raid5.c revision d710e13812600037a723a673dc5c96a071de98d3
1/*
2 * raid5.c : Multiple Devices driver for Linux
3 *	   Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4 *	   Copyright (C) 1999, 2000 Ingo Molnar
5 *	   Copyright (C) 2002, 2003 H. Peter Anvin
6 *
7 * RAID-4/5/6 management functions.
8 * Thanks to Penguin Computing for making the RAID-6 development possible
9 * by donating a test server!
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
21/*
22 * BITMAP UNPLUGGING:
23 *
24 * The sequencing for updating the bitmap reliably is a little
25 * subtle (and I got it wrong the first time) so it deserves some
26 * explanation.
27 *
28 * We group bitmap updates into batches.  Each batch has a number.
29 * We may write out several batches at once, but that isn't very important.
30 * conf->bm_write is the number of the last batch successfully written.
31 * conf->bm_flush is the number of the last batch that was closed to
32 *    new additions.
33 * When we discover that we will need to write to any block in a stripe
34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35 * the number of the batch it will be in. This is bm_flush+1.
36 * When we are ready to do a write, if that batch hasn't been written yet,
37 *   we plug the array and queue the stripe for later.
38 * When an unplug happens, we increment bm_flush, thus closing the current
39 *   batch.
40 * When we notice that bm_flush > bm_write, we write out all pending updates
41 * to the bitmap, and advance bm_write to where bm_flush was.
42 * This may occasionally write a bit out twice, but is sure never to
43 * miss any bits.
44 */
45
46#include <linux/kthread.h>
47#include "raid6.h"
48
49#include <linux/raid/bitmap.h>
50#include <linux/async_tx.h>
51
52/*
53 * Stripe cache
54 */
55
56#define NR_STRIPES		256
57#define STRIPE_SIZE		PAGE_SIZE
58#define STRIPE_SHIFT		(PAGE_SHIFT - 9)
59#define STRIPE_SECTORS		(STRIPE_SIZE>>9)
60#define	IO_THRESHOLD		1
61#define BYPASS_THRESHOLD	1
62#define NR_HASH			(PAGE_SIZE / sizeof(struct hlist_head))
63#define HASH_MASK		(NR_HASH - 1)
64
65#define stripe_hash(conf, sect)	(&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
66
67/* bio's attached to a stripe+device for I/O are linked together in bi_sector
68 * order without overlap.  There may be several bio's per stripe+device, and
69 * a bio could span several devices.
70 * When walking this list for a particular stripe+device, we must never proceed
71 * beyond a bio that extends past this device, as the next bio might no longer
72 * be valid.
73 * This macro is used to determine the 'next' bio in the list, given the sector
74 * of the current stripe+device
75 */
76#define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
77/*
78 * The following can be used to debug the driver
79 */
80#define RAID5_PARANOIA	1
81#if RAID5_PARANOIA && defined(CONFIG_SMP)
82# define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
83#else
84# define CHECK_DEVLOCK()
85#endif
86
87#ifdef DEBUG
88#define inline
89#define __inline__
90#endif
91
92#define printk_rl(args...) ((void) (printk_ratelimit() && printk(args)))
93
94#if !RAID6_USE_EMPTY_ZERO_PAGE
95/* In .bss so it's zeroed */
96const char raid6_empty_zero_page[PAGE_SIZE] __attribute__((aligned(256)));
97#endif
98
99/*
100 * We maintain a biased count of active stripes in the bottom 16 bits of
101 * bi_phys_segments, and a count of processed stripes in the upper 16 bits
102 */
103static inline int raid5_bi_phys_segments(struct bio *bio)
104{
105	return bio->bi_phys_segments & 0xffff;
106}
107
108static inline int raid5_bi_hw_segments(struct bio *bio)
109{
110	return (bio->bi_phys_segments >> 16) & 0xffff;
111}
112
113static inline int raid5_dec_bi_phys_segments(struct bio *bio)
114{
115	--bio->bi_phys_segments;
116	return raid5_bi_phys_segments(bio);
117}
118
119static inline int raid5_dec_bi_hw_segments(struct bio *bio)
120{
121	unsigned short val = raid5_bi_hw_segments(bio);
122
123	--val;
124	bio->bi_phys_segments = (val << 16) | raid5_bi_phys_segments(bio);
125	return val;
126}
127
128static inline void raid5_set_bi_hw_segments(struct bio *bio, unsigned int cnt)
129{
130	bio->bi_phys_segments = raid5_bi_phys_segments(bio) || (cnt << 16);
131}
132
133static inline int raid6_next_disk(int disk, int raid_disks)
134{
135	disk++;
136	return (disk < raid_disks) ? disk : 0;
137}
138
139static void return_io(struct bio *return_bi)
140{
141	struct bio *bi = return_bi;
142	while (bi) {
143
144		return_bi = bi->bi_next;
145		bi->bi_next = NULL;
146		bi->bi_size = 0;
147		bio_endio(bi, 0);
148		bi = return_bi;
149	}
150}
151
152static void print_raid5_conf (raid5_conf_t *conf);
153
154static int stripe_operations_active(struct stripe_head *sh)
155{
156	return sh->check_state || sh->reconstruct_state ||
157	       test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
158	       test_bit(STRIPE_COMPUTE_RUN, &sh->state);
159}
160
161static void __release_stripe(raid5_conf_t *conf, struct stripe_head *sh)
162{
163	if (atomic_dec_and_test(&sh->count)) {
164		BUG_ON(!list_empty(&sh->lru));
165		BUG_ON(atomic_read(&conf->active_stripes)==0);
166		if (test_bit(STRIPE_HANDLE, &sh->state)) {
167			if (test_bit(STRIPE_DELAYED, &sh->state)) {
168				list_add_tail(&sh->lru, &conf->delayed_list);
169				blk_plug_device(conf->mddev->queue);
170			} else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
171				   sh->bm_seq - conf->seq_write > 0) {
172				list_add_tail(&sh->lru, &conf->bitmap_list);
173				blk_plug_device(conf->mddev->queue);
174			} else {
175				clear_bit(STRIPE_BIT_DELAY, &sh->state);
176				list_add_tail(&sh->lru, &conf->handle_list);
177			}
178			md_wakeup_thread(conf->mddev->thread);
179		} else {
180			BUG_ON(stripe_operations_active(sh));
181			if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
182				atomic_dec(&conf->preread_active_stripes);
183				if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
184					md_wakeup_thread(conf->mddev->thread);
185			}
186			atomic_dec(&conf->active_stripes);
187			if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
188				list_add_tail(&sh->lru, &conf->inactive_list);
189				wake_up(&conf->wait_for_stripe);
190				if (conf->retry_read_aligned)
191					md_wakeup_thread(conf->mddev->thread);
192			}
193		}
194	}
195}
196static void release_stripe(struct stripe_head *sh)
197{
198	raid5_conf_t *conf = sh->raid_conf;
199	unsigned long flags;
200
201	spin_lock_irqsave(&conf->device_lock, flags);
202	__release_stripe(conf, sh);
203	spin_unlock_irqrestore(&conf->device_lock, flags);
204}
205
206static inline void remove_hash(struct stripe_head *sh)
207{
208	pr_debug("remove_hash(), stripe %llu\n",
209		(unsigned long long)sh->sector);
210
211	hlist_del_init(&sh->hash);
212}
213
214static inline void insert_hash(raid5_conf_t *conf, struct stripe_head *sh)
215{
216	struct hlist_head *hp = stripe_hash(conf, sh->sector);
217
218	pr_debug("insert_hash(), stripe %llu\n",
219		(unsigned long long)sh->sector);
220
221	CHECK_DEVLOCK();
222	hlist_add_head(&sh->hash, hp);
223}
224
225
226/* find an idle stripe, make sure it is unhashed, and return it. */
227static struct stripe_head *get_free_stripe(raid5_conf_t *conf)
228{
229	struct stripe_head *sh = NULL;
230	struct list_head *first;
231
232	CHECK_DEVLOCK();
233	if (list_empty(&conf->inactive_list))
234		goto out;
235	first = conf->inactive_list.next;
236	sh = list_entry(first, struct stripe_head, lru);
237	list_del_init(first);
238	remove_hash(sh);
239	atomic_inc(&conf->active_stripes);
240out:
241	return sh;
242}
243
244static void shrink_buffers(struct stripe_head *sh, int num)
245{
246	struct page *p;
247	int i;
248
249	for (i=0; i<num ; i++) {
250		p = sh->dev[i].page;
251		if (!p)
252			continue;
253		sh->dev[i].page = NULL;
254		put_page(p);
255	}
256}
257
258static int grow_buffers(struct stripe_head *sh, int num)
259{
260	int i;
261
262	for (i=0; i<num; i++) {
263		struct page *page;
264
265		if (!(page = alloc_page(GFP_KERNEL))) {
266			return 1;
267		}
268		sh->dev[i].page = page;
269	}
270	return 0;
271}
272
273static void raid5_build_block(struct stripe_head *sh, int i);
274
275static void init_stripe(struct stripe_head *sh, sector_t sector, int pd_idx, int disks)
276{
277	raid5_conf_t *conf = sh->raid_conf;
278	int i;
279
280	BUG_ON(atomic_read(&sh->count) != 0);
281	BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
282	BUG_ON(stripe_operations_active(sh));
283
284	CHECK_DEVLOCK();
285	pr_debug("init_stripe called, stripe %llu\n",
286		(unsigned long long)sh->sector);
287
288	remove_hash(sh);
289
290	sh->sector = sector;
291	sh->pd_idx = pd_idx;
292	sh->state = 0;
293
294	sh->disks = disks;
295
296	for (i = sh->disks; i--; ) {
297		struct r5dev *dev = &sh->dev[i];
298
299		if (dev->toread || dev->read || dev->towrite || dev->written ||
300		    test_bit(R5_LOCKED, &dev->flags)) {
301			printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
302			       (unsigned long long)sh->sector, i, dev->toread,
303			       dev->read, dev->towrite, dev->written,
304			       test_bit(R5_LOCKED, &dev->flags));
305			BUG();
306		}
307		dev->flags = 0;
308		raid5_build_block(sh, i);
309	}
310	insert_hash(conf, sh);
311}
312
313static struct stripe_head *__find_stripe(raid5_conf_t *conf, sector_t sector, int disks)
314{
315	struct stripe_head *sh;
316	struct hlist_node *hn;
317
318	CHECK_DEVLOCK();
319	pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
320	hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
321		if (sh->sector == sector && sh->disks == disks)
322			return sh;
323	pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
324	return NULL;
325}
326
327static void unplug_slaves(mddev_t *mddev);
328static void raid5_unplug_device(struct request_queue *q);
329
330static struct stripe_head *get_active_stripe(raid5_conf_t *conf, sector_t sector, int disks,
331					     int pd_idx, int noblock)
332{
333	struct stripe_head *sh;
334
335	pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
336
337	spin_lock_irq(&conf->device_lock);
338
339	do {
340		wait_event_lock_irq(conf->wait_for_stripe,
341				    conf->quiesce == 0,
342				    conf->device_lock, /* nothing */);
343		sh = __find_stripe(conf, sector, disks);
344		if (!sh) {
345			if (!conf->inactive_blocked)
346				sh = get_free_stripe(conf);
347			if (noblock && sh == NULL)
348				break;
349			if (!sh) {
350				conf->inactive_blocked = 1;
351				wait_event_lock_irq(conf->wait_for_stripe,
352						    !list_empty(&conf->inactive_list) &&
353						    (atomic_read(&conf->active_stripes)
354						     < (conf->max_nr_stripes *3/4)
355						     || !conf->inactive_blocked),
356						    conf->device_lock,
357						    raid5_unplug_device(conf->mddev->queue)
358					);
359				conf->inactive_blocked = 0;
360			} else
361				init_stripe(sh, sector, pd_idx, disks);
362		} else {
363			if (atomic_read(&sh->count)) {
364			  BUG_ON(!list_empty(&sh->lru));
365			} else {
366				if (!test_bit(STRIPE_HANDLE, &sh->state))
367					atomic_inc(&conf->active_stripes);
368				if (list_empty(&sh->lru) &&
369				    !test_bit(STRIPE_EXPANDING, &sh->state))
370					BUG();
371				list_del_init(&sh->lru);
372			}
373		}
374	} while (sh == NULL);
375
376	if (sh)
377		atomic_inc(&sh->count);
378
379	spin_unlock_irq(&conf->device_lock);
380	return sh;
381}
382
383static void
384raid5_end_read_request(struct bio *bi, int error);
385static void
386raid5_end_write_request(struct bio *bi, int error);
387
388static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
389{
390	raid5_conf_t *conf = sh->raid_conf;
391	int i, disks = sh->disks;
392
393	might_sleep();
394
395	for (i = disks; i--; ) {
396		int rw;
397		struct bio *bi;
398		mdk_rdev_t *rdev;
399		if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags))
400			rw = WRITE;
401		else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
402			rw = READ;
403		else
404			continue;
405
406		bi = &sh->dev[i].req;
407
408		bi->bi_rw = rw;
409		if (rw == WRITE)
410			bi->bi_end_io = raid5_end_write_request;
411		else
412			bi->bi_end_io = raid5_end_read_request;
413
414		rcu_read_lock();
415		rdev = rcu_dereference(conf->disks[i].rdev);
416		if (rdev && test_bit(Faulty, &rdev->flags))
417			rdev = NULL;
418		if (rdev)
419			atomic_inc(&rdev->nr_pending);
420		rcu_read_unlock();
421
422		if (rdev) {
423			if (s->syncing || s->expanding || s->expanded)
424				md_sync_acct(rdev->bdev, STRIPE_SECTORS);
425
426			set_bit(STRIPE_IO_STARTED, &sh->state);
427
428			bi->bi_bdev = rdev->bdev;
429			pr_debug("%s: for %llu schedule op %ld on disc %d\n",
430				__func__, (unsigned long long)sh->sector,
431				bi->bi_rw, i);
432			atomic_inc(&sh->count);
433			bi->bi_sector = sh->sector + rdev->data_offset;
434			bi->bi_flags = 1 << BIO_UPTODATE;
435			bi->bi_vcnt = 1;
436			bi->bi_max_vecs = 1;
437			bi->bi_idx = 0;
438			bi->bi_io_vec = &sh->dev[i].vec;
439			bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
440			bi->bi_io_vec[0].bv_offset = 0;
441			bi->bi_size = STRIPE_SIZE;
442			bi->bi_next = NULL;
443			if (rw == WRITE &&
444			    test_bit(R5_ReWrite, &sh->dev[i].flags))
445				atomic_add(STRIPE_SECTORS,
446					&rdev->corrected_errors);
447			generic_make_request(bi);
448		} else {
449			if (rw == WRITE)
450				set_bit(STRIPE_DEGRADED, &sh->state);
451			pr_debug("skip op %ld on disc %d for sector %llu\n",
452				bi->bi_rw, i, (unsigned long long)sh->sector);
453			clear_bit(R5_LOCKED, &sh->dev[i].flags);
454			set_bit(STRIPE_HANDLE, &sh->state);
455		}
456	}
457}
458
459static struct dma_async_tx_descriptor *
460async_copy_data(int frombio, struct bio *bio, struct page *page,
461	sector_t sector, struct dma_async_tx_descriptor *tx)
462{
463	struct bio_vec *bvl;
464	struct page *bio_page;
465	int i;
466	int page_offset;
467
468	if (bio->bi_sector >= sector)
469		page_offset = (signed)(bio->bi_sector - sector) * 512;
470	else
471		page_offset = (signed)(sector - bio->bi_sector) * -512;
472	bio_for_each_segment(bvl, bio, i) {
473		int len = bio_iovec_idx(bio, i)->bv_len;
474		int clen;
475		int b_offset = 0;
476
477		if (page_offset < 0) {
478			b_offset = -page_offset;
479			page_offset += b_offset;
480			len -= b_offset;
481		}
482
483		if (len > 0 && page_offset + len > STRIPE_SIZE)
484			clen = STRIPE_SIZE - page_offset;
485		else
486			clen = len;
487
488		if (clen > 0) {
489			b_offset += bio_iovec_idx(bio, i)->bv_offset;
490			bio_page = bio_iovec_idx(bio, i)->bv_page;
491			if (frombio)
492				tx = async_memcpy(page, bio_page, page_offset,
493					b_offset, clen,
494					ASYNC_TX_DEP_ACK,
495					tx, NULL, NULL);
496			else
497				tx = async_memcpy(bio_page, page, b_offset,
498					page_offset, clen,
499					ASYNC_TX_DEP_ACK,
500					tx, NULL, NULL);
501		}
502		if (clen < len) /* hit end of page */
503			break;
504		page_offset +=  len;
505	}
506
507	return tx;
508}
509
510static void ops_complete_biofill(void *stripe_head_ref)
511{
512	struct stripe_head *sh = stripe_head_ref;
513	struct bio *return_bi = NULL;
514	raid5_conf_t *conf = sh->raid_conf;
515	int i;
516
517	pr_debug("%s: stripe %llu\n", __func__,
518		(unsigned long long)sh->sector);
519
520	/* clear completed biofills */
521	spin_lock_irq(&conf->device_lock);
522	for (i = sh->disks; i--; ) {
523		struct r5dev *dev = &sh->dev[i];
524
525		/* acknowledge completion of a biofill operation */
526		/* and check if we need to reply to a read request,
527		 * new R5_Wantfill requests are held off until
528		 * !STRIPE_BIOFILL_RUN
529		 */
530		if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
531			struct bio *rbi, *rbi2;
532
533			BUG_ON(!dev->read);
534			rbi = dev->read;
535			dev->read = NULL;
536			while (rbi && rbi->bi_sector <
537				dev->sector + STRIPE_SECTORS) {
538				rbi2 = r5_next_bio(rbi, dev->sector);
539				if (!raid5_dec_bi_phys_segments(rbi)) {
540					rbi->bi_next = return_bi;
541					return_bi = rbi;
542				}
543				rbi = rbi2;
544			}
545		}
546	}
547	spin_unlock_irq(&conf->device_lock);
548	clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
549
550	return_io(return_bi);
551
552	set_bit(STRIPE_HANDLE, &sh->state);
553	release_stripe(sh);
554}
555
556static void ops_run_biofill(struct stripe_head *sh)
557{
558	struct dma_async_tx_descriptor *tx = NULL;
559	raid5_conf_t *conf = sh->raid_conf;
560	int i;
561
562	pr_debug("%s: stripe %llu\n", __func__,
563		(unsigned long long)sh->sector);
564
565	for (i = sh->disks; i--; ) {
566		struct r5dev *dev = &sh->dev[i];
567		if (test_bit(R5_Wantfill, &dev->flags)) {
568			struct bio *rbi;
569			spin_lock_irq(&conf->device_lock);
570			dev->read = rbi = dev->toread;
571			dev->toread = NULL;
572			spin_unlock_irq(&conf->device_lock);
573			while (rbi && rbi->bi_sector <
574				dev->sector + STRIPE_SECTORS) {
575				tx = async_copy_data(0, rbi, dev->page,
576					dev->sector, tx);
577				rbi = r5_next_bio(rbi, dev->sector);
578			}
579		}
580	}
581
582	atomic_inc(&sh->count);
583	async_trigger_callback(ASYNC_TX_DEP_ACK | ASYNC_TX_ACK, tx,
584		ops_complete_biofill, sh);
585}
586
587static void ops_complete_compute5(void *stripe_head_ref)
588{
589	struct stripe_head *sh = stripe_head_ref;
590	int target = sh->ops.target;
591	struct r5dev *tgt = &sh->dev[target];
592
593	pr_debug("%s: stripe %llu\n", __func__,
594		(unsigned long long)sh->sector);
595
596	set_bit(R5_UPTODATE, &tgt->flags);
597	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
598	clear_bit(R5_Wantcompute, &tgt->flags);
599	clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
600	if (sh->check_state == check_state_compute_run)
601		sh->check_state = check_state_compute_result;
602	set_bit(STRIPE_HANDLE, &sh->state);
603	release_stripe(sh);
604}
605
606static struct dma_async_tx_descriptor *ops_run_compute5(struct stripe_head *sh)
607{
608	/* kernel stack size limits the total number of disks */
609	int disks = sh->disks;
610	struct page *xor_srcs[disks];
611	int target = sh->ops.target;
612	struct r5dev *tgt = &sh->dev[target];
613	struct page *xor_dest = tgt->page;
614	int count = 0;
615	struct dma_async_tx_descriptor *tx;
616	int i;
617
618	pr_debug("%s: stripe %llu block: %d\n",
619		__func__, (unsigned long long)sh->sector, target);
620	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
621
622	for (i = disks; i--; )
623		if (i != target)
624			xor_srcs[count++] = sh->dev[i].page;
625
626	atomic_inc(&sh->count);
627
628	if (unlikely(count == 1))
629		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE,
630			0, NULL, ops_complete_compute5, sh);
631	else
632		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
633			ASYNC_TX_XOR_ZERO_DST, NULL,
634			ops_complete_compute5, sh);
635
636	return tx;
637}
638
639static void ops_complete_prexor(void *stripe_head_ref)
640{
641	struct stripe_head *sh = stripe_head_ref;
642
643	pr_debug("%s: stripe %llu\n", __func__,
644		(unsigned long long)sh->sector);
645}
646
