stripes);
4013			release_stripe(sh);
4014		} else {
4015			/* cannot get stripe for read-ahead, just give-up */
4016			clear_bit(BIO_UPTODATE, &bi->bi_flags);
4017			finish_wait(&conf->wait_for_overlap, &w);
4018			break;
4019		}
4020
4021	}
4022	spin_lock_irq(&conf->device_lock);
4023	remaining = raid5_dec_bi_phys_segments(bi);
4024	spin_unlock_irq(&conf->device_lock);
4025	if (remaining == 0) {
4026
4027		if ( rw == WRITE )
4028			md_write_end(mddev);
4029
4030		bio_endio(bi, 0);
4031	}
4032
4033	if (mddev->barrier) {
4034		/* We need to wait for the stripes to all be handled.
4035		 * So: wait for preread_active_stripes to drop to 0.
4036		 */
4037		wait_event(mddev->thread->wqueue,
4038			   atomic_read(&conf->preread_active_stripes) == 0);
4039	}
4040	return 0;
4041}
4042
4043static sector_t raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks);
4044
4045static sector_t reshape_request(mddev_t *mddev, sector_t sector_nr, int *skipped)
4046{
4047	/* reshaping is quite different to recovery/resync so it is
4048	 * handled quite separately ... here.
4049	 *
4050	 * On each call to sync_request, we gather one chunk worth of
4051	 * destination stripes and flag them as expanding.
4052	 * Then we find all the source stripes and request reads.
4053	 * As the reads complete, handle_stripe will copy the data
4054	 * into the destination stripe and release that stripe.
4055	 */
4056	raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
4057	struct stripe_head *sh;
4058	sector_t first_sector, last_sector;
4059	int raid_disks = conf->previous_raid_disks;
4060	int data_disks = raid_disks - conf->max_degraded;
4061	int new_data_disks = conf->raid_disks - conf->max_degraded;
4062	int i;
4063	int dd_idx;
4064	sector_t writepos, readpos, safepos;
4065	sector_t stripe_addr;
4066	int reshape_sectors;
4067	struct list_head stripes;
4068
4069	if (sector_nr == 0) {
4070		/* If restarting in the middle, skip the initial sectors */
4071		if (mddev->delta_disks < 0 &&
4072		    conf->reshape_progress < raid5_size(mddev, 0, 0)) {
4073			sector_nr = raid5_size(mddev, 0, 0)
4074				- conf->reshape_progress;
4075		} else if (mddev->delta_disks >= 0 &&
4076			   conf->reshape_progress > 0)
4077			sector_nr = conf->reshape_progress;
4078		sector_div(sector_nr, new_data_disks);
4079		if (sector_nr) {
4080			mddev->curr_resync_completed = sector_nr;
4081			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4082			*skipped = 1;
4083			return sector_nr;
4084		}
4085	}
4086
4087	/* We need to process a full chunk at a time.
4088	 * If old and new chunk sizes differ, we need to process the
4089	 * largest of these
4090	 */
4091	if (mddev->new_chunk_sectors > mddev->chunk_sectors)
4092		reshape_sectors = mddev->new_chunk_sectors;
4093	else
4094		reshape_sectors = mddev->chunk_sectors;
4095
4096	/* we update the metadata when there is more than 3Meg
4097	 * in the block range (that is rather arbitrary, should
4098	 * probably be time based) or when the data about to be
4099	 * copied would over-write the source of the data at
4100	 * the front of the range.
4101	 * i.e. one new_stripe along from reshape_progress new_maps
4102	 * to after where reshape_safe old_maps to
4103	 */
4104	writepos = conf->reshape_progress;
4105	sector_div(writepos, new_data_disks);
4106	readpos = conf->reshape_progress;
4107	sector_div(readpos, data_disks);
4108	safepos = conf->reshape_safe;
4109	sector_div(safepos, data_disks);
4110	if (mddev->delta_disks < 0) {
4111		writepos -= min_t(sector_t, reshape_sectors, writepos);
4112		readpos += reshape_sectors;
4113		safepos += reshape_sectors;
4114	} else {
4115		writepos += reshape_sectors;
4116		readpos -= min_t(sector_t, reshape_sectors, readpos);
4117		safepos -= min_t(sector_t, reshape_sectors, safepos);
4118	}
4119
4120	/* 'writepos' is the most advanced device address we might write.
4121	 * 'readpos' is the least advanced device address we might read.
4122	 * 'safepos' is the least address recorded in the metadata as having
4123	 *     been reshaped.
4124	 * If 'readpos' is behind 'writepos', then there is no way that we can
4125	 * ensure safety in the face of a crash - that must be done by userspace
4126	 * making a backup of the data.  So in that case there is no particular
4127	 * rush to update metadata.
4128	 * Otherwise if 'safepos' is behind 'writepos', then we really need to
4129	 * update the metadata to advance 'safepos' to match 'readpos' so that
4130	 * we can be safe in the event of a crash.
4131	 * So we insist on updating metadata if safepos is behind writepos and
4132	 * readpos is beyond writepos.
4133	 * In any case, update the metadata every 10 seconds.
4134	 * Maybe that number should be configurable, but I'm not sure it is
4135	 * worth it.... maybe it could be a multiple of safemode_delay???
4136	 */
4137	if ((mddev->delta_disks < 0
4138	     ? (safepos > writepos && readpos < writepos)
4139	     : (safepos < writepos && readpos > writepos)) ||
4140	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4141		/* Cannot proceed until we've updated the superblock... */
4142		wait_event(conf->wait_for_overlap,
4143			   atomic_read(&conf->reshape_stripes)==0);
4144		mddev->reshape_position = conf->reshape_progress;
4145		mddev->curr_resync_completed = mddev->curr_resync;
4146		conf->reshape_checkpoint = jiffies;
4147		set_bit(MD_CHANGE_DEVS, &mddev->flags);
4148		md_wakeup_thread(mddev->thread);
4149		wait_event(mddev->sb_wait, mddev->flags == 0 ||
4150			   kthread_should_stop());
4151		spin_lock_irq(&conf->device_lock);
4152		conf->reshape_safe = mddev->reshape_position;
4153		spin_unlock_irq(&conf->device_lock);
4154		wake_up(&conf->wait_for_overlap);
4155		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4156	}
4157
4158	if (mddev->delta_disks < 0) {
4159		BUG_ON(conf->reshape_progress == 0);
4160		stripe_addr = writepos;
4161		BUG_ON((mddev->dev_sectors &
4162			~((sector_t)reshape_sectors - 1))
4163		       - reshape_sectors - stripe_addr
4164		       != sector_nr);
4165	} else {
4166		BUG_ON(writepos != sector_nr + reshape_sectors);
4167		stripe_addr = sector_nr;
4168	}
4169	INIT_LIST_HEAD(&stripes);
4170	for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
4171		int j;
4172		int skipped_disk = 0;
4173		sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
4174		set_bit(STRIPE_EXPANDING, &sh->state);
4175		atomic_inc(&conf->reshape_stripes);
4176		/* If any of this stripe is beyond the end of the old
4177		 * array, then we need to zero those blocks
4178		 */
4179		for (j=sh->disks; j--;) {
4180			sector_t s;
4181			if (j == sh->pd_idx)
4182				continue;
4183			if (conf->level == 6 &&
4184			    j == sh->qd_idx)
4185				continue;
4186			s = compute_blocknr(sh, j, 0);
4187			if (s < raid5_size(mddev, 0, 0)) {
4188				skipped_disk = 1;
4189				continue;
4190			}
4191			memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
4192			set_bit(R5_Expanded, &sh->dev[j].flags);
4193			set_bit(R5_UPTODATE, &sh->dev[j].flags);
4194		}
4195		if (!skipped_disk) {
4196			set_bit(STRIPE_EXPAND_READY, &sh->state);
4197			set_bit(STRIPE_HANDLE, &sh->state);
4198		}
4199		list_add(&sh->lru, &stripes);
4200	}
4201	spin_lock_irq(&conf->device_lock);
4202	if (mddev->delta_disks < 0)
4203		conf->reshape_progress -= reshape_sectors * new_data_disks;
4204	else
4205		conf->reshape_progress += reshape_sectors * new_data_disks;
4206	spin_unlock_irq(&conf->device_lock);
4207	/* Ok, those stripe are ready. We can start scheduling
4208	 * reads on the source stripes.
4209	 * The source stripes are determined by mapping the first and last
4210	 * block on the destination stripes.
