raid5.c revision 417b8d4ac868cf58d6c68f52d72f7648413e0edc
1/*
2 * raid5.c : Multiple Devices driver for Linux
3 *	   Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4 *	   Copyright (C) 1999, 2000 Ingo Molnar
5 *	   Copyright (C) 2002, 2003 H. Peter Anvin
6 *
7 * RAID-4/5/6 management functions.
8 * Thanks to Penguin Computing for making the RAID-6 development possible
9 * by donating a test server!
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
21/*
22 * BITMAP UNPLUGGING:
23 *
24 * The sequencing for updating the bitmap reliably is a little
25 * subtle (and I got it wrong the first time) so it deserves some
26 * explanation.
27 *
28 * We group bitmap updates into batches.  Each batch has a number.
29 * We may write out several batches at once, but that isn't very important.
30 * conf->bm_write is the number of the last batch successfully written.
31 * conf->bm_flush is the number of the last batch that was closed to
32 *    new additions.
33 * When we discover that we will need to write to any block in a stripe
34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35 * the number of the batch it will be in. This is bm_flush+1.
36 * When we are ready to do a write, if that batch hasn't been written yet,
37 *   we plug the array and queue the stripe for later.
38 * When an unplug happens, we increment bm_flush, thus closing the current
39 *   batch.
40 * When we notice that bm_flush > bm_write, we write out all pending updates
41 * to the bitmap, and advance bm_write to where bm_flush was.
42 * This may occasionally write a bit out twice, but is sure never to
43 * miss any bits.
44 */
45
46#include <linux/blkdev.h>
47#include <linux/kthread.h>
48#include <linux/raid/pq.h>
49#include <linux/async_tx.h>
50#include <linux/async.h>
51#include <linux/seq_file.h>
52#include <linux/cpu.h>
53#include "md.h"
54#include "raid5.h"
55#include "bitmap.h"
56
57/*
58 * Stripe cache
59 */
60
61#define NR_STRIPES		256
62#define STRIPE_SIZE		PAGE_SIZE
63#define STRIPE_SHIFT		(PAGE_SHIFT - 9)
64#define STRIPE_SECTORS		(STRIPE_SIZE>>9)
65#define	IO_THRESHOLD		1
66#define BYPASS_THRESHOLD	1
67#define NR_HASH			(PAGE_SIZE / sizeof(struct hlist_head))
68#define HASH_MASK		(NR_HASH - 1)
69
70#define stripe_hash(conf, sect)	(&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
71
72/* bio's attached to a stripe+device for I/O are linked together in bi_sector
73 * order without overlap.  There may be several bio's per stripe+device, and
74 * a bio could span several devices.
75 * When walking this list for a particular stripe+device, we must never proceed
76 * beyond a bio that extends past this device, as the next bio might no longer
77 * be valid.
78 * This macro is used to determine the 'next' bio in the list, given the sector
79 * of the current stripe+device
80 */
81#define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
82/*
83 * The following can be used to debug the driver
84 */
85#define RAID5_PARANOIA	1
86#if RAID5_PARANOIA && defined(CONFIG_SMP)
87# define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
88#else
89# define CHECK_DEVLOCK()
90#endif
91
92#ifdef DEBUG
93#define inline
94#define __inline__
95#endif
96
97#define printk_rl(args...) ((void) (printk_ratelimit() && printk(args)))
98
99/*
100 * We maintain a biased count of active stripes in the bottom 16 bits of
101 * bi_phys_segments, and a count of processed stripes in the upper 16 bits
102 */
103static inline int raid5_bi_phys_segments(struct bio *bio)
104{
105	return bio->bi_phys_segments & 0xffff;
106}
107
108static inline int raid5_bi_hw_segments(struct bio *bio)
109{
110	return (bio->bi_phys_segments >> 16) & 0xffff;
111}
112
113static inline int raid5_dec_bi_phys_segments(struct bio *bio)
114{
115	--bio->bi_phys_segments;
116	return raid5_bi_phys_segments(bio);
117}
118
119static inline int raid5_dec_bi_hw_segments(struct bio *bio)
120{
121	unsigned short val = raid5_bi_hw_segments(bio);
122
123	--val;
124	bio->bi_phys_segments = (val << 16) | raid5_bi_phys_segments(bio);
125	return val;
126}
127
128static inline void raid5_set_bi_hw_segments(struct bio *bio, unsigned int cnt)
129{
130	bio->bi_phys_segments = raid5_bi_phys_segments(bio) || (cnt << 16);
131}
132
133/* Find first data disk in a raid6 stripe */
134static inline int raid6_d0(struct stripe_head *sh)
135{
136	if (sh->ddf_layout)
137		/* ddf always start from first device */
138		return 0;
139	/* md starts just after Q block */
140	if (sh->qd_idx == sh->disks - 1)
141		return 0;
142	else
143		return sh->qd_idx + 1;
144}
145static inline int raid6_next_disk(int disk, int raid_disks)
146{
147	disk++;
148	return (disk < raid_disks) ? disk : 0;
149}
150
151/* When walking through the disks in a raid5, starting at raid6_d0,
152 * We need to map each disk to a 'slot', where the data disks are slot
153 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
154 * is raid_disks-1.  This help does that mapping.
155 */
156static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
157			     int *count, int syndrome_disks)
158{
159	int slot;
160
161	if (idx == sh->pd_idx)
162		return syndrome_disks;
163	if (idx == sh->qd_idx)
164		return syndrome_disks + 1;
165	slot = (*count)++;
166	return slot;
167}
168
169static void return_io(struct bio *return_bi)
170{
171	struct bio *bi = return_bi;
172	while (bi) {
173
174		return_bi = bi->bi_next;
175		bi->bi_next = NULL;
176		bi->bi_size = 0;
177		bio_endio(bi, 0);
178		bi = return_bi;
179	}
180}
181
182static void print_raid5_conf (raid5_conf_t *conf);
183
184static int stripe_operations_active(struct stripe_head *sh)
185{
186	return sh->check_state || sh->reconstruct_state ||
187	       test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
188	       test_bit(STRIPE_COMPUTE_RUN, &sh->state);
189}
190
191static void __release_stripe(raid5_conf_t *conf, struct stripe_head *sh)
192{
193	if (atomic_dec_and_test(&sh->count)) {
194		BUG_ON(!list_empty(&sh->lru));
195		BUG_ON(atomic_read(&conf->active_stripes)==0);
196		if (test_bit(STRIPE_HANDLE, &sh->state)) {
197			if (test_bit(STRIPE_DELAYED, &sh->state)) {
198				list_add_tail(&sh->lru, &conf->delayed_list);
199				blk_plug_device(conf->mddev->queue);
200			} else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
201				   sh->bm_seq - conf->seq_write > 0) {
202				list_add_tail(&sh->lru, &conf->bitmap_list);
203				blk_plug_device(conf->mddev->queue);
204			} else {
205				clear_bit(STRIPE_BIT_DELAY, &sh->state);
206				list_add_tail(&sh->lru, &conf->handle_list);
207			}
208			md_wakeup_thread(conf->mddev->thread);
209		} else {
210			BUG_ON(stripe_operations_active(sh));
211			if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
212				atomic_dec(&conf->preread_active_stripes);
213				if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
214					md_wakeup_thread(conf->mddev->thread);
215			}
216			atomic_dec(&conf->active_stripes);
217			if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
218				list_add_tail(&sh->lru, &conf->inactive_list);
219				wake_up(&conf->wait_for_stripe);
220				if (conf->retry_read_aligned)
221					md_wakeup_thread(conf->mddev->thread);
222			}
223		}
224	}
225}
226
227static void release_stripe(struct stripe_head *sh)
228{
229	raid5_conf_t *conf = sh->raid_conf;
230	unsigned long flags;
231
232	spin_lock_irqsave(&conf->device_lock, flags);
233	__release_stripe(conf, sh);
234	spin_unlock_irqrestore(&conf->device_lock, flags);
235}
236
237static inline void remove_hash(struct stripe_head *sh)
238{
239	pr_debug("remove_hash(), stripe %llu\n",
240		(unsigned long long)sh->sector);
241
242	hlist_del_init(&sh->hash);
243}
244
245static inline void insert_hash(raid5_conf_t *conf, struct stripe_head *sh)
246{
247	struct hlist_head *hp = stripe_hash(conf, sh->sector);
248
249	pr_debug("insert_hash(), stripe %llu\n",
250		(unsigned long long)sh->sector);
251
252	CHECK_DEVLOCK();
253	hlist_add_head(&sh->hash, hp);
254}
255
256
257/* find an idle stripe, make sure it is unhashed, and return it. */
258static struct stripe_head *get_free_stripe(raid5_conf_t *conf)
259{
260	struct stripe_head *sh = NULL;
261	struct list_head *first;
262
263	CHECK_DEVLOCK();
264	if (list_empty(&conf->inactive_list))
265		goto out;
266	first = conf->inactive_list.next;
267	sh = list_entry(first, struct stripe_head, lru);
268	list_del_init(first);
269	remove_hash(sh);
270	atomic_inc(&conf->active_stripes);
271out:
272	return sh;
273}
274
275static void shrink_buffers(struct stripe_head *sh, int num)
276{
277	struct page *p;
278	int i;
279
280	for (i=0; i<num ; i++) {
281		p = sh->dev[i].page;
282		if (!p)
283			continue;
284		sh->dev[i].page = NULL;
285		put_page(p);
286	}
287}
288
289static int grow_buffers(struct stripe_head *sh, int num)
290{
291	int i;
292
293	for (i=0; i<num; i++) {
294		struct page *page;
295
296		if (!(page = alloc_page(GFP_KERNEL))) {
297			return 1;
298		}
299		sh->dev[i].page = page;
300	}
301	return 0;
302}
303
304static void raid5_build_block(struct stripe_head *sh, int i, int previous);
305static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
306			    struct stripe_head *sh);
307
308static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
309{
310	raid5_conf_t *conf = sh->raid_conf;
311	int i;
312
313	BUG_ON(atomic_read(&sh->count) != 0);
314	BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
315	BUG_ON(stripe_operations_active(sh));
316
317	CHECK_DEVLOCK();
318	pr_debug("init_stripe called, stripe %llu\n",
319		(unsigned long long)sh->sector);
320
321	remove_hash(sh);
322
323	sh->generation = conf->generation - previous;
324	sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
325	sh->sector = sector;
326	stripe_set_idx(sector, conf, previous, sh);
327	sh->state = 0;
328
329
330	for (i = sh->disks; i--; ) {
331		struct r5dev *dev = &sh->dev[i];
332
333		if (dev->toread || dev->read || dev->towrite || dev->written ||
334		    test_bit(R5_LOCKED, &dev->flags)) {
335			printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
336			       (unsigned long long)sh->sector, i, dev->toread,
337			       dev->read, dev->towrite, dev->written,
338			       test_bit(R5_LOCKED, &dev->flags));
339			BUG();
340		}
341		dev->flags = 0;
342		raid5_build_block(sh, i, previous);
343	}
344	insert_hash(conf, sh);
345}
346
347static struct stripe_head *__find_stripe(raid5_conf_t *conf, sector_t sector,
348					 short generation)
349{
350	struct stripe_head *sh;
351	struct hlist_node *hn;
352
353	CHECK_DEVLOCK();
354	pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
355	hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
356		if (sh->sector == sector && sh->generation == generation)
357			return sh;
358	pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
359	return NULL;
360}
361
362static void unplug_slaves(mddev_t *mddev);
363static void raid5_unplug_device(struct request_queue *q);
364
365static struct stripe_head *
366get_active_stripe(raid5_conf_t *conf, sector_t sector,
367		  int previous, int noblock, int noquiesce)
368{
369	struct stripe_head *sh;
370
371	pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
372
373	spin_lock_irq(&conf->device_lock);
374
375	do {
376		wait_event_lock_irq(conf->wait_for_stripe,
377				    conf->quiesce == 0 || noquiesce,
378				    conf->device_lock, /* nothing */);
379		sh = __find_stripe(conf, sector, conf->generation - previous);
380		if (!sh) {
381			if (!conf->inactive_blocked)
382				sh = get_free_stripe(conf);
383			if (noblock && sh == NULL)
384				break;
385			if (!sh) {
386				conf->inactive_blocked = 1;
387				wait_event_lock_irq(conf->wait_for_stripe,
388						    !list_empty(&conf->inactive_list) &&
389						    (atomic_read(&conf->active_stripes)
390						     < (conf->max_nr_stripes *3/4)
391						     || !conf->inactive_blocked),
392						    conf->device_lock,
393						    raid5_unplug_device(conf->mddev->queue)
394					);
395				conf->inactive_blocked = 0;
396			} else
397				init_stripe(sh, sector, previous);
398		} else {
399			if (atomic_read(&sh->count)) {
400				BUG_ON(!list_empty(&sh->lru)
401				    && !test_bit(STRIPE_EXPANDING, &sh->state));
402			} else {
403				if (!test_bit(STRIPE_HANDLE, &sh->state))
404					atomic_inc(&conf->active_stripes);
405				if (list_empty(&sh->lru) &&
406				    !test_bit(STRIPE_EXPANDING, &sh->state))
407					BUG();
408				list_del_init(&sh->lru);
409			}
410		}
411	} while (sh == NULL);
412
413	if (sh)
414		atomic_inc(&sh->count);
415
416	spin_unlock_irq(&conf->device_lock);
417	return sh;
418}
419
420static void
421raid5_end_read_request(struct bio *bi, int error);
422static void
423raid5_end_write_request(struct bio *bi, int error);
424
425static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
426{
427	raid5_conf_t *conf = sh->raid_conf;
428	int i, disks = sh->disks;
429
430	might_sleep();
431
432	for (i = disks; i--; ) {
433		int rw;
434		struct bio *bi;
435		mdk_rdev_t *rdev;
436		if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags))
437			rw = WRITE;
438		else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
439			rw = READ;
440		else
441			continue;
442
443		bi = &sh->dev[i].req;
444
445		bi->bi_rw = rw;
446		if (rw == WRITE)
447			bi->bi_end_io = raid5_end_write_request;
448		else
449			bi->bi_end_io = raid5_end_read_request;
450
451		rcu_read_lock();
452		rdev = rcu_dereference(conf->disks[i].rdev);
453		if (rdev && test_bit(Faulty, &rdev->flags))
454			rdev = NULL;
455		if (rdev)
456			atomic_inc(&rdev->nr_pending);
457		rcu_read_unlock();
458
459		if (rdev) {
460			if (s->syncing || s->expanding || s->expanded)
461				md_sync_acct(rdev->bdev, STRIPE_SECTORS);
462
463			set_bit(STRIPE_IO_STARTED, &sh->state);
464
465			bi->bi_bdev = rdev->bdev;
466			pr_debug("%s: for %llu schedule op %ld on disc %d\n",
467				__func__, (unsigned long long)sh->sector,
468				bi->bi_rw, i);
469			atomic_inc(&sh->count);
470			bi->bi_sector = sh->sector + rdev->data_offset;
471			bi->bi_flags = 1 << BIO_UPTODATE;
472			bi->bi_vcnt = 1;
473			bi->bi_max_vecs = 1;
474			bi->bi_idx = 0;
475			bi->bi_io_vec = &sh->dev[i].vec;
476			bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
477			bi->bi_io_vec[0].bv_offset = 0;
478			bi->bi_size = STRIPE_SIZE;
479			bi->bi_next = NULL;
480			if (rw == WRITE &&
481			    test_bit(R5_ReWrite, &sh->dev[i].flags))
482				atomic_add(STRIPE_SECTORS,
483					&rdev->corrected_errors);
484			generic_make_request(bi);
485		} else {
486			if (rw == WRITE)
487				set_bit(STRIPE_DEGRADED, &sh->state);
488			pr_debug("skip op %ld on disc %d for sector %llu\n",
489				bi->bi_rw, i, (unsigned long long)sh->sector);
490			clear_bit(R5_LOCKED, &sh->dev[i].flags);
491			set_bit(STRIPE_HANDLE, &sh->state);
492		}
493	}
494}
495
496static struct dma_async_tx_descriptor *
497async_copy_data(int frombio, struct bio *bio, struct page *page,
498	sector_t sector, struct dma_async_tx_descriptor *tx)
499{
500	struct bio_vec *bvl;
501	struct page *bio_page;
502	int i;
503	int page_offset;
504	struct async_submit_ctl submit;
505	enum async_tx_flags flags = 0;
506
507	if (bio->bi_sector >= sector)
508		page_offset = (signed)(bio->bi_sector - sector) * 512;
509	else
510		page_offset = (signed)(sector - bio->bi_sector) * -512;
511
512	if (frombio)
513		flags |= ASYNC_TX_FENCE;
514	init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
515
516	bio_for_each_segment(bvl, bio, i) {
517		int len = bio_iovec_idx(bio, i)->bv_len;
518		int clen;
519		int b_offset = 0;
520
521		if (page_offset < 0) {
522			b_offset = -page_offset;
523			page_offset += b_offset;
524			len -= b_offset;
525		}
526
527		if (len > 0 && page_offset + len > STRIPE_SIZE)
528			clen = STRIPE_SIZE - page_offset;
529		else
530			clen = len;
531
532		if (clen > 0) {
533			b_offset += bio_iovec_idx(bio, i)->bv_offset;
534			bio_page = bio_iovec_idx(bio, i)->bv_page;
535			if (frombio)
536				tx = async_memcpy(page, bio_page, page_offset,
537						  b_offset, clen, &submit);
538			else
539				tx = async_memcpy(bio_page, page, b_offset,
540						  page_offset, clen, &submit);
541		}
542		/* chain the operations */
543		submit.depend_tx = tx;
544
545		if (clen < len) /* hit end of page */
546			break;
547		page_offset +=  len;
548	}
549
550	return tx;
551}
552
553static void ops_complete_biofill(void *stripe_head_ref)
554{
555	struct stripe_head *sh = stripe_head_ref;
556	struct bio *return_bi = NULL;
557	raid5_conf_t *conf = sh->raid_conf;
558	int i;
559
560	pr_debug("%s: stripe %llu\n", __func__,
561		(unsigned long long)sh->sector);
562
563	/* clear completed biofills */
564	spin_lock_irq(&conf->device_lock);
565	for (i = sh->disks; i--; ) {
566		struct r5dev *dev = &sh->dev[i];
567
568		/* acknowledge completion of a biofill operation */
569		/* and check if we need to reply to a read request,
570		 * new R5_Wantfill requests are held off until
571		 * !STRIPE_BIOFILL_RUN
572		 */
573		if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
574			struct bio *rbi, *rbi2;
575
576			BUG_ON(!dev->read);
577			rbi = dev->read;
578			dev->read = NULL;
579			while (rbi && rbi->bi_sector <
580				dev->sector + STRIPE_SECTORS) {
581				rbi2 = r5_next_bio(rbi, dev->sector);
582				if (!raid5_dec_bi_phys_segments(rbi)) {
583					rbi->bi_next = return_bi;
584					return_bi = rbi;
585				}
586				rbi = rbi2;
587			}
588		}
589	}
590	spin_unlock_irq(&conf->device_lock);
591	clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
592
593	return_io(return_bi);
594
595	set_bit(STRIPE_HANDLE, &sh->state);
596	release_stripe(sh);
597}
598
599static void ops_run_biofill(struct stripe_head *sh)
600{
601	struct dma_async_tx_descriptor *tx = NULL;
602	raid5_conf_t *conf = sh->raid_conf;
603	struct async_submit_ctl submit;
604	int i;
605
606	pr_debug("%s: stripe %llu\n", __func__,
607		(unsigned long long)sh->sector);
608
609	for (i = sh->disks; i--; ) {
610		struct r5dev *dev = &sh->dev[i];
611		if (test_bit(R5_Wantfill, &dev->flags)) {
612			struct bio *rbi;
613			spin_lock_irq(&conf->device_lock);
614			dev->read = rbi = dev->toread;
615			dev->toread = NULL;
616			spin_unlock_irq(&conf->device_lock);
617			while (rbi && rbi->bi_sector <
618				dev->sector + STRIPE_SECTORS) {
619				tx = async_copy_data(0, rbi, dev->page,
620					dev->sector, tx);
621				rbi = r5_next_bio(rbi, dev->sector);
622			}
623		}
624	}
625
626	atomic_inc(&sh->count);
627	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
628	async_trigger_callback(&submit);
629}
630
631static void mark_target_uptodate(struct stripe_head *sh, int target)
632{
633	struct r5dev *tgt;
634
635	if (target < 0)
636		return;
637
638	tgt = &sh->dev[target];
639	set_bit(R5_UPTODATE, &tgt->flags);
640	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
641	clear_bit(R5_Wantcompute, &tgt->flags);
642}
643
644static void ops_complete_compute(void *stripe_head_ref)
645{
646	struct stripe_head *sh = stripe_head_ref;
647
648	pr_debug("%s: stripe %llu\n", __func__,
649		(unsigned long long)sh->sector);
650
651	/* mark the computed target(s) as uptodate */
652	mark_target_uptodate(sh, sh->ops.target);
653	mark_target_uptodate(sh, sh->ops.target2);
654
655	clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
656	if (sh->check_state == check_state_compute_run)
657		sh->check_state = check_state_compute_result;
658	set_bit(STRIPE_HANDLE, &sh->state);
659	release_stripe(sh);
660}
661
662/* return a pointer to the address conversion region of the scribble buffer */
663static addr_conv_t *to_addr_conv(struct stripe_head *sh,
664				 struct raid5_percpu *percpu)
665{
666	return percpu->scribble + sizeof(struct page *) * (sh->disks + 2);
667}
668
669static struct dma_async_tx_descriptor *
670ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
671{
672	int disks = sh->disks;
673	struct page **xor_srcs = percpu->scribble;
674	int target = sh->ops.target;
675	struct r5dev *tgt = &sh->dev[target];
676	struct page *xor_dest = tgt->page;
677	int count = 0;
678	struct dma_async_tx_descriptor *tx;
679	struct async_submit_ctl submit;
680	int i;
681
682	pr_debug("%s: stripe %llu block: %d\n",
683		__func__, (unsigned long long)sh->sector, target);
684	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
685
686	for (i = disks; i--; )
687		if (i != target)
688			xor_srcs[count++] = sh->dev[i].page;
689
690	atomic_inc(&sh->count);
691
692	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
693			  ops_complete_compute, sh, to_addr_conv(sh, percpu));
694	if (unlikely(count == 1))
695		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
696	else
697		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
698
699	return tx;
700}
701
702/* set_syndrome_sources - populate source buffers for gen_syndrome
703 * @srcs - (struct page *) array of size sh->disks
704 * @sh - stripe_head to parse
705 *
706 * Populates srcs in proper layout order for the stripe and returns the
707 * 'count' of sources to be used in a call to async_gen_syndrome.  The P
708 * destination buffer is recorded in srcs[count] and the Q destination
709 * is recorded in srcs[count+1]].