647static struct dma_async_tx_descriptor *
648ops_run_prexor(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
649{
650	/* kernel stack size limits the total number of disks */
651	int disks = sh->disks;
652	struct page *xor_srcs[disks];
653	int count = 0, pd_idx = sh->pd_idx, i;
654
655	/* existing parity data subtracted */
656	struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
657
658	pr_debug("%s: stripe %llu\n", __func__,
659		(unsigned long long)sh->sector);
660
661	for (i = disks; i--; ) {
662		struct r5dev *dev = &sh->dev[i];
663		/* Only process blocks that are known to be uptodate */
664		if (test_bit(R5_Wantdrain, &dev->flags))
665			xor_srcs[count++] = dev->page;
666	}
667
668	tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
669		ASYNC_TX_DEP_ACK | ASYNC_TX_XOR_DROP_DST, tx,
670		ops_complete_prexor, sh);
671
672	return tx;
673}
674
675static struct dma_async_tx_descriptor *
676ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
677{
678	int disks = sh->disks;
679	int i;
680
681	pr_debug("%s: stripe %llu\n", __func__,
682		(unsigned long long)sh->sector);
683
684	for (i = disks; i--; ) {
685		struct r5dev *dev = &sh->dev[i];
686		struct bio *chosen;
687
688		if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
689			struct bio *wbi;
690
691			spin_lock(&sh->lock);
692			chosen = dev->towrite;
693			dev->towrite = NULL;
694			BUG_ON(dev->written);
695			wbi = dev->written = chosen;
696			spin_unlock(&sh->lock);
697
698			while (wbi && wbi->bi_sector <
699				dev->sector + STRIPE_SECTORS) {
700				tx = async_copy_data(1, wbi, dev->page,
701					dev->sector, tx);
702				wbi = r5_next_bio(wbi, dev->sector);
703			}
704		}
705	}
706
707	return tx;
708}
709
710static void ops_complete_postxor(void *stripe_head_ref)
711{
712	struct stripe_head *sh = stripe_head_ref;
713	int disks = sh->disks, i, pd_idx = sh->pd_idx;
714
715	pr_debug("%s: stripe %llu\n", __func__,
716		(unsigned long long)sh->sector);
717
718	for (i = disks; i--; ) {
719		struct r5dev *dev = &sh->dev[i];
720		if (dev->written || i == pd_idx)
721			set_bit(R5_UPTODATE, &dev->flags);
722	}
723
724	if (sh->reconstruct_state == reconstruct_state_drain_run)
725		sh->reconstruct_state = reconstruct_state_drain_result;
726	else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
727		sh->reconstruct_state = reconstruct_state_prexor_drain_result;
728	else {
729		BUG_ON(sh->reconstruct_state != reconstruct_state_run);
730		sh->reconstruct_state = reconstruct_state_result;
731	}
732
733	set_bit(STRIPE_HANDLE, &sh->state);
734	release_stripe(sh);
735}
736
737static void
738ops_run_postxor(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
739{
740	/* kernel stack size limits the total number of disks */
741	int disks = sh->disks;
742	struct page *xor_srcs[disks];
743
744	int count = 0, pd_idx = sh->pd_idx, i;
745	struct page *xor_dest;
746	int prexor = 0;
747	unsigned long flags;
748
749	pr_debug("%s: stripe %llu\n", __func__,
750		(unsigned long long)sh->sector);
751
752	/* check if prexor is active which means only process blocks
753	 * that are part of a read-modify-write (written)
754	 */
755	if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
756		prexor = 1;
757		xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
758		for (i = disks; i--; ) {
759			struct r5dev *dev = &sh->dev[i];
760			if (dev->written)
761				xor_srcs[count++] = dev->page;
762		}
763	} else {
764		xor_dest = sh->dev[pd_idx].page;
765		for (i = disks; i--; ) {
766			struct r5dev *dev = &sh->dev[i];
767			if (i != pd_idx)
768				xor_srcs[count++] = dev->page;
769		}
770	}
771
772	/* 1/ if we prexor'd then the dest is reused as a source
773	 * 2/ if we did not prexor then we are redoing the parity
774	 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
775	 * for the synchronous xor case
776	 */
777	flags = ASYNC_TX_DEP_ACK | ASYNC_TX_ACK |
778		(prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
779
780	atomic_inc(&sh->count);
781
782	if (unlikely(count == 1)) {
783		flags &= ~(ASYNC_TX_XOR_DROP_DST | ASYNC_TX_XOR_ZERO_DST);
784		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE,
785			flags, tx, ops_complete_postxor, sh);
786	} else
787		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
788			flags, tx, ops_complete_postxor, sh);
789}
790
791static void ops_complete_check(void *stripe_head_ref)
792{
793	struct stripe_head *sh = stripe_head_ref;
794
795	pr_debug("%s: stripe %llu\n", __func__,
796		(unsigned long long)sh->sector);
797
798	sh->check_state = check_state_check_result;
799	set_bit(STRIPE_HANDLE, &sh->state);
800	release_stripe(sh);
801}
802
803static void ops_run_check(struct stripe_head *sh)
804{
805	/* kernel stack size limits the total number of disks */
806	int disks = sh->disks;
807	struct page *xor_srcs[disks];
808	struct dma_async_tx_descriptor *tx;
809
810	int count = 0, pd_idx = sh->pd_idx, i;
811	struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
812
813	pr_debug("%s: stripe %llu\n", __func__,
814		(unsigned long long)sh->sector);
815
816	for (i = disks; i--; ) {
817		struct r5dev *dev = &sh->dev[i];
818		if (i != pd_idx)
819			xor_srcs[count++] = dev->page;
820	}
821
822	tx = async_xor_zero_sum(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
823		&sh->ops.zero_sum_result, 0, NULL, NULL, NULL);
824
825	atomic_inc(&sh->count);
826	tx = async_trigger_callback(ASYNC_TX_DEP_ACK | ASYNC_TX_ACK, tx,
827		ops_complete_check, sh);
828}
829
830static void raid5_run_ops(struct stripe_head *sh, unsigned long ops_request)
831{
832	int overlap_clear = 0, i, disks = sh->disks;
833	struct dma_async_tx_descriptor *tx = NULL;
834
835	if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
836		ops_run_biofill(sh);
837		overlap_clear++;
838	}
839
840	if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
841		tx = ops_run_compute5(sh);
842		/* terminate the chain if postxor is not set to be run */
843		if (tx && !test_bit(STRIPE_OP_POSTXOR, &ops_request))
844			async_tx_ack(tx);
845	}
846
847	if (test_bit(STRIPE_OP_PREXOR, &ops_request))
848		tx = ops_run_prexor(sh, tx);
849
850	if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
851		tx = ops_run_biodrain(sh, tx);
852		overlap_clear++;
853	}
854
855	if (test_bit(STRIPE_OP_POSTXOR, &ops_request))
856		ops_run_postxor(sh, tx);
857
858	if (test_bit(STRIPE_OP_CHECK, &ops_request))
859		ops_run_check(sh);
860
861	if (overlap_clear)
862		for (i = disks; i--; ) {
863			struct r5dev *dev = &sh->dev[i];
864			if (test_and_clear_bit(R5_Overlap, &dev->flags))
865				wake_up(&sh->raid_conf->wait_for_overlap);
866		}
867}
868
869static int grow_one_stripe(raid5_conf_t *conf)
870{
871	struct stripe_head *sh;
872	sh = kmem_cache_alloc(conf->slab_cache, GFP_KERNEL);
873	if (!sh)
874		return 0;
875	memset(sh, 0, sizeof(*sh) + (conf->raid_disks-1)*sizeof(struct r5dev));
876	sh->raid_conf = conf;
877	spin_lock_init(&sh->lock);
878
879	if (grow_buffers(sh, conf->raid_disks)) {
880		shrink_buffers(sh, conf->raid_disks);
881		kmem_cache_free(conf->slab_cache, sh);
882		return 0;
883	}
884	sh->disks = conf->raid_disks;
885	/* we just created an active stripe so... */
886	atomic_set(&sh->count, 1);
887	atomic_inc(&conf->active_stripes);
888	INIT_LIST_HEAD(&sh->lru);
889	release_stripe(sh);
890	return 1;
891}
892
893static int grow_stripes(raid5_conf_t *conf, int num)
894{
895	struct kmem_cache *sc;
896	int devs = conf->raid_disks;
897
898	sprintf(conf->cache_name[0], "raid5-%s", mdname(conf->mddev));
899	sprintf(conf->cache_name[1], "raid5-%s-alt", mdname(conf->mddev));
900	conf->active_name = 0;
901	sc = kmem_cache_create(conf->cache_name[conf->active_name],
902			       sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
903			       0, 0, NULL);
904	if (!sc)
905		return 1;
906	conf->slab_cache = sc;
907	conf->pool_size = devs;
908	while (num--)
909		if (!grow_one_stripe(conf))
910			return 1;
911	return 0;
912}
913
914#ifdef CONFIG_MD_RAID5_RESHAPE
915static int resize_stripes(raid5_conf_t *conf, int newsize)
916{
917	/* Make all the stripes able to hold 'newsize' devices.
918	 * New slots in each stripe get 'page' set to a new page.
919	 *
920	 * This happens in stages:
921	 * 1/ create a new kmem_cache and allocate the required number of
922	 *    stripe_heads.
923	 * 2/ gather all the old stripe_heads and tranfer the pages across
924	 *    to the new stripe_heads.  This will have the side effect of
925	 *    freezing the array as once all stripe_heads have been collected,
926	 *    no IO will be possible.  Old stripe heads are freed once their
927	 *    pages have been transferred over, and the old kmem_cache is
928	 *    freed when all stripes are done.
929	 * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
930	 *    we simple return a failre status - no need to clean anything up.
931	 * 4/ allocate new pages for the new slots in the new stripe_heads.
932	 *    If this fails, we don't bother trying the shrink the
933	 *    stripe_heads down again, we just leave them as they are.
934	 *    As each stripe_head is processed the new one is released into
935	 *    active service.
936	 *
937	 * Once step2 is started, we cannot afford to wait for a write,
938	 * so we use GFP_NOIO allocations.
939	 */
940	struct stripe_head *osh, *nsh;
941	LIST_HEAD(newstripes);
942	struct disk_info *ndisks;
943	int err;
944	struct kmem_cache *sc;
945	int i;
946
947	if (newsize <= conf->pool_size)
948		return 0; /* never bother to shrink */
949
950	err = md_allow_write(conf->mddev);
951	if (err)
952		return err;
953
954	/* Step 1 */
955	sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
956			       sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
957			       0, 0, NULL);
958	if (!sc)
959		return -ENOMEM;
960
961	for (i = conf->max_nr_stripes; i; i--) {
962		nsh = kmem_cache_alloc(sc, GFP_KERNEL);
963		if (!nsh)
964			break;
965
966		memset(nsh, 0, sizeof(*nsh) + (newsize-1)*sizeof(struct r5dev));
967
968		nsh->raid_conf = conf;
969		spin_lock_init(&nsh->lock);
970
971		list_add(&nsh->lru, &newstripes);
972	}
973	if (i) {
974		/* didn't get enough, give up */
975		while (!list_empty(&newstripes)) {
976			nsh = list_entry(newstripes.next, struct stripe_head, lru);
977			list_del(&nsh->lru);
978			kmem_cache_free(sc, nsh);
979		}
980		kmem_cache_destroy(sc);
981		return -ENOMEM;
982	}
983	/* Step 2 - Must use GFP_NOIO now.
984	 * OK, we have enough stripes, start collecting inactive
985	 * stripes and copying them over
986	 */
987	list_for_each_entry(nsh, &newstripes, lru) {
988		spin_lock_irq(&conf->device_lock);
989		wait_event_lock_irq(conf->wait_for_stripe,
990				    !list_empty(&conf->inactive_list),
991				    conf->device_lock,
992				    unplug_slaves(conf->mddev)
993			);
994		osh = get_free_stripe(conf);
995		spin_unlock_irq(&conf->device_lock);
996		atomic_set(&nsh->count, 1);
997		for(i=0; i<conf->pool_size; i++)
998			nsh->dev[i].page = osh->dev[i].page;
999		for( ; i<newsize; i++)
1000			nsh->dev[i].page = NULL;
1001		kmem_cache_free(conf->slab_cache, osh);
1002	}
1003	kmem_cache_destroy(conf->slab_cache);
1004
1005	/* Step 3.
1006	 * At this point, we are holding all the stripes so the array
1007	 * is completely stalled, so now is a good time to resize
1008	 * conf->disks.
1009	 */
1010	ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1011	if (ndisks) {
1012		for (i=0; i<conf->raid_disks; i++)
1013			ndisks[i] = conf->disks[i];
1014		kfree(conf->disks);
1015		conf->disks = ndisks;
1016	} else
1017		err = -ENOMEM;
1018
1019	/* Step 4, return new stripes to service */
1020	while(!list_empty(&newstripes)) {
1021		nsh = list_entry(newstripes.next, struct stripe_head, lru);
1022		list_del_init(&nsh->lru);
1023		for (i=conf->raid_disks; i < newsize; i++)
1024			if (nsh->dev[i].page == NULL) {
1025				struct page *p = alloc_page(GFP_NOIO);
1026				nsh->dev[i].page = p;
1027				if (!p)
1028					err = -ENOMEM;
1029			}
1030		release_stripe(nsh);
1031	}
1032	/* critical section pass, GFP_NOIO no longer needed */
1033
1034	conf->slab_cache = sc;
1035	conf->active_name = 1-conf->active_name;
1036	conf->pool_size = newsize;
1037	return err;
1038}
1039#endif
1040
1041static int drop_one_stripe(raid5_conf_t *conf)
1042{
1043	struct stripe_head *sh;
1044
1045	spin_lock_irq(&conf->device_lock);
1046	sh = get_free_stripe(conf);
1047	spin_unlock_irq(&conf->device_lock);
1048	if (!sh)
1049		return 0;
1050	BUG_ON(atomic_read(&sh->count));
1051	shrink_buffers(sh, conf->pool_size);
1052	kmem_cache_free(conf->slab_cache, sh);
1053	atomic_dec(&conf->active_stripes);
1054	return 1;
1055}
1056
1057static void shrink_stripes(raid5_conf_t *conf)
1058{
1059	while (drop_one_stripe(conf))
1060		;
1061
1062	if (conf->slab_cache)
1063		kmem_cache_destroy(conf->slab_cache);
1064	conf->slab_cache = NULL;
1065}
1066
1067static void raid5_end_read_request(struct bio * bi, int error)
1068{
1069 	struct stripe_head *sh = bi->bi_private;
1070	raid5_conf_t *conf = sh->raid_conf;
1071	int disks = sh->disks, i;
1072	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1073	char b[BDEVNAME_SIZE];
1074	mdk_rdev_t *rdev;
1075
1076
1077	for (i=0 ; i<disks; i++)
1078		if (bi == &sh->dev[i].req)
1079			break;
1080
1081	pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1082		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
1083		uptodate);
1084	if (i == disks) {
1085		BUG();
1086		return;
1087	}
1088
1089	if (uptodate) {
1090		set_bit(R5_UPTODATE, &sh->dev[i].flags);
1091		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1092			rdev = conf->disks[i].rdev;
1093			printk_rl(KERN_INFO "raid5:%s: read error corrected"
1094				  " (%lu sectors at %llu on %s)\n",
1095				  mdname(conf->mddev), STRIPE_SECTORS,
1096				  (unsigned long long)(sh->sector
1097						       + rdev->data_offset),
1098				  bdevname(rdev->bdev, b));
1099			clear_bit(R5_ReadError, &sh->dev[i].flags);
1100			clear_bit(R5_ReWrite, &sh->dev[i].flags);
1101		}
1102		if (atomic_read(&conf->disks[i].rdev->read_errors))
1103			atomic_set(&conf->disks[i].rdev->read_errors, 0);
1104	} else {
1105		const char *bdn = bdevname(conf->disks[i].rdev->bdev, b);
1106		int retry = 0;
1107		rdev = conf->disks[i].rdev;
1108
1109		clear_bit(R5_UPTODATE, &sh->dev[i].flags);
1110		atomic_inc(&rdev->read_errors);
1111		if (conf->mddev->degraded)
1112			printk_rl(KERN_WARNING
1113				  "raid5:%s: read error not correctable "
1114				  "(sector %llu on %s).\n",
1115				  mdname(conf->mddev),
1116				  (unsigned long long)(sh->sector
1117						       + rdev->data_offset),
1118				  bdn);
1119		else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
1120			/* Oh, no!!! */
1121			printk_rl(KERN_WARNING
1122				  "raid5:%s: read error NOT corrected!! "
1123				  "(sector %llu on %s).\n",
1124				  mdname(conf->mddev),
1125				  (unsigned long long)(sh->sector
1126						       + rdev->data_offset),
1127				  bdn);
1128		else if (atomic_read(&rdev->read_errors)
1129			 > conf->max_nr_stripes)
1130			printk(KERN_WARNING
1131			       "raid5:%s: Too many read errors, failing device %s.\n",
1132			       mdname(conf->mddev), bdn);
1133		else
1134			retry = 1;
1135		if (retry)
1136			set_bit(R5_ReadError, &sh->dev[i].flags);
1137		else {
1138			clear_bit(R5_ReadError, &sh->dev[i].flags);
1139			clear_bit(R5_ReWrite, &sh->dev[i].flags);
1140			md_error(conf->mddev, rdev);
1141		}
1142	}
1143	rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1144	clear_bit(R5_LOCKED, &sh->dev[i].flags);
1145	set_bit(STRIPE_HANDLE, &sh->state);
1146	release_stripe(sh);
1147}
1148
1149static void raid5_end_write_request(struct bio *bi, int error)
1150{
1151 	struct stripe_head *sh = bi->bi_private;
1152	raid5_conf_t *conf = sh->raid_conf;
1153	int disks = sh->disks, i;
1154	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1155
1156	for (i=0 ; i<disks; i++)
1157		if (bi == &sh->dev[i].req)
1158			break;
1159
1160	pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1161		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
1162		uptodate);
1163	if (i == disks) {
1164		BUG();
1165		return;
1166	}
1167
1168	if (!uptodate)
1169		md_error(conf->mddev, conf->disks[i].rdev);
1170
1171	rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1172
1173	clear_bit(R5_LOCKED, &sh->dev[i].flags);
1174	set_bit(STRIPE_HANDLE, &sh->state);
1175	release_stripe(sh);
1176}
1177
1178
1179static sector_t compute_blocknr(struct stripe_head *sh, int i);
1180
1181static void raid5_build_block(struct stripe_head *sh, int i)
1182{
1183	struct r5dev *dev = &sh->dev[i];
1184
1185	bio_init(&dev->req);
1186	dev->req.bi_io_vec = &dev->vec;
1187	dev->req.bi_vcnt++;
1188	dev->req.bi_max_vecs++;
1189	dev->vec.bv_page = dev->page;
1190	dev->vec.bv_len = STRIPE_SIZE;
1191	dev->vec.bv_offset = 0;
1192
1193	dev->req.bi_sector = sh->sector;
1194	dev->req.bi_private = sh;
1195
1196	dev->flags = 0;
1197	dev->sector = compute_blocknr(sh, i);
1198}
1199
1200static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1201{
1202	char b[BDEVNAME_SIZE];
1203	raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
1204	pr_debug("raid5: error called\n");
1205
1206	if (!test_bit(Faulty, &rdev->flags)) {
1207		set_bit(MD_CHANGE_DEVS, &mddev->flags);
1208		if (test_and_clear_bit(In_sync, &rdev->flags)) {
1209			unsigned long flags;
1210			spin_lock_irqsave(&conf->device_lock, flags);
1211			mddev->degraded++;
1212			spin_unlock_irqrestore(&conf->device_lock, flags);
1213			/*
1214			 * if recovery was running, make sure it aborts.
1215			 */
1216			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1217		}
1218		set_bit(Faulty, &rdev->flags);
1219		printk(KERN_ALERT
1220		       "raid5: Disk failure on %s, disabling device.\n"
1221		       "raid5: Operation continuing on %d devices.\n",
1222		       bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded);
1223	}
1224}
1225
1226/*
1227 * Input: a 'big' sector number,
1228 * Output: index of the data and parity disk, and the sector # in them.
1229 */
1230static sector_t raid5_compute_sector(sector_t r_sector, unsigned int raid_disks,
1231			unsigned int data_disks, unsigned int * dd_idx,
1232			unsigned int * pd_idx, raid5_conf_t *conf)
1233{
1234	long stripe;
1235	unsigned long chunk_number;
1236	unsigned int chunk_offset;
1237	sector_t new_sector;
1238	int sectors_per_chunk = conf->chunk_size >> 9;
1239
1240	/* First compute the information on this sector */
1241
1242	/*
1243	 * Compute the chunk number and the sector offset inside the chunk
1244	 */
1245	chunk_offset = sector_div(r_sector, sectors_per_chunk);
1246	chunk_number = r_sector;
1247	BUG_ON(r_sector != chunk_number);
1248
1249	/*
1250	 * Compute the stripe number
1251	 */
1252	stripe = chunk_number / data_disks;
1253
1254	/*
1255	 * Compute the data disk and parity disk indexes inside the stripe
1256	 */
1257	*dd_idx = chunk_number % data_disks;
1258
1259	/*
1260	 * Select the parity disk based on the user selected algorithm.