4211	 */
4212	first_sector =
4213		raid5_compute_sector(conf, stripe_addr*(new_data_disks),
4214				     1, &dd_idx, NULL);
4215	last_sector =
4216		raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
4217					    * new_data_disks - 1),
4218				     1, &dd_idx, NULL);
4219	if (last_sector >= mddev->dev_sectors)
4220		last_sector = mddev->dev_sectors - 1;
4221	while (first_sector <= last_sector) {
4222		sh = get_active_stripe(conf, first_sector, 1, 0, 1);
4223		set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4224		set_bit(STRIPE_HANDLE, &sh->state);
4225		release_stripe(sh);
4226		first_sector += STRIPE_SECTORS;
4227	}
4228	/* Now that the sources are clearly marked, we can release
4229	 * the destination stripes
4230	 */
4231	while (!list_empty(&stripes)) {
4232		sh = list_entry(stripes.next, struct stripe_head, lru);
4233		list_del_init(&sh->lru);
4234		release_stripe(sh);
4235	}
4236	/* If this takes us to the resync_max point where we have to pause,
4237	 * then we need to write out the superblock.
4238	 */
4239	sector_nr += reshape_sectors;
4240	if ((sector_nr - mddev->curr_resync_completed) * 2
4241	    >= mddev->resync_max - mddev->curr_resync_completed) {
4242		/* Cannot proceed until we've updated the superblock... */
4243		wait_event(conf->wait_for_overlap,
4244			   atomic_read(&conf->reshape_stripes) == 0);
4245		mddev->reshape_position = conf->reshape_progress;
4246		mddev->curr_resync_completed = mddev->curr_resync + reshape_sectors;
4247		conf->reshape_checkpoint = jiffies;
4248		set_bit(MD_CHANGE_DEVS, &mddev->flags);
4249		md_wakeup_thread(mddev->thread);
4250		wait_event(mddev->sb_wait,
4251			   !test_bit(MD_CHANGE_DEVS, &mddev->flags)
4252			   || kthread_should_stop());
4253		spin_lock_irq(&conf->device_lock);
4254		conf->reshape_safe = mddev->reshape_position;
4255		spin_unlock_irq(&conf->device_lock);
4256		wake_up(&conf->wait_for_overlap);
4257		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4258	}
4259	return reshape_sectors;
4260}
4261
4262/* FIXME go_faster isn't used */
4263static inline sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
4264{
4265	raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
4266	struct stripe_head *sh;
4267	sector_t max_sector = mddev->dev_sectors;
4268	int sync_blocks;
4269	int still_degraded = 0;
4270	int i;
4271
4272	if (sector_nr >= max_sector) {
4273		/* just being told to finish up .. nothing much to do */
4274		unplug_slaves(mddev);
4275
4276		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
4277			end_reshape(conf);
4278			return 0;
4279		}
4280
4281		if (mddev->curr_resync < max_sector) /* aborted */
4282			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
4283					&sync_blocks, 1);
4284		else /* completed sync */
4285			conf->fullsync = 0;
4286		bitmap_close_sync(mddev->bitmap);
4287
4288		return 0;
4289	}
4290
4291	/* Allow raid5_quiesce to complete */
4292	wait_event(conf->wait_for_overlap, conf->quiesce != 2);
4293
4294	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4295		return reshape_request(mddev, sector_nr, skipped);
4296
4297	/* No need to check resync_max as we never do more than one
4298	 * stripe, and as resync_max will always be on a chunk boundary,
4299	 * if the check in md_do_sync didn't fire, there is no chance
4300	 * of overstepping resync_max here
4301	 */
4302
4303	/* if there is too many failed drives and we are trying
4304	 * to resync, then assert that we are finished, because there is
4305	 * nothing we can do.
4306	 */
4307	if (mddev->degraded >= conf->max_degraded &&
4308	    test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4309		sector_t rv = mddev->dev_sectors - sector_nr;
4310		*skipped = 1;
4311		return rv;
4312	}
4313	if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
4314	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
4315	    !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
4316		/* we can skip this block, and probably more */
4317		sync_blocks /= STRIPE_SECTORS;
4318		*skipped = 1;
4319		return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
4320	}
4321
4322
4323	bitmap_cond_end_sync(mddev->bitmap, sector_nr);
4324
4325	sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
4326	if (sh == NULL) {
4327		sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
4328		/* make sure we don't swamp the stripe cache if someone else
4329		 * is trying to get access
4330		 */
4331		schedule_timeout_uninterruptible(1);
4332	}
4333	/* Need to check if array will still be degraded after recovery/resync
4334	 * We don't need to check the 'failed' flag as when that gets set,
4335	 * recovery aborts.
4336	 */
4337	for (i = 0; i < conf->raid_disks; i++)
4338		if (conf->disks[i].rdev == NULL)
4339			still_degraded = 1;
4340
4341	bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
4342
4343	spin_lock(&sh->lock);
4344	set_bit(STRIPE_SYNCING, &sh->state);
4345	clear_bit(STRIPE_INSYNC, &sh->state);
4346	spin_unlock(&sh->lock);
4347
4348	handle_stripe(sh);
4349	release_stripe(sh);
4350
4351	return STRIPE_SECTORS;
4352}
4353
4354static int  retry_aligned_read(raid5_conf_t *conf, struct bio *raid_bio)
4355{
4356	/* We may not be able to submit a whole bio at once as there
4357	 * may not be enough stripe_heads available.
4358	 * We cannot pre-allocate enough stripe_heads as we may need
4359	 * more than exist in the cache (if we allow ever large chunks).
4360	 * So we do one stripe head at a time and record in
4361	 * ->bi_hw_segments how many have been done.
4362	 *
4363	 * We *know* that this entire raid_bio is in one chunk, so
4364	 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
4365	 */
4366	struct stripe_head *sh;
4367	int dd_idx;
4368	sector_t sector, logical_sector, last_sector;
4369	int scnt = 0;
4370	int remaining;
4371	int handled = 0;
4372
4373	logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4374	sector = raid5_compute_sector(conf, logical_sector,
4375				      0, &dd_idx, NULL);
4376	last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);
4377
4378	for (; logical_sector < last_sector;
4379	     logical_sector += STRIPE_SECTORS,
4380		     sector += STRIPE_SECTORS,
4381		     scnt++) {
4382
4383		if (scnt < raid5_bi_hw_segments(raid_bio))
4384			/* already done this stripe */
4385			continue;
4386
4387		sh = get_active_stripe(conf, sector, 0, 1, 0);
4388
4389		if (!sh) {
4390			/* failed to get a stripe - must wait */
4391			raid5_set_bi_hw_segments(raid_bio, scnt);
4392			conf->retry_read_aligned = raid_bio;
4393			return handled;
4394		}
4395
4396		set_bit(R5_ReadError, &sh->dev[dd_idx].flags);
4397		if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
4398			release_stripe(sh);
4399			raid5_set_bi_hw_segments(raid_bio, scnt);
4400			conf->retry_read_aligned = raid_bio;
4401			return handled;
4402		}
4403
4404		handle_stripe(sh);
4405		release_stripe(sh);
4406		handled++;
4407	}
4408	spin_lock_irq(&conf->device_lock);
4409	remaining = raid5_dec_bi_phys_segments(raid_bio);
4410	spin_unlock_irq(&conf->device_lock);
4411	if (remaining == 0)
4412		bio_endio(raid_bio, 0);
4413	if (atomic_dec_and_test(&conf->active_aligned_reads))
4414		wake_up(&conf->wait_for_stripe);
4415	return handled;
4416}
4417
4418
4419/*
4420 * This is our raid5 kernel thread.
4421 *
4422 * We scan the hash table for stripes which can be handled now.
4423 * During the scan, completed stripes are saved for us by the interrupt
4424 * handler, so that they will not have to wait for our next wakeup.
