raid5.c revision c8f517c444e4f9f55b5b5ca202b8404691a35805
1/*
2 * raid5.c : Multiple Devices driver for Linux
3 *	   Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4 *	   Copyright (C) 1999, 2000 Ingo Molnar
5 *	   Copyright (C) 2002, 2003 H. Peter Anvin
6 *
7 * RAID-4/5/6 management functions.
8 * Thanks to Penguin Computing for making the RAID-6 development possible
9 * by donating a test server!
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
21/*
22 * BITMAP UNPLUGGING:
23 *
24 * The sequencing for updating the bitmap reliably is a little
25 * subtle (and I got it wrong the first time) so it deserves some
26 * explanation.
27 *
28 * We group bitmap updates into batches.  Each batch has a number.
29 * We may write out several batches at once, but that isn't very important.
30 * conf->bm_write is the number of the last batch successfully written.
31 * conf->bm_flush is the number of the last batch that was closed to
32 *    new additions.
33 * When we discover that we will need to write to any block in a stripe
34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35 * the number of the batch it will be in. This is bm_flush+1.
36 * When we are ready to do a write, if that batch hasn't been written yet,
37 *   we plug the array and queue the stripe for later.
38 * When an unplug happens, we increment bm_flush, thus closing the current
39 *   batch.
40 * When we notice that bm_flush > bm_write, we write out all pending updates
41 * to the bitmap, and advance bm_write to where bm_flush was.
42 * This may occasionally write a bit out twice, but is sure never to
43 * miss any bits.
44 */
45
46#include <linux/blkdev.h>
47#include <linux/kthread.h>
48#include <linux/raid/pq.h>
49#include <linux/async_tx.h>
50#include <linux/seq_file.h>
51#include "md.h"
52#include "raid5.h"
53#include "bitmap.h"
54
55/*
56 * Stripe cache
57 */
58
59#define NR_STRIPES		256
60#define STRIPE_SIZE		PAGE_SIZE
61#define STRIPE_SHIFT		(PAGE_SHIFT - 9)
62#define STRIPE_SECTORS		(STRIPE_SIZE>>9)
63#define	IO_THRESHOLD		1
64#define BYPASS_THRESHOLD	1
65#define NR_HASH			(PAGE_SIZE / sizeof(struct hlist_head))
66#define HASH_MASK		(NR_HASH - 1)
67
68#define stripe_hash(conf, sect)	(&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
69
70/* bio's attached to a stripe+device for I/O are linked together in bi_sector
71 * order without overlap.  There may be several bio's per stripe+device, and
72 * a bio could span several devices.
73 * When walking this list for a particular stripe+device, we must never proceed
74 * beyond a bio that extends past this device, as the next bio might no longer
75 * be valid.
76 * This macro is used to determine the 'next' bio in the list, given the sector
77 * of the current stripe+device
78 */
79#define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
80/*
81 * The following can be used to debug the driver
82 */
83#define RAID5_PARANOIA	1
84#if RAID5_PARANOIA && defined(CONFIG_SMP)
85# define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
86#else
87# define CHECK_DEVLOCK()
88#endif
89
90#ifdef DEBUG
91#define inline
92#define __inline__
93#endif
94
95#define printk_rl(args...) ((void) (printk_ratelimit() && printk(args)))
96
97/*
98 * We maintain a biased count of active stripes in the bottom 16 bits of
99 * bi_phys_segments, and a count of processed stripes in the upper 16 bits
100 */
101static inline int raid5_bi_phys_segments(struct bio *bio)
102{
103	return bio->bi_phys_segments & 0xffff;
104}
105
106static inline int raid5_bi_hw_segments(struct bio *bio)
107{
108	return (bio->bi_phys_segments >> 16) & 0xffff;
109}
110
111static inline int raid5_dec_bi_phys_segments(struct bio *bio)
112{
113	--bio->bi_phys_segments;
114	return raid5_bi_phys_segments(bio);
115}
116
117static inline int raid5_dec_bi_hw_segments(struct bio *bio)
118{
119	unsigned short val = raid5_bi_hw_segments(bio);
120
121	--val;
122	bio->bi_phys_segments = (val << 16) | raid5_bi_phys_segments(bio);
123	return val;
124}
125
126static inline void raid5_set_bi_hw_segments(struct bio *bio, unsigned int cnt)
127{
128	bio->bi_phys_segments = raid5_bi_phys_segments(bio) || (cnt << 16);
129}
130
131/* Find first data disk in a raid6 stripe */
132static inline int raid6_d0(struct stripe_head *sh)
133{
134	if (sh->ddf_layout)
135		/* ddf always start from first device */
136		return 0;
137	/* md starts just after Q block */
138	if (sh->qd_idx == sh->disks - 1)
139		return 0;
140	else
141		return sh->qd_idx + 1;
142}
143static inline int raid6_next_disk(int disk, int raid_disks)
144{
145	disk++;
146	return (disk < raid_disks) ? disk : 0;
147}
148
149/* When walking through the disks in a raid5, starting at raid6_d0,
150 * We need to map each disk to a 'slot', where the data disks are slot
151 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
152 * is raid_disks-1.  This help does that mapping.
153 */
154static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
155			     int *count, int syndrome_disks)
156{
157	int slot;
158
159	if (idx == sh->pd_idx)
160		return syndrome_disks;
161	if (idx == sh->qd_idx)
162		return syndrome_disks + 1;
163	slot = (*count)++;
164	return slot;
165}
166
167static void return_io(struct bio *return_bi)
168{
169	struct bio *bi = return_bi;
170	while (bi) {
171
172		return_bi = bi->bi_next;
173		bi->bi_next = NULL;
174		bi->bi_size = 0;
175		bio_endio(bi, 0);
176		bi = return_bi;
177	}
178}
179
180static void print_raid5_conf (raid5_conf_t *conf);
181
182static int stripe_operations_active(struct stripe_head *sh)
183{
184	return sh->check_state || sh->reconstruct_state ||
185	       test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
186	       test_bit(STRIPE_COMPUTE_RUN, &sh->state);
187}
188
189static void __release_stripe(raid5_conf_t *conf, struct stripe_head *sh)
190{
191	if (atomic_dec_and_test(&sh->count)) {
192		BUG_ON(!list_empty(&sh->lru));
193		BUG_ON(atomic_read(&conf->active_stripes)==0);
194		if (test_bit(STRIPE_HANDLE, &sh->state)) {
195			if (test_bit(STRIPE_DELAYED, &sh->state)) {
196				list_add_tail(&sh->lru, &conf->delayed_list);
197				blk_plug_device(conf->mddev->queue);
198			} else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
199				   sh->bm_seq - conf->seq_write > 0) {
200				list_add_tail(&sh->lru, &conf->bitmap_list);
201				blk_plug_device(conf->mddev->queue);
202			} else {
203				clear_bit(STRIPE_BIT_DELAY, &sh->state);
204				list_add_tail(&sh->lru, &conf->handle_list);
205			}
206			md_wakeup_thread(conf->mddev->thread);
207		} else {
208			BUG_ON(stripe_operations_active(sh));
209			if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
210				atomic_dec(&conf->preread_active_stripes);
211				if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
212					md_wakeup_thread(conf->mddev->thread);
213			}
214			atomic_dec(&conf->active_stripes);
215			if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
216				list_add_tail(&sh->lru, &conf->inactive_list);
217				wake_up(&conf->wait_for_stripe);
218				if (conf->retry_read_aligned)
219					md_wakeup_thread(conf->mddev->thread);
220			}
221		}
222	}
223}
224
225static void release_stripe(struct stripe_head *sh)
226{
227	raid5_conf_t *conf = sh->raid_conf;
228	unsigned long flags;
229
230	spin_lock_irqsave(&conf->device_lock, flags);
231	__release_stripe(conf, sh);
232	spin_unlock_irqrestore(&conf->device_lock, flags);
233}
234
235static inline void remove_hash(struct stripe_head *sh)
236{
237	pr_debug("remove_hash(), stripe %llu\n",
238		(unsigned long long)sh->sector);
239
240	hlist_del_init(&sh->hash);
241}
242
243static inline void insert_hash(raid5_conf_t *conf, struct stripe_head *sh)
244{
245	struct hlist_head *hp = stripe_hash(conf, sh->sector);
246
247	pr_debug("insert_hash(), stripe %llu\n",
248		(unsigned long long)sh->sector);
249
250	CHECK_DEVLOCK();
251	hlist_add_head(&sh->hash, hp);
252}
253
254
255/* find an idle stripe, make sure it is unhashed, and return it. */
256static struct stripe_head *get_free_stripe(raid5_conf_t *conf)
257{
258	struct stripe_head *sh = NULL;
259	struct list_head *first;
260
261	CHECK_DEVLOCK();
262	if (list_empty(&conf->inactive_list))
263		goto out;
264	first = conf->inactive_list.next;
265	sh = list_entry(first, struct stripe_head, lru);
266	list_del_init(first);
267	remove_hash(sh);
268	atomic_inc(&conf->active_stripes);
269out:
270	return sh;
271}
272
273static void shrink_buffers(struct stripe_head *sh, int num)
274{
275	struct page *p;
276	int i;
277
278	for (i=0; i<num ; i++) {
279		p = sh->dev[i].page;
280		if (!p)
281			continue;
282		sh->dev[i].page = NULL;
283		put_page(p);
284	}
285}
286
287static int grow_buffers(struct stripe_head *sh, int num)
288{
289	int i;
290
291	for (i=0; i<num; i++) {
292		struct page *page;
293
294		if (!(page = alloc_page(GFP_KERNEL))) {
295			return 1;
296		}
297		sh->dev[i].page = page;
298	}
299	return 0;
300}
301
302static void raid5_build_block(struct stripe_head *sh, int i, int previous);
303static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
304			    struct stripe_head *sh);
305
306static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
307{
308	raid5_conf_t *conf = sh->raid_conf;
309	int i;
310
311	BUG_ON(atomic_read(&sh->count) != 0);
312	BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
313	BUG_ON(stripe_operations_active(sh));
314
315	CHECK_DEVLOCK();
316	pr_debug("init_stripe called, stripe %llu\n",
317		(unsigned long long)sh->sector);
318
319	remove_hash(sh);
320
321	sh->generation = conf->generation - previous;
322	sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
323	sh->sector = sector;
324	stripe_set_idx(sector, conf, previous, sh);
325	sh->state = 0;
326
327
328	for (i = sh->disks; i--; ) {
329		struct r5dev *dev = &sh->dev[i];
330
331		if (dev->toread || dev->read || dev->towrite || dev->written ||
332		    test_bit(R5_LOCKED, &dev->flags)) {
333			printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
334			       (unsigned long long)sh->sector, i, dev->toread,
335			       dev->read, dev->towrite, dev->written,
336			       test_bit(R5_LOCKED, &dev->flags));
337			BUG();
338		}
339		dev->flags = 0;
340		raid5_build_block(sh, i, previous);
341	}
342	insert_hash(conf, sh);
343}
344
345static struct stripe_head *__find_stripe(raid5_conf_t *conf, sector_t sector,
346					 short generation)
347{
348	struct stripe_head *sh;
349	struct hlist_node *hn;
350
351	CHECK_DEVLOCK();
352	pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
353	hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
354		if (sh->sector == sector && sh->generation == generation)
355			return sh;
356	pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
357	return NULL;
358}
359
360static void unplug_slaves(mddev_t *mddev);
361static void raid5_unplug_device(struct request_queue *q);
362
363static struct stripe_head *
364get_active_stripe(raid5_conf_t *conf, sector_t sector,
365		  int previous, int noblock)
366{
367	struct stripe_head *sh;
368
369	pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
370
371	spin_lock_irq(&conf->device_lock);
372
373	do {
374		wait_event_lock_irq(conf->wait_for_stripe,
375				    conf->quiesce == 0,
376				    conf->device_lock, /* nothing */);
377		sh = __find_stripe(conf, sector, conf->generation - previous);
378		if (!sh) {
379			if (!conf->inactive_blocked)
380				sh = get_free_stripe(conf);
381			if (noblock && sh == NULL)
382				break;
383			if (!sh) {
384				conf->inactive_blocked = 1;
385				wait_event_lock_irq(conf->wait_for_stripe,
386						    !list_empty(&conf->inactive_list) &&
387						    (atomic_read(&conf->active_stripes)
388						     < (conf->max_nr_stripes *3/4)
389						     || !conf->inactive_blocked),
390						    conf->device_lock,
391						    raid5_unplug_device(conf->mddev->queue)
392					);
393				conf->inactive_blocked = 0;
394			} else
395				init_stripe(sh, sector, previous);
396		} else {
397			if (atomic_read(&sh->count)) {
398				BUG_ON(!list_empty(&sh->lru)
399				    && !test_bit(STRIPE_EXPANDING, &sh->state));
400			} else {
401				if (!test_bit(STRIPE_HANDLE, &sh->state))
402					atomic_inc(&conf->active_stripes);
403				if (list_empty(&sh->lru) &&
404				    !test_bit(STRIPE_EXPANDING, &sh->state))
405					BUG();
406				list_del_init(&sh->lru);
407			}
408		}
409	} while (sh == NULL);
410
411	if (sh)
412		atomic_inc(&sh->count);
413
414	spin_unlock_irq(&conf->device_lock);
415	return sh;
416}
417
418static void
419raid5_end_read_request(struct bio *bi, int error);
420static void
421raid5_end_write_request(struct bio *bi, int error);
422
423static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
424{
425	raid5_conf_t *conf = sh->raid_conf;
426	int i, disks = sh->disks;
427
428	might_sleep();
429
430	for (i = disks; i--; ) {
431		int rw;
432		struct bio *bi;
433		mdk_rdev_t *rdev;
434		if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags))
435			rw = WRITE;
436		else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
437			rw = READ;
438		else
439			continue;
440
441		bi = &sh->dev[i].req;
442
443		bi->bi_rw = rw;
444		if (rw == WRITE)
445			bi->bi_end_io = raid5_end_write_request;
446		else
447			bi->bi_end_io = raid5_end_read_request;
448
449		rcu_read_lock();
450		rdev = rcu_dereference(conf->disks[i].rdev);
451		if (rdev && test_bit(Faulty, &rdev->flags))
452			rdev = NULL;
453		if (rdev)
454			atomic_inc(&rdev->nr_pending);
455		rcu_read_unlock();
456
457		if (rdev) {
458			if (s->syncing || s->expanding || s->expanded)
459				md_sync_acct(rdev->bdev, STRIPE_SECTORS);
460
461			set_bit(STRIPE_IO_STARTED, &sh->state);
462
463			bi->bi_bdev = rdev->bdev;
464			pr_debug("%s: for %llu schedule op %ld on disc %d\n",
465				__func__, (unsigned long long)sh->sector,
466				bi->bi_rw, i);
467			atomic_inc(&sh->count);
468			bi->bi_sector = sh->sector + rdev->data_offset;
469			bi->bi_flags = 1 << BIO_UPTODATE;
470			bi->bi_vcnt = 1;
471			bi->bi_max_vecs = 1;
472			bi->bi_idx = 0;
473			bi->bi_io_vec = &sh->dev[i].vec;
474			bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
475			bi->bi_io_vec[0].bv_offset = 0;
476			bi->bi_size = STRIPE_SIZE;
477			bi->bi_next = NULL;
478			if (rw == WRITE &&
479			    test_bit(R5_ReWrite, &sh->dev[i].flags))
480				atomic_add(STRIPE_SECTORS,
481					&rdev->corrected_errors);
482			generic_make_request(bi);
483		} else {
484			if (rw == WRITE)
485				set_bit(STRIPE_DEGRADED, &sh->state);
486			pr_debug("skip op %ld on disc %d for sector %llu\n",
487				bi->bi_rw, i, (unsigned long long)sh->sector);
488			clear_bit(R5_LOCKED, &sh->dev[i].flags);
489			set_bit(STRIPE_HANDLE, &sh->state);
490		}
491	}
492}
493
494static struct dma_async_tx_descriptor *
495async_copy_data(int frombio, struct bio *bio, struct page *page,
496	sector_t sector, struct dma_async_tx_descriptor *tx)
497{
498	struct bio_vec *bvl;
499	struct page *bio_page;
500	int i;
501	int page_offset;
502
503	if (bio->bi_sector >= sector)
504		page_offset = (signed)(bio->bi_sector - sector) * 512;
505	else
506		page_offset = (signed)(sector - bio->bi_sector) * -512;
507	bio_for_each_segment(bvl, bio, i) {
508		int len = bio_iovec_idx(bio, i)->bv_len;
509		int clen;
510		int b_offset = 0;
511
512		if (page_offset < 0) {
513			b_offset = -page_offset;
514			page_offset += b_offset;
515			len -= b_offset;
516		}
517
518		if (len > 0 && page_offset + len > STRIPE_SIZE)
519			clen = STRIPE_SIZE - page_offset;
520		else
521			clen = len;
522
523		if (clen > 0) {
524			b_offset += bio_iovec_idx(bio, i)->bv_offset;
525			bio_page = bio_iovec_idx(bio, i)->bv_page;
526			if (frombio)
527				tx = async_memcpy(page, bio_page, page_offset,
528					b_offset, clen,
529					ASYNC_TX_DEP_ACK,
530					tx, NULL, NULL);
531			else
532				tx = async_memcpy(bio_page, page, b_offset,
533					page_offset, clen,
534					ASYNC_TX_DEP_ACK,
535					tx, NULL, NULL);
536		}
537		if (clen < len) /* hit end of page */
538			break;
539		page_offset +=  len;
540	}
541
542	return tx;
543}
544
545static void ops_complete_biofill(void *stripe_head_ref)
546{
547	struct stripe_head *sh = stripe_head_ref;
548	struct bio *return_bi = NULL;
549	raid5_conf_t *conf = sh->raid_conf;
550	int i;
551
552	pr_debug("%s: stripe %llu\n", __func__,
553		(unsigned long long)sh->sector);
554
555	/* clear completed biofills */
556	spin_lock_irq(&conf->device_lock);
557	for (i = sh->disks; i--; ) {
558		struct r5dev *dev = &sh->dev[i];
559
560		/* acknowledge completion of a biofill operation */
561		/* and check if we need to reply to a read request,
562		 * new R5_Wantfill requests are held off until
563		 * !STRIPE_BIOFILL_RUN
564		 */
565		if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
566			struct bio *rbi, *rbi2;
567
568			BUG_ON(!dev->read);
569			rbi = dev->read;
570			dev->read = NULL;
571			while (rbi && rbi->bi_sector <
572				dev->sector + STRIPE_SECTORS) {
573				rbi2 = r5_next_bio(rbi, dev->sector);
574				if (!raid5_dec_bi_phys_segments(rbi)) {
575					rbi->bi_next = return_bi;
576					return_bi = rbi;
577				}
578				rbi = rbi2;
579			}
580		}
581	}
582	spin_unlock_irq(&conf->device_lock);
583	clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
584
585	return_io(return_bi);
586
587	set_bit(STRIPE_HANDLE, &sh->state);
588	release_stripe(sh);
589}
590
591static void ops_run_biofill(struct stripe_head *sh)
592{
593	struct dma_async_tx_descriptor *tx = NULL;
594	raid5_conf_t *conf = sh->raid_conf;
595	int i;
596
597	pr_debug("%s: stripe %llu\n", __func__,
598		(unsigned long long)sh->sector);
599
600	for (i = sh->disks; i--; ) {
601		struct r5dev *dev = &sh->dev[i];
602		if (test_bit(R5_Wantfill, &dev->flags)) {
603			struct bio *rbi;
604			spin_lock_irq(&conf->device_lock);
605			dev->read = rbi = dev->toread;
606			dev->toread = NULL;
607			spin_unlock_irq(&conf->device_lock);
608			while (rbi && rbi->bi_sector <
609				dev->sector + STRIPE_SECTORS) {
610				tx = async_copy_data(0, rbi, dev->page,
611					dev->sector, tx);
612				rbi = r5_next_bio(rbi, dev->sector);
613			}
614		}
615	}
616
617	atomic_inc(&sh->count);
618	async_trigger_callback(ASYNC_TX_DEP_ACK | ASYNC_TX_ACK, tx,
619		ops_complete_biofill, sh);
620}
621
622static void ops_complete_compute5(void *stripe_head_ref)
623{
624	struct stripe_head *sh = stripe_head_ref;
625	int target = sh->ops.target;
626	struct r5dev *tgt = &sh->dev[target];
627
628	pr_debug("%s: stripe %llu\n", __func__,
629		(unsigned long long)sh->sector);
630
631	set_bit(R5_UPTODATE, &tgt->flags);
632	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
633	clear_bit(R5_Wantcompute, &tgt->flags);
634	clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
635	if (sh->check_state == check_state_compute_run)
636		sh->check_state = check_state_compute_result;
637	set_bit(STRIPE_HANDLE, &sh->state);
638	release_stripe(sh);
639}
640
641static struct dma_async_tx_descriptor *ops_run_compute5(struct stripe_head *sh)
642{
643	/* kernel stack size limits the total number of disks */
644	int disks = sh->disks;
645	struct page *xor_srcs[disks];
646	int target = sh->ops.target;
647	struct r5dev *tgt = &sh->dev[target];
648	struct page *xor_dest = tgt->page;
649	int count = 0;
650	struct dma_async_tx_descriptor *tx;
651	int i;
652
653	pr_debug("%s: stripe %llu block: %d\n",
654		__func__, (unsigned long long)sh->sector, target);
655	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
656
657	for (i = disks; i--; )
658		if (i != target)
659			xor_srcs[count++] = sh->dev[i].page;
660
661	atomic_inc(&sh->count);
662
663	if (unlikely(count == 1))
664		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE,
665			0, NULL, ops_complete_compute5, sh);
666	else
667		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
668			ASYNC_TX_XOR_ZERO_DST, NULL,
669			ops_complete_compute5, sh);
670
671	return tx;
672}
673
674static void ops_complete_prexor(void *stripe_head_ref)
675{
676	struct stripe_head *sh = stripe_head_ref;
677
678	pr_debug("%s: stripe %llu\n", __func__,
679		(unsigned long long)sh->sector);
680}
681
682static struct dma_async_tx_descriptor *
683ops_run_prexor(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
684{
685	/* kernel stack size limits the total number of disks */
686	int disks = sh->disks;
687	struct page *xor_srcs[disks];
688	int count = 0, pd_idx = sh->pd_idx, i;
689
690	/* existing parity data subtracted */
691	struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
692
693	pr_debug("%s: stripe %llu\n", __func__,
694		(unsigned long long)sh->sector);
695
696	for (i = disks; i--; ) {
697		struct r5dev *dev = &sh->dev[i];
698		/* Only process blocks that are known to be uptodate */
699		if (test_bit(R5_Wantdrain, &dev->flags))
700			xor_srcs[count++] = dev->page;
701	}
702
703	tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
704		ASYNC_TX_DEP_ACK | ASYNC_TX_XOR_DROP_DST, tx,
705		ops_complete_prexor, sh);
706
707	return tx;
708}
709
710static struct dma_async_tx_descriptor *
711ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
712{
713	int disks = sh->disks;
714	int i;
715
716	pr_debug("%s: stripe %llu\n", __func__,
717		(unsigned long long)sh->sector);
718
719	for (i = disks; i--; ) {
720		struct r5dev *dev = &sh->dev[i];
721		struct bio *chosen;
722
723		if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
724			struct bio *wbi;
725
726			spin_lock(&sh->lock);
727			chosen = dev->towrite;
728			dev->towrite = NULL;
729			BUG_ON(dev->written);
730			wbi = dev->written = chosen;
731			spin_unlock(&sh->lock);
732
733			while (wbi && wbi->bi_sector <
734				dev->sector + STRIPE_SECTORS) {
735				tx = async_copy_data(1, wbi, dev->page,
736					dev->sector, tx);
737				wbi = r5_next_bio(wbi, dev->sector);
738			}
739		}
740	}
741
742	return tx;
743}
744
745static void ops_complete_postxor(void *stripe_head_ref)
746{
747	struct stripe_head *sh = stripe_head_ref;
748	int disks = sh->disks, i, pd_idx = sh->pd_idx;
749
750	pr_debug("%s: stripe %llu\n", __func__,
751		(unsigned long long)sh->sector);
752
753	for (i = disks; i--; ) {
754		struct r5dev *dev = &sh->dev[i];
755		if (dev->written || i == pd_idx)
756			set_bit(R5_UPTODATE, &dev->flags);
757	}
758
759	if (sh->reconstruct_state == reconstruct_state_drain_run)
760		sh->reconstruct_state = reconstruct_state_drain_result;
761	else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
762		sh->reconstruct_state = reconstruct_state_prexor_drain_result;
763	else {
764		BUG_ON(sh->reconstruct_state != reconstruct_state_run);
765		sh->reconstruct_state = reconstruct_state_result;
766	}
767
768	set_bit(STRIPE_HANDLE, &sh->state);
769	release_stripe(sh);
770}
771
772static void
773ops_run_postxor(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
774{
775	/* kernel stack size limits the total number of disks */
776	int disks = sh->disks;
777	struct page *xor_srcs[disks];
778
779	int count = 0, pd_idx = sh->pd_idx, i;
780	struct page *xor_dest;
781	int prexor = 0;
782	unsigned long flags;
783
784	pr_debug("%s: stripe %llu\n", __func__,
785		(unsigned long long)sh->sector);
786
787	/* check if prexor is active which means only process blocks
788	 * that are part of a read-modify-write (written)
789	 */
790	if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
791		prexor = 1;
792		xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
793		for (i = disks; i--; ) {
794			struct r5dev *dev = &sh->dev[i];
795			if (dev->written)
796				xor_srcs[count++] = dev->page;
797		}
798	} else {
799		xor_dest = sh->dev[pd_idx].page;
800		for (i = disks; i--; ) {
801			struct r5dev *dev = &sh->dev[i];
802			if (i != pd_idx)
803				xor_srcs[count++] = dev->page;
804		}
805	}
806
807	/* 1/ if we prexor'd then the dest is reused as a source
808	 * 2/ if we did not prexor then we are redoing the parity
809	 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
810	 * for the synchronous xor case
811	 */
812	flags = ASYNC_TX_DEP_ACK | ASYNC_TX_ACK |
813		(prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
814
815	atomic_inc(&sh->count);
816
817	if (unlikely(count == 1)) {
818		flags &= ~(ASYNC_TX_XOR_DROP_DST | ASYNC_TX_XOR_ZERO_DST);
819		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE,
820			flags, tx, ops_complete_postxor, sh);
821	} else
822		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
823			flags, tx, ops_complete_postxor, sh);
824}
825
826static void ops_complete_check(void *stripe_head_ref)
827{
828	struct stripe_head *sh = stripe_head_ref;
829
830	pr_debug("%s: stripe %llu\n", __func__,
831		(unsigned long long)sh->sector);
832
833	sh->check_state = check_state_check_result;
834	set_bit(STRIPE_HANDLE, &sh->state);
835	release_stripe(sh);
836}
837
838static void ops_run_check(struct stripe_head *sh)
839{
840	/* kernel stack size limits the total number of disks */
841	int disks = sh->disks;
842	struct page *xor_srcs[disks];
843	struct dma_async_tx_descriptor *tx;
844
845	int count = 0, pd_idx = sh->pd_idx, i;
846	struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
847
848	pr_debug("%s: stripe %llu\n", __func__,
849		(unsigned long long)sh->sector);
850
851	for (i = disks; i--; ) {
852		struct r5dev *dev = &sh->dev[i];
853		if (i != pd_idx)
854			xor_srcs[count++] = dev->page;
855	}
856
857	tx = async_xor_zero_sum(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
858		&sh->ops.zero_sum_result, 0, NULL, NULL, NULL);
859
860	atomic_inc(&sh->count);
861	tx = async_trigger_callback(ASYNC_TX_DEP_ACK | ASYNC_TX_ACK, tx,
862		ops_complete_check, sh);
863}
864
865static void raid5_run_ops(struct stripe_head *sh, unsigned long ops_request)
866{
867	int overlap_clear = 0, i, disks = sh->disks;
868	struct dma_async_tx_descriptor *tx = NULL;
869
870	if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
871		ops_run_biofill(sh);
872		overlap_clear++;
873	}
874
875	if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
876		tx = ops_run_compute5(sh);
877		/* terminate the chain if postxor is not set to be run */
878		if (tx && !test_bit(STRIPE_OP_POSTXOR, &ops_request))
879			async_tx_ack(tx);
880	}
881
882	if (test_bit(STRIPE_OP_PREXOR, &ops_request))
883		tx = ops_run_prexor(sh, tx);
884
885	if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
886		tx = ops_run_biodrain(sh, tx);
887		overlap_clear++;
888	}
889
890	if (test_bit(STRIPE_OP_POSTXOR, &ops_request))
891		ops_run_postxor(sh, tx);
892
893	if (test_bit(STRIPE_OP_CHECK, &ops_request))
894		ops_run_check(sh);
895
896	if (overlap_clear)
897		for (i = disks; i--; ) {
898			struct r5dev *dev = &sh->dev[i];
899			if (test_and_clear_bit(R5_Overlap, &dev->flags))
900				wake_up(&sh->raid_conf->wait_for_overlap);
901		}
902}
903
904static int grow_one_stripe(raid5_conf_t *conf)
905{
906	struct stripe_head *sh;
907	sh = kmem_cache_alloc(conf->slab_cache, GFP_KERNEL);
908	if (!sh)
909		return 0;
910	memset(sh, 0, sizeof(*sh) + (conf->raid_disks-1)*sizeof(struct r5dev));
911	sh->raid_conf = conf;
912	spin_lock_init(&sh->lock);
913
914	if (grow_buffers(sh, conf->raid_disks)) {
915		shrink_buffers(sh, conf->raid_disks);
916		kmem_cache_free(conf->slab_cache, sh);
917		return 0;
918	}
919	sh->disks = conf->raid_disks;
920	/* we just created an active stripe so... */
921	atomic_set(&sh->count, 1);
922	atomic_inc(&conf->active_stripes);
923	INIT_LIST_HEAD(&sh->lru);
924	release_stripe(sh);
925	return 1;
926}
927
928static int grow_stripes(raid5_conf_t *conf, int num)
929{
930	struct kmem_cache *sc;
931	int devs = conf->raid_disks;
932
933	sprintf(conf->cache_name[0],
934		"raid%d-%s", conf->level, mdname(conf->mddev));
935	sprintf(conf->cache_name[1],
936		"raid%d-%s-alt", conf->level, mdname(conf->mddev));
937	conf->active_name = 0;
938	sc = kmem_cache_create(conf->cache_name[conf->active_name],
939			       sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
940			       0, 0, NULL);
941	if (!sc)
942		return 1;
943	conf->slab_cache = sc;
944	conf->pool_size = devs;
945	while (num--)
946		if (!grow_one_stripe(conf))
947			return 1;
948	return 0;
949}
950
951static int resize_stripes(raid5_conf_t *conf, int newsize)
952{
953	/* Make all the stripes able to hold 'newsize' devices.