710 */
711static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh)
712{
713	int disks = sh->disks;
714	int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
715	int d0_idx = raid6_d0(sh);
716	int count;
717	int i;
718
719	for (i = 0; i < disks; i++)
720		srcs[i] = (void *)raid6_empty_zero_page;
721
722	count = 0;
723	i = d0_idx;
724	do {
725		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
726
727		srcs[slot] = sh->dev[i].page;
728		i = raid6_next_disk(i, disks);
729	} while (i != d0_idx);
730	BUG_ON(count != syndrome_disks);
731
732	return count;
733}
734
735static struct dma_async_tx_descriptor *
736ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
737{
738	int disks = sh->disks;
739	struct page **blocks = percpu->scribble;
740	int target;
741	int qd_idx = sh->qd_idx;
742	struct dma_async_tx_descriptor *tx;
743	struct async_submit_ctl submit;
744	struct r5dev *tgt;
745	struct page *dest;
746	int i;
747	int count;
748
749	if (sh->ops.target < 0)
750		target = sh->ops.target2;
751	else if (sh->ops.target2 < 0)
752		target = sh->ops.target;
753	else
754		/* we should only have one valid target */
755		BUG();
756	BUG_ON(target < 0);
757	pr_debug("%s: stripe %llu block: %d\n",
758		__func__, (unsigned long long)sh->sector, target);
759
760	tgt = &sh->dev[target];
761	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
762	dest = tgt->page;
763
764	atomic_inc(&sh->count);
765
766	if (target == qd_idx) {
767		count = set_syndrome_sources(blocks, sh);
768		blocks[count] = NULL; /* regenerating p is not necessary */
769		BUG_ON(blocks[count+1] != dest); /* q should already be set */
770		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
771				  ops_complete_compute, sh,
772				  to_addr_conv(sh, percpu));
773		tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
774	} else {
775		/* Compute any data- or p-drive using XOR */
776		count = 0;
777		for (i = disks; i-- ; ) {
778			if (i == target || i == qd_idx)
779				continue;
780			blocks[count++] = sh->dev[i].page;
781		}
782
783		init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
784				  NULL, ops_complete_compute, sh,
785				  to_addr_conv(sh, percpu));
786		tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
787	}
788
789	return tx;
790}
791
792static struct dma_async_tx_descriptor *
793ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
794{
795	int i, count, disks = sh->disks;
796	int syndrome_disks = sh->ddf_layout ? disks : disks-2;
797	int d0_idx = raid6_d0(sh);
798	int faila = -1, failb = -1;
799	int target = sh->ops.target;
800	int target2 = sh->ops.target2;
801	struct r5dev *tgt = &sh->dev[target];
802	struct r5dev *tgt2 = &sh->dev[target2];
803	struct dma_async_tx_descriptor *tx;
804	struct page **blocks = percpu->scribble;
805	struct async_submit_ctl submit;
806
807	pr_debug("%s: stripe %llu block1: %d block2: %d\n",
808		 __func__, (unsigned long long)sh->sector, target, target2);
809	BUG_ON(target < 0 || target2 < 0);
810	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
811	BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
812
813	/* we need to open-code set_syndrome_sources to handle the
814	 * slot number conversion for 'faila' and 'failb'
815	 */
816	for (i = 0; i < disks ; i++)
817		blocks[i] = (void *)raid6_empty_zero_page;
818	count = 0;
819	i = d0_idx;
820	do {
821		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
822
823		blocks[slot] = sh->dev[i].page;
824
825		if (i == target)
826			faila = slot;
827		if (i == target2)
828			failb = slot;
829		i = raid6_next_disk(i, disks);
830	} while (i != d0_idx);
831	BUG_ON(count != syndrome_disks);
832
833	BUG_ON(faila == failb);
834	if (failb < faila)
835		swap(faila, failb);
836	pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
837		 __func__, (unsigned long long)sh->sector, faila, failb);
838
839	atomic_inc(&sh->count);
840
841	if (failb == syndrome_disks+1) {
842		/* Q disk is one of the missing disks */
843		if (faila == syndrome_disks) {
844			/* Missing P+Q, just recompute */
845			init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
846					  ops_complete_compute, sh,
847					  to_addr_conv(sh, percpu));
848			return async_gen_syndrome(blocks, 0, count+2,
849						  STRIPE_SIZE, &submit);
850		} else {
851			struct page *dest;
852			int data_target;
853			int qd_idx = sh->qd_idx;
854
855			/* Missing D+Q: recompute D from P, then recompute Q */
856			if (target == qd_idx)
857				data_target = target2;
858			else
859				data_target = target;
860
861			count = 0;
862			for (i = disks; i-- ; ) {
863				if (i == data_target || i == qd_idx)
864					continue;
865				blocks[count++] = sh->dev[i].page;
866			}
867			dest = sh->dev[data_target].page;
868			init_async_submit(&submit,
869					  ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
870					  NULL, NULL, NULL,
871					  to_addr_conv(sh, percpu));
872			tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
873				       &submit);
874
875			count = set_syndrome_sources(blocks, sh);
876			init_async_submit(&submit, ASYNC_TX_FENCE, tx,
877					  ops_complete_compute, sh,
878					  to_addr_conv(sh, percpu));
879			return async_gen_syndrome(blocks, 0, count+2,
880						  STRIPE_SIZE, &submit);
881		}
882	} else {
883		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
884				  ops_complete_compute, sh,
885				  to_addr_conv(sh, percpu));
886		if (failb == syndrome_disks) {
887			/* We're missing D+P. */
888			return async_raid6_datap_recov(syndrome_disks+2,
889						       STRIPE_SIZE, faila,
890						       blocks, &submit);
891		} else {
892			/* We're missing D+D. */
893			return async_raid6_2data_recov(syndrome_disks+2,
894						       STRIPE_SIZE, faila, failb,
895						       blocks, &submit);
896		}
897	}
898}
899
900
901static void ops_complete_prexor(void *stripe_head_ref)
902{
903	struct stripe_head *sh = stripe_head_ref;
904
905	pr_debug("%s: stripe %llu\n", __func__,
906		(unsigned long long)sh->sector);
907}
908
909static struct dma_async_tx_descriptor *
910ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
911	       struct dma_async_tx_descriptor *tx)
912{
913	int disks = sh->disks;
914	struct page **xor_srcs = percpu->scribble;
915	int count = 0, pd_idx = sh->pd_idx, i;
916	struct async_submit_ctl submit;
917
918	/* existing parity data subtracted */
919	struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
920
921	pr_debug("%s: stripe %llu\n", __func__,
922		(unsigned long long)sh->sector);
923
924	for (i = disks; i--; ) {
925		struct r5dev *dev = &sh->dev[i];
926		/* Only process blocks that are known to be uptodate */
927		if (test_bit(R5_Wantdrain, &dev->flags))
928			xor_srcs[count++] = dev->page;
929	}
930
931	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
932			  ops_complete_prexor, sh, to_addr_conv(sh, percpu));
933	tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
934
935	return tx;
936}
937
938static struct dma_async_tx_descriptor *
939ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
940{
941	int disks = sh->disks;
942	int i;
943
944	pr_debug("%s: stripe %llu\n", __func__,
945		(unsigned long long)sh->sector);
946
947	for (i = disks; i--; ) {
948		struct r5dev *dev = &sh->dev[i];
949		struct bio *chosen;
950
951		if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
952			struct bio *wbi;
953
954			spin_lock(&sh->lock);
955			chosen = dev->towrite;
956			dev->towrite = NULL;
957			BUG_ON(dev->written);
958			wbi = dev->written = chosen;
959			spin_unlock(&sh->lock);
960
961			while (wbi && wbi->bi_sector <
962				dev->sector + STRIPE_SECTORS) {
963				tx = async_copy_data(1, wbi, dev->page,
964					dev->sector, tx);
965				wbi = r5_next_bio(wbi, dev->sector);
966			}
967		}
968	}
969
970	return tx;
971}
972
973static void ops_complete_reconstruct(void *stripe_head_ref)
974{
975	struct stripe_head *sh = stripe_head_ref;
976	int disks = sh->disks;
977	int pd_idx = sh->pd_idx;
978	int qd_idx = sh->qd_idx;
979	int i;
980
981	pr_debug("%s: stripe %llu\n", __func__,
982		(unsigned long long)sh->sector);
983
984	for (i = disks; i--; ) {
985		struct r5dev *dev = &sh->dev[i];
986
987		if (dev->written || i == pd_idx || i == qd_idx)
988			set_bit(R5_UPTODATE, &dev->flags);
989	}
990
991	if (sh->reconstruct_state == reconstruct_state_drain_run)
992		sh->reconstruct_state = reconstruct_state_drain_result;
993	else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
994		sh->reconstruct_state = reconstruct_state_prexor_drain_result;
995	else {
996		BUG_ON(sh->reconstruct_state != reconstruct_state_run);
997		sh->reconstruct_state = reconstruct_state_result;
998	}
999
1000	set_bit(STRIPE_HANDLE, &sh->state);
1001	release_stripe(sh);
1002}
1003
1004static void
1005ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1006		     struct dma_async_tx_descriptor *tx)
1007{
1008	int disks = sh->disks;
1009	struct page **xor_srcs = percpu->scribble;
1010	struct async_submit_ctl submit;
1011	int count = 0, pd_idx = sh->pd_idx, i;
1012	struct page *xor_dest;
1013	int prexor = 0;
1014	unsigned long flags;
1015
1016	pr_debug("%s: stripe %llu\n", __func__,
1017		(unsigned long long)sh->sector);
1018
1019	/* check if prexor is active which means only process blocks
1020	 * that are part of a read-modify-write (written)
1021	 */
1022	if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1023		prexor = 1;
1024		xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1025		for (i = disks; i--; ) {
1026			struct r5dev *dev = &sh->dev[i];
1027			if (dev->written)
1028				xor_srcs[count++] = dev->page;
1029		}
1030	} else {
1031		xor_dest = sh->dev[pd_idx].page;
1032		for (i = disks; i--; ) {
1033			struct r5dev *dev = &sh->dev[i];
1034			if (i != pd_idx)
1035				xor_srcs[count++] = dev->page;
1036		}
1037	}
1038
1039	/* 1/ if we prexor'd then the dest is reused as a source
1040	 * 2/ if we did not prexor then we are redoing the parity
1041	 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1042	 * for the synchronous xor case
1043	 */
1044	flags = ASYNC_TX_ACK |
1045		(prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1046
1047	atomic_inc(&sh->count);
1048
1049	init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh,
1050			  to_addr_conv(sh, percpu));
1051	if (unlikely(count == 1))
1052		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1053	else
1054		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1055}
1056
1057static void
1058ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1059		     struct dma_async_tx_descriptor *tx)
1060{
1061	struct async_submit_ctl submit;
1062	struct page **blocks = percpu->scribble;
1063	int count;
1064
1065	pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1066
1067	count = set_syndrome_sources(blocks, sh);
1068
1069	atomic_inc(&sh->count);
1070
1071	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct,
1072			  sh, to_addr_conv(sh, percpu));
1073	async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1074}
1075
1076static void ops_complete_check(void *stripe_head_ref)
1077{
1078	struct stripe_head *sh = stripe_head_ref;
1079
1080	pr_debug("%s: stripe %llu\n", __func__,
1081		(unsigned long long)sh->sector);
1082
1083	sh->check_state = check_state_check_result;
1084	set_bit(STRIPE_HANDLE, &sh->state);
1085	release_stripe(sh);
1086}
1087
1088static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1089{
1090	int disks = sh->disks;
1091	int pd_idx = sh->pd_idx;
1092	int qd_idx = sh->qd_idx;
1093	struct page *xor_dest;
1094	struct page **xor_srcs = percpu->scribble;
1095	struct dma_async_tx_descriptor *tx;
1096	struct async_submit_ctl submit;
1097	int count;
1098	int i;
1099
1100	pr_debug("%s: stripe %llu\n", __func__,
1101		(unsigned long long)sh->sector);
1102
1103	count = 0;
1104	xor_dest = sh->dev[pd_idx].page;
1105	xor_srcs[count++] = xor_dest;
1106	for (i = disks; i--; ) {
1107		if (i == pd_idx || i == qd_idx)
1108			continue;
1109		xor_srcs[count++] = sh->dev[i].page;
1110	}
1111
1112	init_async_submit(&submit, 0, NULL, NULL, NULL,
1113			  to_addr_conv(sh, percpu));
1114	tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1115			   &sh->ops.zero_sum_result, &submit);
1116
1117	atomic_inc(&sh->count);
1118	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1119	tx = async_trigger_callback(&submit);
1120}
1121
1122static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1123{
1124	struct page **srcs = percpu->scribble;
1125	struct async_submit_ctl submit;
1126	int count;
1127
1128	pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1129		(unsigned long long)sh->sector, checkp);
1130
1131	count = set_syndrome_sources(srcs, sh);
1132	if (!checkp)
1133		srcs[count] = NULL;
1134
1135	atomic_inc(&sh->count);
1136	init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1137			  sh, to_addr_conv(sh, percpu));
1138	async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1139			   &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1140}
1141
1142static void __raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1143{
1144	int overlap_clear = 0, i, disks = sh->disks;
1145	struct dma_async_tx_descriptor *tx = NULL;
1146	raid5_conf_t *conf = sh->raid_conf;
1147	int level = conf->level;
1148	struct raid5_percpu *percpu;
1149	unsigned long cpu;
1150
1151	cpu = get_cpu();
1152	percpu = per_cpu_ptr(conf->percpu, cpu);
1153	if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1154		ops_run_biofill(sh);
1155		overlap_clear++;
1156	}
1157
1158	if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1159		if (level < 6)
1160			tx = ops_run_compute5(sh, percpu);
1161		else {
1162			if (sh->ops.target2 < 0 || sh->ops.target < 0)
1163				tx = ops_run_compute6_1(sh, percpu);
1164			else
1165				tx = ops_run_compute6_2(sh, percpu);
1166		}
1167		/* terminate the chain if reconstruct is not set to be run */
1168		if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1169			async_tx_ack(tx);
1170	}
1171
1172	if (test_bit(STRIPE_OP_PREXOR, &ops_request))
1173		tx = ops_run_prexor(sh, percpu, tx);
1174
1175	if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1176		tx = ops_run_biodrain(sh, tx);
1177		overlap_clear++;
1178	}
1179
1180	if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1181		if (level < 6)
1182			ops_run_reconstruct5(sh, percpu, tx);
1183		else
1184			ops_run_reconstruct6(sh, percpu, tx);
1185	}
1186
1187	if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1188		if (sh->check_state == check_state_run)
1189			ops_run_check_p(sh, percpu);
1190		else if (sh->check_state == check_state_run_q)
1191			ops_run_check_pq(sh, percpu, 0);
1192		else if (sh->check_state == check_state_run_pq)
1193			ops_run_check_pq(sh, percpu, 1);
1194		else
1195			BUG();
1196	}
1197
1198	if (overlap_clear)
1199		for (i = disks; i--; ) {
1200			struct r5dev *dev = &sh->dev[i];
1201			if (test_and_clear_bit(R5_Overlap, &dev->flags))
1202				wake_up(&sh->raid_conf->wait_for_overlap);
1203		}
1204	put_cpu();
1205}
1206
1207#ifdef CONFIG_MULTICORE_RAID456
1208static void async_run_ops(void *param, async_cookie_t cookie)
1209{
1210	struct stripe_head *sh = param;
1211	unsigned long ops_request = sh->ops.request;
1212
1213	clear_bit_unlock(STRIPE_OPS_REQ_PENDING, &sh->state);
1214	wake_up(&sh->ops.wait_for_ops);
1215
1216	__raid_run_ops(sh, ops_request);
1217	release_stripe(sh);
1218}
1219
1220static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1221{
1222	/* since handle_stripe can be called outside of raid5d context
1223	 * we need to ensure sh->ops.request is de-staged before another
1224	 * request arrives
1225	 */
1226	wait_event(sh->ops.wait_for_ops,
1227		   !test_and_set_bit_lock(STRIPE_OPS_REQ_PENDING, &sh->state));
1228	sh->ops.request = ops_request;
1229
1230	atomic_inc(&sh->count);
1231	async_schedule(async_run_ops, sh);
1232}
1233#else
1234#define raid_run_ops __raid_run_ops
1235#endif
1236
1237static int grow_one_stripe(raid5_conf_t *conf)
1238{
1239	struct stripe_head *sh;
1240	sh = kmem_cache_alloc(conf->slab_cache, GFP_KERNEL);
1241	if (!sh)
1242		return 0;
1243	memset(sh, 0, sizeof(*sh) + (conf->raid_disks-1)*sizeof(struct r5dev));
1244	sh->raid_conf = conf;
1245	spin_lock_init(&sh->lock);
1246	#ifdef CONFIG_MULTICORE_RAID456
1247	init_waitqueue_head(&sh->ops.wait_for_ops);
1248	#endif
1249
1250	if (grow_buffers(sh, conf->raid_disks)) {
1251		shrink_buffers(sh, conf->raid_disks);
1252		kmem_cache_free(conf->slab_cache, sh);
1253		return 0;
1254	}
1255	sh->disks = conf->raid_disks;
1256	/* we just created an active stripe so... */
1257	atomic_set(&sh->count, 1);
1258	atomic_inc(&conf->active_stripes);
1259	INIT_LIST_HEAD(&sh->lru);
1260	release_stripe(sh);
1261	return 1;
1262}
1263
1264static int grow_stripes(raid5_conf_t *conf, int num)
1265{
1266	struct kmem_cache *sc;
1267	int devs = conf->raid_disks;
1268
1269	sprintf(conf->cache_name[0],
1270		"raid%d-%s", conf->level, mdname(conf->mddev));
1271	sprintf(conf->cache_name[1],
1272		"raid%d-%s-alt", conf->level, mdname(conf->mddev));
1273	conf->active_name = 0;
1274	sc = kmem_cache_create(conf->cache_name[conf->active_name],
1275			       sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
1276			       0, 0, NULL);
1277	if (!sc)
1278		return 1;
1279	conf->slab_cache = sc;
1280	conf->pool_size = devs;
1281	while (num--)
1282		if (!grow_one_stripe(conf))
1283			return 1;
1284	return 0;
1285}
1286
1287/**
1288 * scribble_len - return the required size of the scribble region
1289 * @num - total number of disks in the array
1290 *
1291 * The size must be enough to contain:
1292 * 1/ a struct page pointer for each device in the array +2
1293 * 2/ room to convert each entry in (1) to its corresponding dma
1294 *    (dma_map_page()) or page (page_address()) address.
1295 *
1296 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
1297 * calculate over all devices (not just the data blocks), using zeros in place
1298 * of the P and Q blocks.
1299 */
1300static size_t scribble_len(int num)
1301{
1302	size_t len;
1303
1304	len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
1305
1306	return len;
1307}
1308
1309static int resize_stripes(raid5_conf_t *conf, int newsize)
1310{
1311	/* Make all the stripes able to hold 'newsize' devices.
1312	 * New slots in each stripe get 'page' set to a new page.
1313	 *
1314	 * This happens in stages:
1315	 * 1/ create a new kmem_cache and allocate the required number of
1316	 *    stripe_heads.
1317	 * 2/ gather all the old stripe_heads and tranfer the pages across
1318	 *    to the new stripe_heads.  This will have the side effect of
1319	 *    freezing the array as once all stripe_heads have been collected,
1320	 *    no IO will be possible.  Old stripe heads are freed once their
1321	 *    pages have been transferred over, and the old kmem_cache is
1322	 *    freed when all stripes are done.
1323	 * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
1324	 *    we simple return a failre status - no need to clean anything up.
1325	 * 4/ allocate new pages for the new slots in the new stripe_heads.
1326	 *    If this fails, we don't bother trying the shrink the
1327	 *    stripe_heads down again, we just leave them as they are.
1328	 *    As each stripe_head is processed the new one is released into
1329	 *    active service.
1330	 *
1331	 * Once step2 is started, we cannot afford to wait for a write,
1332	 * so we use GFP_NOIO allocations.
1333	 */
1334	struct stripe_head *osh, *nsh;
1335	LIST_HEAD(newstripes);
1336	struct disk_info *ndisks;
1337	unsigned long cpu;
1338	int err;
1339	struct kmem_cache *sc;
1340	int i;
1341
1342	if (newsize <= conf->pool_size)
1343		return 0; /* never bother to shrink */
1344
1345	err = md_allow_write(conf->mddev);
1346	if (err)
1347		return err;
1348
1349	/* Step 1 */
1350	sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
1351			       sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
1352			       0, 0, NULL);
1353	if (!sc)
1354		return -ENOMEM;
1355
1356	for (i = conf->max_nr_stripes; i; i--) {
1357		nsh = kmem_cache_alloc(sc, GFP_KERNEL);
1358		if (!nsh)
1359			break;
1360
1361		memset(nsh, 0, sizeof(*nsh) + (newsize-1)*sizeof(struct r5dev));
1362
1363		nsh->raid_conf = conf;
1364		spin_lock_init(&nsh->lock);
1365		#ifdef CONFIG_MULTICORE_RAID456
1366		init_waitqueue_head(&nsh->ops.wait_for_ops);
1367		#endif
1368
1369		list_add(&nsh->lru, &newstripes);
1370	}
1371	if (i) {
1372		/* didn't get enough, give up */
1373		while (!list_empty(&newstripes)) {
1374			nsh = list_entry(newstripes.next, struct stripe_head, lru);
1375			list_del(&nsh->lru);
1376			kmem_cache_free(sc, nsh);
1377		}
1378		kmem_cache_destroy(sc);
1379		return -ENOMEM;
1380	}
1381	/* Step 2 - Must use GFP_NOIO now.
1382	 * OK, we have enough stripes, start collecting inactive
1383	 * stripes and copying them over
1384	 */
1385	list_for_each_entry(nsh, &newstripes, lru) {
1386		spin_lock_irq(&conf->device_lock);
1387		wait_event_lock_irq(conf->wait_for_stripe,
1388				    !list_empty(&conf->inactive_list),
1389				    conf->device_lock,
1390				    unplug_slaves(conf->mddev)
1391			);
1392		osh = get_free_stripe(conf);
1393		spin_unlock_irq(&conf->device_lock);
1394		atomic_set(&nsh->count, 1);
1395		for(i=0; i<conf->pool_size; i++)
1396			nsh->dev[i].page = osh->dev[i].page;
1397		for( ; i<newsize; i++)
1398			nsh->dev[i].page = NULL;
1399		kmem_cache_free(conf->slab_cache, osh);
1400	}
1401	kmem_cache_destroy(conf->slab_cache);
1402
1403	/* Step 3.
1404	 * At this point, we are holding all the stripes so the array
1405	 * is completely stalled, so now is a good time to resize
1406	 * conf->disks and the scribble region
1407	 */
1408	ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1409	if (ndisks) {
1410		for (i=0; i<conf->raid_disks; i++)
1411			ndisks[i] = conf->disks[i];
1412		kfree(conf->disks);
1413		conf->disks = ndisks;
1414	} else
1415		err = -ENOMEM;
1416
1417	get_online_cpus();
1418	conf->scribble_len = scribble_len(newsize);
1419	for_each_present_cpu(cpu) {
1420		struct raid5_percpu *percpu;
1421		void *scribble;
1422
1423		percpu = per_cpu_ptr(conf->percpu, cpu);
1424		scribble = kmalloc(conf->scribble_len, GFP_NOIO);
1425
1426		if (scribble) {
1427			kfree(percpu->scribble);
1428			percpu->scribble = scribble;
1429		} else {
1430			err = -ENOMEM;
1431			break;
1432		}
1433	}
1434	put_online_cpus();
1435
1436	/* Step 4, return new stripes to service */
1437	while(!list_empty(&newstripes)) {
1438		nsh = list_entry(newstripes.next, struct stripe_head, lru);
1439		list_del_init(&nsh->lru);
1440
1441		for (i=conf->raid_disks; i < newsize; i++)
1442			if (nsh->dev[i].page == NULL) {
1443				struct page *p = alloc_page(GFP_NOIO);
1444				nsh->dev[i].page = p;
1445				if (!p)
1446					err = -ENOMEM;
1447			}
1448		release_stripe(nsh);
1449	}
1450	/* critical section pass, GFP_NOIO no longer needed */
1451
1452	conf->slab_cache = sc;
1453	conf->active_name = 1-conf->active_name;
1454	conf->pool_size = newsize;
1455	return err;
1456}
1457
1458static int drop_one_stripe(raid5_conf_t *conf)
1459{
1460	struct stripe_head *sh;
1461
1462	spin_lock_irq(&conf->device_lock);
1463	sh = get_free_stripe(conf);
1464	spin_unlock_irq(&conf->device_lock);
1465	if (!sh)
1466		return 0;
1467	BUG_ON(atomic_read(&sh->count));
1468	shrink_buffers(sh, conf->pool_size);
1469	kmem_cache_free(conf->slab_cache, sh);
1470	atomic_dec(&conf->active_stripes);
1471	return 1;
1472}
1473
1474static void shrink_stripes(raid5_conf_t *conf)
1475{
1476	while (drop_one_stripe(conf))
1477		;
1478
1479	if (conf->slab_cache)
1480		kmem_cache_destroy(conf->slab_cache);
1481	conf->slab_cache = NULL;
1482}
1483
1484static void raid5_end_read_request(struct bio * bi, int error)
1485{
1486	struct stripe_head *sh = bi->bi_private;
1487	raid5_conf_t *conf = sh->raid_conf;
1488	int disks = sh->disks, i;
1489	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1490	char b[BDEVNAME_SIZE];
1491	mdk_rdev_t *rdev;
1492
1493
1494	for (i=0 ; i<disks; i++)
1495		if (bi == &sh->dev[i].req)
1496			break;
1497
1498	pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1499		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
1500		uptodate);
1501	if (i == disks) {
1502		BUG();
1503		return;
1504	}
1505
1506	if (uptodate) {
1507		set_bit(R5_UPTODATE, &sh->dev[i].flags);
1508		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1509			rdev = conf->disks[i].rdev;
1510			printk_rl(KERN_INFO "raid5:%s: read error corrected"
1511				  " (%lu sectors at %llu on %s)\n",
1512				  mdname(conf->mddev), STRIPE_SECTORS,
1513				  (unsigned long long)(sh->sector
1514						       + rdev->data_offset),
1515				  bdevname(rdev->bdev, b));
1516			clear_bit(R5_ReadError, &sh->dev[i].flags);
1517			clear_bit(R5_ReWrite, &sh->dev[i].flags);
1518		}
1519		if (atomic_read(&conf->disks[i].rdev->read_errors))
1520			atomic_set(&conf->disks[i].rdev->read_errors, 0);
1521	} else {
1522		const char *bdn = bdevname(conf->disks[i].rdev->bdev, b);
1523		int retry = 0;
1524		rdev = conf->disks[i].rdev;
1525
1526		clear_bit(R5_UPTODATE, &sh->dev[i].flags);
1527		atomic_inc(&rdev->read_errors);
1528		if (conf->mddev->degraded)
1529			printk_rl(KERN_WARNING
1530				  "raid5:%s: read error not correctable "
1531				  "(sector %llu on %s).\n",
1532				  mdname(conf->mddev),
1533				  (unsigned long long)(sh->sector
1534						       + rdev->data_offset),
1535				  bdn);
1536		else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
1537			/* Oh, no!!! */
1538			printk_rl(KERN_WARNING
1539				  "raid5:%s: read error NOT corrected!! "
1540				  "(sector %llu on %s).\n",
1541				  mdname(conf->mddev),
1542				  (unsigned long long)(sh->sector
1543						       + rdev->data_offset),
1544				  bdn);
1545		else if (atomic_read(&rdev->read_errors)
1546			 > conf->max_nr_stripes)
1547			printk(KERN_WARNING
1548			       "raid5:%s: Too many read errors, failing device %s.\n",
1549			       mdname(conf->mddev), bdn);
1550		else
1551			retry = 1;
1552		if (retry)
1553			set_bit(R5_ReadError, &sh->dev[i].flags);
1554		else {
1555			clear_bit(R5_ReadError, &sh->dev[i].flags);
1556			clear_bit(R5_ReWrite, &sh->dev[i].flags);
1557			md_error(conf->mddev, rdev);
1558		}
1559	}
1560	rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1561	clear_bit(R5_LOCKED, &sh->dev[i].flags);
1562	set_bit(STRIPE_HANDLE, &sh->state);
1563	release_stripe(sh);
1564}
1565
1566static void raid5_end_write_request(struct bio *bi, int error)
1567{
1568	struct stripe_head *sh = bi->bi_private;
1569	raid5_conf_t *conf = sh->raid_conf;
1570	int disks = sh->disks, i;
1571	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1572
1573	for (i=0 ; i<disks; i++)
1574		if (bi == &sh->dev[i].req)
1575			break;
1576
1577	pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1578		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
1579		uptodate);
1580	if (i == disks) {
1581		BUG();
1582		return;
1583	}
1584
1585	if (!uptodate)
1586		md_error(conf->mddev, conf->disks[i].rdev);
1587
1588	rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1589
1590	clear_bit(R5_LOCKED, &sh->dev[i].flags);
1591	set_bit(STRIPE_HANDLE, &sh->state);
1592	release_stripe(sh);
1593}
1594
1595
1596static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
1597
1598static void raid5_build_block(struct stripe_head *sh, int i, int previous)
1599{
1600	struct r5dev *dev = &sh->dev[i];
1601
1602	bio_init(&dev->req);
1603	dev->req.bi_io_vec = &dev->vec;
1604	dev->req.bi_vcnt++;
1605	dev->req.bi_max_vecs++;
1606	dev->vec.bv_page = dev->page;
1607	dev->vec.bv_len = STRIPE_SIZE;
1608	dev->vec.bv_offset = 0;
1609
1610	dev->req.bi_sector = sh->sector;
1611	dev->req.bi_private = sh;
1612
1613	dev->flags = 0;
1614	dev->sector = compute_blocknr(sh, i, previous);
1615}
1616
1617static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1618{
1619	char b[BDEVNAME_SIZE];
1620	raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
1621	pr_debug("raid5: error called\n");
1622
1623	if (!test_bit(Faulty, &rdev->flags)) {
1624		set_bit(MD_CHANGE_DEVS, &mddev->flags);
1625		if (test_and_clear_bit(In_sync, &rdev->flags)) {
1626			unsigned long flags;
1627			spin_lock_irqsave(&conf->device_lock, flags);
1628			mddev->degraded++;
1629			spin_unlock_irqrestore(&conf->device_lock, flags);
1630			/*
1631			 * if recovery was running, make sure it aborts.