4425 */
4426static void raid5d(mddev_t *mddev)
4427{
4428	struct stripe_head *sh;
4429	raid5_conf_t *conf = mddev->private;
4430	int handled;
4431
4432	pr_debug("+++ raid5d active\n");
4433
4434	md_check_recovery(mddev);
4435
4436	handled = 0;
4437	spin_lock_irq(&conf->device_lock);
4438	while (1) {
4439		struct bio *bio;
4440
4441		if (conf->seq_flush != conf->seq_write) {
4442			int seq = conf->seq_flush;
4443			spin_unlock_irq(&conf->device_lock);
4444			bitmap_unplug(mddev->bitmap);
4445			spin_lock_irq(&conf->device_lock);
4446			conf->seq_write = seq;
4447			activate_bit_delay(conf);
4448		}
4449
4450		while ((bio = remove_bio_from_retry(conf))) {
4451			int ok;
4452			spin_unlock_irq(&conf->device_lock);
4453			ok = retry_aligned_read(conf, bio);
4454			spin_lock_irq(&conf->device_lock);
4455			if (!ok)
4456				break;
4457			handled++;
4458		}
4459
4460		sh = __get_priority_stripe(conf);
4461
4462		if (!sh)
4463			break;
4464		spin_unlock_irq(&conf->device_lock);
4465
4466		handled++;
4467		handle_stripe(sh);
4468		release_stripe(sh);
4469		cond_resched();
4470
4471		spin_lock_irq(&conf->device_lock);
4472	}
4473	pr_debug("%d stripes handled\n", handled);
4474
4475	spin_unlock_irq(&conf->device_lock);
4476
4477	async_tx_issue_pending_all();
4478	unplug_slaves(mddev);
4479
4480	pr_debug("--- raid5d inactive\n");
4481}
4482
4483static ssize_t
4484raid5_show_stripe_cache_size(mddev_t *mddev, char *page)
4485{
4486	raid5_conf_t *conf = mddev->private;
4487	if (conf)
4488		return sprintf(page, "%d\n", conf->max_nr_stripes);
4489	else
4490		return 0;
4491}
4492
4493static ssize_t
4494raid5_store_stripe_cache_size(mddev_t *mddev, const char *page, size_t len)
4495{
4496	raid5_conf_t *conf = mddev->private;
4497	unsigned long new;
4498	int err;
4499
4500	if (len >= PAGE_SIZE)
4501		return -EINVAL;
4502	if (!conf)
4503		return -ENODEV;
4504
4505	if (strict_strtoul(page, 10, &new))
4506		return -EINVAL;
4507	if (new <= 16 || new > 32768)
4508		return -EINVAL;
4509	while (new < conf->max_nr_stripes) {
4510		if (drop_one_stripe(conf))
4511			conf->max_nr_stripes--;
4512		else
4513			break;
4514	}
4515	err = md_allow_write(mddev);
4516	if (err)
4517		return err;
4518	while (new > conf->max_nr_stripes) {
4519		if (grow_one_stripe(conf))
4520			conf->max_nr_stripes++;
4521		else break;
4522	}
4523	return len;
4524}
4525
4526static struct md_sysfs_entry
4527raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
4528				raid5_show_stripe_cache_size,
4529				raid5_store_stripe_cache_size);
4530
4531static ssize_t
4532raid5_show_preread_threshold(mddev_t *mddev, char *page)
4533{
4534	raid5_conf_t *conf = mddev->private;
4535	if (conf)
4536		return sprintf(page, "%d\n", conf->bypass_threshold);
4537	else
4538		return 0;
4539}
4540
4541static ssize_t
4542raid5_store_preread_threshold(mddev_t *mddev, const char *page, size_t len)
4543{
4544	raid5_conf_t *conf = mddev->private;
4545	unsigned long new;
4546	if (len >= PAGE_SIZE)
4547		return -EINVAL;
4548	if (!conf)
4549		return -ENODEV;
4550
4551	if (strict_strtoul(page, 10, &new))
4552		return -EINVAL;
4553	if (new > conf->max_nr_stripes)
4554		return -EINVAL;
4555	conf->bypass_threshold = new;
4556	return len;
4557}
4558
4559static struct md_sysfs_entry
4560raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
4561					S_IRUGO | S_IWUSR,
4562					raid5_show_preread_threshold,
4563					raid5_store_preread_threshold);
4564
4565static ssize_t
4566stripe_cache_active_show(mddev_t *mddev, char *page)
4567{
4568	raid5_conf_t *conf = mddev->private;
4569	if (conf)
4570		return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
4571	else
4572		return 0;
4573}
4574
4575static struct md_sysfs_entry
4576raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
4577
4578static struct attribute *raid5_attrs[] =  {
4579	&raid5_stripecache_size.attr,
4580	&raid5_stripecache_active.attr,
4581	&raid5_preread_bypass_threshold.attr,
4582	NULL,
4583};
4584static struct attribute_group raid5_attrs_group = {
4585	.name = NULL,
4586	.attrs = raid5_attrs,
4587};
4588
4589static sector_t
4590raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks)
4591{
4592	raid5_conf_t *conf = mddev->private;
4593
4594	if (!sectors)
4595		sectors = mddev->dev_sectors;
4596	if (!raid_disks)
4597		/* size is defined by the smallest of previous and new size */
4598		raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
4599
4600	sectors &= ~((sector_t)mddev->chunk_sectors - 1);
4601	sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
4602	return sectors * (raid_disks - conf->max_degraded);
4603}
4604
4605static void raid5_free_percpu(raid5_conf_t *conf)
4606{
4607	struct raid5_percpu *percpu;
4608	unsigned long cpu;
4609
4610	if (!conf->percpu)
4611		return;
4612
4613	get_online_cpus();
4614	for_each_possible_cpu(cpu) {
4615		percpu = per_cpu_ptr(conf->percpu, cpu);
4616		safe_put_page(percpu->spare_page);
4617		kfree(percpu->scribble);
4618	}
4619#ifdef CONFIG_HOTPLUG_CPU
4620	unregister_cpu_notifier(&conf->cpu_notify);
4621#endif
4622	put_online_cpus();
4623
4624	free_percpu(conf->percpu);
4625}
4626
4627static void free_conf(raid5_conf_t *conf)
4628{
4629	shrink_stripes(conf);
4630	raid5_free_percpu(conf);
4631	kfree(conf->disks);
4632	kfree(conf->stripe_hashtbl);
4633	kfree(conf);
4634}
4635
4636#ifdef CONFIG_HOTPLUG_CPU
4637static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
4638			      void *hcpu)
4639{
4640	raid5_conf_t *conf = container_of(nfb, raid5_conf_t, cpu_notify);
4641	long cpu = (long)hcpu;
4642	struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
4643
4644	switch (action) {
4645	case CPU_UP_PREPARE:
4646	case CPU_UP_PREPARE_FROZEN:
4647		if (conf->level == 6 && !percpu->spare_page)
4648			percpu->spare_page = alloc_page(GFP_KERNEL);
4649		if (!percpu->scribble)
4650			percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4651
4652		if (!percpu->scribble ||
4653		    (conf->level == 6 && !percpu->spare_page)) {
4654			safe_put_page(percpu->spare_page);
4655			kfree(percpu->scribble);
4656			pr_err("%s: failed memory allocation for cpu%ld\n",
4657			       __func__, cpu);
4658			return NOTIFY_BAD;
4659		}
4660		break;
4661	case CPU_DEAD:
4662	case CPU_DEAD_FROZEN:
4663		safe_put_page(percpu->spare_page);
4664		kfree(percpu->scribble);
4665		percpu->spare_page = NULL;
4666		percpu->scribble = NULL;
4667		break;
4668	default:
4669		break;
4670	}
4671	return NOTIFY_OK;
4672}
4673#endif
4674
4675static int raid5_alloc_percpu(raid5_conf_t *conf)
4676{
4677	unsigned long cpu;
4678	struct page *spare_page;
4679	struct raid5_percpu __percpu *allcpus;
4680	void *scribble;
4681	int err;
4682
4683	allcpus = alloc_percpu(struct raid5_percpu);
4684	if (!allcpus)
4685		return -ENOMEM;
4686	conf->percpu = allcpus;
4687
4688	get_online_cpus();
4689	err = 0;
4690	for_each_present_cpu(cpu) {
4691		if (conf->level == 6) {
4692			spare_page = alloc_page(GFP_KERNEL);
4693			if (!spare_page) {
4694				err = -ENOMEM;
4695				break;
4696			}
4697			per_cpu_ptr(conf->percpu, cpu)->spare_page = spare_page;
4698		}
4699		scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4700		if (!scribble) {
4701			err = -ENOMEM;
4702			break;
4703		}
4704		per_cpu_ptr(conf->percpu, cpu)->scribble = scribble;
4705	}
4706#ifdef CONFIG_HOTPLUG_CPU
4707	conf->cpu_notify.notifier_call = raid456_cpu_notify;
4708	conf->cpu_notify.priority = 0;
4709	if (err == 0)
