raid5.c revision e516402c0d4fc02be4af9fa8c18954d4f9deb44e
1/*
2 * raid5.c : Multiple Devices driver for Linux
3 *	   Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4 *	   Copyright (C) 1999, 2000 Ingo Molnar
5 *	   Copyright (C) 2002, 2003 H. Peter Anvin
6 *
7 * RAID-4/5/6 management functions.
8 * Thanks to Penguin Computing for making the RAID-6 development possible
9 * by donating a test server!
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
21/*
22 * BITMAP UNPLUGGING:
23 *
24 * The sequencing for updating the bitmap reliably is a little
25 * subtle (and I got it wrong the first time) so it deserves some
26 * explanation.
27 *
28 * We group bitmap updates into batches.  Each batch has a number.
29 * We may write out several batches at once, but that isn't very important.
30 * conf->bm_write is the number of the last batch successfully written.
31 * conf->bm_flush is the number of the last batch that was closed to
32 *    new additions.
33 * When we discover that we will need to write to any block in a stripe
34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35 * the number of the batch it will be in. This is bm_flush+1.
36 * When we are ready to do a write, if that batch hasn't been written yet,
37 *   we plug the array and queue the stripe for later.
38 * When an unplug happens, we increment bm_flush, thus closing the current
39 *   batch.
40 * When we notice that bm_flush > bm_write, we write out all pending updates
41 * to the bitmap, and advance bm_write to where bm_flush was.
42 * This may occasionally write a bit out twice, but is sure never to
43 * miss any bits.
44 */
45
46#include <linux/blkdev.h>
47#include <linux/kthread.h>
48#include <linux/raid/pq.h>
49#include <linux/async_tx.h>
50#include <linux/seq_file.h>
51#include "md.h"
52#include "raid5.h"
53#include "bitmap.h"
54
55/*
56 * Stripe cache
57 */
58
59#define NR_STRIPES		256
60#define STRIPE_SIZE		PAGE_SIZE
61#define STRIPE_SHIFT		(PAGE_SHIFT - 9)
62#define STRIPE_SECTORS		(STRIPE_SIZE>>9)
63#define	IO_THRESHOLD		1
64#define BYPASS_THRESHOLD	1
65#define NR_HASH			(PAGE_SIZE / sizeof(struct hlist_head))
66#define HASH_MASK		(NR_HASH - 1)
67
68#define stripe_hash(conf, sect)	(&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
69
70/* bio's attached to a stripe+device for I/O are linked together in bi_sector
71 * order without overlap.  There may be several bio's per stripe+device, and
72 * a bio could span several devices.
73 * When walking this list for a particular stripe+device, we must never proceed
74 * beyond a bio that extends past this device, as the next bio might no longer
75 * be valid.
76 * This macro is used to determine the 'next' bio in the list, given the sector
77 * of the current stripe+device
78 */
79#define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
80/*
81 * The following can be used to debug the driver
82 */
83#define RAID5_PARANOIA	1
84#if RAID5_PARANOIA && defined(CONFIG_SMP)
85# define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
86#else
87# define CHECK_DEVLOCK()
88#endif
89
90#ifdef DEBUG
91#define inline
92#define __inline__
93#endif
94
95#define printk_rl(args...) ((void) (printk_ratelimit() && printk(args)))
96
97/*
98 * We maintain a biased count of active stripes in the bottom 16 bits of
99 * bi_phys_segments, and a count of processed stripes in the upper 16 bits
100 */
101static inline int raid5_bi_phys_segments(struct bio *bio)
102{
103	return bio->bi_phys_segments & 0xffff;
104}
105
106static inline int raid5_bi_hw_segments(struct bio *bio)
107{
108	return (bio->bi_phys_segments >> 16) & 0xffff;
109}
110
111static inline int raid5_dec_bi_phys_segments(struct bio *bio)
112{
113	--bio->bi_phys_segments;
114	return raid5_bi_phys_segments(bio);
115}
116
117static inline int raid5_dec_bi_hw_segments(struct bio *bio)
118{
119	unsigned short val = raid5_bi_hw_segments(bio);
120
121	--val;
122	bio->bi_phys_segments = (val << 16) | raid5_bi_phys_segments(bio);
123	return val;
124}
125
126static inline void raid5_set_bi_hw_segments(struct bio *bio, unsigned int cnt)
127{
128	bio->bi_phys_segments = raid5_bi_phys_segments(bio) || (cnt << 16);
129}
130
131/* Find first data disk in a raid6 stripe */
132static inline int raid6_d0(struct stripe_head *sh)
133{
134	if (sh->ddf_layout)
135		/* ddf always start from first device */
136		return 0;
137	/* md starts just after Q block */
138	if (sh->qd_idx == sh->disks - 1)
139		return 0;
140	else
141		return sh->qd_idx + 1;
142}
143static inline int raid6_next_disk(int disk, int raid_disks)
144{
145	disk++;
146	return (disk < raid_disks) ? disk : 0;
147}
148
149/* When walking through the disks in a raid5, starting at raid6_d0,
150 * We need to map each disk to a 'slot', where the data disks are slot
151 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
152 * is raid_disks-1.  This help does that mapping.
153 */
154static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
155			     int *count, int syndrome_disks)
156{
157	int slot;
158
159	if (idx == sh->pd_idx)
160		return syndrome_disks;
161	if (idx == sh->qd_idx)
162		return syndrome_disks + 1;
163	slot = (*count)++;
164	return slot;
165}
166
167static void return_io(struct bio *return_bi)
168{
169	struct bio *bi = return_bi;
170	while (bi) {
171
172		return_bi = bi->bi_next;
173		bi->bi_next = NULL;
174		bi->bi_size = 0;
175		bio_endio(bi, 0);
176		bi = return_bi;
177	}
178}
179
180static void print_raid5_conf (raid5_conf_t *conf);
181
182static int stripe_operations_active(struct stripe_head *sh)
183{
184	return sh->check_state || sh->reconstruct_state ||
185	       test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
186	       test_bit(STRIPE_COMPUTE_RUN, &sh->state);
187}
188
189static void __release_stripe(raid5_conf_t *conf, struct stripe_head *sh)
190{
191	if (atomic_dec_and_test(&sh->count)) {
192		BUG_ON(!list_empty(&sh->lru));
193		BUG_ON(atomic_read(&conf->active_stripes)==0);
194		if (test_bit(STRIPE_HANDLE, &sh->state)) {
195			if (test_bit(STRIPE_DELAYED, &sh->state)) {
196				list_add_tail(&sh->lru, &conf->delayed_list);
197				blk_plug_device(conf->mddev->queue);
198			} else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
199				   sh->bm_seq - conf->seq_write > 0) {
200				list_add_tail(&sh->lru, &conf->bitmap_list);
201				blk_plug_device(conf->mddev->queue);
202			} else {
203				clear_bit(STRIPE_BIT_DELAY, &sh->state);
204				list_add_tail(&sh->lru, &conf->handle_list);
205			}
206			md_wakeup_thread(conf->mddev->thread);
207		} else {
208			BUG_ON(stripe_operations_active(sh));
209			if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
210				atomic_dec(&conf->preread_active_stripes);
211				if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
212					md_wakeup_thread(conf->mddev->thread);
213			}
214			atomic_dec(&conf->active_stripes);
215			if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
216				list_add_tail(&sh->lru, &conf->inactive_list);
217				wake_up(&conf->wait_for_stripe);
218				if (conf->retry_read_aligned)
219					md_wakeup_thread(conf->mddev->thread);
220			}
221		}
222	}
223}
224
225static void release_stripe(struct stripe_head *sh)
226{
227	raid5_conf_t *conf = sh->raid_conf;
228	unsigned long flags;
229
230	spin_lock_irqsave(&conf->device_lock, flags);
231	__release_stripe(conf, sh);
232	spin_unlock_irqrestore(&conf->device_lock, flags);
233}
234
235static inline void remove_hash(struct stripe_head *sh)
236{
237	pr_debug("remove_hash(), stripe %llu\n",
238		(unsigned long long)sh->sector);
239
240	hlist_del_init(&sh->hash);
241}
242
243static inline void insert_hash(raid5_conf_t *conf, struct stripe_head *sh)
244{
245	struct hlist_head *hp = stripe_hash(conf, sh->sector);
246
247	pr_debug("insert_hash(), stripe %llu\n",
248		(unsigned long long)sh->sector);
249
250	CHECK_DEVLOCK();
251	hlist_add_head(&sh->hash, hp);
252}
253
254
255/* find an idle stripe, make sure it is unhashed, and return it. */
256static struct stripe_head *get_free_stripe(raid5_conf_t *conf)
257{
258	struct stripe_head *sh = NULL;
259	struct list_head *first;
260
261	CHECK_DEVLOCK();
262	if (list_empty(&conf->inactive_list))
263		goto out;
264	first = conf->inactive_list.next;
265	sh = list_entry(first, struct stripe_head, lru);
266	list_del_init(first);
267	remove_hash(sh);
268	atomic_inc(&conf->active_stripes);
269out:
270	return sh;
271}
272
273static void shrink_buffers(struct stripe_head *sh, int num)
274{
275	struct page *p;
276	int i;
277
278	for (i=0; i<num ; i++) {
279		p = sh->dev[i].page;
280		if (!p)
281			continue;
282		sh->dev[i].page = NULL;
283		put_page(p);
284	}
285}
286
287static int grow_buffers(struct stripe_head *sh, int num)
288{
289	int i;
290
291	for (i=0; i<num; i++) {
292		struct page *page;
293
294		if (!(page = alloc_page(GFP_KERNEL))) {
295			return 1;
296		}
297		sh->dev[i].page = page;
298	}
299	return 0;
300}
301
302static void raid5_build_block(struct stripe_head *sh, int i, int previous);
303static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
304			    struct stripe_head *sh);
305
306static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
307{
308	raid5_conf_t *conf = sh->raid_conf;
309	int i;
310
311	BUG_ON(atomic_read(&sh->count) != 0);
312	BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
313	BUG_ON(stripe_operations_active(sh));
314
315	CHECK_DEVLOCK();
316	pr_debug("init_stripe called, stripe %llu\n",
317		(unsigned long long)sh->sector);
318
319	remove_hash(sh);
320
321	sh->generation = conf->generation - previous;
322	sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
323	sh->sector = sector;
324	stripe_set_idx(sector, conf, previous, sh);
325	sh->state = 0;
326
327
328	for (i = sh->disks; i--; ) {
329		struct r5dev *dev = &sh->dev[i];
330
331		if (dev->toread || dev->read || dev->towrite || dev->written ||
332		    test_bit(R5_LOCKED, &dev->flags)) {
333			printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
334			       (unsigned long long)sh->sector, i, dev->toread,
335			       dev->read, dev->towrite, dev->written,
336			       test_bit(R5_LOCKED, &dev->flags));
337			BUG();
338		}
339		dev->flags = 0;
340		raid5_build_block(sh, i, previous);
341	}
342	insert_hash(conf, sh);
343}
344
345static struct stripe_head *__find_stripe(raid5_conf_t *conf, sector_t sector,
346					 short generation)
347{
348	struct stripe_head *sh;
349	struct hlist_node *hn;
350
351	CHECK_DEVLOCK();
352	pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
353	hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
354		if (sh->sector == sector && sh->generation == generation)
355			return sh;
356	pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
357	return NULL;
358}
359
360static void unplug_slaves(mddev_t *mddev);
361static void raid5_unplug_device(struct request_queue *q);
362
363static struct stripe_head *
364get_active_stripe(raid5_conf_t *conf, sector_t sector,
365		  int previous, int noblock, int noquiesce)
366{
367	struct stripe_head *sh;
368
369	pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
370
371	spin_lock_irq(&conf->device_lock);
372
373	do {
374		wait_event_lock_irq(conf->wait_for_stripe,
375				    conf->quiesce == 0 || noquiesce,
376				    conf->device_lock, /* nothing */);
377		sh = __find_stripe(conf, sector, conf->generation - previous);
378		if (!sh) {
379			if (!conf->inactive_blocked)
380				sh = get_free_stripe(conf);
381			if (noblock && sh == NULL)
382				break;
383			if (!sh) {
384				conf->inactive_blocked = 1;
385				wait_event_lock_irq(conf->wait_for_stripe,
386						    !list_empty(&conf->inactive_list) &&
387						    (atomic_read(&conf->active_stripes)
388						     < (conf->max_nr_stripes *3/4)
389						     || !conf->inactive_blocked),
390						    conf->device_lock,
391						    raid5_unplug_device(conf->mddev->queue)
392					);
393				conf->inactive_blocked = 0;
394			} else
395				init_stripe(sh, sector, previous);
396		} else {
397			if (atomic_read(&sh->count)) {
398				BUG_ON(!list_empty(&sh->lru)
399				    && !test_bit(STRIPE_EXPANDING, &sh->state));
400			} else {
401				if (!test_bit(STRIPE_HANDLE, &sh->state))
402					atomic_inc(&conf->active_stripes);
403				if (list_empty(&sh->lru) &&
404				    !test_bit(STRIPE_EXPANDING, &sh->state))
405					BUG();
406				list_del_init(&sh->lru);
407			}
408		}
409	} while (sh == NULL);
410
411	if (sh)
412		atomic_inc(&sh->count);
413
414	spin_unlock_irq(&conf->device_lock);
415	return sh;
416}
417
418static void
419raid5_end_read_request(struct bio *bi, int error);
420static void
421raid5_end_write_request(struct bio *bi, int error);
422
423static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
424{
425	raid5_conf_t *conf = sh->raid_conf;
426	int i, disks = sh->disks;
427
428	might_sleep();
429
430	for (i = disks; i--; ) {
431		int rw;
432		struct bio *bi;
433		mdk_rdev_t *rdev;
434		if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags))
435			rw = WRITE;
436		else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
437			rw = READ;
438		else
439			continue;
440
441		bi = &sh->dev[i].req;
442
443		bi->bi_rw = rw;
444		if (rw == WRITE)
445			bi->bi_end_io = raid5_end_write_request;
446		else
447			bi->bi_end_io = raid5_end_read_request;
448
449		rcu_read_lock();
450		rdev = rcu_dereference(conf->disks[i].rdev);
451		if (rdev && test_bit(Faulty, &rdev->flags))
452			rdev = NULL;
453		if (rdev)
454			atomic_inc(&rdev->nr_pending);
455		rcu_read_unlock();
456
457		if (rdev) {
458			if (s->syncing || s->expanding || s->expanded)
459				md_sync_acct(rdev->bdev, STRIPE_SECTORS);
460
461			set_bit(STRIPE_IO_STARTED, &sh->state);
462
463			bi->bi_bdev = rdev->bdev;
464			pr_debug("%s: for %llu schedule op %ld on disc %d\n",
465				__func__, (unsigned long long)sh->sector,
466				bi->bi_rw, i);
467			atomic_inc(&sh->count);
468			bi->bi_sector = sh->sector + rdev->data_offset;
469			bi->bi_flags = 1 << BIO_UPTODATE;
470			bi->bi_vcnt = 1;
471			bi->bi_max_vecs = 1;
472			bi->bi_idx = 0;
473			bi->bi_io_vec = &sh->dev[i].vec;