1632			 */
1633			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1634		}
1635		set_bit(Faulty, &rdev->flags);
1636		printk(KERN_ALERT
1637		       "raid5: Disk failure on %s, disabling device.\n"
1638		       "raid5: Operation continuing on %d devices.\n",
1639		       bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded);
1640	}
1641}
1642
1643/*
1644 * Input: a 'big' sector number,
1645 * Output: index of the data and parity disk, and the sector # in them.
1646 */
1647static sector_t raid5_compute_sector(raid5_conf_t *conf, sector_t r_sector,
1648				     int previous, int *dd_idx,
1649				     struct stripe_head *sh)
1650{
1651	long stripe;
1652	unsigned long chunk_number;
1653	unsigned int chunk_offset;
1654	int pd_idx, qd_idx;
1655	int ddf_layout = 0;
1656	sector_t new_sector;
1657	int algorithm = previous ? conf->prev_algo
1658				 : conf->algorithm;
1659	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
1660					 : conf->chunk_sectors;
1661	int raid_disks = previous ? conf->previous_raid_disks
1662				  : conf->raid_disks;
1663	int data_disks = raid_disks - conf->max_degraded;
1664
1665	/* First compute the information on this sector */
1666
1667	/*
1668	 * Compute the chunk number and the sector offset inside the chunk
1669	 */
1670	chunk_offset = sector_div(r_sector, sectors_per_chunk);
1671	chunk_number = r_sector;
1672	BUG_ON(r_sector != chunk_number);
1673
1674	/*
1675	 * Compute the stripe number
1676	 */
1677	stripe = chunk_number / data_disks;
1678
1679	/*
1680	 * Compute the data disk and parity disk indexes inside the stripe
1681	 */
1682	*dd_idx = chunk_number % data_disks;
1683
1684	/*
1685	 * Select the parity disk based on the user selected algorithm.
1686	 */
1687	pd_idx = qd_idx = ~0;
1688	switch(conf->level) {
1689	case 4:
1690		pd_idx = data_disks;
1691		break;
1692	case 5:
1693		switch (algorithm) {
1694		case ALGORITHM_LEFT_ASYMMETRIC:
1695			pd_idx = data_disks - stripe % raid_disks;
1696			if (*dd_idx >= pd_idx)
1697				(*dd_idx)++;
1698			break;
1699		case ALGORITHM_RIGHT_ASYMMETRIC:
1700			pd_idx = stripe % raid_disks;
1701			if (*dd_idx >= pd_idx)
1702				(*dd_idx)++;
1703			break;
1704		case ALGORITHM_LEFT_SYMMETRIC:
1705			pd_idx = data_disks - stripe % raid_disks;
1706			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1707			break;
1708		case ALGORITHM_RIGHT_SYMMETRIC:
1709			pd_idx = stripe % raid_disks;
1710			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1711			break;
1712		case ALGORITHM_PARITY_0:
1713			pd_idx = 0;
1714			(*dd_idx)++;
1715			break;
1716		case ALGORITHM_PARITY_N:
1717			pd_idx = data_disks;
1718			break;
1719		default:
1720			printk(KERN_ERR "raid5: unsupported algorithm %d\n",
1721				algorithm);
1722			BUG();
1723		}
1724		break;
1725	case 6:
1726
1727		switch (algorithm) {
1728		case ALGORITHM_LEFT_ASYMMETRIC:
1729			pd_idx = raid_disks - 1 - (stripe % raid_disks);
1730			qd_idx = pd_idx + 1;
1731			if (pd_idx == raid_disks-1) {
1732				(*dd_idx)++;	/* Q D D D P */
1733				qd_idx = 0;
1734			} else if (*dd_idx >= pd_idx)
1735				(*dd_idx) += 2; /* D D P Q D */
1736			break;
1737		case ALGORITHM_RIGHT_ASYMMETRIC:
1738			pd_idx = stripe % raid_disks;
1739			qd_idx = pd_idx + 1;
1740			if (pd_idx == raid_disks-1) {
1741				(*dd_idx)++;	/* Q D D D P */
1742				qd_idx = 0;
1743			} else if (*dd_idx >= pd_idx)
1744				(*dd_idx) += 2; /* D D P Q D */
1745			break;
1746		case ALGORITHM_LEFT_SYMMETRIC:
1747			pd_idx = raid_disks - 1 - (stripe % raid_disks);
1748			qd_idx = (pd_idx + 1) % raid_disks;
1749			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1750			break;
1751		case ALGORITHM_RIGHT_SYMMETRIC:
1752			pd_idx = stripe % raid_disks;
1753			qd_idx = (pd_idx + 1) % raid_disks;
1754			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1755			break;
1756
1757		case ALGORITHM_PARITY_0:
1758			pd_idx = 0;
1759			qd_idx = 1;
1760			(*dd_idx) += 2;
1761			break;
1762		case ALGORITHM_PARITY_N:
1763			pd_idx = data_disks;
1764			qd_idx = data_disks + 1;
1765			break;
1766
1767		case ALGORITHM_ROTATING_ZERO_RESTART:
1768			/* Exactly the same as RIGHT_ASYMMETRIC, but or
1769			 * of blocks for computing Q is different.
1770			 */
1771			pd_idx = stripe % raid_disks;
1772			qd_idx = pd_idx + 1;
1773			if (pd_idx == raid_disks-1) {
1774				(*dd_idx)++;	/* Q D D D P */
1775				qd_idx = 0;
1776			} else if (*dd_idx >= pd_idx)
1777				(*dd_idx) += 2; /* D D P Q D */
1778			ddf_layout = 1;
1779			break;
1780
1781		case ALGORITHM_ROTATING_N_RESTART:
1782			/* Same a left_asymmetric, by first stripe is
1783			 * D D D P Q  rather than
1784			 * Q D D D P
1785			 */
1786			pd_idx = raid_disks - 1 - ((stripe + 1) % raid_disks);
1787			qd_idx = pd_idx + 1;
1788			if (pd_idx == raid_disks-1) {
1789				(*dd_idx)++;	/* Q D D D P */
1790				qd_idx = 0;
1791			} else if (*dd_idx >= pd_idx)
1792				(*dd_idx) += 2; /* D D P Q D */
1793			ddf_layout = 1;
1794			break;
1795
1796		case ALGORITHM_ROTATING_N_CONTINUE:
1797			/* Same as left_symmetric but Q is before P */
1798			pd_idx = raid_disks - 1 - (stripe % raid_disks);
1799			qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
1800			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1801			ddf_layout = 1;
1802			break;
1803
1804		case ALGORITHM_LEFT_ASYMMETRIC_6:
1805			/* RAID5 left_asymmetric, with Q on last device */
1806			pd_idx = data_disks - stripe % (raid_disks-1);
1807			if (*dd_idx >= pd_idx)
1808				(*dd_idx)++;
1809			qd_idx = raid_disks - 1;
1810			break;
1811
1812		case ALGORITHM_RIGHT_ASYMMETRIC_6:
1813			pd_idx = stripe % (raid_disks-1);
1814			if (*dd_idx >= pd_idx)
1815				(*dd_idx)++;
1816			qd_idx = raid_disks - 1;
1817			break;
1818
1819		case ALGORITHM_LEFT_SYMMETRIC_6:
1820			pd_idx = data_disks - stripe % (raid_disks-1);
1821			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
1822			qd_idx = raid_disks - 1;
1823			break;
1824
1825		case ALGORITHM_RIGHT_SYMMETRIC_6:
1826			pd_idx = stripe % (raid_disks-1);
1827			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
1828			qd_idx = raid_disks - 1;
1829			break;
1830
1831		case ALGORITHM_PARITY_0_6:
1832			pd_idx = 0;
1833			(*dd_idx)++;
1834			qd_idx = raid_disks - 1;
1835			break;
1836
1837
1838		default:
1839			printk(KERN_CRIT "raid6: unsupported algorithm %d\n",
1840			       algorithm);
1841			BUG();
1842		}
1843		break;
1844	}
1845
1846	if (sh) {
1847		sh->pd_idx = pd_idx;
1848		sh->qd_idx = qd_idx;
1849		sh->ddf_layout = ddf_layout;
1850	}
1851	/*
1852	 * Finally, compute the new sector number
1853	 */
1854	new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
1855	return new_sector;
1856}
1857
1858
1859static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
1860{
1861	raid5_conf_t *conf = sh->raid_conf;
1862	int raid_disks = sh->disks;
1863	int data_disks = raid_disks - conf->max_degraded;
1864	sector_t new_sector = sh->sector, check;
1865	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
1866					 : conf->chunk_sectors;
1867	int algorithm = previous ? conf->prev_algo
1868				 : conf->algorithm;
1869	sector_t stripe;
1870	int chunk_offset;
1871	int chunk_number, dummy1, dd_idx = i;
1872	sector_t r_sector;
1873	struct stripe_head sh2;
1874
1875
1876	chunk_offset = sector_div(new_sector, sectors_per_chunk);
1877	stripe = new_sector;
1878	BUG_ON(new_sector != stripe);
1879
1880	if (i == sh->pd_idx)
1881		return 0;
1882	switch(conf->level) {
1883	case 4: break;
1884	case 5:
1885		switch (algorithm) {
1886		case ALGORITHM_LEFT_ASYMMETRIC:
1887		case ALGORITHM_RIGHT_ASYMMETRIC:
1888			if (i > sh->pd_idx)
1889				i--;
1890			break;
1891		case ALGORITHM_LEFT_SYMMETRIC:
1892		case ALGORITHM_RIGHT_SYMMETRIC:
1893			if (i < sh->pd_idx)
1894				i += raid_disks;
1895			i -= (sh->pd_idx + 1);
1896			break;
1897		case ALGORITHM_PARITY_0:
1898			i -= 1;
1899			break;
1900		case ALGORITHM_PARITY_N:
1901			break;
1902		default:
1903			printk(KERN_ERR "raid5: unsupported algorithm %d\n",
1904			       algorithm);
1905			BUG();
1906		}
1907		break;
1908	case 6:
1909		if (i == sh->qd_idx)
1910			return 0; /* It is the Q disk */
1911		switch (algorithm) {
1912		case ALGORITHM_LEFT_ASYMMETRIC:
1913		case ALGORITHM_RIGHT_ASYMMETRIC:
1914		case ALGORITHM_ROTATING_ZERO_RESTART:
1915		case ALGORITHM_ROTATING_N_RESTART:
1916			if (sh->pd_idx == raid_disks-1)
1917				i--;	/* Q D D D P */
1918			else if (i > sh->pd_idx)
1919				i -= 2; /* D D P Q D */
1920			break;
1921		case ALGORITHM_LEFT_SYMMETRIC:
1922		case ALGORITHM_RIGHT_SYMMETRIC:
1923			if (sh->pd_idx == raid_disks-1)
1924				i--; /* Q D D D P */
1925			else {
1926				/* D D P Q D */
1927				if (i < sh->pd_idx)
1928					i += raid_disks;
1929				i -= (sh->pd_idx + 2);
1930			}
1931			break;
1932		case ALGORITHM_PARITY_0:
1933			i -= 2;
1934			break;
1935		case ALGORITHM_PARITY_N:
1936			break;
1937		case ALGORITHM_ROTATING_N_CONTINUE:
1938			if (sh->pd_idx == 0)
1939				i--;	/* P D D D Q */
1940			else if (i > sh->pd_idx)
1941				i -= 2; /* D D Q P D */
1942			break;
1943		case ALGORITHM_LEFT_ASYMMETRIC_6:
1944		case ALGORITHM_RIGHT_ASYMMETRIC_6:
1945			if (i > sh->pd_idx)
1946				i--;
1947			break;
1948		case ALGORITHM_LEFT_SYMMETRIC_6:
1949		case ALGORITHM_RIGHT_SYMMETRIC_6:
1950			if (i < sh->pd_idx)
1951				i += data_disks + 1;
1952			i -= (sh->pd_idx + 1);
1953			break;
1954		case ALGORITHM_PARITY_0_6:
1955			i -= 1;
1956			break;
1957		default:
1958			printk(KERN_CRIT "raid6: unsupported algorithm %d\n",
1959			       algorithm);
1960			BUG();
1961		}
1962		break;
1963	}
1964
1965	chunk_number = stripe * data_disks + i;
1966	r_sector = (sector_t)chunk_number * sectors_per_chunk + chunk_offset;
1967
1968	check = raid5_compute_sector(conf, r_sector,
1969				     previous, &dummy1, &sh2);
1970	if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
1971		|| sh2.qd_idx != sh->qd_idx) {
1972		printk(KERN_ERR "compute_blocknr: map not correct\n");
1973		return 0;
1974	}
1975	return r_sector;
1976}
1977
1978
1979static void
1980schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
1981			 int rcw, int expand)
1982{
1983	int i, pd_idx = sh->pd_idx, disks = sh->disks;
1984	raid5_conf_t *conf = sh->raid_conf;
1985	int level = conf->level;
1986
1987	if (rcw) {
1988		/* if we are not expanding this is a proper write request, and
1989		 * there will be bios with new data to be drained into the
1990		 * stripe cache
1991		 */
1992		if (!expand) {
1993			sh->reconstruct_state = reconstruct_state_drain_run;
1994			set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
1995		} else
1996			sh->reconstruct_state = reconstruct_state_run;
1997
1998		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
1999
2000		for (i = disks; i--; ) {
2001			struct r5dev *dev = &sh->dev[i];
2002
2003			if (dev->towrite) {
2004				set_bit(R5_LOCKED, &dev->flags);
2005				set_bit(R5_Wantdrain, &dev->flags);
2006				if (!expand)
2007					clear_bit(R5_UPTODATE, &dev->flags);
2008				s->locked++;
2009			}
2010		}
2011		if (s->locked + conf->max_degraded == disks)
2012			if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2013				atomic_inc(&conf->pending_full_writes);
2014	} else {
2015		BUG_ON(level == 6);
2016		BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2017			test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2018
2019		sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2020		set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2021		set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2022		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2023
2024		for (i = disks; i--; ) {
2025			struct r5dev *dev = &sh->dev[i];
2026			if (i == pd_idx)
2027				continue;
2028
2029			if (dev->towrite &&
2030			    (test_bit(R5_UPTODATE, &dev->flags) ||
2031			     test_bit(R5_Wantcompute, &dev->flags))) {
2032				set_bit(R5_Wantdrain, &dev->flags);
2033				set_bit(R5_LOCKED, &dev->flags);
2034				clear_bit(R5_UPTODATE, &dev->flags);
2035				s->locked++;
2036			}
2037		}
2038	}
2039
2040	/* keep the parity disk(s) locked while asynchronous operations
2041	 * are in flight
2042	 */
2043	set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2044	clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2045	s->locked++;
2046
2047	if (level == 6) {
2048		int qd_idx = sh->qd_idx;
2049		struct r5dev *dev = &sh->dev[qd_idx];
2050
2051		set_bit(R5_LOCKED, &dev->flags);
2052		clear_bit(R5_UPTODATE, &dev->flags);
2053		s->locked++;
2054	}
2055
2056	pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2057		__func__, (unsigned long long)sh->sector,
2058		s->locked, s->ops_request);
2059}
2060
2061/*
2062 * Each stripe/dev can have one or more bion attached.
2063 * toread/towrite point to the first in a chain.
2064 * The bi_next chain must be in order.
2065 */
2066static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
2067{
2068	struct bio **bip;
2069	raid5_conf_t *conf = sh->raid_conf;
2070	int firstwrite=0;
2071
2072	pr_debug("adding bh b#%llu to stripe s#%llu\n",
2073		(unsigned long long)bi->bi_sector,
2074		(unsigned long long)sh->sector);
2075
2076
2077	spin_lock(&sh->lock);
2078	spin_lock_irq(&conf->device_lock);
2079	if (forwrite) {
2080		bip = &sh->dev[dd_idx].towrite;
2081		if (*bip == NULL && sh->dev[dd_idx].written == NULL)
2082			firstwrite = 1;
2083	} else
2084		bip = &sh->dev[dd_idx].toread;
2085	while (*bip && (*bip)->bi_sector < bi->bi_sector) {
2086		if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
2087			goto overlap;
2088		bip = & (*bip)->bi_next;
2089	}
2090	if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
2091		goto overlap;
2092
2093	BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
2094	if (*bip)
2095		bi->bi_next = *bip;
2096	*bip = bi;
2097	bi->bi_phys_segments++;
2098	spin_unlock_irq(&conf->device_lock);
2099	spin_unlock(&sh->lock);
2100
2101	pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
2102		(unsigned long long)bi->bi_sector,
2103		(unsigned long long)sh->sector, dd_idx);
2104
2105	if (conf->mddev->bitmap && firstwrite) {
2106		bitmap_startwrite(conf->mddev->bitmap, sh->sector,
2107				  STRIPE_SECTORS, 0);
2108		sh->bm_seq = conf->seq_flush+1;
2109		set_bit(STRIPE_BIT_DELAY, &sh->state);
2110	}
2111
2112	if (forwrite) {
2113		/* check if page is covered */
2114		sector_t sector = sh->dev[dd_idx].sector;
2115		for (bi=sh->dev[dd_idx].towrite;
2116		     sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
2117			     bi && bi->bi_sector <= sector;
2118		     bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
2119			if (bi->bi_sector + (bi->bi_size>>9) >= sector)
2120				sector = bi->bi_sector + (bi->bi_size>>9);
2121		}
2122		if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
2123			set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
2124	}
2125	return 1;
2126
2127 overlap:
2128	set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
2129	spin_unlock_irq(&conf->device_lock);
2130	spin_unlock(&sh->lock);
2131	return 0;
2132}
2133
2134static void end_reshape(raid5_conf_t *conf);
2135
2136static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
2137			    struct stripe_head *sh)
2138{
2139	int sectors_per_chunk =
2140		previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
2141	int dd_idx;
2142	int chunk_offset = sector_div(stripe, sectors_per_chunk);
2143	int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2144
2145	raid5_compute_sector(conf,
2146			     stripe * (disks - conf->max_degraded)
2147			     *sectors_per_chunk + chunk_offset,
2148			     previous,
2149			     &dd_idx, sh);
2150}
2151
2152static void
2153handle_failed_stripe(raid5_conf_t *conf, struct stripe_head *sh,
2154				struct stripe_head_state *s, int disks,
2155				struct bio **return_bi)
2156{
2157	int i;
2158	for (i = disks; i--; ) {
2159		struct bio *bi;
2160		int bitmap_end = 0;
2161
2162		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2163			mdk_rdev_t *rdev;
2164			rcu_read_lock();
2165			rdev = rcu_dereference(conf->disks[i].rdev);
2166			if (rdev && test_bit(In_sync, &rdev->flags))
2167				/* multiple read failures in one stripe */
2168				md_error(conf->mddev, rdev);
2169			rcu_read_unlock();
2170		}
2171		spin_lock_irq(&conf->device_lock);
2172		/* fail all writes first */
2173		bi = sh->dev[i].towrite;
2174		sh->dev[i].towrite = NULL;
2175		if (bi) {
2176			s->to_write--;
2177			bitmap_end = 1;
2178		}
2179
2180		if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2181			wake_up(&conf->wait_for_overlap);
2182
2183		while (bi && bi->bi_sector <
2184			sh->dev[i].sector + STRIPE_SECTORS) {
2185			struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2186			clear_bit(BIO_UPTODATE, &bi->bi_flags);
2187			if (!raid5_dec_bi_phys_segments(bi)) {
2188				md_write_end(conf->mddev);
2189				bi->bi_next = *return_bi;
2190				*return_bi = bi;
2191			}
2192			bi = nextbi;
2193		}
2194		/* and fail all 'written' */
2195		bi = sh->dev[i].written;
2196		sh->dev[i].written = NULL;
2197		if (bi) bitmap_end = 1;
2198		while (bi && bi->bi_sector <
2199		       sh->dev[i].sector + STRIPE_SECTORS) {
2200			struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
2201			clear_bit(BIO_UPTODATE, &bi->bi_flags);
2202			if (!raid5_dec_bi_phys_segments(bi)) {
2203				md_write_end(conf->mddev);
2204				bi->bi_next = *return_bi;
2205				*return_bi = bi;
2206			}
2207			bi = bi2;
2208		}
2209
2210		/* fail any reads if this device is non-operational and
2211		 * the data has not reached the cache yet.
2212		 */
2213		if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
2214		    (!test_bit(R5_Insync, &sh->dev[i].flags) ||
2215		      test_bit(R5_ReadError, &sh->dev[i].flags))) {
2216			bi = sh->dev[i].toread;
2217			sh->dev[i].toread = NULL;
2218			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2219				wake_up(&conf->wait_for_overlap);
2220			if (bi) s->to_read--;
2221			while (bi && bi->bi_sector <
2222			       sh->dev[i].sector + STRIPE_SECTORS) {
2223				struct bio *nextbi =
2224					r5_next_bio(bi, sh->dev[i].sector);
2225				clear_bit(BIO_UPTODATE, &bi->bi_flags);
2226				if (!raid5_dec_bi_phys_segments(bi)) {
2227					bi->bi_next = *return_bi;
2228					*return_bi = bi;
2229				}
2230				bi = nextbi;
2231			}
2232		}
2233		spin_unlock_irq(&conf->device_lock);
2234		if (bitmap_end)
2235			bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2236					STRIPE_SECTORS, 0, 0);
2237	}
2238
2239	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2240		if (atomic_dec_and_test(&conf->pending_full_writes))
2241			md_wakeup_thread(conf->mddev->thread);
2242}
2243
2244/* fetch_block5 - checks the given member device to see if its data needs
2245 * to be read or computed to satisfy a request.
2246 *
2247 * Returns 1 when no more member devices need to be checked, otherwise returns
2248 * 0 to tell the loop in handle_stripe_fill5 to continue
2249 */
2250static int fetch_block5(struct stripe_head *sh, struct stripe_head_state *s,
2251			int disk_idx, int disks)
2252{
2253	struct r5dev *dev = &sh->dev[disk_idx];
2254	struct r5dev *failed_dev = &sh->dev[s->failed_num];
2255
2256	/* is the data in this block needed, and can we get it? */
2257	if (!test_bit(R5_LOCKED, &dev->flags) &&
2258	    !test_bit(R5_UPTODATE, &dev->flags) &&
2259	    (dev->toread ||
2260	     (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2261	     s->syncing || s->expanding ||
2262	     (s->failed &&
2263	      (failed_dev->toread ||
2264	       (failed_dev->towrite &&
2265		!test_bit(R5_OVERWRITE, &failed_dev->flags)))))) {
2266		/* We would like to get this block, possibly by computing it,
2267		 * otherwise read it if the backing disk is insync
2268		 */
2269		if ((s->uptodate == disks - 1) &&
2270		    (s->failed && disk_idx == s->failed_num)) {
2271			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2272			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2273			set_bit(R5_Wantcompute, &dev->flags);
2274			sh->ops.target = disk_idx;
2275			sh->ops.target2 = -1;
2276			s->req_compute = 1;
2277			/* Careful: from this point on 'uptodate' is in the eye
2278			 * of raid_run_ops which services 'compute' operations
2279			 * before writes. R5_Wantcompute flags a block that will
2280			 * be R5_UPTODATE by the time it is needed for a
2281			 * subsequent operation.
2282			 */
2283			s->uptodate++;
2284			return 1; /* uptodate + compute == disks */
2285		} else if (test_bit(R5_Insync, &dev->flags)) {
2286			set_bit(R5_LOCKED, &dev->flags);
2287			set_bit(R5_Wantread, &dev->flags);
2288			s->locked++;
2289			pr_debug("Reading block %d (sync=%d)\n", disk_idx,
2290				s->syncing);
2291		}
2292	}
2293
2294	return 0;
2295}
2296
2297/**
2298 * handle_stripe_fill5 - read or compute data to satisfy pending requests.