4710		err = register_cpu_notifier(&conf->cpu_notify);
4711#endif
4712	put_online_cpus();
4713
4714	return err;
4715}
4716
4717static raid5_conf_t *setup_conf(mddev_t *mddev)
4718{
4719	raid5_conf_t *conf;
4720	int raid_disk, memory, max_disks;
4721	mdk_rdev_t *rdev;
4722	struct disk_info *disk;
4723
4724	if (mddev->new_level != 5
4725	    && mddev->new_level != 4
4726	    && mddev->new_level != 6) {
4727		printk(KERN_ERR "raid5: %s: raid level not set to 4/5/6 (%d)\n",
4728		       mdname(mddev), mddev->new_level);
4729		return ERR_PTR(-EIO);
4730	}
4731	if ((mddev->new_level == 5
4732	     && !algorithm_valid_raid5(mddev->new_layout)) ||
4733	    (mddev->new_level == 6
4734	     && !algorithm_valid_raid6(mddev->new_layout))) {
4735		printk(KERN_ERR "raid5: %s: layout %d not supported\n",
4736		       mdname(mddev), mddev->new_layout);
4737		return ERR_PTR(-EIO);
4738	}
4739	if (mddev->new_level == 6 && mddev->raid_disks < 4) {
4740		printk(KERN_ERR "raid6: not enough configured devices for %s (%d, minimum 4)\n",
4741		       mdname(mddev), mddev->raid_disks);
4742		return ERR_PTR(-EINVAL);
4743	}
4744
4745	if (!mddev->new_chunk_sectors ||
4746	    (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
4747	    !is_power_of_2(mddev->new_chunk_sectors)) {
4748		printk(KERN_ERR "raid5: invalid chunk size %d for %s\n",
4749		       mddev->new_chunk_sectors << 9, mdname(mddev));
4750		return ERR_PTR(-EINVAL);
4751	}
4752
4753	conf = kzalloc(sizeof(raid5_conf_t), GFP_KERNEL);
4754	if (conf == NULL)
4755		goto abort;
4756	spin_lock_init(&conf->device_lock);
4757	init_waitqueue_head(&conf->wait_for_stripe);
4758	init_waitqueue_head(&conf->wait_for_overlap);
4759	INIT_LIST_HEAD(&conf->handle_list);
4760	INIT_LIST_HEAD(&conf->hold_list);
4761	INIT_LIST_HEAD(&conf->delayed_list);
4762	INIT_LIST_HEAD(&conf->bitmap_list);
4763	INIT_LIST_HEAD(&conf->inactive_list);
4764	atomic_set(&conf->active_stripes, 0);
4765	atomic_set(&conf->preread_active_stripes, 0);
4766	atomic_set(&conf->active_aligned_reads, 0);
4767	conf->bypass_threshold = BYPASS_THRESHOLD;
4768
4769	conf->raid_disks = mddev->raid_disks;
4770	if (mddev->reshape_position == MaxSector)
4771		conf->previous_raid_disks = mddev->raid_disks;
4772	else
4773		conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
4774	max_disks = max(conf->raid_disks, conf->previous_raid_disks);
4775	conf->scribble_len = scribble_len(max_disks);
4776
4777	conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
4778			      GFP_KERNEL);
4779	if (!conf->disks)
4780		goto abort;
4781
4782	conf->mddev = mddev;
4783
4784	if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
4785		goto abort;
4786
4787	conf->level = mddev->new_level;
4788	if (raid5_alloc_percpu(conf) != 0)
4789		goto abort;
4790
4791	pr_debug("raid5: run(%s) called.\n", mdname(mddev));
4792
4793	list_for_each_entry(rdev, &mddev->disks, same_set) {
4794		raid_disk = rdev->raid_disk;
4795		if (raid_disk >= max_disks
4796		    || raid_disk < 0)
4797			continue;
4798		disk = conf->disks + raid_disk;
4799
4800		disk->rdev = rdev;
4801
4802		if (test_bit(In_sync, &rdev->flags)) {
4803			char b[BDEVNAME_SIZE];
4804			printk(KERN_INFO "raid5: device %s operational as raid"
4805				" disk %d\n", bdevname(rdev->bdev,b),
4806				raid_disk);
4807		} else
4808			/* Cannot rely on bitmap to complete recovery */
4809			conf->fullsync = 1;
4810	}
4811
4812	conf->chunk_sectors = mddev->new_chunk_sectors;
4813	conf->level = mddev->new_level;
4814	if (conf->level == 6)
4815		conf->max_degraded = 2;
4816	else
4817		conf->max_degraded = 1;
4818	conf->algorithm = mddev->new_layout;
4819	conf->max_nr_stripes = NR_STRIPES;
4820	conf->reshape_progress = mddev->reshape_position;
4821	if (conf->reshape_progress != MaxSector) {
4822		conf->prev_chunk_sectors = mddev->chunk_sectors;
4823		conf->prev_algo = mddev->layout;
4824	}
4825
4826	memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
4827		 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
4828	if (grow_stripes(conf, conf->max_nr_stripes)) {
4829		printk(KERN_ERR
4830			"raid5: couldn't allocate %dkB for buffers\n", memory);
4831		goto abort;
4832	} else
4833		printk(KERN_INFO "raid5: allocated %dkB for %s\n",
4834			memory, mdname(mddev));
4835
4836	conf->thread = md_register_thread(raid5d, mddev, NULL);
4837	if (!conf->thread) {
4838		printk(KERN_ERR
4839		       "raid5: couldn't allocate thread for %s\n",
4840		       mdname(mddev));
4841		goto abort;
4842	}
4843
4844	return conf;
4845
4846 abort:
4847	if (conf) {
4848		free_conf(conf);
4849		return ERR_PTR(-EIO);
4850	} else
4851		return ERR_PTR(-ENOMEM);
4852}
4853
4854
4855static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
4856{
4857	switch (algo) {
4858	case ALGORITHM_PARITY_0:
4859		if (raid_disk < max_degraded)
4860			return 1;
4861		break;
4862	case ALGORITHM_PARITY_N:
4863		if (raid_disk >= raid_disks - max_degraded)
4864			return 1;
4865		break;
4866	case ALGORITHM_PARITY_0_6:
4867		if (raid_disk == 0 ||
4868		    raid_disk == raid_disks - 1)
4869			return 1;
4870		break;
4871	case ALGORITHM_LEFT_ASYMMETRIC_6:
4872	case ALGORITHM_RIGHT_ASYMMETRIC_6:
4873	case ALGORITHM_LEFT_SYMMETRIC_6:
4874	case ALGORITHM_RIGHT_SYMMETRIC_6:
4875		if (raid_disk == raid_disks - 1)
4876			return 1;
4877	}
4878	return 0;
4879}
4880
4881static int run(mddev_t *mddev)
4882{
4883	raid5_conf_t *conf;
4884	int working_disks = 0, chunk_size;
4885	int dirty_parity_disks = 0;
4886	mdk_rdev_t *rdev;
4887	sector_t reshape_offset = 0;
4888
4889	if (mddev->recovery_cp != MaxSector)
4890		printk(KERN_NOTICE "raid5: %s is not clean"
4891		       " -- starting background reconstruction\n",
4892		       mdname(mddev));
4893	if (mddev->reshape_position != MaxSector) {
4894		/* Check that we can continue the reshape.
4895		 * Currently only disks can change, it must
4896		 * increase, and we must be past the point where
4897		 * a stripe over-writes itself
4898		 */
4899		sector_t here_new, here_old;
4900		int old_disks;
4901		int max_degraded = (mddev->level == 6 ? 2 : 1);
4902
4903		if (mddev->new_level != mddev->level) {
4904			printk(KERN_ERR "raid5: %s: unsupported reshape "
4905			       "required - aborting.\n",
4906			       mdname(mddev));
4907			return -EINVAL;
4908		}
4909		old_disks = mddev->raid_disks - mddev->delta_disks;
4910		/* reshape_position must be on a new-stripe boundary, and one
4911		 * further up in new geometry must map after here in old
4912		 * geometry.
4913		 */
4914		here_new = mddev->reshape_position;
4915		if (sector_div(here_new, mddev->new_chunk_sectors *
4916			       (mddev->raid_disks - max_degraded))) {
4917			printk(KERN_ERR "raid5: reshape_position not "
4918			       "on a stripe boundary\n");
4919			return -EINVAL;
4920		}
4921		reshape_offset = here_new * mddev->new_chunk_sectors;
4922		/* here_new is the stripe we will write to */
4923		here_old = mddev->reshape_position;
4924		sector_div(here_old, mddev->chunk_sectors *
4925			   (old_disks-max_degraded));
4926		/* here_old is the first stripe that we might need to read
4927		 * from */
4928		if (mddev->delta_disks == 0) {
4929			/* We cannot be sure it is safe to start an in-place
4930			 * reshape.  It is only safe if user-space if monitoring
4931			 * and taking constant backups.
4932			 * mdadm always starts a situation like this in
4933			 * readonly mode so it can take control before
4934			 * allowing any writes.  So just check for that.