954	 * New slots in each stripe get 'page' set to a new page.
955	 *
956	 * This happens in stages:
957	 * 1/ create a new kmem_cache and allocate the required number of
958	 *    stripe_heads.
959	 * 2/ gather all the old stripe_heads and tranfer the pages across
960	 *    to the new stripe_heads.  This will have the side effect of
961	 *    freezing the array as once all stripe_heads have been collected,
962	 *    no IO will be possible.  Old stripe heads are freed once their
963	 *    pages have been transferred over, and the old kmem_cache is
964	 *    freed when all stripes are done.
965	 * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
966	 *    we simple return a failre status - no need to clean anything up.
967	 * 4/ allocate new pages for the new slots in the new stripe_heads.
968	 *    If this fails, we don't bother trying the shrink the
969	 *    stripe_heads down again, we just leave them as they are.
970	 *    As each stripe_head is processed the new one is released into
971	 *    active service.
972	 *
973	 * Once step2 is started, we cannot afford to wait for a write,
974	 * so we use GFP_NOIO allocations.
975	 */
976	struct stripe_head *osh, *nsh;
977	LIST_HEAD(newstripes);
978	struct disk_info *ndisks;
979	int err;
980	struct kmem_cache *sc;
981	int i;
982
983	if (newsize <= conf->pool_size)
984		return 0; /* never bother to shrink */
985
986	err = md_allow_write(conf->mddev);
987	if (err)
988		return err;
989
990	/* Step 1 */
991	sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
992			       sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
993			       0, 0, NULL);
994	if (!sc)
995		return -ENOMEM;
996
997	for (i = conf->max_nr_stripes; i; i--) {
998		nsh = kmem_cache_alloc(sc, GFP_KERNEL);
999		if (!nsh)
1000			break;
1001
1002		memset(nsh, 0, sizeof(*nsh) + (newsize-1)*sizeof(struct r5dev));
1003
1004		nsh->raid_conf = conf;
1005		spin_lock_init(&nsh->lock);
1006
1007		list_add(&nsh->lru, &newstripes);
1008	}
1009	if (i) {
1010		/* didn't get enough, give up */
1011		while (!list_empty(&newstripes)) {
1012			nsh = list_entry(newstripes.next, struct stripe_head, lru);
1013			list_del(&nsh->lru);
1014			kmem_cache_free(sc, nsh);
1015		}
1016		kmem_cache_destroy(sc);
1017		return -ENOMEM;
1018	}
1019	/* Step 2 - Must use GFP_NOIO now.
1020	 * OK, we have enough stripes, start collecting inactive
1021	 * stripes and copying them over
1022	 */
1023	list_for_each_entry(nsh, &newstripes, lru) {
1024		spin_lock_irq(&conf->device_lock);
1025		wait_event_lock_irq(conf->wait_for_stripe,
1026				    !list_empty(&conf->inactive_list),
1027				    conf->device_lock,
1028				    unplug_slaves(conf->mddev)
1029			);
1030		osh = get_free_stripe(conf);
1031		spin_unlock_irq(&conf->device_lock);
1032		atomic_set(&nsh->count, 1);
1033		for(i=0; i<conf->pool_size; i++)
1034			nsh->dev[i].page = osh->dev[i].page;
1035		for( ; i<newsize; i++)
1036			nsh->dev[i].page = NULL;
1037		kmem_cache_free(conf->slab_cache, osh);
1038	}
1039	kmem_cache_destroy(conf->slab_cache);
1040
1041	/* Step 3.
1042	 * At this point, we are holding all the stripes so the array
1043	 * is completely stalled, so now is a good time to resize
1044	 * conf->disks.
1045	 */
1046	ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1047	if (ndisks) {
1048		for (i=0; i<conf->raid_disks; i++)
1049			ndisks[i] = conf->disks[i];
1050		kfree(conf->disks);
1051		conf->disks = ndisks;
1052	} else
1053		err = -ENOMEM;
1054
1055	/* Step 4, return new stripes to service */
1056	while(!list_empty(&newstripes)) {
1057		nsh = list_entry(newstripes.next, struct stripe_head, lru);
1058		list_del_init(&nsh->lru);
1059		for (i=conf->raid_disks; i < newsize; i++)
1060			if (nsh->dev[i].page == NULL) {
1061				struct page *p = alloc_page(GFP_NOIO);
1062				nsh->dev[i].page = p;
1063				if (!p)
1064					err = -ENOMEM;
1065			}
1066		release_stripe(nsh);
1067	}
1068	/* critical section pass, GFP_NOIO no longer needed */
1069
1070	conf->slab_cache = sc;
1071	conf->active_name = 1-conf->active_name;
1072	conf->pool_size = newsize;
1073	return err;
1074}
1075
1076static int drop_one_stripe(raid5_conf_t *conf)
1077{
1078	struct stripe_head *sh;
1079
1080	spin_lock_irq(&conf->device_lock);
1081	sh = get_free_stripe(conf);
1082	spin_unlock_irq(&conf->device_lock);
1083	if (!sh)
1084		return 0;
1085	BUG_ON(atomic_read(&sh->count));
1086	shrink_buffers(sh, conf->pool_size);
1087	kmem_cache_free(conf->slab_cache, sh);
1088	atomic_dec(&conf->active_stripes);
1089	return 1;
1090}
1091
1092static void shrink_stripes(raid5_conf_t *conf)
1093{
1094	while (drop_one_stripe(conf))
1095		;
1096
1097	if (conf->slab_cache)
1098		kmem_cache_destroy(conf->slab_cache);
1099	conf->slab_cache = NULL;
1100}
1101
1102static void raid5_end_read_request(struct bio * bi, int error)
1103{
1104	struct stripe_head *sh = bi->bi_private;
1105	raid5_conf_t *conf = sh->raid_conf;
1106	int disks = sh->disks, i;
1107	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1108	char b[BDEVNAME_SIZE];
1109	mdk_rdev_t *rdev;
1110
1111
1112	for (i=0 ; i<disks; i++)
1113		if (bi == &sh->dev[i].req)
1114			break;
1115
1116	pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1117		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
1118		uptodate);
1119	if (i == disks) {
1120		BUG();
1121		return;
1122	}
1123
1124	if (uptodate) {
1125		set_bit(R5_UPTODATE, &sh->dev[i].flags);
1126		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1127			rdev = conf->disks[i].rdev;
1128			printk_rl(KERN_INFO "raid5:%s: read error corrected"
1129				  " (%lu sectors at %llu on %s)\n",
1130				  mdname(conf->mddev), STRIPE_SECTORS,
1131				  (unsigned long long)(sh->sector
1132						       + rdev->data_offset),
1133				  bdevname(rdev->bdev, b));
1134			clear_bit(R5_ReadError, &sh->dev[i].flags);
1135			clear_bit(R5_ReWrite, &sh->dev[i].flags);
1136		}
1137		if (atomic_read(&conf->disks[i].rdev->read_errors))
1138			atomic_set(&conf->disks[i].rdev->read_errors, 0);
1139	} else {
1140		const char *bdn = bdevname(conf->disks[i].rdev->bdev, b);
1141		int retry = 0;
1142		rdev = conf->disks[i].rdev;
1143
1144		clear_bit(R5_UPTODATE, &sh->dev[i].flags);
1145		atomic_inc(&rdev->read_errors);
1146		if (conf->mddev->degraded)
1147			printk_rl(KERN_WARNING
1148				  "raid5:%s: read error not correctable "
1149				  "(sector %llu on %s).\n",
1150				  mdname(conf->mddev),
1151				  (unsigned long long)(sh->sector
1152						       + rdev->data_offset),
1153				  bdn);
1154		else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
1155			/* Oh, no!!! */
1156			printk_rl(KERN_WARNING
1157				  "raid5:%s: read error NOT corrected!! "
1158				  "(sector %llu on %s).\n",
1159				  mdname(conf->mddev),
1160				  (unsigned long long)(sh->sector
1161						       + rdev->data_offset),
1162				  bdn);
1163		else if (atomic_read(&rdev->read_errors)
1164			 > conf->max_nr_stripes)
1165			printk(KERN_WARNING
1166			       "raid5:%s: Too many read errors, failing device %s.\n",
1167			       mdname(conf->mddev), bdn);
1168		else
1169			retry = 1;
1170		if (retry)
1171			set_bit(R5_ReadError, &sh->dev[i].flags);
1172		else {
1173			clear_bit(R5_ReadError, &sh->dev[i].flags);
1174			clear_bit(R5_ReWrite, &sh->dev[i].flags);
1175			md_error(conf->mddev, rdev);
1176		}
1177	}
1178	rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1179	clear_bit(R5_LOCKED, &sh->dev[i].flags);
1180	set_bit(STRIPE_HANDLE, &sh->state);
1181	release_stripe(sh);
1182}
1183
1184static void raid5_end_write_request(struct bio *bi, int error)
1185{
1186	struct stripe_head *sh = bi->bi_private;
1187	raid5_conf_t *conf = sh->raid_conf;
1188	int disks = sh->disks, i;
1189	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1190
1191	for (i=0 ; i<disks; i++)
1192		if (bi == &sh->dev[i].req)
1193			break;
1194
1195	pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1196		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
1197		uptodate);
1198	if (i == disks) {
1199		BUG();
1200		return;
1201	}
1202
1203	if (!uptodate)
1204		md_error(conf->mddev, conf->disks[i].rdev);
1205
1206	rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1207
1208	clear_bit(R5_LOCKED, &sh->dev[i].flags);
1209	set_bit(STRIPE_HANDLE, &sh->state);
1210	release_stripe(sh);
1211}
1212
1213
1214static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
1215
1216static void raid5_build_block(struct stripe_head *sh, int i, int previous)
1217{
1218	struct r5dev *dev = &sh->dev[i];
1219
1220	bio_init(&dev->req);
1221	dev->req.bi_io_vec = &dev->vec;
1222	dev->req.bi_vcnt++;
1223	dev->req.bi_max_vecs++;
1224	dev->vec.bv_page = dev->page;
1225	dev->vec.bv_len = STRIPE_SIZE;
1226	dev->vec.bv_offset = 0;
1227
1228	dev->req.bi_sector = sh->sector;
1229	dev->req.bi_private = sh;
1230
1231	dev->flags = 0;
1232	dev->sector = compute_blocknr(sh, i, previous);
1233}
1234
1235static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1236{
1237	char b[BDEVNAME_SIZE];
1238	raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
1239	pr_debug("raid5: error called\n");
1240
1241	if (!test_bit(Faulty, &rdev->flags)) {
1242		set_bit(MD_CHANGE_DEVS, &mddev->flags);
1243		if (test_and_clear_bit(In_sync, &rdev->flags)) {
1244			unsigned long flags;
1245			spin_lock_irqsave(&conf->device_lock, flags);
1246			mddev->degraded++;
1247			spin_unlock_irqrestore(&conf->device_lock, flags);
1248			/*
1249			 * if recovery was running, make sure it aborts.
1250			 */
1251			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1252		}
1253		set_bit(Faulty, &rdev->flags);
1254		printk(KERN_ALERT
1255		       "raid5: Disk failure on %s, disabling device.\n"
1256		       "raid5: Operation continuing on %d devices.\n",
1257		       bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded);
1258	}
1259}
1260
1261/*
1262 * Input: a 'big' sector number,
1263 * Output: index of the data and parity disk, and the sector # in them.
1264 */
1265static sector_t raid5_compute_sector(raid5_conf_t *conf, sector_t r_sector,
1266				     int previous, int *dd_idx,
1267				     struct stripe_head *sh)
1268{
1269	long stripe;
1270	unsigned long chunk_number;
1271	unsigned int chunk_offset;
1272	int pd_idx, qd_idx;
1273	int ddf_layout = 0;
1274	sector_t new_sector;
1275	int algorithm = previous ? conf->prev_algo
1276				 : conf->algorithm;
1277	int sectors_per_chunk = previous ? (conf->prev_chunk >> 9)
1278					 : (conf->chunk_size >> 9);
1279	int raid_disks = previous ? conf->previous_raid_disks
1280				  : conf->raid_disks;
1281	int data_disks = raid_disks - conf->max_degraded;
1282
1283	/* First compute the information on this sector */
1284
1285	/*
1286	 * Compute the chunk number and the sector offset inside the chunk
1287	 */
1288	chunk_offset = sector_div(r_sector, sectors_per_chunk);
1289	chunk_number = r_sector;
1290	BUG_ON(r_sector != chunk_number);
1291
1292	/*
1293	 * Compute the stripe number
1294	 */
1295	stripe = chunk_number / data_disks;
1296
1297	/*
1298	 * Compute the data disk and parity disk indexes inside the stripe
1299	 */
1300	*dd_idx = chunk_number % data_disks;
1301
1302	/*
1303	 * Select the parity disk based on the user selected algorithm.
1304	 */
1305	pd_idx = qd_idx = ~0;
1306	switch(conf->level) {
1307	case 4:
1308		pd_idx = data_disks;
1309		break;
1310	case 5:
1311		switch (algorithm) {
1312		case ALGORITHM_LEFT_ASYMMETRIC:
1313			pd_idx = data_disks - stripe % raid_disks;
1314			if (*dd_idx >= pd_idx)
1315				(*dd_idx)++;
1316			break;
1317		case ALGORITHM_RIGHT_ASYMMETRIC:
1318			pd_idx = stripe % raid_disks;
1319			if (*dd_idx >= pd_idx)
1320				(*dd_idx)++;
1321			break;
1322		case ALGORITHM_LEFT_SYMMETRIC:
1323			pd_idx = data_disks - stripe % raid_disks;
1324			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1325			break;
1326		case ALGORITHM_RIGHT_SYMMETRIC:
1327			pd_idx = stripe % raid_disks;
1328			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1329			break;
1330		case ALGORITHM_PARITY_0:
1331			pd_idx = 0;
1332			(*dd_idx)++;
1333			break;
1334		case ALGORITHM_PARITY_N:
1335			pd_idx = data_disks;
1336			break;
1337		default:
1338			printk(KERN_ERR "raid5: unsupported algorithm %d\n",
1339				algorithm);
1340			BUG();
1341		}
1342		break;
1343	case 6:
1344
1345		switch (algorithm) {
1346		case ALGORITHM_LEFT_ASYMMETRIC:
1347			pd_idx = raid_disks - 1 - (stripe % raid_disks);
1348			qd_idx = pd_idx + 1;
1349			if (pd_idx == raid_disks-1) {
1350				(*dd_idx)++;	/* Q D D D P */
1351				qd_idx = 0;
1352			} else if (*dd_idx >= pd_idx)
1353				(*dd_idx) += 2; /* D D P Q D */
1354			break;
1355		case ALGORITHM_RIGHT_ASYMMETRIC:
1356			pd_idx = stripe % raid_disks;
1357			qd_idx = pd_idx + 1;
1358			if (pd_idx == raid_disks-1) {
1359				(*dd_idx)++;	/* Q D D D P */
1360				qd_idx = 0;
1361			} else if (*dd_idx >= pd_idx)
1362				(*dd_idx) += 2; /* D D P Q D */
1363			break;
1364		case ALGORITHM_LEFT_SYMMETRIC:
1365			pd_idx = raid_disks - 1 - (stripe % raid_disks);
1366			qd_idx = (pd_idx + 1) % raid_disks;
1367			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1368			break;
1369		case ALGORITHM_RIGHT_SYMMETRIC:
1370			pd_idx = stripe % raid_disks;
1371			qd_idx = (pd_idx + 1) % raid_disks;
1372			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1373			break;
1374
1375		case ALGORITHM_PARITY_0:
1376			pd_idx = 0;
1377			qd_idx = 1;
1378			(*dd_idx) += 2;
1379			break;
1380		case ALGORITHM_PARITY_N:
1381			pd_idx = data_disks;
1382			qd_idx = data_disks + 1;
1383			break;
1384
1385		case ALGORITHM_ROTATING_ZERO_RESTART:
1386			/* Exactly the same as RIGHT_ASYMMETRIC, but or
1387			 * of blocks for computing Q is different.