474			bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
475			bi->bi_io_vec[0].bv_offset = 0;
476			bi->bi_size = STRIPE_SIZE;
477			bi->bi_next = NULL;
478			if (rw == WRITE &&
479			    test_bit(R5_ReWrite, &sh->dev[i].flags))
480				atomic_add(STRIPE_SECTORS,
481					&rdev->corrected_errors);
482			generic_make_request(bi);
483		} else {
484			if (rw == WRITE)
485				set_bit(STRIPE_DEGRADED, &sh->state);
486			pr_debug("skip op %ld on disc %d for sector %llu\n",
487				bi->bi_rw, i, (unsigned long long)sh->sector);
488			clear_bit(R5_LOCKED, &sh->dev[i].flags);
489			set_bit(STRIPE_HANDLE, &sh->state);
490		}
491	}
492}
493
494static struct dma_async_tx_descriptor *
495async_copy_data(int frombio, struct bio *bio, struct page *page,
496	sector_t sector, struct dma_async_tx_descriptor *tx)
497{
498	struct bio_vec *bvl;
499	struct page *bio_page;
500	int i;
501	int page_offset;
502
503	if (bio->bi_sector >= sector)
504		page_offset = (signed)(bio->bi_sector - sector) * 512;
505	else
506		page_offset = (signed)(sector - bio->bi_sector) * -512;
507	bio_for_each_segment(bvl, bio, i) {
508		int len = bio_iovec_idx(bio, i)->bv_len;
509		int clen;
510		int b_offset = 0;
511
512		if (page_offset < 0) {
513			b_offset = -page_offset;
514			page_offset += b_offset;
515			len -= b_offset;
516		}
517
518		if (len > 0 && page_offset + len > STRIPE_SIZE)
519			clen = STRIPE_SIZE - page_offset;
520		else
521			clen = len;
522
523		if (clen > 0) {
524			b_offset += bio_iovec_idx(bio, i)->bv_offset;
525			bio_page = bio_iovec_idx(bio, i)->bv_page;
526			if (frombio)
527				tx = async_memcpy(page, bio_page, page_offset,
528					b_offset, clen,
529					ASYNC_TX_DEP_ACK,
530					tx, NULL, NULL);
531			else
532				tx = async_memcpy(bio_page, page, b_offset,
533					page_offset, clen,
534					ASYNC_TX_DEP_ACK,
535					tx, NULL, NULL);
536		}
537		if (clen < len) /* hit end of page */
538			break;
539		page_offset +=  len;
540	}
541
542	return tx;
543}
544
545static void ops_complete_biofill(void *stripe_head_ref)
546{
547	struct stripe_head *sh = stripe_head_ref;
548	struct bio *return_bi = NULL;
549	raid5_conf_t *conf = sh->raid_conf;
550	int i;
551
552	pr_debug("%s: stripe %llu\n", __func__,
553		(unsigned long long)sh->sector);
554
555	/* clear completed biofills */
556	spin_lock_irq(&conf->device_lock);
557	for (i = sh->disks; i--; ) {
558		struct r5dev *dev = &sh->dev[i];
559
560		/* acknowledge completion of a biofill operation */
561		/* and check if we need to reply to a read request,
562		 * new R5_Wantfill requests are held off until
563		 * !STRIPE_BIOFILL_RUN
564		 */
565		if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
566			struct bio *rbi, *rbi2;
567
568			BUG_ON(!dev->read);
569			rbi = dev->read;
570			dev->read = NULL;
571			while (rbi && rbi->bi_sector <
572				dev->sector + STRIPE_SECTORS) {
573				rbi2 = r5_next_bio(rbi, dev->sector);
574				if (!raid5_dec_bi_phys_segments(rbi)) {
575					rbi->bi_next = return_bi;
576					return_bi = rbi;
577				}
578				rbi = rbi2;
579			}
580		}
581	}
582	spin_unlock_irq(&conf->device_lock);
583	clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
584
585	return_io(return_bi);
586
587	set_bit(STRIPE_HANDLE, &sh->state);
588	release_stripe(sh);
589}
590
591static void ops_run_biofill(struct stripe_head *sh)
592{
593	struct dma_async_tx_descriptor *tx = NULL;
594	raid5_conf_t *conf = sh->raid_conf;
595	int i;
596
597	pr_debug("%s: stripe %llu\n", __func__,
598		(unsigned long long)sh->sector);
599
600	for (i = sh->disks; i--; ) {
601		struct r5dev *dev = &sh->dev[i];
602		if (test_bit(R5_Wantfill, &dev->flags)) {
603			struct bio *rbi;
604			spin_lock_irq(&conf->device_lock);
605			dev->read = rbi = dev->toread;
606			dev->toread = NULL;
607			spin_unlock_irq(&conf->device_lock);
608			while (rbi && rbi->bi_sector <
609				dev->sector + STRIPE_SECTORS) {
610				tx = async_copy_data(0, rbi, dev->page,
611					dev->sector, tx);
612				rbi = r5_next_bio(rbi, dev->sector);
613			}
614		}
615	}
616
617	atomic_inc(&sh->count);
618	async_trigger_callback(ASYNC_TX_DEP_ACK | ASYNC_TX_ACK, tx,
619		ops_complete_biofill, sh);
620}
621
622static void ops_complete_compute5(void *stripe_head_ref)
623{
624	struct stripe_head *sh = stripe_head_ref;
625	int target = sh->ops.target;
626	struct r5dev *tgt = &sh->dev[target];
627
628	pr_debug("%s: stripe %llu\n", __func__,
629		(unsigned long long)sh->sector);
630
631	set_bit(R5_UPTODATE, &tgt->flags);
632	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
633	clear_bit(R5_Wantcompute, &tgt->flags);
634	clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
635	if (sh->check_state == check_state_compute_run)
636		sh->check_state = check_state_compute_result;
637	set_bit(STRIPE_HANDLE, &sh->state);
638	release_stripe(sh);
639}
640
641static struct dma_async_tx_descriptor *ops_run_compute5(struct stripe_head *sh)
642{
643	/* kernel stack size limits the total number of disks */
644	int disks = sh->disks;
645	struct page *xor_srcs[disks];
646	int target = sh->ops.target;
647	struct r5dev *tgt = &sh->dev[target];
648	struct page *xor_dest = tgt->page;
649	int count = 0;
650	struct dma_async_tx_descriptor *tx;
651	int i;
652
653	pr_debug("%s: stripe %llu block: %d\n",
654		__func__, (unsigned long long)sh->sector, target);
655	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
656
657	for (i = disks; i--; )
658		if (i != target)
659			xor_srcs[count++] = sh->dev[i].page;
660
661	atomic_inc(&sh->count);
662
663	if (unlikely(count == 1))
664		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE,
665			0, NULL, ops_complete_compute5, sh);
666	else
667		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
668			ASYNC_TX_XOR_ZERO_DST, NULL,
669			ops_complete_compute5, sh);
670
671	return tx;
672}
673
674static void ops_complete_prexor(void *stripe_head_ref)
675{
676	struct stripe_head *sh = stripe_head_ref;
677
678	pr_debug("%s: stripe %llu\n", __func__,
679		(unsigned long long)sh->sector);
680}
681
682static struct dma_async_tx_descriptor *
683ops_run_prexor(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
684{
685	/* kernel stack size limits the total number of disks */
686	int disks = sh->disks;
687	struct page *xor_srcs[disks];
688	int count = 0, pd_idx = sh->pd_idx, i;
689
690	/* existing parity data subtracted */
691	struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
692
693	pr_debug("%s: stripe %llu\n", __func__,
694		(unsigned long long)sh->sector);
695
696	for (i = disks; i--; ) {
697		struct r5dev *dev = &sh->dev[i];
698		/* Only process blocks that are known to be uptodate */
699		if (test_bit(R5_Wantdrain, &dev->flags))
700			xor_srcs[count++] = dev->page;
701	}
702
703	tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
704		ASYNC_TX_DEP_ACK | ASYNC_TX_XOR_DROP_DST, tx,
705		ops_complete_prexor, sh);
706
707	return tx;
708}
709
710static struct dma_async_tx_descriptor *
711ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
712{
713	int disks = sh->disks;
714	int i;
715
716	pr_debug("%s: stripe %llu\n", __func__,
717		(unsigned long long)sh->sector);
718
719	for (i = disks; i--; ) {
720		struct r5dev *dev = &sh->dev[i];
721		struct bio *chosen;
722
723		if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
724			struct bio *wbi;
725
726			spin_lock(&sh->lock);
727			chosen = dev->towrite;
728			dev->towrite = NULL;
729			BUG_ON(dev->written);
730			wbi = dev->written = chosen;
731			spin_unlock(&sh->lock);
732
733			while (wbi && wbi->bi_sector <
734				dev->sector + STRIPE_SECTORS) {
735				tx = async_copy_data(1, wbi, dev->page,
736					dev->sector, tx);
737				wbi = r5_next_bio(wbi, dev->sector);
738			}
739		}
740	}
741
742	return tx;
743}
744
745static void ops_complete_postxor(void *stripe_head_ref)
746{
747	struct stripe_head *sh = stripe_head_ref;
748	int disks = sh->disks, i, pd_idx = sh->pd_idx;
749
750	pr_debug("%s: stripe %llu\n", __func__,
751		(unsigned long long)sh->sector);
752
753	for (i = disks; i--; ) {
754		struct r5dev *dev = &sh->dev[i];
755		if (dev->written || i == pd_idx)
756			set_bit(R5_UPTODATE, &dev->flags);
757	}
758
759	if (sh->reconstruct_state == reconstruct_state_drain_run)
760		sh->reconstruct_state = reconstruct_state_drain_result;
761	else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
762		sh->reconstruct_state = reconstruct_state_prexor_drain_result;
763	else {
764		BUG_ON(sh->reconstruct_state != reconstruct_state_run);
765		sh->reconstruct_state = reconstruct_state_result;
766	}
767
768	set_bit(STRIPE_HANDLE, &sh->state);
769	release_stripe(sh);
770}
771
772static void
773ops_run_postxor(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
774{
775	/* kernel stack size limits the total number of disks */
776	int disks = sh->disks;
777	struct page *xor_srcs[disks];
778
779	int count = 0, pd_idx = sh->pd_idx, i;
780	struct page *xor_dest;
781	int prexor = 0;
782	unsigned long flags;
783
784	pr_debug("%s: stripe %llu\n", __func__,
785		(unsigned long long)sh->sector);
786
787	/* check if prexor is active which means only process blocks
788	 * that are part of a read-modify-write (written)
789	 */
790	if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
791		prexor = 1;
792		xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
793		for (i = disks; i--; ) {
794			struct r5dev *dev = &sh->dev[i];
795			if (dev->written)
796				xor_srcs[count++] = dev->page;
797		}
798	} else {
799		xor_dest = sh->dev[pd_idx].page;
800		for (i = disks; i--; ) {
801			struct r5dev *dev = &sh->dev[i];
802			if (i != pd_idx)
803				xor_srcs[count++] = dev->page;
804		}
805	}
806
807	/* 1/ if we prexor'd then the dest is reused as a source
808	 * 2/ if we did not prexor then we are redoing the parity
809	 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
810	 * for the synchronous xor case
811	 */
812	flags = ASYNC_TX_DEP_ACK | ASYNC_TX_ACK |
813		(prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
814
815	atomic_inc(&sh->count);
816
817	if (unlikely(count == 1)) {
818		flags &= ~(ASYNC_TX_XOR_DROP_DST | ASYNC_TX_XOR_ZERO_DST);
819		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE,
820			flags, tx, ops_complete_postxor, sh);
821	} else
822		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
823			flags, tx, ops_complete_postxor, sh);
824}
825
826static void ops_complete_check(void *stripe_head_ref)
827{
828	struct stripe_head *sh = stripe_head_ref;
829
830	pr_debug("%s: stripe %llu\n", __func__,
831		(unsigned long long)sh->sector);
832
833	sh->check_state = check_state_check_result;
834	set_bit(STRIPE_HANDLE, &sh->state);
835	release_stripe(sh);
836}
837
838static void ops_run_check(struct stripe_head *sh)
839{
840	/* kernel stack size limits the total number of disks */
841	int disks = sh->disks;
842	struct page *xor_srcs[disks];
843	struct dma_async_tx_descriptor *tx;
844
845	int count = 0, pd_idx = sh->pd_idx, i;
846	struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
847
848	pr_debug("%s: stripe %llu\n", __func__,
849		(unsigned long long)sh->sector);
850
851	for (i = disks; i--; ) {
852		struct r5dev *dev = &sh->dev[i];
853		if (i != pd_idx)
854			xor_srcs[count++] = dev->page;
855	}
856
857	tx = async_xor_zero_sum(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
858		&sh->ops.zero_sum_result, 0, NULL, NULL, NULL);
859
860	atomic_inc(&sh->count);
861	tx = async_trigger_callback(ASYNC_TX_DEP_ACK | ASYNC_TX_ACK, tx,
862		ops_complete_check, sh);
863}
864
865static void raid5_run_ops(struct stripe_head *sh, unsigned long ops_request)
866{
867	int overlap_clear = 0, i, disks = sh->disks;
868	struct dma_async_tx_descriptor *tx = NULL;
869
870	if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
871		ops_run_biofill(sh);
872		overlap_clear++;
873	}
874
875	if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
876		tx = ops_run_compute5(sh);
877		/* terminate the chain if postxor is not set to be run */
878		if (tx && !test_bit(STRIPE_OP_POSTXOR, &ops_request))
879			async_tx_ack(tx);
880	}
881
882	if (test_bit(STRIPE_OP_PREXOR, &ops_request))
883		tx = ops_run_prexor(sh, tx);
884
885	if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
886		tx = ops_run_biodrain(sh, tx);
887		overlap_clear++;
888	}
889
890	if (test_bit(STRIPE_OP_POSTXOR, &ops_request))
891		ops_run_postxor(sh, tx);
892
893	if (test_bit(STRIPE_OP_CHECK, &ops_request))
894		ops_run_check(sh);
895
896	if (overlap_clear)
897		for (i = disks; i--; ) {
898			struct r5dev *dev = &sh->dev[i];
899			if (test_and_clear_bit(R5_Overlap, &dev->flags))
900				wake_up(&sh->raid_conf->wait_for_overlap);
901		}
902}
903
904static int grow_one_stripe(raid5_conf_t *conf)
905{
906	struct stripe_head *sh;
907	sh = kmem_cache_alloc(conf->slab_cache, GFP_KERNEL);
908	if (!sh)
909		return 0;
910	memset(sh, 0, sizeof(*sh) + (conf->raid_disks-1)*sizeof(struct r5dev));
911	sh->raid_conf = conf;
912	spin_lock_init(&sh->lock);
913
914	if (grow_buffers(sh, conf->raid_disks)) {
915		shrink_buffers(sh, conf->raid_disks);
916		kmem_cache_free(conf->slab_cache, sh);
917		return 0;
918	}
919	sh->disks = conf->raid_disks;
920	/* we just created an active stripe so... */
921	atomic_set(&sh->count, 1);
922	atomic_inc(&conf->active_stripes);
923	INIT_LIST_HEAD(&sh->lru);
924	release_stripe(sh);
925	return 1;
926}
927
928static int grow_stripes(raid5_conf_t *conf, int num)
929{
930	struct kmem_cache *sc;
931	int devs = conf->raid_disks;
932
933	sprintf(conf->cache_name[0],
934		"raid%d-%s", conf->level, mdname(conf->mddev));
935	sprintf(conf->cache_name[1],
936		"raid%d-%s-alt", conf->level, mdname(conf->mddev));
937	conf->active_name = 0;
938	sc = kmem_cache_create(conf->cache_name[conf->active_name],
939			       sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
940			       0, 0, NULL);
941	if (!sc)
942		return 1;
943	conf->slab_cache = sc;
944	conf->pool_size = devs;
945	while (num--)
946		if (!grow_one_stripe(conf))
947			return 1;
948	return 0;
949}
950
951static int resize_stripes(raid5_conf_t *conf, int newsize)
952{
953	/* Make all the stripes able to hold 'newsize' devices.