4935			 */
4936			if ((here_new * mddev->new_chunk_sectors !=
4937			     here_old * mddev->chunk_sectors) ||
4938			    mddev->ro == 0) {
4939				printk(KERN_ERR "raid5: in-place reshape must be started"
4940				       " in read-only mode - aborting\n");
4941				return -EINVAL;
4942			}
4943		} else if (mddev->delta_disks < 0
4944		    ? (here_new * mddev->new_chunk_sectors <=
4945		       here_old * mddev->chunk_sectors)
4946		    : (here_new * mddev->new_chunk_sectors >=
4947		       here_old * mddev->chunk_sectors)) {
4948			/* Reading from the same stripe as writing to - bad */
4949			printk(KERN_ERR "raid5: reshape_position too early for "
4950			       "auto-recovery - aborting.\n");
4951			return -EINVAL;
4952		}
4953		printk(KERN_INFO "raid5: reshape will continue\n");
4954		/* OK, we should be able to continue; */
4955	} else {
4956		BUG_ON(mddev->level != mddev->new_level);
4957		BUG_ON(mddev->layout != mddev->new_layout);
4958		BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
4959		BUG_ON(mddev->delta_disks != 0);
4960	}
4961
4962	if (mddev->private == NULL)
4963		conf = setup_conf(mddev);
4964	else
4965		conf = mddev->private;
4966
4967	if (IS_ERR(conf))
4968		return PTR_ERR(conf);
4969
4970	mddev->thread = conf->thread;
4971	conf->thread = NULL;
4972	mddev->private = conf;
4973
4974	/*
4975	 * 0 for a fully functional array, 1 or 2 for a degraded array.
4976	 */
4977	list_for_each_entry(rdev, &mddev->disks, same_set) {
4978		if (rdev->raid_disk < 0)
4979			continue;
4980		if (test_bit(In_sync, &rdev->flags))
4981			working_disks++;
4982		/* This disc is not fully in-sync.  However if it
4983		 * just stored parity (beyond the recovery_offset),
4984		 * when we don't need to be concerned about the
4985		 * array being dirty.
4986		 * When reshape goes 'backwards', we never have
4987		 * partially completed devices, so we only need
4988		 * to worry about reshape going forwards.
4989		 */
4990		/* Hack because v0.91 doesn't store recovery_offset properly. */
4991		if (mddev->major_version == 0 &&
4992		    mddev->minor_version > 90)
4993			rdev->recovery_offset = reshape_offset;
4994
4995		printk("%d: w=%d pa=%d pr=%d m=%d a=%d r=%d op1=%d op2=%d\n",
4996		       rdev->raid_disk, working_disks, conf->prev_algo,
4997		       conf->previous_raid_disks, conf->max_degraded,
4998		       conf->algorithm, conf->raid_disks,
4999		       only_parity(rdev->raid_disk,
5000				   conf->prev_algo,
5001				   conf->previous_raid_disks,
5002				   conf->max_degraded),
5003		       only_parity(rdev->raid_disk,
5004				   conf->algorithm,
5005				   conf->raid_disks,
5006				   conf->max_degraded));
5007		if (rdev->recovery_offset < reshape_offset) {
5008			/* We need to check old and new layout */
5009			if (!only_parity(rdev->raid_disk,
5010					 conf->algorithm,
5011					 conf->raid_disks,
5012					 conf->max_degraded))
5013				continue;
5014		}
5015		if (!only_parity(rdev->raid_disk,
5016				 conf->prev_algo,
5017				 conf->previous_raid_disks,
5018				 conf->max_degraded))
5019			continue;
5020		dirty_parity_disks++;
5021	}
5022
5023	mddev->degraded = (max(conf->raid_disks, conf->previous_raid_disks)
5024			   - working_disks);
5025
5026	if (mddev->degraded > conf->max_degraded) {
5027		printk(KERN_ERR "raid5: not enough operational devices for %s"
5028			" (%d/%d failed)\n",
5029			mdname(mddev), mddev->degraded, conf->raid_disks);
5030		goto abort;
5031	}
5032
5033	/* device size must be a multiple of chunk size */
5034	mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
5035	mddev->resync_max_sectors = mddev->dev_sectors;
5036
5037	if (mddev->degraded > dirty_parity_disks &&
5038	    mddev->recovery_cp != MaxSector) {
5039		if (mddev->ok_start_degraded)
5040			printk(KERN_WARNING
5041			       "raid5: starting dirty degraded array: %s"
5042			       "- data corruption possible.\n",
5043			       mdname(mddev));
5044		else {
5045			printk(KERN_ERR
5046			       "raid5: cannot start dirty degraded array for %s\n",
5047			       mdname(mddev));
5048			goto abort;
5049		}
5050	}
5051
5052	if (mddev->degraded == 0)
5053		printk("raid5: raid level %d set %s active with %d out of %d"
5054		       " devices, algorithm %d\n", conf->level, mdname(mddev),
5055		       mddev->raid_disks-mddev->degraded, mddev->raid_disks,
5056		       mddev->new_layout);
5057	else
5058		printk(KERN_ALERT "raid5: raid level %d set %s active with %d"
5059			" out of %d devices, algorithm %d\n", conf->level,
5060			mdname(mddev), mddev->raid_disks - mddev->degraded,
5061			mddev->raid_disks, mddev->new_layout);
5062
5063	print_raid5_conf(conf);
5064
5065	if (conf->reshape_progress != MaxSector) {
5066		printk("...ok start reshape thread\n");
5067		conf->reshape_safe = conf->reshape_progress;
5068		atomic_set(&conf->reshape_stripes, 0);
5069		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5070		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5071		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5072		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5073		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5074							"reshape");
5075	}
5076
5077	/* read-ahead size must cover two whole stripes, which is
5078	 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
5079	 */
5080	{
5081		int data_disks = conf->previous_raid_disks - conf->max_degraded;
5082		int stripe = data_disks *
5083			((mddev->chunk_sectors << 9) / PAGE_SIZE);
5084		if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5085			mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
5086	}
5087
5088	/* Ok, everything is just fine now */
5089	if (sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
5090		printk(KERN_WARNING
5091		       "raid5: failed to create sysfs attributes for %s\n",
5092		       mdname(mddev));
5093
5094	mddev->queue->queue_lock = &conf->device_lock;
5095
5096	mddev->queue->unplug_fn = raid5_unplug_device;
5097	mddev->queue->backing_dev_info.congested_data = mddev;
5098	mddev->queue->backing_dev_info.congested_fn = raid5_congested;
5099
5100	md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5101
5102	blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
5103	chunk_size = mddev->chunk_sectors << 9;
5104	blk_queue_io_min(mddev->queue, chunk_size);
5105	blk_queue_io_opt(mddev->queue, chunk_size *
5106			 (conf->raid_disks - conf->max_degraded));
5107
5108	list_for_each_entry(rdev, &mddev->disks, same_set)
5109		disk_stack_limits(mddev->gendisk, rdev->bdev,
5110				  rdev->data_offset << 9);
5111
5112	return 0;
5113abort:
5114	md_unregister_thread(mddev->thread);
5115	mddev->thread = NULL;
5116	if (conf) {
5117		print_raid5_conf(conf);
5118		free_conf(conf);
5119	}
5120	mddev->private = NULL;
5121	printk(KERN_ALERT "raid5: failed to run raid set %s\n", mdname(mddev));
5122	return -EIO;
5123}
5124
5125
5126
5127static int stop(mddev_t *mddev)
5128{
5129	raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
5130
5131	md_unregister_thread(mddev->thread);
5132	mddev->thread = NULL;
5133	mddev->queue->backing_dev_info.congested_fn = NULL;
5134	blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
5135	free_conf(conf);
5136	mddev->private = &raid5_attrs_group;
5137	return 0;
5138}
5139
5140#ifdef DEBUG
5141static void print_sh(struct seq_file *seq, struct stripe_head *sh)
5142{
5143	int i;
5144
5145	seq_printf(seq, "sh %llu, pd_idx %d, state %ld.\n",
5146		   (unsigned long long)sh->sector, sh->pd_idx, sh->state);
5147	seq_printf(seq, "sh %llu,  count %d.\n",
5148		   (unsigned long long)sh->sector, atomic_read(&sh->count));
5149	seq_printf(seq, "sh %llu, ", (unsigned long long)sh->sector);
5150	for (i = 0; i < sh->disks; i++) {
5151		seq_printf(seq, "(cache%d: %p %ld) ",
5152			   i, sh->dev[i].page, sh->dev[i].flags);
5153	}
5154	seq_printf(seq, "\n");
5155}
5156
5157static void printall(struct seq_file *seq, raid5_conf_t *conf)
5158{
5159	struct stripe_head *sh;
5160	struct hlist_node *hn;
5161	int i;
5162
5163	spin_lock_irq(&conf->device_lock);