1388			 */
1389			pd_idx = stripe % raid_disks;
1390			qd_idx = pd_idx + 1;
1391			if (pd_idx == raid_disks-1) {
1392				(*dd_idx)++;	/* Q D D D P */
1393				qd_idx = 0;
1394			} else if (*dd_idx >= pd_idx)
1395				(*dd_idx) += 2; /* D D P Q D */
1396			ddf_layout = 1;
1397			break;
1398
1399		case ALGORITHM_ROTATING_N_RESTART:
1400			/* Same a left_asymmetric, by first stripe is
1401			 * D D D P Q  rather than
1402			 * Q D D D P
1403			 */
1404			pd_idx = raid_disks - 1 - ((stripe + 1) % raid_disks);
1405			qd_idx = pd_idx + 1;
1406			if (pd_idx == raid_disks-1) {
1407				(*dd_idx)++;	/* Q D D D P */
1408				qd_idx = 0;
1409			} else if (*dd_idx >= pd_idx)
1410				(*dd_idx) += 2; /* D D P Q D */
1411			ddf_layout = 1;
1412			break;
1413
1414		case ALGORITHM_ROTATING_N_CONTINUE:
1415			/* Same as left_symmetric but Q is before P */
1416			pd_idx = raid_disks - 1 - (stripe % raid_disks);
1417			qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
1418			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1419			ddf_layout = 1;
1420			break;
1421
1422		case ALGORITHM_LEFT_ASYMMETRIC_6:
1423			/* RAID5 left_asymmetric, with Q on last device */
1424			pd_idx = data_disks - stripe % (raid_disks-1);
1425			if (*dd_idx >= pd_idx)
1426				(*dd_idx)++;
1427			qd_idx = raid_disks - 1;
1428			break;
1429
1430		case ALGORITHM_RIGHT_ASYMMETRIC_6:
1431			pd_idx = stripe % (raid_disks-1);
1432			if (*dd_idx >= pd_idx)
1433				(*dd_idx)++;
1434			qd_idx = raid_disks - 1;
1435			break;
1436
1437		case ALGORITHM_LEFT_SYMMETRIC_6:
1438			pd_idx = data_disks - stripe % (raid_disks-1);
1439			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
1440			qd_idx = raid_disks - 1;
1441			break;
1442
1443		case ALGORITHM_RIGHT_SYMMETRIC_6:
1444			pd_idx = stripe % (raid_disks-1);
1445			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
1446			qd_idx = raid_disks - 1;
1447			break;
1448
1449		case ALGORITHM_PARITY_0_6:
1450			pd_idx = 0;
1451			(*dd_idx)++;
1452			qd_idx = raid_disks - 1;
1453			break;
1454
1455
1456		default:
1457			printk(KERN_CRIT "raid6: unsupported algorithm %d\n",
1458			       algorithm);
1459			BUG();
1460		}
1461		break;
1462	}
1463
1464	if (sh) {
1465		sh->pd_idx = pd_idx;
1466		sh->qd_idx = qd_idx;
1467		sh->ddf_layout = ddf_layout;
1468	}
1469	/*
1470	 * Finally, compute the new sector number
1471	 */
1472	new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
1473	return new_sector;
1474}
1475
1476
1477static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
1478{
1479	raid5_conf_t *conf = sh->raid_conf;
1480	int raid_disks = sh->disks;
1481	int data_disks = raid_disks - conf->max_degraded;
1482	sector_t new_sector = sh->sector, check;
1483	int sectors_per_chunk = previous ? (conf->prev_chunk >> 9)
1484					 : (conf->chunk_size >> 9);
1485	int algorithm = previous ? conf->prev_algo
1486				 : conf->algorithm;
1487	sector_t stripe;
1488	int chunk_offset;
1489	int chunk_number, dummy1, dd_idx = i;
1490	sector_t r_sector;
1491	struct stripe_head sh2;
1492
1493
1494	chunk_offset = sector_div(new_sector, sectors_per_chunk);
1495	stripe = new_sector;
1496	BUG_ON(new_sector != stripe);
1497
1498	if (i == sh->pd_idx)
1499		return 0;
1500	switch(conf->level) {
1501	case 4: break;
1502	case 5:
1503		switch (algorithm) {
1504		case ALGORITHM_LEFT_ASYMMETRIC:
1505		case ALGORITHM_RIGHT_ASYMMETRIC:
1506			if (i > sh->pd_idx)
1507				i--;
1508			break;
1509		case ALGORITHM_LEFT_SYMMETRIC:
1510		case ALGORITHM_RIGHT_SYMMETRIC:
1511			if (i < sh->pd_idx)
1512				i += raid_disks;
1513			i -= (sh->pd_idx + 1);
1514			break;
1515		case ALGORITHM_PARITY_0:
1516			i -= 1;
1517			break;
1518		case ALGORITHM_PARITY_N:
1519			break;
1520		default:
1521			printk(KERN_ERR "raid5: unsupported algorithm %d\n",
1522			       algorithm);
1523			BUG();
1524		}
1525		break;
1526	case 6:
1527		if (i == sh->qd_idx)
1528			return 0; /* It is the Q disk */
1529		switch (algorithm) {
1530		case ALGORITHM_LEFT_ASYMMETRIC:
1531		case ALGORITHM_RIGHT_ASYMMETRIC:
1532		case ALGORITHM_ROTATING_ZERO_RESTART:
1533		case ALGORITHM_ROTATING_N_RESTART:
1534			if (sh->pd_idx == raid_disks-1)
1535				i--;	/* Q D D D P */
1536			else if (i > sh->pd_idx)
1537				i -= 2; /* D D P Q D */
1538			break;
1539		case ALGORITHM_LEFT_SYMMETRIC:
1540		case ALGORITHM_RIGHT_SYMMETRIC:
1541			if (sh->pd_idx == raid_disks-1)
1542				i--; /* Q D D D P */
1543			else {
1544				/* D D P Q D */
1545				if (i < sh->pd_idx)
1546					i += raid_disks;
1547				i -= (sh->pd_idx + 2);
1548			}
1549			break;
1550		case ALGORITHM_PARITY_0:
1551			i -= 2;
1552			break;
1553		case ALGORITHM_PARITY_N:
1554			break;
1555		case ALGORITHM_ROTATING_N_CONTINUE:
1556			if (sh->pd_idx == 0)
1557				i--;	/* P D D D Q */
1558			else if (i > sh->pd_idx)
1559				i -= 2; /* D D Q P D */
1560			break;
1561		case ALGORITHM_LEFT_ASYMMETRIC_6:
1562		case ALGORITHM_RIGHT_ASYMMETRIC_6:
1563			if (i > sh->pd_idx)
1564				i--;
1565			break;
1566		case ALGORITHM_LEFT_SYMMETRIC_6:
1567		case ALGORITHM_RIGHT_SYMMETRIC_6:
1568			if (i < sh->pd_idx)
1569				i += data_disks + 1;
1570			i -= (sh->pd_idx + 1);
1571			break;
1572		case ALGORITHM_PARITY_0_6:
1573			i -= 1;
1574			break;
1575		default:
1576			printk(KERN_CRIT "raid6: unsupported algorithm %d\n",
1577			       algorithm);
1578			BUG();
1579		}
1580		break;
1581	}
1582
1583	chunk_number = stripe * data_disks + i;
1584	r_sector = (sector_t)chunk_number * sectors_per_chunk + chunk_offset;
1585
1586	check = raid5_compute_sector(conf, r_sector,
1587				     previous, &dummy1, &sh2);
1588	if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
1589		|| sh2.qd_idx != sh->qd_idx) {
1590		printk(KERN_ERR "compute_blocknr: map not correct\n");
1591		return 0;
1592	}
1593	return r_sector;
1594}
1595
1596
1597
1598/*
1599 * Copy data between a page in the stripe cache, and one or more bion
1600 * The page could align with the middle of the bio, or there could be
1601 * several bion, each with several bio_vecs, which cover part of the page
1602 * Multiple bion are linked together on bi_next.  There may be extras
1603 * at the end of this list.  We ignore them.
1604 */
1605static void copy_data(int frombio, struct bio *bio,
1606		     struct page *page,
1607		     sector_t sector)
1608{
1609	char *pa = page_address(page);
1610	struct bio_vec *bvl;
1611	int i;
1612	int page_offset;
1613
1614	if (bio->bi_sector >= sector)
1615		page_offset = (signed)(bio->bi_sector - sector) * 512;
1616	else
1617		page_offset = (signed)(sector - bio->bi_sector) * -512;
1618	bio_for_each_segment(bvl, bio, i) {
1619		int len = bio_iovec_idx(bio,i)->bv_len;
1620		int clen;
1621		int b_offset = 0;
1622
1623		if (page_offset < 0) {
1624			b_offset = -page_offset;
1625			page_offset += b_offset;
1626			len -= b_offset;
1627		}
1628
1629		if (len > 0 && page_offset + len > STRIPE_SIZE)
1630			clen = STRIPE_SIZE - page_offset;
1631		else clen = len;
1632
1633		if (clen > 0) {
1634			char *ba = __bio_kmap_atomic(bio, i, KM_USER0);
1635			if (frombio)
1636				memcpy(pa+page_offset, ba+b_offset, clen);
1637			else
1638				memcpy(ba+b_offset, pa+page_offset, clen);
1639			__bio_kunmap_atomic(ba, KM_USER0);
1640		}
1641		if (clen < len) /* hit end of page */
1642			break;
1643		page_offset +=  len;
1644	}
1645}
1646
1647#define check_xor()	do {						  \
1648				if (count == MAX_XOR_BLOCKS) {		  \
1649				xor_blocks(count, STRIPE_SIZE, dest, ptr);\
1650				count = 0;				  \
1651			   }						  \
1652			} while(0)
1653
1654static void compute_parity6(struct stripe_head *sh, int method)
1655{
1656	raid5_conf_t *conf = sh->raid_conf;
1657	int i, pd_idx, qd_idx, d0_idx, disks = sh->disks, count;
1658	int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1659	struct bio *chosen;
1660	/**** FIX THIS: This could be very bad if disks is close to 256 ****/
1661	void *ptrs[syndrome_disks+2];
1662
1663	pd_idx = sh->pd_idx;
1664	qd_idx = sh->qd_idx;
1665	d0_idx = raid6_d0(sh);
1666
1667	pr_debug("compute_parity, stripe %llu, method %d\n",
1668		(unsigned long long)sh->sector, method);
1669
1670	switch(method) {
1671	case READ_MODIFY_WRITE:
1672		BUG();		/* READ_MODIFY_WRITE N/A for RAID-6 */
1673	case RECONSTRUCT_WRITE:
1674		for (i= disks; i-- ;)
1675			if ( i != pd_idx && i != qd_idx && sh->dev[i].towrite ) {
1676				chosen = sh->dev[i].towrite;
1677				sh->dev[i].towrite = NULL;
1678
1679				if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1680					wake_up(&conf->wait_for_overlap);
1681
1682				BUG_ON(sh->dev[i].written);
1683				sh->dev[i].written = chosen;
1684			}
1685		break;
1686	case CHECK_PARITY:
1687		BUG();		/* Not implemented yet */
1688	}
1689
1690	for (i = disks; i--;)
1691		if (sh->dev[i].written) {
1692			sector_t sector = sh->dev[i].sector;
1693			struct bio *wbi = sh->dev[i].written;
1694			while (wbi && wbi->bi_sector < sector + STRIPE_SECTORS) {
1695				copy_data(1, wbi, sh->dev[i].page, sector);
1696				wbi = r5_next_bio(wbi, sector);
1697			}
1698
1699			set_bit(R5_LOCKED, &sh->dev[i].flags);
1700			set_bit(R5_UPTODATE, &sh->dev[i].flags);
1701		}
1702
1703	/* Note that unlike RAID-5, the ordering of the disks matters greatly.*/
1704
1705	for (i = 0; i < disks; i++)
1706		ptrs[i] = (void *)raid6_empty_zero_page;
1707
1708	count = 0;
1709	i = d0_idx;
1710	do {
1711		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1712
1713		ptrs[slot] = page_address(sh->dev[i].page);
1714		if (slot < syndrome_disks &&
1715		    !test_bit(R5_UPTODATE, &sh->dev[i].flags)) {
1716			printk(KERN_ERR "block %d/%d not uptodate "
1717			       "on parity calc\n", i, count);
1718			BUG();
1719		}
1720
1721		i = raid6_next_disk(i, disks);
1722	} while (i != d0_idx);
1723	BUG_ON(count != syndrome_disks);
1724
1725	raid6_call.gen_syndrome(syndrome_disks+2, STRIPE_SIZE, ptrs);
1726
1727	switch(method) {
1728	case RECONSTRUCT_WRITE:
1729		set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1730		set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags);
1731		set_bit(R5_LOCKED,   &sh->dev[pd_idx].flags);
1732		set_bit(R5_LOCKED,   &sh->dev[qd_idx].flags);
1733		break;
1734	case UPDATE_PARITY:
1735		set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1736		set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags);
1737		break;
1738	}
1739}
1740
1741
1742/* Compute one missing block */
1743static void compute_block_1(struct stripe_head *sh, int dd_idx, int nozero)
1744{
1745	int i, count, disks = sh->disks;
1746	void *ptr[MAX_XOR_BLOCKS], *dest, *p;
1747	int qd_idx = sh->qd_idx;
1748
1749	pr_debug("compute_block_1, stripe %llu, idx %d\n",
1750		(unsigned long long)sh->sector, dd_idx);
1751
1752	if ( dd_idx == qd_idx ) {
1753		/* We're actually computing the Q drive */
1754		compute_parity6(sh, UPDATE_PARITY);
1755	} else {
1756		dest = page_address(sh->dev[dd_idx].page);
1757		if (!nozero) memset(dest, 0, STRIPE_SIZE);
1758		count = 0;
1759		for (i = disks ; i--; ) {
1760			if (i == dd_idx || i == qd_idx)
1761				continue;
1762			p = page_address(sh->dev[i].page);
1763			if (test_bit(R5_UPTODATE, &sh->dev[i].flags))
1764				ptr[count++] = p;
1765			else
1766				printk("compute_block() %d, stripe %llu, %d"
1767				       " not present\n", dd_idx,
1768				       (unsigned long long)sh->sector, i);
1769
1770			check_xor();
1771		}
1772		if (count)
1773			xor_blocks(count, STRIPE_SIZE, dest, ptr);
1774		if (!nozero) set_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
1775		else clear_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
1776	}
1777}
1778
1779/* Compute two missing blocks */
1780static void compute_block_2(struct stripe_head *sh, int dd_idx1, int dd_idx2)
1781{
1782	int i, count, disks = sh->disks;
1783	int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1784	int d0_idx = raid6_d0(sh);
1785	int faila = -1, failb = -1;
1786	/**** FIX THIS: This could be very bad if disks is close to 256 ****/
1787	void *ptrs[syndrome_disks+2];
1788
1789	for (i = 0; i < disks ; i++)
1790		ptrs[i] = (void *)raid6_empty_zero_page;
1791	count = 0;
1792	i = d0_idx;
1793	do {
1794		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1795
1796		ptrs[slot] = page_address(sh->dev[i].page);
1797
1798		if (i == dd_idx1)
1799			faila = slot;
1800		if (i == dd_idx2)
1801			failb = slot;
1802		i = raid6_next_disk(i, disks);
1803	} while (i != d0_idx);
1804	BUG_ON(count != syndrome_disks);
1805
1806	BUG_ON(faila == failb);
1807	if ( failb < faila ) { int tmp = faila; faila = failb; failb = tmp; }
1808
1809	pr_debug("compute_block_2, stripe %llu, idx %d,%d (%d,%d)\n",
1810		 (unsigned long long)sh->sector, dd_idx1, dd_idx2,
1811		 faila, failb);
1812
1813	if (failb == syndrome_disks+1) {
1814		/* Q disk is one of the missing disks */
1815		if (faila == syndrome_disks) {
1816			/* Missing P+Q, just recompute */
1817			compute_parity6(sh, UPDATE_PARITY);
1818			return;
1819		} else {
1820			/* We're missing D+Q; recompute D from P */
1821			compute_block_1(sh, ((dd_idx1 == sh->qd_idx) ?
1822					     dd_idx2 : dd_idx1),
1823					0);
1824			compute_parity6(sh, UPDATE_PARITY); /* Is this necessary? */
1825			return;
1826		}
1827	}
1828
1829	/* We're missing D+P or D+D; */
1830	if (failb == syndrome_disks) {
1831		/* We're missing D+P. */
1832		raid6_datap_recov(syndrome_disks+2, STRIPE_SIZE, faila, ptrs);
1833	} else {
1834		/* We're missing D+D. */
1835		raid6_2data_recov(syndrome_disks+2, STRIPE_SIZE, faila, failb,
1836				  ptrs);
1837	}
1838
1839	/* Both the above update both missing blocks */
1840	set_bit(R5_UPTODATE, &sh->dev[dd_idx1].flags);
1841	set_bit(R5_UPTODATE, &sh->dev[dd_idx2].flags);
1842}
1843
1844static void
1845schedule_reconstruction5(struct stripe_head *sh, struct stripe_head_state *s,
1846			 int rcw, int expand)
1847{
1848	int i, pd_idx = sh->pd_idx, disks = sh->disks;
1849
1850	if (rcw) {
1851		/* if we are not expanding this is a proper write request, and
1852		 * there will be bios with new data to be drained into the
1853		 * stripe cache
1854		 */
1855		if (!expand) {
1856			sh->reconstruct_state = reconstruct_state_drain_run;
1857			set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
1858		} else
1859			sh->reconstruct_state = reconstruct_state_run;
1860
1861		set_bit(STRIPE_OP_POSTXOR, &s->ops_request);
1862
1863		for (i = disks; i--; ) {
1864			struct r5dev *dev = &sh->dev[i];
1865
1866			if (dev->towrite) {
1867				set_bit(R5_LOCKED, &dev->flags);
1868				set_bit(R5_Wantdrain, &dev->flags);
1869				if (!expand)
1870					clear_bit(R5_UPTODATE, &dev->flags);
1871				s->locked++;
1872			}
1873		}
1874		if (s->locked + 1 == disks)
1875			if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
1876				atomic_inc(&sh->raid_conf->pending_full_writes);
1877	} else {
1878		BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
1879			test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
1880
1881		sh->reconstruct_state = reconstruct_state_prexor_drain_run;
1882		set_bit(STRIPE_OP_PREXOR, &s->ops_request);
1883		set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
1884		set_bit(STRIPE_OP_POSTXOR, &s->ops_request);
1885
1886		for (i = disks; i--; ) {
1887			struct r5dev *dev = &sh->dev[i];
1888			if (i == pd_idx)
1889				continue;
1890
1891			if (dev->towrite &&
1892			    (test_bit(R5_UPTODATE, &dev->flags) ||
1893			     test_bit(R5_Wantcompute, &dev->flags))) {
1894				set_bit(R5_Wantdrain, &dev->flags);
1895				set_bit(R5_LOCKED, &dev->flags);
1896				clear_bit(R5_UPTODATE, &dev->flags);
1897				s->locked++;
1898			}
1899		}
1900	}
1901
1902	/* keep the parity disk locked while asynchronous operations
1903	 * are in flight
1904	 */
1905	set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
1906	clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1907	s->locked++;
1908
1909	pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
1910		__func__, (unsigned long long)sh->sector,
1911		s->locked, s->ops_request);
1912}
1913
1914/*
1915 * Each stripe/dev can have one or more bion attached.
1916 * toread/towrite point to the first in a chain.
1917 * The bi_next chain must be in order.
1918 */
1919static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
1920{
1921	struct bio **bip;
1922	raid5_conf_t *conf = sh->raid_conf;
1923	int firstwrite=0;
1924
1925	pr_debug("adding bh b#%llu to stripe s#%llu\n",
1926		(unsigned long long)bi->bi_sector,
1927		(unsigned long long)sh->sector);
1928
1929
1930	spin_lock(&sh->lock);
1931	spin_lock_irq(&conf->device_lock);
1932	if (forwrite) {
1933		bip = &sh->dev[dd_idx].towrite;
1934		if (*bip == NULL && sh->dev[dd_idx].written == NULL)
1935			firstwrite = 1;
1936	} else
1937		bip = &sh->dev[dd_idx].toread;
1938	while (*bip && (*bip)->bi_sector < bi->bi_sector) {
1939		if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
1940			goto overlap;
1941		bip = & (*bip)->bi_next;
1942	}
1943	if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
1944		goto overlap;
1945
1946	BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
1947	if (*bip)
1948		bi->bi_next = *bip;
1949	*bip = bi;
1950	bi->bi_phys_segments++;
1951	spin_unlock_irq(&conf->device_lock);
1952	spin_unlock(&sh->lock);
1953
1954	pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
1955		(unsigned long long)bi->bi_sector,
1956		(unsigned long long)sh->sector, dd_idx);
1957
1958	if (conf->mddev->bitmap && firstwrite) {
1959		bitmap_startwrite(conf->mddev->bitmap, sh->sector,
1960				  STRIPE_SECTORS, 0);
1961		sh->bm_seq = conf->seq_flush+1;
1962		set_bit(STRIPE_BIT_DELAY, &sh->state);
1963	}
1964
1965	if (forwrite) {
1966		/* check if page is covered */
1967		sector_t sector = sh->dev[dd_idx].sector;
1968		for (bi=sh->dev[dd_idx].towrite;
1969		     sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
1970			     bi && bi->bi_sector <= sector;
1971		     bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
1972			if (bi->bi_sector + (bi->bi_size>>9) >= sector)
1973				sector = bi->bi_sector + (bi->bi_size>>9);
1974		}
1975		if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
1976			set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
1977	}
1978	return 1;
1979
1980 overlap:
1981	set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
1982	spin_unlock_irq(&conf->device_lock);
1983	spin_unlock(&sh->lock);
1984	return 0;
1985}
1986
1987static void end_reshape(raid5_conf_t *conf);
1988
1989static int page_is_zero(struct page *p)
1990{
1991	char *a = page_address(p);
1992	return ((*(u32*)a) == 0 &&
1993		memcmp(a, a+4, STRIPE_SIZE-4)==0);
1994}
1995
1996static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
1997			    struct stripe_head *sh)
1998{
1999	int sectors_per_chunk =
2000		previous ? (conf->prev_chunk >> 9)
2001			 : (conf->chunk_size >> 9);
2002	int dd_idx;
2003	int chunk_offset = sector_div(stripe, sectors_per_chunk);
2004	int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2005
2006	raid5_compute_sector(conf,
2007			     stripe * (disks - conf->max_degraded)
2008			     *sectors_per_chunk + chunk_offset,
2009			     previous,
2010			     &dd_idx, sh);
2011}
2012
2013static void
2014handle_failed_stripe(raid5_conf_t *conf, struct stripe_head *sh,
2015				struct stripe_head_state *s, int disks,
2016				struct bio **return_bi)
2017{
2018	int i;
2019	for (i = disks; i--; ) {
2020		struct bio *bi;
2021		int bitmap_end = 0;
2022
2023		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2024			mdk_rdev_t *rdev;
2025			rcu_read_lock();
2026			rdev = rcu_dereference(conf->disks[i].rdev);
2027			if (rdev && test_bit(In_sync, &rdev->flags))
2028				/* multiple read failures in one stripe */
2029				md_error(conf->mddev, rdev);
2030			rcu_read_unlock();
2031		}
2032		spin_lock_irq(&conf->device_lock);
2033		/* fail all writes first */
2034		bi = sh->dev[i].towrite;
2035		sh->dev[i].towrite = NULL;
2036		if (bi) {
2037			s->to_write--;
2038			bitmap_end = 1;
2039		}
2040
2041		if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2042			wake_up(&conf->wait_for_overlap);
2043
2044		while (bi && bi->bi_sector <
2045			sh->dev[i].sector + STRIPE_SECTORS) {
2046			struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2047			clear_bit(BIO_UPTODATE, &bi->bi_flags);
2048			if (!raid5_dec_bi_phys_segments(bi)) {
2049				md_write_end(conf->mddev);
2050				bi->bi_next = *return_bi;
2051				*return_bi = bi;
2052			}
2053			bi = nextbi;
2054		}
2055		/* and fail all 'written' */
2056		bi = sh->dev[i].written;
2057		sh->dev[i].written = NULL;
2058		if (bi) bitmap_end = 1;
2059		while (bi && bi->bi_sector <
2060		       sh->dev[i].sector + STRIPE_SECTORS) {
2061			struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
2062			clear_bit(BIO_UPTODATE, &bi->bi_flags);
2063			if (!raid5_dec_bi_phys_segments(bi)) {
2064				md_write_end(conf->mddev);
2065				bi->bi_next = *return_bi;
2066				*return_bi = bi;
2067			}
2068			bi = bi2;
2069		}
2070
2071		/* fail any reads if this device is non-operational and
2072		 * the data has not reached the cache yet.
2073		 */
2074		if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
2075		    (!test_bit(R5_Insync, &sh->dev[i].flags) ||
2076		      test_bit(R5_ReadError, &sh->dev[i].flags))) {
2077			bi = sh->dev[i].toread;
2078			sh->dev[i].toread = NULL;
2079			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2080				wake_up(&conf->wait_for_overlap);
2081			if (bi) s->to_read--;
2082			while (bi && bi->bi_sector <
2083			       sh->dev[i].sector + STRIPE_SECTORS) {
2084				struct bio *nextbi =
2085					r5_next_bio(bi, sh->dev[i].sector);
2086				clear_bit(BIO_UPTODATE, &bi->bi_flags);
2087				if (!raid5_dec_bi_phys_segments(bi)) {
2088					bi->bi_next = *return_bi;
2089					*return_bi = bi;
2090				}
2091				bi = nextbi;
2092			}
2093		}
2094		spin_unlock_irq(&conf->device_lock);
2095		if (bitmap_end)
2096			bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2097					STRIPE_SECTORS, 0, 0);
2098	}
2099
2100	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2101		if (atomic_dec_and_test(&conf->pending_full_writes))
2102			md_wakeup_thread(conf->mddev->thread);
2103}
2104
2105/* fetch_block5 - checks the given member device to see if its data needs
2106 * to be read or computed to satisfy a request.