2299 */
2300static void handle_stripe_fill5(struct stripe_head *sh,
2301			struct stripe_head_state *s, int disks)
2302{
2303	int i;
2304
2305	/* look for blocks to read/compute, skip this if a compute
2306	 * is already in flight, or if the stripe contents are in the
2307	 * midst of changing due to a write
2308	 */
2309	if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2310	    !sh->reconstruct_state)
2311		for (i = disks; i--; )
2312			if (fetch_block5(sh, s, i, disks))
2313				break;
2314	set_bit(STRIPE_HANDLE, &sh->state);
2315}
2316
2317/* fetch_block6 - checks the given member device to see if its data needs
2318 * to be read or computed to satisfy a request.
2319 *
2320 * Returns 1 when no more member devices need to be checked, otherwise returns
2321 * 0 to tell the loop in handle_stripe_fill6 to continue
2322 */
2323static int fetch_block6(struct stripe_head *sh, struct stripe_head_state *s,
2324			 struct r6_state *r6s, int disk_idx, int disks)
2325{
2326	struct r5dev *dev = &sh->dev[disk_idx];
2327	struct r5dev *fdev[2] = { &sh->dev[r6s->failed_num[0]],
2328				  &sh->dev[r6s->failed_num[1]] };
2329
2330	if (!test_bit(R5_LOCKED, &dev->flags) &&
2331	    !test_bit(R5_UPTODATE, &dev->flags) &&
2332	    (dev->toread ||
2333	     (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2334	     s->syncing || s->expanding ||
2335	     (s->failed >= 1 &&
2336	      (fdev[0]->toread || s->to_write)) ||
2337	     (s->failed >= 2 &&
2338	      (fdev[1]->toread || s->to_write)))) {
2339		/* we would like to get this block, possibly by computing it,
2340		 * otherwise read it if the backing disk is insync
2341		 */
2342		BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
2343		BUG_ON(test_bit(R5_Wantread, &dev->flags));
2344		if ((s->uptodate == disks - 1) &&
2345		    (s->failed && (disk_idx == r6s->failed_num[0] ||
2346				   disk_idx == r6s->failed_num[1]))) {
2347			/* have disk failed, and we're requested to fetch it;
2348			 * do compute it
2349			 */
2350			pr_debug("Computing stripe %llu block %d\n",
2351			       (unsigned long long)sh->sector, disk_idx);
2352			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2353			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2354			set_bit(R5_Wantcompute, &dev->flags);
2355			sh->ops.target = disk_idx;
2356			sh->ops.target2 = -1; /* no 2nd target */
2357			s->req_compute = 1;
2358			s->uptodate++;
2359			return 1;
2360		} else if (s->uptodate == disks-2 && s->failed >= 2) {
2361			/* Computing 2-failure is *very* expensive; only
2362			 * do it if failed >= 2
2363			 */
2364			int other;
2365			for (other = disks; other--; ) {
2366				if (other == disk_idx)
2367					continue;
2368				if (!test_bit(R5_UPTODATE,
2369				      &sh->dev[other].flags))
2370					break;
2371			}
2372			BUG_ON(other < 0);
2373			pr_debug("Computing stripe %llu blocks %d,%d\n",
2374			       (unsigned long long)sh->sector,
2375			       disk_idx, other);
2376			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2377			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2378			set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
2379			set_bit(R5_Wantcompute, &sh->dev[other].flags);
2380			sh->ops.target = disk_idx;
2381			sh->ops.target2 = other;
2382			s->uptodate += 2;
2383			s->req_compute = 1;
2384			return 1;
2385		} else if (test_bit(R5_Insync, &dev->flags)) {
2386			set_bit(R5_LOCKED, &dev->flags);
2387			set_bit(R5_Wantread, &dev->flags);
2388			s->locked++;
2389			pr_debug("Reading block %d (sync=%d)\n",
2390				disk_idx, s->syncing);
2391		}
2392	}
2393
2394	return 0;
2395}
2396
2397/**
2398 * handle_stripe_fill6 - read or compute data to satisfy pending requests.
2399 */
2400static void handle_stripe_fill6(struct stripe_head *sh,
2401			struct stripe_head_state *s, struct r6_state *r6s,
2402			int disks)
2403{
2404	int i;
2405
2406	/* look for blocks to read/compute, skip this if a compute
2407	 * is already in flight, or if the stripe contents are in the
2408	 * midst of changing due to a write
2409	 */
2410	if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2411	    !sh->reconstruct_state)
2412		for (i = disks; i--; )
2413			if (fetch_block6(sh, s, r6s, i, disks))
2414				break;
2415	set_bit(STRIPE_HANDLE, &sh->state);
2416}
2417
2418
2419/* handle_stripe_clean_event
2420 * any written block on an uptodate or failed drive can be returned.
2421 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2422 * never LOCKED, so we don't need to test 'failed' directly.
2423 */
2424static void handle_stripe_clean_event(raid5_conf_t *conf,
2425	struct stripe_head *sh, int disks, struct bio **return_bi)
2426{
2427	int i;
2428	struct r5dev *dev;
2429
2430	for (i = disks; i--; )
2431		if (sh->dev[i].written) {
2432			dev = &sh->dev[i];
2433			if (!test_bit(R5_LOCKED, &dev->flags) &&
2434				test_bit(R5_UPTODATE, &dev->flags)) {
2435				/* We can return any write requests */
2436				struct bio *wbi, *wbi2;
2437				int bitmap_end = 0;
2438				pr_debug("Return write for disc %d\n", i);
2439				spin_lock_irq(&conf->device_lock);
2440				wbi = dev->written;
2441				dev->written = NULL;
2442				while (wbi && wbi->bi_sector <
2443					dev->sector + STRIPE_SECTORS) {
2444					wbi2 = r5_next_bio(wbi, dev->sector);
2445					if (!raid5_dec_bi_phys_segments(wbi)) {
2446						md_write_end(conf->mddev);
2447						wbi->bi_next = *return_bi;
2448						*return_bi = wbi;
2449					}
2450					wbi = wbi2;
2451				}
2452				if (dev->towrite == NULL)
2453					bitmap_end = 1;
2454				spin_unlock_irq(&conf->device_lock);
2455				if (bitmap_end)
2456					bitmap_endwrite(conf->mddev->bitmap,
2457							sh->sector,
2458							STRIPE_SECTORS,
2459					 !test_bit(STRIPE_DEGRADED, &sh->state),
2460							0);
2461			}
2462		}
2463
2464	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2465		if (atomic_dec_and_test(&conf->pending_full_writes))
2466			md_wakeup_thread(conf->mddev->thread);
2467}
2468
2469static void handle_stripe_dirtying5(raid5_conf_t *conf,
2470		struct stripe_head *sh,	struct stripe_head_state *s, int disks)
2471{
2472	int rmw = 0, rcw = 0, i;
2473	for (i = disks; i--; ) {
2474		/* would I have to read this buffer for read_modify_write */
2475		struct r5dev *dev = &sh->dev[i];
2476		if ((dev->towrite || i == sh->pd_idx) &&
2477		    !test_bit(R5_LOCKED, &dev->flags) &&
2478		    !(test_bit(R5_UPTODATE, &dev->flags) ||
2479		      test_bit(R5_Wantcompute, &dev->flags))) {
2480			if (test_bit(R5_Insync, &dev->flags))
2481				rmw++;
2482			else
2483				rmw += 2*disks;  /* cannot read it */
2484		}
2485		/* Would I have to read this buffer for reconstruct_write */
2486		if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
2487		    !test_bit(R5_LOCKED, &dev->flags) &&
2488		    !(test_bit(R5_UPTODATE, &dev->flags) ||
2489		    test_bit(R5_Wantcompute, &dev->flags))) {
2490			if (test_bit(R5_Insync, &dev->flags)) rcw++;
2491			else
2492				rcw += 2*disks;
2493		}
2494	}
2495	pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2496		(unsigned long long)sh->sector, rmw, rcw);
2497	set_bit(STRIPE_HANDLE, &sh->state);
2498	if (rmw < rcw && rmw > 0)
2499		/* prefer read-modify-write, but need to get some data */
2500		for (i = disks; i--; ) {
2501			struct r5dev *dev = &sh->dev[i];
2502			if ((dev->towrite || i == sh->pd_idx) &&
2503			    !test_bit(R5_LOCKED, &dev->flags) &&
2504			    !(test_bit(R5_UPTODATE, &dev->flags) ||
2505			    test_bit(R5_Wantcompute, &dev->flags)) &&
2506			    test_bit(R5_Insync, &dev->flags)) {
2507				if (
2508				  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2509					pr_debug("Read_old block "
2510						"%d for r-m-w\n", i);
2511					set_bit(R5_LOCKED, &dev->flags);
2512					set_bit(R5_Wantread, &dev->flags);
2513					s->locked++;
2514				} else {
2515					set_bit(STRIPE_DELAYED, &sh->state);
2516					set_bit(STRIPE_HANDLE, &sh->state);
2517				}
2518			}
2519		}
2520	if (rcw <= rmw && rcw > 0)
2521		/* want reconstruct write, but need to get some data */
2522		for (i = disks; i--; ) {
2523			struct r5dev *dev = &sh->dev[i];
2524			if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2525			    i != sh->pd_idx &&
2526			    !test_bit(R5_LOCKED, &dev->flags) &&
2527			    !(test_bit(R5_UPTODATE, &dev->flags) ||
2528			    test_bit(R5_Wantcompute, &dev->flags)) &&
2529			    test_bit(R5_Insync, &dev->flags)) {
2530				if (
2531				  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2532					pr_debug("Read_old block "
2533						"%d for Reconstruct\n", i);
2534					set_bit(R5_LOCKED, &dev->flags);
2535					set_bit(R5_Wantread, &dev->flags);
2536					s->locked++;
2537				} else {
2538					set_bit(STRIPE_DELAYED, &sh->state);
2539					set_bit(STRIPE_HANDLE, &sh->state);
2540				}
2541			}
2542		}
2543	/* now if nothing is locked, and if we have enough data,
2544	 * we can start a write request
2545	 */
2546	/* since handle_stripe can be called at any time we need to handle the
2547	 * case where a compute block operation has been submitted and then a
2548	 * subsequent call wants to start a write request.  raid_run_ops only
2549	 * handles the case where compute block and reconstruct are requested
2550	 * simultaneously.  If this is not the case then new writes need to be
2551	 * held off until the compute completes.
2552	 */
2553	if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2554	    (s->locked == 0 && (rcw == 0 || rmw == 0) &&
2555	    !test_bit(STRIPE_BIT_DELAY, &sh->state)))
2556		schedule_reconstruction(sh, s, rcw == 0, 0);
2557}
2558
2559static void handle_stripe_dirtying6(raid5_conf_t *conf,
2560		struct stripe_head *sh,	struct stripe_head_state *s,
2561		struct r6_state *r6s, int disks)
2562{
2563	int rcw = 0, pd_idx = sh->pd_idx, i;
2564	int qd_idx = sh->qd_idx;
2565
2566	set_bit(STRIPE_HANDLE, &sh->state);
2567	for (i = disks; i--; ) {
2568		struct r5dev *dev = &sh->dev[i];
2569		/* check if we haven't enough data */
2570		if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2571		    i != pd_idx && i != qd_idx &&
2572		    !test_bit(R5_LOCKED, &dev->flags) &&
2573		    !(test_bit(R5_UPTODATE, &dev->flags) ||
2574		      test_bit(R5_Wantcompute, &dev->flags))) {
2575			rcw++;
2576			if (!test_bit(R5_Insync, &dev->flags))
2577				continue; /* it's a failed drive */
2578
2579			if (
2580			  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2581				pr_debug("Read_old stripe %llu "
2582					"block %d for Reconstruct\n",
2583				     (unsigned long long)sh->sector, i);
2584				set_bit(R5_LOCKED, &dev->flags);
2585				set_bit(R5_Wantread, &dev->flags);
2586				s->locked++;
2587			} else {
2588				pr_debug("Request delayed stripe %llu "
2589					"block %d for Reconstruct\n",
2590				     (unsigned long long)sh->sector, i);
2591				set_bit(STRIPE_DELAYED, &sh->state);
2592				set_bit(STRIPE_HANDLE, &sh->state);
2593			}
2594		}
2595	}
2596	/* now if nothing is locked, and if we have enough data, we can start a
2597	 * write request
2598	 */
2599	if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2600	    s->locked == 0 && rcw == 0 &&
2601	    !test_bit(STRIPE_BIT_DELAY, &sh->state)) {
2602		schedule_reconstruction(sh, s, 1, 0);
2603	}
2604}
2605
2606static void handle_parity_checks5(raid5_conf_t *conf, struct stripe_head *sh,
2607				struct stripe_head_state *s, int disks)
2608{
2609	struct r5dev *dev = NULL;
2610
2611	set_bit(STRIPE_HANDLE, &sh->state);
2612
2613	switch (sh->check_state) {
2614	case check_state_idle:
2615		/* start a new check operation if there are no failures */
2616		if (s->failed == 0) {
2617			BUG_ON(s->uptodate != disks);
2618			sh->check_state = check_state_run;
2619			set_bit(STRIPE_OP_CHECK, &s->ops_request);
2620			clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
2621			s->uptodate--;
2622			break;
2623		}
2624		dev = &sh->dev[s->failed_num];
2625		/* fall through */
2626	case check_state_compute_result:
2627		sh->check_state = check_state_idle;
2628		if (!dev)
2629			dev = &sh->dev[sh->pd_idx];
2630
2631		/* check that a write has not made the stripe insync */
2632		if (test_bit(STRIPE_INSYNC, &sh->state))
2633			break;
2634
2635		/* either failed parity check, or recovery is happening */
2636		BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
2637		BUG_ON(s->uptodate != disks);
2638
2639		set_bit(R5_LOCKED, &dev->flags);
2640		s->locked++;
2641		set_bit(R5_Wantwrite, &dev->flags);
2642
2643		clear_bit(STRIPE_DEGRADED, &sh->state);
2644		set_bit(STRIPE_INSYNC, &sh->state);
2645		break;
2646	case check_state_run:
2647		break; /* we will be called again upon completion */
2648	case check_state_check_result:
2649		sh->check_state = check_state_idle;
2650
2651		/* if a failure occurred during the check operation, leave
2652		 * STRIPE_INSYNC not set and let the stripe be handled again
2653		 */
2654		if (s->failed)
2655			break;
2656
2657		/* handle a successful check operation, if parity is correct
2658		 * we are done.  Otherwise update the mismatch count and repair
2659		 * parity if !MD_RECOVERY_CHECK
2660		 */
2661		if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
2662			/* parity is correct (on disc,
2663			 * not in buffer any more)
2664			 */
2665			set_bit(STRIPE_INSYNC, &sh->state);
2666		else {
2667			conf->mddev->resync_mismatches += STRIPE_SECTORS;
2668			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2669				/* don't try to repair!! */
2670				set_bit(STRIPE_INSYNC, &sh->state);
2671			else {
2672				sh->check_state = check_state_compute_run;
2673				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2674				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2675				set_bit(R5_Wantcompute,
2676					&sh->dev[sh->pd_idx].flags);
2677				sh->ops.target = sh->pd_idx;
2678				sh->ops.target2 = -1;
2679				s->uptodate++;
2680			}
2681		}
2682		break;
2683	case check_state_compute_run:
2684		break;
2685	default:
2686		printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2687		       __func__, sh->check_state,
2688		       (unsigned long long) sh->sector);
2689		BUG();
2690	}
2691}
2692
2693
2694static void handle_parity_checks6(raid5_conf_t *conf, struct stripe_head *sh,
2695				  struct stripe_head_state *s,
2696				  struct r6_state *r6s, int disks)
2697{
2698	int pd_idx = sh->pd_idx;
2699	int qd_idx = sh->qd_idx;
2700	struct r5dev *dev;
2701
2702	set_bit(STRIPE_HANDLE, &sh->state);
2703
2704	BUG_ON(s->failed > 2);
2705
2706	/* Want to check and possibly repair P and Q.
2707	 * However there could be one 'failed' device, in which
2708	 * case we can only check one of them, possibly using the
2709	 * other to generate missing data
2710	 */
2711
2712	switch (sh->check_state) {
2713	case check_state_idle:
2714		/* start a new check operation if there are < 2 failures */
2715		if (s->failed == r6s->q_failed) {
2716			/* The only possible failed device holds Q, so it
2717			 * makes sense to check P (If anything else were failed,
2718			 * we would have used P to recreate it).
2719			 */
2720			sh->check_state = check_state_run;
2721		}
2722		if (!r6s->q_failed && s->failed < 2) {
2723			/* Q is not failed, and we didn't use it to generate
2724			 * anything, so it makes sense to check it
2725			 */
2726			if (sh->check_state == check_state_run)
2727				sh->check_state = check_state_run_pq;
2728			else
2729				sh->check_state = check_state_run_q;
2730		}
2731
2732		/* discard potentially stale zero_sum_result */
2733		sh->ops.zero_sum_result = 0;
2734
2735		if (sh->check_state == check_state_run) {
2736			/* async_xor_zero_sum destroys the contents of P */
2737			clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2738			s->uptodate--;
2739		}
2740		if (sh->check_state >= check_state_run &&
2741		    sh->check_state <= check_state_run_pq) {
2742			/* async_syndrome_zero_sum preserves P and Q, so
2743			 * no need to mark them !uptodate here
2744			 */
2745			set_bit(STRIPE_OP_CHECK, &s->ops_request);
2746			break;
2747		}
2748
2749		/* we have 2-disk failure */
2750		BUG_ON(s->failed != 2);
2751		/* fall through */
2752	case check_state_compute_result:
2753		sh->check_state = check_state_idle;
2754
2755		/* check that a write has not made the stripe insync */
2756		if (test_bit(STRIPE_INSYNC, &sh->state))
2757			break;
2758
2759		/* now write out any block on a failed drive,
2760		 * or P or Q if they were recomputed
2761		 */
2762		BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
2763		if (s->failed == 2) {
2764			dev = &sh->dev[r6s->failed_num[1]];
2765			s->locked++;
2766			set_bit(R5_LOCKED, &dev->flags);
2767			set_bit(R5_Wantwrite, &dev->flags);
2768		}
2769		if (s->failed >= 1) {
2770			dev = &sh->dev[r6s->failed_num[0]];
2771			s->locked++;
2772			set_bit(R5_LOCKED, &dev->flags);
2773			set_bit(R5_Wantwrite, &dev->flags);
2774		}
2775		if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
2776			dev = &sh->dev[pd_idx];
2777			s->locked++;
2778			set_bit(R5_LOCKED, &dev->flags);
2779			set_bit(R5_Wantwrite, &dev->flags);
2780		}
2781		if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
2782			dev = &sh->dev[qd_idx];
2783			s->locked++;
2784			set_bit(R5_LOCKED, &dev->flags);
2785			set_bit(R5_Wantwrite, &dev->flags);
2786		}
2787		clear_bit(STRIPE_DEGRADED, &sh->state);
2788
2789		set_bit(STRIPE_INSYNC, &sh->state);
2790		break;
2791	case check_state_run:
2792	case check_state_run_q:
2793	case check_state_run_pq:
2794		break; /* we will be called again upon completion */
2795	case check_state_check_result:
2796		sh->check_state = check_state_idle;
2797
2798		/* handle a successful check operation, if parity is correct
2799		 * we are done.  Otherwise update the mismatch count and repair
2800		 * parity if !MD_RECOVERY_CHECK
2801		 */
2802		if (sh->ops.zero_sum_result == 0) {
2803			/* both parities are correct */
2804			if (!s->failed)
2805				set_bit(STRIPE_INSYNC, &sh->state);
2806			else {
2807				/* in contrast to the raid5 case we can validate
2808				 * parity, but still have a failure to write
2809				 * back
2810				 */
2811				sh->check_state = check_state_compute_result;
2812				/* Returning at this point means that we may go
2813				 * off and bring p and/or q uptodate again so
2814				 * we make sure to check zero_sum_result again
2815				 * to verify if p or q need writeback
2816				 */
2817			}
2818		} else {
2819			conf->mddev->resync_mismatches += STRIPE_SECTORS;
2820			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2821				/* don't try to repair!! */
2822				set_bit(STRIPE_INSYNC, &sh->state);
2823			else {
2824				int *target = &sh->ops.target;
2825
2826				sh->ops.target = -1;
2827				sh->ops.target2 = -1;
2828				sh->check_state = check_state_compute_run;
2829				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2830				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2831				if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
2832					set_bit(R5_Wantcompute,
2833						&sh->dev[pd_idx].flags);
2834					*target = pd_idx;
2835					target = &sh->ops.target2;
2836					s->uptodate++;
2837				}
2838				if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
2839					set_bit(R5_Wantcompute,
2840						&sh->dev[qd_idx].flags);
2841					*target = qd_idx;
2842					s->uptodate++;
2843				}
2844			}
2845		}
2846		break;
2847	case check_state_compute_run:
2848		break;
2849	default:
2850		printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2851		       __func__, sh->check_state,
2852		       (unsigned long long) sh->sector);
2853		BUG();
2854	}
2855}
2856
2857static void handle_stripe_expansion(raid5_conf_t *conf, struct stripe_head *sh,
2858				struct r6_state *r6s)
2859{
2860	int i;
2861
2862	/* We have read all the blocks in this stripe and now we need to
2863	 * copy some of them into a target stripe for expand.
2864	 */
2865	struct dma_async_tx_descriptor *tx = NULL;
2866	clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2867	for (i = 0; i < sh->disks; i++)
2868		if (i != sh->pd_idx && i != sh->qd_idx) {
2869			int dd_idx, j;
2870			struct stripe_head *sh2;
2871			struct async_submit_ctl submit;
2872
2873			sector_t bn = compute_blocknr(sh, i, 1);
2874			sector_t s = raid5_compute_sector(conf, bn, 0,
2875							  &dd_idx, NULL);
2876			sh2 = get_active_stripe(conf, s, 0, 1, 1);
2877			if (sh2 == NULL)
2878				/* so far only the early blocks of this stripe
2879				 * have been requested.  When later blocks
2880				 * get requested, we will try again
2881				 */
2882				continue;
2883			if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
2884			   test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
2885				/* must have already done this block */
2886				release_stripe(sh2);
2887				continue;
2888			}
2889
2890			/* place all the copies on one channel */
2891			init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
2892			tx = async_memcpy(sh2->dev[dd_idx].page,
2893					  sh->dev[i].page, 0, 0, STRIPE_SIZE,
2894					  &submit);
2895
2896			set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
2897			set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
2898			for (j = 0; j < conf->raid_disks; j++)
2899				if (j != sh2->pd_idx &&
2900				    (!r6s || j != sh2->qd_idx) &&
2901				    !test_bit(R5_Expanded, &sh2->dev[j].flags))
2902					break;
2903			if (j == conf->raid_disks) {
2904				set_bit(STRIPE_EXPAND_READY, &sh2->state);
2905				set_bit(STRIPE_HANDLE, &sh2->state);
2906			}
2907			release_stripe(sh2);
2908
2909		}
2910	/* done submitting copies, wait for them to complete */
2911	if (tx) {
2912		async_tx_ack(tx);
2913		dma_wait_for_async_tx(tx);
2914	}
2915}
2916
2917
2918/*
2919 * handle_stripe - do things to a stripe.
2920 *
2921 * We lock the stripe and then examine the state of various bits
2922 * to see what needs to be done.
2923 * Possible results:
2924 *    return some read request which now have data
2925 *    return some write requests which are safely on disc
2926 *    schedule a read on some buffers
2927 *    schedule a write of some buffers
2928 *    return confirmation of parity correctness
2929 *
2930 * buffers are taken off read_list or write_list, and bh_cache buffers
2931 * get BH_Lock set before the stripe lock is released.