1261	 */
1262	switch(conf->level) {
1263	case 4:
1264		*pd_idx = data_disks;
1265		break;
1266	case 5:
1267		switch (conf->algorithm) {
1268		case ALGORITHM_LEFT_ASYMMETRIC:
1269			*pd_idx = data_disks - stripe % raid_disks;
1270			if (*dd_idx >= *pd_idx)
1271				(*dd_idx)++;
1272			break;
1273		case ALGORITHM_RIGHT_ASYMMETRIC:
1274			*pd_idx = stripe % raid_disks;
1275			if (*dd_idx >= *pd_idx)
1276				(*dd_idx)++;
1277			break;
1278		case ALGORITHM_LEFT_SYMMETRIC:
1279			*pd_idx = data_disks - stripe % raid_disks;
1280			*dd_idx = (*pd_idx + 1 + *dd_idx) % raid_disks;
1281			break;
1282		case ALGORITHM_RIGHT_SYMMETRIC:
1283			*pd_idx = stripe % raid_disks;
1284			*dd_idx = (*pd_idx + 1 + *dd_idx) % raid_disks;
1285			break;
1286		default:
1287			printk(KERN_ERR "raid5: unsupported algorithm %d\n",
1288				conf->algorithm);
1289		}
1290		break;
1291	case 6:
1292
1293		/**** FIX THIS ****/
1294		switch (conf->algorithm) {
1295		case ALGORITHM_LEFT_ASYMMETRIC:
1296			*pd_idx = raid_disks - 1 - (stripe % raid_disks);
1297			if (*pd_idx == raid_disks-1)
1298				(*dd_idx)++; 	/* Q D D D P */
1299			else if (*dd_idx >= *pd_idx)
1300				(*dd_idx) += 2; /* D D P Q D */
1301			break;
1302		case ALGORITHM_RIGHT_ASYMMETRIC:
1303			*pd_idx = stripe % raid_disks;
1304			if (*pd_idx == raid_disks-1)
1305				(*dd_idx)++; 	/* Q D D D P */
1306			else if (*dd_idx >= *pd_idx)
1307				(*dd_idx) += 2; /* D D P Q D */
1308			break;
1309		case ALGORITHM_LEFT_SYMMETRIC:
1310			*pd_idx = raid_disks - 1 - (stripe % raid_disks);
1311			*dd_idx = (*pd_idx + 2 + *dd_idx) % raid_disks;
1312			break;
1313		case ALGORITHM_RIGHT_SYMMETRIC:
1314			*pd_idx = stripe % raid_disks;
1315			*dd_idx = (*pd_idx + 2 + *dd_idx) % raid_disks;
1316			break;
1317		default:
1318			printk(KERN_CRIT "raid6: unsupported algorithm %d\n",
1319			       conf->algorithm);
1320		}
1321		break;
1322	}
1323
1324	/*
1325	 * Finally, compute the new sector number
1326	 */
1327	new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
1328	return new_sector;
1329}
1330
1331
1332static sector_t compute_blocknr(struct stripe_head *sh, int i)
1333{
1334	raid5_conf_t *conf = sh->raid_conf;
1335	int raid_disks = sh->disks;
1336	int data_disks = raid_disks - conf->max_degraded;
1337	sector_t new_sector = sh->sector, check;
1338	int sectors_per_chunk = conf->chunk_size >> 9;
1339	sector_t stripe;
1340	int chunk_offset;
1341	int chunk_number, dummy1, dummy2, dd_idx = i;
1342	sector_t r_sector;
1343
1344
1345	chunk_offset = sector_div(new_sector, sectors_per_chunk);
1346	stripe = new_sector;
1347	BUG_ON(new_sector != stripe);
1348
1349	if (i == sh->pd_idx)
1350		return 0;
1351	switch(conf->level) {
1352	case 4: break;
1353	case 5:
1354		switch (conf->algorithm) {
1355		case ALGORITHM_LEFT_ASYMMETRIC:
1356		case ALGORITHM_RIGHT_ASYMMETRIC:
1357			if (i > sh->pd_idx)
1358				i--;
1359			break;
1360		case ALGORITHM_LEFT_SYMMETRIC:
1361		case ALGORITHM_RIGHT_SYMMETRIC:
1362			if (i < sh->pd_idx)
1363				i += raid_disks;
1364			i -= (sh->pd_idx + 1);
1365			break;
1366		default:
1367			printk(KERN_ERR "raid5: unsupported algorithm %d\n",
1368			       conf->algorithm);
1369		}
1370		break;
1371	case 6:
1372		if (i == raid6_next_disk(sh->pd_idx, raid_disks))
1373			return 0; /* It is the Q disk */
1374		switch (conf->algorithm) {
1375		case ALGORITHM_LEFT_ASYMMETRIC:
1376		case ALGORITHM_RIGHT_ASYMMETRIC:
1377		  	if (sh->pd_idx == raid_disks-1)
1378				i--; 	/* Q D D D P */
1379			else if (i > sh->pd_idx)
1380				i -= 2; /* D D P Q D */
1381			break;
1382		case ALGORITHM_LEFT_SYMMETRIC:
1383		case ALGORITHM_RIGHT_SYMMETRIC:
1384			if (sh->pd_idx == raid_disks-1)
1385				i--; /* Q D D D P */
1386			else {
1387				/* D D P Q D */
1388				if (i < sh->pd_idx)
1389					i += raid_disks;
1390				i -= (sh->pd_idx + 2);
1391			}
1392			break;
1393		default:
1394			printk(KERN_CRIT "raid6: unsupported algorithm %d\n",
1395			       conf->algorithm);
1396		}
1397		break;
1398	}
1399
1400	chunk_number = stripe * data_disks + i;
1401	r_sector = (sector_t)chunk_number * sectors_per_chunk + chunk_offset;
1402
1403	check = raid5_compute_sector(r_sector, raid_disks, data_disks, &dummy1, &dummy2, conf);
1404	if (check != sh->sector || dummy1 != dd_idx || dummy2 != sh->pd_idx) {
1405		printk(KERN_ERR "compute_blocknr: map not correct\n");
1406		return 0;
1407	}
1408	return r_sector;
1409}
1410
1411
1412
1413/*
1414 * Copy data between a page in the stripe cache, and one or more bion
1415 * The page could align with the middle of the bio, or there could be
1416 * several bion, each with several bio_vecs, which cover part of the page
1417 * Multiple bion are linked together on bi_next.  There may be extras
1418 * at the end of this list.  We ignore them.
1419 */
1420static void copy_data(int frombio, struct bio *bio,
1421		     struct page *page,
1422		     sector_t sector)
1423{
1424	char *pa = page_address(page);
1425	struct bio_vec *bvl;
1426	int i;
1427	int page_offset;
1428
1429	if (bio->bi_sector >= sector)
1430		page_offset = (signed)(bio->bi_sector - sector) * 512;
1431	else
1432		page_offset = (signed)(sector - bio->bi_sector) * -512;
1433	bio_for_each_segment(bvl, bio, i) {
1434		int len = bio_iovec_idx(bio,i)->bv_len;
1435		int clen;
1436		int b_offset = 0;
1437
1438		if (page_offset < 0) {
1439			b_offset = -page_offset;
1440			page_offset += b_offset;
1441			len -= b_offset;
1442		}
1443
1444		if (len > 0 && page_offset + len > STRIPE_SIZE)
1445			clen = STRIPE_SIZE - page_offset;
1446		else clen = len;
1447
1448		if (clen > 0) {
1449			char *ba = __bio_kmap_atomic(bio, i, KM_USER0);
1450			if (frombio)
1451				memcpy(pa+page_offset, ba+b_offset, clen);
1452			else
1453				memcpy(ba+b_offset, pa+page_offset, clen);
1454			__bio_kunmap_atomic(ba, KM_USER0);
1455		}
1456		if (clen < len) /* hit end of page */
1457			break;
1458		page_offset +=  len;
1459	}
1460}
1461
1462#define check_xor()	do {						  \
1463				if (count == MAX_XOR_BLOCKS) {		  \
1464				xor_blocks(count, STRIPE_SIZE, dest, ptr);\
1465				count = 0;				  \
1466			   }						  \
1467			} while(0)
1468
1469static void compute_parity6(struct stripe_head *sh, int method)
1470{
1471	raid6_conf_t *conf = sh->raid_conf;
1472	int i, pd_idx = sh->pd_idx, qd_idx, d0_idx, disks = sh->disks, count;
1473	struct bio *chosen;
1474	/**** FIX THIS: This could be very bad if disks is close to 256 ****/
1475	void *ptrs[disks];
1476
1477	qd_idx = raid6_next_disk(pd_idx, disks);
1478	d0_idx = raid6_next_disk(qd_idx, disks);
1479
1480	pr_debug("compute_parity, stripe %llu, method %d\n",
1481		(unsigned long long)sh->sector, method);
1482
1483	switch(method) {
1484	case READ_MODIFY_WRITE:
1485		BUG();		/* READ_MODIFY_WRITE N/A for RAID-6 */
1486	case RECONSTRUCT_WRITE:
1487		for (i= disks; i-- ;)
1488			if ( i != pd_idx && i != qd_idx && sh->dev[i].towrite ) {
1489				chosen = sh->dev[i].towrite;
1490				sh->dev[i].towrite = NULL;
1491
1492				if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1493					wake_up(&conf->wait_for_overlap);
1494
1495				BUG_ON(sh->dev[i].written);
1496				sh->dev[i].written = chosen;
1497			}
1498		break;
1499	case CHECK_PARITY:
1500		BUG();		/* Not implemented yet */
1501	}
1502
1503	for (i = disks; i--;)
1504		if (sh->dev[i].written) {
1505			sector_t sector = sh->dev[i].sector;
1506			struct bio *wbi = sh->dev[i].written;
1507			while (wbi && wbi->bi_sector < sector + STRIPE_SECTORS) {
1508				copy_data(1, wbi, sh->dev[i].page, sector);
1509				wbi = r5_next_bio(wbi, sector);
1510			}
1511
1512			set_bit(R5_LOCKED, &sh->dev[i].flags);
1513			set_bit(R5_UPTODATE, &sh->dev[i].flags);
1514		}
1515
1516//	switch(method) {
1517//	case RECONSTRUCT_WRITE:
1518//	case CHECK_PARITY:
1519//	case UPDATE_PARITY:
1520		/* Note that unlike RAID-5, the ordering of the disks matters greatly. */
1521		/* FIX: Is this ordering of drives even remotely optimal? */
1522		count = 0;
1523		i = d0_idx;
1524		do {
1525			ptrs[count++] = page_address(sh->dev[i].page);
1526			if (count <= disks-2 && !test_bit(R5_UPTODATE, &sh->dev[i].flags))
1527				printk("block %d/%d not uptodate on parity calc\n", i,count);
1528			i = raid6_next_disk(i, disks);
1529		} while ( i != d0_idx );
1530//		break;
1531//	}
1532
1533	raid6_call.gen_syndrome(disks, STRIPE_SIZE, ptrs);
1534
1535	switch(method) {
1536	case RECONSTRUCT_WRITE:
1537		set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1538		set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags);
1539		set_bit(R5_LOCKED,   &sh->dev[pd_idx].flags);
1540		set_bit(R5_LOCKED,   &sh->dev[qd_idx].flags);
1541		break;
1542	case UPDATE_PARITY:
1543		set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1544		set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags);
1545		break;
1546	}
1547}
1548
1549
1550/* Compute one missing block */
1551static void compute_block_1(struct stripe_head *sh, int dd_idx, int nozero)
1552{
1553	int i, count, disks = sh->disks;
1554	void *ptr[MAX_XOR_BLOCKS], *dest, *p;
1555	int pd_idx = sh->pd_idx;
1556	int qd_idx = raid6_next_disk(pd_idx, disks);
1557
1558	pr_debug("compute_block_1, stripe %llu, idx %d\n",
1559		(unsigned long long)sh->sector, dd_idx);
1560
1561	if ( dd_idx == qd_idx ) {
1562		/* We're actually computing the Q drive */
1563		compute_parity6(sh, UPDATE_PARITY);
1564	} else {
1565		dest = page_address(sh->dev[dd_idx].page);
1566		if (!nozero) memset(dest, 0, STRIPE_SIZE);
1567		count = 0;
1568		for (i = disks ; i--; ) {
1569			if (i == dd_idx || i == qd_idx)
1570				continue;
1571			p = page_address(sh->dev[i].page);
1572			if (test_bit(R5_UPTODATE, &sh->dev[i].flags))
1573				ptr[count++] = p;
1574			else
1575				printk("compute_block() %d, stripe %llu, %d"
1576				       " not present\n", dd_idx,
1577				       (unsigned long long)sh->sector, i);
1578
1579			check_xor();
1580		}
1581		if (count)
1582			xor_blocks(count, STRIPE_SIZE, dest, ptr);
1583		if (!nozero) set_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
1584		else clear_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
1585	}
1586}
1587
1588/* Compute two missing blocks */
1589static void compute_block_2(struct stripe_head *sh, int dd_idx1, int dd_idx2)
1590{
1591	int i, count, disks = sh->disks;
1592	int pd_idx = sh->pd_idx;
1593	int qd_idx = raid6_next_disk(pd_idx, disks);
1594	int d0_idx = raid6_next_disk(qd_idx, disks);
1595	int faila, failb;
1596
1597	/* faila and failb are disk numbers relative to d0_idx */
1598	/* pd_idx become disks-2 and qd_idx become disks-1 */
1599	faila = (dd_idx1 < d0_idx) ? dd_idx1+(disks-d0_idx) : dd_idx1-d0_idx;
1600	failb = (dd_idx2 < d0_idx) ? dd_idx2+(disks-d0_idx) : dd_idx2-d0_idx;
1601
1602	BUG_ON(faila == failb);
1603	if ( failb < faila ) { int tmp = faila; faila = failb; failb = tmp; }
1604
1605	pr_debug("compute_block_2, stripe %llu, idx %d,%d (%d,%d)\n",
1606	       (unsigned long long)sh->sector, dd_idx1, dd_idx2, faila, failb);
1607
1608	if ( failb == disks-1 ) {
1609		/* Q disk is one of the missing disks */
1610		if ( faila == disks-2 ) {
1611			/* Missing P+Q, just recompute */
1612			compute_parity6(sh, UPDATE_PARITY);
1613			return;
1614		} else {
1615			/* We're missing D+Q; recompute D from P */
1616			compute_block_1(sh, (dd_idx1 == qd_idx) ? dd_idx2 : dd_idx1, 0);
1617			compute_parity6(sh, UPDATE_PARITY); /* Is this necessary? */
1618			return;
1619		}
1620	}
1621
1622	/* We're missing D+P or D+D; build pointer table */
1623	{
1624		/**** FIX THIS: This could be very bad if disks is close to 256 ****/
1625		void *ptrs[disks];
1626
1627		count = 0;
1628		i = d0_idx;
1629		do {
1630			ptrs[count++] = page_address(sh->dev[i].page);
1631			i = raid6_next_disk(i, disks);
1632			if (i != dd_idx1 && i != dd_idx2 &&
1633			    !test_bit(R5_UPTODATE, &sh->dev[i].flags))
1634				printk("compute_2 with missing block %d/%d\n", count, i);
1635		} while ( i != d0_idx );
1636
1637		if ( failb == disks-2 ) {
1638			/* We're missing D+P. */
1639			raid6_datap_recov(disks, STRIPE_SIZE, faila, ptrs);
1640		} else {
1641			/* We're missing D+D. */
1642			raid6_2data_recov(disks, STRIPE_SIZE, faila, failb, ptrs);
1643		}
1644
1645		/* Both the above update both missing blocks */
1646		set_bit(R5_UPTODATE, &sh->dev[dd_idx1].flags);
1647		set_bit(R5_UPTODATE, &sh->dev[dd_idx2].flags);
1648	}
1649}
1650
1651static void
1652schedule_reconstruction5(struct stripe_head *sh, struct stripe_head_state *s,
1653			 int rcw, int expand)
1654{
1655	int i, pd_idx = sh->pd_idx, disks = sh->disks;
1656
1657	if (rcw) {
1658		/* if we are not expanding this is a proper write request, and
1659		 * there will be bios with new data to be drained into the
1660		 * stripe cache
1661		 */
1662		if (!expand) {
1663			sh->reconstruct_state = reconstruct_state_drain_run;
1664			set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
1665		} else
1666			sh->reconstruct_state = reconstruct_state_run;
1667
1668		set_bit(STRIPE_OP_POSTXOR, &s->ops_request);
1669
1670		for (i = disks; i--; ) {
1671			struct r5dev *dev = &sh->dev[i];
1672
1673			if (dev->towrite) {
1674				set_bit(R5_LOCKED, &dev->flags);
1675				set_bit(R5_Wantdrain, &dev->flags);
1676				if (!expand)
1677					clear_bit(R5_UPTODATE, &dev->flags);
1678				s->locked++;
1679			}
1680		}
1681		if (s->locked + 1 == disks)
1682			if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
1683				atomic_inc(&sh->raid_conf->pending_full_writes);
1684	} else {
1685		BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
1686			test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
1687
1688		sh->reconstruct_state = reconstruct_state_prexor_drain_run;
1689		set_bit(STRIPE_OP_PREXOR, &s->ops_request);
1690		set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
1691		set_bit(STRIPE_OP_POSTXOR, &s->ops_request);
1692
1693		for (i = disks; i--; ) {
1694			struct r5dev *dev = &sh->dev[i];
1695			if (i == pd_idx)
1696				continue;
1697
1698			if (dev->towrite &&
1699			    (test_bit(R5_UPTODATE, &dev->flags) ||
1700			     test_bit(R5_Wantcompute, &dev->flags))) {
1701				set_bit(R5_Wantdrain, &dev->flags);
1702				set_bit(R5_LOCKED, &dev->flags);
1703				clear_bit(R5_UPTODATE, &dev->flags);
1704				s->locked++;
1705			}
1706		}
1707	}
1708
1709	/* keep the parity disk locked while asynchronous operations
1710	 * are in flight
1711	 */
1712	set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
1713	clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1714	s->locked++;
1715
1716	pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
1717		__func__, (unsigned long long)sh->sector,
1718		s->locked, s->ops_request);
1719}
1720
1721/*
1722 * Each stripe/dev can have one or more bion attached.
1723 * toread/towrite point to the first in a chain.
1724 * The bi_next chain must be in order.
1725 */
1726static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
1727{
1728	struct bio **bip;
1729	raid5_conf_t *conf = sh->raid_conf;
1730	int firstwrite=0;
1731
1732	pr_debug("adding bh b#%llu to stripe s#%llu\n",
1733		(unsigned long long)bi->bi_sector,
1734		(unsigned long long)sh->sector);
1735
1736
1737	spin_lock(&sh->lock);
1738	spin_lock_irq(&conf->device_lock);
1739	if (forwrite) {
1740		bip = &sh->dev[dd_idx].towrite;
1741		if (*bip == NULL && sh->dev[dd_idx].written == NULL)
1742			firstwrite = 1;
1743	} else
1744		bip = &sh->dev[dd_idx].toread;
1745	while (*bip && (*bip)->bi_sector < bi->bi_sector) {
1746		if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
1747			goto overlap;
1748		bip = & (*bip)->bi_next;
1749	}
1750	if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
1751		goto overlap;
1752
1753	BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
1754	if (*bip)
1755		bi->bi_next = *bip;
1756	*bip = bi;
1757	bi->bi_phys_segments++;
1758	spin_unlock_irq(&conf->device_lock);
1759	spin_unlock(&sh->lock);
1760
1761	pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
1762		(unsigned long long)bi->bi_sector,
1763		(unsigned long long)sh->sector, dd_idx);
1764
1765	if (conf->mddev->bitmap && firstwrite) {
1766		bitmap_startwrite(conf->mddev->bitmap, sh->sector,
1767				  STRIPE_SECTORS, 0);
1768		sh->bm_seq = conf->seq_flush+1;
1769		set_bit(STRIPE_BIT_DELAY, &sh->state);
1770	}
1771
1772	if (forwrite) {
1773		/* check if page is covered */
1774		sector_t sector = sh->dev[dd_idx].sector;
1775		for (bi=sh->dev[dd_idx].towrite;
1776		     sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
1777			     bi && bi->bi_sector <= sector;
1778		     bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
1779			if (bi->bi_sector + (bi->bi_size>>9) >= sector)
1780				sector = bi->bi_sector + (bi->bi_size>>9);
1781		}
1782		if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
1783			set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
1784	}
1785	return 1;
1786
1787 overlap:
1788	set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
1789	spin_unlock_irq(&conf->device_lock);
1790	spin_unlock(&sh->lock);
1791	return 0;
1792}
1793
1794static void end_reshape(raid5_conf_t *conf);
1795
1796static int page_is_zero(struct page *p)
1797{
1798	char *a = page_address(p);
1799	return ((*(u32*)a) == 0 &&
1800		memcmp(a, a+4, STRIPE_SIZE-4)==0);
1801}
1802
1803static int stripe_to_pdidx(sector_t stripe, raid5_conf_t *conf, int disks)
1804{
1805	int sectors_per_chunk = conf->chunk_size >> 9;
1806	int pd_idx, dd_idx;
1807	int chunk_offset = sector_div(stripe, sectors_per_chunk);
1808
1809	raid5_compute_sector(stripe * (disks - conf->max_degraded)
1810			     *sectors_per_chunk + chunk_offset,
1811			     disks, disks - conf->max_degraded,
1812			     &dd_idx, &pd_idx, conf);
1813	return pd_idx;
1814}
1815
1816static void
1817handle_failed_stripe(raid5_conf_t *conf, struct stripe_head *sh,
1818				struct stripe_head_state *s, int disks,
1819				struct bio **return_bi)
1820{
1821	int i;
1822	for (i = disks; i--; ) {
1823		struct bio *bi;
1824		int bitmap_end = 0;
1825
1826		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1827			mdk_rdev_t *rdev;
1828			rcu_read_lock();
1829			rdev = rcu_dereference(conf->disks[i].rdev);
1830			if (rdev && test_bit(In_sync, &rdev->flags))
1831				/* multiple read failures in one stripe */
1832				md_error(conf->mddev, rdev);
1833			rcu_read_unlock();
1834		}
1835		spin_lock_irq(&conf->device_lock);
1836		/* fail all writes first */
1837		bi = sh->dev[i].towrite;
1838		sh->dev[i].towrite = NULL;
1839		if (bi) {
1840			s->to_write--;
1841			bitmap_end = 1;
1842		}
1843
1844		if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1845			wake_up(&conf->wait_for_overlap);
1846
1847		while (bi && bi->bi_sector <
1848			sh->dev[i].sector + STRIPE_SECTORS) {
1849			struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
1850			clear_bit(BIO_UPTODATE, &bi->bi_flags);
1851			if (!raid5_dec_bi_phys_segments(bi)) {
1852				md_write_end(conf->mddev);
1853				bi->bi_next = *return_bi;
1854				*return_bi = bi;
1855			}
1856			bi = nextbi;
1857		}
1858		/* and fail all 'written' */
1859		bi = sh->dev[i].written;
1860		sh->dev[i].written = NULL;
1861		if (bi) bitmap_end = 1;
1862		while (bi && bi->bi_sector <
1863		       sh->dev[i].sector + STRIPE_SECTORS) {
1864			struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
1865			clear_bit(BIO_UPTODATE, &bi->bi_flags);
1866			if (!raid5_dec_bi_phys_segments(bi)) {
1867				md_write_end(conf->mddev);
1868				bi->bi_next = *return_bi;
1869				*return_bi = bi;
1870			}
1871			bi = bi2;
1872		}
1873
1874		/* fail any reads if this device is non-operational and
1875		 * the data has not reached the cache yet.