2107 *
2108 * Returns 1 when no more member devices need to be checked, otherwise returns
2109 * 0 to tell the loop in handle_stripe_fill5 to continue
2110 */
2111static int fetch_block5(struct stripe_head *sh, struct stripe_head_state *s,
2112			int disk_idx, int disks)
2113{
2114	struct r5dev *dev = &sh->dev[disk_idx];
2115	struct r5dev *failed_dev = &sh->dev[s->failed_num];
2116
2117	/* is the data in this block needed, and can we get it? */
2118	if (!test_bit(R5_LOCKED, &dev->flags) &&
2119	    !test_bit(R5_UPTODATE, &dev->flags) &&
2120	    (dev->toread ||
2121	     (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2122	     s->syncing || s->expanding ||
2123	     (s->failed &&
2124	      (failed_dev->toread ||
2125	       (failed_dev->towrite &&
2126		!test_bit(R5_OVERWRITE, &failed_dev->flags)))))) {
2127		/* We would like to get this block, possibly by computing it,
2128		 * otherwise read it if the backing disk is insync
2129		 */
2130		if ((s->uptodate == disks - 1) &&
2131		    (s->failed && disk_idx == s->failed_num)) {
2132			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2133			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2134			set_bit(R5_Wantcompute, &dev->flags);
2135			sh->ops.target = disk_idx;
2136			s->req_compute = 1;
2137			/* Careful: from this point on 'uptodate' is in the eye
2138			 * of raid5_run_ops which services 'compute' operations
2139			 * before writes. R5_Wantcompute flags a block that will
2140			 * be R5_UPTODATE by the time it is needed for a
2141			 * subsequent operation.
2142			 */
2143			s->uptodate++;
2144			return 1; /* uptodate + compute == disks */
2145		} else if (test_bit(R5_Insync, &dev->flags)) {
2146			set_bit(R5_LOCKED, &dev->flags);
2147			set_bit(R5_Wantread, &dev->flags);
2148			s->locked++;
2149			pr_debug("Reading block %d (sync=%d)\n", disk_idx,
2150				s->syncing);
2151		}
2152	}
2153
2154	return 0;
2155}
2156
2157/**
2158 * handle_stripe_fill5 - read or compute data to satisfy pending requests.
2159 */
2160static void handle_stripe_fill5(struct stripe_head *sh,
2161			struct stripe_head_state *s, int disks)
2162{
2163	int i;
2164
2165	/* look for blocks to read/compute, skip this if a compute
2166	 * is already in flight, or if the stripe contents are in the
2167	 * midst of changing due to a write
2168	 */
2169	if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2170	    !sh->reconstruct_state)
2171		for (i = disks; i--; )
2172			if (fetch_block5(sh, s, i, disks))
2173				break;
2174	set_bit(STRIPE_HANDLE, &sh->state);
2175}
2176
2177static void handle_stripe_fill6(struct stripe_head *sh,
2178			struct stripe_head_state *s, struct r6_state *r6s,
2179			int disks)
2180{
2181	int i;
2182	for (i = disks; i--; ) {
2183		struct r5dev *dev = &sh->dev[i];
2184		if (!test_bit(R5_LOCKED, &dev->flags) &&
2185		    !test_bit(R5_UPTODATE, &dev->flags) &&
2186		    (dev->toread || (dev->towrite &&
2187		     !test_bit(R5_OVERWRITE, &dev->flags)) ||
2188		     s->syncing || s->expanding ||
2189		     (s->failed >= 1 &&
2190		      (sh->dev[r6s->failed_num[0]].toread ||
2191		       s->to_write)) ||
2192		     (s->failed >= 2 &&
2193		      (sh->dev[r6s->failed_num[1]].toread ||
2194		       s->to_write)))) {
2195			/* we would like to get this block, possibly
2196			 * by computing it, but we might not be able to
2197			 */
2198			if ((s->uptodate == disks - 1) &&
2199			    (s->failed && (i == r6s->failed_num[0] ||
2200					   i == r6s->failed_num[1]))) {
2201				pr_debug("Computing stripe %llu block %d\n",
2202				       (unsigned long long)sh->sector, i);
2203				compute_block_1(sh, i, 0);
2204				s->uptodate++;
2205			} else if ( s->uptodate == disks-2 && s->failed >= 2 ) {
2206				/* Computing 2-failure is *very* expensive; only
2207				 * do it if failed >= 2
2208				 */
2209				int other;
2210				for (other = disks; other--; ) {
2211					if (other == i)
2212						continue;
2213					if (!test_bit(R5_UPTODATE,
2214					      &sh->dev[other].flags))
2215						break;
2216				}
2217				BUG_ON(other < 0);
2218				pr_debug("Computing stripe %llu blocks %d,%d\n",
2219				       (unsigned long long)sh->sector,
2220				       i, other);
2221				compute_block_2(sh, i, other);
2222				s->uptodate += 2;
2223			} else if (test_bit(R5_Insync, &dev->flags)) {
2224				set_bit(R5_LOCKED, &dev->flags);
2225				set_bit(R5_Wantread, &dev->flags);
2226				s->locked++;
2227				pr_debug("Reading block %d (sync=%d)\n",
2228					i, s->syncing);
2229			}
2230		}
2231	}
2232	set_bit(STRIPE_HANDLE, &sh->state);
2233}
2234
2235
2236/* handle_stripe_clean_event
2237 * any written block on an uptodate or failed drive can be returned.
2238 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2239 * never LOCKED, so we don't need to test 'failed' directly.
2240 */
2241static void handle_stripe_clean_event(raid5_conf_t *conf,
2242	struct stripe_head *sh, int disks, struct bio **return_bi)
2243{
2244	int i;
2245	struct r5dev *dev;
2246
2247	for (i = disks; i--; )
2248		if (sh->dev[i].written) {
2249			dev = &sh->dev[i];
2250			if (!test_bit(R5_LOCKED, &dev->flags) &&
2251				test_bit(R5_UPTODATE, &dev->flags)) {
2252				/* We can return any write requests */
2253				struct bio *wbi, *wbi2;
2254				int bitmap_end = 0;
2255				pr_debug("Return write for disc %d\n", i);
2256				spin_lock_irq(&conf->device_lock);
2257				wbi = dev->written;
2258				dev->written = NULL;
2259				while (wbi && wbi->bi_sector <
2260					dev->sector + STRIPE_SECTORS) {
2261					wbi2 = r5_next_bio(wbi, dev->sector);
2262					if (!raid5_dec_bi_phys_segments(wbi)) {
2263						md_write_end(conf->mddev);
2264						wbi->bi_next = *return_bi;
2265						*return_bi = wbi;
2266					}
2267					wbi = wbi2;
2268				}
2269				if (dev->towrite == NULL)
2270					bitmap_end = 1;
2271				spin_unlock_irq(&conf->device_lock);
2272				if (bitmap_end)
2273					bitmap_endwrite(conf->mddev->bitmap,
2274							sh->sector,
2275							STRIPE_SECTORS,
2276					 !test_bit(STRIPE_DEGRADED, &sh->state),
2277							0);
2278			}
2279		}
2280
2281	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2282		if (atomic_dec_and_test(&conf->pending_full_writes))
2283			md_wakeup_thread(conf->mddev->thread);
2284}
2285
2286static void handle_stripe_dirtying5(raid5_conf_t *conf,
2287		struct stripe_head *sh,	struct stripe_head_state *s, int disks)
2288{
2289	int rmw = 0, rcw = 0, i;
2290	for (i = disks; i--; ) {
2291		/* would I have to read this buffer for read_modify_write */
2292		struct r5dev *dev = &sh->dev[i];
2293		if ((dev->towrite || i == sh->pd_idx) &&
2294		    !test_bit(R5_LOCKED, &dev->flags) &&
2295		    !(test_bit(R5_UPTODATE, &dev->flags) ||
2296		      test_bit(R5_Wantcompute, &dev->flags))) {
2297			if (test_bit(R5_Insync, &dev->flags))
2298				rmw++;
2299			else
2300				rmw += 2*disks;  /* cannot read it */
2301		}
2302		/* Would I have to read this buffer for reconstruct_write */
2303		if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
2304		    !test_bit(R5_LOCKED, &dev->flags) &&
2305		    !(test_bit(R5_UPTODATE, &dev->flags) ||
2306		    test_bit(R5_Wantcompute, &dev->flags))) {
2307			if (test_bit(R5_Insync, &dev->flags)) rcw++;
2308			else
2309				rcw += 2*disks;
2310		}
2311	}
2312	pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2313		(unsigned long long)sh->sector, rmw, rcw);
2314	set_bit(STRIPE_HANDLE, &sh->state);
2315	if (rmw < rcw && rmw > 0)
2316		/* prefer read-modify-write, but need to get some data */
2317		for (i = disks; i--; ) {
2318			struct r5dev *dev = &sh->dev[i];
2319			if ((dev->towrite || i == sh->pd_idx) &&
2320			    !test_bit(R5_LOCKED, &dev->flags) &&
2321			    !(test_bit(R5_UPTODATE, &dev->flags) ||
2322			    test_bit(R5_Wantcompute, &dev->flags)) &&
2323			    test_bit(R5_Insync, &dev->flags)) {
2324				if (
2325				  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2326					pr_debug("Read_old block "
2327						"%d for r-m-w\n", i);
2328					set_bit(R5_LOCKED, &dev->flags);
2329					set_bit(R5_Wantread, &dev->flags);
2330					s->locked++;
2331				} else {
2332					set_bit(STRIPE_DELAYED, &sh->state);
2333					set_bit(STRIPE_HANDLE, &sh->state);
2334				}
2335			}
2336		}
2337	if (rcw <= rmw && rcw > 0)
2338		/* want reconstruct write, but need to get some data */
2339		for (i = disks; i--; ) {
2340			struct r5dev *dev = &sh->dev[i];
2341			if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2342			    i != sh->pd_idx &&
2343			    !test_bit(R5_LOCKED, &dev->flags) &&
2344			    !(test_bit(R5_UPTODATE, &dev->flags) ||
2345			    test_bit(R5_Wantcompute, &dev->flags)) &&
2346			    test_bit(R5_Insync, &dev->flags)) {
2347				if (
2348				  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2349					pr_debug("Read_old block "
2350						"%d for Reconstruct\n", i);
2351					set_bit(R5_LOCKED, &dev->flags);
2352					set_bit(R5_Wantread, &dev->flags);
2353					s->locked++;
2354				} else {
2355					set_bit(STRIPE_DELAYED, &sh->state);
2356					set_bit(STRIPE_HANDLE, &sh->state);
2357				}
2358			}
2359		}
2360	/* now if nothing is locked, and if we have enough data,
2361	 * we can start a write request
2362	 */
2363	/* since handle_stripe can be called at any time we need to handle the
2364	 * case where a compute block operation has been submitted and then a
2365	 * subsequent call wants to start a write request.  raid5_run_ops only
2366	 * handles the case where compute block and postxor are requested
2367	 * simultaneously.  If this is not the case then new writes need to be
2368	 * held off until the compute completes.
2369	 */
2370	if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2371	    (s->locked == 0 && (rcw == 0 || rmw == 0) &&
2372	    !test_bit(STRIPE_BIT_DELAY, &sh->state)))
2373		schedule_reconstruction5(sh, s, rcw == 0, 0);
2374}
2375
2376static void handle_stripe_dirtying6(raid5_conf_t *conf,
2377		struct stripe_head *sh,	struct stripe_head_state *s,
2378		struct r6_state *r6s, int disks)
2379{
2380	int rcw = 0, must_compute = 0, pd_idx = sh->pd_idx, i;
2381	int qd_idx = sh->qd_idx;
2382	for (i = disks; i--; ) {
2383		struct r5dev *dev = &sh->dev[i];
2384		/* Would I have to read this buffer for reconstruct_write */
2385		if (!test_bit(R5_OVERWRITE, &dev->flags)
2386		    && i != pd_idx && i != qd_idx
2387		    && (!test_bit(R5_LOCKED, &dev->flags)
2388			    ) &&
2389		    !test_bit(R5_UPTODATE, &dev->flags)) {
2390			if (test_bit(R5_Insync, &dev->flags)) rcw++;
2391			else {
2392				pr_debug("raid6: must_compute: "
2393					"disk %d flags=%#lx\n", i, dev->flags);
2394				must_compute++;
2395			}
2396		}
2397	}
2398	pr_debug("for sector %llu, rcw=%d, must_compute=%d\n",
2399	       (unsigned long long)sh->sector, rcw, must_compute);
2400	set_bit(STRIPE_HANDLE, &sh->state);
2401
2402	if (rcw > 0)
2403		/* want reconstruct write, but need to get some data */
2404		for (i = disks; i--; ) {
2405			struct r5dev *dev = &sh->dev[i];
2406			if (!test_bit(R5_OVERWRITE, &dev->flags)
2407			    && !(s->failed == 0 && (i == pd_idx || i == qd_idx))
2408			    && !test_bit(R5_LOCKED, &dev->flags) &&
2409			    !test_bit(R5_UPTODATE, &dev->flags) &&
2410			    test_bit(R5_Insync, &dev->flags)) {
2411				if (
2412				  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2413					pr_debug("Read_old stripe %llu "
2414						"block %d for Reconstruct\n",
2415					     (unsigned long long)sh->sector, i);
2416					set_bit(R5_LOCKED, &dev->flags);
2417					set_bit(R5_Wantread, &dev->flags);
2418					s->locked++;
2419				} else {
2420					pr_debug("Request delayed stripe %llu "
2421						"block %d for Reconstruct\n",
2422					     (unsigned long long)sh->sector, i);
2423					set_bit(STRIPE_DELAYED, &sh->state);
2424					set_bit(STRIPE_HANDLE, &sh->state);
2425				}
2426			}
2427		}
2428	/* now if nothing is locked, and if we have enough data, we can start a
2429	 * write request
2430	 */
2431	if (s->locked == 0 && rcw == 0 &&
2432	    !test_bit(STRIPE_BIT_DELAY, &sh->state)) {
2433		if (must_compute > 0) {
2434			/* We have failed blocks and need to compute them */
2435			switch (s->failed) {
2436			case 0:
2437				BUG();
2438			case 1:
2439				compute_block_1(sh, r6s->failed_num[0], 0);
2440				break;
2441			case 2:
2442				compute_block_2(sh, r6s->failed_num[0],
2443						r6s->failed_num[1]);
2444				break;
2445			default: /* This request should have been failed? */
2446				BUG();
2447			}
2448		}
2449
2450		pr_debug("Computing parity for stripe %llu\n",
2451			(unsigned long long)sh->sector);
2452		compute_parity6(sh, RECONSTRUCT_WRITE);
2453		/* now every locked buffer is ready to be written */
2454		for (i = disks; i--; )
2455			if (test_bit(R5_LOCKED, &sh->dev[i].flags)) {
2456				pr_debug("Writing stripe %llu block %d\n",
2457				       (unsigned long long)sh->sector, i);
2458				s->locked++;
2459				set_bit(R5_Wantwrite, &sh->dev[i].flags);
2460			}
2461		if (s->locked == disks)
2462			if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2463				atomic_inc(&conf->pending_full_writes);
2464		/* after a RECONSTRUCT_WRITE, the stripe MUST be in-sync */
2465		set_bit(STRIPE_INSYNC, &sh->state);
2466
2467		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2468			atomic_dec(&conf->preread_active_stripes);
2469			if (atomic_read(&conf->preread_active_stripes) <
2470			    IO_THRESHOLD)
2471				md_wakeup_thread(conf->mddev->thread);
2472		}
2473	}
2474}
2475
2476static void handle_parity_checks5(raid5_conf_t *conf, struct stripe_head *sh,
2477				struct stripe_head_state *s, int disks)
2478{
2479	struct r5dev *dev = NULL;
2480
2481	set_bit(STRIPE_HANDLE, &sh->state);
2482
2483	switch (sh->check_state) {
2484	case check_state_idle:
2485		/* start a new check operation if there are no failures */
2486		if (s->failed == 0) {
2487			BUG_ON(s->uptodate != disks);
2488			sh->check_state = check_state_run;
2489			set_bit(STRIPE_OP_CHECK, &s->ops_request);
2490			clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
2491			s->uptodate--;
2492			break;
2493		}
2494		dev = &sh->dev[s->failed_num];
2495		/* fall through */
2496	case check_state_compute_result:
2497		sh->check_state = check_state_idle;
2498		if (!dev)
2499			dev = &sh->dev[sh->pd_idx];
2500
2501		/* check that a write has not made the stripe insync */
2502		if (test_bit(STRIPE_INSYNC, &sh->state))
2503			break;
2504
2505		/* either failed parity check, or recovery is happening */
2506		BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
2507		BUG_ON(s->uptodate != disks);
2508
2509		set_bit(R5_LOCKED, &dev->flags);
2510		s->locked++;
2511		set_bit(R5_Wantwrite, &dev->flags);
2512
2513		clear_bit(STRIPE_DEGRADED, &sh->state);
2514		set_bit(STRIPE_INSYNC, &sh->state);
2515		break;
2516	case check_state_run:
2517		break; /* we will be called again upon completion */
2518	case check_state_check_result:
2519		sh->check_state = check_state_idle;
2520
2521		/* if a failure occurred during the check operation, leave
2522		 * STRIPE_INSYNC not set and let the stripe be handled again
2523		 */
2524		if (s->failed)
2525			break;
2526
2527		/* handle a successful check operation, if parity is correct
2528		 * we are done.  Otherwise update the mismatch count and repair
2529		 * parity if !MD_RECOVERY_CHECK
2530		 */
2531		if (sh->ops.zero_sum_result == 0)
2532			/* parity is correct (on disc,
2533			 * not in buffer any more)
2534			 */
2535			set_bit(STRIPE_INSYNC, &sh->state);
2536		else {
2537			conf->mddev->resync_mismatches += STRIPE_SECTORS;
2538			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2539				/* don't try to repair!! */
2540				set_bit(STRIPE_INSYNC, &sh->state);
2541			else {
2542				sh->check_state = check_state_compute_run;
2543				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2544				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2545				set_bit(R5_Wantcompute,
2546					&sh->dev[sh->pd_idx].flags);
2547				sh->ops.target = sh->pd_idx;
2548				s->uptodate++;
2549			}
2550		}
2551		break;
2552	case check_state_compute_run:
2553		break;
2554	default:
2555		printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2556		       __func__, sh->check_state,
2557		       (unsigned long long) sh->sector);
2558		BUG();
2559	}
2560}
2561
2562
2563static void handle_parity_checks6(raid5_conf_t *conf, struct stripe_head *sh,
2564				struct stripe_head_state *s,
2565				struct r6_state *r6s, struct page *tmp_page,
2566				int disks)
2567{
2568	int update_p = 0, update_q = 0;
2569	struct r5dev *dev;
2570	int pd_idx = sh->pd_idx;
2571	int qd_idx = sh->qd_idx;
2572
2573	set_bit(STRIPE_HANDLE, &sh->state);
2574
2575	BUG_ON(s->failed > 2);
2576	BUG_ON(s->uptodate < disks);
2577	/* Want to check and possibly repair P and Q.
2578	 * However there could be one 'failed' device, in which
2579	 * case we can only check one of them, possibly using the
2580	 * other to generate missing data
2581	 */
2582
2583	/* If !tmp_page, we cannot do the calculations,
2584	 * but as we have set STRIPE_HANDLE, we will soon be called
2585	 * by stripe_handle with a tmp_page - just wait until then.
2586	 */
2587	if (tmp_page) {
2588		if (s->failed == r6s->q_failed) {
2589			/* The only possible failed device holds 'Q', so it
2590			 * makes sense to check P (If anything else were failed,
2591			 * we would have used P to recreate it).
2592			 */
2593			compute_block_1(sh, pd_idx, 1);
2594			if (!page_is_zero(sh->dev[pd_idx].page)) {
2595				compute_block_1(sh, pd_idx, 0);
2596				update_p = 1;
2597			}
2598		}
2599		if (!r6s->q_failed && s->failed < 2) {
2600			/* q is not failed, and we didn't use it to generate
2601			 * anything, so it makes sense to check it
2602			 */
2603			memcpy(page_address(tmp_page),
2604			       page_address(sh->dev[qd_idx].page),
2605			       STRIPE_SIZE);
2606			compute_parity6(sh, UPDATE_PARITY);
2607			if (memcmp(page_address(tmp_page),
2608				   page_address(sh->dev[qd_idx].page),
2609				   STRIPE_SIZE) != 0) {
2610				clear_bit(STRIPE_INSYNC, &sh->state);
2611				update_q = 1;
2612			}
2613		}
2614		if (update_p || update_q) {
2615			conf->mddev->resync_mismatches += STRIPE_SECTORS;
2616			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2617				/* don't try to repair!! */
2618				update_p = update_q = 0;
2619		}
2620
2621		/* now write out any block on a failed drive,
2622		 * or P or Q if they need it
2623		 */
2624
2625		if (s->failed == 2) {
2626			dev = &sh->dev[r6s->failed_num[1]];
2627			s->locked++;
2628			set_bit(R5_LOCKED, &dev->flags);
2629			set_bit(R5_Wantwrite, &dev->flags);
2630		}
2631		if (s->failed >= 1) {
2632			dev = &sh->dev[r6s->failed_num[0]];
2633			s->locked++;
2634			set_bit(R5_LOCKED, &dev->flags);
2635			set_bit(R5_Wantwrite, &dev->flags);
2636		}
2637
2638		if (update_p) {
2639			dev = &sh->dev[pd_idx];
2640			s->locked++;
2641			set_bit(R5_LOCKED, &dev->flags);
2642			set_bit(R5_Wantwrite, &dev->flags);
2643		}
2644		if (update_q) {
2645			dev = &sh->dev[qd_idx];
2646			s->locked++;
2647			set_bit(R5_LOCKED, &dev->flags);
2648			set_bit(R5_Wantwrite, &dev->flags);
2649		}
2650		clear_bit(STRIPE_DEGRADED, &sh->state);
2651
2652		set_bit(STRIPE_INSYNC, &sh->state);
2653	}
2654}
2655
2656static void handle_stripe_expansion(raid5_conf_t *conf, struct stripe_head *sh,
2657				struct r6_state *r6s)
2658{
2659	int i;
2660
2661	/* We have read all the blocks in this stripe and now we need to
2662	 * copy some of them into a target stripe for expand.
2663	 */
2664	struct dma_async_tx_descriptor *tx = NULL;
2665	clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2666	for (i = 0; i < sh->disks; i++)
2667		if (i != sh->pd_idx && i != sh->qd_idx) {
2668			int dd_idx, j;
2669			struct stripe_head *sh2;
2670
2671			sector_t bn = compute_blocknr(sh, i, 1);
2672			sector_t s = raid5_compute_sector(conf, bn, 0,
2673							  &dd_idx, NULL);
2674			sh2 = get_active_stripe(conf, s, 0, 1);
2675			if (sh2 == NULL)
2676				/* so far only the early blocks of this stripe
2677				 * have been requested.  When later blocks
2678				 * get requested, we will try again
2679				 */
2680				continue;
2681			if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
2682			   test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
2683				/* must have already done this block */
2684				release_stripe(sh2);
2685				continue;
2686			}
2687
2688			/* place all the copies on one channel */
2689			tx = async_memcpy(sh2->dev[dd_idx].page,
2690				sh->dev[i].page, 0, 0, STRIPE_SIZE,
2691				ASYNC_TX_DEP_ACK, tx, NULL, NULL);
2692
2693			set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
2694			set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
2695			for (j = 0; j < conf->raid_disks; j++)
2696				if (j != sh2->pd_idx &&
2697				    (!r6s || j != sh2->qd_idx) &&
2698				    !test_bit(R5_Expanded, &sh2->dev[j].flags))
2699					break;
2700			if (j == conf->raid_disks) {
2701				set_bit(STRIPE_EXPAND_READY, &sh2->state);
2702				set_bit(STRIPE_HANDLE, &sh2->state);
2703			}
2704			release_stripe(sh2);
2705
2706		}
2707	/* done submitting copies, wait for them to complete */
2708	if (tx) {
2709		async_tx_ack(tx);
2710		dma_wait_for_async_tx(tx);
2711	}
2712}
2713
2714
2715/*
2716 * handle_stripe - do things to a stripe.
2717 *
2718 * We lock the stripe and then examine the state of various bits
2719 * to see what needs to be done.
2720 * Possible results:
2721 *    return some read request which now have data
2722 *    return some write requests which are safely on disc
2723 *    schedule a read on some buffers
2724 *    schedule a write of some buffers
2725 *    return confirmation of parity correctness
2726 *
2727 * buffers are taken off read_list or write_list, and bh_cache buffers
2728 * get BH_Lock set before the stripe lock is released.