954	 * New slots in each stripe get 'page' set to a new page.
955	 *
956	 * This happens in stages:
957	 * 1/ create a new kmem_cache and allocate the required number of
958	 *    stripe_heads.
959	 * 2/ gather all the old stripe_heads and tranfer the pages across
960	 *    to the new stripe_heads.  This will have the side effect of
961	 *    freezing the array as once all stripe_heads have been collected,
962	 *    no IO will be possible.  Old stripe heads are freed once their
963	 *    pages have been transferred over, and the old kmem_cache is
964	 *    freed when all stripes are done.
965	 * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
966	 *    we simple return a failre status - no need to clean anything up.
967	 * 4/ allocate new pages for the new slots in the new stripe_heads.
968	 *    If this fails, we don't bother trying the shrink the
969	 *    stripe_heads down again, we just leave them as they are.
970	 *    As each stripe_head is processed the new one is released into
971	 *    active service.
972	 *
973	 * Once step2 is started, we cannot afford to wait for a write,
974	 * so we use GFP_NOIO allocations.
975	 */
976	struct stripe_head *osh, *nsh;
977	LIST_HEAD(newstripes);
978	struct disk_info *ndisks;
979	int err;
980	struct kmem_cache *sc;
981	int i;
982
983	if (newsize <= conf->pool_size)
984		return 0; /* never bother to shrink */
985
986	err = md_allow_write(conf->mddev);
987	if (err)
988		return err;
989
990	/* Step 1 */
991	sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
992			       sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
993			       0, 0, NULL);
994	if (!sc)
995		return -ENOMEM;
996
997	for (i = conf->max_nr_stripes; i; i--) {
998		nsh = kmem_cache_alloc(sc, GFP_KERNEL);
999		if (!nsh)
1000			break;
1001
1002		memset(nsh, 0, sizeof(*nsh) + (newsize-1)*sizeof(struct r5dev));
1003
1004		nsh->raid_conf = conf;
1005		spin_lock_init(&nsh->lock);
1006
1007		list_add(&nsh->lru, &newstripes);
1008	}
1009	if (i) {
1010		/* didn't get enough, give up */
1011		while (!list_empty(&newstripes)) {
1012			nsh = list_entry(newstripes.next, struct stripe_head, lru);
1013			list_del(&nsh->lru);
1014			kmem_cache_free(sc, nsh);
1015		}
1016		kmem_cache_destroy(sc);
1017		return -ENOMEM;
1018	}
1019	/* Step 2 - Must use GFP_NOIO now.
1020	 * OK, we have enough stripes, start collecting inactive
1021	 * stripes and copying them over
1022	 */
1023	list_for_each_entry(nsh, &newstripes, lru) {
1024		spin_lock_irq(&conf->device_lock);
1025		wait_event_lock_irq(conf->wait_for_stripe,
1026				    !list_empty(&conf->inactive_list),
1027				    conf->device_lock,
1028				    unplug_slaves(conf->mddev)
1029			);
1030		osh = get_free_stripe(conf);
1031		spin_unlock_irq(&conf->device_lock);
1032		atomic_set(&nsh->count, 1);
1033		for(i=0; i<conf->pool_size; i++)
1034			nsh->dev[i].page = osh->dev[i].page;
1035		for( ; i<newsize; i++)
1036			nsh->dev[i].page = NULL;
1037		kmem_cache_free(conf->slab_cache, osh);
1038	}
1039	kmem_cache_destroy(conf->slab_cache);
1040
1041	/* Step 3.
1042	 * At this point, we are holding all the stripes so the array
1043	 * is completely stalled, so now is a good time to resize
1044	 * conf->disks.
1045	 */
1046	ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1047	if (ndisks) {
1048		for (i=0; i<conf->raid_disks; i++)
1049			ndisks[i] = conf->disks[i];
1050		kfree(conf->disks);
1051		conf->disks = ndisks;
1052	} else
1053		err = -ENOMEM;
1054
1055	/* Step 4, return new stripes to service */
1056	while(!list_empty(&newstripes)) {
1057		nsh = list_entry(newstripes.next, struct stripe_head, lru);
1058		list_del_init(&nsh->lru);
1059		for (i=conf->raid_disks; i < newsize; i++)
1060			if (nsh->dev[i].page == NULL) {
1061				struct page *p = alloc_page(GFP_NOIO);
1062				nsh->dev[i].page = p;
1063				if (!p)
1064					err = -ENOMEM;
1065			}
1066		release_stripe(nsh);
1067	}
1068	/* critical section pass, GFP_NOIO no longer needed */
1069
1070	conf->slab_cache = sc;
1071	conf->active_name = 1-conf->active_name;
1072	conf->pool_size = newsize;
1073	return err;
1074}
1075
1076static int drop_one_stripe(raid5_conf_t *conf)
1077{
1078	struct stripe_head *sh;
1079
1080	spin_lock_irq(&conf->device_lock);
1081	sh = get_free_stripe(conf);
1082	spin_unlock_irq(&conf->device_lock);
1083	if (!sh)
1084		return 0;
1085	BUG_ON(atomic_read(&sh->count));
1086	shrink_buffers(sh, conf->pool_size);
1087	kmem_cache_free(conf->slab_cache, sh);
1088	atomic_dec(&conf->active_stripes);
1089	return 1;
1090}
1091
1092static void shrink_stripes(raid5_conf_t *conf)
1093{
1094	while (drop_one_stripe(conf))
1095		;
1096
1097	if (conf->slab_cache)
1098		kmem_cache_destroy(conf->slab_cache);
1099	conf->slab_cache = NULL;
1100}
1101
1102static void raid5_end_read_request(struct bio * bi, int error)
1103{
1104	struct stripe_head *sh = bi->bi_private;
1105	raid5_conf_t *conf = sh->raid_conf;
1106	int disks = sh->disks, i;
1107	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1108	char b[BDEVNAME_SIZE];
1109	mdk_rdev_t *rdev;
1110
1111
1112	for (i=0 ; i<disks; i++)
1113		if (bi == &sh->dev[i].req)
1114			break;
1115
1116	pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1117		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
1118		uptodate);
1119	if (i == disks) {
1120		BUG();
1121		return;
1122	}
1123
1124	if (uptodate) {
1125		set_bit(R5_UPTODATE, &sh->dev[i].flags);
1126		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1127			rdev = conf->disks[i].rdev;
1128			printk_rl(KERN_INFO "raid5:%s: read error corrected"
1129				  " (%lu sectors at %llu on %s)\n",
1130				  mdname(conf->mddev), STRIPE_SECTORS,
1131				  (unsigned long long)(sh->sector
1132						       + rdev->data_offset),
1133				  bdevname(rdev->bdev, b));
1134			clear_bit(R5_ReadError, &sh->dev[i].flags);
1135			clear_bit(R5_ReWrite, &sh->dev[i].flags);
1136		}
1137		if (atomic_read(&conf->disks[i].rdev->read_errors))
1138			atomic_set(&conf->disks[i].rdev->read_errors, 0);
1139	} else {
1140		const char *bdn = bdevname(conf->disks[i].rdev->bdev, b);
1141		int retry = 0;
1142		rdev = conf->disks[i].rdev;
1143
1144		clear_bit(R5_UPTODATE, &sh->dev[i].flags);
1145		atomic_inc(&rdev->read_errors);
1146		if (conf->mddev->degraded)
1147			printk_rl(KERN_WARNING
1148				  "raid5:%s: read error not correctable "
1149				  "(sector %llu on %s).\n",
1150				  mdname(conf->mddev),
1151				  (unsigned long long)(sh->sector
1152						       + rdev->data_offset),
1153				  bdn);
1154		else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
1155			/* Oh, no!!! */
1156			printk_rl(KERN_WARNING
1157				  "raid5:%s: read error NOT corrected!! "
1158				  "(sector %llu on %s).\n",
1159				  mdname(conf->mddev),
1160				  (unsigned long long)(sh->sector
1161						       + rdev->data_offset),
1162				  bdn);
1163		else if (atomic_read(&rdev->read_errors)
1164			 > conf->max_nr_stripes)
1165			printk(KERN_WARNING
1166			       "raid5:%s: Too many read errors, failing device %s.\n",
1167			       mdname(conf->mddev), bdn);
1168		else
1169			retry = 1;
1170		if (retry)
1171			set_bit(R5_ReadError, &sh->dev[i].flags);
1172		else {
1173			clear_bit(R5_ReadError, &sh->dev[i].flags);
1174			clear_bit(R5_ReWrite, &sh->dev[i].flags);
1175			md_error(conf->mddev, rdev);
1176		}
1177	}
1178	rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1179	clear_bit(R5_LOCKED, &sh->dev[i].flags);
1180	set_bit(STRIPE_HANDLE, &sh->state);
1181	release_stripe(sh);
1182}
1183
1184static void raid5_end_write_request(struct bio *bi, int error)
1185{
1186	struct stripe_head *sh = bi->bi_private;
1187	raid5_conf_t *conf = sh->raid_conf;
1188	int disks = sh->disks, i;
1189	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1190
1191	for (i=0 ; i<disks; i++)
1192		if (bi == &sh->dev[i].req)
1193			break;
1194
1195	pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1196		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
1197		uptodate);
1198	if (i == disks) {
1199		BUG();
1200		return;
1201	}
1202
1203	if (!uptodate)
1204		md_error(conf->mddev, conf->disks[i].rdev);
1205
1206	rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1207
1208	clear_bit(R5_LOCKED, &sh->dev[i].flags);
1209	set_bit(STRIPE_HANDLE, &sh->state);
1210	release_stripe(sh);
1211}
1212
1213
1214static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
1215
1216static void raid5_build_block(struct stripe_head *sh, int i, int previous)
1217{
1218	struct r5dev *dev = &sh->dev[i];
1219
1220	bio_init(&dev->req);
1221	dev->req.bi_io_vec = &dev->vec;
1222	dev->req.bi_vcnt++;
1223	dev->req.bi_max_vecs++;
1224	dev->vec.bv_page = dev->page;
1225	dev->vec.bv_len = STRIPE_SIZE;
1226	dev->vec.bv_offset = 0;
1227
1228	dev->req.bi_sector = sh->sector;
1229	dev->req.bi_private = sh;
1230
1231	dev->flags = 0;
1232	dev->sector = compute_blocknr(sh, i, previous);
1233}
1234
1235static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1236{
1237	char b[BDEVNAME_SIZE];
1238	raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
1239	pr_debug("raid5: error called\n");
1240
1241	if (!test_bit(Faulty, &rdev->flags)) {
1242		set_bit(MD_CHANGE_DEVS, &mddev->flags);
1243		if (test_and_clear_bit(In_sync, &rdev->flags)) {
1244			unsigned long flags;
1245			spin_lock_irqsave(&conf->device_lock, flags);
1246			mddev->degraded++;
1247			spin_unlock_irqrestore(&conf->device_lock, flags);
1248			/*
1249			 * if recovery was running, make sure it aborts.
1250			 */
1251			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1252		}
1253		set_bit(Faulty, &rdev->flags);
1254		printk(KERN_ALERT
1255		       "raid5: Disk failure on %s, disabling device.\n"
1256		       "raid5: Operation continuing on %d devices.\n",
1257		       bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded);
1258	}
1259}
1260
1261/*
1262 * Input: a 'big' sector number,
1263 * Output: index of the data and parity disk, and the sector # in them.
1264 */
1265static sector_t raid5_compute_sector(raid5_conf_t *conf, sector_t r_sector,
1266				     int previous, int *dd_idx,
1267				     struct stripe_head *sh)
1268{
1269	long stripe;
1270	unsigned long chunk_number;
1271	unsigned int chunk_offset;
1272	int pd_idx, qd_idx;
1273	int ddf_layout = 0;
1274	sector_t new_sector;
1275	int algorithm = previous ? conf->prev_algo
1276				 : conf->algorithm;
1277	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
1278					 : conf->chunk_sectors;
1279	int raid_disks = previous ? conf->previous_raid_disks
1280				  : conf->raid_disks;
1281	int data_disks = raid_disks - conf->max_degraded;
1282
1283	/* First compute the information on this sector */
1284
1285	/*
1286	 * Compute the chunk number and the sector offset inside the chunk
1287	 */
1288	chunk_offset = sector_div(r_sector, sectors_per_chunk);
1289	chunk_number = r_sector;
1290	BUG_ON(r_sector != chunk_number);
1291
1292	/*
1293	 * Compute the stripe number
1294	 */
1295	stripe = chunk_number / data_disks;
1296
1297	/*
1298	 * Compute the data disk and parity disk indexes inside the stripe
1299	 */
1300	*dd_idx = chunk_number % data_disks;
1301
1302	/*
1303	 * Select the parity disk based on the user selected algorithm.
1304	 */
1305	pd_idx = qd_idx = ~0;
1306	switch(conf->level) {
1307	case 4:
1308		pd_idx = data_disks;
1309		break;
1310	case 5:
1311		switch (algorithm) {
1312		case ALGORITHM_LEFT_ASYMMETRIC:
1313			pd_idx = data_disks - stripe % raid_disks;
1314			if (*dd_idx >= pd_idx)
1315				(*dd_idx)++;
1316			break;
1317		case ALGORITHM_RIGHT_ASYMMETRIC:
1318			pd_idx = stripe % raid_disks;
1319			if (*dd_idx >= pd_idx)
1320				(*dd_idx)++;
1321			break;
1322		case ALGORITHM_LEFT_SYMMETRIC:
1323			pd_idx = data_disks - stripe % raid_disks;
1324			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1325			break;
1326		case ALGORITHM_RIGHT_SYMMETRIC:
1327			pd_idx = stripe % raid_disks;
1328			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1329			break;
1330		case ALGORITHM_PARITY_0:
1331			pd_idx = 0;
1332			(*dd_idx)++;
1333			break;
1334		case ALGORITHM_PARITY_N:
1335			pd_idx = data_disks;
1336			break;
1337		default:
1338			printk(KERN_ERR "raid5: unsupported algorithm %d\n",
1339				algorithm);
1340			BUG();
1341		}
1342		break;
1343	case 6:
1344
1345		switch (algorithm) {
1346		case ALGORITHM_LEFT_ASYMMETRIC:
1347			pd_idx = raid_disks - 1 - (stripe % raid_disks);
1348			qd_idx = pd_idx + 1;
1349			if (pd_idx == raid_disks-1) {
1350				(*dd_idx)++;	/* Q D D D P */
1351				qd_idx = 0;
1352			} else if (*dd_idx >= pd_idx)
1353				(*dd_idx) += 2; /* D D P Q D */
1354			break;
1355		case ALGORITHM_RIGHT_ASYMMETRIC:
1356			pd_idx = stripe % raid_disks;
1357			qd_idx = pd_idx + 1;
1358			if (pd_idx == raid_disks-1) {
1359				(*dd_idx)++;	/* Q D D D P */
1360				qd_idx = 0;
1361			} else if (*dd_idx >= pd_idx)
1362				(*dd_idx) += 2; /* D D P Q D */
1363			break;
1364		case ALGORITHM_LEFT_SYMMETRIC:
1365			pd_idx = raid_disks - 1 - (stripe % raid_disks);
1366			qd_idx = (pd_idx + 1) % raid_disks;
1367			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1368			break;
1369		case ALGORITHM_RIGHT_SYMMETRIC:
1370			pd_idx = stripe % raid_disks;
1371			qd_idx = (pd_idx + 1) % raid_disks;
1372			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1373			break;
1374
1375		case ALGORITHM_PARITY_0:
1376			pd_idx = 0;
1377			qd_idx = 1;
1378			(*dd_idx) += 2;
1379			break;
1380		case ALGORITHM_PARITY_N:
1381			pd_idx = data_disks;
1382			qd_idx = data_disks + 1;
1383			break;
1384
1385		case ALGORITHM_ROTATING_ZERO_RESTART:
1386			/* Exactly the same as RIGHT_ASYMMETRIC, but or
1387			 * of blocks for computing Q is different.