1876		 */
1877		if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
1878		    (!test_bit(R5_Insync, &sh->dev[i].flags) ||
1879		      test_bit(R5_ReadError, &sh->dev[i].flags))) {
1880			bi = sh->dev[i].toread;
1881			sh->dev[i].toread = NULL;
1882			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1883				wake_up(&conf->wait_for_overlap);
1884			if (bi) s->to_read--;
1885			while (bi && bi->bi_sector <
1886			       sh->dev[i].sector + STRIPE_SECTORS) {
1887				struct bio *nextbi =
1888					r5_next_bio(bi, sh->dev[i].sector);
1889				clear_bit(BIO_UPTODATE, &bi->bi_flags);
1890				if (!raid5_dec_bi_phys_segments(bi)) {
1891					bi->bi_next = *return_bi;
1892					*return_bi = bi;
1893				}
1894				bi = nextbi;
1895			}
1896		}
1897		spin_unlock_irq(&conf->device_lock);
1898		if (bitmap_end)
1899			bitmap_endwrite(conf->mddev->bitmap, sh->sector,
1900					STRIPE_SECTORS, 0, 0);
1901	}
1902
1903	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
1904		if (atomic_dec_and_test(&conf->pending_full_writes))
1905			md_wakeup_thread(conf->mddev->thread);
1906}
1907
1908/* fetch_block5 - checks the given member device to see if its data needs
1909 * to be read or computed to satisfy a request.
1910 *
1911 * Returns 1 when no more member devices need to be checked, otherwise returns
1912 * 0 to tell the loop in handle_stripe_fill5 to continue
1913 */
1914static int fetch_block5(struct stripe_head *sh, struct stripe_head_state *s,
1915			int disk_idx, int disks)
1916{
1917	struct r5dev *dev = &sh->dev[disk_idx];
1918	struct r5dev *failed_dev = &sh->dev[s->failed_num];
1919
1920	/* is the data in this block needed, and can we get it? */
1921	if (!test_bit(R5_LOCKED, &dev->flags) &&
1922	    !test_bit(R5_UPTODATE, &dev->flags) &&
1923	    (dev->toread ||
1924	     (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
1925	     s->syncing || s->expanding ||
1926	     (s->failed &&
1927	      (failed_dev->toread ||
1928	       (failed_dev->towrite &&
1929		!test_bit(R5_OVERWRITE, &failed_dev->flags)))))) {
1930		/* We would like to get this block, possibly by computing it,
1931		 * otherwise read it if the backing disk is insync
1932		 */
1933		if ((s->uptodate == disks - 1) &&
1934		    (s->failed && disk_idx == s->failed_num)) {
1935			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
1936			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
1937			set_bit(R5_Wantcompute, &dev->flags);
1938			sh->ops.target = disk_idx;
1939			s->req_compute = 1;
1940			/* Careful: from this point on 'uptodate' is in the eye
1941			 * of raid5_run_ops which services 'compute' operations
1942			 * before writes. R5_Wantcompute flags a block that will
1943			 * be R5_UPTODATE by the time it is needed for a
1944			 * subsequent operation.
1945			 */
1946			s->uptodate++;
1947			return 1; /* uptodate + compute == disks */
1948		} else if (test_bit(R5_Insync, &dev->flags)) {
1949			set_bit(R5_LOCKED, &dev->flags);
1950			set_bit(R5_Wantread, &dev->flags);
1951			s->locked++;
1952			pr_debug("Reading block %d (sync=%d)\n", disk_idx,
1953				s->syncing);
1954		}
1955	}
1956
1957	return 0;
1958}
1959
1960/**
1961 * handle_stripe_fill5 - read or compute data to satisfy pending requests.
1962 */
1963static void handle_stripe_fill5(struct stripe_head *sh,
1964			struct stripe_head_state *s, int disks)
1965{
1966	int i;
1967
1968	/* look for blocks to read/compute, skip this if a compute
1969	 * is already in flight, or if the stripe contents are in the
1970	 * midst of changing due to a write
1971	 */
1972	if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
1973	    !sh->reconstruct_state)
1974		for (i = disks; i--; )
1975			if (fetch_block5(sh, s, i, disks))
1976				break;
1977	set_bit(STRIPE_HANDLE, &sh->state);
1978}
1979
1980static void handle_stripe_fill6(struct stripe_head *sh,
1981			struct stripe_head_state *s, struct r6_state *r6s,
1982			int disks)
1983{
1984	int i;
1985	for (i = disks; i--; ) {
1986		struct r5dev *dev = &sh->dev[i];
1987		if (!test_bit(R5_LOCKED, &dev->flags) &&
1988		    !test_bit(R5_UPTODATE, &dev->flags) &&
1989		    (dev->toread || (dev->towrite &&
1990		     !test_bit(R5_OVERWRITE, &dev->flags)) ||
1991		     s->syncing || s->expanding ||
1992		     (s->failed >= 1 &&
1993		      (sh->dev[r6s->failed_num[0]].toread ||
1994		       s->to_write)) ||
1995		     (s->failed >= 2 &&
1996		      (sh->dev[r6s->failed_num[1]].toread ||
1997		       s->to_write)))) {
1998			/* we would like to get this block, possibly
1999			 * by computing it, but we might not be able to
2000			 */
2001			if ((s->uptodate == disks - 1) &&
2002			    (s->failed && (i == r6s->failed_num[0] ||
2003					   i == r6s->failed_num[1]))) {
2004				pr_debug("Computing stripe %llu block %d\n",
2005				       (unsigned long long)sh->sector, i);
2006				compute_block_1(sh, i, 0);
2007				s->uptodate++;
2008			} else if ( s->uptodate == disks-2 && s->failed >= 2 ) {
2009				/* Computing 2-failure is *very* expensive; only
2010				 * do it if failed >= 2
2011				 */
2012				int other;
2013				for (other = disks; other--; ) {
2014					if (other == i)
2015						continue;
2016					if (!test_bit(R5_UPTODATE,
2017					      &sh->dev[other].flags))
2018						break;
2019				}
2020				BUG_ON(other < 0);
2021				pr_debug("Computing stripe %llu blocks %d,%d\n",
2022				       (unsigned long long)sh->sector,
2023				       i, other);
2024				compute_block_2(sh, i, other);
2025				s->uptodate += 2;
2026			} else if (test_bit(R5_Insync, &dev->flags)) {
2027				set_bit(R5_LOCKED, &dev->flags);
2028				set_bit(R5_Wantread, &dev->flags);
2029				s->locked++;
2030				pr_debug("Reading block %d (sync=%d)\n",
2031					i, s->syncing);
2032			}
2033		}
2034	}
2035	set_bit(STRIPE_HANDLE, &sh->state);
2036}
2037
2038
2039/* handle_stripe_clean_event
2040 * any written block on an uptodate or failed drive can be returned.
2041 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2042 * never LOCKED, so we don't need to test 'failed' directly.
2043 */
2044static void handle_stripe_clean_event(raid5_conf_t *conf,
2045	struct stripe_head *sh, int disks, struct bio **return_bi)
2046{
2047	int i;
2048	struct r5dev *dev;
2049
2050	for (i = disks; i--; )
2051		if (sh->dev[i].written) {
2052			dev = &sh->dev[i];
2053			if (!test_bit(R5_LOCKED, &dev->flags) &&
2054				test_bit(R5_UPTODATE, &dev->flags)) {
2055				/* We can return any write requests */
2056				struct bio *wbi, *wbi2;
2057				int bitmap_end = 0;
2058				pr_debug("Return write for disc %d\n", i);
2059				spin_lock_irq(&conf->device_lock);
2060				wbi = dev->written;
2061				dev->written = NULL;
2062				while (wbi && wbi->bi_sector <
2063					dev->sector + STRIPE_SECTORS) {
2064					wbi2 = r5_next_bio(wbi, dev->sector);
2065					if (!raid5_dec_bi_phys_segments(wbi)) {
2066						md_write_end(conf->mddev);
2067						wbi->bi_next = *return_bi;
2068						*return_bi = wbi;
2069					}
2070					wbi = wbi2;
2071				}
2072				if (dev->towrite == NULL)
2073					bitmap_end = 1;
2074				spin_unlock_irq(&conf->device_lock);
2075				if (bitmap_end)
2076					bitmap_endwrite(conf->mddev->bitmap,
2077							sh->sector,
2078							STRIPE_SECTORS,
2079					 !test_bit(STRIPE_DEGRADED, &sh->state),
2080							0);
2081			}
2082		}
2083
2084	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2085		if (atomic_dec_and_test(&conf->pending_full_writes))
2086			md_wakeup_thread(conf->mddev->thread);
2087}
2088
2089static void handle_stripe_dirtying5(raid5_conf_t *conf,
2090		struct stripe_head *sh,	struct stripe_head_state *s, int disks)
2091{
2092	int rmw = 0, rcw = 0, i;
2093	for (i = disks; i--; ) {
2094		/* would I have to read this buffer for read_modify_write */
2095		struct r5dev *dev = &sh->dev[i];
2096		if ((dev->towrite || i == sh->pd_idx) &&
2097		    !test_bit(R5_LOCKED, &dev->flags) &&
2098		    !(test_bit(R5_UPTODATE, &dev->flags) ||
2099		      test_bit(R5_Wantcompute, &dev->flags))) {
2100			if (test_bit(R5_Insync, &dev->flags))
2101				rmw++;
2102			else
2103				rmw += 2*disks;  /* cannot read it */
2104		}
2105		/* Would I have to read this buffer for reconstruct_write */
2106		if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
2107		    !test_bit(R5_LOCKED, &dev->flags) &&
2108		    !(test_bit(R5_UPTODATE, &dev->flags) ||
2109		    test_bit(R5_Wantcompute, &dev->flags))) {
2110			if (test_bit(R5_Insync, &dev->flags)) rcw++;
2111			else
2112				rcw += 2*disks;
2113		}
2114	}
2115	pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2116		(unsigned long long)sh->sector, rmw, rcw);
2117	set_bit(STRIPE_HANDLE, &sh->state);
2118	if (rmw < rcw && rmw > 0)
2119		/* prefer read-modify-write, but need to get some data */
2120		for (i = disks; i--; ) {
2121			struct r5dev *dev = &sh->dev[i];
2122			if ((dev->towrite || i == sh->pd_idx) &&
2123			    !test_bit(R5_LOCKED, &dev->flags) &&
2124			    !(test_bit(R5_UPTODATE, &dev->flags) ||
2125			    test_bit(R5_Wantcompute, &dev->flags)) &&
2126			    test_bit(R5_Insync, &dev->flags)) {
2127				if (
2128				  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2129					pr_debug("Read_old block "
2130						"%d for r-m-w\n", i);
2131					set_bit(R5_LOCKED, &dev->flags);
2132					set_bit(R5_Wantread, &dev->flags);
2133					s->locked++;
2134				} else {
2135					set_bit(STRIPE_DELAYED, &sh->state);
2136					set_bit(STRIPE_HANDLE, &sh->state);
2137				}
2138			}
2139		}
2140	if (rcw <= rmw && rcw > 0)
2141		/* want reconstruct write, but need to get some data */
2142		for (i = disks; i--; ) {
2143			struct r5dev *dev = &sh->dev[i];
2144			if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2145			    i != sh->pd_idx &&
2146			    !test_bit(R5_LOCKED, &dev->flags) &&
2147			    !(test_bit(R5_UPTODATE, &dev->flags) ||
2148			    test_bit(R5_Wantcompute, &dev->flags)) &&
2149			    test_bit(R5_Insync, &dev->flags)) {
2150				if (
2151				  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2152					pr_debug("Read_old block "
2153						"%d for Reconstruct\n", i);
2154					set_bit(R5_LOCKED, &dev->flags);
2155					set_bit(R5_Wantread, &dev->flags);
2156					s->locked++;
2157				} else {
2158					set_bit(STRIPE_DELAYED, &sh->state);
2159					set_bit(STRIPE_HANDLE, &sh->state);
2160				}
2161			}
2162		}
2163	/* now if nothing is locked, and if we have enough data,
2164	 * we can start a write request
2165	 */
2166	/* since handle_stripe can be called at any time we need to handle the
2167	 * case where a compute block operation has been submitted and then a
2168	 * subsequent call wants to start a write request.  raid5_run_ops only
2169	 * handles the case where compute block and postxor are requested
2170	 * simultaneously.  If this is not the case then new writes need to be
2171	 * held off until the compute completes.
2172	 */
2173	if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2174	    (s->locked == 0 && (rcw == 0 || rmw == 0) &&
2175	    !test_bit(STRIPE_BIT_DELAY, &sh->state)))
2176		schedule_reconstruction5(sh, s, rcw == 0, 0);
2177}
2178
2179static void handle_stripe_dirtying6(raid5_conf_t *conf,
2180		struct stripe_head *sh,	struct stripe_head_state *s,
2181		struct r6_state *r6s, int disks)
2182{
2183	int rcw = 0, must_compute = 0, pd_idx = sh->pd_idx, i;
2184	int qd_idx = r6s->qd_idx;
2185	for (i = disks; i--; ) {
2186		struct r5dev *dev = &sh->dev[i];
2187		/* Would I have to read this buffer for reconstruct_write */
2188		if (!test_bit(R5_OVERWRITE, &dev->flags)
2189		    && i != pd_idx && i != qd_idx
2190		    && (!test_bit(R5_LOCKED, &dev->flags)
2191			    ) &&
2192		    !test_bit(R5_UPTODATE, &dev->flags)) {
2193			if (test_bit(R5_Insync, &dev->flags)) rcw++;
2194			else {
2195				pr_debug("raid6: must_compute: "
2196					"disk %d flags=%#lx\n", i, dev->flags);
2197				must_compute++;
2198			}
2199		}
2200	}
2201	pr_debug("for sector %llu, rcw=%d, must_compute=%d\n",
2202	       (unsigned long long)sh->sector, rcw, must_compute);
2203	set_bit(STRIPE_HANDLE, &sh->state);
2204
2205	if (rcw > 0)
2206		/* want reconstruct write, but need to get some data */
2207		for (i = disks; i--; ) {
2208			struct r5dev *dev = &sh->dev[i];
2209			if (!test_bit(R5_OVERWRITE, &dev->flags)
2210			    && !(s->failed == 0 && (i == pd_idx || i == qd_idx))
2211			    && !test_bit(R5_LOCKED, &dev->flags) &&
2212			    !test_bit(R5_UPTODATE, &dev->flags) &&
2213			    test_bit(R5_Insync, &dev->flags)) {
2214				if (
2215				  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2216					pr_debug("Read_old stripe %llu "
2217						"block %d for Reconstruct\n",
2218					     (unsigned long long)sh->sector, i);
2219					set_bit(R5_LOCKED, &dev->flags);
2220					set_bit(R5_Wantread, &dev->flags);
2221					s->locked++;
2222				} else {
2223					pr_debug("Request delayed stripe %llu "
2224						"block %d for Reconstruct\n",
2225					     (unsigned long long)sh->sector, i);
2226					set_bit(STRIPE_DELAYED, &sh->state);
2227					set_bit(STRIPE_HANDLE, &sh->state);
2228				}
2229			}
2230		}
2231	/* now if nothing is locked, and if we have enough data, we can start a
2232	 * write request
2233	 */
2234	if (s->locked == 0 && rcw == 0 &&
2235	    !test_bit(STRIPE_BIT_DELAY, &sh->state)) {
2236		if (must_compute > 0) {
2237			/* We have failed blocks and need to compute them */
2238			switch (s->failed) {
2239			case 0:
2240				BUG();
2241			case 1:
2242				compute_block_1(sh, r6s->failed_num[0], 0);
2243				break;
2244			case 2:
2245				compute_block_2(sh, r6s->failed_num[0],
2246						r6s->failed_num[1]);
2247				break;
2248			default: /* This request should have been failed? */
2249				BUG();
2250			}
2251		}
2252
2253		pr_debug("Computing parity for stripe %llu\n",
2254			(unsigned long long)sh->sector);
2255		compute_parity6(sh, RECONSTRUCT_WRITE);
2256		/* now every locked buffer is ready to be written */
2257		for (i = disks; i--; )
2258			if (test_bit(R5_LOCKED, &sh->dev[i].flags)) {
2259				pr_debug("Writing stripe %llu block %d\n",
2260				       (unsigned long long)sh->sector, i);
2261				s->locked++;
2262				set_bit(R5_Wantwrite, &sh->dev[i].flags);
2263			}
2264		if (s->locked == disks)
2265			if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2266				atomic_inc(&conf->pending_full_writes);
2267		/* after a RECONSTRUCT_WRITE, the stripe MUST be in-sync */
2268		set_bit(STRIPE_INSYNC, &sh->state);
2269
2270		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2271			atomic_dec(&conf->preread_active_stripes);
2272			if (atomic_read(&conf->preread_active_stripes) <
2273			    IO_THRESHOLD)
2274				md_wakeup_thread(conf->mddev->thread);
2275		}
2276	}
2277}
2278
2279static void handle_parity_checks5(raid5_conf_t *conf, struct stripe_head *sh,
2280				struct stripe_head_state *s, int disks)
2281{
2282	struct r5dev *dev = NULL;
2283
2284	set_bit(STRIPE_HANDLE, &sh->state);
2285
2286	switch (sh->check_state) {
2287	case check_state_idle:
2288		/* start a new check operation if there are no failures */
2289		if (s->failed == 0) {
2290			BUG_ON(s->uptodate != disks);
2291			sh->check_state = check_state_run;
2292			set_bit(STRIPE_OP_CHECK, &s->ops_request);
2293			clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
2294			s->uptodate--;
2295			break;
2296		}
2297		dev = &sh->dev[s->failed_num];
2298		/* fall through */
2299	case check_state_compute_result:
2300		sh->check_state = check_state_idle;
2301		if (!dev)
2302			dev = &sh->dev[sh->pd_idx];
2303
2304		/* check that a write has not made the stripe insync */
2305		if (test_bit(STRIPE_INSYNC, &sh->state))
2306			break;
2307
2308		/* either failed parity check, or recovery is happening */
2309		BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
2310		BUG_ON(s->uptodate != disks);
2311
2312		set_bit(R5_LOCKED, &dev->flags);
2313		s->locked++;
2314		set_bit(R5_Wantwrite, &dev->flags);
2315
2316		clear_bit(STRIPE_DEGRADED, &sh->state);
2317		set_bit(STRIPE_INSYNC, &sh->state);
2318		break;
2319	case check_state_run:
2320		break; /* we will be called again upon completion */
2321	case check_state_check_result:
2322		sh->check_state = check_state_idle;
2323
2324		/* if a failure occurred during the check operation, leave
2325		 * STRIPE_INSYNC not set and let the stripe be handled again
2326		 */
2327		if (s->failed)
2328			break;
2329
2330		/* handle a successful check operation, if parity is correct
2331		 * we are done.  Otherwise update the mismatch count and repair
2332		 * parity if !MD_RECOVERY_CHECK
2333		 */
2334		if (sh->ops.zero_sum_result == 0)
2335			/* parity is correct (on disc,
2336			 * not in buffer any more)
2337			 */
2338			set_bit(STRIPE_INSYNC, &sh->state);
2339		else {
2340			conf->mddev->resync_mismatches += STRIPE_SECTORS;
2341			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2342				/* don't try to repair!! */
2343				set_bit(STRIPE_INSYNC, &sh->state);
2344			else {
2345				sh->check_state = check_state_compute_run;
2346				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2347				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2348				set_bit(R5_Wantcompute,
2349					&sh->dev[sh->pd_idx].flags);
2350				sh->ops.target = sh->pd_idx;
2351				s->uptodate++;
2352			}
2353		}
2354		break;
2355	case check_state_compute_run:
2356		break;
2357	default:
2358		printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2359		       __func__, sh->check_state,
2360		       (unsigned long long) sh->sector);
2361		BUG();
2362	}
2363}
2364
2365
2366static void handle_parity_checks6(raid5_conf_t *conf, struct stripe_head *sh,
2367				struct stripe_head_state *s,
2368				struct r6_state *r6s, struct page *tmp_page,
2369				int disks)
2370{
2371	int update_p = 0, update_q = 0;
2372	struct r5dev *dev;
2373	int pd_idx = sh->pd_idx;
2374	int qd_idx = r6s->qd_idx;
2375
2376	set_bit(STRIPE_HANDLE, &sh->state);
2377
2378	BUG_ON(s->failed > 2);
2379	BUG_ON(s->uptodate < disks);
2380	/* Want to check and possibly repair P and Q.
2381	 * However there could be one 'failed' device, in which
2382	 * case we can only check one of them, possibly using the
2383	 * other to generate missing data
2384	 */
2385
2386	/* If !tmp_page, we cannot do the calculations,
2387	 * but as we have set STRIPE_HANDLE, we will soon be called
2388	 * by stripe_handle with a tmp_page - just wait until then.
2389	 */
2390	if (tmp_page) {
2391		if (s->failed == r6s->q_failed) {
2392			/* The only possible failed device holds 'Q', so it
2393			 * makes sense to check P (If anything else were failed,
2394			 * we would have used P to recreate it).