2729 *
2730 */
2731
2732static bool handle_stripe5(struct stripe_head *sh)
2733{
2734	raid5_conf_t *conf = sh->raid_conf;
2735	int disks = sh->disks, i;
2736	struct bio *return_bi = NULL;
2737	struct stripe_head_state s;
2738	struct r5dev *dev;
2739	mdk_rdev_t *blocked_rdev = NULL;
2740	int prexor;
2741
2742	memset(&s, 0, sizeof(s));
2743	pr_debug("handling stripe %llu, state=%#lx cnt=%d, pd_idx=%d check:%d "
2744		 "reconstruct:%d\n", (unsigned long long)sh->sector, sh->state,
2745		 atomic_read(&sh->count), sh->pd_idx, sh->check_state,
2746		 sh->reconstruct_state);
2747
2748	spin_lock(&sh->lock);
2749	clear_bit(STRIPE_HANDLE, &sh->state);
2750	clear_bit(STRIPE_DELAYED, &sh->state);
2751
2752	s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
2753	s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2754	s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
2755
2756	/* Now to look around and see what can be done */
2757	rcu_read_lock();
2758	for (i=disks; i--; ) {
2759		mdk_rdev_t *rdev;
2760		struct r5dev *dev = &sh->dev[i];
2761		clear_bit(R5_Insync, &dev->flags);
2762
2763		pr_debug("check %d: state 0x%lx toread %p read %p write %p "
2764			"written %p\n",	i, dev->flags, dev->toread, dev->read,
2765			dev->towrite, dev->written);
2766
2767		/* maybe we can request a biofill operation
2768		 *
2769		 * new wantfill requests are only permitted while
2770		 * ops_complete_biofill is guaranteed to be inactive
2771		 */
2772		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
2773		    !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
2774			set_bit(R5_Wantfill, &dev->flags);
2775
2776		/* now count some things */
2777		if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
2778		if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
2779		if (test_bit(R5_Wantcompute, &dev->flags)) s.compute++;
2780
2781		if (test_bit(R5_Wantfill, &dev->flags))
2782			s.to_fill++;
2783		else if (dev->toread)
2784			s.to_read++;
2785		if (dev->towrite) {
2786			s.to_write++;
2787			if (!test_bit(R5_OVERWRITE, &dev->flags))
2788				s.non_overwrite++;
2789		}
2790		if (dev->written)
2791			s.written++;
2792		rdev = rcu_dereference(conf->disks[i].rdev);
2793		if (blocked_rdev == NULL &&
2794		    rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
2795			blocked_rdev = rdev;
2796			atomic_inc(&rdev->nr_pending);
2797		}
2798		if (!rdev || !test_bit(In_sync, &rdev->flags)) {
2799			/* The ReadError flag will just be confusing now */
2800			clear_bit(R5_ReadError, &dev->flags);
2801			clear_bit(R5_ReWrite, &dev->flags);
2802		}
2803		if (!rdev || !test_bit(In_sync, &rdev->flags)
2804		    || test_bit(R5_ReadError, &dev->flags)) {
2805			s.failed++;
2806			s.failed_num = i;
2807		} else
2808			set_bit(R5_Insync, &dev->flags);
2809	}
2810	rcu_read_unlock();
2811
2812	if (unlikely(blocked_rdev)) {
2813		if (s.syncing || s.expanding || s.expanded ||
2814		    s.to_write || s.written) {
2815			set_bit(STRIPE_HANDLE, &sh->state);
2816			goto unlock;
2817		}
2818		/* There is nothing for the blocked_rdev to block */
2819		rdev_dec_pending(blocked_rdev, conf->mddev);
2820		blocked_rdev = NULL;
2821	}
2822
2823	if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
2824		set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
2825		set_bit(STRIPE_BIOFILL_RUN, &sh->state);
2826	}
2827
2828	pr_debug("locked=%d uptodate=%d to_read=%d"
2829		" to_write=%d failed=%d failed_num=%d\n",
2830		s.locked, s.uptodate, s.to_read, s.to_write,
2831		s.failed, s.failed_num);
2832	/* check if the array has lost two devices and, if so, some requests might
2833	 * need to be failed
2834	 */
2835	if (s.failed > 1 && s.to_read+s.to_write+s.written)
2836		handle_failed_stripe(conf, sh, &s, disks, &return_bi);
2837	if (s.failed > 1 && s.syncing) {
2838		md_done_sync(conf->mddev, STRIPE_SECTORS,0);
2839		clear_bit(STRIPE_SYNCING, &sh->state);
2840		s.syncing = 0;
2841	}
2842
2843	/* might be able to return some write requests if the parity block
2844	 * is safe, or on a failed drive
2845	 */
2846	dev = &sh->dev[sh->pd_idx];
2847	if ( s.written &&
2848	     ((test_bit(R5_Insync, &dev->flags) &&
2849	       !test_bit(R5_LOCKED, &dev->flags) &&
2850	       test_bit(R5_UPTODATE, &dev->flags)) ||
2851	       (s.failed == 1 && s.failed_num == sh->pd_idx)))
2852		handle_stripe_clean_event(conf, sh, disks, &return_bi);
2853
2854	/* Now we might consider reading some blocks, either to check/generate
2855	 * parity, or to satisfy requests
2856	 * or to load a block that is being partially written.
2857	 */
2858	if (s.to_read || s.non_overwrite ||
2859	    (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding)
2860		handle_stripe_fill5(sh, &s, disks);
2861
2862	/* Now we check to see if any write operations have recently
2863	 * completed
2864	 */
2865	prexor = 0;
2866	if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
2867		prexor = 1;
2868	if (sh->reconstruct_state == reconstruct_state_drain_result ||
2869	    sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
2870		sh->reconstruct_state = reconstruct_state_idle;
2871
2872		/* All the 'written' buffers and the parity block are ready to
2873		 * be written back to disk
2874		 */
2875		BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
2876		for (i = disks; i--; ) {
2877			dev = &sh->dev[i];
2878			if (test_bit(R5_LOCKED, &dev->flags) &&
2879				(i == sh->pd_idx || dev->written)) {
2880				pr_debug("Writing block %d\n", i);
2881				set_bit(R5_Wantwrite, &dev->flags);
2882				if (prexor)
2883					continue;
2884				if (!test_bit(R5_Insync, &dev->flags) ||
2885				    (i == sh->pd_idx && s.failed == 0))
2886					set_bit(STRIPE_INSYNC, &sh->state);
2887			}
2888		}
2889		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2890			atomic_dec(&conf->preread_active_stripes);
2891			if (atomic_read(&conf->preread_active_stripes) <
2892				IO_THRESHOLD)
2893				md_wakeup_thread(conf->mddev->thread);
2894		}
2895	}
2896
2897	/* Now to consider new write requests and what else, if anything
2898	 * should be read.  We do not handle new writes when:
2899	 * 1/ A 'write' operation (copy+xor) is already in flight.
2900	 * 2/ A 'check' operation is in flight, as it may clobber the parity
2901	 *    block.
2902	 */
2903	if (s.to_write && !sh->reconstruct_state && !sh->check_state)
2904		handle_stripe_dirtying5(conf, sh, &s, disks);
2905
2906	/* maybe we need to check and possibly fix the parity for this stripe
2907	 * Any reads will already have been scheduled, so we just see if enough
2908	 * data is available.  The parity check is held off while parity
2909	 * dependent operations are in flight.
2910	 */
2911	if (sh->check_state ||
2912	    (s.syncing && s.locked == 0 &&
2913	     !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
2914	     !test_bit(STRIPE_INSYNC, &sh->state)))
2915		handle_parity_checks5(conf, sh, &s, disks);
2916
2917	if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
2918		md_done_sync(conf->mddev, STRIPE_SECTORS,1);
2919		clear_bit(STRIPE_SYNCING, &sh->state);
2920	}
2921
2922	/* If the failed drive is just a ReadError, then we might need to progress
2923	 * the repair/check process
2924	 */
2925	if (s.failed == 1 && !conf->mddev->ro &&
2926	    test_bit(R5_ReadError, &sh->dev[s.failed_num].flags)
2927	    && !test_bit(R5_LOCKED, &sh->dev[s.failed_num].flags)
2928	    && test_bit(R5_UPTODATE, &sh->dev[s.failed_num].flags)
2929		) {
2930		dev = &sh->dev[s.failed_num];
2931		if (!test_bit(R5_ReWrite, &dev->flags)) {
2932			set_bit(R5_Wantwrite, &dev->flags);
2933			set_bit(R5_ReWrite, &dev->flags);
2934			set_bit(R5_LOCKED, &dev->flags);
2935			s.locked++;
2936		} else {
2937			/* let's read it back */
2938			set_bit(R5_Wantread, &dev->flags);
2939			set_bit(R5_LOCKED, &dev->flags);
2940			s.locked++;
2941		}
2942	}
2943
2944	/* Finish reconstruct operations initiated by the expansion process */
2945	if (sh->reconstruct_state == reconstruct_state_result) {
2946		struct stripe_head *sh2
2947			= get_active_stripe(conf, sh->sector, 1, 1);
2948		if (sh2 && test_bit(STRIPE_EXPAND_SOURCE, &sh2->state)) {
2949			/* sh cannot be written until sh2 has been read.
2950			 * so arrange for sh to be delayed a little
2951			 */
2952			set_bit(STRIPE_DELAYED, &sh->state);
2953			set_bit(STRIPE_HANDLE, &sh->state);
2954			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
2955					      &sh2->state))
2956				atomic_inc(&conf->preread_active_stripes);
2957			release_stripe(sh2);
2958			goto unlock;
2959		}
2960		if (sh2)
2961			release_stripe(sh2);
2962
2963		sh->reconstruct_state = reconstruct_state_idle;
2964		clear_bit(STRIPE_EXPANDING, &sh->state);
2965		for (i = conf->raid_disks; i--; ) {
2966			set_bit(R5_Wantwrite, &sh->dev[i].flags);
2967			set_bit(R5_LOCKED, &sh->dev[i].flags);
2968			s.locked++;
2969		}
2970	}
2971
2972	if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
2973	    !sh->reconstruct_state) {
2974		/* Need to write out all blocks after computing parity */
2975		sh->disks = conf->raid_disks;
2976		stripe_set_idx(sh->sector, conf, 0, sh);
2977		schedule_reconstruction5(sh, &s, 1, 1);
2978	} else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
2979		clear_bit(STRIPE_EXPAND_READY, &sh->state);
2980		atomic_dec(&conf->reshape_stripes);
2981		wake_up(&conf->wait_for_overlap);
2982		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
2983	}
2984
2985	if (s.expanding && s.locked == 0 &&
2986	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
2987		handle_stripe_expansion(conf, sh, NULL);
2988
2989 unlock:
2990	spin_unlock(&sh->lock);
2991
2992	/* wait for this device to become unblocked */
2993	if (unlikely(blocked_rdev))
2994		md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);
2995
2996	if (s.ops_request)
2997		raid5_run_ops(sh, s.ops_request);
2998
2999	ops_run_io(sh, &s);
3000
3001	return_io(return_bi);
3002
3003	return blocked_rdev == NULL;
3004}
3005
3006static bool handle_stripe6(struct stripe_head *sh, struct page *tmp_page)
3007{
3008	raid5_conf_t *conf = sh->raid_conf;
3009	int disks = sh->disks;
3010	struct bio *return_bi = NULL;
3011	int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx;
3012	struct stripe_head_state s;
3013	struct r6_state r6s;
3014	struct r5dev *dev, *pdev, *qdev;
3015	mdk_rdev_t *blocked_rdev = NULL;
3016
3017	pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3018		"pd_idx=%d, qd_idx=%d\n",
3019	       (unsigned long long)sh->sector, sh->state,
3020	       atomic_read(&sh->count), pd_idx, qd_idx);
3021	memset(&s, 0, sizeof(s));
3022
3023	spin_lock(&sh->lock);
3024	clear_bit(STRIPE_HANDLE, &sh->state);
3025	clear_bit(STRIPE_DELAYED, &sh->state);
3026
3027	s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
3028	s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3029	s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
3030	/* Now to look around and see what can be done */
3031
3032	rcu_read_lock();
3033	for (i=disks; i--; ) {
3034		mdk_rdev_t *rdev;
3035		dev = &sh->dev[i];
3036		clear_bit(R5_Insync, &dev->flags);
3037
3038		pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3039			i, dev->flags, dev->toread, dev->towrite, dev->written);
3040		/* maybe we can reply to a read */
3041		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread) {
3042			struct bio *rbi, *rbi2;
3043			pr_debug("Return read for disc %d\n", i);
3044			spin_lock_irq(&conf->device_lock);
3045			rbi = dev->toread;
3046			dev->toread = NULL;
3047			if (test_and_clear_bit(R5_Overlap, &dev->flags))
3048				wake_up(&conf->wait_for_overlap);
3049			spin_unlock_irq(&conf->device_lock);
3050			while (rbi && rbi->bi_sector < dev->sector + STRIPE_SECTORS) {
3051				copy_data(0, rbi, dev->page, dev->sector);
3052				rbi2 = r5_next_bio(rbi, dev->sector);
3053				spin_lock_irq(&conf->device_lock);
3054				if (!raid5_dec_bi_phys_segments(rbi)) {
3055					rbi->bi_next = return_bi;
3056					return_bi = rbi;
3057				}
3058				spin_unlock_irq(&conf->device_lock);
3059				rbi = rbi2;
3060			}
3061		}
3062
3063		/* now count some things */
3064		if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
3065		if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
3066
3067
3068		if (dev->toread)
3069			s.to_read++;
3070		if (dev->towrite) {
3071			s.to_write++;
3072			if (!test_bit(R5_OVERWRITE, &dev->flags))
3073				s.non_overwrite++;
3074		}
3075		if (dev->written)
3076			s.written++;
3077		rdev = rcu_dereference(conf->disks[i].rdev);
3078		if (blocked_rdev == NULL &&
3079		    rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
3080			blocked_rdev = rdev;
3081			atomic_inc(&rdev->nr_pending);
3082		}
3083		if (!rdev || !test_bit(In_sync, &rdev->flags)) {
3084			/* The ReadError flag will just be confusing now */
3085			clear_bit(R5_ReadError, &dev->flags);
3086			clear_bit(R5_ReWrite, &dev->flags);
3087		}
3088		if (!rdev || !test_bit(In_sync, &rdev->flags)
3089		    || test_bit(R5_ReadError, &dev->flags)) {
3090			if (s.failed < 2)
3091				r6s.failed_num[s.failed] = i;
3092			s.failed++;
3093		} else
3094			set_bit(R5_Insync, &dev->flags);
3095	}
3096	rcu_read_unlock();
3097
3098	if (unlikely(blocked_rdev)) {
3099		if (s.syncing || s.expanding || s.expanded ||
3100		    s.to_write || s.written) {
3101			set_bit(STRIPE_HANDLE, &sh->state);
3102			goto unlock;
3103		}
3104		/* There is nothing for the blocked_rdev to block */
3105		rdev_dec_pending(blocked_rdev, conf->mddev);
3106		blocked_rdev = NULL;
3107	}
3108
3109	pr_debug("locked=%d uptodate=%d to_read=%d"
3110	       " to_write=%d failed=%d failed_num=%d,%d\n",
3111	       s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
3112	       r6s.failed_num[0], r6s.failed_num[1]);
3113	/* check if the array has lost >2 devices and, if so, some requests
3114	 * might need to be failed
3115	 */
3116	if (s.failed > 2 && s.to_read+s.to_write+s.written)
3117		handle_failed_stripe(conf, sh, &s, disks, &return_bi);
3118	if (s.failed > 2 && s.syncing) {
3119		md_done_sync(conf->mddev, STRIPE_SECTORS,0);
3120		clear_bit(STRIPE_SYNCING, &sh->state);
3121		s.syncing = 0;
3122	}
3123
3124	/*
3125	 * might be able to return some write requests if the parity blocks
3126	 * are safe, or on a failed drive
3127	 */
3128	pdev = &sh->dev[pd_idx];
3129	r6s.p_failed = (s.failed >= 1 && r6s.failed_num[0] == pd_idx)
3130		|| (s.failed >= 2 && r6s.failed_num[1] == pd_idx);
3131	qdev = &sh->dev[qd_idx];
3132	r6s.q_failed = (s.failed >= 1 && r6s.failed_num[0] == qd_idx)
3133		|| (s.failed >= 2 && r6s.failed_num[1] == qd_idx);
3134
3135	if ( s.written &&
3136	     ( r6s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
3137			     && !test_bit(R5_LOCKED, &pdev->flags)
3138			     && test_bit(R5_UPTODATE, &pdev->flags)))) &&
3139	     ( r6s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3140			     && !test_bit(R5_LOCKED, &qdev->flags)
3141			     && test_bit(R5_UPTODATE, &qdev->flags)))))
3142		handle_stripe_clean_event(conf, sh, disks, &return_bi);
3143
3144	/* Now we might consider reading some blocks, either to check/generate
3145	 * parity, or to satisfy requests
3146	 * or to load a block that is being partially written.
3147	 */
3148	if (s.to_read || s.non_overwrite || (s.to_write && s.failed) ||
3149	    (s.syncing && (s.uptodate < disks)) || s.expanding)
3150		handle_stripe_fill6(sh, &s, &r6s, disks);
3151
3152	/* now to consider writing and what else, if anything should be read */
3153	if (s.to_write)
3154		handle_stripe_dirtying6(conf, sh, &s, &r6s, disks);
3155
3156	/* maybe we need to check and possibly fix the parity for this stripe
3157	 * Any reads will already have been scheduled, so we just see if enough
3158	 * data is available
3159	 */
3160	if (s.syncing && s.locked == 0 && !test_bit(STRIPE_INSYNC, &sh->state))
3161		handle_parity_checks6(conf, sh, &s, &r6s, tmp_page, disks);
3162
3163	if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
3164		md_done_sync(conf->mddev, STRIPE_SECTORS,1);
3165		clear_bit(STRIPE_SYNCING, &sh->state);
3166	}
3167
3168	/* If the failed drives are just a ReadError, then we might need
3169	 * to progress the repair/check process
3170	 */
3171	if (s.failed <= 2 && !conf->mddev->ro)
3172		for (i = 0; i < s.failed; i++) {
3173			dev = &sh->dev[r6s.failed_num[i]];
3174			if (test_bit(R5_ReadError, &dev->flags)
3175			    && !test_bit(R5_LOCKED, &dev->flags)
3176			    && test_bit(R5_UPTODATE, &dev->flags)
3177				) {
3178				if (!test_bit(R5_ReWrite, &dev->flags)) {
3179					set_bit(R5_Wantwrite, &dev->flags);
3180					set_bit(R5_ReWrite, &dev->flags);
3181					set_bit(R5_LOCKED, &dev->flags);
3182				} else {
3183					/* let's read it back */
3184					set_bit(R5_Wantread, &dev->flags);
3185					set_bit(R5_LOCKED, &dev->flags);
3186				}
3187			}
3188		}
3189
3190	if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state)) {
3191		struct stripe_head *sh2
3192			= get_active_stripe(conf, sh->sector, 1, 1);
3193		if (sh2 && test_bit(STRIPE_EXPAND_SOURCE, &sh2->state)) {
3194			/* sh cannot be written until sh2 has been read.
3195			 * so arrange for sh to be delayed a little
3196			 */
3197			set_bit(STRIPE_DELAYED, &sh->state);
3198			set_bit(STRIPE_HANDLE, &sh->state);
3199			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3200					      &sh2->state))
3201				atomic_inc(&conf->preread_active_stripes);
3202			release_stripe(sh2);
3203			goto unlock;
3204		}
3205		if (sh2)
3206			release_stripe(sh2);
3207
3208		/* Need to write out all blocks after computing P&Q */
3209		sh->disks = conf->raid_disks;
3210		stripe_set_idx(sh->sector, conf, 0, sh);
3211		compute_parity6(sh, RECONSTRUCT_WRITE);
3212		for (i = conf->raid_disks ; i-- ;  ) {
3213			set_bit(R5_LOCKED, &sh->dev[i].flags);
3214			s.locked++;
3215			set_bit(R5_Wantwrite, &sh->dev[i].flags);
3216		}
3217		clear_bit(STRIPE_EXPANDING, &sh->state);
3218	} else if (s.expanded) {
3219		clear_bit(STRIPE_EXPAND_READY, &sh->state);
3220		atomic_dec(&conf->reshape_stripes);
3221		wake_up(&conf->wait_for_overlap);
3222		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3223	}
3224
3225	if (s.expanding && s.locked == 0 &&
3226	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3227		handle_stripe_expansion(conf, sh, &r6s);
3228
3229 unlock:
3230	spin_unlock(&sh->lock);
3231
3232	/* wait for this device to become unblocked */
3233	if (unlikely(blocked_rdev))
3234		md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);
3235
3236	ops_run_io(sh, &s);
3237
3238	return_io(return_bi);
3239
3240	return blocked_rdev == NULL;
3241}
3242
3243/* returns true if the stripe was handled */
3244static bool handle_stripe(struct stripe_head *sh, struct page *tmp_page)
3245{
3246	if (sh->raid_conf->level == 6)
3247		return handle_stripe6(sh, tmp_page);
3248	else
3249		return handle_stripe5(sh);
3250}
3251
3252
3253
3254static void raid5_activate_delayed(raid5_conf_t *conf)
3255{
3256	if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
3257		while (!list_empty(&conf->delayed_list)) {
3258			struct list_head *l = conf->delayed_list.next;
3259			struct stripe_head *sh;
3260			sh = list_entry(l, struct stripe_head, lru);
3261			list_del_init(l);
3262			clear_bit(STRIPE_DELAYED, &sh->state);
3263			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3264				atomic_inc(&conf->preread_active_stripes);
3265			list_add_tail(&sh->lru, &conf->hold_list);
3266		}
3267	} else
3268		blk_plug_device(conf->mddev->queue);
3269}
3270
3271static void activate_bit_delay(raid5_conf_t *conf)
3272{
3273	/* device_lock is held */
3274	struct list_head head;
3275	list_add(&head, &conf->bitmap_list);
3276	list_del_init(&conf->bitmap_list);
3277	while (!list_empty(&head)) {
3278		struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
3279		list_del_init(&sh->lru);
3280		atomic_inc(&sh->count);
3281		__release_stripe(conf, sh);
3282	}
3283}
3284
3285static void unplug_slaves(mddev_t *mddev)
3286{
3287	raid5_conf_t *conf = mddev_to_conf(mddev);
3288	int i;
3289
3290	rcu_read_lock();
3291	for (i=0; i<mddev->raid_disks; i++) {
3292		mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
3293		if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
3294			struct request_queue *r_queue = bdev_get_queue(rdev->bdev);
3295
3296			atomic_inc(&rdev->nr_pending);
3297			rcu_read_unlock();
3298
3299			blk_unplug(r_queue);
3300
3301			rdev_dec_pending(rdev, mddev);
3302			rcu_read_lock();
3303		}
3304	}
3305	rcu_read_unlock();
3306}
3307
3308static void raid5_unplug_device(struct request_queue *q)
3309{
3310	mddev_t *mddev = q->queuedata;
3311	raid5_conf_t *conf = mddev_to_conf(mddev);
3312	unsigned long flags;
3313
3314	spin_lock_irqsave(&conf->device_lock, flags);
3315
3316	if (blk_remove_plug(q)) {
3317		conf->seq_flush++;
3318		raid5_activate_delayed(conf);
3319	}
3320	md_wakeup_thread(mddev->thread);
3321
3322	spin_unlock_irqrestore(&conf->device_lock, flags);
3323
3324	unplug_slaves(mddev);
3325}
3326
3327static int raid5_congested(void *data, int bits)
3328{
3329	mddev_t *mddev = data;
3330	raid5_conf_t *conf = mddev_to_conf(mddev);
3331
3332	/* No difference between reads and writes.  Just check
3333	 * how busy the stripe_cache is
3334	 */
3335	if (conf->inactive_blocked)
3336		return 1;
3337	if (conf->quiesce)
3338		return 1;
3339	if (list_empty_careful(&conf->inactive_list))
3340		return 1;
3341
3342	return 0;
3343}
3344
3345/* We want read requests to align with chunks where possible,
3346 * but write requests don't need to.
3347 */
3348static int raid5_mergeable_bvec(struct request_queue *q,
3349				struct bvec_merge_data *bvm,
3350				struct bio_vec *biovec)
3351{
3352	mddev_t *mddev = q->queuedata;
3353	sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
3354	int max;
3355	unsigned int chunk_sectors = mddev->chunk_size >> 9;
3356	unsigned int bio_sectors = bvm->bi_size >> 9;
3357
3358	if ((bvm->bi_rw & 1) == WRITE)
3359		return biovec->bv_len; /* always allow writes to be mergeable */
3360
3361	if (mddev->new_chunk < mddev->chunk_size)
3362		chunk_sectors = mddev->new_chunk >> 9;
3363	max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
3364	if (max < 0) max = 0;
3365	if (max <= biovec->bv_len && bio_sectors == 0)
3366		return biovec->bv_len;
3367	else
3368		return max;
3369}
3370
3371
3372static int in_chunk_boundary(mddev_t *mddev, struct bio *bio)
3373{
3374	sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3375	unsigned int chunk_sectors = mddev->chunk_size >> 9;
3376	unsigned int bio_sectors = bio->bi_size >> 9;
3377
3378	if (mddev->new_chunk < mddev->chunk_size)
3379		chunk_sectors = mddev->new_chunk >> 9;
3380	return  chunk_sectors >=
3381		((sector & (chunk_sectors - 1)) + bio_sectors);
3382}
3383
3384/*
3385 *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
3386 *  later sampled by raid5d.