2932 *
2933 */
2934
2935static void handle_stripe5(struct stripe_head *sh)
2936{
2937	raid5_conf_t *conf = sh->raid_conf;
2938	int disks = sh->disks, i;
2939	struct bio *return_bi = NULL;
2940	struct stripe_head_state s;
2941	struct r5dev *dev;
2942	mdk_rdev_t *blocked_rdev = NULL;
2943	int prexor;
2944
2945	memset(&s, 0, sizeof(s));
2946	pr_debug("handling stripe %llu, state=%#lx cnt=%d, pd_idx=%d check:%d "
2947		 "reconstruct:%d\n", (unsigned long long)sh->sector, sh->state,
2948		 atomic_read(&sh->count), sh->pd_idx, sh->check_state,
2949		 sh->reconstruct_state);
2950
2951	spin_lock(&sh->lock);
2952	clear_bit(STRIPE_HANDLE, &sh->state);
2953	clear_bit(STRIPE_DELAYED, &sh->state);
2954
2955	s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
2956	s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2957	s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
2958
2959	/* Now to look around and see what can be done */
2960	rcu_read_lock();
2961	for (i=disks; i--; ) {
2962		mdk_rdev_t *rdev;
2963
2964		dev = &sh->dev[i];
2965		clear_bit(R5_Insync, &dev->flags);
2966
2967		pr_debug("check %d: state 0x%lx toread %p read %p write %p "
2968			"written %p\n",	i, dev->flags, dev->toread, dev->read,
2969			dev->towrite, dev->written);
2970
2971		/* maybe we can request a biofill operation
2972		 *
2973		 * new wantfill requests are only permitted while
2974		 * ops_complete_biofill is guaranteed to be inactive
2975		 */
2976		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
2977		    !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
2978			set_bit(R5_Wantfill, &dev->flags);
2979
2980		/* now count some things */
2981		if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
2982		if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
2983		if (test_bit(R5_Wantcompute, &dev->flags)) s.compute++;
2984
2985		if (test_bit(R5_Wantfill, &dev->flags))
2986			s.to_fill++;
2987		else if (dev->toread)
2988			s.to_read++;
2989		if (dev->towrite) {
2990			s.to_write++;
2991			if (!test_bit(R5_OVERWRITE, &dev->flags))
2992				s.non_overwrite++;
2993		}
2994		if (dev->written)
2995			s.written++;
2996		rdev = rcu_dereference(conf->disks[i].rdev);
2997		if (blocked_rdev == NULL &&
2998		    rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
2999			blocked_rdev = rdev;
3000			atomic_inc(&rdev->nr_pending);
3001		}
3002		if (!rdev || !test_bit(In_sync, &rdev->flags)) {
3003			/* The ReadError flag will just be confusing now */
3004			clear_bit(R5_ReadError, &dev->flags);
3005			clear_bit(R5_ReWrite, &dev->flags);
3006		}
3007		if (!rdev || !test_bit(In_sync, &rdev->flags)
3008		    || test_bit(R5_ReadError, &dev->flags)) {
3009			s.failed++;
3010			s.failed_num = i;
3011		} else
3012			set_bit(R5_Insync, &dev->flags);
3013	}
3014	rcu_read_unlock();
3015
3016	if (unlikely(blocked_rdev)) {
3017		if (s.syncing || s.expanding || s.expanded ||
3018		    s.to_write || s.written) {
3019			set_bit(STRIPE_HANDLE, &sh->state);
3020			goto unlock;
3021		}
3022		/* There is nothing for the blocked_rdev to block */
3023		rdev_dec_pending(blocked_rdev, conf->mddev);
3024		blocked_rdev = NULL;
3025	}
3026
3027	if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3028		set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
3029		set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3030	}
3031
3032	pr_debug("locked=%d uptodate=%d to_read=%d"
3033		" to_write=%d failed=%d failed_num=%d\n",
3034		s.locked, s.uptodate, s.to_read, s.to_write,
3035		s.failed, s.failed_num);
3036	/* check if the array has lost two devices and, if so, some requests might
3037	 * need to be failed
3038	 */
3039	if (s.failed > 1 && s.to_read+s.to_write+s.written)
3040		handle_failed_stripe(conf, sh, &s, disks, &return_bi);
3041	if (s.failed > 1 && s.syncing) {
3042		md_done_sync(conf->mddev, STRIPE_SECTORS,0);
3043		clear_bit(STRIPE_SYNCING, &sh->state);
3044		s.syncing = 0;
3045	}
3046
3047	/* might be able to return some write requests if the parity block
3048	 * is safe, or on a failed drive
3049	 */
3050	dev = &sh->dev[sh->pd_idx];
3051	if ( s.written &&
3052	     ((test_bit(R5_Insync, &dev->flags) &&
3053	       !test_bit(R5_LOCKED, &dev->flags) &&
3054	       test_bit(R5_UPTODATE, &dev->flags)) ||
3055	       (s.failed == 1 && s.failed_num == sh->pd_idx)))
3056		handle_stripe_clean_event(conf, sh, disks, &return_bi);
3057
3058	/* Now we might consider reading some blocks, either to check/generate
3059	 * parity, or to satisfy requests
3060	 * or to load a block that is being partially written.
3061	 */
3062	if (s.to_read || s.non_overwrite ||
3063	    (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding)
3064		handle_stripe_fill5(sh, &s, disks);
3065
3066	/* Now we check to see if any write operations have recently
3067	 * completed
3068	 */
3069	prexor = 0;
3070	if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
3071		prexor = 1;
3072	if (sh->reconstruct_state == reconstruct_state_drain_result ||
3073	    sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
3074		sh->reconstruct_state = reconstruct_state_idle;
3075
3076		/* All the 'written' buffers and the parity block are ready to
3077		 * be written back to disk
3078		 */
3079		BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
3080		for (i = disks; i--; ) {
3081			dev = &sh->dev[i];
3082			if (test_bit(R5_LOCKED, &dev->flags) &&
3083				(i == sh->pd_idx || dev->written)) {
3084				pr_debug("Writing block %d\n", i);
3085				set_bit(R5_Wantwrite, &dev->flags);
3086				if (prexor)
3087					continue;
3088				if (!test_bit(R5_Insync, &dev->flags) ||
3089				    (i == sh->pd_idx && s.failed == 0))
3090					set_bit(STRIPE_INSYNC, &sh->state);
3091			}
3092		}
3093		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
3094			atomic_dec(&conf->preread_active_stripes);
3095			if (atomic_read(&conf->preread_active_stripes) <
3096				IO_THRESHOLD)
3097				md_wakeup_thread(conf->mddev->thread);
3098		}
3099	}
3100
3101	/* Now to consider new write requests and what else, if anything
3102	 * should be read.  We do not handle new writes when:
3103	 * 1/ A 'write' operation (copy+xor) is already in flight.
3104	 * 2/ A 'check' operation is in flight, as it may clobber the parity
3105	 *    block.
3106	 */
3107	if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3108		handle_stripe_dirtying5(conf, sh, &s, disks);
3109
3110	/* maybe we need to check and possibly fix the parity for this stripe
3111	 * Any reads will already have been scheduled, so we just see if enough
3112	 * data is available.  The parity check is held off while parity
3113	 * dependent operations are in flight.
3114	 */
3115	if (sh->check_state ||
3116	    (s.syncing && s.locked == 0 &&
3117	     !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3118	     !test_bit(STRIPE_INSYNC, &sh->state)))
3119		handle_parity_checks5(conf, sh, &s, disks);
3120
3121	if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
3122		md_done_sync(conf->mddev, STRIPE_SECTORS,1);
3123		clear_bit(STRIPE_SYNCING, &sh->state);
3124	}
3125
3126	/* If the failed drive is just a ReadError, then we might need to progress
3127	 * the repair/check process
3128	 */
3129	if (s.failed == 1 && !conf->mddev->ro &&
3130	    test_bit(R5_ReadError, &sh->dev[s.failed_num].flags)
3131	    && !test_bit(R5_LOCKED, &sh->dev[s.failed_num].flags)
3132	    && test_bit(R5_UPTODATE, &sh->dev[s.failed_num].flags)
3133		) {
3134		dev = &sh->dev[s.failed_num];
3135		if (!test_bit(R5_ReWrite, &dev->flags)) {
3136			set_bit(R5_Wantwrite, &dev->flags);
3137			set_bit(R5_ReWrite, &dev->flags);
3138			set_bit(R5_LOCKED, &dev->flags);
3139			s.locked++;
3140		} else {
3141			/* let's read it back */
3142			set_bit(R5_Wantread, &dev->flags);
3143			set_bit(R5_LOCKED, &dev->flags);
3144			s.locked++;
3145		}
3146	}
3147
3148	/* Finish reconstruct operations initiated by the expansion process */
3149	if (sh->reconstruct_state == reconstruct_state_result) {
3150		struct stripe_head *sh2
3151			= get_active_stripe(conf, sh->sector, 1, 1, 1);
3152		if (sh2 && test_bit(STRIPE_EXPAND_SOURCE, &sh2->state)) {
3153			/* sh cannot be written until sh2 has been read.
3154			 * so arrange for sh to be delayed a little
3155			 */
3156			set_bit(STRIPE_DELAYED, &sh->state);
3157			set_bit(STRIPE_HANDLE, &sh->state);
3158			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3159					      &sh2->state))
3160				atomic_inc(&conf->preread_active_stripes);
3161			release_stripe(sh2);
3162			goto unlock;
3163		}
3164		if (sh2)
3165			release_stripe(sh2);
3166
3167		sh->reconstruct_state = reconstruct_state_idle;
3168		clear_bit(STRIPE_EXPANDING, &sh->state);
3169		for (i = conf->raid_disks; i--; ) {
3170			set_bit(R5_Wantwrite, &sh->dev[i].flags);
3171			set_bit(R5_LOCKED, &sh->dev[i].flags);
3172			s.locked++;
3173		}
3174	}
3175
3176	if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3177	    !sh->reconstruct_state) {
3178		/* Need to write out all blocks after computing parity */
3179		sh->disks = conf->raid_disks;
3180		stripe_set_idx(sh->sector, conf, 0, sh);
3181		schedule_reconstruction(sh, &s, 1, 1);
3182	} else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3183		clear_bit(STRIPE_EXPAND_READY, &sh->state);
3184		atomic_dec(&conf->reshape_stripes);
3185		wake_up(&conf->wait_for_overlap);
3186		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3187	}
3188
3189	if (s.expanding && s.locked == 0 &&
3190	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3191		handle_stripe_expansion(conf, sh, NULL);
3192
3193 unlock:
3194	spin_unlock(&sh->lock);
3195
3196	/* wait for this device to become unblocked */
3197	if (unlikely(blocked_rdev))
3198		md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);
3199
3200	if (s.ops_request)
3201		raid_run_ops(sh, s.ops_request);
3202
3203	ops_run_io(sh, &s);
3204
3205	return_io(return_bi);
3206}
3207
3208static void handle_stripe6(struct stripe_head *sh)
3209{
3210	raid5_conf_t *conf = sh->raid_conf;
3211	int disks = sh->disks;
3212	struct bio *return_bi = NULL;
3213	int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx;
3214	struct stripe_head_state s;
3215	struct r6_state r6s;
3216	struct r5dev *dev, *pdev, *qdev;
3217	mdk_rdev_t *blocked_rdev = NULL;
3218
3219	pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3220		"pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
3221	       (unsigned long long)sh->sector, sh->state,
3222	       atomic_read(&sh->count), pd_idx, qd_idx,
3223	       sh->check_state, sh->reconstruct_state);
3224	memset(&s, 0, sizeof(s));
3225
3226	spin_lock(&sh->lock);
3227	clear_bit(STRIPE_HANDLE, &sh->state);
3228	clear_bit(STRIPE_DELAYED, &sh->state);
3229
3230	s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
3231	s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3232	s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
3233	/* Now to look around and see what can be done */
3234
3235	rcu_read_lock();
3236	for (i=disks; i--; ) {
3237		mdk_rdev_t *rdev;
3238		dev = &sh->dev[i];
3239		clear_bit(R5_Insync, &dev->flags);
3240
3241		pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3242			i, dev->flags, dev->toread, dev->towrite, dev->written);
3243		/* maybe we can reply to a read
3244		 *
3245		 * new wantfill requests are only permitted while
3246		 * ops_complete_biofill is guaranteed to be inactive
3247		 */
3248		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
3249		    !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
3250			set_bit(R5_Wantfill, &dev->flags);
3251
3252		/* now count some things */
3253		if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
3254		if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
3255		if (test_bit(R5_Wantcompute, &dev->flags)) {
3256			s.compute++;
3257			BUG_ON(s.compute > 2);
3258		}
3259
3260		if (test_bit(R5_Wantfill, &dev->flags)) {
3261			s.to_fill++;
3262		} else if (dev->toread)
3263			s.to_read++;
3264		if (dev->towrite) {
3265			s.to_write++;
3266			if (!test_bit(R5_OVERWRITE, &dev->flags))
3267				s.non_overwrite++;
3268		}
3269		if (dev->written)
3270			s.written++;
3271		rdev = rcu_dereference(conf->disks[i].rdev);
3272		if (blocked_rdev == NULL &&
3273		    rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
3274			blocked_rdev = rdev;
3275			atomic_inc(&rdev->nr_pending);
3276		}
3277		if (!rdev || !test_bit(In_sync, &rdev->flags)) {
3278			/* The ReadError flag will just be confusing now */
3279			clear_bit(R5_ReadError, &dev->flags);
3280			clear_bit(R5_ReWrite, &dev->flags);
3281		}
3282		if (!rdev || !test_bit(In_sync, &rdev->flags)
3283		    || test_bit(R5_ReadError, &dev->flags)) {
3284			if (s.failed < 2)
3285				r6s.failed_num[s.failed] = i;
3286			s.failed++;
3287		} else
3288			set_bit(R5_Insync, &dev->flags);
3289	}
3290	rcu_read_unlock();
3291
3292	if (unlikely(blocked_rdev)) {
3293		if (s.syncing || s.expanding || s.expanded ||
3294		    s.to_write || s.written) {
3295			set_bit(STRIPE_HANDLE, &sh->state);
3296			goto unlock;
3297		}
3298		/* There is nothing for the blocked_rdev to block */
3299		rdev_dec_pending(blocked_rdev, conf->mddev);
3300		blocked_rdev = NULL;
3301	}
3302
3303	if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3304		set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
3305		set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3306	}
3307
3308	pr_debug("locked=%d uptodate=%d to_read=%d"
3309	       " to_write=%d failed=%d failed_num=%d,%d\n",
3310	       s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
3311	       r6s.failed_num[0], r6s.failed_num[1]);
3312	/* check if the array has lost >2 devices and, if so, some requests
3313	 * might need to be failed
3314	 */
3315	if (s.failed > 2 && s.to_read+s.to_write+s.written)
3316		handle_failed_stripe(conf, sh, &s, disks, &return_bi);
3317	if (s.failed > 2 && s.syncing) {
3318		md_done_sync(conf->mddev, STRIPE_SECTORS,0);
3319		clear_bit(STRIPE_SYNCING, &sh->state);
3320		s.syncing = 0;
3321	}
3322
3323	/*
3324	 * might be able to return some write requests if the parity blocks
3325	 * are safe, or on a failed drive
3326	 */
3327	pdev = &sh->dev[pd_idx];
3328	r6s.p_failed = (s.failed >= 1 && r6s.failed_num[0] == pd_idx)
3329		|| (s.failed >= 2 && r6s.failed_num[1] == pd_idx);
3330	qdev = &sh->dev[qd_idx];
3331	r6s.q_failed = (s.failed >= 1 && r6s.failed_num[0] == qd_idx)
3332		|| (s.failed >= 2 && r6s.failed_num[1] == qd_idx);
3333
3334	if ( s.written &&
3335	     ( r6s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
3336			     && !test_bit(R5_LOCKED, &pdev->flags)
3337			     && test_bit(R5_UPTODATE, &pdev->flags)))) &&
3338	     ( r6s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3339			     && !test_bit(R5_LOCKED, &qdev->flags)
3340			     && test_bit(R5_UPTODATE, &qdev->flags)))))
3341		handle_stripe_clean_event(conf, sh, disks, &return_bi);
3342
3343	/* Now we might consider reading some blocks, either to check/generate
3344	 * parity, or to satisfy requests
3345	 * or to load a block that is being partially written.
3346	 */
3347	if (s.to_read || s.non_overwrite || (s.to_write && s.failed) ||
3348	    (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding)
3349		handle_stripe_fill6(sh, &s, &r6s, disks);
3350
3351	/* Now we check to see if any write operations have recently
3352	 * completed
3353	 */
3354	if (sh->reconstruct_state == reconstruct_state_drain_result) {
3355		int qd_idx = sh->qd_idx;
3356
3357		sh->reconstruct_state = reconstruct_state_idle;
3358		/* All the 'written' buffers and the parity blocks are ready to
3359		 * be written back to disk
3360		 */
3361		BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
3362		BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags));
3363		for (i = disks; i--; ) {
3364			dev = &sh->dev[i];
3365			if (test_bit(R5_LOCKED, &dev->flags) &&
3366			    (i == sh->pd_idx || i == qd_idx ||
3367			     dev->written)) {
3368				pr_debug("Writing block %d\n", i);
3369				BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
3370				set_bit(R5_Wantwrite, &dev->flags);
3371				if (!test_bit(R5_Insync, &dev->flags) ||
3372				    ((i == sh->pd_idx || i == qd_idx) &&
3373				      s.failed == 0))
3374					set_bit(STRIPE_INSYNC, &sh->state);
3375			}
3376		}
3377		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
3378			atomic_dec(&conf->preread_active_stripes);
3379			if (atomic_read(&conf->preread_active_stripes) <
3380				IO_THRESHOLD)
3381				md_wakeup_thread(conf->mddev->thread);
3382		}
3383	}
3384
3385	/* Now to consider new write requests and what else, if anything
3386	 * should be read.  We do not handle new writes when:
3387	 * 1/ A 'write' operation (copy+gen_syndrome) is already in flight.
3388	 * 2/ A 'check' operation is in flight, as it may clobber the parity
3389	 *    block.
3390	 */
3391	if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3392		handle_stripe_dirtying6(conf, sh, &s, &r6s, disks);
3393
3394	/* maybe we need to check and possibly fix the parity for this stripe
3395	 * Any reads will already have been scheduled, so we just see if enough
3396	 * data is available.  The parity check is held off while parity
3397	 * dependent operations are in flight.
3398	 */
3399	if (sh->check_state ||
3400	    (s.syncing && s.locked == 0 &&
3401	     !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3402	     !test_bit(STRIPE_INSYNC, &sh->state)))
3403		handle_parity_checks6(conf, sh, &s, &r6s, disks);
3404
3405	if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
3406		md_done_sync(conf->mddev, STRIPE_SECTORS,1);
3407		clear_bit(STRIPE_SYNCING, &sh->state);
3408	}
3409
3410	/* If the failed drives are just a ReadError, then we might need
3411	 * to progress the repair/check process
3412	 */
3413	if (s.failed <= 2 && !conf->mddev->ro)
3414		for (i = 0; i < s.failed; i++) {
3415			dev = &sh->dev[r6s.failed_num[i]];
3416			if (test_bit(R5_ReadError, &dev->flags)
3417			    && !test_bit(R5_LOCKED, &dev->flags)
3418			    && test_bit(R5_UPTODATE, &dev->flags)
3419				) {
3420				if (!test_bit(R5_ReWrite, &dev->flags)) {
3421					set_bit(R5_Wantwrite, &dev->flags);
3422					set_bit(R5_ReWrite, &dev->flags);
3423					set_bit(R5_LOCKED, &dev->flags);
3424					s.locked++;
3425				} else {
3426					/* let's read it back */
3427					set_bit(R5_Wantread, &dev->flags);
3428					set_bit(R5_LOCKED, &dev->flags);
3429					s.locked++;
3430				}
3431			}
3432		}
3433
3434	/* Finish reconstruct operations initiated by the expansion process */
3435	if (sh->reconstruct_state == reconstruct_state_result) {
3436		sh->reconstruct_state = reconstruct_state_idle;
3437		clear_bit(STRIPE_EXPANDING, &sh->state);
3438		for (i = conf->raid_disks; i--; ) {
3439			set_bit(R5_Wantwrite, &sh->dev[i].flags);
3440			set_bit(R5_LOCKED, &sh->dev[i].flags);
3441			s.locked++;
3442		}
3443	}
3444
3445	if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3446	    !sh->reconstruct_state) {
3447		struct stripe_head *sh2
3448			= get_active_stripe(conf, sh->sector, 1, 1, 1);
3449		if (sh2 && test_bit(STRIPE_EXPAND_SOURCE, &sh2->state)) {
3450			/* sh cannot be written until sh2 has been read.
3451			 * so arrange for sh to be delayed a little
3452			 */
3453			set_bit(STRIPE_DELAYED, &sh->state);
3454			set_bit(STRIPE_HANDLE, &sh->state);
3455			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3456					      &sh2->state))
3457				atomic_inc(&conf->preread_active_stripes);
3458			release_stripe(sh2);
3459			goto unlock;
3460		}
3461		if (sh2)
3462			release_stripe(sh2);
3463
3464		/* Need to write out all blocks after computing P&Q */
3465		sh->disks = conf->raid_disks;
3466		stripe_set_idx(sh->sector, conf, 0, sh);
3467		schedule_reconstruction(sh, &s, 1, 1);
3468	} else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3469		clear_bit(STRIPE_EXPAND_READY, &sh->state);
3470		atomic_dec(&conf->reshape_stripes);
3471		wake_up(&conf->wait_for_overlap);
3472		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3473	}
3474
3475	if (s.expanding && s.locked == 0 &&
3476	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3477		handle_stripe_expansion(conf, sh, &r6s);
3478
3479 unlock:
3480	spin_unlock(&sh->lock);
3481
3482	/* wait for this device to become unblocked */
3483	if (unlikely(blocked_rdev))
3484		md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);
3485
3486	if (s.ops_request)
3487		raid_run_ops(sh, s.ops_request);
3488
3489	ops_run_io(sh, &s);
3490
3491	return_io(return_bi);
3492}
3493
3494static void handle_stripe(struct stripe_head *sh)
3495{
3496	if (sh->raid_conf->level == 6)
3497		handle_stripe6(sh);
3498	else
3499		handle_stripe5(sh);
3500}
3501
3502static void raid5_activate_delayed(raid5_conf_t *conf)
3503{
3504	if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
3505		while (!list_empty(&conf->delayed_list)) {
3506			struct list_head *l = conf->delayed_list.next;
3507			struct stripe_head *sh;
3508			sh = list_entry(l, struct stripe_head, lru);
3509			list_del_init(l);
3510			clear_bit(STRIPE_DELAYED, &sh->state);
3511			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3512				atomic_inc(&conf->preread_active_stripes);
3513			list_add_tail(&sh->lru, &conf->hold_list);
3514		}
3515	} else
3516		blk_plug_device(conf->mddev->queue);
3517}
3518
3519static void activate_bit_delay(raid5_conf_t *conf)
3520{
3521	/* device_lock is held */
3522	struct list_head head;
3523	list_add(&head, &conf->bitmap_list);
3524	list_del_init(&conf->bitmap_list);
3525	while (!list_empty(&head)) {
3526		struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
3527		list_del_init(&sh->lru);
3528		atomic_inc(&sh->count);
3529		__release_stripe(conf, sh);
3530	}
3531}
3532
3533static void unplug_slaves(mddev_t *mddev)
3534{
3535	raid5_conf_t *conf = mddev->private;
3536	int i;
3537
3538	rcu_read_lock();
3539	for (i = 0; i < conf->raid_disks; i++) {
3540		mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
3541		if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
3542			struct request_queue *r_queue = bdev_get_queue(rdev->bdev);
3543
3544			atomic_inc(&rdev->nr_pending);
3545			rcu_read_unlock();
3546
3547			blk_unplug(r_queue);
3548
3549			rdev_dec_pending(rdev, mddev);
3550			rcu_read_lock();
3551		}
3552	}
3553	rcu_read_unlock();
3554}
3555
3556static void raid5_unplug_device(struct request_queue *q)
3557{
3558	mddev_t *mddev = q->queuedata;
3559	raid5_conf_t *conf = mddev->private;
3560	unsigned long flags;
3561
3562	spin_lock_irqsave(&conf->device_lock, flags);
3563
3564	if (blk_remove_plug(q)) {
3565		conf->seq_flush++;
3566		raid5_activate_delayed(conf);
3567	}
3568	md_wakeup_thread(mddev->thread);
3569
3570	spin_unlock_irqrestore(&conf->device_lock, flags);
3571
3572	unplug_slaves(mddev);
3573}
3574
3575static int raid5_congested(void *data, int bits)
3576{
3577	mddev_t *mddev = data;
3578	raid5_conf_t *conf = mddev->private;
3579
3580	/* No difference between reads and writes.  Just check
3581	 * how busy the stripe_cache is
3582	 */
3583
3584	if (mddev_congested(mddev, bits))
3585		return 1;
3586	if (conf->inactive_blocked)
3587		return 1;
3588	if (conf->quiesce)
3589		return 1;
3590	if (list_empty_careful(&conf->inactive_list))
3591		return 1;
3592
3593	return 0;
3594}
3595
3596/* We want read requests to align with chunks where possible,
3597 * but write requests don't need to.
3598 */
3599static int raid5_mergeable_bvec(struct request_queue *q,
3600				struct bvec_merge_data *bvm,
3601				struct bio_vec *biovec)
3602{
3603	mddev_t *mddev = q->queuedata;
3604	sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
3605	int max;
3606	unsigned int chunk_sectors = mddev->chunk_sectors;
3607	unsigned int bio_sectors = bvm->bi_size >> 9;
3608
3609	if ((bvm->bi_rw & 1) == WRITE)
3610		return biovec->bv_len; /* always allow writes to be mergeable */
3611
3612	if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3613		chunk_sectors = mddev->new_chunk_sectors;
3614	max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
3615	if (max < 0) max = 0;
3616	if (max <= biovec->bv_len && bio_sectors == 0)
3617		return biovec->bv_len;
3618	else
3619		return max;
3620}
3621
3622
3623static int in_chunk_boundary(mddev_t *mddev, struct bio *bio)
3624{
3625	sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3626	unsigned int chunk_sectors = mddev->chunk_sectors;
3627	unsigned int bio_sectors = bio->bi_size >> 9;
3628
3629	if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3630		chunk_sectors = mddev->new_chunk_sectors;
3631	return  chunk_sectors >=
3632		((sector & (chunk_sectors - 1)) + bio_sectors);
3633}
3634
3635/*
3636 *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
3637 *  later sampled by raid5d.
3638 */
3639static void add_bio_to_retry(struct bio *bi,raid5_conf_t *conf)
3640{
3641	unsigned long flags;
3642
3643	spin_lock_irqsave(&conf->device_lock, flags);
3644
3645	bi->bi_next = conf->retry_read_aligned_list;
3646	conf->retry_read_aligned_list = bi;
3647
3648	spin_unlock_irqrestore(&conf->device_lock, flags);
3649	md_wakeup_thread(conf->mddev->thread);
3650}
3651
3652
3653static struct bio *remove_bio_from_retry(raid5_conf_t *conf)
3654{
3655	struct bio *bi;
3656
3657	bi = conf->retry_read_aligned;
3658	if (bi) {
3659		conf->retry_read_aligned = NULL;
3660		return bi;
3661	}
3662	bi = conf->retry_read_aligned_list;
3663	if(bi) {
3664		conf->retry_read_aligned_list = bi->bi_next;
3665		bi->bi_next = NULL;
3666		/*
3667		 * this sets the active strip count to 1 and the processed
3668		 * strip count to zero (upper 8 bits)
3669		 */
3670		bi->bi_phys_segments = 1; /* biased count of active stripes */
3671	}
3672
3673	return bi;
3674}
3675
3676
3677/*
3678 *  The "raid5_align_endio" should check if the read succeeded and if it
3679 *  did, call bio_endio on the original bio (having bio_put the new bio
3680 *  first).