1388			 */
1389			pd_idx = stripe % raid_disks;
1390			qd_idx = pd_idx + 1;
1391			if (pd_idx == raid_disks-1) {
1392				(*dd_idx)++;	/* Q D D D P */
1393				qd_idx = 0;
1394			} else if (*dd_idx >= pd_idx)
1395				(*dd_idx) += 2; /* D D P Q D */
1396			ddf_layout = 1;
1397			break;
1398
1399		case ALGORITHM_ROTATING_N_RESTART:
1400			/* Same a left_asymmetric, by first stripe is
1401			 * D D D P Q  rather than
1402			 * Q D D D P
1403			 */
1404			pd_idx = raid_disks - 1 - ((stripe + 1) % raid_disks);
1405			qd_idx = pd_idx + 1;
1406			if (pd_idx == raid_disks-1) {
1407				(*dd_idx)++;	/* Q D D D P */
1408				qd_idx = 0;
1409			} else if (*dd_idx >= pd_idx)
1410				(*dd_idx) += 2; /* D D P Q D */
1411			ddf_layout = 1;
1412			break;
1413
1414		case ALGORITHM_ROTATING_N_CONTINUE:
1415			/* Same as left_symmetric but Q is before P */
1416			pd_idx = raid_disks - 1 - (stripe % raid_disks);
1417			qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
1418			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1419			ddf_layout = 1;
1420			break;
1421
1422		case ALGORITHM_LEFT_ASYMMETRIC_6:
1423			/* RAID5 left_asymmetric, with Q on last device */
1424			pd_idx = data_disks - stripe % (raid_disks-1);
1425			if (*dd_idx >= pd_idx)
1426				(*dd_idx)++;
1427			qd_idx = raid_disks - 1;
1428			break;
1429
1430		case ALGORITHM_RIGHT_ASYMMETRIC_6:
1431			pd_idx = stripe % (raid_disks-1);
1432			if (*dd_idx >= pd_idx)
1433				(*dd_idx)++;
1434			qd_idx = raid_disks - 1;
1435			break;
1436
1437		case ALGORITHM_LEFT_SYMMETRIC_6:
1438			pd_idx = data_disks - stripe % (raid_disks-1);
1439			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
1440			qd_idx = raid_disks - 1;
1441			break;
1442
1443		case ALGORITHM_RIGHT_SYMMETRIC_6:
1444			pd_idx = stripe % (raid_disks-1);
1445			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
1446			qd_idx = raid_disks - 1;
1447			break;
1448
1449		case ALGORITHM_PARITY_0_6:
1450			pd_idx = 0;
1451			(*dd_idx)++;
1452			qd_idx = raid_disks - 1;
1453			break;
1454
1455
1456		default:
1457			printk(KERN_CRIT "raid6: unsupported algorithm %d\n",
1458			       algorithm);
1459			BUG();
1460		}
1461		break;
1462	}
1463
1464	if (sh) {
1465		sh->pd_idx = pd_idx;
1466		sh->qd_idx = qd_idx;
1467		sh->ddf_layout = ddf_layout;
1468	}
1469	/*
1470	 * Finally, compute the new sector number
1471	 */
1472	new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
1473	return new_sector;
1474}
1475
1476
1477static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
1478{
1479	raid5_conf_t *conf = sh->raid_conf;
1480	int raid_disks = sh->disks;
1481	int data_disks = raid_disks - conf->max_degraded;
1482	sector_t new_sector = sh->sector, check;
1483	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
1484					 : conf->chunk_sectors;
1485	int algorithm = previous ? conf->prev_algo
1486				 : conf->algorithm;
1487	sector_t stripe;
1488	int chunk_offset;
1489	int chunk_number, dummy1, dd_idx = i;
1490	sector_t r_sector;
1491	struct stripe_head sh2;
1492
1493
1494	chunk_offset = sector_div(new_sector, sectors_per_chunk);
1495	stripe = new_sector;
1496	BUG_ON(new_sector != stripe);
1497
1498	if (i == sh->pd_idx)
1499		return 0;
1500	switch(conf->level) {
1501	case 4: break;
1502	case 5:
1503		switch (algorithm) {
1504		case ALGORITHM_LEFT_ASYMMETRIC:
1505		case ALGORITHM_RIGHT_ASYMMETRIC:
1506			if (i > sh->pd_idx)
1507				i--;
1508			break;
1509		case ALGORITHM_LEFT_SYMMETRIC:
1510		case ALGORITHM_RIGHT_SYMMETRIC:
1511			if (i < sh->pd_idx)
1512				i += raid_disks;
1513			i -= (sh->pd_idx + 1);
1514			break;
1515		case ALGORITHM_PARITY_0:
1516			i -= 1;
1517			break;
1518		case ALGORITHM_PARITY_N:
1519			break;
1520		default:
1521			printk(KERN_ERR "raid5: unsupported algorithm %d\n",
1522			       algorithm);
1523			BUG();
1524		}
1525		break;
1526	case 6:
1527		if (i == sh->qd_idx)
1528			return 0; /* It is the Q disk */
1529		switch (algorithm) {
1530		case ALGORITHM_LEFT_ASYMMETRIC:
1531		case ALGORITHM_RIGHT_ASYMMETRIC:
1532		case ALGORITHM_ROTATING_ZERO_RESTART:
1533		case ALGORITHM_ROTATING_N_RESTART:
1534			if (sh->pd_idx == raid_disks-1)
1535				i--;	/* Q D D D P */
1536			else if (i > sh->pd_idx)
1537				i -= 2; /* D D P Q D */
1538			break;
1539		case ALGORITHM_LEFT_SYMMETRIC:
1540		case ALGORITHM_RIGHT_SYMMETRIC:
1541			if (sh->pd_idx == raid_disks-1)
1542				i--; /* Q D D D P */
1543			else {
1544				/* D D P Q D */
1545				if (i < sh->pd_idx)
1546					i += raid_disks;
1547				i -= (sh->pd_idx + 2);
1548			}
1549			break;
1550		case ALGORITHM_PARITY_0:
1551			i -= 2;
1552			break;
1553		case ALGORITHM_PARITY_N:
1554			break;
1555		case ALGORITHM_ROTATING_N_CONTINUE:
1556			if (sh->pd_idx == 0)
1557				i--;	/* P D D D Q */
1558			else if (i > sh->pd_idx)
1559				i -= 2; /* D D Q P D */
1560			break;
1561		case ALGORITHM_LEFT_ASYMMETRIC_6:
1562		case ALGORITHM_RIGHT_ASYMMETRIC_6:
1563			if (i > sh->pd_idx)
1564				i--;
1565			break;
1566		case ALGORITHM_LEFT_SYMMETRIC_6:
1567		case ALGORITHM_RIGHT_SYMMETRIC_6:
1568			if (i < sh->pd_idx)
1569				i += data_disks + 1;
1570			i -= (sh->pd_idx + 1);
1571			break;
1572		case ALGORITHM_PARITY_0_6:
1573			i -= 1;
1574			break;
1575		default:
1576			printk(KERN_CRIT "raid6: unsupported algorithm %d\n",
1577			       algorithm);
1578			BUG();
1579		}
1580		break;
1581	}
1582
1583	chunk_number = stripe * data_disks + i;
1584	r_sector = (sector_t)chunk_number * sectors_per_chunk + chunk_offset;
1585
1586	check = raid5_compute_sector(conf, r_sector,
1587				     previous, &dummy1, &sh2);
1588	if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
1589		|| sh2.qd_idx != sh->qd_idx) {
1590		printk(KERN_ERR "compute_blocknr: map not correct\n");
1591		return 0;
1592	}
1593	return r_sector;
1594}
1595
1596
1597
1598/*
1599 * Copy data between a page in the stripe cache, and one or more bion
1600 * The page could align with the middle of the bio, or there could be
1601 * several bion, each with several bio_vecs, which cover part of the page
1602 * Multiple bion are linked together on bi_next.  There may be extras
1603 * at the end of this list.  We ignore them.
1604 */
1605static void copy_data(int frombio, struct bio *bio,
1606		     struct page *page,
1607		     sector_t sector)
1608{
1609	char *pa = page_address(page);
1610	struct bio_vec *bvl;
1611	int i;
1612	int page_offset;
1613
1614	if (bio->bi_sector >= sector)
1615		page_offset = (signed)(bio->bi_sector - sector) * 512;
1616	else
1617		page_offset = (signed)(sector - bio->bi_sector) * -512;
1618	bio_for_each_segment(bvl, bio, i) {
1619		int len = bio_iovec_idx(bio,i)->bv_len;
1620		int clen;
1621		int b_offset = 0;
1622
1623		if (page_offset < 0) {
1624			b_offset = -page_offset;
1625			page_offset += b_offset;
1626			len -= b_offset;
1627		}
1628
1629		if (len > 0 && page_offset + len > STRIPE_SIZE)
1630			clen = STRIPE_SIZE - page_offset;
1631		else clen = len;
1632
1633		if (clen > 0) {
1634			char *ba = __bio_kmap_atomic(bio, i, KM_USER0);
1635			if (frombio)
1636				memcpy(pa+page_offset, ba+b_offset, clen);
1637			else
1638				memcpy(ba+b_offset, pa+page_offset, clen);
1639			__bio_kunmap_atomic(ba, KM_USER0);
1640		}
1641		if (clen < len) /* hit end of page */
1642			break;
1643		page_offset +=  len;
1644	}
1645}
1646
1647#define check_xor()	do {						  \
1648				if (count == MAX_XOR_BLOCKS) {		  \
1649				xor_blocks(count, STRIPE_SIZE, dest, ptr);\
1650				count = 0;				  \
1651			   }						  \
1652			} while(0)
1653
1654static void compute_parity6(struct stripe_head *sh, int method)
1655{
1656	raid5_conf_t *conf = sh->raid_conf;
1657	int i, pd_idx, qd_idx, d0_idx, disks = sh->disks, count;
1658	int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1659	struct bio *chosen;
1660	/**** FIX THIS: This could be very bad if disks is close to 256 ****/
1661	void *ptrs[syndrome_disks+2];
1662
1663	pd_idx = sh->pd_idx;
1664	qd_idx = sh->qd_idx;
1665	d0_idx = raid6_d0(sh);
1666
1667	pr_debug("compute_parity, stripe %llu, method %d\n",
1668		(unsigned long long)sh->sector, method);
1669
1670	switch(method) {
1671	case READ_MODIFY_WRITE:
1672		BUG();		/* READ_MODIFY_WRITE N/A for RAID-6 */
1673	case RECONSTRUCT_WRITE:
1674		for (i= disks; i-- ;)
1675			if ( i != pd_idx && i != qd_idx && sh->dev[i].towrite ) {
1676				chosen = sh->dev[i].towrite;
1677				sh->dev[i].towrite = NULL;
1678
1679				if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1680					wake_up(&conf->wait_for_overlap);
1681
1682				BUG_ON(sh->dev[i].written);
1683				sh->dev[i].written = chosen;
1684			}
1685		break;
1686	case CHECK_PARITY:
1687		BUG();		/* Not implemented yet */
1688	}
1689
1690	for (i = disks; i--;)
1691		if (sh->dev[i].written) {
1692			sector_t sector = sh->dev[i].sector;
1693			struct bio *wbi = sh->dev[i].written;
1694			while (wbi && wbi->bi_sector < sector + STRIPE_SECTORS) {
1695				copy_data(1, wbi, sh->dev[i].page, sector);
1696				wbi = r5_next_bio(wbi, sector);
1697			}
1698
1699			set_bit(R5_LOCKED, &sh->dev[i].flags);
1700			set_bit(R5_UPTODATE, &sh->dev[i].flags);
1701		}
1702
1703	/* Note that unlike RAID-5, the ordering of the disks matters greatly.*/
1704
1705	for (i = 0; i < disks; i++)
1706		ptrs[i] = (void *)raid6_empty_zero_page;
1707
1708	count = 0;
1709	i = d0_idx;
1710	do {
1711		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1712
1713		ptrs[slot] = page_address(sh->dev[i].page);
1714		if (slot < syndrome_disks &&
1715		    !test_bit(R5_UPTODATE, &sh->dev[i].flags)) {
1716			printk(KERN_ERR "block %d/%d not uptodate "
1717			       "on parity calc\n", i, count);
1718			BUG();
1719		}
1720
1721		i = raid6_next_disk(i, disks);
1722	} while (i != d0_idx);
1723	BUG_ON(count != syndrome_disks);
1724
1725	raid6_call.gen_syndrome(syndrome_disks+2, STRIPE_SIZE, ptrs);
1726
1727	switch(method) {
1728	case RECONSTRUCT_WRITE:
1729		set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1730		set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags);
1731		set_bit(R5_LOCKED,   &sh->dev[pd_idx].flags);
1732		set_bit(R5_LOCKED,   &sh->dev[qd_idx].flags);
1733		break;
1734	case UPDATE_PARITY:
1735		set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1736		set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags);
1737		break;
1738	}
1739}
1740
1741
1742/* Compute one missing block */
1743static void compute_block_1(struct stripe_head *sh, int dd_idx, int nozero)
1744{
1745	int i, count, disks = sh->disks;
1746	void *ptr[MAX_XOR_BLOCKS], *dest, *p;
1747	int qd_idx = sh->qd_idx;
1748
1749	pr_debug("compute_block_1, stripe %llu, idx %d\n",
1750		(unsigned long long)sh->sector, dd_idx);
1751
1752	if ( dd_idx == qd_idx ) {
1753		/* We're actually computing the Q drive */
1754		compute_parity6(sh, UPDATE_PARITY);
1755	} else {
1756		dest = page_address(sh->dev[dd_idx].page);
1757		if (!nozero) memset(dest, 0, STRIPE_SIZE);
1758		count = 0;
1759		for (i = disks ; i--; ) {
1760			if (i == dd_idx || i == qd_idx)
1761				continue;
1762			p = page_address(sh->dev[i].page);
1763			if (test_bit(R5_UPTODATE, &sh->dev[i].flags))
1764				ptr[count++] = p;
1765			else
1766				printk("compute_block() %d, stripe %llu, %d"
1767				       " not present\n", dd_idx,
1768				       (unsigned long long)sh->sector, i);
1769
1770			check_xor();
1771		}
1772		if (count)
1773			xor_blocks(count, STRIPE_SIZE, dest, ptr);
1774		if (!nozero) set_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
1775		else clear_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
1776	}
1777}
1778
1779/* Compute two missing blocks */
1780static void compute_block_2(struct stripe_head *sh, int dd_idx1, int dd_idx2)
1781{
1782	int i, count, disks = sh->disks;
1783	int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1784	int d0_idx = raid6_d0(sh);
1785	int faila = -1, failb = -1;
1786	/**** FIX THIS: This could be very bad if disks is close to 256 ****/
1787	void *ptrs[syndrome_disks+2];
1788
1789	for (i = 0; i < disks ; i++)
1790		ptrs[i] = (void *)raid6_empty_zero_page;
1791	count = 0;
1792	i = d0_idx;
1793	do {
1794		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1795
1796		ptrs[slot] = page_address(sh->dev[i].page);
1797
1798		if (i == dd_idx1)
1799			faila = slot;
1800		if (i == dd_idx2)
1801			failb = slot;
1802		i = raid6_next_disk(i, disks);
1803	} while (i != d0_idx);
1804	BUG_ON(count != syndrome_disks);
1805
1806	BUG_ON(faila == failb);
1807	if ( failb < faila ) { int tmp = faila; faila = failb; failb = tmp; }
1808
1809	pr_debug("compute_block_2, stripe %llu, idx %d,%d (%d,%d)\n",
1810		 (unsigned long long)sh->sector, dd_idx1, dd_idx2,
1811		 faila, failb);
1812
1813	if (failb == syndrome_disks+1) {
1814		/* Q disk is one of the missing disks */
1815		if (faila == syndrome_disks) {
1816			/* Missing P+Q, just recompute */
1817			compute_parity6(sh, UPDATE_PARITY);
1818			return;
1819		} else {
1820			/* We're missing D+Q; recompute D from P */
1821			compute_block_1(sh, ((dd_idx1 == sh->qd_idx) ?