5164	for (i = 0; i < NR_HASH; i++) {
5165		hlist_for_each_entry(sh, hn, &conf->stripe_hashtbl[i], hash) {
5166			if (sh->raid_conf != conf)
5167				continue;
5168			print_sh(seq, sh);
5169		}
5170	}
5171	spin_unlock_irq(&conf->device_lock);
5172}
5173#endif
5174
5175static void status(struct seq_file *seq, mddev_t *mddev)
5176{
5177	raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
5178	int i;
5179
5180	seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
5181		mddev->chunk_sectors / 2, mddev->layout);
5182	seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
5183	for (i = 0; i < conf->raid_disks; i++)
5184		seq_printf (seq, "%s",
5185			       conf->disks[i].rdev &&
5186			       test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
5187	seq_printf (seq, "]");
5188#ifdef DEBUG
5189	seq_printf (seq, "\n");
5190	printall(seq, conf);
5191#endif
5192}
5193
5194static void print_raid5_conf (raid5_conf_t *conf)
5195{
5196	int i;
5197	struct disk_info *tmp;
5198
5199	printk("RAID5 conf printout:\n");
5200	if (!conf) {
5201		printk("(conf==NULL)\n");
5202		return;
5203	}
5204	printk(" --- rd:%d wd:%d\n", conf->raid_disks,
5205		 conf->raid_disks - conf->mddev->degraded);
5206
5207	for (i = 0; i < conf->raid_disks; i++) {
5208		char b[BDEVNAME_SIZE];
5209		tmp = conf->disks + i;
5210		if (tmp->rdev)
5211		printk(" disk %d, o:%d, dev:%s\n",
5212			i, !test_bit(Faulty, &tmp->rdev->flags),
5213			bdevname(tmp->rdev->bdev,b));
5214	}
5215}
5216
5217static int raid5_spare_active(mddev_t *mddev)
5218{
5219	int i;
5220	raid5_conf_t *conf = mddev->private;
5221	struct disk_info *tmp;
5222
5223	for (i = 0; i < conf->raid_disks; i++) {
5224		tmp = conf->disks + i;
5225		if (tmp->rdev
5226		    && !test_bit(Faulty, &tmp->rdev->flags)
5227		    && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
5228			unsigned long flags;
5229			spin_lock_irqsave(&conf->device_lock, flags);
5230			mddev->degraded--;
5231			spin_unlock_irqrestore(&conf->device_lock, flags);
5232		}
5233	}
5234	print_raid5_conf(conf);
5235	return 0;
5236}
5237
5238static int raid5_remove_disk(mddev_t *mddev, int number)
5239{
5240	raid5_conf_t *conf = mddev->private;
5241	int err = 0;
5242	mdk_rdev_t *rdev;
5243	struct disk_info *p = conf->disks + number;
5244
5245	print_raid5_conf(conf);
5246	rdev = p->rdev;
5247	if (rdev) {
5248		if (number >= conf->raid_disks &&
5249		    conf->reshape_progress == MaxSector)
5250			clear_bit(In_sync, &rdev->flags);
5251
5252		if (test_bit(In_sync, &rdev->flags) ||
5253		    atomic_read(&rdev->nr_pending)) {
5254			err = -EBUSY;
5255			goto abort;
5256		}
5257		/* Only remove non-faulty devices if recovery
5258		 * isn't possible.
5259		 */
5260		if (!test_bit(Faulty, &rdev->flags) &&
5261		    mddev->degraded <= conf->max_degraded &&
5262		    number < conf->raid_disks) {
5263			err = -EBUSY;
5264			goto abort;
5265		}
5266		p->rdev = NULL;
5267		synchronize_rcu();
5268		if (atomic_read(&rdev->nr_pending)) {
5269			/* lost the race, try later */
5270			err = -EBUSY;
5271			p->rdev = rdev;
5272		}
5273	}
5274abort:
5275
5276	print_raid5_conf(conf);
5277	return err;
5278}
5279
5280static int raid5_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
5281{
5282	raid5_conf_t *conf = mddev->private;
5283	int err = -EEXIST;
5284	int disk;
5285	struct disk_info *p;
5286	int first = 0;
5287	int last = conf->raid_disks - 1;
5288
5289	if (mddev->degraded > conf->max_degraded)
5290		/* no point adding a device */
5291		return -EINVAL;
5292
5293	if (rdev->raid_disk >= 0)
5294		first = last = rdev->raid_disk;
5295
5296	/*
5297	 * find the disk ... but prefer rdev->saved_raid_disk
5298	 * if possible.
5299	 */
5300	if (rdev->saved_raid_disk >= 0 &&
5301	    rdev->saved_raid_disk >= first &&
5302	    conf->disks[rdev->saved_raid_disk].rdev == NULL)
5303		disk = rdev->saved_raid_disk;
5304	else
5305		disk = first;
5306	for ( ; disk <= last ; disk++)
5307		if ((p=conf->disks + disk)->rdev == NULL) {
5308			clear_bit(In_sync, &rdev->flags);
5309			rdev->raid_disk = disk;
5310			err = 0;
5311			if (rdev->saved_raid_disk != disk)
5312				conf->fullsync = 1;
5313			rcu_assign_pointer(p->rdev, rdev);
5314			break;
5315		}
5316	print_raid5_conf(conf);
5317	return err;
5318}
5319
5320static int raid5_resize(mddev_t *mddev, sector_t sectors)
5321{
5322	/* no resync is happening, and there is enough space
5323	 * on all devices, so we can resize.
5324	 * We need to make sure resync covers any new space.
5325	 * If the array is shrinking we should possibly wait until
5326	 * any io in the removed space completes, but it hardly seems
5327	 * worth it.
5328	 */
5329	sectors &= ~((sector_t)mddev->chunk_sectors - 1);
5330	md_set_array_sectors(mddev, raid5_size(mddev, sectors,
5331					       mddev->raid_disks));
5332	if (mddev->array_sectors >
5333	    raid5_size(mddev, sectors, mddev->raid_disks))
5334		return -EINVAL;
5335	set_capacity(mddev->gendisk, mddev->array_sectors);
5336	mddev->changed = 1;
5337	revalidate_disk(mddev->gendisk);
5338	if (sectors > mddev->dev_sectors && mddev->recovery_cp == MaxSector) {
5339		mddev->recovery_cp = mddev->dev_sectors;
5340		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5341	}
5342	mddev->dev_sectors = sectors;
5343	mddev->resync_max_sectors = sectors;
5344	return 0;
5345}
5346
5347static int check_stripe_cache(mddev_t *mddev)
5348{
5349	/* Can only proceed if there are plenty of stripe_heads.
5350	 * We need a minimum of one full stripe,, and for sensible progress
5351	 * it is best to have about 4 times that.
5352	 * If we require 4 times, then the default 256 4K stripe_heads will
5353	 * allow for chunk sizes up to 256K, which is probably OK.
5354	 * If the chunk size is greater, user-space should request more
5355	 * stripe_heads first.
5356	 */
5357	raid5_conf_t *conf = mddev->private;
5358	if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
5359	    > conf->max_nr_stripes ||
5360	    ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
5361	    > conf->max_nr_stripes) {
5362		printk(KERN_WARNING "raid5: reshape: not enough stripes.  Needed %lu\n",
5363		       ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
5364			/ STRIPE_SIZE)*4);
5365		return 0;
5366	}
5367	return 1;
5368}
5369
5370static int check_reshape(mddev_t *mddev)
5371{
5372	raid5_conf_t *conf = mddev->private;
5373
5374	if (mddev->delta_disks == 0 &&
5375	    mddev->new_layout == mddev->layout &&
5376	    mddev->new_chunk_sectors == mddev->chunk_sectors)
5377		return 0; /* nothing to do */
5378	if (mddev->bitmap)
5379		/* Cannot grow a bitmap yet */
5380		return -EBUSY;
5381	if (mddev->degraded > conf->max_degraded)
5382		return -EINVAL;
5383	if (mddev->delta_disks < 0) {
5384		/* We might be able to shrink, but the devices must
5385		 * be made bigger first.
5386		 * For raid6, 4 is the minimum size.
5387		 * Otherwise 2 is the minimum
5388		 */
5389		int min = 2;
5390		if (mddev->level == 6)
5391			min = 4;
5392		if (mddev->raid_disks + mddev->delta_disks < min)
5393			return -EINVAL;
5394	}
5395
5396	if (!check_stripe_cache(mddev))
5397		return -ENOSPC;
5398
5399	return resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
5400}
5401
5402static int raid5_start_reshape(mddev_t *mddev)
5403{
5404	raid5_conf_t *conf = mddev->private;
5405	mdk_rdev_t *rdev;
5406	int spares = 0;
5407	int added_devices = 0;
5408	unsigned long flags;
5409
5410	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5411		return -EBUSY;
5412
5413	if (!check_stripe_cache(mddev))
5414		return -ENOSPC;
5415
5416	list_for_each_entry(rdev, &mddev->disks, same_set)
5417		if (rdev->raid_disk < 0 &&
5418		    !test_bit(Faulty, &rdev->flags))
5419			spares++;
5420
5421	if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
5422		/* Not enough devices even to make a degraded array
5423		 * of that size
5424		 */
5425		return -EINVAL;
5426
5427	/* Refuse to reduce size of the array.  Any reductions in
5428	 * array size must be through explicit setting of array_size
5429	 * attribute.