3681 *  If the read failed..
3682 */
3683static void raid5_align_endio(struct bio *bi, int error)
3684{
3685	struct bio* raid_bi  = bi->bi_private;
3686	mddev_t *mddev;
3687	raid5_conf_t *conf;
3688	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3689	mdk_rdev_t *rdev;
3690
3691	bio_put(bi);
3692
3693	mddev = raid_bi->bi_bdev->bd_disk->queue->queuedata;
3694	conf = mddev->private;
3695	rdev = (void*)raid_bi->bi_next;
3696	raid_bi->bi_next = NULL;
3697
3698	rdev_dec_pending(rdev, conf->mddev);
3699
3700	if (!error && uptodate) {
3701		bio_endio(raid_bi, 0);
3702		if (atomic_dec_and_test(&conf->active_aligned_reads))
3703			wake_up(&conf->wait_for_stripe);
3704		return;
3705	}
3706
3707
3708	pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3709
3710	add_bio_to_retry(raid_bi, conf);
3711}
3712
3713static int bio_fits_rdev(struct bio *bi)
3714{
3715	struct request_queue *q = bdev_get_queue(bi->bi_bdev);
3716
3717	if ((bi->bi_size>>9) > queue_max_sectors(q))
3718		return 0;
3719	blk_recount_segments(q, bi);
3720	if (bi->bi_phys_segments > queue_max_phys_segments(q))
3721		return 0;
3722
3723	if (q->merge_bvec_fn)
3724		/* it's too hard to apply the merge_bvec_fn at this stage,
3725		 * just just give up
3726		 */
3727		return 0;
3728
3729	return 1;
3730}
3731
3732
3733static int chunk_aligned_read(struct request_queue *q, struct bio * raid_bio)
3734{
3735	mddev_t *mddev = q->queuedata;
3736	raid5_conf_t *conf = mddev->private;
3737	unsigned int dd_idx;
3738	struct bio* align_bi;
3739	mdk_rdev_t *rdev;
3740
3741	if (!in_chunk_boundary(mddev, raid_bio)) {
3742		pr_debug("chunk_aligned_read : non aligned\n");
3743		return 0;
3744	}
3745	/*
3746	 * use bio_clone to make a copy of the bio
3747	 */
3748	align_bi = bio_clone(raid_bio, GFP_NOIO);
3749	if (!align_bi)
3750		return 0;
3751	/*
3752	 *   set bi_end_io to a new function, and set bi_private to the
3753	 *     original bio.
3754	 */
3755	align_bi->bi_end_io  = raid5_align_endio;
3756	align_bi->bi_private = raid_bio;
3757	/*
3758	 *	compute position
3759	 */
3760	align_bi->bi_sector =  raid5_compute_sector(conf, raid_bio->bi_sector,
3761						    0,
3762						    &dd_idx, NULL);
3763
3764	rcu_read_lock();
3765	rdev = rcu_dereference(conf->disks[dd_idx].rdev);
3766	if (rdev && test_bit(In_sync, &rdev->flags)) {
3767		atomic_inc(&rdev->nr_pending);
3768		rcu_read_unlock();
3769		raid_bio->bi_next = (void*)rdev;
3770		align_bi->bi_bdev =  rdev->bdev;
3771		align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
3772		align_bi->bi_sector += rdev->data_offset;
3773
3774		if (!bio_fits_rdev(align_bi)) {
3775			/* too big in some way */
3776			bio_put(align_bi);
3777			rdev_dec_pending(rdev, mddev);
3778			return 0;
3779		}
3780
3781		spin_lock_irq(&conf->device_lock);
3782		wait_event_lock_irq(conf->wait_for_stripe,
3783				    conf->quiesce == 0,
3784				    conf->device_lock, /* nothing */);
3785		atomic_inc(&conf->active_aligned_reads);
3786		spin_unlock_irq(&conf->device_lock);
3787
3788		generic_make_request(align_bi);
3789		return 1;
3790	} else {
3791		rcu_read_unlock();
3792		bio_put(align_bi);
3793		return 0;
3794	}
3795}
3796
3797/* __get_priority_stripe - get the next stripe to process
3798 *
3799 * Full stripe writes are allowed to pass preread active stripes up until
3800 * the bypass_threshold is exceeded.  In general the bypass_count
3801 * increments when the handle_list is handled before the hold_list; however, it
3802 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
3803 * stripe with in flight i/o.  The bypass_count will be reset when the
3804 * head of the hold_list has changed, i.e. the head was promoted to the
3805 * handle_list.
3806 */
3807static struct stripe_head *__get_priority_stripe(raid5_conf_t *conf)
3808{
3809	struct stripe_head *sh;
3810
3811	pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
3812		  __func__,
3813		  list_empty(&conf->handle_list) ? "empty" : "busy",
3814		  list_empty(&conf->hold_list) ? "empty" : "busy",
3815		  atomic_read(&conf->pending_full_writes), conf->bypass_count);
3816
3817	if (!list_empty(&conf->handle_list)) {
3818		sh = list_entry(conf->handle_list.next, typeof(*sh), lru);
3819
3820		if (list_empty(&conf->hold_list))
3821			conf->bypass_count = 0;
3822		else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
3823			if (conf->hold_list.next == conf->last_hold)
3824				conf->bypass_count++;
3825			else {
3826				conf->last_hold = conf->hold_list.next;
3827				conf->bypass_count -= conf->bypass_threshold;
3828				if (conf->bypass_count < 0)
3829					conf->bypass_count = 0;
3830			}
3831		}
3832	} else if (!list_empty(&conf->hold_list) &&
3833		   ((conf->bypass_threshold &&
3834		     conf->bypass_count > conf->bypass_threshold) ||
3835		    atomic_read(&conf->pending_full_writes) == 0)) {
3836		sh = list_entry(conf->hold_list.next,
3837				typeof(*sh), lru);
3838		conf->bypass_count -= conf->bypass_threshold;
3839		if (conf->bypass_count < 0)
3840			conf->bypass_count = 0;
3841	} else
3842		return NULL;
3843
3844	list_del_init(&sh->lru);
3845	atomic_inc(&sh->count);
3846	BUG_ON(atomic_read(&sh->count) != 1);
3847	return sh;
3848}
3849
3850static int make_request(struct request_queue *q, struct bio * bi)
3851{
3852	mddev_t *mddev = q->queuedata;
3853	raid5_conf_t *conf = mddev->private;
3854	int dd_idx;
3855	sector_t new_sector;
3856	sector_t logical_sector, last_sector;
3857	struct stripe_head *sh;
3858	const int rw = bio_data_dir(bi);
3859	int cpu, remaining;
3860
3861	if (unlikely(bio_rw_flagged(bi, BIO_RW_BARRIER))) {
3862		bio_endio(bi, -EOPNOTSUPP);
3863		return 0;
3864	}
3865
3866	md_write_start(mddev, bi);
3867
3868	cpu = part_stat_lock();
3869	part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
3870	part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw],
3871		      bio_sectors(bi));
3872	part_stat_unlock();
3873
3874	if (rw == READ &&
3875	     mddev->reshape_position == MaxSector &&
3876	     chunk_aligned_read(q,bi))
3877		return 0;
3878
3879	logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
3880	last_sector = bi->bi_sector + (bi->bi_size>>9);
3881	bi->bi_next = NULL;
3882	bi->bi_phys_segments = 1;	/* over-loaded to count active stripes */
3883
3884	for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
3885		DEFINE_WAIT(w);
3886		int disks, data_disks;
3887		int previous;
3888
3889	retry:
3890		previous = 0;
3891		disks = conf->raid_disks;
3892		prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
3893		if (unlikely(conf->reshape_progress != MaxSector)) {
3894			/* spinlock is needed as reshape_progress may be
3895			 * 64bit on a 32bit platform, and so it might be
3896			 * possible to see a half-updated value
3897			 * Ofcourse reshape_progress could change after
3898			 * the lock is dropped, so once we get a reference
3899			 * to the stripe that we think it is, we will have
3900			 * to check again.
3901			 */
3902			spin_lock_irq(&conf->device_lock);
3903			if (mddev->delta_disks < 0
3904			    ? logical_sector < conf->reshape_progress
3905			    : logical_sector >= conf->reshape_progress) {
3906				disks = conf->previous_raid_disks;
3907				previous = 1;
3908			} else {
3909				if (mddev->delta_disks < 0
3910				    ? logical_sector < conf->reshape_safe
3911				    : logical_sector >= conf->reshape_safe) {
3912					spin_unlock_irq(&conf->device_lock);
3913					schedule();
3914					goto retry;
3915				}
3916			}
3917			spin_unlock_irq(&conf->device_lock);
3918		}
3919		data_disks = disks - conf->max_degraded;
3920
3921		new_sector = raid5_compute_sector(conf, logical_sector,
3922						  previous,
3923						  &dd_idx, NULL);
3924		pr_debug("raid5: make_request, sector %llu logical %llu\n",
3925			(unsigned long long)new_sector,
3926			(unsigned long long)logical_sector);
3927
3928		sh = get_active_stripe(conf, new_sector, previous,
3929				       (bi->bi_rw&RWA_MASK), 0);
3930		if (sh) {
3931			if (unlikely(previous)) {
3932				/* expansion might have moved on while waiting for a
3933				 * stripe, so we must do the range check again.
3934				 * Expansion could still move past after this
3935				 * test, but as we are holding a reference to
3936				 * 'sh', we know that if that happens,
3937				 *  STRIPE_EXPANDING will get set and the expansion
3938				 * won't proceed until we finish with the stripe.
3939				 */
3940				int must_retry = 0;
3941				spin_lock_irq(&conf->device_lock);
3942				if (mddev->delta_disks < 0
3943				    ? logical_sector >= conf->reshape_progress
3944				    : logical_sector < conf->reshape_progress)
3945					/* mismatch, need to try again */
3946					must_retry = 1;
3947				spin_unlock_irq(&conf->device_lock);
3948				if (must_retry) {
3949					release_stripe(sh);
3950					schedule();
3951					goto retry;
3952				}
3953			}
3954
3955			if (bio_data_dir(bi) == WRITE &&
3956			    logical_sector >= mddev->suspend_lo &&
3957			    logical_sector < mddev->suspend_hi) {
3958				release_stripe(sh);
3959				/* As the suspend_* range is controlled by
3960				 * userspace, we want an interruptible
3961				 * wait.
3962				 */
3963				flush_signals(current);
3964				prepare_to_wait(&conf->wait_for_overlap,
3965						&w, TASK_INTERRUPTIBLE);
3966				if (logical_sector >= mddev->suspend_lo &&
3967				    logical_sector < mddev->suspend_hi)
3968					schedule();
3969				goto retry;
3970			}
3971
3972			if (test_bit(STRIPE_EXPANDING, &sh->state) ||
3973			    !add_stripe_bio(sh, bi, dd_idx, (bi->bi_rw&RW_MASK))) {
3974				/* Stripe is busy expanding or
3975				 * add failed due to overlap.  Flush everything
3976				 * and wait a while
3977				 */
3978				raid5_unplug_device(mddev->queue);
3979				release_stripe(sh);
3980				schedule();
3981				goto retry;
3982			}
3983			finish_wait(&conf->wait_for_overlap, &w);
3984			set_bit(STRIPE_HANDLE, &sh->state);
3985			clear_bit(STRIPE_DELAYED, &sh->state);
3986			release_stripe(sh);
3987		} else {
3988			/* cannot get stripe for read-ahead, just give-up */
3989			clear_bit(BIO_UPTODATE, &bi->bi_flags);
3990			finish_wait(&conf->wait_for_overlap, &w);
3991			break;
3992		}
3993
3994	}
3995	spin_lock_irq(&conf->device_lock);
3996	remaining = raid5_dec_bi_phys_segments(bi);
3997	spin_unlock_irq(&conf->device_lock);
3998	if (remaining == 0) {
3999
4000		if ( rw == WRITE )
4001			md_write_end(mddev);
4002
4003		bio_endio(bi, 0);
4004	}
4005	return 0;
4006}
4007
4008static sector_t raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks);
4009
4010static sector_t reshape_request(mddev_t *mddev, sector_t sector_nr, int *skipped)
4011{
4012	/* reshaping is quite different to recovery/resync so it is
4013	 * handled quite separately ... here.
4014	 *
4015	 * On each call to sync_request, we gather one chunk worth of
4016	 * destination stripes and flag them as expanding.
4017	 * Then we find all the source stripes and request reads.
4018	 * As the reads complete, handle_stripe will copy the data
4019	 * into the destination stripe and release that stripe.
4020	 */
4021	raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
4022	struct stripe_head *sh;
4023	sector_t first_sector, last_sector;
4024	int raid_disks = conf->previous_raid_disks;
4025	int data_disks = raid_disks - conf->max_degraded;
4026	int new_data_disks = conf->raid_disks - conf->max_degraded;
4027	int i;
4028	int dd_idx;
4029	sector_t writepos, readpos, safepos;
4030	sector_t stripe_addr;
4031	int reshape_sectors;
4032	struct list_head stripes;
4033
4034	if (sector_nr == 0) {
4035		/* If restarting in the middle, skip the initial sectors */
4036		if (mddev->delta_disks < 0 &&
4037		    conf->reshape_progress < raid5_size(mddev, 0, 0)) {
4038			sector_nr = raid5_size(mddev, 0, 0)
4039				- conf->reshape_progress;
4040		} else if (mddev->delta_disks >= 0 &&
4041			   conf->reshape_progress > 0)
4042			sector_nr = conf->reshape_progress;
4043		sector_div(sector_nr, new_data_disks);
4044		if (sector_nr) {
4045			*skipped = 1;
4046			return sector_nr;
4047		}
4048	}
4049
4050	/* We need to process a full chunk at a time.
4051	 * If old and new chunk sizes differ, we need to process the
4052	 * largest of these
4053	 */
4054	if (mddev->new_chunk_sectors > mddev->chunk_sectors)
4055		reshape_sectors = mddev->new_chunk_sectors;
4056	else
4057		reshape_sectors = mddev->chunk_sectors;
4058
4059	/* we update the metadata when there is more than 3Meg
4060	 * in the block range (that is rather arbitrary, should
4061	 * probably be time based) or when the data about to be
4062	 * copied would over-write the source of the data at
4063	 * the front of the range.
4064	 * i.e. one new_stripe along from reshape_progress new_maps
4065	 * to after where reshape_safe old_maps to
4066	 */
4067	writepos = conf->reshape_progress;
4068	sector_div(writepos, new_data_disks);
4069	readpos = conf->reshape_progress;
4070	sector_div(readpos, data_disks);
4071	safepos = conf->reshape_safe;
4072	sector_div(safepos, data_disks);
4073	if (mddev->delta_disks < 0) {
4074		writepos -= min_t(sector_t, reshape_sectors, writepos);
4075		readpos += reshape_sectors;
4076		safepos += reshape_sectors;
4077	} else {
4078		writepos += reshape_sectors;
4079		readpos -= min_t(sector_t, reshape_sectors, readpos);
4080		safepos -= min_t(sector_t, reshape_sectors, safepos);
4081	}
4082
4083	/* 'writepos' is the most advanced device address we might write.
4084	 * 'readpos' is the least advanced device address we might read.
4085	 * 'safepos' is the least address recorded in the metadata as having
4086	 *     been reshaped.
4087	 * If 'readpos' is behind 'writepos', then there is no way that we can
4088	 * ensure safety in the face of a crash - that must be done by userspace
4089	 * making a backup of the data.  So in that case there is no particular
4090	 * rush to update metadata.
4091	 * Otherwise if 'safepos' is behind 'writepos', then we really need to
4092	 * update the metadata to advance 'safepos' to match 'readpos' so that
4093	 * we can be safe in the event of a crash.
4094	 * So we insist on updating metadata if safepos is behind writepos and
4095	 * readpos is beyond writepos.
4096	 * In any case, update the metadata every 10 seconds.
4097	 * Maybe that number should be configurable, but I'm not sure it is
4098	 * worth it.... maybe it could be a multiple of safemode_delay???
4099	 */
4100	if ((mddev->delta_disks < 0
4101	     ? (safepos > writepos && readpos < writepos)
4102	     : (safepos < writepos && readpos > writepos)) ||
4103	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4104		/* Cannot proceed until we've updated the superblock... */
4105		wait_event(conf->wait_for_overlap,
4106			   atomic_read(&conf->reshape_stripes)==0);
4107		mddev->reshape_position = conf->reshape_progress;
4108		mddev->curr_resync_completed = mddev->curr_resync;
4109		conf->reshape_checkpoint = jiffies;
4110		set_bit(MD_CHANGE_DEVS, &mddev->flags);
4111		md_wakeup_thread(mddev->thread);
4112		wait_event(mddev->sb_wait, mddev->flags == 0 ||
4113			   kthread_should_stop());
4114		spin_lock_irq(&conf->device_lock);
4115		conf->reshape_safe = mddev->reshape_position;
4116		spin_unlock_irq(&conf->device_lock);
4117		wake_up(&conf->wait_for_overlap);
4118		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4119	}
4120
4121	if (mddev->delta_disks < 0) {
4122		BUG_ON(conf->reshape_progress == 0);
4123		stripe_addr = writepos;
4124		BUG_ON((mddev->dev_sectors &
4125			~((sector_t)reshape_sectors - 1))
4126		       - reshape_sectors - stripe_addr
4127		       != sector_nr);
4128	} else {
4129		BUG_ON(writepos != sector_nr + reshape_sectors);
4130		stripe_addr = sector_nr;
4131	}
4132	INIT_LIST_HEAD(&stripes);
4133	for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
4134		int j;
4135		int skipped_disk = 0;
4136		sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
4137		set_bit(STRIPE_EXPANDING, &sh->state);
4138		atomic_inc(&conf->reshape_stripes);
4139		/* If any of this stripe is beyond the end of the old
4140		 * array, then we need to zero those blocks
4141		 */
4142		for (j=sh->disks; j--;) {
4143			sector_t s;
4144			if (j == sh->pd_idx)
4145				continue;
4146			if (conf->level == 6 &&
4147			    j == sh->qd_idx)
4148				continue;
4149			s = compute_blocknr(sh, j, 0);
4150			if (s < raid5_size(mddev, 0, 0)) {
4151				skipped_disk = 1;
4152				continue;
4153			}
4154			memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
4155			set_bit(R5_Expanded, &sh->dev[j].flags);
4156			set_bit(R5_UPTODATE, &sh->dev[j].flags);
4157		}
4158		if (!skipped_disk) {
4159			set_bit(STRIPE_EXPAND_READY, &sh->state);
4160			set_bit(STRIPE_HANDLE, &sh->state);
4161		}
4162		list_add(&sh->lru, &stripes);
4163	}
4164	spin_lock_irq(&conf->device_lock);
4165	if (mddev->delta_disks < 0)
4166		conf->reshape_progress -= reshape_sectors * new_data_disks;
4167	else
4168		conf->reshape_progress += reshape_sectors * new_data_disks;
4169	spin_unlock_irq(&conf->device_lock);
4170	/* Ok, those stripe are ready. We can start scheduling
4171	 * reads on the source stripes.
4172	 * The source stripes are determined by mapping the first and last
4173	 * block on the destination stripes.
4174	 */
4175	first_sector =
4176		raid5_compute_sector(conf, stripe_addr*(new_data_disks),
4177				     1, &dd_idx, NULL);
4178	last_sector =
4179		raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
4180					    * new_data_disks - 1),
4181				     1, &dd_idx, NULL);
4182	if (last_sector >= mddev->dev_sectors)
4183		last_sector = mddev->dev_sectors - 1;
4184	while (first_sector <= last_sector) {
4185		sh = get_active_stripe(conf, first_sector, 1, 0, 1);
4186		set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4187		set_bit(STRIPE_HANDLE, &sh->state);
4188		release_stripe(sh);
4189		first_sector += STRIPE_SECTORS;
4190	}
4191	/* Now that the sources are clearly marked, we can release
4192	 * the destination stripes
4193	 */
4194	while (!list_empty(&stripes)) {
4195		sh = list_entry(stripes.next, struct stripe_head, lru);
4196		list_del_init(&sh->lru);
4197		release_stripe(sh);
4198	}
4199	/* If this takes us to the resync_max point where we have to pause,
4200	 * then we need to write out the superblock.
4201	 */
4202	sector_nr += reshape_sectors;
4203	if ((sector_nr - mddev->curr_resync_completed) * 2
4204	    >= mddev->resync_max - mddev->curr_resync_completed) {
4205		/* Cannot proceed until we've updated the superblock... */
4206		wait_event(conf->wait_for_overlap,
4207			   atomic_read(&conf->reshape_stripes) == 0);
4208		mddev->reshape_position = conf->reshape_progress;
4209		mddev->curr_resync_completed = mddev->curr_resync + reshape_sectors;
4210		conf->reshape_checkpoint = jiffies;
4211		set_bit(MD_CHANGE_DEVS, &mddev->flags);
4212		md_wakeup_thread(mddev->thread);
4213		wait_event(mddev->sb_wait,
4214			   !test_bit(MD_CHANGE_DEVS, &mddev->flags)
4215			   || kthread_should_stop());
4216		spin_lock_irq(&conf->device_lock);
4217		conf->reshape_safe = mddev->reshape_position;
4218		spin_unlock_irq(&conf->device_lock);
4219		wake_up(&conf->wait_for_overlap);
4220		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4221	}
4222	return reshape_sectors;
4223}
4224
4225/* FIXME go_faster isn't used */
4226static inline sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
4227{
4228	raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
4229	struct stripe_head *sh;
4230	sector_t max_sector = mddev->dev_sectors;
4231	int sync_blocks;
4232	int still_degraded = 0;
4233	int i;
4234
4235	if (sector_nr >= max_sector) {
4236		/* just being told to finish up .. nothing much to do */
4237		unplug_slaves(mddev);
4238
4239		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
4240			end_reshape(conf);
4241			return 0;
4242		}
4243
4244		if (mddev->curr_resync < max_sector) /* aborted */
4245			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
4246					&sync_blocks, 1);
4247		else /* completed sync */
4248			conf->fullsync = 0;
4249		bitmap_close_sync(mddev->bitmap);
4250
4251		return 0;
4252	}
4253
4254	/* Allow raid5_quiesce to complete */
4255	wait_event(conf->wait_for_overlap, conf->quiesce != 2);
4256
4257	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4258		return reshape_request(mddev, sector_nr, skipped);
4259
4260	/* No need to check resync_max as we never do more than one
4261	 * stripe, and as resync_max will always be on a chunk boundary,
4262	 * if the check in md_do_sync didn't fire, there is no chance
4263	 * of overstepping resync_max here
4264	 */
4265
4266	/* if there is too many failed drives and we are trying
4267	 * to resync, then assert that we are finished, because there is
4268	 * nothing we can do.
4269	 */
4270	if (mddev->degraded >= conf->max_degraded &&
4271	    test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4272		sector_t rv = mddev->dev_sectors - sector_nr;
4273		*skipped = 1;
4274		return rv;
4275	}
4276	if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
4277	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
4278	    !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
4279		/* we can skip this block, and probably more */
4280		sync_blocks /= STRIPE_SECTORS;
4281		*skipped = 1;
4282		return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
4283	}
4284
4285
4286	bitmap_cond_end_sync(mddev->bitmap, sector_nr);
4287
4288	sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
4289	if (sh == NULL) {
4290		sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
4291		/* make sure we don't swamp the stripe cache if someone else
4292		 * is trying to get access
4293		 */
4294		schedule_timeout_uninterruptible(1);
4295	}
4296	/* Need to check if array will still be degraded after recovery/resync
4297	 * We don't need to check the 'failed' flag as when that gets set,
4298	 * recovery aborts.
4299	 */
4300	for (i = 0; i < conf->raid_disks; i++)
4301		if (conf->disks[i].rdev == NULL)
4302			still_degraded = 1;
4303
4304	bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
4305
4306	spin_lock(&sh->lock);
4307	set_bit(STRIPE_SYNCING, &sh->state);
4308	clear_bit(STRIPE_INSYNC, &sh->state);
4309	spin_unlock(&sh->lock);
4310
4311	handle_stripe(sh);
4312	release_stripe(sh);
4313
4314	return STRIPE_SECTORS;
4315}
4316
4317static int  retry_aligned_read(raid5_conf_t *conf, struct bio *raid_bio)
4318{
4319	/* We may not be able to submit a whole bio at once as there
4320	 * may not be enough stripe_heads available.
4321	 * We cannot pre-allocate enough stripe_heads as we may need
4322	 * more than exist in the cache (if we allow ever large chunks).
4323	 * So we do one stripe head at a time and record in
4324	 * ->bi_hw_segments how many have been done.