1822					     dd_idx2 : dd_idx1),
1823					0);
1824			compute_parity6(sh, UPDATE_PARITY); /* Is this necessary? */
1825			return;
1826		}
1827	}
1828
1829	/* We're missing D+P or D+D; */
1830	if (failb == syndrome_disks) {
1831		/* We're missing D+P. */
1832		raid6_datap_recov(syndrome_disks+2, STRIPE_SIZE, faila, ptrs);
1833	} else {
1834		/* We're missing D+D. */
1835		raid6_2data_recov(syndrome_disks+2, STRIPE_SIZE, faila, failb,
1836				  ptrs);
1837	}
1838
1839	/* Both the above update both missing blocks */
1840	set_bit(R5_UPTODATE, &sh->dev[dd_idx1].flags);
1841	set_bit(R5_UPTODATE, &sh->dev[dd_idx2].flags);
1842}
1843
1844static void
1845schedule_reconstruction5(struct stripe_head *sh, struct stripe_head_state *s,
1846			 int rcw, int expand)
1847{
1848	int i, pd_idx = sh->pd_idx, disks = sh->disks;
1849
1850	if (rcw) {
1851		/* if we are not expanding this is a proper write request, and
1852		 * there will be bios with new data to be drained into the
1853		 * stripe cache
1854		 */
1855		if (!expand) {
1856			sh->reconstruct_state = reconstruct_state_drain_run;
1857			set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
1858		} else
1859			sh->reconstruct_state = reconstruct_state_run;
1860
1861		set_bit(STRIPE_OP_POSTXOR, &s->ops_request);
1862
1863		for (i = disks; i--; ) {
1864			struct r5dev *dev = &sh->dev[i];
1865
1866			if (dev->towrite) {
1867				set_bit(R5_LOCKED, &dev->flags);
1868				set_bit(R5_Wantdrain, &dev->flags);
1869				if (!expand)
1870					clear_bit(R5_UPTODATE, &dev->flags);
1871				s->locked++;
1872			}
1873		}
1874		if (s->locked + 1 == disks)
1875			if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
1876				atomic_inc(&sh->raid_conf->pending_full_writes);
1877	} else {
1878		BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
1879			test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
1880
1881		sh->reconstruct_state = reconstruct_state_prexor_drain_run;
1882		set_bit(STRIPE_OP_PREXOR, &s->ops_request);
1883		set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
1884		set_bit(STRIPE_OP_POSTXOR, &s->ops_request);
1885
1886		for (i = disks; i--; ) {
1887			struct r5dev *dev = &sh->dev[i];
1888			if (i == pd_idx)
1889				continue;
1890
1891			if (dev->towrite &&
1892			    (test_bit(R5_UPTODATE, &dev->flags) ||
1893			     test_bit(R5_Wantcompute, &dev->flags))) {
1894				set_bit(R5_Wantdrain, &dev->flags);
1895				set_bit(R5_LOCKED, &dev->flags);
1896				clear_bit(R5_UPTODATE, &dev->flags);
1897				s->locked++;
1898			}
1899		}
1900	}
1901
1902	/* keep the parity disk locked while asynchronous operations
1903	 * are in flight
1904	 */
1905	set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
1906	clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1907	s->locked++;
1908
1909	pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
1910		__func__, (unsigned long long)sh->sector,
1911		s->locked, s->ops_request);
1912}
1913
1914/*
1915 * Each stripe/dev can have one or more bion attached.
1916 * toread/towrite point to the first in a chain.
1917 * The bi_next chain must be in order.
1918 */
1919static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
1920{
1921	struct bio **bip;
1922	raid5_conf_t *conf = sh->raid_conf;
1923	int firstwrite=0;
1924
1925	pr_debug("adding bh b#%llu to stripe s#%llu\n",
1926		(unsigned long long)bi->bi_sector,
1927		(unsigned long long)sh->sector);
1928
1929
1930	spin_lock(&sh->lock);
1931	spin_lock_irq(&conf->device_lock);
1932	if (forwrite) {
1933		bip = &sh->dev[dd_idx].towrite;
1934		if (*bip == NULL && sh->dev[dd_idx].written == NULL)
1935			firstwrite = 1;
1936	} else
1937		bip = &sh->dev[dd_idx].toread;
1938	while (*bip && (*bip)->bi_sector < bi->bi_sector) {
1939		if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
1940			goto overlap;
1941		bip = & (*bip)->bi_next;
1942	}
1943	if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
1944		goto overlap;
1945
1946	BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
1947	if (*bip)
1948		bi->bi_next = *bip;
1949	*bip = bi;
1950	bi->bi_phys_segments++;
1951	spin_unlock_irq(&conf->device_lock);
1952	spin_unlock(&sh->lock);
1953
1954	pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
1955		(unsigned long long)bi->bi_sector,
1956		(unsigned long long)sh->sector, dd_idx);
1957
1958	if (conf->mddev->bitmap && firstwrite) {
1959		bitmap_startwrite(conf->mddev->bitmap, sh->sector,
1960				  STRIPE_SECTORS, 0);
1961		sh->bm_seq = conf->seq_flush+1;
1962		set_bit(STRIPE_BIT_DELAY, &sh->state);
1963	}
1964
1965	if (forwrite) {
1966		/* check if page is covered */
1967		sector_t sector = sh->dev[dd_idx].sector;
1968		for (bi=sh->dev[dd_idx].towrite;
1969		     sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
1970			     bi && bi->bi_sector <= sector;
1971		     bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
1972			if (bi->bi_sector + (bi->bi_size>>9) >= sector)
1973				sector = bi->bi_sector + (bi->bi_size>>9);
1974		}
1975		if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
1976			set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
1977	}
1978	return 1;
1979
1980 overlap:
1981	set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
1982	spin_unlock_irq(&conf->device_lock);
1983	spin_unlock(&sh->lock);
1984	return 0;
1985}
1986
1987static void end_reshape(raid5_conf_t *conf);
1988
1989static int page_is_zero(struct page *p)
1990{
1991	char *a = page_address(p);
1992	return ((*(u32*)a) == 0 &&
1993		memcmp(a, a+4, STRIPE_SIZE-4)==0);
1994}
1995
1996static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
1997			    struct stripe_head *sh)
1998{
1999	int sectors_per_chunk =
2000		previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
2001	int dd_idx;
2002	int chunk_offset = sector_div(stripe, sectors_per_chunk);
2003	int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2004
2005	raid5_compute_sector(conf,
2006			     stripe * (disks - conf->max_degraded)
2007			     *sectors_per_chunk + chunk_offset,
2008			     previous,
2009			     &dd_idx, sh);
2010}
2011
2012static void
2013handle_failed_stripe(raid5_conf_t *conf, struct stripe_head *sh,
2014				struct stripe_head_state *s, int disks,
2015				struct bio **return_bi)
2016{
2017	int i;
2018	for (i = disks; i--; ) {
2019		struct bio *bi;
2020		int bitmap_end = 0;
2021
2022		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2023			mdk_rdev_t *rdev;
2024			rcu_read_lock();
2025			rdev = rcu_dereference(conf->disks[i].rdev);
2026			if (rdev && test_bit(In_sync, &rdev->flags))
2027				/* multiple read failures in one stripe */
2028				md_error(conf->mddev, rdev);
2029			rcu_read_unlock();
2030		}
2031		spin_lock_irq(&conf->device_lock);
2032		/* fail all writes first */
2033		bi = sh->dev[i].towrite;
2034		sh->dev[i].towrite = NULL;
2035		if (bi) {
2036			s->to_write--;
2037			bitmap_end = 1;
2038		}
2039
2040		if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2041			wake_up(&conf->wait_for_overlap);
2042
2043		while (bi && bi->bi_sector <
2044			sh->dev[i].sector + STRIPE_SECTORS) {
2045			struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2046			clear_bit(BIO_UPTODATE, &bi->bi_flags);
2047			if (!raid5_dec_bi_phys_segments(bi)) {
2048				md_write_end(conf->mddev);
2049				bi->bi_next = *return_bi;
2050				*return_bi = bi;
2051			}
2052			bi = nextbi;
2053		}
2054		/* and fail all 'written' */
2055		bi = sh->dev[i].written;
2056		sh->dev[i].written = NULL;
2057		if (bi) bitmap_end = 1;
2058		while (bi && bi->bi_sector <
2059		       sh->dev[i].sector + STRIPE_SECTORS) {
2060			struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
2061			clear_bit(BIO_UPTODATE, &bi->bi_flags);
2062			if (!raid5_dec_bi_phys_segments(bi)) {
2063				md_write_end(conf->mddev);
2064				bi->bi_next = *return_bi;
2065				*return_bi = bi;
2066			}
2067			bi = bi2;
2068		}
2069
2070		/* fail any reads if this device is non-operational and
2071		 * the data has not reached the cache yet.
2072		 */
2073		if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
2074		    (!test_bit(R5_Insync, &sh->dev[i].flags) ||
2075		      test_bit(R5_ReadError, &sh->dev[i].flags))) {
2076			bi = sh->dev[i].toread;
2077			sh->dev[i].toread = NULL;
2078			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2079				wake_up(&conf->wait_for_overlap);
2080			if (bi) s->to_read--;
2081			while (bi && bi->bi_sector <
2082			       sh->dev[i].sector + STRIPE_SECTORS) {
2083				struct bio *nextbi =
2084					r5_next_bio(bi, sh->dev[i].sector);
2085				clear_bit(BIO_UPTODATE, &bi->bi_flags);
2086				if (!raid5_dec_bi_phys_segments(bi)) {
2087					bi->bi_next = *return_bi;
2088					*return_bi = bi;
2089				}
2090				bi = nextbi;
2091			}
2092		}
2093		spin_unlock_irq(&conf->device_lock);
2094		if (bitmap_end)
2095			bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2096					STRIPE_SECTORS, 0, 0);
2097	}
2098
2099	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2100		if (atomic_dec_and_test(&conf->pending_full_writes))
2101			md_wakeup_thread(conf->mddev->thread);
2102}
2103
2104/* fetch_block5 - checks the given member device to see if its data needs
2105 * to be read or computed to satisfy a request.
2106 *
2107 * Returns 1 when no more member devices need to be checked, otherwise returns
2108 * 0 to tell the loop in handle_stripe_fill5 to continue
2109 */
2110static int fetch_block5(struct stripe_head *sh, struct stripe_head_state *s,
2111			int disk_idx, int disks)
2112{
2113	struct r5dev *dev = &sh->dev[disk_idx];
2114	struct r5dev *failed_dev = &sh->dev[s->failed_num];
2115
2116	/* is the data in this block needed, and can we get it? */
2117	if (!test_bit(R5_LOCKED, &dev->flags) &&
2118	    !test_bit(R5_UPTODATE, &dev->flags) &&
2119	    (dev->toread ||
2120	     (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2121	     s->syncing || s->expanding ||
2122	     (s->failed &&
2123	      (failed_dev->toread ||
2124	       (failed_dev->towrite &&
2125		!test_bit(R5_OVERWRITE, &failed_dev->flags)))))) {
2126		/* We would like to get this block, possibly by computing it,
2127		 * otherwise read it if the backing disk is insync
2128		 */
2129		if ((s->uptodate == disks - 1) &&
2130		    (s->failed && disk_idx == s->failed_num)) {
2131			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2132			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2133			set_bit(R5_Wantcompute, &dev->flags);
2134			sh->ops.target = disk_idx;
2135			s->req_compute = 1;
2136			/* Careful: from this point on 'uptodate' is in the eye
2137			 * of raid5_run_ops which services 'compute' operations
2138			 * before writes. R5_Wantcompute flags a block that will
2139			 * be R5_UPTODATE by the time it is needed for a
2140			 * subsequent operation.
2141			 */
2142			s->uptodate++;
2143			return 1; /* uptodate + compute == disks */
2144		} else if (test_bit(R5_Insync, &dev->flags)) {
2145			set_bit(R5_LOCKED, &dev->flags);
2146			set_bit(R5_Wantread, &dev->flags);
2147			s->locked++;
2148			pr_debug("Reading block %d (sync=%d)\n", disk_idx,
2149				s->syncing);
2150		}
2151	}
2152
2153	return 0;
2154}
2155
2156/**
2157 * handle_stripe_fill5 - read or compute data to satisfy pending requests.