3387 */
3388static void add_bio_to_retry(struct bio *bi,raid5_conf_t *conf)
3389{
3390	unsigned long flags;
3391
3392	spin_lock_irqsave(&conf->device_lock, flags);
3393
3394	bi->bi_next = conf->retry_read_aligned_list;
3395	conf->retry_read_aligned_list = bi;
3396
3397	spin_unlock_irqrestore(&conf->device_lock, flags);
3398	md_wakeup_thread(conf->mddev->thread);
3399}
3400
3401
3402static struct bio *remove_bio_from_retry(raid5_conf_t *conf)
3403{
3404	struct bio *bi;
3405
3406	bi = conf->retry_read_aligned;
3407	if (bi) {
3408		conf->retry_read_aligned = NULL;
3409		return bi;
3410	}
3411	bi = conf->retry_read_aligned_list;
3412	if(bi) {
3413		conf->retry_read_aligned_list = bi->bi_next;
3414		bi->bi_next = NULL;
3415		/*
3416		 * this sets the active strip count to 1 and the processed
3417		 * strip count to zero (upper 8 bits)
3418		 */
3419		bi->bi_phys_segments = 1; /* biased count of active stripes */
3420	}
3421
3422	return bi;
3423}
3424
3425
3426/*
3427 *  The "raid5_align_endio" should check if the read succeeded and if it
3428 *  did, call bio_endio on the original bio (having bio_put the new bio
3429 *  first).
3430 *  If the read failed..
3431 */
3432static void raid5_align_endio(struct bio *bi, int error)
3433{
3434	struct bio* raid_bi  = bi->bi_private;
3435	mddev_t *mddev;
3436	raid5_conf_t *conf;
3437	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3438	mdk_rdev_t *rdev;
3439
3440	bio_put(bi);
3441
3442	mddev = raid_bi->bi_bdev->bd_disk->queue->queuedata;
3443	conf = mddev_to_conf(mddev);
3444	rdev = (void*)raid_bi->bi_next;
3445	raid_bi->bi_next = NULL;
3446
3447	rdev_dec_pending(rdev, conf->mddev);
3448
3449	if (!error && uptodate) {
3450		bio_endio(raid_bi, 0);
3451		if (atomic_dec_and_test(&conf->active_aligned_reads))
3452			wake_up(&conf->wait_for_stripe);
3453		return;
3454	}
3455
3456
3457	pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3458
3459	add_bio_to_retry(raid_bi, conf);
3460}
3461
3462static int bio_fits_rdev(struct bio *bi)
3463{
3464	struct request_queue *q = bdev_get_queue(bi->bi_bdev);
3465
3466	if ((bi->bi_size>>9) > q->max_sectors)
3467		return 0;
3468	blk_recount_segments(q, bi);
3469	if (bi->bi_phys_segments > q->max_phys_segments)
3470		return 0;
3471
3472	if (q->merge_bvec_fn)
3473		/* it's too hard to apply the merge_bvec_fn at this stage,
3474		 * just just give up
3475		 */
3476		return 0;
3477
3478	return 1;
3479}
3480
3481
3482static int chunk_aligned_read(struct request_queue *q, struct bio * raid_bio)
3483{
3484	mddev_t *mddev = q->queuedata;
3485	raid5_conf_t *conf = mddev_to_conf(mddev);
3486	unsigned int dd_idx;
3487	struct bio* align_bi;
3488	mdk_rdev_t *rdev;
3489
3490	if (!in_chunk_boundary(mddev, raid_bio)) {
3491		pr_debug("chunk_aligned_read : non aligned\n");
3492		return 0;
3493	}
3494	/*
3495	 * use bio_clone to make a copy of the bio
3496	 */
3497	align_bi = bio_clone(raid_bio, GFP_NOIO);
3498	if (!align_bi)
3499		return 0;
3500	/*
3501	 *   set bi_end_io to a new function, and set bi_private to the
3502	 *     original bio.
3503	 */
3504	align_bi->bi_end_io  = raid5_align_endio;
3505	align_bi->bi_private = raid_bio;
3506	/*
3507	 *	compute position
3508	 */
3509	align_bi->bi_sector =  raid5_compute_sector(conf, raid_bio->bi_sector,
3510						    0,
3511						    &dd_idx, NULL);
3512
3513	rcu_read_lock();
3514	rdev = rcu_dereference(conf->disks[dd_idx].rdev);
3515	if (rdev && test_bit(In_sync, &rdev->flags)) {
3516		atomic_inc(&rdev->nr_pending);
3517		rcu_read_unlock();
3518		raid_bio->bi_next = (void*)rdev;
3519		align_bi->bi_bdev =  rdev->bdev;
3520		align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
3521		align_bi->bi_sector += rdev->data_offset;
3522
3523		if (!bio_fits_rdev(align_bi)) {
3524			/* too big in some way */
3525			bio_put(align_bi);
3526			rdev_dec_pending(rdev, mddev);
3527			return 0;
3528		}
3529
3530		spin_lock_irq(&conf->device_lock);
3531		wait_event_lock_irq(conf->wait_for_stripe,
3532				    conf->quiesce == 0,
3533				    conf->device_lock, /* nothing */);
3534		atomic_inc(&conf->active_aligned_reads);
3535		spin_unlock_irq(&conf->device_lock);
3536
3537		generic_make_request(align_bi);
3538		return 1;
3539	} else {
3540		rcu_read_unlock();
3541		bio_put(align_bi);
3542		return 0;
3543	}
3544}
3545
3546/* __get_priority_stripe - get the next stripe to process
3547 *
3548 * Full stripe writes are allowed to pass preread active stripes up until
3549 * the bypass_threshold is exceeded.  In general the bypass_count
3550 * increments when the handle_list is handled before the hold_list; however, it
3551 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
3552 * stripe with in flight i/o.  The bypass_count will be reset when the
3553 * head of the hold_list has changed, i.e. the head was promoted to the
3554 * handle_list.
3555 */
3556static struct stripe_head *__get_priority_stripe(raid5_conf_t *conf)
3557{
3558	struct stripe_head *sh;
3559
3560	pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
3561		  __func__,
3562		  list_empty(&conf->handle_list) ? "empty" : "busy",
3563		  list_empty(&conf->hold_list) ? "empty" : "busy",
3564		  atomic_read(&conf->pending_full_writes), conf->bypass_count);
3565
3566	if (!list_empty(&conf->handle_list)) {
3567		sh = list_entry(conf->handle_list.next, typeof(*sh), lru);
3568
3569		if (list_empty(&conf->hold_list))
3570			conf->bypass_count = 0;
3571		else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
3572			if (conf->hold_list.next == conf->last_hold)
3573				conf->bypass_count++;
3574			else {
3575				conf->last_hold = conf->hold_list.next;
3576				conf->bypass_count -= conf->bypass_threshold;
3577				if (conf->bypass_count < 0)
3578					conf->bypass_count = 0;
3579			}
3580		}
3581	} else if (!list_empty(&conf->hold_list) &&
3582		   ((conf->bypass_threshold &&
3583		     conf->bypass_count > conf->bypass_threshold) ||
3584		    atomic_read(&conf->pending_full_writes) == 0)) {
3585		sh = list_entry(conf->hold_list.next,
3586				typeof(*sh), lru);
3587		conf->bypass_count -= conf->bypass_threshold;
3588		if (conf->bypass_count < 0)
3589			conf->bypass_count = 0;
3590	} else
3591		return NULL;
3592
3593	list_del_init(&sh->lru);
3594	atomic_inc(&sh->count);
3595	BUG_ON(atomic_read(&sh->count) != 1);
3596	return sh;
3597}
3598
3599static int make_request(struct request_queue *q, struct bio * bi)
3600{
3601	mddev_t *mddev = q->queuedata;
3602	raid5_conf_t *conf = mddev_to_conf(mddev);
3603	int dd_idx;
3604	sector_t new_sector;
3605	sector_t logical_sector, last_sector;
3606	struct stripe_head *sh;
3607	const int rw = bio_data_dir(bi);
3608	int cpu, remaining;
3609
3610	if (unlikely(bio_barrier(bi))) {
3611		bio_endio(bi, -EOPNOTSUPP);
3612		return 0;
3613	}
3614
3615	md_write_start(mddev, bi);
3616
3617	cpu = part_stat_lock();
3618	part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
3619	part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw],
3620		      bio_sectors(bi));
3621	part_stat_unlock();
3622
3623	if (rw == READ &&
3624	     mddev->reshape_position == MaxSector &&
3625	     chunk_aligned_read(q,bi))
3626		return 0;
3627
3628	logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
3629	last_sector = bi->bi_sector + (bi->bi_size>>9);
3630	bi->bi_next = NULL;
3631	bi->bi_phys_segments = 1;	/* over-loaded to count active stripes */
3632
3633	for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
3634		DEFINE_WAIT(w);
3635		int disks, data_disks;
3636		int previous;
3637
3638	retry:
3639		previous = 0;
3640		disks = conf->raid_disks;
3641		prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
3642		if (unlikely(conf->reshape_progress != MaxSector)) {
3643			/* spinlock is needed as reshape_progress may be
3644			 * 64bit on a 32bit platform, and so it might be
3645			 * possible to see a half-updated value
3646			 * Ofcourse reshape_progress could change after
3647			 * the lock is dropped, so once we get a reference
3648			 * to the stripe that we think it is, we will have
3649			 * to check again.
3650			 */
3651			spin_lock_irq(&conf->device_lock);
3652			if (mddev->delta_disks < 0
3653			    ? logical_sector < conf->reshape_progress
3654			    : logical_sector >= conf->reshape_progress) {
3655				disks = conf->previous_raid_disks;
3656				previous = 1;
3657			} else {
3658				if (mddev->delta_disks < 0
3659				    ? logical_sector < conf->reshape_safe
3660				    : logical_sector >= conf->reshape_safe) {
3661					spin_unlock_irq(&conf->device_lock);
3662					schedule();
3663					goto retry;
3664				}
3665			}
3666			spin_unlock_irq(&conf->device_lock);
3667		}
3668		data_disks = disks - conf->max_degraded;
3669
3670		new_sector = raid5_compute_sector(conf, logical_sector,
3671						  previous,
3672						  &dd_idx, NULL);
3673		pr_debug("raid5: make_request, sector %llu logical %llu\n",
3674			(unsigned long long)new_sector,
3675			(unsigned long long)logical_sector);
3676
3677		sh = get_active_stripe(conf, new_sector, previous,
3678				       (bi->bi_rw&RWA_MASK));
3679		if (sh) {
3680			if (unlikely(previous)) {
3681				/* expansion might have moved on while waiting for a
3682				 * stripe, so we must do the range check again.
3683				 * Expansion could still move past after this
3684				 * test, but as we are holding a reference to
3685				 * 'sh', we know that if that happens,
3686				 *  STRIPE_EXPANDING will get set and the expansion
3687				 * won't proceed until we finish with the stripe.
3688				 */
3689				int must_retry = 0;
3690				spin_lock_irq(&conf->device_lock);
3691				if (mddev->delta_disks < 0
3692				    ? logical_sector >= conf->reshape_progress
3693				    : logical_sector < conf->reshape_progress)
3694					/* mismatch, need to try again */
3695					must_retry = 1;
3696				spin_unlock_irq(&conf->device_lock);
3697				if (must_retry) {
3698					release_stripe(sh);
3699					goto retry;
3700				}
3701			}
3702			/* FIXME what if we get a false positive because these
3703			 * are being updated.
3704			 */
3705			if (logical_sector >= mddev->suspend_lo &&
3706			    logical_sector < mddev->suspend_hi) {
3707				release_stripe(sh);
3708				schedule();
3709				goto retry;
3710			}
3711
3712			if (test_bit(STRIPE_EXPANDING, &sh->state) ||
3713			    !add_stripe_bio(sh, bi, dd_idx, (bi->bi_rw&RW_MASK))) {
3714				/* Stripe is busy expanding or
3715				 * add failed due to overlap.  Flush everything
3716				 * and wait a while
3717				 */
3718				raid5_unplug_device(mddev->queue);
3719				release_stripe(sh);
3720				schedule();
3721				goto retry;
3722			}
3723			finish_wait(&conf->wait_for_overlap, &w);
3724			set_bit(STRIPE_HANDLE, &sh->state);
3725			clear_bit(STRIPE_DELAYED, &sh->state);
3726			release_stripe(sh);
3727		} else {
3728			/* cannot get stripe for read-ahead, just give-up */
3729			clear_bit(BIO_UPTODATE, &bi->bi_flags);
3730			finish_wait(&conf->wait_for_overlap, &w);
3731			break;
3732		}
3733
3734	}
3735	spin_lock_irq(&conf->device_lock);
3736	remaining = raid5_dec_bi_phys_segments(bi);
3737	spin_unlock_irq(&conf->device_lock);
3738	if (remaining == 0) {
3739
3740		if ( rw == WRITE )
3741			md_write_end(mddev);
3742
3743		bio_endio(bi, 0);
3744	}
3745	return 0;
3746}
3747
3748static sector_t raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks);
3749
3750static sector_t reshape_request(mddev_t *mddev, sector_t sector_nr, int *skipped)
3751{
3752	/* reshaping is quite different to recovery/resync so it is
3753	 * handled quite separately ... here.
3754	 *
3755	 * On each call to sync_request, we gather one chunk worth of
3756	 * destination stripes and flag them as expanding.
3757	 * Then we find all the source stripes and request reads.
3758	 * As the reads complete, handle_stripe will copy the data
3759	 * into the destination stripe and release that stripe.
3760	 */
3761	raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
3762	struct stripe_head *sh;
3763	sector_t first_sector, last_sector;
3764	int raid_disks = conf->previous_raid_disks;
3765	int data_disks = raid_disks - conf->max_degraded;
3766	int new_data_disks = conf->raid_disks - conf->max_degraded;
3767	int i;
3768	int dd_idx;
3769	sector_t writepos, readpos, safepos;
3770	sector_t stripe_addr;
3771	int reshape_sectors;
3772	struct list_head stripes;
3773
3774	if (sector_nr == 0) {
3775		/* If restarting in the middle, skip the initial sectors */
3776		if (mddev->delta_disks < 0 &&
3777		    conf->reshape_progress < raid5_size(mddev, 0, 0)) {
3778			sector_nr = raid5_size(mddev, 0, 0)
3779				- conf->reshape_progress;
3780		} else if (mddev->delta_disks > 0 &&
3781			   conf->reshape_progress > 0)
3782			sector_nr = conf->reshape_progress;
3783		sector_div(sector_nr, new_data_disks);
3784		if (sector_nr) {
3785			*skipped = 1;
3786			return sector_nr;
3787		}
3788	}
3789
3790	/* We need to process a full chunk at a time.
3791	 * If old and new chunk sizes differ, we need to process the
3792	 * largest of these
3793	 */
3794	if (mddev->new_chunk > mddev->chunk_size)
3795		reshape_sectors = mddev->new_chunk / 512;
3796	else
3797		reshape_sectors = mddev->chunk_size / 512;
3798
3799	/* we update the metadata when there is more than 3Meg
3800	 * in the block range (that is rather arbitrary, should
3801	 * probably be time based) or when the data about to be
3802	 * copied would over-write the source of the data at
3803	 * the front of the range.
3804	 * i.e. one new_stripe along from reshape_progress new_maps
3805	 * to after where reshape_safe old_maps to
3806	 */
3807	writepos = conf->reshape_progress;
3808	sector_div(writepos, new_data_disks);
3809	readpos = conf->reshape_progress;
3810	sector_div(readpos, data_disks);
3811	safepos = conf->reshape_safe;
3812	sector_div(safepos, data_disks);
3813	if (mddev->delta_disks < 0) {
3814		writepos -= reshape_sectors;
3815		readpos += reshape_sectors;
3816		safepos += reshape_sectors;
3817	} else {
3818		writepos += reshape_sectors;
3819		readpos -= reshape_sectors;
3820		safepos -= reshape_sectors;
3821	}
3822
3823	/* 'writepos' is the most advanced device address we might write.
3824	 * 'readpos' is the least advanced device address we might read.
3825	 * 'safepos' is the least address recorded in the metadata as having
3826	 *     been reshaped.
3827	 * If 'readpos' is behind 'writepos', then there is no way that we can
3828	 * ensure safety in the face of a crash - that must be done by userspace
3829	 * making a backup of the data.  So in that case there is no particular
3830	 * rush to update metadata.
3831	 * Otherwise if 'safepos' is behind 'writepos', then we really need to
3832	 * update the metadata to advance 'safepos' to match 'readpos' so that
3833	 * we can be safe in the event of a crash.
3834	 * So we insist on updating metadata if safepos is behind writepos and
3835	 * readpos is beyond writepos.
3836	 * In any case, update the metadata every 10 seconds.
3837	 * Maybe that number should be configurable, but I'm not sure it is
3838	 * worth it.... maybe it could be a multiple of safemode_delay???
3839	 */
3840	if ((mddev->delta_disks < 0
3841	     ? (safepos > writepos && readpos < writepos)
3842	     : (safepos < writepos && readpos > writepos)) ||
3843	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
3844		/* Cannot proceed until we've updated the superblock... */
3845		wait_event(conf->wait_for_overlap,
3846			   atomic_read(&conf->reshape_stripes)==0);
3847		mddev->reshape_position = conf->reshape_progress;
3848		conf->reshape_checkpoint = jiffies;
3849		set_bit(MD_CHANGE_DEVS, &mddev->flags);
3850		md_wakeup_thread(mddev->thread);
3851		wait_event(mddev->sb_wait, mddev->flags == 0 ||
3852			   kthread_should_stop());
3853		spin_lock_irq(&conf->device_lock);
3854		conf->reshape_safe = mddev->reshape_position;
3855		spin_unlock_irq(&conf->device_lock);
3856		wake_up(&conf->wait_for_overlap);
3857	}
3858
3859	if (mddev->delta_disks < 0) {
3860		BUG_ON(conf->reshape_progress == 0);
3861		stripe_addr = writepos;
3862		BUG_ON((mddev->dev_sectors &
3863			~((sector_t)reshape_sectors - 1))
3864		       - reshape_sectors - stripe_addr
3865		       != sector_nr);
3866	} else {
3867		BUG_ON(writepos != sector_nr + reshape_sectors);
3868		stripe_addr = sector_nr;
3869	}
3870	INIT_LIST_HEAD(&stripes);
3871	for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
3872		int j;
3873		int skipped = 0;
3874		sh = get_active_stripe(conf, stripe_addr+i, 0, 0);
3875		set_bit(STRIPE_EXPANDING, &sh->state);
3876		atomic_inc(&conf->reshape_stripes);
3877		/* If any of this stripe is beyond the end of the old
3878		 * array, then we need to zero those blocks
3879		 */
3880		for (j=sh->disks; j--;) {
3881			sector_t s;
3882			if (j == sh->pd_idx)
3883				continue;
3884			if (conf->level == 6 &&
3885			    j == sh->qd_idx)
3886				continue;
3887			s = compute_blocknr(sh, j, 0);
3888			if (s < raid5_size(mddev, 0, 0)) {
3889				skipped = 1;
3890				continue;
3891			}
3892			memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
3893			set_bit(R5_Expanded, &sh->dev[j].flags);
3894			set_bit(R5_UPTODATE, &sh->dev[j].flags);
3895		}
3896		if (!skipped) {
3897			set_bit(STRIPE_EXPAND_READY, &sh->state);
3898			set_bit(STRIPE_HANDLE, &sh->state);
3899		}
3900		list_add(&sh->lru, &stripes);
3901	}
3902	spin_lock_irq(&conf->device_lock);
3903	if (mddev->delta_disks < 0)
3904		conf->reshape_progress -= reshape_sectors * new_data_disks;
3905	else
3906		conf->reshape_progress += reshape_sectors * new_data_disks;
3907	spin_unlock_irq(&conf->device_lock);
3908	/* Ok, those stripe are ready. We can start scheduling
3909	 * reads on the source stripes.
3910	 * The source stripes are determined by mapping the first and last
3911	 * block on the destination stripes.
3912	 */
3913	first_sector =
3914		raid5_compute_sector(conf, stripe_addr*(new_data_disks),
3915				     1, &dd_idx, NULL);
3916	last_sector =
3917		raid5_compute_sector(conf, ((stripe_addr+conf->chunk_size/512)
3918					    *(new_data_disks) - 1),
3919				     1, &dd_idx, NULL);
3920	if (last_sector >= mddev->dev_sectors)
3921		last_sector = mddev->dev_sectors - 1;
3922	while (first_sector <= last_sector) {
3923		sh = get_active_stripe(conf, first_sector, 1, 0);
3924		set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3925		set_bit(STRIPE_HANDLE, &sh->state);
3926		release_stripe(sh);
3927		first_sector += STRIPE_SECTORS;
3928	}
3929	/* Now that the sources are clearly marked, we can release
3930	 * the destination stripes
3931	 */
3932	while (!list_empty(&stripes)) {
3933		sh = list_entry(stripes.next, struct stripe_head, lru);
3934		list_del_init(&sh->lru);
3935		release_stripe(sh);
3936	}
3937	/* If this takes us to the resync_max point where we have to pause,
3938	 * then we need to write out the superblock.
3939	 */
3940	sector_nr += reshape_sectors;
3941	if (sector_nr >= mddev->resync_max) {
3942		/* Cannot proceed until we've updated the superblock... */
3943		wait_event(conf->wait_for_overlap,
3944			   atomic_read(&conf->reshape_stripes) == 0);
3945		mddev->reshape_position = conf->reshape_progress;
3946		conf->reshape_checkpoint = jiffies;
3947		set_bit(MD_CHANGE_DEVS, &mddev->flags);
3948		md_wakeup_thread(mddev->thread);
3949		wait_event(mddev->sb_wait,
3950			   !test_bit(MD_CHANGE_DEVS, &mddev->flags)
3951			   || kthread_should_stop());
3952		spin_lock_irq(&conf->device_lock);
3953		conf->reshape_safe = mddev->reshape_position;
3954		spin_unlock_irq(&conf->device_lock);
3955		wake_up(&conf->wait_for_overlap);
3956	}
3957	return reshape_sectors;
3958}
3959
3960/* FIXME go_faster isn't used */
3961static inline sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
3962{
3963	raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
3964	struct stripe_head *sh;
3965	sector_t max_sector = mddev->dev_sectors;
3966	int sync_blocks;
3967	int still_degraded = 0;
3968	int i;
3969
3970	if (sector_nr >= max_sector) {
3971		/* just being told to finish up .. nothing much to do */
3972		unplug_slaves(mddev);
3973
3974		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
3975			end_reshape(conf);
3976			return 0;
3977		}
3978
3979		if (mddev->curr_resync < max_sector) /* aborted */
3980			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
3981					&sync_blocks, 1);
3982		else /* completed sync */
3983			conf->fullsync = 0;
3984		bitmap_close_sync(mddev->bitmap);
3985
3986		return 0;
3987	}
3988
3989	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3990		return reshape_request(mddev, sector_nr, skipped);
3991
3992	/* No need to check resync_max as we never do more than one
3993	 * stripe, and as resync_max will always be on a chunk boundary,
3994	 * if the check in md_do_sync didn't fire, there is no chance
3995	 * of overstepping resync_max here
3996	 */
3997
3998	/* if there is too many failed drives and we are trying
3999	 * to resync, then assert that we are finished, because there is
4000	 * nothing we can do.
4001	 */
4002	if (mddev->degraded >= conf->max_degraded &&
4003	    test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4004		sector_t rv = mddev->dev_sectors - sector_nr;
4005		*skipped = 1;
4006		return rv;
4007	}
4008	if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
4009	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
4010	    !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
4011		/* we can skip this block, and probably more */
4012		sync_blocks /= STRIPE_SECTORS;
4013		*skipped = 1;
4014		return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
4015	}
4016
4017
4018	bitmap_cond_end_sync(mddev->bitmap, sector_nr);
4019
4020	sh = get_active_stripe(conf, sector_nr, 0, 1);
4021	if (sh == NULL) {
4022		sh = get_active_stripe(conf, sector_nr, 0, 0);
4023		/* make sure we don't swamp the stripe cache if someone else
4024		 * is trying to get access
4025		 */
4026		schedule_timeout_uninterruptible(1);
4027	}
4028	/* Need to check if array will still be degraded after recovery/resync
4029	 * We don't need to check the 'failed' flag as when that gets set,
4030	 * recovery aborts.