2395			 */
2396			compute_block_1(sh, pd_idx, 1);
2397			if (!page_is_zero(sh->dev[pd_idx].page)) {
2398				compute_block_1(sh, pd_idx, 0);
2399				update_p = 1;
2400			}
2401		}
2402		if (!r6s->q_failed && s->failed < 2) {
2403			/* q is not failed, and we didn't use it to generate
2404			 * anything, so it makes sense to check it
2405			 */
2406			memcpy(page_address(tmp_page),
2407			       page_address(sh->dev[qd_idx].page),
2408			       STRIPE_SIZE);
2409			compute_parity6(sh, UPDATE_PARITY);
2410			if (memcmp(page_address(tmp_page),
2411				   page_address(sh->dev[qd_idx].page),
2412				   STRIPE_SIZE) != 0) {
2413				clear_bit(STRIPE_INSYNC, &sh->state);
2414				update_q = 1;
2415			}
2416		}
2417		if (update_p || update_q) {
2418			conf->mddev->resync_mismatches += STRIPE_SECTORS;
2419			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2420				/* don't try to repair!! */
2421				update_p = update_q = 0;
2422		}
2423
2424		/* now write out any block on a failed drive,
2425		 * or P or Q if they need it
2426		 */
2427
2428		if (s->failed == 2) {
2429			dev = &sh->dev[r6s->failed_num[1]];
2430			s->locked++;
2431			set_bit(R5_LOCKED, &dev->flags);
2432			set_bit(R5_Wantwrite, &dev->flags);
2433		}
2434		if (s->failed >= 1) {
2435			dev = &sh->dev[r6s->failed_num[0]];
2436			s->locked++;
2437			set_bit(R5_LOCKED, &dev->flags);
2438			set_bit(R5_Wantwrite, &dev->flags);
2439		}
2440
2441		if (update_p) {
2442			dev = &sh->dev[pd_idx];
2443			s->locked++;
2444			set_bit(R5_LOCKED, &dev->flags);
2445			set_bit(R5_Wantwrite, &dev->flags);
2446		}
2447		if (update_q) {
2448			dev = &sh->dev[qd_idx];
2449			s->locked++;
2450			set_bit(R5_LOCKED, &dev->flags);
2451			set_bit(R5_Wantwrite, &dev->flags);
2452		}
2453		clear_bit(STRIPE_DEGRADED, &sh->state);
2454
2455		set_bit(STRIPE_INSYNC, &sh->state);
2456	}
2457}
2458
2459static void handle_stripe_expansion(raid5_conf_t *conf, struct stripe_head *sh,
2460				struct r6_state *r6s)
2461{
2462	int i;
2463
2464	/* We have read all the blocks in this stripe and now we need to
2465	 * copy some of them into a target stripe for expand.
2466	 */
2467	struct dma_async_tx_descriptor *tx = NULL;
2468	clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2469	for (i = 0; i < sh->disks; i++)
2470		if (i != sh->pd_idx && (!r6s || i != r6s->qd_idx)) {
2471			int dd_idx, pd_idx, j;
2472			struct stripe_head *sh2;
2473
2474			sector_t bn = compute_blocknr(sh, i);
2475			sector_t s = raid5_compute_sector(bn, conf->raid_disks,
2476						conf->raid_disks -
2477						conf->max_degraded, &dd_idx,
2478						&pd_idx, conf);
2479			sh2 = get_active_stripe(conf, s, conf->raid_disks,
2480						pd_idx, 1);
2481			if (sh2 == NULL)
2482				/* so far only the early blocks of this stripe
2483				 * have been requested.  When later blocks
2484				 * get requested, we will try again
2485				 */
2486				continue;
2487			if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
2488			   test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
2489				/* must have already done this block */
2490				release_stripe(sh2);
2491				continue;
2492			}
2493
2494			/* place all the copies on one channel */
2495			tx = async_memcpy(sh2->dev[dd_idx].page,
2496				sh->dev[i].page, 0, 0, STRIPE_SIZE,
2497				ASYNC_TX_DEP_ACK, tx, NULL, NULL);
2498
2499			set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
2500			set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
2501			for (j = 0; j < conf->raid_disks; j++)
2502				if (j != sh2->pd_idx &&
2503				    (!r6s || j != raid6_next_disk(sh2->pd_idx,
2504								 sh2->disks)) &&
2505				    !test_bit(R5_Expanded, &sh2->dev[j].flags))
2506					break;
2507			if (j == conf->raid_disks) {
2508				set_bit(STRIPE_EXPAND_READY, &sh2->state);
2509				set_bit(STRIPE_HANDLE, &sh2->state);
2510			}
2511			release_stripe(sh2);
2512
2513		}
2514	/* done submitting copies, wait for them to complete */
2515	if (tx) {
2516		async_tx_ack(tx);
2517		dma_wait_for_async_tx(tx);
2518	}
2519}
2520
2521
2522/*
2523 * handle_stripe - do things to a stripe.
2524 *
2525 * We lock the stripe and then examine the state of various bits
2526 * to see what needs to be done.
2527 * Possible results:
2528 *    return some read request which now have data
2529 *    return some write requests which are safely on disc
2530 *    schedule a read on some buffers
2531 *    schedule a write of some buffers
2532 *    return confirmation of parity correctness
2533 *
2534 * buffers are taken off read_list or write_list, and bh_cache buffers
2535 * get BH_Lock set before the stripe lock is released.
2536 *
2537 */
2538
2539static bool handle_stripe5(struct stripe_head *sh)
2540{
2541	raid5_conf_t *conf = sh->raid_conf;
2542	int disks = sh->disks, i;
2543	struct bio *return_bi = NULL;
2544	struct stripe_head_state s;
2545	struct r5dev *dev;
2546	mdk_rdev_t *blocked_rdev = NULL;
2547	int prexor;
2548
2549	memset(&s, 0, sizeof(s));
2550	pr_debug("handling stripe %llu, state=%#lx cnt=%d, pd_idx=%d check:%d "
2551		 "reconstruct:%d\n", (unsigned long long)sh->sector, sh->state,
2552		 atomic_read(&sh->count), sh->pd_idx, sh->check_state,
2553		 sh->reconstruct_state);
2554
2555	spin_lock(&sh->lock);
2556	clear_bit(STRIPE_HANDLE, &sh->state);
2557	clear_bit(STRIPE_DELAYED, &sh->state);
2558
2559	s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
2560	s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2561	s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
2562
2563	/* Now to look around and see what can be done */
2564	rcu_read_lock();
2565	for (i=disks; i--; ) {
2566		mdk_rdev_t *rdev;
2567		struct r5dev *dev = &sh->dev[i];
2568		clear_bit(R5_Insync, &dev->flags);
2569
2570		pr_debug("check %d: state 0x%lx toread %p read %p write %p "
2571			"written %p\n",	i, dev->flags, dev->toread, dev->read,
2572			dev->towrite, dev->written);
2573
2574		/* maybe we can request a biofill operation
2575		 *
2576		 * new wantfill requests are only permitted while
2577		 * ops_complete_biofill is guaranteed to be inactive
2578		 */
2579		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
2580		    !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
2581			set_bit(R5_Wantfill, &dev->flags);
2582
2583		/* now count some things */
2584		if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
2585		if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
2586		if (test_bit(R5_Wantcompute, &dev->flags)) s.compute++;
2587
2588		if (test_bit(R5_Wantfill, &dev->flags))
2589			s.to_fill++;
2590		else if (dev->toread)
2591			s.to_read++;
2592		if (dev->towrite) {
2593			s.to_write++;
2594			if (!test_bit(R5_OVERWRITE, &dev->flags))
2595				s.non_overwrite++;
2596		}
2597		if (dev->written)
2598			s.written++;
2599		rdev = rcu_dereference(conf->disks[i].rdev);
2600		if (blocked_rdev == NULL &&
2601		    rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
2602			blocked_rdev = rdev;
2603			atomic_inc(&rdev->nr_pending);
2604		}
2605		if (!rdev || !test_bit(In_sync, &rdev->flags)) {
2606			/* The ReadError flag will just be confusing now */
2607			clear_bit(R5_ReadError, &dev->flags);
2608			clear_bit(R5_ReWrite, &dev->flags);
2609		}
2610		if (!rdev || !test_bit(In_sync, &rdev->flags)
2611		    || test_bit(R5_ReadError, &dev->flags)) {
2612			s.failed++;
2613			s.failed_num = i;
2614		} else
2615			set_bit(R5_Insync, &dev->flags);
2616	}
2617	rcu_read_unlock();
2618
2619	if (unlikely(blocked_rdev)) {
2620		if (s.syncing || s.expanding || s.expanded ||
2621		    s.to_write || s.written) {
2622			set_bit(STRIPE_HANDLE, &sh->state);
2623			goto unlock;
2624		}
2625		/* There is nothing for the blocked_rdev to block */
2626		rdev_dec_pending(blocked_rdev, conf->mddev);
2627		blocked_rdev = NULL;
2628	}
2629
2630	if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
2631		set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
2632		set_bit(STRIPE_BIOFILL_RUN, &sh->state);
2633	}
2634
2635	pr_debug("locked=%d uptodate=%d to_read=%d"
2636		" to_write=%d failed=%d failed_num=%d\n",
2637		s.locked, s.uptodate, s.to_read, s.to_write,
2638		s.failed, s.failed_num);
2639	/* check if the array has lost two devices and, if so, some requests might
2640	 * need to be failed
2641	 */
2642	if (s.failed > 1 && s.to_read+s.to_write+s.written)
2643		handle_failed_stripe(conf, sh, &s, disks, &return_bi);
2644	if (s.failed > 1 && s.syncing) {
2645		md_done_sync(conf->mddev, STRIPE_SECTORS,0);
2646		clear_bit(STRIPE_SYNCING, &sh->state);
2647		s.syncing = 0;
2648	}
2649
2650	/* might be able to return some write requests if the parity block
2651	 * is safe, or on a failed drive
2652	 */
2653	dev = &sh->dev[sh->pd_idx];
2654	if ( s.written &&
2655	     ((test_bit(R5_Insync, &dev->flags) &&
2656	       !test_bit(R5_LOCKED, &dev->flags) &&
2657	       test_bit(R5_UPTODATE, &dev->flags)) ||
2658	       (s.failed == 1 && s.failed_num == sh->pd_idx)))
2659		handle_stripe_clean_event(conf, sh, disks, &return_bi);
2660
2661	/* Now we might consider reading some blocks, either to check/generate
2662	 * parity, or to satisfy requests
2663	 * or to load a block that is being partially written.
2664	 */
2665	if (s.to_read || s.non_overwrite ||
2666	    (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding)
2667		handle_stripe_fill5(sh, &s, disks);
2668
2669	/* Now we check to see if any write operations have recently
2670	 * completed
2671	 */
2672	prexor = 0;
2673	if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
2674		prexor = 1;
2675	if (sh->reconstruct_state == reconstruct_state_drain_result ||
2676	    sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
2677		sh->reconstruct_state = reconstruct_state_idle;
2678
2679		/* All the 'written' buffers and the parity block are ready to
2680		 * be written back to disk
2681		 */
2682		BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
2683		for (i = disks; i--; ) {
2684			dev = &sh->dev[i];
2685			if (test_bit(R5_LOCKED, &dev->flags) &&
2686				(i == sh->pd_idx || dev->written)) {
2687				pr_debug("Writing block %d\n", i);
2688				set_bit(R5_Wantwrite, &dev->flags);
2689				if (prexor)
2690					continue;
2691				if (!test_bit(R5_Insync, &dev->flags) ||
2692				    (i == sh->pd_idx && s.failed == 0))
2693					set_bit(STRIPE_INSYNC, &sh->state);
2694			}
2695		}
2696		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2697			atomic_dec(&conf->preread_active_stripes);
2698			if (atomic_read(&conf->preread_active_stripes) <
2699				IO_THRESHOLD)
2700				md_wakeup_thread(conf->mddev->thread);
2701		}
2702	}
2703
2704	/* Now to consider new write requests and what else, if anything
2705	 * should be read.  We do not handle new writes when:
2706	 * 1/ A 'write' operation (copy+xor) is already in flight.
2707	 * 2/ A 'check' operation is in flight, as it may clobber the parity
2708	 *    block.
2709	 */
2710	if (s.to_write && !sh->reconstruct_state && !sh->check_state)
2711		handle_stripe_dirtying5(conf, sh, &s, disks);
2712
2713	/* maybe we need to check and possibly fix the parity for this stripe
2714	 * Any reads will already have been scheduled, so we just see if enough
2715	 * data is available.  The parity check is held off while parity
2716	 * dependent operations are in flight.
2717	 */
2718	if (sh->check_state ||
2719	    (s.syncing && s.locked == 0 &&
2720	     !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
2721	     !test_bit(STRIPE_INSYNC, &sh->state)))
2722		handle_parity_checks5(conf, sh, &s, disks);
2723
2724	if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
2725		md_done_sync(conf->mddev, STRIPE_SECTORS,1);
2726		clear_bit(STRIPE_SYNCING, &sh->state);
2727	}
2728
2729	/* If the failed drive is just a ReadError, then we might need to progress
2730	 * the repair/check process
2731	 */
2732	if (s.failed == 1 && !conf->mddev->ro &&
2733	    test_bit(R5_ReadError, &sh->dev[s.failed_num].flags)
2734	    && !test_bit(R5_LOCKED, &sh->dev[s.failed_num].flags)
2735	    && test_bit(R5_UPTODATE, &sh->dev[s.failed_num].flags)
2736		) {
2737		dev = &sh->dev[s.failed_num];
2738		if (!test_bit(R5_ReWrite, &dev->flags)) {
2739			set_bit(R5_Wantwrite, &dev->flags);
2740			set_bit(R5_ReWrite, &dev->flags);
2741			set_bit(R5_LOCKED, &dev->flags);
2742			s.locked++;
2743		} else {
2744			/* let's read it back */
2745			set_bit(R5_Wantread, &dev->flags);
2746			set_bit(R5_LOCKED, &dev->flags);
2747			s.locked++;
2748		}
2749	}
2750
2751	/* Finish reconstruct operations initiated by the expansion process */
2752	if (sh->reconstruct_state == reconstruct_state_result) {
2753		sh->reconstruct_state = reconstruct_state_idle;
2754		clear_bit(STRIPE_EXPANDING, &sh->state);
2755		for (i = conf->raid_disks; i--; ) {
2756			set_bit(R5_Wantwrite, &sh->dev[i].flags);
2757			set_bit(R5_LOCKED, &sh->dev[i].flags);
2758			s.locked++;
2759		}
2760	}
2761
2762	if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
2763	    !sh->reconstruct_state) {
2764		/* Need to write out all blocks after computing parity */
2765		sh->disks = conf->raid_disks;
2766		sh->pd_idx = stripe_to_pdidx(sh->sector, conf,
2767			conf->raid_disks);
2768		schedule_reconstruction5(sh, &s, 1, 1);
2769	} else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
2770		clear_bit(STRIPE_EXPAND_READY, &sh->state);
2771		atomic_dec(&conf->reshape_stripes);
2772		wake_up(&conf->wait_for_overlap);
2773		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
2774	}
2775
2776	if (s.expanding && s.locked == 0 &&
2777	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
2778		handle_stripe_expansion(conf, sh, NULL);
2779
2780 unlock:
2781	spin_unlock(&sh->lock);
2782
2783	/* wait for this device to become unblocked */
2784	if (unlikely(blocked_rdev))
2785		md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);
2786
2787	if (s.ops_request)
2788		raid5_run_ops(sh, s.ops_request);
2789
2790	ops_run_io(sh, &s);
2791
2792	return_io(return_bi);
2793
2794	return blocked_rdev == NULL;
2795}
2796
2797static bool handle_stripe6(struct stripe_head *sh, struct page *tmp_page)
2798{
2799	raid6_conf_t *conf = sh->raid_conf;
2800	int disks = sh->disks;
2801	struct bio *return_bi = NULL;
2802	int i, pd_idx = sh->pd_idx;
2803	struct stripe_head_state s;
2804	struct r6_state r6s;
2805	struct r5dev *dev, *pdev, *qdev;
2806	mdk_rdev_t *blocked_rdev = NULL;
2807
2808	r6s.qd_idx = raid6_next_disk(pd_idx, disks);
2809	pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
2810		"pd_idx=%d, qd_idx=%d\n",
2811	       (unsigned long long)sh->sector, sh->state,
2812	       atomic_read(&sh->count), pd_idx, r6s.qd_idx);
2813	memset(&s, 0, sizeof(s));
2814
2815	spin_lock(&sh->lock);
2816	clear_bit(STRIPE_HANDLE, &sh->state);
2817	clear_bit(STRIPE_DELAYED, &sh->state);
2818
2819	s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
2820	s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2821	s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
2822	/* Now to look around and see what can be done */
2823
2824	rcu_read_lock();
2825	for (i=disks; i--; ) {
2826		mdk_rdev_t *rdev;
2827		dev = &sh->dev[i];
2828		clear_bit(R5_Insync, &dev->flags);
2829
2830		pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
2831			i, dev->flags, dev->toread, dev->towrite, dev->written);
2832		/* maybe we can reply to a read */
2833		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread) {
2834			struct bio *rbi, *rbi2;
2835			pr_debug("Return read for disc %d\n", i);
2836			spin_lock_irq(&conf->device_lock);
2837			rbi = dev->toread;
2838			dev->toread = NULL;
2839			if (test_and_clear_bit(R5_Overlap, &dev->flags))
2840				wake_up(&conf->wait_for_overlap);
2841			spin_unlock_irq(&conf->device_lock);
2842			while (rbi && rbi->bi_sector < dev->sector + STRIPE_SECTORS) {
2843				copy_data(0, rbi, dev->page, dev->sector);
2844				rbi2 = r5_next_bio(rbi, dev->sector);
2845				spin_lock_irq(&conf->device_lock);
2846				if (!raid5_dec_bi_phys_segments(rbi)) {
2847					rbi->bi_next = return_bi;
2848					return_bi = rbi;
2849				}
2850				spin_unlock_irq(&conf->device_lock);
2851				rbi = rbi2;
2852			}
2853		}
2854
2855		/* now count some things */
2856		if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
2857		if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
2858
2859
2860		if (dev->toread)
2861			s.to_read++;
2862		if (dev->towrite) {
2863			s.to_write++;
2864			if (!test_bit(R5_OVERWRITE, &dev->flags))
2865				s.non_overwrite++;
2866		}
2867		if (dev->written)
2868			s.written++;
2869		rdev = rcu_dereference(conf->disks[i].rdev);
2870		if (blocked_rdev == NULL &&
2871		    rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
2872			blocked_rdev = rdev;
2873			atomic_inc(&rdev->nr_pending);
2874		}
2875		if (!rdev || !test_bit(In_sync, &rdev->flags)) {
2876			/* The ReadError flag will just be confusing now */
2877			clear_bit(R5_ReadError, &dev->flags);
2878			clear_bit(R5_ReWrite, &dev->flags);
2879		}
2880		if (!rdev || !test_bit(In_sync, &rdev->flags)
2881		    || test_bit(R5_ReadError, &dev->flags)) {
2882			if (s.failed < 2)
2883				r6s.failed_num[s.failed] = i;
2884			s.failed++;
2885		} else
2886			set_bit(R5_Insync, &dev->flags);
2887	}
2888	rcu_read_unlock();
2889
2890	if (unlikely(blocked_rdev)) {
2891		if (s.syncing || s.expanding || s.expanded ||
2892		    s.to_write || s.written) {
2893			set_bit(STRIPE_HANDLE, &sh->state);
2894			goto unlock;
2895		}
2896		/* There is nothing for the blocked_rdev to block */
2897		rdev_dec_pending(blocked_rdev, conf->mddev);
2898		blocked_rdev = NULL;
2899	}
2900
2901	pr_debug("locked=%d uptodate=%d to_read=%d"
2902	       " to_write=%d failed=%d failed_num=%d,%d\n",
2903	       s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
2904	       r6s.failed_num[0], r6s.failed_num[1]);
2905	/* check if the array has lost >2 devices and, if so, some requests
2906	 * might need to be failed
2907	 */
2908	if (s.failed > 2 && s.to_read+s.to_write+s.written)
2909		handle_failed_stripe(conf, sh, &s, disks, &return_bi);
2910	if (s.failed > 2 && s.syncing) {
2911		md_done_sync(conf->mddev, STRIPE_SECTORS,0);
2912		clear_bit(STRIPE_SYNCING, &sh->state);
2913		s.syncing = 0;
2914	}
2915
2916	/*
2917	 * might be able to return some write requests if the parity blocks
2918	 * are safe, or on a failed drive
2919	 */
2920	pdev = &sh->dev[pd_idx];
2921	r6s.p_failed = (s.failed >= 1 && r6s.failed_num[0] == pd_idx)
2922		|| (s.failed >= 2 && r6s.failed_num[1] == pd_idx);
2923	qdev = &sh->dev[r6s.qd_idx];
2924	r6s.q_failed = (s.failed >= 1 && r6s.failed_num[0] == r6s.qd_idx)
2925		|| (s.failed >= 2 && r6s.failed_num[1] == r6s.qd_idx);
2926
2927	if ( s.written &&
2928	     ( r6s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
2929			     && !test_bit(R5_LOCKED, &pdev->flags)
2930			     && test_bit(R5_UPTODATE, &pdev->flags)))) &&
2931	     ( r6s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
2932			     && !test_bit(R5_LOCKED, &qdev->flags)
2933			     && test_bit(R5_UPTODATE, &qdev->flags)))))
2934		handle_stripe_clean_event(conf, sh, disks, &return_bi);
2935
2936	/* Now we might consider reading some blocks, either to check/generate
2937	 * parity, or to satisfy requests
2938	 * or to load a block that is being partially written.