2158 */
2159static void handle_stripe_fill5(struct stripe_head *sh,
2160			struct stripe_head_state *s, int disks)
2161{
2162	int i;
2163
2164	/* look for blocks to read/compute, skip this if a compute
2165	 * is already in flight, or if the stripe contents are in the
2166	 * midst of changing due to a write
2167	 */
2168	if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2169	    !sh->reconstruct_state)
2170		for (i = disks; i--; )
2171			if (fetch_block5(sh, s, i, disks))
2172				break;
2173	set_bit(STRIPE_HANDLE, &sh->state);
2174}
2175
2176static void handle_stripe_fill6(struct stripe_head *sh,
2177			struct stripe_head_state *s, struct r6_state *r6s,
2178			int disks)
2179{
2180	int i;
2181	for (i = disks; i--; ) {
2182		struct r5dev *dev = &sh->dev[i];
2183		if (!test_bit(R5_LOCKED, &dev->flags) &&
2184		    !test_bit(R5_UPTODATE, &dev->flags) &&
2185		    (dev->toread || (dev->towrite &&
2186		     !test_bit(R5_OVERWRITE, &dev->flags)) ||
2187		     s->syncing || s->expanding ||
2188		     (s->failed >= 1 &&
2189		      (sh->dev[r6s->failed_num[0]].toread ||
2190		       s->to_write)) ||
2191		     (s->failed >= 2 &&
2192		      (sh->dev[r6s->failed_num[1]].toread ||
2193		       s->to_write)))) {
2194			/* we would like to get this block, possibly
2195			 * by computing it, but we might not be able to
2196			 */
2197			if ((s->uptodate == disks - 1) &&
2198			    (s->failed && (i == r6s->failed_num[0] ||
2199					   i == r6s->failed_num[1]))) {
2200				pr_debug("Computing stripe %llu block %d\n",
2201				       (unsigned long long)sh->sector, i);
2202				compute_block_1(sh, i, 0);
2203				s->uptodate++;
2204			} else if ( s->uptodate == disks-2 && s->failed >= 2 ) {
2205				/* Computing 2-failure is *very* expensive; only
2206				 * do it if failed >= 2
2207				 */
2208				int other;
2209				for (other = disks; other--; ) {
2210					if (other == i)
2211						continue;
2212					if (!test_bit(R5_UPTODATE,
2213					      &sh->dev[other].flags))
2214						break;
2215				}
2216				BUG_ON(other < 0);
2217				pr_debug("Computing stripe %llu blocks %d,%d\n",
2218				       (unsigned long long)sh->sector,
2219				       i, other);
2220				compute_block_2(sh, i, other);
2221				s->uptodate += 2;
2222			} else if (test_bit(R5_Insync, &dev->flags)) {
2223				set_bit(R5_LOCKED, &dev->flags);
2224				set_bit(R5_Wantread, &dev->flags);
2225				s->locked++;
2226				pr_debug("Reading block %d (sync=%d)\n",
2227					i, s->syncing);
2228			}
2229		}
2230	}
2231	set_bit(STRIPE_HANDLE, &sh->state);
2232}
2233
2234
2235/* handle_stripe_clean_event
2236 * any written block on an uptodate or failed drive can be returned.
2237 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2238 * never LOCKED, so we don't need to test 'failed' directly.
2239 */
2240static void handle_stripe_clean_event(raid5_conf_t *conf,
2241	struct stripe_head *sh, int disks, struct bio **return_bi)
2242{
2243	int i;
2244	struct r5dev *dev;
2245
2246	for (i = disks; i--; )
2247		if (sh->dev[i].written) {
2248			dev = &sh->dev[i];
2249			if (!test_bit(R5_LOCKED, &dev->flags) &&
2250				test_bit(R5_UPTODATE, &dev->flags)) {
2251				/* We can return any write requests */
2252				struct bio *wbi, *wbi2;
2253				int bitmap_end = 0;
2254				pr_debug("Return write for disc %d\n", i);
2255				spin_lock_irq(&conf->device_lock);
2256				wbi = dev->written;
2257				dev->written = NULL;
2258				while (wbi && wbi->bi_sector <
2259					dev->sector + STRIPE_SECTORS) {
2260					wbi2 = r5_next_bio(wbi, dev->sector);
2261					if (!raid5_dec_bi_phys_segments(wbi)) {
2262						md_write_end(conf->mddev);
2263						wbi->bi_next = *return_bi;
2264						*return_bi = wbi;
2265					}
2266					wbi = wbi2;
2267				}
2268				if (dev->towrite == NULL)
2269					bitmap_end = 1;
2270				spin_unlock_irq(&conf->device_lock);
2271				if (bitmap_end)
2272					bitmap_endwrite(conf->mddev->bitmap,
2273							sh->sector,
2274							STRIPE_SECTORS,
2275					 !test_bit(STRIPE_DEGRADED, &sh->state),
2276							0);
2277			}
2278		}
2279
2280	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2281		if (atomic_dec_and_test(&conf->pending_full_writes))
2282			md_wakeup_thread(conf->mddev->thread);
2283}
2284
2285static void handle_stripe_dirtying5(raid5_conf_t *conf,
2286		struct stripe_head *sh,	struct stripe_head_state *s, int disks)
2287{
2288	int rmw = 0, rcw = 0, i;
2289	for (i = disks; i--; ) {
2290		/* would I have to read this buffer for read_modify_write */
2291		struct r5dev *dev = &sh->dev[i];
2292		if ((dev->towrite || i == sh->pd_idx) &&
2293		    !test_bit(R5_LOCKED, &dev->flags) &&
2294		    !(test_bit(R5_UPTODATE, &dev->flags) ||
2295		      test_bit(R5_Wantcompute, &dev->flags))) {
2296			if (test_bit(R5_Insync, &dev->flags))
2297				rmw++;
2298			else
2299				rmw += 2*disks;  /* cannot read it */
2300		}
2301		/* Would I have to read this buffer for reconstruct_write */
2302		if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
2303		    !test_bit(R5_LOCKED, &dev->flags) &&
2304		    !(test_bit(R5_UPTODATE, &dev->flags) ||
2305		    test_bit(R5_Wantcompute, &dev->flags))) {
2306			if (test_bit(R5_Insync, &dev->flags)) rcw++;
2307			else
2308				rcw += 2*disks;
2309		}
2310	}
2311	pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2312		(unsigned long long)sh->sector, rmw, rcw);
2313	set_bit(STRIPE_HANDLE, &sh->state);
2314	if (rmw < rcw && rmw > 0)
2315		/* prefer read-modify-write, but need to get some data */
2316		for (i = disks; i--; ) {
2317			struct r5dev *dev = &sh->dev[i];
2318			if ((dev->towrite || i == sh->pd_idx) &&
2319			    !test_bit(R5_LOCKED, &dev->flags) &&
2320			    !(test_bit(R5_UPTODATE, &dev->flags) ||
2321			    test_bit(R5_Wantcompute, &dev->flags)) &&
2322			    test_bit(R5_Insync, &dev->flags)) {
2323				if (
2324				  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2325					pr_debug("Read_old block "
2326						"%d for r-m-w\n", i);
2327					set_bit(R5_LOCKED, &dev->flags);
2328					set_bit(R5_Wantread, &dev->flags);
2329					s->locked++;
2330				} else {
2331					set_bit(STRIPE_DELAYED, &sh->state);
2332					set_bit(STRIPE_HANDLE, &sh->state);
2333				}
2334			}
2335		}
2336	if (rcw <= rmw && rcw > 0)
2337		/* want reconstruct write, but need to get some data */
2338		for (i = disks; i--; ) {
2339			struct r5dev *dev = &sh->dev[i];
2340			if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2341			    i != sh->pd_idx &&
2342			    !test_bit(R5_LOCKED, &dev->flags) &&
2343			    !(test_bit(R5_UPTODATE, &dev->flags) ||
2344			    test_bit(R5_Wantcompute, &dev->flags)) &&
2345			    test_bit(R5_Insync, &dev->flags)) {
2346				if (
2347				  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2348					pr_debug("Read_old block "
2349						"%d for Reconstruct\n", i);
2350					set_bit(R5_LOCKED, &dev->flags);
2351					set_bit(R5_Wantread, &dev->flags);
2352					s->locked++;
2353				} else {
2354					set_bit(STRIPE_DELAYED, &sh->state);
2355					set_bit(STRIPE_HANDLE, &sh->state);
2356				}
2357			}
2358		}
2359	/* now if nothing is locked, and if we have enough data,
2360	 * we can start a write request
2361	 */
2362	/* since handle_stripe can be called at any time we need to handle the
2363	 * case where a compute block operation has been submitted and then a
2364	 * subsequent call wants to start a write request.  raid5_run_ops only
2365	 * handles the case where compute block and postxor are requested
2366	 * simultaneously.  If this is not the case then new writes need to be
2367	 * held off until the compute completes.
2368	 */
2369	if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2370	    (s->locked == 0 && (rcw == 0 || rmw == 0) &&
2371	    !test_bit(STRIPE_BIT_DELAY, &sh->state)))
2372		schedule_reconstruction5(sh, s, rcw == 0, 0);
2373}
2374
2375static void handle_stripe_dirtying6(raid5_conf_t *conf,
2376		struct stripe_head *sh,	struct stripe_head_state *s,
2377		struct r6_state *r6s, int disks)
2378{
2379	int rcw = 0, must_compute = 0, pd_idx = sh->pd_idx, i;
2380	int qd_idx = sh->qd_idx;
2381	for (i = disks; i--; ) {
2382		struct r5dev *dev = &sh->dev[i];
2383		/* Would I have to read this buffer for reconstruct_write */
2384		if (!test_bit(R5_OVERWRITE, &dev->flags)
2385		    && i != pd_idx && i != qd_idx
2386		    && (!test_bit(R5_LOCKED, &dev->flags)
2387			    ) &&
2388		    !test_bit(R5_UPTODATE, &dev->flags)) {
2389			if (test_bit(R5_Insync, &dev->flags)) rcw++;
2390			else {
2391				pr_debug("raid6: must_compute: "
2392					"disk %d flags=%#lx\n", i, dev->flags);
2393				must_compute++;
2394			}
2395		}
2396	}
2397	pr_debug("for sector %llu, rcw=%d, must_compute=%d\n",
2398	       (unsigned long long)sh->sector, rcw, must_compute);
2399	set_bit(STRIPE_HANDLE, &sh->state);
2400
2401	if (rcw > 0)
2402		/* want reconstruct write, but need to get some data */
2403		for (i = disks; i--; ) {
2404			struct r5dev *dev = &sh->dev[i];
2405			if (!test_bit(R5_OVERWRITE, &dev->flags)
2406			    && !(s->failed == 0 && (i == pd_idx || i == qd_idx))
2407			    && !test_bit(R5_LOCKED, &dev->flags) &&
2408			    !test_bit(R5_UPTODATE, &dev->flags) &&
2409			    test_bit(R5_Insync, &dev->flags)) {
2410				if (
2411				  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2412					pr_debug("Read_old stripe %llu "
2413						"block %d for Reconstruct\n",
2414					     (unsigned long long)sh->sector, i);
2415					set_bit(R5_LOCKED, &dev->flags);
2416					set_bit(R5_Wantread, &dev->flags);
2417					s->locked++;
2418				} else {
2419					pr_debug("Request delayed stripe %llu "
2420						"block %d for Reconstruct\n",
2421					     (unsigned long long)sh->sector, i);
2422					set_bit(STRIPE_DELAYED, &sh->state);
2423					set_bit(STRIPE_HANDLE, &sh->state);
2424				}
2425			}
2426		}
2427	/* now if nothing is locked, and if we have enough data, we can start a
2428	 * write request
2429	 */
2430	if (s->locked == 0 && rcw == 0 &&
2431	    !test_bit(STRIPE_BIT_DELAY, &sh->state)) {
2432		if (must_compute > 0) {
2433			/* We have failed blocks and need to compute them */
2434			switch (s->failed) {
2435			case 0:
2436				BUG();
2437			case 1:
2438				compute_block_1(sh, r6s->failed_num[0], 0);
2439				break;
2440			case 2:
2441				compute_block_2(sh, r6s->failed_num[0],
2442						r6s->failed_num[1]);
2443				break;
2444			default: /* This request should have been failed? */
2445				BUG();
2446			}
2447		}
2448
2449		pr_debug("Computing parity for stripe %llu\n",
2450			(unsigned long long)sh->sector);
2451		compute_parity6(sh, RECONSTRUCT_WRITE);
2452		/* now every locked buffer is ready to be written */
2453		for (i = disks; i--; )
2454			if (test_bit(R5_LOCKED, &sh->dev[i].flags)) {
2455				pr_debug("Writing stripe %llu block %d\n",
2456				       (unsigned long long)sh->sector, i);
2457				s->locked++;
2458				set_bit(R5_Wantwrite, &sh->dev[i].flags);
2459			}
2460		if (s->locked == disks)
2461			if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2462				atomic_inc(&conf->pending_full_writes);
2463		/* after a RECONSTRUCT_WRITE, the stripe MUST be in-sync */
2464		set_bit(STRIPE_INSYNC, &sh->state);
2465
2466		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2467			atomic_dec(&conf->preread_active_stripes);
2468			if (atomic_read(&conf->preread_active_stripes) <
2469			    IO_THRESHOLD)
2470				md_wakeup_thread(conf->mddev->thread);
2471		}
2472	}
2473}
2474
2475static void handle_parity_checks5(raid5_conf_t *conf, struct stripe_head *sh,
2476				struct stripe_head_state *s, int disks)
2477{
2478	struct r5dev *dev = NULL;
2479
2480	set_bit(STRIPE_HANDLE, &sh->state);
2481
2482	switch (sh->check_state) {
2483	case check_state_idle:
2484		/* start a new check operation if there are no failures */
2485		if (s->failed == 0) {
2486			BUG_ON(s->uptodate != disks);
2487			sh->check_state = check_state_run;
2488			set_bit(STRIPE_OP_CHECK, &s->ops_request);
2489			clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
2490			s->uptodate--;
2491			break;
2492		}
2493		dev = &sh->dev[s->failed_num];
2494		/* fall through */
2495	case check_state_compute_result:
2496		sh->check_state = check_state_idle;
2497		if (!dev)
2498			dev = &sh->dev[sh->pd_idx];
2499
2500		/* check that a write has not made the stripe insync */
2501		if (test_bit(STRIPE_INSYNC, &sh->state))
2502			break;
2503
2504		/* either failed parity check, or recovery is happening */
2505		BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
2506		BUG_ON(s->uptodate != disks);
2507
2508		set_bit(R5_LOCKED, &dev->flags);
2509		s->locked++;
2510		set_bit(R5_Wantwrite, &dev->flags);
2511
2512		clear_bit(STRIPE_DEGRADED, &sh->state);
2513		set_bit(STRIPE_INSYNC, &sh->state);
2514		break;
2515	case check_state_run:
2516		break; /* we will be called again upon completion */
2517	case check_state_check_result:
2518		sh->check_state = check_state_idle;
2519
2520		/* if a failure occurred during the check operation, leave
2521		 * STRIPE_INSYNC not set and let the stripe be handled again
2522		 */
2523		if (s->failed)
2524			break;
2525
2526		/* handle a successful check operation, if parity is correct
2527		 * we are done.  Otherwise update the mismatch count and repair
2528		 * parity if !MD_RECOVERY_CHECK
2529		 */
2530		if (sh->ops.zero_sum_result == 0)
2531			/* parity is correct (on disc,
2532			 * not in buffer any more)
2533			 */
2534			set_bit(STRIPE_INSYNC, &sh->state);
2535		else {
2536			conf->mddev->resync_mismatches += STRIPE_SECTORS;
2537			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2538				/* don't try to repair!! */
2539				set_bit(STRIPE_INSYNC, &sh->state);
2540			else {
2541				sh->check_state = check_state_compute_run;
2542				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2543				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2544				set_bit(R5_Wantcompute,
2545					&sh->dev[sh->pd_idx].flags);
2546				sh->ops.target = sh->pd_idx;
2547				s->uptodate++;
2548			}
2549		}
2550		break;
2551	case check_state_compute_run:
2552		break;
2553	default:
2554		printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2555		       __func__, sh->check_state,
2556		       (unsigned long long) sh->sector);
2557		BUG();
2558	}
2559}
2560
2561
2562static void handle_parity_checks6(raid5_conf_t *conf, struct stripe_head *sh,
2563				struct stripe_head_state *s,
2564				struct r6_state *r6s, struct page *tmp_page,
2565				int disks)
2566{
2567	int update_p = 0, update_q = 0;
2568	struct r5dev *dev;
2569	int pd_idx = sh->pd_idx;
2570	int qd_idx = sh->qd_idx;
2571
2572	set_bit(STRIPE_HANDLE, &sh->state);
2573
2574	BUG_ON(s->failed > 2);
2575	BUG_ON(s->uptodate < disks);
2576	/* Want to check and possibly repair P and Q.