4325	 *
4326	 * We *know* that this entire raid_bio is in one chunk, so
4327	 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
4328	 */
4329	struct stripe_head *sh;
4330	int dd_idx;
4331	sector_t sector, logical_sector, last_sector;
4332	int scnt = 0;
4333	int remaining;
4334	int handled = 0;
4335
4336	logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4337	sector = raid5_compute_sector(conf, logical_sector,
4338				      0, &dd_idx, NULL);
4339	last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);
4340
4341	for (; logical_sector < last_sector;
4342	     logical_sector += STRIPE_SECTORS,
4343		     sector += STRIPE_SECTORS,
4344		     scnt++) {
4345
4346		if (scnt < raid5_bi_hw_segments(raid_bio))
4347			/* already done this stripe */
4348			continue;
4349
4350		sh = get_active_stripe(conf, sector, 0, 1, 0);
4351
4352		if (!sh) {
4353			/* failed to get a stripe - must wait */
4354			raid5_set_bi_hw_segments(raid_bio, scnt);
4355			conf->retry_read_aligned = raid_bio;
4356			return handled;
4357		}
4358
4359		set_bit(R5_ReadError, &sh->dev[dd_idx].flags);
4360		if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
4361			release_stripe(sh);
4362			raid5_set_bi_hw_segments(raid_bio, scnt);
4363			conf->retry_read_aligned = raid_bio;
4364			return handled;
4365		}
4366
4367		handle_stripe(sh);
4368		release_stripe(sh);
4369		handled++;
4370	}
4371	spin_lock_irq(&conf->device_lock);
4372	remaining = raid5_dec_bi_phys_segments(raid_bio);
4373	spin_unlock_irq(&conf->device_lock);
4374	if (remaining == 0)
4375		bio_endio(raid_bio, 0);
4376	if (atomic_dec_and_test(&conf->active_aligned_reads))
4377		wake_up(&conf->wait_for_stripe);
4378	return handled;
4379}
4380
4381
4382/*
4383 * This is our raid5 kernel thread.
4384 *
4385 * We scan the hash table for stripes which can be handled now.
4386 * During the scan, completed stripes are saved for us by the interrupt
4387 * handler, so that they will not have to wait for our next wakeup.
4388 */
4389static void raid5d(mddev_t *mddev)
4390{
4391	struct stripe_head *sh;
4392	raid5_conf_t *conf = mddev->private;
4393	int handled;
4394
4395	pr_debug("+++ raid5d active\n");
4396
4397	md_check_recovery(mddev);
4398
4399	handled = 0;
4400	spin_lock_irq(&conf->device_lock);
4401	while (1) {
4402		struct bio *bio;
4403
4404		if (conf->seq_flush != conf->seq_write) {
4405			int seq = conf->seq_flush;
4406			spin_unlock_irq(&conf->device_lock);
4407			bitmap_unplug(mddev->bitmap);
4408			spin_lock_irq(&conf->device_lock);
4409			conf->seq_write = seq;
4410			activate_bit_delay(conf);
4411		}
4412
4413		while ((bio = remove_bio_from_retry(conf))) {
4414			int ok;
4415			spin_unlock_irq(&conf->device_lock);
4416			ok = retry_aligned_read(conf, bio);
4417			spin_lock_irq(&conf->device_lock);
4418			if (!ok)
4419				break;
4420			handled++;
4421		}
4422
4423		sh = __get_priority_stripe(conf);
4424
4425		if (!sh)
4426			break;
4427		spin_unlock_irq(&conf->device_lock);
4428
4429		handled++;
4430		handle_stripe(sh);
4431		release_stripe(sh);
4432		cond_resched();
4433
4434		spin_lock_irq(&conf->device_lock);
4435	}
4436	pr_debug("%d stripes handled\n", handled);
4437
4438	spin_unlock_irq(&conf->device_lock);
4439
4440	async_tx_issue_pending_all();
4441	unplug_slaves(mddev);
4442
4443	pr_debug("--- raid5d inactive\n");
4444}
4445
4446static ssize_t
4447raid5_show_stripe_cache_size(mddev_t *mddev, char *page)
4448{
4449	raid5_conf_t *conf = mddev->private;
4450	if (conf)
4451		return sprintf(page, "%d\n", conf->max_nr_stripes);
4452	else
4453		return 0;
4454}
4455
4456static ssize_t
4457raid5_store_stripe_cache_size(mddev_t *mddev, const char *page, size_t len)
4458{
4459	raid5_conf_t *conf = mddev->private;
4460	unsigned long new;
4461	int err;
4462
4463	if (len >= PAGE_SIZE)
4464		return -EINVAL;
4465	if (!conf)
4466		return -ENODEV;
4467
4468	if (strict_strtoul(page, 10, &new))
4469		return -EINVAL;
4470	if (new <= 16 || new > 32768)
4471		return -EINVAL;
4472	while (new < conf->max_nr_stripes) {
4473		if (drop_one_stripe(conf))
4474			conf->max_nr_stripes--;
4475		else
4476			break;
4477	}
4478	err = md_allow_write(mddev);
4479	if (err)
4480		return err;
4481	while (new > conf->max_nr_stripes) {
4482		if (grow_one_stripe(conf))
4483			conf->max_nr_stripes++;
4484		else break;
4485	}
4486	return len;
4487}
4488
4489static struct md_sysfs_entry
4490raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
4491				raid5_show_stripe_cache_size,
4492				raid5_store_stripe_cache_size);
4493
4494static ssize_t
4495raid5_show_preread_threshold(mddev_t *mddev, char *page)
4496{
4497	raid5_conf_t *conf = mddev->private;
4498	if (conf)
4499		return sprintf(page, "%d\n", conf->bypass_threshold);
4500	else
4501		return 0;
4502}
4503
4504static ssize_t
4505raid5_store_preread_threshold(mddev_t *mddev, const char *page, size_t len)
4506{
4507	raid5_conf_t *conf = mddev->private;
4508	unsigned long new;
4509	if (len >= PAGE_SIZE)
4510		return -EINVAL;
4511	if (!conf)
4512		return -ENODEV;
4513
4514	if (strict_strtoul(page, 10, &new))
4515		return -EINVAL;
4516	if (new > conf->max_nr_stripes)
4517		return -EINVAL;
4518	conf->bypass_threshold = new;
4519	return len;
4520}
4521
4522static struct md_sysfs_entry
4523raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
4524					S_IRUGO | S_IWUSR,
4525					raid5_show_preread_threshold,
4526					raid5_store_preread_threshold);
4527
4528static ssize_t
4529stripe_cache_active_show(mddev_t *mddev, char *page)
4530{
4531	raid5_conf_t *conf = mddev->private;
4532	if (conf)
4533		return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
4534	else
4535		return 0;
4536}
4537
4538static struct md_sysfs_entry
4539raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
4540
4541static struct attribute *raid5_attrs[] =  {
4542	&raid5_stripecache_size.attr,
4543	&raid5_stripecache_active.attr,
4544	&raid5_preread_bypass_threshold.attr,
4545	NULL,
4546};
4547static struct attribute_group raid5_attrs_group = {
4548	.name = NULL,
4549	.attrs = raid5_attrs,
4550};
4551
4552static sector_t
4553raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks)
4554{
4555	raid5_conf_t *conf = mddev->private;
4556
4557	if (!sectors)
4558		sectors = mddev->dev_sectors;
4559	if (!raid_disks) {
4560		/* size is defined by the smallest of previous and new size */
4561		if (conf->raid_disks < conf->previous_raid_disks)
4562			raid_disks = conf->raid_disks;
4563		else
4564			raid_disks = conf->previous_raid_disks;
4565	}
4566
4567	sectors &= ~((sector_t)mddev->chunk_sectors - 1);
4568	sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
4569	return sectors * (raid_disks - conf->max_degraded);
4570}
4571
4572static void raid5_free_percpu(raid5_conf_t *conf)
4573{
4574	struct raid5_percpu *percpu;
4575	unsigned long cpu;
4576
4577	if (!conf->percpu)
4578		return;
4579
4580	get_online_cpus();
4581	for_each_possible_cpu(cpu) {
4582		percpu = per_cpu_ptr(conf->percpu, cpu);
4583		safe_put_page(percpu->spare_page);
4584		kfree(percpu->scribble);
4585	}
4586#ifdef CONFIG_HOTPLUG_CPU
4587	unregister_cpu_notifier(&conf->cpu_notify);
4588#endif
4589	put_online_cpus();
4590
4591	free_percpu(conf->percpu);
4592}
4593
4594static void free_conf(raid5_conf_t *conf)
4595{
4596	shrink_stripes(conf);
4597	raid5_free_percpu(conf);
4598	kfree(conf->disks);
4599	kfree(conf->stripe_hashtbl);
4600	kfree(conf);
4601}
4602
4603#ifdef CONFIG_HOTPLUG_CPU
4604static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
4605			      void *hcpu)
4606{
4607	raid5_conf_t *conf = container_of(nfb, raid5_conf_t, cpu_notify);
4608	long cpu = (long)hcpu;
4609	struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
4610
4611	switch (action) {
4612	case CPU_UP_PREPARE:
4613	case CPU_UP_PREPARE_FROZEN:
4614		if (conf->level == 6 && !percpu->spare_page)
4615			percpu->spare_page = alloc_page(GFP_KERNEL);
4616		if (!percpu->scribble)
4617			percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4618
4619		if (!percpu->scribble ||
4620		    (conf->level == 6 && !percpu->spare_page)) {
4621			safe_put_page(percpu->spare_page);
4622			kfree(percpu->scribble);
4623			pr_err("%s: failed memory allocation for cpu%ld\n",
4624			       __func__, cpu);
4625			return NOTIFY_BAD;
4626		}
4627		break;
4628	case CPU_DEAD:
4629	case CPU_DEAD_FROZEN:
4630		safe_put_page(percpu->spare_page);
4631		kfree(percpu->scribble);
4632		percpu->spare_page = NULL;
4633		percpu->scribble = NULL;
4634		break;
4635	default:
4636		break;
4637	}
4638	return NOTIFY_OK;
4639}
4640#endif
4641
4642static int raid5_alloc_percpu(raid5_conf_t *conf)
4643{
4644	unsigned long cpu;
4645	struct page *spare_page;
4646	struct raid5_percpu *allcpus;
4647	void *scribble;
4648	int err;
4649
4650	allcpus = alloc_percpu(struct raid5_percpu);
4651	if (!allcpus)
4652		return -ENOMEM;
4653	conf->percpu = allcpus;
4654
4655	get_online_cpus();
4656	err = 0;
4657	for_each_present_cpu(cpu) {
4658		if (conf->level == 6) {
4659			spare_page = alloc_page(GFP_KERNEL);
4660			if (!spare_page) {
4661				err = -ENOMEM;
4662				break;
4663			}
4664			per_cpu_ptr(conf->percpu, cpu)->spare_page = spare_page;
4665		}
4666		scribble = kmalloc(scribble_len(conf->raid_disks), GFP_KERNEL);
4667		if (!scribble) {
4668			err = -ENOMEM;
4669			break;
4670		}
4671		per_cpu_ptr(conf->percpu, cpu)->scribble = scribble;
4672	}
4673#ifdef CONFIG_HOTPLUG_CPU
4674	conf->cpu_notify.notifier_call = raid456_cpu_notify;
4675	conf->cpu_notify.priority = 0;
4676	if (err == 0)
4677		err = register_cpu_notifier(&conf->cpu_notify);
4678#endif
4679	put_online_cpus();
4680
4681	return err;
4682}
4683
4684static raid5_conf_t *setup_conf(mddev_t *mddev)
4685{
4686	raid5_conf_t *conf;
4687	int raid_disk, memory;
4688	mdk_rdev_t *rdev;
4689	struct disk_info *disk;
4690
4691	if (mddev->new_level != 5
4692	    && mddev->new_level != 4
4693	    && mddev->new_level != 6) {
4694		printk(KERN_ERR "raid5: %s: raid level not set to 4/5/6 (%d)\n",
4695		       mdname(mddev), mddev->new_level);
4696		return ERR_PTR(-EIO);
4697	}
4698	if ((mddev->new_level == 5
4699	     && !algorithm_valid_raid5(mddev->new_layout)) ||
4700	    (mddev->new_level == 6
4701	     && !algorithm_valid_raid6(mddev->new_layout))) {
4702		printk(KERN_ERR "raid5: %s: layout %d not supported\n",
4703		       mdname(mddev), mddev->new_layout);
4704		return ERR_PTR(-EIO);
4705	}
4706	if (mddev->new_level == 6 && mddev->raid_disks < 4) {
4707		printk(KERN_ERR "raid6: not enough configured devices for %s (%d, minimum 4)\n",
4708		       mdname(mddev), mddev->raid_disks);
4709		return ERR_PTR(-EINVAL);
4710	}
4711
4712	if (!mddev->new_chunk_sectors ||
4713	    (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
4714	    !is_power_of_2(mddev->new_chunk_sectors)) {
4715		printk(KERN_ERR "raid5: invalid chunk size %d for %s\n",
4716		       mddev->new_chunk_sectors << 9, mdname(mddev));
4717		return ERR_PTR(-EINVAL);
4718	}
4719
4720	conf = kzalloc(sizeof(raid5_conf_t), GFP_KERNEL);
4721	if (conf == NULL)
4722		goto abort;
4723	spin_lock_init(&conf->device_lock);
4724	init_waitqueue_head(&conf->wait_for_stripe);
4725	init_waitqueue_head(&conf->wait_for_overlap);
4726	INIT_LIST_HEAD(&conf->handle_list);
4727	INIT_LIST_HEAD(&conf->hold_list);
4728	INIT_LIST_HEAD(&conf->delayed_list);
4729	INIT_LIST_HEAD(&conf->bitmap_list);
4730	INIT_LIST_HEAD(&conf->inactive_list);
4731	atomic_set(&conf->active_stripes, 0);
4732	atomic_set(&conf->preread_active_stripes, 0);
4733	atomic_set(&conf->active_aligned_reads, 0);
4734	conf->bypass_threshold = BYPASS_THRESHOLD;
4735
4736	conf->raid_disks = mddev->raid_disks;
4737	conf->scribble_len = scribble_len(conf->raid_disks);
4738	if (mddev->reshape_position == MaxSector)
4739		conf->previous_raid_disks = mddev->raid_disks;
4740	else
4741		conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
4742
4743	conf->disks = kzalloc(conf->raid_disks * sizeof(struct disk_info),
4744			      GFP_KERNEL);
4745	if (!conf->disks)
4746		goto abort;
4747
4748	conf->mddev = mddev;
4749
4750	if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
4751		goto abort;
4752
4753	conf->level = mddev->new_level;
4754	if (raid5_alloc_percpu(conf) != 0)
4755		goto abort;
4756
4757	pr_debug("raid5: run(%s) called.\n", mdname(mddev));
4758
4759	list_for_each_entry(rdev, &mddev->disks, same_set) {
4760		raid_disk = rdev->raid_disk;
4761		if (raid_disk >= conf->raid_disks
4762		    || raid_disk < 0)
4763			continue;
4764		disk = conf->disks + raid_disk;
4765
4766		disk->rdev = rdev;
4767
4768		if (test_bit(In_sync, &rdev->flags)) {
4769			char b[BDEVNAME_SIZE];
4770			printk(KERN_INFO "raid5: device %s operational as raid"
4771				" disk %d\n", bdevname(rdev->bdev,b),
4772				raid_disk);
4773		} else
4774			/* Cannot rely on bitmap to complete recovery */
4775			conf->fullsync = 1;
4776	}
4777
4778	conf->chunk_sectors = mddev->new_chunk_sectors;
4779	conf->level = mddev->new_level;
4780	if (conf->level == 6)
4781		conf->max_degraded = 2;
4782	else
4783		conf->max_degraded = 1;
4784	conf->algorithm = mddev->new_layout;
4785	conf->max_nr_stripes = NR_STRIPES;
4786	conf->reshape_progress = mddev->reshape_position;
4787	if (conf->reshape_progress != MaxSector) {
4788		conf->prev_chunk_sectors = mddev->chunk_sectors;
4789		conf->prev_algo = mddev->layout;
4790	}
4791
4792	memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
4793		 conf->raid_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
4794	if (grow_stripes(conf, conf->max_nr_stripes)) {
4795		printk(KERN_ERR
4796			"raid5: couldn't allocate %dkB for buffers\n", memory);
4797		goto abort;
4798	} else
4799		printk(KERN_INFO "raid5: allocated %dkB for %s\n",
4800			memory, mdname(mddev));
4801
4802	conf->thread = md_register_thread(raid5d, mddev, NULL);
4803	if (!conf->thread) {
4804		printk(KERN_ERR
4805		       "raid5: couldn't allocate thread for %s\n",
4806		       mdname(mddev));
4807		goto abort;
4808	}
4809
4810	return conf;
4811
4812 abort:
4813	if (conf) {
4814		free_conf(conf);
4815		return ERR_PTR(-EIO);
4816	} else
4817		return ERR_PTR(-ENOMEM);
4818}
4819
4820static int run(mddev_t *mddev)
4821{
4822	raid5_conf_t *conf;
4823	int working_disks = 0, chunk_size;
4824	mdk_rdev_t *rdev;
4825
4826	if (mddev->recovery_cp != MaxSector)
4827		printk(KERN_NOTICE "raid5: %s is not clean"
4828		       " -- starting background reconstruction\n",
4829		       mdname(mddev));
4830	if (mddev->reshape_position != MaxSector) {
4831		/* Check that we can continue the reshape.
4832		 * Currently only disks can change, it must
4833		 * increase, and we must be past the point where
4834		 * a stripe over-writes itself
4835		 */
4836		sector_t here_new, here_old;
4837		int old_disks;
4838		int max_degraded = (mddev->level == 6 ? 2 : 1);
4839
4840		if (mddev->new_level != mddev->level) {
4841			printk(KERN_ERR "raid5: %s: unsupported reshape "
4842			       "required - aborting.\n",
4843			       mdname(mddev));
4844			return -EINVAL;
4845		}
4846		old_disks = mddev->raid_disks - mddev->delta_disks;
4847		/* reshape_position must be on a new-stripe boundary, and one
4848		 * further up in new geometry must map after here in old
4849		 * geometry.
4850		 */
4851		here_new = mddev->reshape_position;
4852		if (sector_div(here_new, mddev->new_chunk_sectors *
4853			       (mddev->raid_disks - max_degraded))) {
4854			printk(KERN_ERR "raid5: reshape_position not "
4855			       "on a stripe boundary\n");
4856			return -EINVAL;
4857		}
4858		/* here_new is the stripe we will write to */
4859		here_old = mddev->reshape_position;
4860		sector_div(here_old, mddev->chunk_sectors *
4861			   (old_disks-max_degraded));
4862		/* here_old is the first stripe that we might need to read
4863		 * from */
4864		if (mddev->delta_disks == 0) {
4865			/* We cannot be sure it is safe to start an in-place
4866			 * reshape.  It is only safe if user-space if monitoring
4867			 * and taking constant backups.
4868			 * mdadm always starts a situation like this in
4869			 * readonly mode so it can take control before
4870			 * allowing any writes.  So just check for that.
4871			 */
4872			if ((here_new * mddev->new_chunk_sectors !=
4873			     here_old * mddev->chunk_sectors) ||
4874			    mddev->ro == 0) {
4875				printk(KERN_ERR "raid5: in-place reshape must be started"
4876				       " in read-only mode - aborting\n");
4877				return -EINVAL;
4878			}
4879		} else if (mddev->delta_disks < 0
4880		    ? (here_new * mddev->new_chunk_sectors <=
4881		       here_old * mddev->chunk_sectors)
4882		    : (here_new * mddev->new_chunk_sectors >=
4883		       here_old * mddev->chunk_sectors)) {
4884			/* Reading from the same stripe as writing to - bad */
4885			printk(KERN_ERR "raid5: reshape_position too early for "
4886			       "auto-recovery - aborting.\n");
4887			return -EINVAL;
4888		}
4889		printk(KERN_INFO "raid5: reshape will continue\n");
4890		/* OK, we should be able to continue; */
4891	} else {
4892		BUG_ON(mddev->level != mddev->new_level);
4893		BUG_ON(mddev->layout != mddev->new_layout);
4894		BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
4895		BUG_ON(mddev->delta_disks != 0);
4896	}
4897
4898	if (mddev->private == NULL)
4899		conf = setup_conf(mddev);
4900	else
4901		conf = mddev->private;
4902
4903	if (IS_ERR(conf))
4904		return PTR_ERR(conf);
4905
4906	mddev->thread = conf->thread;
4907	conf->thread = NULL;
4908	mddev->private = conf;
4909
4910	/*
4911	 * 0 for a fully functional array, 1 or 2 for a degraded array.
4912	 */
4913	list_for_each_entry(rdev, &mddev->disks, same_set)
4914		if (rdev->raid_disk >= 0 &&
4915		    test_bit(In_sync, &rdev->flags))
4916			working_disks++;
4917
4918	mddev->degraded = conf->raid_disks - working_disks;
4919
4920	if (mddev->degraded > conf->max_degraded) {
4921		printk(KERN_ERR "raid5: not enough operational devices for %s"
4922			" (%d/%d failed)\n",
4923			mdname(mddev), mddev->degraded, conf->raid_disks);
4924		goto abort;
4925	}
4926
4927	/* device size must be a multiple of chunk size */
4928	mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
4929	mddev->resync_max_sectors = mddev->dev_sectors;
4930
4931	if (mddev->degraded > 0 &&
4932	    mddev->recovery_cp != MaxSector) {
4933		if (mddev->ok_start_degraded)
4934			printk(KERN_WARNING
4935			       "raid5: starting dirty degraded array: %s"
4936			       "- data corruption possible.\n",
4937			       mdname(mddev));
4938		else {
4939			printk(KERN_ERR
4940			       "raid5: cannot start dirty degraded array for %s\n",
4941			       mdname(mddev));
4942			goto abort;
4943		}
4944	}
4945
4946	if (mddev->degraded == 0)
4947		printk("raid5: raid level %d set %s active with %d out of %d"
4948		       " devices, algorithm %d\n", conf->level, mdname(mddev),
4949		       mddev->raid_disks-mddev->degraded, mddev->raid_disks,
4950		       mddev->new_layout);
4951	else
4952		printk(KERN_ALERT "raid5: raid level %d set %s active with %d"
4953			" out of %d devices, algorithm %d\n", conf->level,
4954			mdname(mddev), mddev->raid_disks - mddev->degraded,
4955			mddev->raid_disks, mddev->new_layout);
4956
4957	print_raid5_conf(conf);
4958
4959	if (conf->reshape_progress != MaxSector) {
4960		printk("...ok start reshape thread\n");
4961		conf->reshape_safe = conf->reshape_progress;
4962		atomic_set(&conf->reshape_stripes, 0);
4963		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4964		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4965		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4966		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4967		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4968							"reshape");
4969	}
4970
4971	/* read-ahead size must cover two whole stripes, which is
4972	 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4973	 */
4974	{
4975		int data_disks = conf->previous_raid_disks - conf->max_degraded;
4976		int stripe = data_disks *
4977			((mddev->chunk_sectors << 9) / PAGE_SIZE);
4978		if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4979			mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4980	}
4981
4982	/* Ok, everything is just fine now */
4983	if (sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
4984		printk(KERN_WARNING
4985		       "raid5: failed to create sysfs attributes for %s\n",
4986		       mdname(mddev));
4987
4988	mddev->queue->queue_lock = &conf->device_lock;
4989
4990	mddev->queue->unplug_fn = raid5_unplug_device;
4991	mddev->queue->backing_dev_info.congested_data = mddev;
4992	mddev->queue->backing_dev_info.congested_fn = raid5_congested;
4993
4994	md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
4995
4996	blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
4997	chunk_size = mddev->chunk_sectors << 9;
4998	blk_queue_io_min(mddev->queue, chunk_size);
4999	blk_queue_io_opt(mddev->queue, chunk_size *
5000			 (conf->raid_disks - conf->max_degraded));
5001
5002	list_for_each_entry(rdev, &mddev->disks, same_set)
5003		disk_stack_limits(mddev->gendisk, rdev->bdev,
5004				  rdev->data_offset << 9);
5005
5006	return 0;
5007abort:
5008	md_unregister_thread(mddev->thread);
5009	mddev->thread = NULL;
5010	if (conf) {
5011		print_raid5_conf(conf);
5012		free_conf(conf);
5013	}
5014	mddev->private = NULL;
5015	printk(KERN_ALERT "raid5: failed to run raid set %s\n", mdname(mddev));
5016	return -EIO;
5017}
5018
5019
5020
5021static int stop(mddev_t *mddev)
5022{
5023	raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
5024
5025	md_unregister_thread(mddev->thread);
5026	mddev->thread = NULL;
5027	mddev->queue->backing_dev_info.congested_fn = NULL;
5028	blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
5029	sysfs_remove_group(&mddev->kobj, &raid5_attrs_group);
5030	free_conf(conf);
5031	mddev->private = NULL;
5032	return 0;
5033}
5034
5035#ifdef DEBUG
5036static void print_sh(struct seq_file *seq, struct stripe_head *sh)
5037{
5038	int i;
5039
5040	seq_printf(seq, "sh %llu, pd_idx %d, state %ld.\n",
5041		   (unsigned long long)sh->sector, sh->pd_idx, sh->state);
5042	seq_printf(seq, "sh %llu,  count %d.\n",
5043		   (unsigned long long)sh->sector, atomic_read(&sh->count));
5044	seq_printf(seq, "sh %llu, ", (unsigned long long)sh->sector);
5045	for (i = 0; i < sh->disks; i++) {
5046		seq_printf(seq, "(cache%d: %p %ld) ",
5047			   i, sh->dev[i].page, sh->dev[i].flags);
5048	}
5049	seq_printf(seq, "\n");
5050}
5051
5052static void printall(struct seq_file *seq, raid5_conf_t *conf)
5053{
5054	struct stripe_head *sh;
5055	struct hlist_node *hn;
5056	int i;
5057
5058	spin_lock_irq(&conf->device_lock);
5059	for (i = 0; i < NR_HASH; i++) {
5060		hlist_for_each_entry(sh, hn, &conf->stripe_hashtbl[i], hash) {
5061			if (sh->raid_conf != conf)
5062				continue;
5063			print_sh(seq, sh);
5064		}
5065	}
5066	spin_unlock_irq(&conf->device_lock);
5067}
5068#endif
5069
5070static void status(struct seq_file *seq, mddev_t *mddev)
5071{
5072	raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
5073	int i;
5074
5075	seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
5076		mddev->chunk_sectors / 2, mddev->layout);
5077	seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
5078	for (i = 0; i < conf->raid_disks; i++)
5079		seq_printf (seq, "%s",
5080			       conf->disks[i].rdev &&
5081			       test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
5082	seq_printf (seq, "]");
5083#ifdef DEBUG
5084	seq_printf (seq, "\n");
5085	printall(seq, conf);
5086#endif
5087}
5088
5089static void print_raid5_conf (raid5_conf_t *conf)
5090{
5091	int i;
5092	struct disk_info *tmp;
5093
5094	printk("RAID5 conf printout:\n");
5095	if (!conf) {
5096		printk("(conf==NULL)\n");
5097		return;
5098	}
5099	printk(" --- rd:%d wd:%d\n", conf->raid_disks,
5100		 conf->raid_disks - conf->mddev->degraded);
5101
5102	for (i = 0; i < conf->raid_disks; i++) {
5103		char b[BDEVNAME_SIZE];
5104		tmp = conf->disks + i;
5105		if (tmp->rdev)
5106		printk(" disk %d, o:%d, dev:%s\n",
5107			i, !test_bit(Faulty, &tmp->rdev->flags),
5108			bdevname(tmp->rdev->bdev,b));
5109	}
5110}
5111
5112static int raid5_spare_active(mddev_t *mddev)
5113{
5114	int i;
5115	raid5_conf_t *conf = mddev->private;
5116	struct disk_info *tmp;
5117
5118	for (i = 0; i < conf->raid_disks; i++) {
5119		tmp = conf->disks + i;
5120		if (tmp->rdev
5121		    && !test_bit(Faulty, &tmp->rdev->flags)
5122		    && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
5123			unsigned long flags;
5124			spin_lock_irqsave(&conf->device_lock, flags);
5125			mddev->degraded--;
5126			spin_unlock_irqrestore(&conf->device_lock, flags);
5127		}
5128	}
5129	print_raid5_conf(conf);
5130	return 0;
5131}
5132
5133static int raid5_remove_disk(mddev_t *mddev, int number)
5134{
5135	raid5_conf_t *conf = mddev->private;
5136	int err = 0;
5137	mdk_rdev_t *rdev;
5138	struct disk_info *p = conf->disks + number;
5139
5140	print_raid5_conf(conf);
5141	rdev = p->rdev;
5142	if (rdev) {
5143		if (number >= conf->raid_disks &&
5144		    conf->reshape_progress == MaxSector)
5145			clear_bit(In_sync, &rdev->flags);
5146
5147		if (test_bit(In_sync, &rdev->flags) ||
5148		    atomic_read(&rdev->nr_pending)) {
5149			err = -EBUSY;
5150			goto abort;
5151		}
5152		/* Only remove non-faulty devices if recovery
5153		 * isn't possible.