5430	 */
5431	if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
5432	    < mddev->array_sectors) {
5433		printk(KERN_ERR "md: %s: array size must be reduced "
5434		       "before number of disks\n", mdname(mddev));
5435		return -EINVAL;
5436	}
5437
5438	atomic_set(&conf->reshape_stripes, 0);
5439	spin_lock_irq(&conf->device_lock);
5440	conf->previous_raid_disks = conf->raid_disks;
5441	conf->raid_disks += mddev->delta_disks;
5442	conf->prev_chunk_sectors = conf->chunk_sectors;
5443	conf->chunk_sectors = mddev->new_chunk_sectors;
5444	conf->prev_algo = conf->algorithm;
5445	conf->algorithm = mddev->new_layout;
5446	if (mddev->delta_disks < 0)
5447		conf->reshape_progress = raid5_size(mddev, 0, 0);
5448	else
5449		conf->reshape_progress = 0;
5450	conf->reshape_safe = conf->reshape_progress;
5451	conf->generation++;
5452	spin_unlock_irq(&conf->device_lock);
5453
5454	/* Add some new drives, as many as will fit.
5455	 * We know there are enough to make the newly sized array work.
5456	 */
5457	list_for_each_entry(rdev, &mddev->disks, same_set)
5458		if (rdev->raid_disk < 0 &&
5459		    !test_bit(Faulty, &rdev->flags)) {
5460			if (raid5_add_disk(mddev, rdev) == 0) {
5461				char nm[20];
5462				if (rdev->raid_disk >= conf->previous_raid_disks) {
5463					set_bit(In_sync, &rdev->flags);
5464					added_devices++;
5465				} else
5466					rdev->recovery_offset = 0;
5467				sprintf(nm, "rd%d", rdev->raid_disk);
5468				if (sysfs_create_link(&mddev->kobj,
5469						      &rdev->kobj, nm))
5470					printk(KERN_WARNING
5471					       "raid5: failed to create "
5472					       " link %s for %s\n",
5473					       nm, mdname(mddev));
5474			} else
5475				break;
5476		}
5477
5478	/* When a reshape changes the number of devices, ->degraded
5479	 * is measured against the large of the pre and post number of
5480	 * devices.*/
5481	if (mddev->delta_disks > 0) {
5482		spin_lock_irqsave(&conf->device_lock, flags);
5483		mddev->degraded += (conf->raid_disks - conf->previous_raid_disks)
5484			- added_devices;
5485		spin_unlock_irqrestore(&conf->device_lock, flags);
5486	}
5487	mddev->raid_disks = conf->raid_disks;
5488	mddev->reshape_position = conf->reshape_progress;
5489	set_bit(MD_CHANGE_DEVS, &mddev->flags);
5490
5491	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5492	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5493	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5494	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5495	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5496						"reshape");
5497	if (!mddev->sync_thread) {
5498		mddev->recovery = 0;
5499		spin_lock_irq(&conf->device_lock);
5500		mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
5501		conf->reshape_progress = MaxSector;
5502		spin_unlock_irq(&conf->device_lock);
5503		return -EAGAIN;
5504	}
5505	conf->reshape_checkpoint = jiffies;
5506	md_wakeup_thread(mddev->sync_thread);
5507	md_new_event(mddev);
5508	return 0;
5509}
5510
5511/* This is called from the reshape thread and should make any
5512 * changes needed in 'conf'
5513 */
5514static void end_reshape(raid5_conf_t *conf)
5515{
5516
5517	if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
5518
5519		spin_lock_irq(&conf->device_lock);
5520		conf->previous_raid_disks = conf->raid_disks;
5521		conf->reshape_progress = MaxSector;
5522		spin_unlock_irq(&conf->device_lock);
5523		wake_up(&conf->wait_for_overlap);
5524
5525		/* read-ahead size must cover two whole stripes, which is
5526		 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
5527		 */
5528		{
5529			int data_disks = conf->raid_disks - conf->max_degraded;
5530			int stripe = data_disks * ((conf->chunk_sectors << 9)
5531						   / PAGE_SIZE);
5532			if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5533				conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
5534		}
5535	}
5536}
5537
5538/* This is called from the raid5d thread with mddev_lock held.
5539 * It makes config changes to the device.
5540 */
5541static void raid5_finish_reshape(mddev_t *mddev)
5542{
5543	raid5_conf_t *conf = mddev->private;
5544
5545	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
5546
5547		if (mddev->delta_disks > 0) {
5548			md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5549			set_capacity(mddev->gendisk, mddev->array_sectors);
5550			mddev->changed = 1;
5551			revalidate_disk(mddev->gendisk);
5552		} else {
5553			int d;
5554			mddev->degraded = conf->raid_disks;
5555			for (d = 0; d < conf->raid_disks ; d++)
5556				if (conf->disks[d].rdev &&
5557				    test_bit(In_sync,
5558					     &conf->disks[d].rdev->flags))
5559					mddev->degraded--;
5560			for (d = conf->raid_disks ;
5561			     d < conf->raid_disks - mddev->delta_disks;
5562			     d++) {
5563				mdk_rdev_t *rdev = conf->disks[d].rdev;
5564				if (rdev && raid5_remove_disk(mddev, d) == 0) {
5565					char nm[20];
5566					sprintf(nm, "rd%d", rdev->raid_disk);
5567					sysfs_remove_link(&mddev->kobj, nm);
5568					rdev->raid_disk = -1;
5569				}
5570			}
5571		}
5572		mddev->layout = conf->algorithm;
5573		mddev->chunk_sectors = conf->chunk_sectors;
5574		mddev->reshape_position = MaxSector;
5575		mddev->delta_disks = 0;
5576	}
5577}
5578
5579static void raid5_quiesce(mddev_t *mddev, int state)
5580{
5581	raid5_conf_t *conf = mddev->private;
5582
5583	switch(state) {
5584	case 2: /* resume for a suspend */
5585		wake_up(&conf->wait_for_overlap);
5586		break;
5587
5588	case 1: /* stop all writes */
5589		spin_lock_irq(&conf->device_lock);
5590		/* '2' tells resync/reshape to pause so that all
5591		 * active stripes can drain
5592		 */
5593		conf->quiesce = 2;
5594		wait_event_lock_irq(conf->wait_for_stripe,
5595				    atomic_read(&conf->active_stripes) == 0 &&
5596				    atomic_read(&conf->active_aligned_reads) == 0,
5597				    conf->device_lock, /* nothing */);
5598		conf->quiesce = 1;
5599		spin_unlock_irq(&conf->device_lock);
5600		/* allow reshape to continue */
5601		wake_up(&conf->wait_for_overlap);
5602		break;
5603
5604	case 0: /* re-enable writes */
5605		spin_lock_irq(&conf->device_lock);
5606		conf->quiesce = 0;
5607		wake_up(&conf->wait_for_stripe);
5608		wake_up(&conf->wait_for_overlap);
5609		spin_unlock_irq(&conf->device_lock);
5610		break;
5611	}
5612}
5613
5614
5615static void *raid5_takeover_raid1(mddev_t *mddev)
5616{
5617	int chunksect;
5618
5619	if (mddev->raid_disks != 2 ||
5620	    mddev->degraded > 1)
5621		return ERR_PTR(-EINVAL);
5622
5623	/* Should check if there are write-behind devices? */
5624
5625	chunksect = 64*2; /* 64K by default */
5626
5627	/* The array must be an exact multiple of chunksize */
5628	while (chunksect && (mddev->array_sectors & (chunksect-1)))
5629		chunksect >>= 1;
5630
5631	if ((chunksect<<9) < STRIPE_SIZE)
5632		/* array size does not allow a suitable chunk size */
5633		return ERR_PTR(-EINVAL);
5634
5635	mddev->new_level = 5;
5636	mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
5637	mddev->new_chunk_sectors = chunksect;
5638
5639	return setup_conf(mddev);
5640}
5641
5642static void *raid5_takeover_raid6(mddev_t *mddev)
5643{
5644	int new_layout;
5645
5646	switch (mddev->layout) {
5647	case ALGORITHM_LEFT_ASYMMETRIC_6:
5648		new_layout = ALGORITHM_LEFT_ASYMMETRIC;
5649		break;
5650	case ALGORITHM_RIGHT_ASYMMETRIC_6:
5651		new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
5652		break;
5653	case ALGORITHM_LEFT_SYMMETRIC_6:
5654		new_layout = ALGORITHM_LEFT_SYMMETRIC;
5655		break;
5656	case ALGORITHM_RIGHT_SYMMETRIC_6:
5657		new_layout = ALGORITHM_RIGHT_SYMMETRIC;
5658		break;
5659	case ALGORITHM_PARITY_0_6:
5660		new_layout = ALGORITHM_PARITY_0;
5661		break;
5662	case ALGORITHM_PARITY_N:
5663		new_layout = ALGORITHM_PARITY_N;
5664		break;
5665	default:
5666		return ERR_PTR(-EINVAL);
5667	}
5668	mddev->new_level = 5;
5669	mddev->new_layout = new_layout;
5670	mddev->delta_disks = -1;
5671	mddev->raid_disks -= 1;
5672	return setup_conf(mddev);
5673}
5674
5675
5676static int raid5_check_reshape(mddev_t *mddev)
5677{
5678	/* For a 2-drive array, the layout and chunk size can be changed
5679	 * immediately as not restriping is needed.