2939	 */
2940	if (s.to_read || s.non_overwrite || (s.to_write && s.failed) ||
2941	    (s.syncing && (s.uptodate < disks)) || s.expanding)
2942		handle_stripe_fill6(sh, &s, &r6s, disks);
2943
2944	/* now to consider writing and what else, if anything should be read */
2945	if (s.to_write)
2946		handle_stripe_dirtying6(conf, sh, &s, &r6s, disks);
2947
2948	/* maybe we need to check and possibly fix the parity for this stripe
2949	 * Any reads will already have been scheduled, so we just see if enough
2950	 * data is available
2951	 */
2952	if (s.syncing && s.locked == 0 && !test_bit(STRIPE_INSYNC, &sh->state))
2953		handle_parity_checks6(conf, sh, &s, &r6s, tmp_page, disks);
2954
2955	if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
2956		md_done_sync(conf->mddev, STRIPE_SECTORS,1);
2957		clear_bit(STRIPE_SYNCING, &sh->state);
2958	}
2959
2960	/* If the failed drives are just a ReadError, then we might need
2961	 * to progress the repair/check process
2962	 */
2963	if (s.failed <= 2 && !conf->mddev->ro)
2964		for (i = 0; i < s.failed; i++) {
2965			dev = &sh->dev[r6s.failed_num[i]];
2966			if (test_bit(R5_ReadError, &dev->flags)
2967			    && !test_bit(R5_LOCKED, &dev->flags)
2968			    && test_bit(R5_UPTODATE, &dev->flags)
2969				) {
2970				if (!test_bit(R5_ReWrite, &dev->flags)) {
2971					set_bit(R5_Wantwrite, &dev->flags);
2972					set_bit(R5_ReWrite, &dev->flags);
2973					set_bit(R5_LOCKED, &dev->flags);
2974				} else {
2975					/* let's read it back */
2976					set_bit(R5_Wantread, &dev->flags);
2977					set_bit(R5_LOCKED, &dev->flags);
2978				}
2979			}
2980		}
2981
2982	if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state)) {
2983		/* Need to write out all blocks after computing P&Q */
2984		sh->disks = conf->raid_disks;
2985		sh->pd_idx = stripe_to_pdidx(sh->sector, conf,
2986					     conf->raid_disks);
2987		compute_parity6(sh, RECONSTRUCT_WRITE);
2988		for (i = conf->raid_disks ; i-- ;  ) {
2989			set_bit(R5_LOCKED, &sh->dev[i].flags);
2990			s.locked++;
2991			set_bit(R5_Wantwrite, &sh->dev[i].flags);
2992		}
2993		clear_bit(STRIPE_EXPANDING, &sh->state);
2994	} else if (s.expanded) {
2995		clear_bit(STRIPE_EXPAND_READY, &sh->state);
2996		atomic_dec(&conf->reshape_stripes);
2997		wake_up(&conf->wait_for_overlap);
2998		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
2999	}
3000
3001	if (s.expanding && s.locked == 0 &&
3002	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3003		handle_stripe_expansion(conf, sh, &r6s);
3004
3005 unlock:
3006	spin_unlock(&sh->lock);
3007
3008	/* wait for this device to become unblocked */
3009	if (unlikely(blocked_rdev))
3010		md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);
3011
3012	ops_run_io(sh, &s);
3013
3014	return_io(return_bi);
3015
3016	return blocked_rdev == NULL;
3017}
3018
3019/* returns true if the stripe was handled */
3020static bool handle_stripe(struct stripe_head *sh, struct page *tmp_page)
3021{
3022	if (sh->raid_conf->level == 6)
3023		return handle_stripe6(sh, tmp_page);
3024	else
3025		return handle_stripe5(sh);
3026}
3027
3028
3029
3030static void raid5_activate_delayed(raid5_conf_t *conf)
3031{
3032	if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
3033		while (!list_empty(&conf->delayed_list)) {
3034			struct list_head *l = conf->delayed_list.next;
3035			struct stripe_head *sh;
3036			sh = list_entry(l, struct stripe_head, lru);
3037			list_del_init(l);
3038			clear_bit(STRIPE_DELAYED, &sh->state);
3039			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3040				atomic_inc(&conf->preread_active_stripes);
3041			list_add_tail(&sh->lru, &conf->hold_list);
3042		}
3043	} else
3044		blk_plug_device(conf->mddev->queue);
3045}
3046
3047static void activate_bit_delay(raid5_conf_t *conf)
3048{
3049	/* device_lock is held */
3050	struct list_head head;
3051	list_add(&head, &conf->bitmap_list);
3052	list_del_init(&conf->bitmap_list);
3053	while (!list_empty(&head)) {
3054		struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
3055		list_del_init(&sh->lru);
3056		atomic_inc(&sh->count);
3057		__release_stripe(conf, sh);
3058	}
3059}
3060
3061static void unplug_slaves(mddev_t *mddev)
3062{
3063	raid5_conf_t *conf = mddev_to_conf(mddev);
3064	int i;
3065
3066	rcu_read_lock();
3067	for (i=0; i<mddev->raid_disks; i++) {
3068		mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
3069		if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
3070			struct request_queue *r_queue = bdev_get_queue(rdev->bdev);
3071
3072			atomic_inc(&rdev->nr_pending);
3073			rcu_read_unlock();
3074
3075			blk_unplug(r_queue);
3076
3077			rdev_dec_pending(rdev, mddev);
3078			rcu_read_lock();
3079		}
3080	}
3081	rcu_read_unlock();
3082}
3083
3084static void raid5_unplug_device(struct request_queue *q)
3085{
3086	mddev_t *mddev = q->queuedata;
3087	raid5_conf_t *conf = mddev_to_conf(mddev);
3088	unsigned long flags;
3089
3090	spin_lock_irqsave(&conf->device_lock, flags);
3091
3092	if (blk_remove_plug(q)) {
3093		conf->seq_flush++;
3094		raid5_activate_delayed(conf);
3095	}
3096	md_wakeup_thread(mddev->thread);
3097
3098	spin_unlock_irqrestore(&conf->device_lock, flags);
3099
3100	unplug_slaves(mddev);
3101}
3102
3103static int raid5_congested(void *data, int bits)
3104{
3105	mddev_t *mddev = data;
3106	raid5_conf_t *conf = mddev_to_conf(mddev);
3107
3108	/* No difference between reads and writes.  Just check
3109	 * how busy the stripe_cache is
3110	 */
3111	if (conf->inactive_blocked)
3112		return 1;
3113	if (conf->quiesce)
3114		return 1;
3115	if (list_empty_careful(&conf->inactive_list))
3116		return 1;
3117
3118	return 0;
3119}
3120
3121/* We want read requests to align with chunks where possible,
3122 * but write requests don't need to.
3123 */
3124static int raid5_mergeable_bvec(struct request_queue *q,
3125				struct bvec_merge_data *bvm,
3126				struct bio_vec *biovec)
3127{
3128	mddev_t *mddev = q->queuedata;
3129	sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
3130	int max;
3131	unsigned int chunk_sectors = mddev->chunk_size >> 9;
3132	unsigned int bio_sectors = bvm->bi_size >> 9;
3133
3134	if ((bvm->bi_rw & 1) == WRITE)
3135		return biovec->bv_len; /* always allow writes to be mergeable */
3136
3137	max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
3138	if (max < 0) max = 0;
3139	if (max <= biovec->bv_len && bio_sectors == 0)
3140		return biovec->bv_len;
3141	else
3142		return max;
3143}
3144
3145
3146static int in_chunk_boundary(mddev_t *mddev, struct bio *bio)
3147{
3148	sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3149	unsigned int chunk_sectors = mddev->chunk_size >> 9;
3150	unsigned int bio_sectors = bio->bi_size >> 9;
3151
3152	return  chunk_sectors >=
3153		((sector & (chunk_sectors - 1)) + bio_sectors);
3154}
3155
3156/*
3157 *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
3158 *  later sampled by raid5d.
3159 */
3160static void add_bio_to_retry(struct bio *bi,raid5_conf_t *conf)
3161{
3162	unsigned long flags;
3163
3164	spin_lock_irqsave(&conf->device_lock, flags);
3165
3166	bi->bi_next = conf->retry_read_aligned_list;
3167	conf->retry_read_aligned_list = bi;
3168
3169	spin_unlock_irqrestore(&conf->device_lock, flags);
3170	md_wakeup_thread(conf->mddev->thread);
3171}
3172
3173
3174static struct bio *remove_bio_from_retry(raid5_conf_t *conf)
3175{
3176	struct bio *bi;
3177
3178	bi = conf->retry_read_aligned;
3179	if (bi) {
3180		conf->retry_read_aligned = NULL;
3181		return bi;
3182	}
3183	bi = conf->retry_read_aligned_list;
3184	if(bi) {
3185		conf->retry_read_aligned_list = bi->bi_next;
3186		bi->bi_next = NULL;
3187		/*
3188		 * this sets the active strip count to 1 and the processed
3189		 * strip count to zero (upper 8 bits)
3190		 */
3191		bi->bi_phys_segments = 1; /* biased count of active stripes */
3192	}
3193
3194	return bi;
3195}
3196
3197
3198/*
3199 *  The "raid5_align_endio" should check if the read succeeded and if it
3200 *  did, call bio_endio on the original bio (having bio_put the new bio
3201 *  first).
3202 *  If the read failed..
3203 */
3204static void raid5_align_endio(struct bio *bi, int error)
3205{
3206	struct bio* raid_bi  = bi->bi_private;
3207	mddev_t *mddev;
3208	raid5_conf_t *conf;
3209	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3210	mdk_rdev_t *rdev;
3211
3212	bio_put(bi);
3213
3214	mddev = raid_bi->bi_bdev->bd_disk->queue->queuedata;
3215	conf = mddev_to_conf(mddev);
3216	rdev = (void*)raid_bi->bi_next;
3217	raid_bi->bi_next = NULL;
3218
3219	rdev_dec_pending(rdev, conf->mddev);
3220
3221	if (!error && uptodate) {
3222		bio_endio(raid_bi, 0);
3223		if (atomic_dec_and_test(&conf->active_aligned_reads))
3224			wake_up(&conf->wait_for_stripe);
3225		return;
3226	}
3227
3228
3229	pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3230
3231	add_bio_to_retry(raid_bi, conf);
3232}
3233
3234static int bio_fits_rdev(struct bio *bi)
3235{
3236	struct request_queue *q = bdev_get_queue(bi->bi_bdev);
3237
3238	if ((bi->bi_size>>9) > q->max_sectors)
3239		return 0;
3240	blk_recount_segments(q, bi);
3241	if (bi->bi_phys_segments > q->max_phys_segments)
3242		return 0;
3243
3244	if (q->merge_bvec_fn)
3245		/* it's too hard to apply the merge_bvec_fn at this stage,
3246		 * just just give up
3247		 */
3248		return 0;
3249
3250	return 1;
3251}
3252
3253
3254static int chunk_aligned_read(struct request_queue *q, struct bio * raid_bio)
3255{
3256	mddev_t *mddev = q->queuedata;
3257	raid5_conf_t *conf = mddev_to_conf(mddev);
3258	const unsigned int raid_disks = conf->raid_disks;
3259	const unsigned int data_disks = raid_disks - conf->max_degraded;
3260	unsigned int dd_idx, pd_idx;
3261	struct bio* align_bi;
3262	mdk_rdev_t *rdev;
3263
3264	if (!in_chunk_boundary(mddev, raid_bio)) {
3265		pr_debug("chunk_aligned_read : non aligned\n");
3266		return 0;
3267	}
3268	/*
3269 	 * use bio_clone to make a copy of the bio
3270	 */
3271	align_bi = bio_clone(raid_bio, GFP_NOIO);
3272	if (!align_bi)
3273		return 0;
3274	/*
3275	 *   set bi_end_io to a new function, and set bi_private to the
3276	 *     original bio.
3277	 */
3278	align_bi->bi_end_io  = raid5_align_endio;
3279	align_bi->bi_private = raid_bio;
3280	/*
3281	 *	compute position
3282	 */
3283	align_bi->bi_sector =  raid5_compute_sector(raid_bio->bi_sector,
3284					raid_disks,
3285					data_disks,
3286					&dd_idx,
3287					&pd_idx,
3288					conf);
3289
3290	rcu_read_lock();
3291	rdev = rcu_dereference(conf->disks[dd_idx].rdev);
3292	if (rdev && test_bit(In_sync, &rdev->flags)) {
3293		atomic_inc(&rdev->nr_pending);
3294		rcu_read_unlock();
3295		raid_bio->bi_next = (void*)rdev;
3296		align_bi->bi_bdev =  rdev->bdev;
3297		align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
3298		align_bi->bi_sector += rdev->data_offset;
3299
3300		if (!bio_fits_rdev(align_bi)) {
3301			/* too big in some way */
3302			bio_put(align_bi);
3303			rdev_dec_pending(rdev, mddev);
3304			return 0;
3305		}
3306
3307		spin_lock_irq(&conf->device_lock);
3308		wait_event_lock_irq(conf->wait_for_stripe,
3309				    conf->quiesce == 0,
3310				    conf->device_lock, /* nothing */);
3311		atomic_inc(&conf->active_aligned_reads);
3312		spin_unlock_irq(&conf->device_lock);
3313
3314		generic_make_request(align_bi);
3315		return 1;
3316	} else {
3317		rcu_read_unlock();
3318		bio_put(align_bi);
3319		return 0;
3320	}
3321}
3322
3323/* __get_priority_stripe - get the next stripe to process
3324 *
3325 * Full stripe writes are allowed to pass preread active stripes up until
3326 * the bypass_threshold is exceeded.  In general the bypass_count
3327 * increments when the handle_list is handled before the hold_list; however, it
3328 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
3329 * stripe with in flight i/o.  The bypass_count will be reset when the
3330 * head of the hold_list has changed, i.e. the head was promoted to the
3331 * handle_list.
3332 */
3333static struct stripe_head *__get_priority_stripe(raid5_conf_t *conf)
3334{
3335	struct stripe_head *sh;
3336
3337	pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
3338		  __func__,
3339		  list_empty(&conf->handle_list) ? "empty" : "busy",
3340		  list_empty(&conf->hold_list) ? "empty" : "busy",
3341		  atomic_read(&conf->pending_full_writes), conf->bypass_count);
3342
3343	if (!list_empty(&conf->handle_list)) {
3344		sh = list_entry(conf->handle_list.next, typeof(*sh), lru);
3345
3346		if (list_empty(&conf->hold_list))
3347			conf->bypass_count = 0;
3348		else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
3349			if (conf->hold_list.next == conf->last_hold)
3350				conf->bypass_count++;
3351			else {
3352				conf->last_hold = conf->hold_list.next;
3353				conf->bypass_count -= conf->bypass_threshold;
3354				if (conf->bypass_count < 0)
3355					conf->bypass_count = 0;
3356			}
3357		}
3358	} else if (!list_empty(&conf->hold_list) &&
3359		   ((conf->bypass_threshold &&
3360		     conf->bypass_count > conf->bypass_threshold) ||
3361		    atomic_read(&conf->pending_full_writes) == 0)) {
3362		sh = list_entry(conf->hold_list.next,
3363				typeof(*sh), lru);
3364		conf->bypass_count -= conf->bypass_threshold;
3365		if (conf->bypass_count < 0)
3366			conf->bypass_count = 0;
3367	} else
3368		return NULL;
3369
3370	list_del_init(&sh->lru);
3371	atomic_inc(&sh->count);
3372	BUG_ON(atomic_read(&sh->count) != 1);
3373	return sh;
3374}
3375
3376static int make_request(struct request_queue *q, struct bio * bi)
3377{
3378	mddev_t *mddev = q->queuedata;
3379	raid5_conf_t *conf = mddev_to_conf(mddev);
3380	unsigned int dd_idx, pd_idx;
3381	sector_t new_sector;
3382	sector_t logical_sector, last_sector;
3383	struct stripe_head *sh;
3384	const int rw = bio_data_dir(bi);
3385	int cpu, remaining;
3386
3387	if (unlikely(bio_barrier(bi))) {
3388		bio_endio(bi, -EOPNOTSUPP);
3389		return 0;
3390	}
3391
3392	md_write_start(mddev, bi);
3393
3394	cpu = part_stat_lock();
3395	part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
3396	part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw],
3397		      bio_sectors(bi));
3398	part_stat_unlock();
3399
3400	if (rw == READ &&
3401	     mddev->reshape_position == MaxSector &&
3402	     chunk_aligned_read(q,bi))
3403            	return 0;
3404
3405	logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
3406	last_sector = bi->bi_sector + (bi->bi_size>>9);
3407	bi->bi_next = NULL;
3408	bi->bi_phys_segments = 1;	/* over-loaded to count active stripes */
3409
3410	for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
3411		DEFINE_WAIT(w);
3412		int disks, data_disks;
3413
3414	retry:
3415		prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
3416		if (likely(conf->expand_progress == MaxSector))
3417			disks = conf->raid_disks;
3418		else {
3419			/* spinlock is needed as expand_progress may be
3420			 * 64bit on a 32bit platform, and so it might be
3421			 * possible to see a half-updated value
3422			 * Ofcourse expand_progress could change after
3423			 * the lock is dropped, so once we get a reference
3424			 * to the stripe that we think it is, we will have
3425			 * to check again.
3426			 */
3427			spin_lock_irq(&conf->device_lock);
3428			disks = conf->raid_disks;
3429			if (logical_sector >= conf->expand_progress)
3430				disks = conf->previous_raid_disks;
3431			else {
3432				if (logical_sector >= conf->expand_lo) {
3433					spin_unlock_irq(&conf->device_lock);
3434					schedule();
3435					goto retry;
3436				}
3437			}
3438			spin_unlock_irq(&conf->device_lock);
3439		}
3440		data_disks = disks - conf->max_degraded;
3441
3442 		new_sector = raid5_compute_sector(logical_sector, disks, data_disks,
3443						  &dd_idx, &pd_idx, conf);
3444		pr_debug("raid5: make_request, sector %llu logical %llu\n",
3445			(unsigned long long)new_sector,
3446			(unsigned long long)logical_sector);
3447
3448		sh = get_active_stripe(conf, new_sector, disks, pd_idx, (bi->bi_rw&RWA_MASK));
3449		if (sh) {
3450			if (unlikely(conf->expand_progress != MaxSector)) {
3451				/* expansion might have moved on while waiting for a
3452				 * stripe, so we must do the range check again.
3453				 * Expansion could still move past after this
3454				 * test, but as we are holding a reference to
3455				 * 'sh', we know that if that happens,
3456				 *  STRIPE_EXPANDING will get set and the expansion
3457				 * won't proceed until we finish with the stripe.
3458				 */
3459				int must_retry = 0;
3460				spin_lock_irq(&conf->device_lock);
3461				if (logical_sector <  conf->expand_progress &&
3462				    disks == conf->previous_raid_disks)
3463					/* mismatch, need to try again */
3464					must_retry = 1;
3465				spin_unlock_irq(&conf->device_lock);
3466				if (must_retry) {
3467					release_stripe(sh);
3468					goto retry;
3469				}
3470			}
3471			/* FIXME what if we get a false positive because these
3472			 * are being updated.
3473			 */
3474			if (logical_sector >= mddev->suspend_lo &&
3475			    logical_sector < mddev->suspend_hi) {
3476				release_stripe(sh);
3477				schedule();
3478				goto retry;
3479			}
3480
3481			if (test_bit(STRIPE_EXPANDING, &sh->state) ||
3482			    !add_stripe_bio(sh, bi, dd_idx, (bi->bi_rw&RW_MASK))) {
3483				/* Stripe is busy expanding or
3484				 * add failed due to overlap.  Flush everything
3485				 * and wait a while
3486				 */
3487				raid5_unplug_device(mddev->queue);
3488				release_stripe(sh);
3489				schedule();
3490				goto retry;
3491			}
3492			finish_wait(&conf->wait_for_overlap, &w);
3493			set_bit(STRIPE_HANDLE, &sh->state);
3494			clear_bit(STRIPE_DELAYED, &sh->state);
3495			release_stripe(sh);
3496		} else {
3497			/* cannot get stripe for read-ahead, just give-up */
3498			clear_bit(BIO_UPTODATE, &bi->bi_flags);
3499			finish_wait(&conf->wait_for_overlap, &w);
3500			break;
3501		}
3502
3503	}
3504	spin_lock_irq(&conf->device_lock);
3505	remaining = raid5_dec_bi_phys_segments(bi);
3506	spin_unlock_irq(&conf->device_lock);
3507	if (remaining == 0) {
3508
3509		if ( rw == WRITE )
3510			md_write_end(mddev);
3511
3512		bio_endio(bi, 0);
3513	}
3514	return 0;
3515}
3516
3517static sector_t reshape_request(mddev_t *mddev, sector_t sector_nr, int *skipped)
3518{
3519	/* reshaping is quite different to recovery/resync so it is
3520	 * handled quite separately ... here.
3521	 *
3522	 * On each call to sync_request, we gather one chunk worth of
3523	 * destination stripes and flag them as expanding.
3524	 * Then we find all the source stripes and request reads.
3525	 * As the reads complete, handle_stripe will copy the data
3526	 * into the destination stripe and release that stripe.
3527	 */
3528	raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
3529	struct stripe_head *sh;
3530	int pd_idx;
3531	sector_t first_sector, last_sector;
3532	int raid_disks = conf->previous_raid_disks;
3533	int data_disks = raid_disks - conf->max_degraded;
3534	int new_data_disks = conf->raid_disks - conf->max_degraded;
3535	int i;
3536	int dd_idx;
3537	sector_t writepos, safepos, gap;
3538
3539	if (sector_nr == 0 &&
3540	    conf->expand_progress != 0) {
3541		/* restarting in the middle, skip the initial sectors */
3542		sector_nr = conf->expand_progress;
3543		sector_div(sector_nr, new_data_disks);
3544		*skipped = 1;
3545		return sector_nr;
3546	}
3547
3548	/* we update the metadata when there is more than 3Meg
3549	 * in the block range (that is rather arbitrary, should
3550	 * probably be time based) or when the data about to be
3551	 * copied would over-write the source of the data at
3552	 * the front of the range.