4031	 */
4032	for (i=0; i<mddev->raid_disks; i++)
4033		if (conf->disks[i].rdev == NULL)
4034			still_degraded = 1;
4035
4036	bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
4037
4038	spin_lock(&sh->lock);
4039	set_bit(STRIPE_SYNCING, &sh->state);
4040	clear_bit(STRIPE_INSYNC, &sh->state);
4041	spin_unlock(&sh->lock);
4042
4043	/* wait for any blocked device to be handled */
4044	while(unlikely(!handle_stripe(sh, NULL)))
4045		;
4046	release_stripe(sh);
4047
4048	return STRIPE_SECTORS;
4049}
4050
4051static int  retry_aligned_read(raid5_conf_t *conf, struct bio *raid_bio)
4052{
4053	/* We may not be able to submit a whole bio at once as there
4054	 * may not be enough stripe_heads available.
4055	 * We cannot pre-allocate enough stripe_heads as we may need
4056	 * more than exist in the cache (if we allow ever large chunks).
4057	 * So we do one stripe head at a time and record in
4058	 * ->bi_hw_segments how many have been done.
4059	 *
4060	 * We *know* that this entire raid_bio is in one chunk, so
4061	 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
4062	 */
4063	struct stripe_head *sh;
4064	int dd_idx;
4065	sector_t sector, logical_sector, last_sector;
4066	int scnt = 0;
4067	int remaining;
4068	int handled = 0;
4069
4070	logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4071	sector = raid5_compute_sector(conf, logical_sector,
4072				      0, &dd_idx, NULL);
4073	last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);
4074
4075	for (; logical_sector < last_sector;
4076	     logical_sector += STRIPE_SECTORS,
4077		     sector += STRIPE_SECTORS,
4078		     scnt++) {
4079
4080		if (scnt < raid5_bi_hw_segments(raid_bio))
4081			/* already done this stripe */
4082			continue;
4083
4084		sh = get_active_stripe(conf, sector, 0, 1);
4085
4086		if (!sh) {
4087			/* failed to get a stripe - must wait */
4088			raid5_set_bi_hw_segments(raid_bio, scnt);
4089			conf->retry_read_aligned = raid_bio;
4090			return handled;
4091		}
4092
4093		set_bit(R5_ReadError, &sh->dev[dd_idx].flags);
4094		if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
4095			release_stripe(sh);
4096			raid5_set_bi_hw_segments(raid_bio, scnt);
4097			conf->retry_read_aligned = raid_bio;
4098			return handled;
4099		}
4100
4101		handle_stripe(sh, NULL);
4102		release_stripe(sh);
4103		handled++;
4104	}
4105	spin_lock_irq(&conf->device_lock);
4106	remaining = raid5_dec_bi_phys_segments(raid_bio);
4107	spin_unlock_irq(&conf->device_lock);
4108	if (remaining == 0)
4109		bio_endio(raid_bio, 0);
4110	if (atomic_dec_and_test(&conf->active_aligned_reads))
4111		wake_up(&conf->wait_for_stripe);
4112	return handled;
4113}
4114
4115
4116
4117/*
4118 * This is our raid5 kernel thread.
4119 *
4120 * We scan the hash table for stripes which can be handled now.
4121 * During the scan, completed stripes are saved for us by the interrupt
4122 * handler, so that they will not have to wait for our next wakeup.
4123 */
4124static void raid5d(mddev_t *mddev)
4125{
4126	struct stripe_head *sh;
4127	raid5_conf_t *conf = mddev_to_conf(mddev);
4128	int handled;
4129
4130	pr_debug("+++ raid5d active\n");
4131
4132	md_check_recovery(mddev);
4133
4134	handled = 0;
4135	spin_lock_irq(&conf->device_lock);
4136	while (1) {
4137		struct bio *bio;
4138
4139		if (conf->seq_flush != conf->seq_write) {
4140			int seq = conf->seq_flush;
4141			spin_unlock_irq(&conf->device_lock);
4142			bitmap_unplug(mddev->bitmap);
4143			spin_lock_irq(&conf->device_lock);
4144			conf->seq_write = seq;
4145			activate_bit_delay(conf);
4146		}
4147
4148		while ((bio = remove_bio_from_retry(conf))) {
4149			int ok;
4150			spin_unlock_irq(&conf->device_lock);
4151			ok = retry_aligned_read(conf, bio);
4152			spin_lock_irq(&conf->device_lock);
4153			if (!ok)
4154				break;
4155			handled++;
4156		}
4157
4158		sh = __get_priority_stripe(conf);
4159
4160		if (!sh)
4161			break;
4162		spin_unlock_irq(&conf->device_lock);
4163
4164		handled++;
4165		handle_stripe(sh, conf->spare_page);
4166		release_stripe(sh);
4167
4168		spin_lock_irq(&conf->device_lock);
4169	}
4170	pr_debug("%d stripes handled\n", handled);
4171
4172	spin_unlock_irq(&conf->device_lock);
4173
4174	async_tx_issue_pending_all();
4175	unplug_slaves(mddev);
4176
4177	pr_debug("--- raid5d inactive\n");
4178}
4179
4180static ssize_t
4181raid5_show_stripe_cache_size(mddev_t *mddev, char *page)
4182{
4183	raid5_conf_t *conf = mddev_to_conf(mddev);
4184	if (conf)
4185		return sprintf(page, "%d\n", conf->max_nr_stripes);
4186	else
4187		return 0;
4188}
4189
4190static ssize_t
4191raid5_store_stripe_cache_size(mddev_t *mddev, const char *page, size_t len)
4192{
4193	raid5_conf_t *conf = mddev_to_conf(mddev);
4194	unsigned long new;
4195	int err;
4196
4197	if (len >= PAGE_SIZE)
4198		return -EINVAL;
4199	if (!conf)
4200		return -ENODEV;
4201
4202	if (strict_strtoul(page, 10, &new))
4203		return -EINVAL;
4204	if (new <= 16 || new > 32768)
4205		return -EINVAL;
4206	while (new < conf->max_nr_stripes) {
4207		if (drop_one_stripe(conf))
4208			conf->max_nr_stripes--;
4209		else
4210			break;
4211	}
4212	err = md_allow_write(mddev);
4213	if (err)
4214		return err;
4215	while (new > conf->max_nr_stripes) {
4216		if (grow_one_stripe(conf))
4217			conf->max_nr_stripes++;
4218		else break;
4219	}
4220	return len;
4221}
4222
4223static struct md_sysfs_entry
4224raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
4225				raid5_show_stripe_cache_size,
4226				raid5_store_stripe_cache_size);
4227
4228static ssize_t
4229raid5_show_preread_threshold(mddev_t *mddev, char *page)
4230{
4231	raid5_conf_t *conf = mddev_to_conf(mddev);
4232	if (conf)
4233		return sprintf(page, "%d\n", conf->bypass_threshold);
4234	else
4235		return 0;
4236}
4237
4238static ssize_t
4239raid5_store_preread_threshold(mddev_t *mddev, const char *page, size_t len)
4240{
4241	raid5_conf_t *conf = mddev_to_conf(mddev);
4242	unsigned long new;
4243	if (len >= PAGE_SIZE)
4244		return -EINVAL;
4245	if (!conf)
4246		return -ENODEV;
4247
4248	if (strict_strtoul(page, 10, &new))
4249		return -EINVAL;
4250	if (new > conf->max_nr_stripes)
4251		return -EINVAL;
4252	conf->bypass_threshold = new;
4253	return len;
4254}
4255
4256static struct md_sysfs_entry
4257raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
4258					S_IRUGO | S_IWUSR,
4259					raid5_show_preread_threshold,
4260					raid5_store_preread_threshold);
4261
4262static ssize_t
4263stripe_cache_active_show(mddev_t *mddev, char *page)
4264{
4265	raid5_conf_t *conf = mddev_to_conf(mddev);
4266	if (conf)
4267		return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
4268	else
4269		return 0;
4270}
4271
4272static struct md_sysfs_entry
4273raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
4274
4275static struct attribute *raid5_attrs[] =  {
4276	&raid5_stripecache_size.attr,
4277	&raid5_stripecache_active.attr,
4278	&raid5_preread_bypass_threshold.attr,
4279	NULL,
4280};
4281static struct attribute_group raid5_attrs_group = {
4282	.name = NULL,
4283	.attrs = raid5_attrs,
4284};
4285
4286static sector_t
4287raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks)
4288{
4289	raid5_conf_t *conf = mddev_to_conf(mddev);
4290
4291	if (!sectors)
4292		sectors = mddev->dev_sectors;
4293	if (!raid_disks) {
4294		/* size is defined by the smallest of previous and new size */
4295		if (conf->raid_disks < conf->previous_raid_disks)
4296			raid_disks = conf->raid_disks;
4297		else
4298			raid_disks = conf->previous_raid_disks;
4299	}
4300
4301	sectors &= ~((sector_t)mddev->chunk_size/512 - 1);
4302	sectors &= ~((sector_t)mddev->new_chunk/512 - 1);
4303	return sectors * (raid_disks - conf->max_degraded);
4304}
4305
4306static raid5_conf_t *setup_conf(mddev_t *mddev)
4307{
4308	raid5_conf_t *conf;
4309	int raid_disk, memory;
4310	mdk_rdev_t *rdev;
4311	struct disk_info *disk;
4312
4313	if (mddev->new_level != 5
4314	    && mddev->new_level != 4
4315	    && mddev->new_level != 6) {
4316		printk(KERN_ERR "raid5: %s: raid level not set to 4/5/6 (%d)\n",
4317		       mdname(mddev), mddev->new_level);
4318		return ERR_PTR(-EIO);
4319	}
4320	if ((mddev->new_level == 5
4321	     && !algorithm_valid_raid5(mddev->new_layout)) ||
4322	    (mddev->new_level == 6
4323	     && !algorithm_valid_raid6(mddev->new_layout))) {
4324		printk(KERN_ERR "raid5: %s: layout %d not supported\n",
4325		       mdname(mddev), mddev->new_layout);
4326		return ERR_PTR(-EIO);
4327	}
4328	if (mddev->new_level == 6 && mddev->raid_disks < 4) {
4329		printk(KERN_ERR "raid6: not enough configured devices for %s (%d, minimum 4)\n",
4330		       mdname(mddev), mddev->raid_disks);
4331		return ERR_PTR(-EINVAL);
4332	}
4333
4334	if (!mddev->new_chunk || mddev->new_chunk % PAGE_SIZE) {
4335		printk(KERN_ERR "raid5: invalid chunk size %d for %s\n",
4336			mddev->new_chunk, mdname(mddev));
4337		return ERR_PTR(-EINVAL);
4338	}
4339
4340	conf = kzalloc(sizeof(raid5_conf_t), GFP_KERNEL);
4341	if (conf == NULL)
4342		goto abort;
4343
4344	conf->raid_disks = mddev->raid_disks;
4345	if (mddev->reshape_position == MaxSector)
4346		conf->previous_raid_disks = mddev->raid_disks;
4347	else
4348		conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
4349
4350	conf->disks = kzalloc(conf->raid_disks * sizeof(struct disk_info),
4351			      GFP_KERNEL);
4352	if (!conf->disks)
4353		goto abort;
4354
4355	conf->mddev = mddev;
4356
4357	if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
4358		goto abort;
4359
4360	if (mddev->new_level == 6) {
4361		conf->spare_page = alloc_page(GFP_KERNEL);
4362		if (!conf->spare_page)
4363			goto abort;
4364	}
4365	spin_lock_init(&conf->device_lock);
4366	init_waitqueue_head(&conf->wait_for_stripe);
4367	init_waitqueue_head(&conf->wait_for_overlap);
4368	INIT_LIST_HEAD(&conf->handle_list);
4369	INIT_LIST_HEAD(&conf->hold_list);
4370	INIT_LIST_HEAD(&conf->delayed_list);
4371	INIT_LIST_HEAD(&conf->bitmap_list);
4372	INIT_LIST_HEAD(&conf->inactive_list);
4373	atomic_set(&conf->active_stripes, 0);
4374	atomic_set(&conf->preread_active_stripes, 0);
4375	atomic_set(&conf->active_aligned_reads, 0);
4376	conf->bypass_threshold = BYPASS_THRESHOLD;
4377
4378	pr_debug("raid5: run(%s) called.\n", mdname(mddev));
4379
4380	list_for_each_entry(rdev, &mddev->disks, same_set) {
4381		raid_disk = rdev->raid_disk;
4382		if (raid_disk >= conf->raid_disks
4383		    || raid_disk < 0)
4384			continue;
4385		disk = conf->disks + raid_disk;
4386
4387		disk->rdev = rdev;
4388
4389		if (test_bit(In_sync, &rdev->flags)) {
4390			char b[BDEVNAME_SIZE];
4391			printk(KERN_INFO "raid5: device %s operational as raid"
4392				" disk %d\n", bdevname(rdev->bdev,b),
4393				raid_disk);
4394		} else
4395			/* Cannot rely on bitmap to complete recovery */
4396			conf->fullsync = 1;
4397	}
4398
4399	conf->chunk_size = mddev->new_chunk;
4400	conf->level = mddev->new_level;
4401	if (conf->level == 6)
4402		conf->max_degraded = 2;
4403	else
4404		conf->max_degraded = 1;
4405	conf->algorithm = mddev->new_layout;
4406	conf->max_nr_stripes = NR_STRIPES;
4407	conf->reshape_progress = mddev->reshape_position;
4408	if (conf->reshape_progress != MaxSector) {
4409		conf->prev_chunk = mddev->chunk_size;
4410		conf->prev_algo = mddev->layout;
4411	}
4412
4413	memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
4414		 conf->raid_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
4415	if (grow_stripes(conf, conf->max_nr_stripes)) {
4416		printk(KERN_ERR
4417			"raid5: couldn't allocate %dkB for buffers\n", memory);
4418		goto abort;
4419	} else
4420		printk(KERN_INFO "raid5: allocated %dkB for %s\n",
4421			memory, mdname(mddev));
4422
4423	conf->thread = md_register_thread(raid5d, mddev, "%s_raid5");
4424	if (!conf->thread) {
4425		printk(KERN_ERR
4426		       "raid5: couldn't allocate thread for %s\n",
4427		       mdname(mddev));
4428		goto abort;
4429	}
4430
4431	return conf;
4432
4433 abort:
4434	if (conf) {
4435		shrink_stripes(conf);
4436		safe_put_page(conf->spare_page);
4437		kfree(conf->disks);
4438		kfree(conf->stripe_hashtbl);
4439		kfree(conf);
4440		return ERR_PTR(-EIO);
4441	} else
4442		return ERR_PTR(-ENOMEM);
4443}
4444
4445static int run(mddev_t *mddev)
4446{
4447	raid5_conf_t *conf;
4448	int working_disks = 0;
4449	mdk_rdev_t *rdev;
4450
4451	if (mddev->reshape_position != MaxSector) {
4452		/* Check that we can continue the reshape.
4453		 * Currently only disks can change, it must
4454		 * increase, and we must be past the point where
4455		 * a stripe over-writes itself
4456		 */
4457		sector_t here_new, here_old;
4458		int old_disks;
4459		int max_degraded = (mddev->level == 6 ? 2 : 1);
4460
4461		if (mddev->new_level != mddev->level) {
4462			printk(KERN_ERR "raid5: %s: unsupported reshape "
4463			       "required - aborting.\n",
4464			       mdname(mddev));
4465			return -EINVAL;
4466		}
4467		old_disks = mddev->raid_disks - mddev->delta_disks;
4468		/* reshape_position must be on a new-stripe boundary, and one
4469		 * further up in new geometry must map after here in old
4470		 * geometry.
4471		 */
4472		here_new = mddev->reshape_position;
4473		if (sector_div(here_new, (mddev->new_chunk>>9)*
4474			       (mddev->raid_disks - max_degraded))) {
4475			printk(KERN_ERR "raid5: reshape_position not "
4476			       "on a stripe boundary\n");
4477			return -EINVAL;
4478		}
4479		/* here_new is the stripe we will write to */
4480		here_old = mddev->reshape_position;
4481		sector_div(here_old, (mddev->chunk_size>>9)*
4482			   (old_disks-max_degraded));
4483		/* here_old is the first stripe that we might need to read
4484		 * from */
4485		if (here_new >= here_old) {
4486			/* Reading from the same stripe as writing to - bad */
4487			printk(KERN_ERR "raid5: reshape_position too early for "
4488			       "auto-recovery - aborting.\n");
4489			return -EINVAL;
4490		}
4491		printk(KERN_INFO "raid5: reshape will continue\n");
4492		/* OK, we should be able to continue; */
4493	} else {
4494		BUG_ON(mddev->level != mddev->new_level);
4495		BUG_ON(mddev->layout != mddev->new_layout);
4496		BUG_ON(mddev->chunk_size != mddev->new_chunk);
4497		BUG_ON(mddev->delta_disks != 0);
4498	}
4499
4500	if (mddev->private == NULL)
4501		conf = setup_conf(mddev);
4502	else
4503		conf = mddev->private;
4504
4505	if (IS_ERR(conf))
4506		return PTR_ERR(conf);
4507
4508	mddev->thread = conf->thread;
4509	conf->thread = NULL;
4510	mddev->private = conf;
4511
4512	/*
4513	 * 0 for a fully functional array, 1 or 2 for a degraded array.
4514	 */
4515	list_for_each_entry(rdev, &mddev->disks, same_set)
4516		if (rdev->raid_disk >= 0 &&
4517		    test_bit(In_sync, &rdev->flags))
4518			working_disks++;
4519
4520	mddev->degraded = conf->raid_disks - working_disks;
4521
4522	if (mddev->degraded > conf->max_degraded) {
4523		printk(KERN_ERR "raid5: not enough operational devices for %s"
4524			" (%d/%d failed)\n",
4525			mdname(mddev), mddev->degraded, conf->raid_disks);
4526		goto abort;
4527	}
4528
4529	/* device size must be a multiple of chunk size */
4530	mddev->dev_sectors &= ~(mddev->chunk_size / 512 - 1);
4531	mddev->resync_max_sectors = mddev->dev_sectors;
4532
4533	if (mddev->degraded > 0 &&
4534	    mddev->recovery_cp != MaxSector) {
4535		if (mddev->ok_start_degraded)
4536			printk(KERN_WARNING
4537			       "raid5: starting dirty degraded array: %s"
4538			       "- data corruption possible.\n",
4539			       mdname(mddev));
4540		else {
4541			printk(KERN_ERR
4542			       "raid5: cannot start dirty degraded array for %s\n",
4543			       mdname(mddev));
4544			goto abort;
4545		}
4546	}
4547
4548	if (mddev->degraded == 0)
4549		printk("raid5: raid level %d set %s active with %d out of %d"
4550		       " devices, algorithm %d\n", conf->level, mdname(mddev),
4551		       mddev->raid_disks-mddev->degraded, mddev->raid_disks,
4552		       mddev->new_layout);
4553	else
4554		printk(KERN_ALERT "raid5: raid level %d set %s active with %d"
4555			" out of %d devices, algorithm %d\n", conf->level,
4556			mdname(mddev), mddev->raid_disks - mddev->degraded,
4557			mddev->raid_disks, mddev->new_layout);
4558
4559	print_raid5_conf(conf);
4560
4561	if (conf->reshape_progress != MaxSector) {
4562		printk("...ok start reshape thread\n");
4563		conf->reshape_safe = conf->reshape_progress;
4564		atomic_set(&conf->reshape_stripes, 0);
4565		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4566		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4567		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4568		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4569		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4570							"%s_reshape");
4571	}
4572
4573	/* read-ahead size must cover two whole stripes, which is
4574	 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4575	 */
4576	{
4577		int data_disks = conf->previous_raid_disks - conf->max_degraded;
4578		int stripe = data_disks *
4579			(mddev->chunk_size / PAGE_SIZE);
4580		if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4581			mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4582	}
4583
4584	/* Ok, everything is just fine now */
4585	if (sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
4586		printk(KERN_WARNING
4587		       "raid5: failed to create sysfs attributes for %s\n",
4588		       mdname(mddev));
4589
4590	mddev->queue->queue_lock = &conf->device_lock;
4591
4592	mddev->queue->unplug_fn = raid5_unplug_device;
4593	mddev->queue->backing_dev_info.congested_data = mddev;
4594	mddev->queue->backing_dev_info.congested_fn = raid5_congested;
4595
4596	md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
4597
4598	blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
4599
4600	return 0;
4601abort:
4602	md_unregister_thread(mddev->thread);
4603	mddev->thread = NULL;
4604	if (conf) {
4605		shrink_stripes(conf);
4606		print_raid5_conf(conf);
4607		safe_put_page(conf->spare_page);
4608		kfree(conf->disks);
4609		kfree(conf->stripe_hashtbl);
4610		kfree(conf);
4611	}
4612	mddev->private = NULL;
4613	printk(KERN_ALERT "raid5: failed to run raid set %s\n", mdname(mddev));
4614	return -EIO;
4615}
4616
4617
4618
4619static int stop(mddev_t *mddev)
4620{
4621	raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
4622
4623	md_unregister_thread(mddev->thread);
4624	mddev->thread = NULL;
4625	shrink_stripes(conf);
4626	kfree(conf->stripe_hashtbl);
4627	mddev->queue->backing_dev_info.congested_fn = NULL;
4628	blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
4629	sysfs_remove_group(&mddev->kobj, &raid5_attrs_group);
4630	kfree(conf->disks);
4631	kfree(conf);
4632	mddev->private = NULL;
4633	return 0;
4634}
4635
4636#ifdef DEBUG
4637static void print_sh(struct seq_file *seq, struct stripe_head *sh)
4638{
4639	int i;
4640
4641	seq_printf(seq, "sh %llu, pd_idx %d, state %ld.\n",
4642		   (unsigned long long)sh->sector, sh->pd_idx, sh->state);
4643	seq_printf(seq, "sh %llu,  count %d.\n",
4644		   (unsigned long long)sh->sector, atomic_read(&sh->count));
4645	seq_printf(seq, "sh %llu, ", (unsigned long long)sh->sector);
4646	for (i = 0; i < sh->disks; i++) {
4647		seq_printf(seq, "(cache%d: %p %ld) ",
4648			   i, sh->dev[i].page, sh->dev[i].flags);
4649	}
4650	seq_printf(seq, "\n");
4651}
4652
4653static void printall(struct seq_file *seq, raid5_conf_t *conf)
4654{
4655	struct stripe_head *sh;
4656	struct hlist_node *hn;
4657	int i;
4658
4659	spin_lock_irq(&conf->device_lock);
4660	for (i = 0; i < NR_HASH; i++) {
4661		hlist_for_each_entry(sh, hn, &conf->stripe_hashtbl[i], hash) {
4662			if (sh->raid_conf != conf)
4663				continue;
4664			print_sh(seq, sh);
4665		}
4666	}
4667	spin_unlock_irq(&conf->device_lock);
4668}
4669#endif
4670
4671static void status(struct seq_file *seq, mddev_t *mddev)
4672{
4673	raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
4674	int i;
4675
4676	seq_printf (seq, " level %d, %dk chunk, algorithm %d", mddev->level, mddev->chunk_size >> 10, mddev->layout);
4677	seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
4678	for (i = 0; i < conf->raid_disks; i++)
4679		seq_printf (seq, "%s",
4680			       conf->disks[i].rdev &&
4681			       test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
4682	seq_printf (seq, "]");
4683#ifdef DEBUG
4684	seq_printf (seq, "\n");
4685	printall(seq, conf);
4686#endif
4687}
4688
4689static void print_raid5_conf (raid5_conf_t *conf)
4690{
4691	int i;
4692	struct disk_info *tmp;
4693
4694	printk("RAID5 conf printout:\n");
4695	if (!conf) {
4696		printk("(conf==NULL)\n");
4697		return;
4698	}
4699	printk(" --- rd:%d wd:%d\n", conf->raid_disks,
4700		 conf->raid_disks - conf->mddev->degraded);
4701
4702	for (i = 0; i < conf->raid_disks; i++) {
4703		char b[BDEVNAME_SIZE];
4704		tmp = conf->disks + i;
4705		if (tmp->rdev)
4706		printk(" disk %d, o:%d, dev:%s\n",
4707			i, !test_bit(Faulty, &tmp->rdev->flags),
4708			bdevname(tmp->rdev->bdev,b));
4709	}
4710}
4711
4712static int raid5_spare_active(mddev_t *mddev)
4713{
4714	int i;
4715	raid5_conf_t *conf = mddev->private;
4716	struct disk_info *tmp;
4717
4718	for (i = 0; i < conf->raid_disks; i++) {
4719		tmp = conf->disks + i;
4720		if (tmp->rdev
4721		    && !test_bit(Faulty, &tmp->rdev->flags)
4722		    && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
4723			unsigned long flags;
4724			spin_lock_irqsave(&conf->device_lock, flags);
4725			mddev->degraded--;
4726			spin_unlock_irqrestore(&conf->device_lock, flags);
4727		}
4728	}
4729	print_raid5_conf(conf);
4730	return 0;
4731}
4732
4733static int raid5_remove_disk(mddev_t *mddev, int number)
4734{
4735	raid5_conf_t *conf = mddev->private;
4736	int err = 0;
4737	mdk_rdev_t *rdev;
4738	struct disk_info *p = conf->disks + number;
4739
4740	print_raid5_conf(conf);
4741	rdev = p->rdev;
4742	if (rdev) {
4743		if (number >= conf->raid_disks &&
4744		    conf->reshape_progress == MaxSector)
4745			clear_bit(In_sync, &rdev->flags);
4746
4747		if (test_bit(In_sync, &rdev->flags) ||
4748		    atomic_read(&rdev->nr_pending)) {
4749			err = -EBUSY;
4750			goto abort;
4751		}
4752		/* Only remove non-faulty devices if recovery
4753		 * isn't possible.