2577	 * However there could be one 'failed' device, in which
2578	 * case we can only check one of them, possibly using the
2579	 * other to generate missing data
2580	 */
2581
2582	/* If !tmp_page, we cannot do the calculations,
2583	 * but as we have set STRIPE_HANDLE, we will soon be called
2584	 * by stripe_handle with a tmp_page - just wait until then.
2585	 */
2586	if (tmp_page) {
2587		if (s->failed == r6s->q_failed) {
2588			/* The only possible failed device holds 'Q', so it
2589			 * makes sense to check P (If anything else were failed,
2590			 * we would have used P to recreate it).
2591			 */
2592			compute_block_1(sh, pd_idx, 1);
2593			if (!page_is_zero(sh->dev[pd_idx].page)) {
2594				compute_block_1(sh, pd_idx, 0);
2595				update_p = 1;
2596			}
2597		}
2598		if (!r6s->q_failed && s->failed < 2) {
2599			/* q is not failed, and we didn't use it to generate
2600			 * anything, so it makes sense to check it
2601			 */
2602			memcpy(page_address(tmp_page),
2603			       page_address(sh->dev[qd_idx].page),
2604			       STRIPE_SIZE);
2605			compute_parity6(sh, UPDATE_PARITY);
2606			if (memcmp(page_address(tmp_page),
2607				   page_address(sh->dev[qd_idx].page),
2608				   STRIPE_SIZE) != 0) {
2609				clear_bit(STRIPE_INSYNC, &sh->state);
2610				update_q = 1;
2611			}
2612		}
2613		if (update_p || update_q) {
2614			conf->mddev->resync_mismatches += STRIPE_SECTORS;
2615			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2616				/* don't try to repair!! */
2617				update_p = update_q = 0;
2618		}
2619
2620		/* now write out any block on a failed drive,
2621		 * or P or Q if they need it
2622		 */
2623
2624		if (s->failed == 2) {
2625			dev = &sh->dev[r6s->failed_num[1]];
2626			s->locked++;
2627			set_bit(R5_LOCKED, &dev->flags);
2628			set_bit(R5_Wantwrite, &dev->flags);
2629		}
2630		if (s->failed >= 1) {
2631			dev = &sh->dev[r6s->failed_num[0]];
2632			s->locked++;
2633			set_bit(R5_LOCKED, &dev->flags);
2634			set_bit(R5_Wantwrite, &dev->flags);
2635		}
2636
2637		if (update_p) {
2638			dev = &sh->dev[pd_idx];
2639			s->locked++;
2640			set_bit(R5_LOCKED, &dev->flags);
2641			set_bit(R5_Wantwrite, &dev->flags);
2642		}
2643		if (update_q) {
2644			dev = &sh->dev[qd_idx];
2645			s->locked++;
2646			set_bit(R5_LOCKED, &dev->flags);
2647			set_bit(R5_Wantwrite, &dev->flags);
2648		}
2649		clear_bit(STRIPE_DEGRADED, &sh->state);
2650
2651		set_bit(STRIPE_INSYNC, &sh->state);
2652	}
2653}
2654
2655static void handle_stripe_expansion(raid5_conf_t *conf, struct stripe_head *sh,
2656				struct r6_state *r6s)
2657{
2658	int i;
2659
2660	/* We have read all the blocks in this stripe and now we need to
2661	 * copy some of them into a target stripe for expand.
2662	 */
2663	struct dma_async_tx_descriptor *tx = NULL;
2664	clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2665	for (i = 0; i < sh->disks; i++)
2666		if (i != sh->pd_idx && i != sh->qd_idx) {
2667			int dd_idx, j;
2668			struct stripe_head *sh2;
2669
2670			sector_t bn = compute_blocknr(sh, i, 1);
2671			sector_t s = raid5_compute_sector(conf, bn, 0,
2672							  &dd_idx, NULL);
2673			sh2 = get_active_stripe(conf, s, 0, 1, 1);
2674			if (sh2 == NULL)
2675				/* so far only the early blocks of this stripe
2676				 * have been requested.  When later blocks
2677				 * get requested, we will try again
2678				 */
2679				continue;
2680			if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
2681			   test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
2682				/* must have already done this block */
2683				release_stripe(sh2);
2684				continue;
2685			}
2686
2687			/* place all the copies on one channel */
2688			tx = async_memcpy(sh2->dev[dd_idx].page,
2689				sh->dev[i].page, 0, 0, STRIPE_SIZE,
2690				ASYNC_TX_DEP_ACK, tx, NULL, NULL);
2691
2692			set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
2693			set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
2694			for (j = 0; j < conf->raid_disks; j++)
2695				if (j != sh2->pd_idx &&
2696				    (!r6s || j != sh2->qd_idx) &&
2697				    !test_bit(R5_Expanded, &sh2->dev[j].flags))
2698					break;
2699			if (j == conf->raid_disks) {
2700				set_bit(STRIPE_EXPAND_READY, &sh2->state);
2701				set_bit(STRIPE_HANDLE, &sh2->state);
2702			}
2703			release_stripe(sh2);
2704
2705		}
2706	/* done submitting copies, wait for them to complete */
2707	if (tx) {
2708		async_tx_ack(tx);
2709		dma_wait_for_async_tx(tx);
2710	}
2711}
2712
2713
2714/*
2715 * handle_stripe - do things to a stripe.
2716 *
2717 * We lock the stripe and then examine the state of various bits
2718 * to see what needs to be done.
2719 * Possible results:
2720 *    return some read request which now have data
2721 *    return some write requests which are safely on disc
2722 *    schedule a read on some buffers
2723 *    schedule a write of some buffers
2724 *    return confirmation of parity correctness
2725 *
2726 * buffers are taken off read_list or write_list, and bh_cache buffers
2727 * get BH_Lock set before the stripe lock is released.
2728 *
2729 */
2730
2731static bool handle_stripe5(struct stripe_head *sh)
2732{
2733	raid5_conf_t *conf = sh->raid_conf;
2734	int disks = sh->disks, i;
2735	struct bio *return_bi = NULL;
2736	struct stripe_head_state s;
2737	struct r5dev *dev;
2738	mdk_rdev_t *blocked_rdev = NULL;
2739	int prexor;
2740
2741	memset(&s, 0, sizeof(s));
2742	pr_debug("handling stripe %llu, state=%#lx cnt=%d, pd_idx=%d check:%d "
2743		 "reconstruct:%d\n", (unsigned long long)sh->sector, sh->state,
2744		 atomic_read(&sh->count), sh->pd_idx, sh->check_state,
2745		 sh->reconstruct_state);
2746
2747	spin_lock(&sh->lock);
2748	clear_bit(STRIPE_HANDLE, &sh->state);
2749	clear_bit(STRIPE_DELAYED, &sh->state);
2750
2751	s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
2752	s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2753	s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
2754
2755	/* Now to look around and see what can be done */
2756	rcu_read_lock();
2757	for (i=disks; i--; ) {
2758		mdk_rdev_t *rdev;
2759		struct r5dev *dev = &sh->dev[i];
2760		clear_bit(R5_Insync, &dev->flags);
2761
2762		pr_debug("check %d: state 0x%lx toread %p read %p write %p "
2763			"written %p\n",	i, dev->flags, dev->toread, dev->read,
2764			dev->towrite, dev->written);
2765
2766		/* maybe we can request a biofill operation
2767		 *
2768		 * new wantfill requests are only permitted while
2769		 * ops_complete_biofill is guaranteed to be inactive
2770		 */
2771		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
2772		    !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
2773			set_bit(R5_Wantfill, &dev->flags);
2774
2775		/* now count some things */
2776		if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
2777		if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
2778		if (test_bit(R5_Wantcompute, &dev->flags)) s.compute++;
2779
2780		if (test_bit(R5_Wantfill, &dev->flags))
2781			s.to_fill++;
2782		else if (dev->toread)
2783			s.to_read++;
2784		if (dev->towrite) {
2785			s.to_write++;
2786			if (!test_bit(R5_OVERWRITE, &dev->flags))
2787				s.non_overwrite++;
2788		}
2789		if (dev->written)
2790			s.written++;
2791		rdev = rcu_dereference(conf->disks[i].rdev);
2792		if (blocked_rdev == NULL &&
2793		    rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
2794			blocked_rdev = rdev;
2795			atomic_inc(&rdev->nr_pending);
2796		}
2797		if (!rdev || !test_bit(In_sync, &rdev->flags)) {
2798			/* The ReadError flag will just be confusing now */
2799			clear_bit(R5_ReadError, &dev->flags);
2800			clear_bit(R5_ReWrite, &dev->flags);
2801		}
2802		if (!rdev || !test_bit(In_sync, &rdev->flags)
2803		    || test_bit(R5_ReadError, &dev->flags)) {
2804			s.failed++;
2805			s.failed_num = i;
2806		} else
2807			set_bit(R5_Insync, &dev->flags);
2808	}
2809	rcu_read_unlock();
2810
2811	if (unlikely(blocked_rdev)) {
2812		if (s.syncing || s.expanding || s.expanded ||
2813		    s.to_write || s.written) {
2814			set_bit(STRIPE_HANDLE, &sh->state);
2815			goto unlock;
2816		}
2817		/* There is nothing for the blocked_rdev to block */
2818		rdev_dec_pending(blocked_rdev, conf->mddev);
2819		blocked_rdev = NULL;
2820	}
2821
2822	if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
2823		set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
2824		set_bit(STRIPE_BIOFILL_RUN, &sh->state);
2825	}
2826
2827	pr_debug("locked=%d uptodate=%d to_read=%d"
2828		" to_write=%d failed=%d failed_num=%d\n",
2829		s.locked, s.uptodate, s.to_read, s.to_write,
2830		s.failed, s.failed_num);
2831	/* check if the array has lost two devices and, if so, some requests might
2832	 * need to be failed
2833	 */
2834	if (s.failed > 1 && s.to_read+s.to_write+s.written)
2835		handle_failed_stripe(conf, sh, &s, disks, &return_bi);
2836	if (s.failed > 1 && s.syncing) {
2837		md_done_sync(conf->mddev, STRIPE_SECTORS,0);
2838		clear_bit(STRIPE_SYNCING, &sh->state);
2839		s.syncing = 0;
2840	}
2841
2842	/* might be able to return some write requests if the parity block
2843	 * is safe, or on a failed drive
2844	 */
2845	dev = &sh->dev[sh->pd_idx];
2846	if ( s.written &&
2847	     ((test_bit(R5_Insync, &dev->flags) &&
2848	       !test_bit(R5_LOCKED, &dev->flags) &&
2849	       test_bit(R5_UPTODATE, &dev->flags)) ||
2850	       (s.failed == 1 && s.failed_num == sh->pd_idx)))
2851		handle_stripe_clean_event(conf, sh, disks, &return_bi);
2852
2853	/* Now we might consider reading some blocks, either to check/generate
2854	 * parity, or to satisfy requests
2855	 * or to load a block that is being partially written.
2856	 */
2857	if (s.to_read || s.non_overwrite ||
2858	    (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding)
2859		handle_stripe_fill5(sh, &s, disks);
2860
2861	/* Now we check to see if any write operations have recently
2862	 * completed
2863	 */
2864	prexor = 0;
2865	if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
2866		prexor = 1;
2867	if (sh->reconstruct_state == reconstruct_state_drain_result ||
2868	    sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
2869		sh->reconstruct_state = reconstruct_state_idle;
2870
2871		/* All the 'written' buffers and the parity block are ready to
2872		 * be written back to disk
2873		 */
2874		BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
2875		for (i = disks; i--; ) {
2876			dev = &sh->dev[i];
2877			if (test_bit(R5_LOCKED, &dev->flags) &&
2878				(i == sh->pd_idx || dev->written)) {
2879				pr_debug("Writing block %d\n", i);
2880				set_bit(R5_Wantwrite, &dev->flags);
2881				if (prexor)
2882					continue;
2883				if (!test_bit(R5_Insync, &dev->flags) ||
2884				    (i == sh->pd_idx && s.failed == 0))
2885					set_bit(STRIPE_INSYNC, &sh->state);
2886			}
2887		}
2888		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2889			atomic_dec(&conf->preread_active_stripes);
2890			if (atomic_read(&conf->preread_active_stripes) <
2891				IO_THRESHOLD)
2892				md_wakeup_thread(conf->mddev->thread);
2893		}
2894	}
2895
2896	/* Now to consider new write requests and what else, if anything
2897	 * should be read.  We do not handle new writes when:
2898	 * 1/ A 'write' operation (copy+xor) is already in flight.
2899	 * 2/ A 'check' operation is in flight, as it may clobber the parity
2900	 *    block.
2901	 */
2902	if (s.to_write && !sh->reconstruct_state && !sh->check_state)
2903		handle_stripe_dirtying5(conf, sh, &s, disks);
2904
2905	/* maybe we need to check and possibly fix the parity for this stripe
2906	 * Any reads will already have been scheduled, so we just see if enough
2907	 * data is available.  The parity check is held off while parity
2908	 * dependent operations are in flight.
2909	 */
2910	if (sh->check_state ||
2911	    (s.syncing && s.locked == 0 &&
2912	     !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
2913	     !test_bit(STRIPE_INSYNC, &sh->state)))
2914		handle_parity_checks5(conf, sh, &s, disks);
2915
2916	if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
2917		md_done_sync(conf->mddev, STRIPE_SECTORS,1);
2918		clear_bit(STRIPE_SYNCING, &sh->state);
2919	}
2920
2921	/* If the failed drive is just a ReadError, then we might need to progress
2922	 * the repair/check process
2923	 */
2924	if (s.failed == 1 && !conf->mddev->ro &&
2925	    test_bit(R5_ReadError, &sh->dev[s.failed_num].flags)
2926	    && !test_bit(R5_LOCKED, &sh->dev[s.failed_num].flags)
2927	    && test_bit(R5_UPTODATE, &sh->dev[s.failed_num].flags)
2928		) {
2929		dev = &sh->dev[s.failed_num];
2930		if (!test_bit(R5_ReWrite, &dev->flags)) {
2931			set_bit(R5_Wantwrite, &dev->flags);
2932			set_bit(R5_ReWrite, &dev->flags);
2933			set_bit(R5_LOCKED, &dev->flags);
2934			s.locked++;
2935		} else {
2936			/* let's read it back */
2937			set_bit(R5_Wantread, &dev->flags);
2938			set_bit(R5_LOCKED, &dev->flags);
2939			s.locked++;
2940		}
2941	}
2942
2943	/* Finish reconstruct operations initiated by the expansion process */
2944	if (sh->reconstruct_state == reconstruct_state_result) {
2945		struct stripe_head *sh2
2946			= get_active_stripe(conf, sh->sector, 1, 1, 1);
2947		if (sh2 && test_bit(STRIPE_EXPAND_SOURCE, &sh2->state)) {
2948			/* sh cannot be written until sh2 has been read.