3553	 * i.e. one new_stripe forward from expand_progress new_maps
3554	 * to after where expand_lo old_maps to
3555	 */
3556	writepos = conf->expand_progress +
3557		conf->chunk_size/512*(new_data_disks);
3558	sector_div(writepos, new_data_disks);
3559	safepos = conf->expand_lo;
3560	sector_div(safepos, data_disks);
3561	gap = conf->expand_progress - conf->expand_lo;
3562
3563	if (writepos >= safepos ||
3564	    gap > (new_data_disks)*3000*2 /*3Meg*/) {
3565		/* Cannot proceed until we've updated the superblock... */
3566		wait_event(conf->wait_for_overlap,
3567			   atomic_read(&conf->reshape_stripes)==0);
3568		mddev->reshape_position = conf->expand_progress;
3569		set_bit(MD_CHANGE_DEVS, &mddev->flags);
3570		md_wakeup_thread(mddev->thread);
3571		wait_event(mddev->sb_wait, mddev->flags == 0 ||
3572			   kthread_should_stop());
3573		spin_lock_irq(&conf->device_lock);
3574		conf->expand_lo = mddev->reshape_position;
3575		spin_unlock_irq(&conf->device_lock);
3576		wake_up(&conf->wait_for_overlap);
3577	}
3578
3579	for (i=0; i < conf->chunk_size/512; i+= STRIPE_SECTORS) {
3580		int j;
3581		int skipped = 0;
3582		pd_idx = stripe_to_pdidx(sector_nr+i, conf, conf->raid_disks);
3583		sh = get_active_stripe(conf, sector_nr+i,
3584				       conf->raid_disks, pd_idx, 0);
3585		set_bit(STRIPE_EXPANDING, &sh->state);
3586		atomic_inc(&conf->reshape_stripes);
3587		/* If any of this stripe is beyond the end of the old
3588		 * array, then we need to zero those blocks
3589		 */
3590		for (j=sh->disks; j--;) {
3591			sector_t s;
3592			if (j == sh->pd_idx)
3593				continue;
3594			if (conf->level == 6 &&
3595			    j == raid6_next_disk(sh->pd_idx, sh->disks))
3596				continue;
3597			s = compute_blocknr(sh, j);
3598			if (s < mddev->array_sectors) {
3599				skipped = 1;
3600				continue;
3601			}
3602			memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
3603			set_bit(R5_Expanded, &sh->dev[j].flags);
3604			set_bit(R5_UPTODATE, &sh->dev[j].flags);
3605		}
3606		if (!skipped) {
3607			set_bit(STRIPE_EXPAND_READY, &sh->state);
3608			set_bit(STRIPE_HANDLE, &sh->state);
3609		}
3610		release_stripe(sh);
3611	}
3612	spin_lock_irq(&conf->device_lock);
3613	conf->expand_progress = (sector_nr + i) * new_data_disks;
3614	spin_unlock_irq(&conf->device_lock);
3615	/* Ok, those stripe are ready. We can start scheduling
3616	 * reads on the source stripes.
3617	 * The source stripes are determined by mapping the first and last
3618	 * block on the destination stripes.
3619	 */
3620	first_sector =
3621		raid5_compute_sector(sector_nr*(new_data_disks),
3622				     raid_disks, data_disks,
3623				     &dd_idx, &pd_idx, conf);
3624	last_sector =
3625		raid5_compute_sector((sector_nr+conf->chunk_size/512)
3626				     *(new_data_disks) -1,
3627				     raid_disks, data_disks,
3628				     &dd_idx, &pd_idx, conf);
3629	if (last_sector >= (mddev->size<<1))
3630		last_sector = (mddev->size<<1)-1;
3631	while (first_sector <= last_sector) {
3632		pd_idx = stripe_to_pdidx(first_sector, conf,
3633					 conf->previous_raid_disks);
3634		sh = get_active_stripe(conf, first_sector,
3635				       conf->previous_raid_disks, pd_idx, 0);
3636		set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3637		set_bit(STRIPE_HANDLE, &sh->state);
3638		release_stripe(sh);
3639		first_sector += STRIPE_SECTORS;
3640	}
3641	/* If this takes us to the resync_max point where we have to pause,
3642	 * then we need to write out the superblock.
3643	 */
3644	sector_nr += conf->chunk_size>>9;
3645	if (sector_nr >= mddev->resync_max) {
3646		/* Cannot proceed until we've updated the superblock... */
3647		wait_event(conf->wait_for_overlap,
3648			   atomic_read(&conf->reshape_stripes) == 0);
3649		mddev->reshape_position = conf->expand_progress;
3650		set_bit(MD_CHANGE_DEVS, &mddev->flags);
3651		md_wakeup_thread(mddev->thread);
3652		wait_event(mddev->sb_wait,
3653			   !test_bit(MD_CHANGE_DEVS, &mddev->flags)
3654			   || kthread_should_stop());
3655		spin_lock_irq(&conf->device_lock);
3656		conf->expand_lo = mddev->reshape_position;
3657		spin_unlock_irq(&conf->device_lock);
3658		wake_up(&conf->wait_for_overlap);
3659	}
3660	return conf->chunk_size>>9;
3661}
3662
3663/* FIXME go_faster isn't used */
3664static inline sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
3665{
3666	raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
3667	struct stripe_head *sh;
3668	int pd_idx;
3669	int raid_disks = conf->raid_disks;
3670	sector_t max_sector = mddev->size << 1;
3671	int sync_blocks;
3672	int still_degraded = 0;
3673	int i;
3674
3675	if (sector_nr >= max_sector) {
3676		/* just being told to finish up .. nothing much to do */
3677		unplug_slaves(mddev);
3678		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
3679			end_reshape(conf);
3680			return 0;
3681		}
3682
3683		if (mddev->curr_resync < max_sector) /* aborted */
3684			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
3685					&sync_blocks, 1);
3686		else /* completed sync */
3687			conf->fullsync = 0;
3688		bitmap_close_sync(mddev->bitmap);
3689
3690		return 0;
3691	}
3692
3693	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3694		return reshape_request(mddev, sector_nr, skipped);
3695
3696	/* No need to check resync_max as we never do more than one
3697	 * stripe, and as resync_max will always be on a chunk boundary,
3698	 * if the check in md_do_sync didn't fire, there is no chance
3699	 * of overstepping resync_max here
3700	 */
3701
3702	/* if there is too many failed drives and we are trying
3703	 * to resync, then assert that we are finished, because there is
3704	 * nothing we can do.
3705	 */
3706	if (mddev->degraded >= conf->max_degraded &&
3707	    test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3708		sector_t rv = (mddev->size << 1) - sector_nr;
3709		*skipped = 1;
3710		return rv;
3711	}
3712	if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
3713	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
3714	    !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
3715		/* we can skip this block, and probably more */
3716		sync_blocks /= STRIPE_SECTORS;
3717		*skipped = 1;
3718		return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
3719	}
3720
3721
3722	bitmap_cond_end_sync(mddev->bitmap, sector_nr);
3723
3724	pd_idx = stripe_to_pdidx(sector_nr, conf, raid_disks);
3725	sh = get_active_stripe(conf, sector_nr, raid_disks, pd_idx, 1);
3726	if (sh == NULL) {
3727		sh = get_active_stripe(conf, sector_nr, raid_disks, pd_idx, 0);
3728		/* make sure we don't swamp the stripe cache if someone else
3729		 * is trying to get access
3730		 */
3731		schedule_timeout_uninterruptible(1);
3732	}
3733	/* Need to check if array will still be degraded after recovery/resync
3734	 * We don't need to check the 'failed' flag as when that gets set,
3735	 * recovery aborts.
3736	 */
3737	for (i=0; i<mddev->raid_disks; i++)
3738		if (conf->disks[i].rdev == NULL)
3739			still_degraded = 1;
3740
3741	bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
3742
3743	spin_lock(&sh->lock);
3744	set_bit(STRIPE_SYNCING, &sh->state);
3745	clear_bit(STRIPE_INSYNC, &sh->state);
3746	spin_unlock(&sh->lock);
3747
3748	/* wait for any blocked device to be handled */
3749	while(unlikely(!handle_stripe(sh, NULL)))
3750		;
3751	release_stripe(sh);
3752
3753	return STRIPE_SECTORS;
3754}
3755
3756static int  retry_aligned_read(raid5_conf_t *conf, struct bio *raid_bio)
3757{
3758	/* We may not be able to submit a whole bio at once as there
3759	 * may not be enough stripe_heads available.
3760	 * We cannot pre-allocate enough stripe_heads as we may need
3761	 * more than exist in the cache (if we allow ever large chunks).
3762	 * So we do one stripe head at a time and record in
3763	 * ->bi_hw_segments how many have been done.
3764	 *
3765	 * We *know* that this entire raid_bio is in one chunk, so
3766	 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
3767	 */
3768	struct stripe_head *sh;
3769	int dd_idx, pd_idx;
3770	sector_t sector, logical_sector, last_sector;
3771	int scnt = 0;
3772	int remaining;
3773	int handled = 0;
3774
3775	logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
3776	sector = raid5_compute_sector(	logical_sector,
3777					conf->raid_disks,
3778					conf->raid_disks - conf->max_degraded,
3779					&dd_idx,
3780					&pd_idx,
3781					conf);
3782	last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);
3783
3784	for (; logical_sector < last_sector;
3785	     logical_sector += STRIPE_SECTORS,
3786		     sector += STRIPE_SECTORS,
3787		     scnt++) {
3788
3789		if (scnt < raid5_bi_hw_segments(raid_bio))
3790			/* already done this stripe */
3791			continue;
3792
3793		sh = get_active_stripe(conf, sector, conf->raid_disks, pd_idx, 1);
3794
3795		if (!sh) {
3796			/* failed to get a stripe - must wait */
3797			raid5_set_bi_hw_segments(raid_bio, scnt);
3798			conf->retry_read_aligned = raid_bio;
3799			return handled;
3800		}
3801
3802		set_bit(R5_ReadError, &sh->dev[dd_idx].flags);
3803		if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
3804			release_stripe(sh);
3805			raid5_set_bi_hw_segments(raid_bio, scnt);
3806			conf->retry_read_aligned = raid_bio;
3807			return handled;
3808		}
3809
3810		handle_stripe(sh, NULL);
3811		release_stripe(sh);
3812		handled++;
3813	}
3814	spin_lock_irq(&conf->device_lock);
3815	remaining = raid5_dec_bi_phys_segments(raid_bio);
3816	spin_unlock_irq(&conf->device_lock);
3817	if (remaining == 0)
3818		bio_endio(raid_bio, 0);
3819	if (atomic_dec_and_test(&conf->active_aligned_reads))
3820		wake_up(&conf->wait_for_stripe);
3821	return handled;
3822}
3823
3824
3825
3826/*
3827 * This is our raid5 kernel thread.
3828 *
3829 * We scan the hash table for stripes which can be handled now.
3830 * During the scan, completed stripes are saved for us by the interrupt
3831 * handler, so that they will not have to wait for our next wakeup.
3832 */
3833static void raid5d(mddev_t *mddev)
3834{
3835	struct stripe_head *sh;
3836	raid5_conf_t *conf = mddev_to_conf(mddev);
3837	int handled;
3838
3839	pr_debug("+++ raid5d active\n");
3840
3841	md_check_recovery(mddev);
3842
3843	handled = 0;
3844	spin_lock_irq(&conf->device_lock);
3845	while (1) {
3846		struct bio *bio;
3847
3848		if (conf->seq_flush != conf->seq_write) {
3849			int seq = conf->seq_flush;
3850			spin_unlock_irq(&conf->device_lock);
3851			bitmap_unplug(mddev->bitmap);
3852			spin_lock_irq(&conf->device_lock);
3853			conf->seq_write = seq;
3854			activate_bit_delay(conf);
3855		}
3856
3857		while ((bio = remove_bio_from_retry(conf))) {
3858			int ok;
3859			spin_unlock_irq(&conf->device_lock);
3860			ok = retry_aligned_read(conf, bio);
3861			spin_lock_irq(&conf->device_lock);
3862			if (!ok)
3863				break;
3864			handled++;
3865		}
3866
3867		sh = __get_priority_stripe(conf);
3868
3869		if (!sh)
3870			break;
3871		spin_unlock_irq(&conf->device_lock);
3872
3873		handled++;
3874		handle_stripe(sh, conf->spare_page);
3875		release_stripe(sh);
3876
3877		spin_lock_irq(&conf->device_lock);
3878	}
3879	pr_debug("%d stripes handled\n", handled);
3880
3881	spin_unlock_irq(&conf->device_lock);
3882
3883	async_tx_issue_pending_all();
3884	unplug_slaves(mddev);
3885
3886	pr_debug("--- raid5d inactive\n");
3887}
3888
3889static ssize_t
3890raid5_show_stripe_cache_size(mddev_t *mddev, char *page)
3891{
3892	raid5_conf_t *conf = mddev_to_conf(mddev);
3893	if (conf)
3894		return sprintf(page, "%d\n", conf->max_nr_stripes);
3895	else
3896		return 0;
3897}
3898
3899static ssize_t
3900raid5_store_stripe_cache_size(mddev_t *mddev, const char *page, size_t len)
3901{
3902	raid5_conf_t *conf = mddev_to_conf(mddev);
3903	unsigned long new;
3904	int err;
3905
3906	if (len >= PAGE_SIZE)
3907		return -EINVAL;
3908	if (!conf)
3909		return -ENODEV;
3910
3911	if (strict_strtoul(page, 10, &new))
3912		return -EINVAL;
3913	if (new <= 16 || new > 32768)
3914		return -EINVAL;
3915	while (new < conf->max_nr_stripes) {
3916		if (drop_one_stripe(conf))
3917			conf->max_nr_stripes--;
3918		else
3919			break;
3920	}
3921	err = md_allow_write(mddev);
3922	if (err)
3923		return err;
3924	while (new > conf->max_nr_stripes) {
3925		if (grow_one_stripe(conf))
3926			conf->max_nr_stripes++;
3927		else break;
3928	}
3929	return len;
3930}
3931
3932static struct md_sysfs_entry
3933raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
3934				raid5_show_stripe_cache_size,
3935				raid5_store_stripe_cache_size);
3936
3937static ssize_t
3938raid5_show_preread_threshold(mddev_t *mddev, char *page)
3939{
3940	raid5_conf_t *conf = mddev_to_conf(mddev);
3941	if (conf)
3942		return sprintf(page, "%d\n", conf->bypass_threshold);
3943	else
3944		return 0;
3945}
3946
3947static ssize_t
3948raid5_store_preread_threshold(mddev_t *mddev, const char *page, size_t len)
3949{
3950	raid5_conf_t *conf = mddev_to_conf(mddev);
3951	unsigned long new;
3952	if (len >= PAGE_SIZE)
3953		return -EINVAL;
3954	if (!conf)
3955		return -ENODEV;
3956
3957	if (strict_strtoul(page, 10, &new))
3958		return -EINVAL;
3959	if (new > conf->max_nr_stripes)
3960		return -EINVAL;
3961	conf->bypass_threshold = new;
3962	return len;
3963}
3964
3965static struct md_sysfs_entry
3966raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
3967					S_IRUGO | S_IWUSR,
3968					raid5_show_preread_threshold,
3969					raid5_store_preread_threshold);
3970
3971static ssize_t
3972stripe_cache_active_show(mddev_t *mddev, char *page)
3973{
3974	raid5_conf_t *conf = mddev_to_conf(mddev);
3975	if (conf)
3976		return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
3977	else
3978		return 0;
3979}
3980
3981static struct md_sysfs_entry
3982raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
3983
3984static struct attribute *raid5_attrs[] =  {
3985	&raid5_stripecache_size.attr,
3986	&raid5_stripecache_active.attr,
3987	&raid5_preread_bypass_threshold.attr,
3988	NULL,
3989};
3990static struct attribute_group raid5_attrs_group = {
3991	.name = NULL,
3992	.attrs = raid5_attrs,
3993};
3994
3995static int run(mddev_t *mddev)
3996{
3997	raid5_conf_t *conf;
3998	int raid_disk, memory;
3999	mdk_rdev_t *rdev;
4000	struct disk_info *disk;
4001	struct list_head *tmp;
4002	int working_disks = 0;
4003
4004	if (mddev->level != 5 && mddev->level != 4 && mddev->level != 6) {
4005		printk(KERN_ERR "raid5: %s: raid level not set to 4/5/6 (%d)\n",
4006		       mdname(mddev), mddev->level);
4007		return -EIO;
4008	}
4009
4010	if (mddev->reshape_position != MaxSector) {
4011		/* Check that we can continue the reshape.
4012		 * Currently only disks can change, it must
4013		 * increase, and we must be past the point where
4014		 * a stripe over-writes itself
4015		 */
4016		sector_t here_new, here_old;
4017		int old_disks;
4018		int max_degraded = (mddev->level == 5 ? 1 : 2);
4019
4020		if (mddev->new_level != mddev->level ||
4021		    mddev->new_layout != mddev->layout ||
4022		    mddev->new_chunk != mddev->chunk_size) {
4023			printk(KERN_ERR "raid5: %s: unsupported reshape "
4024			       "required - aborting.\n",
4025			       mdname(mddev));
4026			return -EINVAL;
4027		}
4028		if (mddev->delta_disks <= 0) {
4029			printk(KERN_ERR "raid5: %s: unsupported reshape "
4030			       "(reduce disks) required - aborting.\n",
4031			       mdname(mddev));
4032			return -EINVAL;
4033		}
4034		old_disks = mddev->raid_disks - mddev->delta_disks;
4035		/* reshape_position must be on a new-stripe boundary, and one
4036		 * further up in new geometry must map after here in old
4037		 * geometry.
4038		 */
4039		here_new = mddev->reshape_position;
4040		if (sector_div(here_new, (mddev->chunk_size>>9)*
4041			       (mddev->raid_disks - max_degraded))) {
4042			printk(KERN_ERR "raid5: reshape_position not "
4043			       "on a stripe boundary\n");
4044			return -EINVAL;
4045		}
4046		/* here_new is the stripe we will write to */
4047		here_old = mddev->reshape_position;
4048		sector_div(here_old, (mddev->chunk_size>>9)*
4049			   (old_disks-max_degraded));
4050		/* here_old is the first stripe that we might need to read
4051		 * from */
4052		if (here_new >= here_old) {
4053			/* Reading from the same stripe as writing to - bad */
4054			printk(KERN_ERR "raid5: reshape_position too early for "
4055			       "auto-recovery - aborting.\n");
4056			return -EINVAL;
4057		}
4058		printk(KERN_INFO "raid5: reshape will continue\n");
4059		/* OK, we should be able to continue; */
4060	}
4061
4062
4063	mddev->private = kzalloc(sizeof (raid5_conf_t), GFP_KERNEL);
4064	if ((conf = mddev->private) == NULL)
4065		goto abort;
4066	if (mddev->reshape_position == MaxSector) {
4067		conf->previous_raid_disks = conf->raid_disks = mddev->raid_disks;
4068	} else {
4069		conf->raid_disks = mddev->raid_disks;
4070		conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
4071	}
4072
4073	conf->disks = kzalloc(conf->raid_disks * sizeof(struct disk_info),
4074			      GFP_KERNEL);
4075	if (!conf->disks)
4076		goto abort;
4077
4078	conf->mddev = mddev;
4079
4080	if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
4081		goto abort;
4082
4083	if (mddev->level == 6) {
4084		conf->spare_page = alloc_page(GFP_KERNEL);
4085		if (!conf->spare_page)
4086			goto abort;
4087	}
4088	spin_lock_init(&conf->device_lock);
4089	mddev->queue->queue_lock = &conf->device_lock;
4090	init_waitqueue_head(&conf->wait_for_stripe);
4091	init_waitqueue_head(&conf->wait_for_overlap);
4092	INIT_LIST_HEAD(&conf->handle_list);
4093	INIT_LIST_HEAD(&conf->hold_list);
4094	INIT_LIST_HEAD(&conf->delayed_list);
4095	INIT_LIST_HEAD(&conf->bitmap_list);
4096	INIT_LIST_HEAD(&conf->inactive_list);
4097	atomic_set(&conf->active_stripes, 0);
4098	atomic_set(&conf->preread_active_stripes, 0);
4099	atomic_set(&conf->active_aligned_reads, 0);
4100	conf->bypass_threshold = BYPASS_THRESHOLD;
4101
4102	pr_debug("raid5: run(%s) called.\n", mdname(mddev));
4103
4104	rdev_for_each(rdev, tmp, mddev) {
4105		raid_disk = rdev->raid_disk;
4106		if (raid_disk >= conf->raid_disks
4107		    || raid_disk < 0)
4108			continue;
4109		disk = conf->disks + raid_disk;
4110
4111		disk->rdev = rdev;
4112
4113		if (test_bit(In_sync, &rdev->flags)) {
4114			char b[BDEVNAME_SIZE];
4115			printk(KERN_INFO "raid5: device %s operational as raid"
4116				" disk %d\n", bdevname(rdev->bdev,b),
4117				raid_disk);
4118			working_disks++;
4119		} else
4120			/* Cannot rely on bitmap to complete recovery */
4121			conf->fullsync = 1;
4122	}
4123
4124	/*
4125	 * 0 for a fully functional array, 1 or 2 for a degraded array.