4754		 */
4755		if (!test_bit(Faulty, &rdev->flags) &&
4756		    mddev->degraded <= conf->max_degraded &&
4757		    number < conf->raid_disks) {
4758			err = -EBUSY;
4759			goto abort;
4760		}
4761		p->rdev = NULL;
4762		synchronize_rcu();
4763		if (atomic_read(&rdev->nr_pending)) {
4764			/* lost the race, try later */
4765			err = -EBUSY;
4766			p->rdev = rdev;
4767		}
4768	}
4769abort:
4770
4771	print_raid5_conf(conf);
4772	return err;
4773}
4774
4775static int raid5_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
4776{
4777	raid5_conf_t *conf = mddev->private;
4778	int err = -EEXIST;
4779	int disk;
4780	struct disk_info *p;
4781	int first = 0;
4782	int last = conf->raid_disks - 1;
4783
4784	if (mddev->degraded > conf->max_degraded)
4785		/* no point adding a device */
4786		return -EINVAL;
4787
4788	if (rdev->raid_disk >= 0)
4789		first = last = rdev->raid_disk;
4790
4791	/*
4792	 * find the disk ... but prefer rdev->saved_raid_disk
4793	 * if possible.
4794	 */
4795	if (rdev->saved_raid_disk >= 0 &&
4796	    rdev->saved_raid_disk >= first &&
4797	    conf->disks[rdev->saved_raid_disk].rdev == NULL)
4798		disk = rdev->saved_raid_disk;
4799	else
4800		disk = first;
4801	for ( ; disk <= last ; disk++)
4802		if ((p=conf->disks + disk)->rdev == NULL) {
4803			clear_bit(In_sync, &rdev->flags);
4804			rdev->raid_disk = disk;
4805			err = 0;
4806			if (rdev->saved_raid_disk != disk)
4807				conf->fullsync = 1;
4808			rcu_assign_pointer(p->rdev, rdev);
4809			break;
4810		}
4811	print_raid5_conf(conf);
4812	return err;
4813}
4814
4815static int raid5_resize(mddev_t *mddev, sector_t sectors)
4816{
4817	/* no resync is happening, and there is enough space
4818	 * on all devices, so we can resize.
4819	 * We need to make sure resync covers any new space.
4820	 * If the array is shrinking we should possibly wait until
4821	 * any io in the removed space completes, but it hardly seems
4822	 * worth it.
4823	 */
4824	sectors &= ~((sector_t)mddev->chunk_size/512 - 1);
4825	md_set_array_sectors(mddev, raid5_size(mddev, sectors,
4826					       mddev->raid_disks));
4827	if (mddev->array_sectors >
4828	    raid5_size(mddev, sectors, mddev->raid_disks))
4829		return -EINVAL;
4830	set_capacity(mddev->gendisk, mddev->array_sectors);
4831	mddev->changed = 1;
4832	if (sectors > mddev->dev_sectors && mddev->recovery_cp == MaxSector) {
4833		mddev->recovery_cp = mddev->dev_sectors;
4834		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4835	}
4836	mddev->dev_sectors = sectors;
4837	mddev->resync_max_sectors = sectors;
4838	return 0;
4839}
4840
4841static int raid5_check_reshape(mddev_t *mddev)
4842{
4843	raid5_conf_t *conf = mddev_to_conf(mddev);
4844
4845	if (mddev->delta_disks == 0 &&
4846	    mddev->new_layout == mddev->layout &&
4847	    mddev->new_chunk == mddev->chunk_size)
4848		return -EINVAL; /* nothing to do */
4849	if (mddev->bitmap)
4850		/* Cannot grow a bitmap yet */
4851		return -EBUSY;
4852	if (mddev->degraded > conf->max_degraded)
4853		return -EINVAL;
4854	if (mddev->delta_disks < 0) {
4855		/* We might be able to shrink, but the devices must
4856		 * be made bigger first.
4857		 * For raid6, 4 is the minimum size.
4858		 * Otherwise 2 is the minimum
4859		 */
4860		int min = 2;
4861		if (mddev->level == 6)
4862			min = 4;
4863		if (mddev->raid_disks + mddev->delta_disks < min)
4864			return -EINVAL;
4865	}
4866
4867	/* Can only proceed if there are plenty of stripe_heads.
4868	 * We need a minimum of one full stripe,, and for sensible progress
4869	 * it is best to have about 4 times that.
4870	 * If we require 4 times, then the default 256 4K stripe_heads will
4871	 * allow for chunk sizes up to 256K, which is probably OK.
4872	 * If the chunk size is greater, user-space should request more
4873	 * stripe_heads first.
4874	 */
4875	if ((mddev->chunk_size / STRIPE_SIZE) * 4 > conf->max_nr_stripes ||
4876	    (mddev->new_chunk / STRIPE_SIZE) * 4 > conf->max_nr_stripes) {
4877		printk(KERN_WARNING "raid5: reshape: not enough stripes.  Needed %lu\n",
4878		       (max(mddev->chunk_size, mddev->new_chunk)
4879			/ STRIPE_SIZE)*4);
4880		return -ENOSPC;
4881	}
4882
4883	return resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
4884}
4885
4886static int raid5_start_reshape(mddev_t *mddev)
4887{
4888	raid5_conf_t *conf = mddev_to_conf(mddev);
4889	mdk_rdev_t *rdev;
4890	int spares = 0;
4891	int added_devices = 0;
4892	unsigned long flags;
4893
4894	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4895		return -EBUSY;
4896
4897	list_for_each_entry(rdev, &mddev->disks, same_set)
4898		if (rdev->raid_disk < 0 &&
4899		    !test_bit(Faulty, &rdev->flags))
4900			spares++;
4901
4902	if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
4903		/* Not enough devices even to make a degraded array
4904		 * of that size
4905		 */
4906		return -EINVAL;
4907
4908	/* Refuse to reduce size of the array.  Any reductions in
4909	 * array size must be through explicit setting of array_size
4910	 * attribute.
4911	 */
4912	if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
4913	    < mddev->array_sectors) {
4914		printk(KERN_ERR "md: %s: array size must be reduced "
4915		       "before number of disks\n", mdname(mddev));
4916		return -EINVAL;
4917	}
4918
4919	atomic_set(&conf->reshape_stripes, 0);
4920	spin_lock_irq(&conf->device_lock);
4921	conf->previous_raid_disks = conf->raid_disks;
4922	conf->raid_disks += mddev->delta_disks;
4923	conf->prev_chunk = conf->chunk_size;
4924	conf->chunk_size = mddev->new_chunk;
4925	conf->prev_algo = conf->algorithm;
4926	conf->algorithm = mddev->new_layout;
4927	if (mddev->delta_disks < 0)
4928		conf->reshape_progress = raid5_size(mddev, 0, 0);
4929	else
4930		conf->reshape_progress = 0;
4931	conf->reshape_safe = conf->reshape_progress;
4932	conf->generation++;
4933	spin_unlock_irq(&conf->device_lock);
4934
4935	/* Add some new drives, as many as will fit.
4936	 * We know there are enough to make the newly sized array work.
4937	 */
4938	list_for_each_entry(rdev, &mddev->disks, same_set)
4939		if (rdev->raid_disk < 0 &&
4940		    !test_bit(Faulty, &rdev->flags)) {
4941			if (raid5_add_disk(mddev, rdev) == 0) {
4942				char nm[20];
4943				set_bit(In_sync, &rdev->flags);
4944				added_devices++;
4945				rdev->recovery_offset = 0;
4946				sprintf(nm, "rd%d", rdev->raid_disk);
4947				if (sysfs_create_link(&mddev->kobj,
4948						      &rdev->kobj, nm))
4949					printk(KERN_WARNING
4950					       "raid5: failed to create "
4951					       " link %s for %s\n",
4952					       nm, mdname(mddev));
4953			} else
4954				break;
4955		}
4956
4957	if (mddev->delta_disks > 0) {
4958		spin_lock_irqsave(&conf->device_lock, flags);
4959		mddev->degraded = (conf->raid_disks - conf->previous_raid_disks)
4960			- added_devices;
4961		spin_unlock_irqrestore(&conf->device_lock, flags);
4962	}
4963	mddev->raid_disks = conf->raid_disks;
4964	mddev->reshape_position = 0;
4965	set_bit(MD_CHANGE_DEVS, &mddev->flags);
4966
4967	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4968	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4969	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4970	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4971	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4972						"%s_reshape");
4973	if (!mddev->sync_thread) {
4974		mddev->recovery = 0;
4975		spin_lock_irq(&conf->device_lock);
4976		mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
4977		conf->reshape_progress = MaxSector;
4978		spin_unlock_irq(&conf->device_lock);
4979		return -EAGAIN;
4980	}
4981	conf->reshape_checkpoint = jiffies;
4982	md_wakeup_thread(mddev->sync_thread);
4983	md_new_event(mddev);
4984	return 0;
4985}
4986
4987/* This is called from the reshape thread and should make any
4988 * changes needed in 'conf'
4989 */
4990static void end_reshape(raid5_conf_t *conf)
4991{
4992
4993	if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
4994
4995		spin_lock_irq(&conf->device_lock);
4996		conf->previous_raid_disks = conf->raid_disks;
4997		conf->reshape_progress = MaxSector;
4998		spin_unlock_irq(&conf->device_lock);
4999		wake_up(&conf->wait_for_overlap);
5000
5001		/* read-ahead size must cover two whole stripes, which is
5002		 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
5003		 */
5004		{
5005			int data_disks = conf->raid_disks - conf->max_degraded;
5006			int stripe = data_disks * (conf->chunk_size
5007						   / PAGE_SIZE);
5008			if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5009				conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
5010		}
5011	}
5012}
5013
5014/* This is called from the raid5d thread with mddev_lock held.
5015 * It makes config changes to the device.
5016 */
5017static void raid5_finish_reshape(mddev_t *mddev)
5018{
5019	struct block_device *bdev;
5020	raid5_conf_t *conf = mddev_to_conf(mddev);
5021
5022	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
5023
5024		if (mddev->delta_disks > 0) {
5025			md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5026			set_capacity(mddev->gendisk, mddev->array_sectors);
5027			mddev->changed = 1;
5028
5029			bdev = bdget_disk(mddev->gendisk, 0);
5030			if (bdev) {
5031				mutex_lock(&bdev->bd_inode->i_mutex);
5032				i_size_write(bdev->bd_inode,
5033					     (loff_t)mddev->array_sectors << 9);
5034				mutex_unlock(&bdev->bd_inode->i_mutex);
5035				bdput(bdev);
5036			}
5037		} else {
5038			int d;
5039			mddev->degraded = conf->raid_disks;
5040			for (d = 0; d < conf->raid_disks ; d++)
5041				if (conf->disks[d].rdev &&
5042				    test_bit(In_sync,
5043					     &conf->disks[d].rdev->flags))
5044					mddev->degraded--;
5045			for (d = conf->raid_disks ;
5046			     d < conf->raid_disks - mddev->delta_disks;
5047			     d++)
5048				raid5_remove_disk(mddev, d);
5049		}
5050		mddev->layout = conf->algorithm;
5051		mddev->chunk_size = conf->chunk_size;
5052		mddev->reshape_position = MaxSector;
5053		mddev->delta_disks = 0;
5054	}
5055}
5056
5057static void raid5_quiesce(mddev_t *mddev, int state)
5058{
5059	raid5_conf_t *conf = mddev_to_conf(mddev);
5060
5061	switch(state) {
5062	case 2: /* resume for a suspend */
5063		wake_up(&conf->wait_for_overlap);
5064		break;
5065
5066	case 1: /* stop all writes */
5067		spin_lock_irq(&conf->device_lock);
5068		conf->quiesce = 1;
5069		wait_event_lock_irq(conf->wait_for_stripe,
5070				    atomic_read(&conf->active_stripes) == 0 &&
5071				    atomic_read(&conf->active_aligned_reads) == 0,
5072				    conf->device_lock, /* nothing */);
5073		spin_unlock_irq(&conf->device_lock);
5074		break;
5075
5076	case 0: /* re-enable writes */
5077		spin_lock_irq(&conf->device_lock);
5078		conf->quiesce = 0;
5079		wake_up(&conf->wait_for_stripe);
5080		wake_up(&conf->wait_for_overlap);
5081		spin_unlock_irq(&conf->device_lock);
5082		break;
5083	}
5084}
5085
5086
5087static void *raid5_takeover_raid1(mddev_t *mddev)
5088{
5089	int chunksect;
5090
5091	if (mddev->raid_disks != 2 ||
5092	    mddev->degraded > 1)
5093		return ERR_PTR(-EINVAL);
5094
5095	/* Should check if there are write-behind devices? */
5096
5097	chunksect = 64*2; /* 64K by default */
5098
5099	/* The array must be an exact multiple of chunksize */
5100	while (chunksect && (mddev->array_sectors & (chunksect-1)))
5101		chunksect >>= 1;
5102
5103	if ((chunksect<<9) < STRIPE_SIZE)
5104		/* array size does not allow a suitable chunk size */
5105		return ERR_PTR(-EINVAL);
5106
5107	mddev->new_level = 5;
5108	mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
5109	mddev->new_chunk = chunksect << 9;
5110
5111	return setup_conf(mddev);
5112}
5113
5114static void *raid5_takeover_raid6(mddev_t *mddev)
5115{
5116	int new_layout;
5117
5118	switch (mddev->layout) {
5119	case ALGORITHM_LEFT_ASYMMETRIC_6:
5120		new_layout = ALGORITHM_LEFT_ASYMMETRIC;
5121		break;
5122	case ALGORITHM_RIGHT_ASYMMETRIC_6:
5123		new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
5124		break;
5125	case ALGORITHM_LEFT_SYMMETRIC_6:
5126		new_layout = ALGORITHM_LEFT_SYMMETRIC;
5127		break;
5128	case ALGORITHM_RIGHT_SYMMETRIC_6:
5129		new_layout = ALGORITHM_RIGHT_SYMMETRIC;
5130		break;
5131	case ALGORITHM_PARITY_0_6:
5132		new_layout = ALGORITHM_PARITY_0;
5133		break;
5134	case ALGORITHM_PARITY_N:
5135		new_layout = ALGORITHM_PARITY_N;
5136		break;
5137	default:
5138		return ERR_PTR(-EINVAL);
5139	}
5140	mddev->new_level = 5;
5141	mddev->new_layout = new_layout;
5142	mddev->delta_disks = -1;
5143	mddev->raid_disks -= 1;
5144	return setup_conf(mddev);
5145}
5146
5147
5148static int raid5_reconfig(mddev_t *mddev, int new_layout, int new_chunk)
5149{
5150	/* For a 2-drive array, the layout and chunk size can be changed
5151	 * immediately as not restriping is needed.
5152	 * For larger arrays we record the new value - after validation
5153	 * to be used by a reshape pass.
5154	 */
5155	raid5_conf_t *conf = mddev_to_conf(mddev);
5156
5157	if (new_layout >= 0 && !algorithm_valid_raid5(new_layout))
5158		return -EINVAL;
5159	if (new_chunk > 0) {
5160		if (new_chunk & (new_chunk-1))
5161			/* not a power of 2 */
5162			return -EINVAL;
5163		if (new_chunk < PAGE_SIZE)
5164			return -EINVAL;
5165		if (mddev->array_sectors & ((new_chunk>>9)-1))
5166			/* not factor of array size */
5167			return -EINVAL;
5168	}
5169
5170	/* They look valid */
5171
5172	if (mddev->raid_disks == 2) {
5173
5174		if (new_layout >= 0) {
5175			conf->algorithm = new_layout;
5176			mddev->layout = mddev->new_layout = new_layout;
5177		}
5178		if (new_chunk > 0) {
5179			conf->chunk_size = new_chunk;
5180			mddev->chunk_size = mddev->new_chunk = new_chunk;
5181		}
5182		set_bit(MD_CHANGE_DEVS, &mddev->flags);
5183		md_wakeup_thread(mddev->thread);
5184	} else {
5185		if (new_layout >= 0)
5186			mddev->new_layout = new_layout;
5187		if (new_chunk > 0)
5188			mddev->new_chunk = new_chunk;
5189	}
5190	return 0;
5191}
5192
5193static int raid6_reconfig(mddev_t *mddev, int new_layout, int new_chunk)
5194{
5195	if (new_layout >= 0 && !algorithm_valid_raid6(new_layout))
5196		return -EINVAL;
5197	if (new_chunk > 0) {
5198		if (new_chunk & (new_chunk-1))
5199			/* not a power of 2 */
5200			return -EINVAL;
5201		if (new_chunk < PAGE_SIZE)
5202			return -EINVAL;
5203		if (mddev->array_sectors & ((new_chunk>>9)-1))
5204			/* not factor of array size */
5205			return -EINVAL;
5206	}
5207
5208	/* They look valid */
5209
5210	if (new_layout >= 0)
5211		mddev->new_layout = new_layout;
5212	if (new_chunk > 0)
5213		mddev->new_chunk = new_chunk;
5214
5215	return 0;
5216}
5217
5218static void *raid5_takeover(mddev_t *mddev)
5219{
5220	/* raid5 can take over:
5221	 *  raid0 - if all devices are the same - make it a raid4 layout
5222	 *  raid1 - if there are two drives.  We need to know the chunk size
5223	 *  raid4 - trivial - just use a raid4 layout.
5224	 *  raid6 - Providing it is a *_6 layout
5225	 *
5226	 * For now, just do raid1
5227	 */
5228
5229	if (mddev->level == 1)
5230		return raid5_takeover_raid1(mddev);
5231	if (mddev->level == 4) {
5232		mddev->new_layout = ALGORITHM_PARITY_N;
5233		mddev->new_level = 5;
5234		return setup_conf(mddev);
5235	}
5236	if (mddev->level == 6)
5237		return raid5_takeover_raid6(mddev);
5238
5239	return ERR_PTR(-EINVAL);
5240}
5241
5242
5243static struct mdk_personality raid5_personality;
5244
5245static void *raid6_takeover(mddev_t *mddev)
5246{
5247	/* Currently can only take over a raid5.  We map the
5248	 * personality to an equivalent raid6 personality
5249	 * with the Q block at the end.
5250	 */
5251	int new_layout;
5252
5253	if (mddev->pers != &raid5_personality)
5254		return ERR_PTR(-EINVAL);
5255	if (mddev->degraded > 1)
5256		return ERR_PTR(-EINVAL);
5257	if (mddev->raid_disks > 253)
5258		return ERR_PTR(-EINVAL);
5259	if (mddev->raid_disks < 3)
5260		return ERR_PTR(-EINVAL);
5261
5262	switch (mddev->layout) {
5263	case ALGORITHM_LEFT_ASYMMETRIC:
5264		new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
5265		break;
5266	case ALGORITHM_RIGHT_ASYMMETRIC:
5267		new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
5268		break;
5269	case ALGORITHM_LEFT_SYMMETRIC:
5270		new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
5271		break;
5272	case ALGORITHM_RIGHT_SYMMETRIC:
5273		new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
5274		break;
5275	case ALGORITHM_PARITY_0:
5276		new_layout = ALGORITHM_PARITY_0_6;
5277		break;
5278	case ALGORITHM_PARITY_N:
5279		new_layout = ALGORITHM_PARITY_N;
5280		break;
5281	default:
5282		return ERR_PTR(-EINVAL);
5283	}
5284	mddev->new_level = 6;
5285	mddev->new_layout = new_layout;
5286	mddev->delta_disks = 1;
5287	mddev->raid_disks += 1;
5288	return setup_conf(mddev);
5289}
5290
5291
5292static struct mdk_personality raid6_personality =
5293{
5294	.name		= "raid6",
5295	.level		= 6,
5296	.owner		= THIS_MODULE,
5297	.make_request	= make_request,
5298	.run		= run,
5299	.stop		= stop,
5300	.status		= status,
5301	.error_handler	= error,
5302	.hot_add_disk	= raid5_add_disk,
5303	.hot_remove_disk= raid5_remove_disk,
5304	.spare_active	= raid5_spare_active,
5305	.sync_request	= sync_request,
5306	.resize		= raid5_resize,
5307	.size		= raid5_size,
5308	.check_reshape	= raid5_check_reshape,
5309	.start_reshape  = raid5_start_reshape,
5310	.finish_reshape = raid5_finish_reshape,
5311	.quiesce	= raid5_quiesce,
5312	.takeover	= raid6_takeover,
5313	.reconfig	= raid6_reconfig,
5314};
5315static struct mdk_personality raid5_personality =
5316{
5317	.name		= "raid5",
5318	.level		= 5,
5319	.owner		= THIS_MODULE,
5320	.make_request	= make_request,
5321	.run		= run,
5322	.stop		= stop,
5323	.status		= status,
5324	.error_handler	= error,
5325	.hot_add_disk	= raid5_add_disk,
5326	.hot_remove_disk= raid5_remove_disk,
5327	.spare_active	= raid5_spare_active,
5328	.sync_request	= sync_request,
5329	.resize		= raid5_resize,
5330	.size		= raid5_size,
5331	.check_reshape	= raid5_check_reshape,
5332	.start_reshape  = raid5_start_reshape,
5333	.finish_reshape = raid5_finish_reshape,
5334	.quiesce	= raid5_quiesce,
5335	.takeover	= raid5_takeover,
5336	.reconfig	= raid5_reconfig,
5337};
5338
5339static struct mdk_personality raid4_personality =
5340{
5341	.name		= "raid4",
5342	.level		= 4,
5343	.owner		= THIS_MODULE,
5344	.make_request	= make_request,
5345	.run		= run,
5346	.stop		= stop,
5347	.status		= status,
5348	.error_handler	= error,
5349	.hot_add_disk	= raid5_add_disk,
5350	.hot_remove_disk= raid5_remove_disk,
5351	.spare_active	= raid5_spare_active,
5352	.sync_request	= sync_request,
5353	.resize		= raid5_resize,
5354	.size		= raid5_size,
5355	.check_reshape	= raid5_check_reshape,
5356	.start_reshape  = raid5_start_reshape,
5357	.finish_reshape = raid5_finish_reshape,
5358	.quiesce	= raid5_quiesce,
5359};
5360
5361static int __init raid5_init(void)
5362{
5363	register_md_personality(&raid6_personality);
5364	register_md_personality(&raid5_personality);
5365	register_md_personality(&raid4_personality);
5366	return 0;
5367}
5368
5369static void raid5_exit(void)
5370{
5371	unregister_md_personality(&raid6_personality);
5372	unregister_md_personality(&raid5_personality);
5373	unregister_md_personality(&raid4_personality);
5374}
5375
5376module_init(raid5_init);
5377module_exit(raid5_exit);
5378MODULE_LICENSE("GPL");
5379MODULE_ALIAS("md-personality-4"); /* RAID5 */
5380MODULE_ALIAS("md-raid5");
5381MODULE_ALIAS("md-raid4");
5382MODULE_ALIAS("md-level-5");
5383MODULE_ALIAS("md-level-4");
5384MODULE_ALIAS("md-personality-8"); /* RAID6 */
5385MODULE_ALIAS("md-raid6");
5386MODULE_ALIAS("md-level-6");
5387
5388/* This used to be two separate modules, they were: */
5389MODULE_ALIAS("raid5");
5390MODULE_ALIAS("raid6");
5391