5680	 * For larger arrays we record the new value - after validation
5681	 * to be used by a reshape pass.
5682	 */
5683	raid5_conf_t *conf = mddev->private;
5684	int new_chunk = mddev->new_chunk_sectors;
5685
5686	if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
5687		return -EINVAL;
5688	if (new_chunk > 0) {
5689		if (!is_power_of_2(new_chunk))
5690			return -EINVAL;
5691		if (new_chunk < (PAGE_SIZE>>9))
5692			return -EINVAL;
5693		if (mddev->array_sectors & (new_chunk-1))
5694			/* not factor of array size */
5695			return -EINVAL;
5696	}
5697
5698	/* They look valid */
5699
5700	if (mddev->raid_disks == 2) {
5701		/* can make the change immediately */
5702		if (mddev->new_layout >= 0) {
5703			conf->algorithm = mddev->new_layout;
5704			mddev->layout = mddev->new_layout;
5705		}
5706		if (new_chunk > 0) {
5707			conf->chunk_sectors = new_chunk ;
5708			mddev->chunk_sectors = new_chunk;
5709		}
5710		set_bit(MD_CHANGE_DEVS, &mddev->flags);
5711		md_wakeup_thread(mddev->thread);
5712	}
5713	return check_reshape(mddev);
5714}
5715
5716static int raid6_check_reshape(mddev_t *mddev)
5717{
5718	int new_chunk = mddev->new_chunk_sectors;
5719
5720	if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
5721		return -EINVAL;
5722	if (new_chunk > 0) {
5723		if (!is_power_of_2(new_chunk))
5724			return -EINVAL;
5725		if (new_chunk < (PAGE_SIZE >> 9))
5726			return -EINVAL;
5727		if (mddev->array_sectors & (new_chunk-1))
5728			/* not factor of array size */
5729			return -EINVAL;
5730	}
5731
5732	/* They look valid */
5733	return check_reshape(mddev);
5734}
5735
5736static void *raid5_takeover(mddev_t *mddev)
5737{
5738	/* raid5 can take over:
5739	 *  raid0 - if all devices are the same - make it a raid4 layout
5740	 *  raid1 - if there are two drives.  We need to know the chunk size
5741	 *  raid4 - trivial - just use a raid4 layout.
5742	 *  raid6 - Providing it is a *_6 layout
5743	 */
5744
5745	if (mddev->level == 1)
5746		return raid5_takeover_raid1(mddev);
5747	if (mddev->level == 4) {
5748		mddev->new_layout = ALGORITHM_PARITY_N;
5749		mddev->new_level = 5;
5750		return setup_conf(mddev);
5751	}
5752	if (mddev->level == 6)
5753		return raid5_takeover_raid6(mddev);
5754
5755	return ERR_PTR(-EINVAL);
5756}
5757
5758
5759static struct mdk_personality raid5_personality;
5760
5761static void *raid6_takeover(mddev_t *mddev)
5762{
5763	/* Currently can only take over a raid5.  We map the
5764	 * personality to an equivalent raid6 personality
5765	 * with the Q block at the end.
5766	 */
5767	int new_layout;
5768
5769	if (mddev->pers != &raid5_personality)
5770		return ERR_PTR(-EINVAL);
5771	if (mddev->degraded > 1)
5772		return ERR_PTR(-EINVAL);
5773	if (mddev->raid_disks > 253)
5774		return ERR_PTR(-EINVAL);
5775	if (mddev->raid_disks < 3)
5776		return ERR_PTR(-EINVAL);
5777
5778	switch (mddev->layout) {
5779	case ALGORITHM_LEFT_ASYMMETRIC:
5780		new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
5781		break;
5782	case ALGORITHM_RIGHT_ASYMMETRIC:
5783		new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
5784		break;
5785	case ALGORITHM_LEFT_SYMMETRIC:
5786		new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
5787		break;
5788	case ALGORITHM_RIGHT_SYMMETRIC:
5789		new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
5790		break;
5791	case ALGORITHM_PARITY_0:
5792		new_layout = ALGORITHM_PARITY_0_6;
5793		break;
5794	case ALGORITHM_PARITY_N:
5795		new_layout = ALGORITHM_PARITY_N;
5796		break;
5797	default:
5798		return ERR_PTR(-EINVAL);
5799	}
5800	mddev->new_level = 6;
5801	mddev->new_layout = new_layout;
5802	mddev->delta_disks = 1;
5803	mddev->raid_disks += 1;
5804	return setup_conf(mddev);
5805}
5806
5807
5808static struct mdk_personality raid6_personality =
5809{
5810	.name		= "raid6",
5811	.level		= 6,
5812	.owner		= THIS_MODULE,
5813	.make_request	= make_request,
5814	.run		= run,
5815	.stop		= stop,
5816	.status		= status,
5817	.error_handler	= error,
5818	.hot_add_disk	= raid5_add_disk,
5819	.hot_remove_disk= raid5_remove_disk,
5820	.spare_active	= raid5_spare_active,
5821	.sync_request	= sync_request,
5822	.resize		= raid5_resize,
5823	.size		= raid5_size,
5824	.check_reshape	= raid6_check_reshape,
5825	.start_reshape  = raid5_start_reshape,
5826	.finish_reshape = raid5_finish_reshape,
5827	.quiesce	= raid5_quiesce,
5828	.takeover	= raid6_takeover,
5829};
5830static struct mdk_personality raid5_personality =
5831{
5832	.name		= "raid5",
5833	.level		= 5,
5834	.owner		= THIS_MODULE,
5835	.make_request	= make_request,
5836	.run		= run,
5837	.stop		= stop,
5838	.status		= status,
5839	.error_handler	= error,
5840	.hot_add_disk	= raid5_add_disk,
5841	.hot_remove_disk= raid5_remove_disk,
5842	.spare_active	= raid5_spare_active,
5843	.sync_request	= sync_request,
5844	.resize		= raid5_resize,
5845	.size		= raid5_size,
5846	.check_reshape	= raid5_check_reshape,
5847	.start_reshape  = raid5_start_reshape,
5848	.finish_reshape = raid5_finish_reshape,
5849	.quiesce	= raid5_quiesce,
5850	.takeover	= raid5_takeover,
5851};
5852
5853static struct mdk_personality raid4_personality =
5854{
5855	.name		= "raid4",
5856	.level		= 4,
5857	.owner		= THIS_MODULE,
5858	.make_request	= make_request,
5859	.run		= run,
5860	.stop		= stop,
5861	.status		= status,
5862	.error_handler	= error,
5863	.hot_add_disk	= raid5_add_disk,
5864	.hot_remove_disk= raid5_remove_disk,
5865	.spare_active	= raid5_spare_active,
5866	.sync_request	= sync_request,
5867	.resize		= raid5_resize,
5868	.size		= raid5_size,
5869	.check_reshape	= raid5_check_reshape,
5870	.start_reshape  = raid5_start_reshape,
5871	.finish_reshape = raid5_finish_reshape,
5872	.quiesce	= raid5_quiesce,
5873};
5874
5875static int __init raid5_init(void)
5876{
5877	register_md_personality(&raid6_personality);
5878	register_md_personality(&raid5_personality);
5879	register_md_personality(&raid4_personality);
5880	return 0;
5881}
5882
5883static void raid5_exit(void)
5884{
5885	unregister_md_personality(&raid6_personality);
5886	unregister_md_personality(&raid5_personality);
5887	unregister_md_personality(&raid4_personality);
5888}
5889
5890module_init(raid5_init);
5891module_exit(raid5_exit);
5892MODULE_LICENSE("GPL");
5893MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
5894MODULE_ALIAS("md-personality-4"); /* RAID5 */
5895MODULE_ALIAS("md-raid5");
5896MODULE_ALIAS("md-raid4");
5897MODULE_ALIAS("md-level-5");
5898MODULE_ALIAS("md-level-4");
5899MODULE_ALIAS("md-personality-8"); /* RAID6 */
5900MODULE_ALIAS("md-raid6");
5901MODULE_ALIAS("md-level-6");
5902
5903/* This used to be two separate modules, they were: */
5904MODULE_ALIAS("raid5");
5905MODULE_ALIAS("raid6");
5906