4126	 */
4127	mddev->degraded = conf->raid_disks - working_disks;
4128	conf->mddev = mddev;
4129	conf->chunk_size = mddev->chunk_size;
4130	conf->level = mddev->level;
4131	if (conf->level == 6)
4132		conf->max_degraded = 2;
4133	else
4134		conf->max_degraded = 1;
4135	conf->algorithm = mddev->layout;
4136	conf->max_nr_stripes = NR_STRIPES;
4137	conf->expand_progress = mddev->reshape_position;
4138
4139	/* device size must be a multiple of chunk size */
4140	mddev->size &= ~(mddev->chunk_size/1024 -1);
4141	mddev->resync_max_sectors = mddev->size << 1;
4142
4143	if (conf->level == 6 && conf->raid_disks < 4) {
4144		printk(KERN_ERR "raid6: not enough configured devices for %s (%d, minimum 4)\n",
4145		       mdname(mddev), conf->raid_disks);
4146		goto abort;
4147	}
4148	if (!conf->chunk_size || conf->chunk_size % 4) {
4149		printk(KERN_ERR "raid5: invalid chunk size %d for %s\n",
4150			conf->chunk_size, mdname(mddev));
4151		goto abort;
4152	}
4153	if (conf->algorithm > ALGORITHM_RIGHT_SYMMETRIC) {
4154		printk(KERN_ERR
4155			"raid5: unsupported parity algorithm %d for %s\n",
4156			conf->algorithm, mdname(mddev));
4157		goto abort;
4158	}
4159	if (mddev->degraded > conf->max_degraded) {
4160		printk(KERN_ERR "raid5: not enough operational devices for %s"
4161			" (%d/%d failed)\n",
4162			mdname(mddev), mddev->degraded, conf->raid_disks);
4163		goto abort;
4164	}
4165
4166	if (mddev->degraded > 0 &&
4167	    mddev->recovery_cp != MaxSector) {
4168		if (mddev->ok_start_degraded)
4169			printk(KERN_WARNING
4170			       "raid5: starting dirty degraded array: %s"
4171			       "- data corruption possible.\n",
4172			       mdname(mddev));
4173		else {
4174			printk(KERN_ERR
4175			       "raid5: cannot start dirty degraded array for %s\n",
4176			       mdname(mddev));
4177			goto abort;
4178		}
4179	}
4180
4181	{
4182		mddev->thread = md_register_thread(raid5d, mddev, "%s_raid5");
4183		if (!mddev->thread) {
4184			printk(KERN_ERR
4185				"raid5: couldn't allocate thread for %s\n",
4186				mdname(mddev));
4187			goto abort;
4188		}
4189	}
4190	memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
4191		 conf->raid_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
4192	if (grow_stripes(conf, conf->max_nr_stripes)) {
4193		printk(KERN_ERR
4194			"raid5: couldn't allocate %dkB for buffers\n", memory);
4195		shrink_stripes(conf);
4196		md_unregister_thread(mddev->thread);
4197		goto abort;
4198	} else
4199		printk(KERN_INFO "raid5: allocated %dkB for %s\n",
4200			memory, mdname(mddev));
4201
4202	if (mddev->degraded == 0)
4203		printk("raid5: raid level %d set %s active with %d out of %d"
4204			" devices, algorithm %d\n", conf->level, mdname(mddev),
4205			mddev->raid_disks-mddev->degraded, mddev->raid_disks,
4206			conf->algorithm);
4207	else
4208		printk(KERN_ALERT "raid5: raid level %d set %s active with %d"
4209			" out of %d devices, algorithm %d\n", conf->level,
4210			mdname(mddev), mddev->raid_disks - mddev->degraded,
4211			mddev->raid_disks, conf->algorithm);
4212
4213	print_raid5_conf(conf);
4214
4215	if (conf->expand_progress != MaxSector) {
4216		printk("...ok start reshape thread\n");
4217		conf->expand_lo = conf->expand_progress;
4218		atomic_set(&conf->reshape_stripes, 0);
4219		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4220		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4221		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4222		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4223		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4224							"%s_reshape");
4225	}
4226
4227	/* read-ahead size must cover two whole stripes, which is
4228	 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4229	 */
4230	{
4231		int data_disks = conf->previous_raid_disks - conf->max_degraded;
4232		int stripe = data_disks *
4233			(mddev->chunk_size / PAGE_SIZE);
4234		if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4235			mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4236	}
4237
4238	/* Ok, everything is just fine now */
4239	if (sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
4240		printk(KERN_WARNING
4241		       "raid5: failed to create sysfs attributes for %s\n",
4242		       mdname(mddev));
4243
4244	mddev->queue->unplug_fn = raid5_unplug_device;
4245	mddev->queue->backing_dev_info.congested_data = mddev;
4246	mddev->queue->backing_dev_info.congested_fn = raid5_congested;
4247
4248	mddev->array_sectors = 2 * mddev->size * (conf->previous_raid_disks -
4249					    conf->max_degraded);
4250
4251	blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
4252
4253	return 0;
4254abort:
4255	if (conf) {
4256		print_raid5_conf(conf);
4257		safe_put_page(conf->spare_page);
4258		kfree(conf->disks);
4259		kfree(conf->stripe_hashtbl);
4260		kfree(conf);
4261	}
4262	mddev->private = NULL;
4263	printk(KERN_ALERT "raid5: failed to run raid set %s\n", mdname(mddev));
4264	return -EIO;
4265}
4266
4267
4268
4269static int stop(mddev_t *mddev)
4270{
4271	raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
4272
4273	md_unregister_thread(mddev->thread);
4274	mddev->thread = NULL;
4275	shrink_stripes(conf);
4276	kfree(conf->stripe_hashtbl);
4277	mddev->queue->backing_dev_info.congested_fn = NULL;
4278	blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
4279	sysfs_remove_group(&mddev->kobj, &raid5_attrs_group);
4280	kfree(conf->disks);
4281	kfree(conf);
4282	mddev->private = NULL;
4283	return 0;
4284}
4285
4286#ifdef DEBUG
4287static void print_sh(struct seq_file *seq, struct stripe_head *sh)
4288{
4289	int i;
4290
4291	seq_printf(seq, "sh %llu, pd_idx %d, state %ld.\n",
4292		   (unsigned long long)sh->sector, sh->pd_idx, sh->state);
4293	seq_printf(seq, "sh %llu,  count %d.\n",
4294		   (unsigned long long)sh->sector, atomic_read(&sh->count));
4295	seq_printf(seq, "sh %llu, ", (unsigned long long)sh->sector);
4296	for (i = 0; i < sh->disks; i++) {
4297		seq_printf(seq, "(cache%d: %p %ld) ",
4298			   i, sh->dev[i].page, sh->dev[i].flags);
4299	}
4300	seq_printf(seq, "\n");
4301}
4302
4303static void printall(struct seq_file *seq, raid5_conf_t *conf)
4304{
4305	struct stripe_head *sh;
4306	struct hlist_node *hn;
4307	int i;
4308
4309	spin_lock_irq(&conf->device_lock);
4310	for (i = 0; i < NR_HASH; i++) {
4311		hlist_for_each_entry(sh, hn, &conf->stripe_hashtbl[i], hash) {
4312			if (sh->raid_conf != conf)
4313				continue;
4314			print_sh(seq, sh);
4315		}
4316	}
4317	spin_unlock_irq(&conf->device_lock);
4318}
4319#endif
4320
4321static void status(struct seq_file *seq, mddev_t *mddev)
4322{
4323	raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
4324	int i;
4325
4326	seq_printf (seq, " level %d, %dk chunk, algorithm %d", mddev->level, mddev->chunk_size >> 10, mddev->layout);
4327	seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
4328	for (i = 0; i < conf->raid_disks; i++)
4329		seq_printf (seq, "%s",
4330			       conf->disks[i].rdev &&
4331			       test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
4332	seq_printf (seq, "]");
4333#ifdef DEBUG
4334	seq_printf (seq, "\n");
4335	printall(seq, conf);
4336#endif
4337}
4338
4339static void print_raid5_conf (raid5_conf_t *conf)
4340{
4341	int i;
4342	struct disk_info *tmp;
4343
4344	printk("RAID5 conf printout:\n");
4345	if (!conf) {
4346		printk("(conf==NULL)\n");
4347		return;
4348	}
4349	printk(" --- rd:%d wd:%d\n", conf->raid_disks,
4350		 conf->raid_disks - conf->mddev->degraded);
4351
4352	for (i = 0; i < conf->raid_disks; i++) {
4353		char b[BDEVNAME_SIZE];
4354		tmp = conf->disks + i;
4355		if (tmp->rdev)
4356		printk(" disk %d, o:%d, dev:%s\n",
4357			i, !test_bit(Faulty, &tmp->rdev->flags),
4358			bdevname(tmp->rdev->bdev,b));
4359	}
4360}
4361
4362static int raid5_spare_active(mddev_t *mddev)
4363{
4364	int i;
4365	raid5_conf_t *conf = mddev->private;
4366	struct disk_info *tmp;
4367
4368	for (i = 0; i < conf->raid_disks; i++) {
4369		tmp = conf->disks + i;
4370		if (tmp->rdev
4371		    && !test_bit(Faulty, &tmp->rdev->flags)
4372		    && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
4373			unsigned long flags;
4374			spin_lock_irqsave(&conf->device_lock, flags);
4375			mddev->degraded--;
4376			spin_unlock_irqrestore(&conf->device_lock, flags);
4377		}
4378	}
4379	print_raid5_conf(conf);
4380	return 0;
4381}
4382
4383static int raid5_remove_disk(mddev_t *mddev, int number)
4384{
4385	raid5_conf_t *conf = mddev->private;
4386	int err = 0;
4387	mdk_rdev_t *rdev;
4388	struct disk_info *p = conf->disks + number;
4389
4390	print_raid5_conf(conf);
4391	rdev = p->rdev;
4392	if (rdev) {
4393		if (test_bit(In_sync, &rdev->flags) ||
4394		    atomic_read(&rdev->nr_pending)) {
4395			err = -EBUSY;
4396			goto abort;
4397		}
4398		/* Only remove non-faulty devices if recovery
4399		 * isn't possible.
4400		 */
4401		if (!test_bit(Faulty, &rdev->flags) &&
4402		    mddev->degraded <= conf->max_degraded) {
4403			err = -EBUSY;
4404			goto abort;
4405		}
4406		p->rdev = NULL;
4407		synchronize_rcu();
4408		if (atomic_read(&rdev->nr_pending)) {
4409			/* lost the race, try later */
4410			err = -EBUSY;
4411			p->rdev = rdev;
4412		}
4413	}
4414abort:
4415
4416	print_raid5_conf(conf);
4417	return err;
4418}
4419
4420static int raid5_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
4421{
4422	raid5_conf_t *conf = mddev->private;
4423	int err = -EEXIST;
4424	int disk;
4425	struct disk_info *p;
4426	int first = 0;
4427	int last = conf->raid_disks - 1;
4428
4429	if (mddev->degraded > conf->max_degraded)
4430		/* no point adding a device */
4431		return -EINVAL;
4432
4433	if (rdev->raid_disk >= 0)
4434		first = last = rdev->raid_disk;
4435
4436	/*
4437	 * find the disk ... but prefer rdev->saved_raid_disk
4438	 * if possible.
4439	 */
4440	if (rdev->saved_raid_disk >= 0 &&
4441	    rdev->saved_raid_disk >= first &&
4442	    conf->disks[rdev->saved_raid_disk].rdev == NULL)
4443		disk = rdev->saved_raid_disk;
4444	else
4445		disk = first;
4446	for ( ; disk <= last ; disk++)
4447		if ((p=conf->disks + disk)->rdev == NULL) {
4448			clear_bit(In_sync, &rdev->flags);
4449			rdev->raid_disk = disk;
4450			err = 0;
4451			if (rdev->saved_raid_disk != disk)
4452				conf->fullsync = 1;
4453			rcu_assign_pointer(p->rdev, rdev);
4454			break;
4455		}
4456	print_raid5_conf(conf);
4457	return err;
4458}
4459
4460static int raid5_resize(mddev_t *mddev, sector_t sectors)
4461{
4462	/* no resync is happening, and there is enough space
4463	 * on all devices, so we can resize.
4464	 * We need to make sure resync covers any new space.
4465	 * If the array is shrinking we should possibly wait until
4466	 * any io in the removed space completes, but it hardly seems
4467	 * worth it.
4468	 */
4469	raid5_conf_t *conf = mddev_to_conf(mddev);
4470
4471	sectors &= ~((sector_t)mddev->chunk_size/512 - 1);
4472	mddev->array_sectors = sectors * (mddev->raid_disks
4473					  - conf->max_degraded);
4474	set_capacity(mddev->gendisk, mddev->array_sectors);
4475	mddev->changed = 1;
4476	if (sectors/2  > mddev->size && mddev->recovery_cp == MaxSector) {
4477		mddev->recovery_cp = mddev->size << 1;
4478		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4479	}
4480	mddev->size = sectors /2;
4481	mddev->resync_max_sectors = sectors;
4482	return 0;
4483}
4484
4485#ifdef CONFIG_MD_RAID5_RESHAPE
4486static int raid5_check_reshape(mddev_t *mddev)
4487{
4488	raid5_conf_t *conf = mddev_to_conf(mddev);
4489	int err;
4490
4491	if (mddev->delta_disks < 0 ||
4492	    mddev->new_level != mddev->level)
4493		return -EINVAL; /* Cannot shrink array or change level yet */
4494	if (mddev->delta_disks == 0)
4495		return 0; /* nothing to do */
4496	if (mddev->bitmap)
4497		/* Cannot grow a bitmap yet */
4498		return -EBUSY;
4499
4500	/* Can only proceed if there are plenty of stripe_heads.
4501	 * We need a minimum of one full stripe,, and for sensible progress
4502	 * it is best to have about 4 times that.
4503	 * If we require 4 times, then the default 256 4K stripe_heads will
4504	 * allow for chunk sizes up to 256K, which is probably OK.
4505	 * If the chunk size is greater, user-space should request more
4506	 * stripe_heads first.
4507	 */
4508	if ((mddev->chunk_size / STRIPE_SIZE) * 4 > conf->max_nr_stripes ||
4509	    (mddev->new_chunk / STRIPE_SIZE) * 4 > conf->max_nr_stripes) {
4510		printk(KERN_WARNING "raid5: reshape: not enough stripes.  Needed %lu\n",
4511		       (mddev->chunk_size / STRIPE_SIZE)*4);
4512		return -ENOSPC;
4513	}
4514
4515	err = resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
4516	if (err)
4517		return err;
4518
4519	if (mddev->degraded > conf->max_degraded)
4520		return -EINVAL;
4521	/* looks like we might be able to manage this */
4522	return 0;
4523}
4524
4525static int raid5_start_reshape(mddev_t *mddev)
4526{
4527	raid5_conf_t *conf = mddev_to_conf(mddev);
4528	mdk_rdev_t *rdev;
4529	struct list_head *rtmp;
4530	int spares = 0;
4531	int added_devices = 0;
4532	unsigned long flags;
4533
4534	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4535		return -EBUSY;
4536
4537	rdev_for_each(rdev, rtmp, mddev)
4538		if (rdev->raid_disk < 0 &&
4539		    !test_bit(Faulty, &rdev->flags))
4540			spares++;
4541
4542	if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
4543		/* Not enough devices even to make a degraded array
4544		 * of that size
4545		 */
4546		return -EINVAL;
4547
4548	atomic_set(&conf->reshape_stripes, 0);
4549	spin_lock_irq(&conf->device_lock);
4550	conf->previous_raid_disks = conf->raid_disks;
4551	conf->raid_disks += mddev->delta_disks;
4552	conf->expand_progress = 0;
4553	conf->expand_lo = 0;
4554	spin_unlock_irq(&conf->device_lock);
4555
4556	/* Add some new drives, as many as will fit.
4557	 * We know there are enough to make the newly sized array work.
4558	 */
4559	rdev_for_each(rdev, rtmp, mddev)
4560		if (rdev->raid_disk < 0 &&
4561		    !test_bit(Faulty, &rdev->flags)) {
4562			if (raid5_add_disk(mddev, rdev) == 0) {
4563				char nm[20];
4564				set_bit(In_sync, &rdev->flags);
4565				added_devices++;
4566				rdev->recovery_offset = 0;
4567				sprintf(nm, "rd%d", rdev->raid_disk);
4568				if (sysfs_create_link(&mddev->kobj,
4569						      &rdev->kobj, nm))
4570					printk(KERN_WARNING
4571					       "raid5: failed to create "
4572					       " link %s for %s\n",
4573					       nm, mdname(mddev));
4574			} else
4575				break;
4576		}
4577
4578	spin_lock_irqsave(&conf->device_lock, flags);
4579	mddev->degraded = (conf->raid_disks - conf->previous_raid_disks) - added_devices;
4580	spin_unlock_irqrestore(&conf->device_lock, flags);
4581	mddev->raid_disks = conf->raid_disks;
4582	mddev->reshape_position = 0;
4583	set_bit(MD_CHANGE_DEVS, &mddev->flags);
4584
4585	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4586	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4587	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4588	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4589	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4590						"%s_reshape");
4591	if (!mddev->sync_thread) {
4592		mddev->recovery = 0;
4593		spin_lock_irq(&conf->device_lock);
4594		mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
4595		conf->expand_progress = MaxSector;
4596		spin_unlock_irq(&conf->device_lock);
4597		return -EAGAIN;
4598	}
4599	md_wakeup_thread(mddev->sync_thread);
4600	md_new_event(mddev);
4601	return 0;
4602}
4603#endif
4604
4605static void end_reshape(raid5_conf_t *conf)
4606{
4607	struct block_device *bdev;
4608
4609	if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
4610		conf->mddev->array_sectors = 2 * conf->mddev->size *
4611			(conf->raid_disks - conf->max_degraded);
4612		set_capacity(conf->mddev->gendisk, conf->mddev->array_sectors);
4613		conf->mddev->changed = 1;
4614
4615		bdev = bdget_disk(conf->mddev->gendisk, 0);
4616		if (bdev) {
4617			mutex_lock(&bdev->bd_inode->i_mutex);
4618			i_size_write(bdev->bd_inode,
4619				     (loff_t)conf->mddev->array_sectors << 9);
4620			mutex_unlock(&bdev->bd_inode->i_mutex);
4621			bdput(bdev);
4622		}
4623		spin_lock_irq(&conf->device_lock);
4624		conf->expand_progress = MaxSector;
4625		spin_unlock_irq(&conf->device_lock);
4626		conf->mddev->reshape_position = MaxSector;
4627
4628		/* read-ahead size must cover two whole stripes, which is
4629		 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4630		 */
4631		{
4632			int data_disks = conf->previous_raid_disks - conf->max_degraded;
4633			int stripe = data_disks *
4634				(conf->mddev->chunk_size / PAGE_SIZE);
4635			if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4636				conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4637		}
4638	}
4639}
4640
4641static void raid5_quiesce(mddev_t *mddev, int state)
4642{
4643	raid5_conf_t *conf = mddev_to_conf(mddev);
4644
4645	switch(state) {
4646	case 2: /* resume for a suspend */
4647		wake_up(&conf->wait_for_overlap);
4648		break;
4649
4650	case 1: /* stop all writes */
4651		spin_lock_irq(&conf->device_lock);
4652		conf->quiesce = 1;
4653		wait_event_lock_irq(conf->wait_for_stripe,
4654				    atomic_read(&conf->active_stripes) == 0 &&
4655				    atomic_read(&conf->active_aligned_reads) == 0,
4656				    conf->device_lock, /* nothing */);
4657		spin_unlock_irq(&conf->device_lock);
4658		break;
4659
4660	case 0: /* re-enable writes */
4661		spin_lock_irq(&conf->device_lock);
4662		conf->quiesce = 0;
4663		wake_up(&conf->wait_for_stripe);
4664		wake_up(&conf->wait_for_overlap);
4665		spin_unlock_irq(&conf->device_lock);
4666		break;
4667	}
4668}
4669
4670static struct mdk_personality raid6_personality =
4671{
4672	.name		= "raid6",
4673	.level		= 6,
4674	.owner		= THIS_MODULE,
4675	.make_request	= make_request,
4676	.run		= run,
4677	.stop		= stop,
4678	.status		= status,
4679	.error_handler	= error,
4680	.hot_add_disk	= raid5_add_disk,
4681	.hot_remove_disk= raid5_remove_disk,
4682	.spare_active	= raid5_spare_active,
4683	.sync_request	= sync_request,
4684	.resize		= raid5_resize,
4685#ifdef CONFIG_MD_RAID5_RESHAPE
4686	.check_reshape	= raid5_check_reshape,
4687	.start_reshape  = raid5_start_reshape,
4688#endif
4689	.quiesce	= raid5_quiesce,
4690};
4691static struct mdk_personality raid5_personality =
4692{
4693	.name		= "raid5",
4694	.level		= 5,
4695	.owner		= THIS_MODULE,
4696	.make_request	= make_request,
4697	.run		= run,
4698	.stop		= stop,
4699	.status		= status,
4700	.error_handler	= error,
4701	.hot_add_disk	= raid5_add_disk,
4702	.hot_remove_disk= raid5_remove_disk,
4703	.spare_active	= raid5_spare_active,
4704	.sync_request	= sync_request,
4705	.resize		= raid5_resize,
4706#ifdef CONFIG_MD_RAID5_RESHAPE
4707	.check_reshape	= raid5_check_reshape,
4708	.start_reshape  = raid5_start_reshape,
4709#endif
4710	.quiesce	= raid5_quiesce,
4711};
4712
4713static struct mdk_personality raid4_personality =
4714{
4715	.name		= "raid4",
4716	.level		= 4,
4717	.owner		= THIS_MODULE,
4718	.make_request	= make_request,
4719	.run		= run,
4720	.stop		= stop,
4721	.status		= status,
4722	.error_handler	= error,
4723	.hot_add_disk	= raid5_add_disk,
4724	.hot_remove_disk= raid5_remove_disk,
4725	.spare_active	= raid5_spare_active,
4726	.sync_request	= sync_request,
4727	.resize		= raid5_resize,
4728#ifdef CONFIG_MD_RAID5_RESHAPE
4729	.check_reshape	= raid5_check_reshape,
4730	.start_reshape  = raid5_start_reshape,
4731#endif
4732	.quiesce	= raid5_quiesce,
4733};
4734
4735static int __init raid5_init(void)
4736{
4737	int e;
4738
4739	e = raid6_select_algo();
4740	if ( e )
4741		return e;
4742	register_md_personality(&raid6_personality);
4743	register_md_personality(&raid5_personality);
4744	register_md_personality(&raid4_personality);
4745	return 0;
4746}
4747
4748static void raid5_exit(void)
4749{
4750	unregister_md_personality(&raid6_personality);
4751	unregister_md_personality(&raid5_personality);
4752	unregister_md_personality(&raid4_personality);
4753}
4754
4755module_init(raid5_init);
4756module_exit(raid5_exit);
4757MODULE_LICENSE("GPL");
4758MODULE_ALIAS("md-personality-4"); /* RAID5 */
4759MODULE_ALIAS("md-raid5");
4760MODULE_ALIAS("md-raid4");
4761MODULE_ALIAS("md-level-5");
4762MODULE_ALIAS("md-level-4");
4763MODULE_ALIAS("md-personality-8"); /* RAID6 */
4764MODULE_ALIAS("md-raid6");
4765MODULE_ALIAS("md-level-6");
4766
4767/* This used to be two separate modules, they were: */
4768MODULE_ALIAS("raid5");
4769MODULE_ALIAS("raid6");
4770