5154		 */
5155		if (!test_bit(Faulty, &rdev->flags) &&
5156		    mddev->degraded <= conf->max_degraded &&
5157		    number < conf->raid_disks) {
5158			err = -EBUSY;
5159			goto abort;
5160		}
5161		p->rdev = NULL;
5162		synchronize_rcu();
5163		if (atomic_read(&rdev->nr_pending)) {
5164			/* lost the race, try later */
5165			err = -EBUSY;
5166			p->rdev = rdev;
5167		}
5168	}
5169abort:
5170
5171	print_raid5_conf(conf);
5172	return err;
5173}
5174
5175static int raid5_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
5176{
5177	raid5_conf_t *conf = mddev->private;
5178	int err = -EEXIST;
5179	int disk;
5180	struct disk_info *p;
5181	int first = 0;
5182	int last = conf->raid_disks - 1;
5183
5184	if (mddev->degraded > conf->max_degraded)
5185		/* no point adding a device */
5186		return -EINVAL;
5187
5188	if (rdev->raid_disk >= 0)
5189		first = last = rdev->raid_disk;
5190
5191	/*
5192	 * find the disk ... but prefer rdev->saved_raid_disk
5193	 * if possible.
5194	 */
5195	if (rdev->saved_raid_disk >= 0 &&
5196	    rdev->saved_raid_disk >= first &&
5197	    conf->disks[rdev->saved_raid_disk].rdev == NULL)
5198		disk = rdev->saved_raid_disk;
5199	else
5200		disk = first;
5201	for ( ; disk <= last ; disk++)
5202		if ((p=conf->disks + disk)->rdev == NULL) {
5203			clear_bit(In_sync, &rdev->flags);
5204			rdev->raid_disk = disk;
5205			err = 0;
5206			if (rdev->saved_raid_disk != disk)
5207				conf->fullsync = 1;
5208			rcu_assign_pointer(p->rdev, rdev);
5209			break;
5210		}
5211	print_raid5_conf(conf);
5212	return err;
5213}
5214
5215static int raid5_resize(mddev_t *mddev, sector_t sectors)
5216{
5217	/* no resync is happening, and there is enough space
5218	 * on all devices, so we can resize.
5219	 * We need to make sure resync covers any new space.
5220	 * If the array is shrinking we should possibly wait until
5221	 * any io in the removed space completes, but it hardly seems
5222	 * worth it.
5223	 */
5224	sectors &= ~((sector_t)mddev->chunk_sectors - 1);
5225	md_set_array_sectors(mddev, raid5_size(mddev, sectors,
5226					       mddev->raid_disks));
5227	if (mddev->array_sectors >
5228	    raid5_size(mddev, sectors, mddev->raid_disks))
5229		return -EINVAL;
5230	set_capacity(mddev->gendisk, mddev->array_sectors);
5231	mddev->changed = 1;
5232	revalidate_disk(mddev->gendisk);
5233	if (sectors > mddev->dev_sectors && mddev->recovery_cp == MaxSector) {
5234		mddev->recovery_cp = mddev->dev_sectors;
5235		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5236	}
5237	mddev->dev_sectors = sectors;
5238	mddev->resync_max_sectors = sectors;
5239	return 0;
5240}
5241
5242static int check_stripe_cache(mddev_t *mddev)
5243{
5244	/* Can only proceed if there are plenty of stripe_heads.
5245	 * We need a minimum of one full stripe,, and for sensible progress
5246	 * it is best to have about 4 times that.
5247	 * If we require 4 times, then the default 256 4K stripe_heads will
5248	 * allow for chunk sizes up to 256K, which is probably OK.
5249	 * If the chunk size is greater, user-space should request more
5250	 * stripe_heads first.
5251	 */
5252	raid5_conf_t *conf = mddev->private;
5253	if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
5254	    > conf->max_nr_stripes ||
5255	    ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
5256	    > conf->max_nr_stripes) {
5257		printk(KERN_WARNING "raid5: reshape: not enough stripes.  Needed %lu\n",
5258		       ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
5259			/ STRIPE_SIZE)*4);
5260		return 0;
5261	}
5262	return 1;
5263}
5264
5265static int check_reshape(mddev_t *mddev)
5266{
5267	raid5_conf_t *conf = mddev->private;
5268
5269	if (mddev->delta_disks == 0 &&
5270	    mddev->new_layout == mddev->layout &&
5271	    mddev->new_chunk_sectors == mddev->chunk_sectors)
5272		return 0; /* nothing to do */
5273	if (mddev->bitmap)
5274		/* Cannot grow a bitmap yet */
5275		return -EBUSY;
5276	if (mddev->degraded > conf->max_degraded)
5277		return -EINVAL;
5278	if (mddev->delta_disks < 0) {
5279		/* We might be able to shrink, but the devices must
5280		 * be made bigger first.
5281		 * For raid6, 4 is the minimum size.
5282		 * Otherwise 2 is the minimum
5283		 */
5284		int min = 2;
5285		if (mddev->level == 6)
5286			min = 4;
5287		if (mddev->raid_disks + mddev->delta_disks < min)
5288			return -EINVAL;
5289	}
5290
5291	if (!check_stripe_cache(mddev))
5292		return -ENOSPC;
5293
5294	return resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
5295}
5296
5297static int raid5_start_reshape(mddev_t *mddev)
5298{
5299	raid5_conf_t *conf = mddev->private;
5300	mdk_rdev_t *rdev;
5301	int spares = 0;
5302	int added_devices = 0;
5303	unsigned long flags;
5304
5305	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5306		return -EBUSY;
5307
5308	if (!check_stripe_cache(mddev))
5309		return -ENOSPC;
5310
5311	list_for_each_entry(rdev, &mddev->disks, same_set)
5312		if (rdev->raid_disk < 0 &&
5313		    !test_bit(Faulty, &rdev->flags))
5314			spares++;
5315
5316	if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
5317		/* Not enough devices even to make a degraded array
5318		 * of that size
5319		 */
5320		return -EINVAL;
5321
5322	/* Refuse to reduce size of the array.  Any reductions in
5323	 * array size must be through explicit setting of array_size
5324	 * attribute.
5325	 */
5326	if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
5327	    < mddev->array_sectors) {
5328		printk(KERN_ERR "md: %s: array size must be reduced "
5329		       "before number of disks\n", mdname(mddev));
5330		return -EINVAL;
5331	}
5332
5333	atomic_set(&conf->reshape_stripes, 0);
5334	spin_lock_irq(&conf->device_lock);
5335	conf->previous_raid_disks = conf->raid_disks;
5336	conf->raid_disks += mddev->delta_disks;
5337	conf->prev_chunk_sectors = conf->chunk_sectors;
5338	conf->chunk_sectors = mddev->new_chunk_sectors;
5339	conf->prev_algo = conf->algorithm;
5340	conf->algorithm = mddev->new_layout;
5341	if (mddev->delta_disks < 0)
5342		conf->reshape_progress = raid5_size(mddev, 0, 0);
5343	else
5344		conf->reshape_progress = 0;
5345	conf->reshape_safe = conf->reshape_progress;
5346	conf->generation++;
5347	spin_unlock_irq(&conf->device_lock);
5348
5349	/* Add some new drives, as many as will fit.
5350	 * We know there are enough to make the newly sized array work.
5351	 */
5352	list_for_each_entry(rdev, &mddev->disks, same_set)
5353		if (rdev->raid_disk < 0 &&
5354		    !test_bit(Faulty, &rdev->flags)) {
5355			if (raid5_add_disk(mddev, rdev) == 0) {
5356				char nm[20];
5357				set_bit(In_sync, &rdev->flags);
5358				added_devices++;
5359				rdev->recovery_offset = 0;
5360				sprintf(nm, "rd%d", rdev->raid_disk);
5361				if (sysfs_create_link(&mddev->kobj,
5362						      &rdev->kobj, nm))
5363					printk(KERN_WARNING
5364					       "raid5: failed to create "
5365					       " link %s for %s\n",
5366					       nm, mdname(mddev));
5367			} else
5368				break;
5369		}
5370
5371	if (mddev->delta_disks > 0) {
5372		spin_lock_irqsave(&conf->device_lock, flags);
5373		mddev->degraded = (conf->raid_disks - conf->previous_raid_disks)
5374			- added_devices;
5375		spin_unlock_irqrestore(&conf->device_lock, flags);
5376	}
5377	mddev->raid_disks = conf->raid_disks;
5378	mddev->reshape_position = conf->reshape_progress;
5379	set_bit(MD_CHANGE_DEVS, &mddev->flags);
5380
5381	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5382	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5383	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5384	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5385	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5386						"reshape");
5387	if (!mddev->sync_thread) {
5388		mddev->recovery = 0;
5389		spin_lock_irq(&conf->device_lock);
5390		mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
5391		conf->reshape_progress = MaxSector;
5392		spin_unlock_irq(&conf->device_lock);
5393		return -EAGAIN;
5394	}
5395	conf->reshape_checkpoint = jiffies;
5396	md_wakeup_thread(mddev->sync_thread);
5397	md_new_event(mddev);
5398	return 0;
5399}
5400
5401/* This is called from the reshape thread and should make any
5402 * changes needed in 'conf'
5403 */
5404static void end_reshape(raid5_conf_t *conf)
5405{
5406
5407	if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
5408
5409		spin_lock_irq(&conf->device_lock);
5410		conf->previous_raid_disks = conf->raid_disks;
5411		conf->reshape_progress = MaxSector;
5412		spin_unlock_irq(&conf->device_lock);
5413		wake_up(&conf->wait_for_overlap);
5414
5415		/* read-ahead size must cover two whole stripes, which is
5416		 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
5417		 */
5418		{
5419			int data_disks = conf->raid_disks - conf->max_degraded;
5420			int stripe = data_disks * ((conf->chunk_sectors << 9)
5421						   / PAGE_SIZE);
5422			if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5423				conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
5424		}
5425	}
5426}
5427
5428/* This is called from the raid5d thread with mddev_lock held.
5429 * It makes config changes to the device.
5430 */
5431static void raid5_finish_reshape(mddev_t *mddev)
5432{
5433	raid5_conf_t *conf = mddev->private;
5434
5435	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
5436
5437		if (mddev->delta_disks > 0) {
5438			md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5439			set_capacity(mddev->gendisk, mddev->array_sectors);
5440			mddev->changed = 1;
5441			revalidate_disk(mddev->gendisk);
5442		} else {
5443			int d;
5444			mddev->degraded = conf->raid_disks;
5445			for (d = 0; d < conf->raid_disks ; d++)
5446				if (conf->disks[d].rdev &&
5447				    test_bit(In_sync,
5448					     &conf->disks[d].rdev->flags))
5449					mddev->degraded--;
5450			for (d = conf->raid_disks ;
5451			     d < conf->raid_disks - mddev->delta_disks;
5452			     d++) {
5453				mdk_rdev_t *rdev = conf->disks[d].rdev;
5454				if (rdev && raid5_remove_disk(mddev, d) == 0) {
5455					char nm[20];
5456					sprintf(nm, "rd%d", rdev->raid_disk);
5457					sysfs_remove_link(&mddev->kobj, nm);
5458					rdev->raid_disk = -1;
5459				}
5460			}
5461		}
5462		mddev->layout = conf->algorithm;
5463		mddev->chunk_sectors = conf->chunk_sectors;
5464		mddev->reshape_position = MaxSector;
5465		mddev->delta_disks = 0;
5466	}
5467}
5468
5469static void raid5_quiesce(mddev_t *mddev, int state)
5470{
5471	raid5_conf_t *conf = mddev->private;
5472
5473	switch(state) {
5474	case 2: /* resume for a suspend */
5475		wake_up(&conf->wait_for_overlap);
5476		break;
5477
5478	case 1: /* stop all writes */
5479		spin_lock_irq(&conf->device_lock);
5480		/* '2' tells resync/reshape to pause so that all
5481		 * active stripes can drain
5482		 */
5483		conf->quiesce = 2;
5484		wait_event_lock_irq(conf->wait_for_stripe,
5485				    atomic_read(&conf->active_stripes) == 0 &&
5486				    atomic_read(&conf->active_aligned_reads) == 0,
5487				    conf->device_lock, /* nothing */);
5488		conf->quiesce = 1;
5489		spin_unlock_irq(&conf->device_lock);
5490		/* allow reshape to continue */
5491		wake_up(&conf->wait_for_overlap);
5492		break;
5493
5494	case 0: /* re-enable writes */
5495		spin_lock_irq(&conf->device_lock);
5496		conf->quiesce = 0;
5497		wake_up(&conf->wait_for_stripe);
5498		wake_up(&conf->wait_for_overlap);
5499		spin_unlock_irq(&conf->device_lock);
5500		break;
5501	}
5502}
5503
5504
5505static void *raid5_takeover_raid1(mddev_t *mddev)
5506{
5507	int chunksect;
5508
5509	if (mddev->raid_disks != 2 ||
5510	    mddev->degraded > 1)
5511		return ERR_PTR(-EINVAL);
5512
5513	/* Should check if there are write-behind devices? */
5514
5515	chunksect = 64*2; /* 64K by default */
5516
5517	/* The array must be an exact multiple of chunksize */
5518	while (chunksect && (mddev->array_sectors & (chunksect-1)))
5519		chunksect >>= 1;
5520
5521	if ((chunksect<<9) < STRIPE_SIZE)
5522		/* array size does not allow a suitable chunk size */
5523		return ERR_PTR(-EINVAL);
5524
5525	mddev->new_level = 5;
5526	mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
5527	mddev->new_chunk_sectors = chunksect;
5528
5529	return setup_conf(mddev);
5530}
5531
5532static void *raid5_takeover_raid6(mddev_t *mddev)
5533{
5534	int new_layout;
5535
5536	switch (mddev->layout) {
5537	case ALGORITHM_LEFT_ASYMMETRIC_6:
5538		new_layout = ALGORITHM_LEFT_ASYMMETRIC;
5539		break;
5540	case ALGORITHM_RIGHT_ASYMMETRIC_6:
5541		new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
5542		break;
5543	case ALGORITHM_LEFT_SYMMETRIC_6:
5544		new_layout = ALGORITHM_LEFT_SYMMETRIC;
5545		break;
5546	case ALGORITHM_RIGHT_SYMMETRIC_6:
5547		new_layout = ALGORITHM_RIGHT_SYMMETRIC;
5548		break;
5549	case ALGORITHM_PARITY_0_6:
5550		new_layout = ALGORITHM_PARITY_0;
5551		break;
5552	case ALGORITHM_PARITY_N:
5553		new_layout = ALGORITHM_PARITY_N;
5554		break;
5555	default:
5556		return ERR_PTR(-EINVAL);
5557	}
5558	mddev->new_level = 5;
5559	mddev->new_layout = new_layout;
5560	mddev->delta_disks = -1;
5561	mddev->raid_disks -= 1;
5562	return setup_conf(mddev);
5563}
5564
5565
5566static int raid5_check_reshape(mddev_t *mddev)
5567{
5568	/* For a 2-drive array, the layout and chunk size can be changed
5569	 * immediately as not restriping is needed.
5570	 * For larger arrays we record the new value - after validation
5571	 * to be used by a reshape pass.
5572	 */
5573	raid5_conf_t *conf = mddev->private;
5574	int new_chunk = mddev->new_chunk_sectors;
5575
5576	if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
5577		return -EINVAL;
5578	if (new_chunk > 0) {
5579		if (!is_power_of_2(new_chunk))
5580			return -EINVAL;
5581		if (new_chunk < (PAGE_SIZE>>9))
5582			return -EINVAL;
5583		if (mddev->array_sectors & (new_chunk-1))
5584			/* not factor of array size */
5585			return -EINVAL;
5586	}
5587
5588	/* They look valid */
5589
5590	if (mddev->raid_disks == 2) {
5591		/* can make the change immediately */
5592		if (mddev->new_layout >= 0) {
5593			conf->algorithm = mddev->new_layout;
5594			mddev->layout = mddev->new_layout;
5595		}
5596		if (new_chunk > 0) {
5597			conf->chunk_sectors = new_chunk ;
5598			mddev->chunk_sectors = new_chunk;
5599		}
5600		set_bit(MD_CHANGE_DEVS, &mddev->flags);
5601		md_wakeup_thread(mddev->thread);
5602	}
5603	return check_reshape(mddev);
5604}
5605
5606static int raid6_check_reshape(mddev_t *mddev)
5607{
5608	int new_chunk = mddev->new_chunk_sectors;
5609
5610	if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
5611		return -EINVAL;
5612	if (new_chunk > 0) {
5613		if (!is_power_of_2(new_chunk))
5614			return -EINVAL;
5615		if (new_chunk < (PAGE_SIZE >> 9))
5616			return -EINVAL;
5617		if (mddev->array_sectors & (new_chunk-1))
5618			/* not factor of array size */
5619			return -EINVAL;
5620	}
5621
5622	/* They look valid */
5623	return check_reshape(mddev);
5624}
5625
5626static void *raid5_takeover(mddev_t *mddev)
5627{
5628	/* raid5 can take over:
5629	 *  raid0 - if all devices are the same - make it a raid4 layout
5630	 *  raid1 - if there are two drives.  We need to know the chunk size
5631	 *  raid4 - trivial - just use a raid4 layout.
5632	 *  raid6 - Providing it is a *_6 layout
5633	 */
5634
5635	if (mddev->level == 1)
5636		return raid5_takeover_raid1(mddev);
5637	if (mddev->level == 4) {
5638		mddev->new_layout = ALGORITHM_PARITY_N;
5639		mddev->new_level = 5;
5640		return setup_conf(mddev);
5641	}
5642	if (mddev->level == 6)
5643		return raid5_takeover_raid6(mddev);
5644
5645	return ERR_PTR(-EINVAL);
5646}
5647
5648
5649static struct mdk_personality raid5_personality;
5650
5651static void *raid6_takeover(mddev_t *mddev)
5652{
5653	/* Currently can only take over a raid5.  We map the
5654	 * personality to an equivalent raid6 personality
5655	 * with the Q block at the end.
5656	 */
5657	int new_layout;
5658
5659	if (mddev->pers != &raid5_personality)
5660		return ERR_PTR(-EINVAL);
5661	if (mddev->degraded > 1)
5662		return ERR_PTR(-EINVAL);
5663	if (mddev->raid_disks > 253)
5664		return ERR_PTR(-EINVAL);
5665	if (mddev->raid_disks < 3)
5666		return ERR_PTR(-EINVAL);
5667
5668	switch (mddev->layout) {
5669	case ALGORITHM_LEFT_ASYMMETRIC:
5670		new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
5671		break;
5672	case ALGORITHM_RIGHT_ASYMMETRIC:
5673		new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
5674		break;
5675	case ALGORITHM_LEFT_SYMMETRIC:
5676		new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
5677		break;
5678	case ALGORITHM_RIGHT_SYMMETRIC:
5679		new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
5680		break;
5681	case ALGORITHM_PARITY_0:
5682		new_layout = ALGORITHM_PARITY_0_6;
5683		break;
5684	case ALGORITHM_PARITY_N:
5685		new_layout = ALGORITHM_PARITY_N;
5686		break;
5687	default:
5688		return ERR_PTR(-EINVAL);
5689	}
5690	mddev->new_level = 6;
5691	mddev->new_layout = new_layout;
5692	mddev->delta_disks = 1;
5693	mddev->raid_disks += 1;
5694	return setup_conf(mddev);
5695}
5696
5697
5698static struct mdk_personality raid6_personality =
5699{
5700	.name		= "raid6",
5701	.level		= 6,
5702	.owner		= THIS_MODULE,
5703	.make_request	= make_request,
5704	.run		= run,
5705	.stop		= stop,
5706	.status		= status,
5707	.error_handler	= error,
5708	.hot_add_disk	= raid5_add_disk,
5709	.hot_remove_disk= raid5_remove_disk,
5710	.spare_active	= raid5_spare_active,
5711	.sync_request	= sync_request,
5712	.resize		= raid5_resize,
5713	.size		= raid5_size,
5714	.check_reshape	= raid6_check_reshape,
5715	.start_reshape  = raid5_start_reshape,
5716	.finish_reshape = raid5_finish_reshape,
5717	.quiesce	= raid5_quiesce,
5718	.takeover	= raid6_takeover,
5719};
5720static struct mdk_personality raid5_personality =
5721{
5722	.name		= "raid5",
5723	.level		= 5,
5724	.owner		= THIS_MODULE,
5725	.make_request	= make_request,
5726	.run		= run,
5727	.stop		= stop,
5728	.status		= status,
5729	.error_handler	= error,
5730	.hot_add_disk	= raid5_add_disk,
5731	.hot_remove_disk= raid5_remove_disk,
5732	.spare_active	= raid5_spare_active,
5733	.sync_request	= sync_request,
5734	.resize		= raid5_resize,
5735	.size		= raid5_size,
5736	.check_reshape	= raid5_check_reshape,
5737	.start_reshape  = raid5_start_reshape,
5738	.finish_reshape = raid5_finish_reshape,
5739	.quiesce	= raid5_quiesce,
5740	.takeover	= raid5_takeover,
5741};
5742
5743static struct mdk_personality raid4_personality =
5744{
5745	.name		= "raid4",
5746	.level		= 4,
5747	.owner		= THIS_MODULE,
5748	.make_request	= make_request,
5749	.run		= run,
5750	.stop		= stop,
5751	.status		= status,
5752	.error_handler	= error,
5753	.hot_add_disk	= raid5_add_disk,
5754	.hot_remove_disk= raid5_remove_disk,
5755	.spare_active	= raid5_spare_active,
5756	.sync_request	= sync_request,
5757	.resize		= raid5_resize,
5758	.size		= raid5_size,
5759	.check_reshape	= raid5_check_reshape,
5760	.start_reshape  = raid5_start_reshape,
5761	.finish_reshape = raid5_finish_reshape,
5762	.quiesce	= raid5_quiesce,
5763};
5764
5765static int __init raid5_init(void)
5766{
5767	register_md_personality(&raid6_personality);
5768	register_md_personality(&raid5_personality);
5769	register_md_personality(&raid4_personality);
5770	return 0;
5771}
5772
5773static void raid5_exit(void)
5774{
5775	unregister_md_personality(&raid6_personality);
5776	unregister_md_personality(&raid5_personality);
5777	unregister_md_personality(&raid4_personality);
5778}
5779
5780module_init(raid5_init);
5781module_exit(raid5_exit);
5782MODULE_LICENSE("GPL");
5783MODULE_ALIAS("md-personality-4"); /* RAID5 */
5784MODULE_ALIAS("md-raid5");
5785MODULE_ALIAS("md-raid4");
5786MODULE_ALIAS("md-level-5");
5787MODULE_ALIAS("md-level-4");
5788MODULE_ALIAS("md-personality-8"); /* RAID6 */
5789MODULE_ALIAS("md-raid6");
5790MODULE_ALIAS("md-level-6");
5791
5792/* This used to be two separate modules, they were: */
5793MODULE_ALIAS("raid5");
5794MODULE_ALIAS("raid6");
5795