2949			 * so arrange for sh to be delayed a little
2950			 */
2951			set_bit(STRIPE_DELAYED, &sh->state);
2952			set_bit(STRIPE_HANDLE, &sh->state);
2953			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
2954					      &sh2->state))
2955				atomic_inc(&conf->preread_active_stripes);
2956			release_stripe(sh2);
2957			goto unlock;
2958		}
2959		if (sh2)
2960			release_stripe(sh2);
2961
2962		sh->reconstruct_state = reconstruct_state_idle;
2963		clear_bit(STRIPE_EXPANDING, &sh->state);
2964		for (i = conf->raid_disks; i--; ) {
2965			set_bit(R5_Wantwrite, &sh->dev[i].flags);
2966			set_bit(R5_LOCKED, &sh->dev[i].flags);
2967			s.locked++;
2968		}
2969	}
2970
2971	if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
2972	    !sh->reconstruct_state) {
2973		/* Need to write out all blocks after computing parity */
2974		sh->disks = conf->raid_disks;
2975		stripe_set_idx(sh->sector, conf, 0, sh);
2976		schedule_reconstruction5(sh, &s, 1, 1);
2977	} else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
2978		clear_bit(STRIPE_EXPAND_READY, &sh->state);
2979		atomic_dec(&conf->reshape_stripes);
2980		wake_up(&conf->wait_for_overlap);
2981		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
2982	}
2983
2984	if (s.expanding && s.locked == 0 &&
2985	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
2986		handle_stripe_expansion(conf, sh, NULL);
2987
2988 unlock:
2989	spin_unlock(&sh->lock);
2990
2991	/* wait for this device to become unblocked */
2992	if (unlikely(blocked_rdev))
2993		md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);
2994
2995	if (s.ops_request)
2996		raid5_run_ops(sh, s.ops_request);
2997
2998	ops_run_io(sh, &s);
2999
3000	return_io(return_bi);
3001
3002	return blocked_rdev == NULL;
3003}
3004
3005static bool handle_stripe6(struct stripe_head *sh, struct page *tmp_page)
3006{
3007	raid5_conf_t *conf = sh->raid_conf;
3008	int disks = sh->disks;
3009	struct bio *return_bi = NULL;
3010	int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx;
3011	struct stripe_head_state s;
3012	struct r6_state r6s;
3013	struct r5dev *dev, *pdev, *qdev;
3014	mdk_rdev_t *blocked_rdev = NULL;
3015
3016	pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3017		"pd_idx=%d, qd_idx=%d\n",
3018	       (unsigned long long)sh->sector, sh->state,
3019	       atomic_read(&sh->count), pd_idx, qd_idx);
3020	memset(&s, 0, sizeof(s));
3021
3022	spin_lock(&sh->lock);
3023	clear_bit(STRIPE_HANDLE, &sh->state);
3024	clear_bit(STRIPE_DELAYED, &sh->state);
3025
3026	s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
3027	s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3028	s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
3029	/* Now to look around and see what can be done */
3030
3031	rcu_read_lock();
3032	for (i=disks; i--; ) {
3033		mdk_rdev_t *rdev;
3034		dev = &sh->dev[i];
3035		clear_bit(R5_Insync, &dev->flags);
3036
3037		pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3038			i, dev->flags, dev->toread, dev->towrite, dev->written);
3039		/* maybe we can reply to a read */
3040		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread) {
3041			struct bio *rbi, *rbi2;
3042			pr_debug("Return read for disc %d\n", i);
3043			spin_lock_irq(&conf->device_lock);
3044			rbi = dev->toread;
3045			dev->toread = NULL;
3046			if (test_and_clear_bit(R5_Overlap, &dev->flags))
3047				wake_up(&conf->wait_for_overlap);
3048			spin_unlock_irq(&conf->device_lock);
3049			while (rbi && rbi->bi_sector < dev->sector + STRIPE_SECTORS) {
3050				copy_data(0, rbi, dev->page, dev->sector);
3051				rbi2 = r5_next_bio(rbi, dev->sector);
3052				spin_lock_irq(&conf->device_lock);
3053				if (!raid5_dec_bi_phys_segments(rbi)) {
3054					rbi->bi_next = return_bi;
3055					return_bi = rbi;
3056				}
3057				spin_unlock_irq(&conf->device_lock);
3058				rbi = rbi2;
3059			}
3060		}
3061
3062		/* now count some things */
3063		if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
3064		if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
3065
3066
3067		if (dev->toread)
3068			s.to_read++;
3069		if (dev->towrite) {
3070			s.to_write++;
3071			if (!test_bit(R5_OVERWRITE, &dev->flags))
3072				s.non_overwrite++;
3073		}
3074		if (dev->written)
3075			s.written++;
3076		rdev = rcu_dereference(conf->disks[i].rdev);
3077		if (blocked_rdev == NULL &&
3078		    rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
3079			blocked_rdev = rdev;
3080			atomic_inc(&rdev->nr_pending);
3081		}
3082		if (!rdev || !test_bit(In_sync, &rdev->flags)) {
3083			/* The ReadError flag will just be confusing now */
3084			clear_bit(R5_ReadError, &dev->flags);
3085			clear_bit(R5_ReWrite, &dev->flags);
3086		}
3087		if (!rdev || !test_bit(In_sync, &rdev->flags)
3088		    || test_bit(R5_ReadError, &dev->flags)) {
3089			if (s.failed < 2)
3090				r6s.failed_num[s.failed] = i;
3091			s.failed++;
3092		} else
3093			set_bit(R5_Insync, &dev->flags);
3094	}
3095	rcu_read_unlock();
3096
3097	if (unlikely(blocked_rdev)) {
3098		if (s.syncing || s.expanding || s.expanded ||
3099		    s.to_write || s.written) {
3100			set_bit(STRIPE_HANDLE, &sh->state);
3101			goto unlock;
3102		}
3103		/* There is nothing for the blocked_rdev to block */
3104		rdev_dec_pending(blocked_rdev, conf->mddev);
3105		blocked_rdev = NULL;
3106	}
3107
3108	pr_debug("locked=%d uptodate=%d to_read=%d"
3109	       " to_write=%d failed=%d failed_num=%d,%d\n",
3110	       s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
3111	       r6s.failed_num[0], r6s.failed_num[1]);
3112	/* check if the array has lost >2 devices and, if so, some requests
3113	 * might need to be failed
3114	 */
3115	if (s.failed > 2 && s.to_read+s.to_write+s.written)
3116		handle_failed_stripe(conf, sh, &s, disks, &return_bi);
3117	if (s.failed > 2 && s.syncing) {
3118		md_done_sync(conf->mddev, STRIPE_SECTORS,0);
3119		clear_bit(STRIPE_SYNCING, &sh->state);
3120		s.syncing = 0;
3121	}
3122
3123	/*
3124	 * might be able to return some write requests if the parity blocks
3125	 * are safe, or on a failed drive
3126	 */
3127	pdev = &sh->dev[pd_idx];
3128	r6s.p_failed = (s.failed >= 1 && r6s.failed_num[0] == pd_idx)
3129		|| (s.failed >= 2 && r6s.failed_num[1] == pd_idx);
3130	qdev = &sh->dev[qd_idx];
3131	r6s.q_failed = (s.failed >= 1 && r6s.failed_num[0] == qd_idx)
3132		|| (s.failed >= 2 && r6s.failed_num[1] == qd_idx);
3133
3134	if ( s.written &&
3135	     ( r6s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
3136			     && !test_bit(R5_LOCKED, &pdev->flags)
3137			     && test_bit(R5_UPTODATE, &pdev->flags)))) &&
3138	     ( r6s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3139			     && !test_bit(R5_LOCKED, &qdev->flags)
3140			     && test_bit(R5_UPTODATE, &qdev->flags)))))
3141		handle_stripe_clean_event(conf, sh, disks, &return_bi);
3142
3143	/* Now we might consider reading some blocks, either to check/generate
3144	 * parity, or to satisfy requests
3145	 * or to load a block that is being partially written.
3146	 */
3147	if (s.to_read || s.non_overwrite || (s.to_write && s.failed) ||
3148	    (s.syncing && (s.uptodate < disks)) || s.expanding)
3149		handle_stripe_fill6(sh, &s, &r6s, disks);
3150
3151	/* now to consider writing and what else, if anything should be read */
3152	if (s.to_write)
3153		handle_stripe_dirtying6(conf, sh, &s, &r6s, disks);
3154
3155	/* maybe we need to check and possibly fix the parity for this stripe
3156	 * Any reads will already have been scheduled, so we just see if enough
3157	 * data is available
3158	 */
3159	if (s.syncing && s.locked == 0 && !test_bit(STRIPE_INSYNC, &sh->state))
3160		handle_parity_checks6(conf, sh, &s, &r6s, tmp_page, disks);
3161
3162	if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
3163		md_done_sync(conf->mddev, STRIPE_SECTORS,1);
3164		clear_bit(STRIPE_SYNCING, &sh->state);
3165	}
3166
3167	/* If the failed drives are just a ReadError, then we might need
3168	 * to progress the repair/check process
3169	 */
3170	if (s.failed <= 2 && !conf->mddev->ro)
3171		for (i = 0; i < s.failed; i++) {
3172			dev = &sh->dev[r6s.failed_num[i]];
3173			if (test_bit(R5_ReadError, &dev->flags)
3174			    && !test_bit(R5_LOCKED, &dev->flags)
3175			    && test_bit(R5_UPTODATE, &dev->flags)
3176				) {
3177				if (!test_bit(R5_ReWrite, &dev->flags)) {
3178					set_bit(R5_Wantwrite, &dev->flags);
3179					set_bit(R5_ReWrite, &dev->flags);
3180					set_bit(R5_LOCKED, &dev->flags);
3181				} else {
3182					/* let's read it back */
3183					set_bit(R5_Wantread, &dev->flags);
3184					set_bit(R5_LOCKED, &dev->flags);
3185				}
3186			}
3187		}
3188
3189	if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state)) {
3190		struct stripe_head *sh2
3191			= get_active_stripe(conf, sh->sector, 1, 1, 1);
3192		if (sh2 && test_bit(STRIPE_EXPAND_SOURCE, &sh2->state)) {
3193			/* sh cannot be written until sh2 has been read.
3194			 * so arrange for sh to be delayed a little
3195			 */
3196			set_bit(STRIPE_DELAYED, &sh->state);
3197			set_bit(STRIPE_HANDLE, &sh->state);
3198			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3199					      &sh2->state))
3200				atomic_inc(&conf->preread_active_stripes);
3201			release_stripe(sh2);
3202			goto unlock;
3203		}
3204		if (sh2)
3205			release_stripe(sh2);
3206
3207		/* Need to write out all blocks after computing P&Q */
3208		sh->disks = conf->raid_disks;
3209		stripe_set_idx(sh->sector, conf, 0, sh);
3210		compute_parity6(sh, RECONSTRUCT_WRITE);
3211		for (i = conf->raid_disks ; i-- ;  ) {
3212			set_bit(R5_LOCKED, &sh->dev[i].flags);
3213			s.locked++;
3214			set_bit(R5_Wantwrite, &sh->dev[i].flags);
3215		}
3216		clear_bit(STRIPE_EXPANDING, &sh->state);
3217	} else if (s.expanded) {
3218		clear_bit(STRIPE_EXPAND_READY, &sh->state);
3219		atomic_dec(&conf->reshape_stripes);
3220		wake_up(&conf->wait_for_overlap);
3221		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3222	}
3223
3224	if (s.expanding && s.locked == 0 &&
3225	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3226		handle_stripe_expansion(conf, sh, &r6s);
3227
3228 unlock:
3229	spin_unlock(&sh->lock);
3230
3231	/* wait for this device to become unblocked */
3232	if (unlikely(blocked_rdev))
3233		md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);
3234
3235	ops_run_io(sh, &s);
3236
3237	return_io(return_bi);
3238
3239	return blocked_rdev == NULL;
3240}
3241
3242/* returns true if the stripe was handled */
3243static bool handle_stripe(struct stripe_head *sh, struct page *tmp_page)
3244{
3245	if (sh->raid_conf->level == 6)
3246		return handle_stripe6(sh, tmp_page);
3247	else
3248		return handle_stripe5(sh);
3249}
3250
3251
3252
3253static void raid5_activate_delayed(raid5_conf_t *conf)
3254{
3255	if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
3256		while (!list_empty(&conf->delayed_list)) {
3257			struct list_head *l = conf->delayed_list.next;
3258			struct stripe_head *sh;
3259			sh = list_entry(l, struct stripe_head, lru);
3260			list_del_init(l);
3261			clear_bit(STRIPE_DELAYED, &sh->state);
3262			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3263				atomic_inc(&conf->preread_active_stripes);
3264			list_add_tail(&sh->lru, &conf->hold_list);
3265		}
3266	} else
3267		blk_plug_device(conf->mddev->queue);
3268}
3269
3270static void activate_bit_delay(raid5_conf_t *conf)
3271{
3272	/* device_lock is held */
3273	struct list_head head;
3274	list_add(&head, &conf->bitmap_list);
3275	list_del_init(&conf->bitmap_list);
3276	while (!list_empty(&head)) {
3277		struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
3278		list_del_init(&sh->lru);
3279		atomic_inc(&sh->count);
3280		__release_stripe(conf, sh);
3281	}
3282}
3283
3284static void unplug_slaves(mddev_t *mddev)
3285{
3286	raid5_conf_t *conf = mddev->private;
3287	int i;
3288
3289	rcu_read_lock();
3290	for (i = 0; i < conf->raid_disks; i++) {
3291		mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
3292		if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
3293			struct request_queue *r_queue = bdev_get_queue(rdev->bdev);
3294
3295			atomic_inc(&rdev->nr_pending);
3296			rcu_read_unlock();
3297
3298			blk_unplug(r_queue);
3299
3300			rdev_dec_pending(rdev, mddev);
3301			rcu_read_lock();
3302		}
3303	}
3304	rcu_read_unlock();
3305}
3306
3307static void raid5_unplug_device(struct request_queue *q)
3308{
3309	mddev_t *mddev = q->queuedata;
3310	raid5_conf_t *conf = mddev->private;
3311	unsigned long flags;
3312
3313	spin_lock_irqsave(&conf->device_lock, flags);
3314
3315	if (blk_remove_plug(q)) {
3316		conf->seq_flush++;
3317		raid5_activate_delayed(conf);
3318	}
3319	md_wakeup_thread(mddev->thread);
3320
3321	spin_unlock_irqrestore(&conf->device_lock, flags);
3322
3323	unplug_slaves(mddev);
3324}
3325
3326static int raid5_congested(void *data, int bits)
3327{
3328	mddev_t *mddev = data;
3329	raid5_conf_t *conf = mddev->private;
3330
3331	/* No difference between reads and writes.  Just check
3332	 * how busy the stripe_cache is
3333	 */
3334	if (conf->inactive_blocked)
3335		return 1;
3336	if (conf->quiesce)
3337		return 1;
3338	if (list_empty_careful(&conf->inactive_list))
3339		return 1;
3340
3341	return 0;
3342}
3343
3344/* We want read requests to align with chunks where possible,
3345 * but write requests don't need to.
3346 */
3347static int raid5_mergeable_bvec(struct request_queue *q,
3348				struct bvec_merge_data *bvm,
3349				struct bio_vec *biovec)
3350{
3351	mddev_t *mddev = q->queuedata;
3352	sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
3353	int max;
3354	unsigned int chunk_sectors = mddev->chunk_sectors;
3355	unsigned int bio_sectors = bvm->bi_size >> 9;
3356
3357	if ((bvm->bi_rw & 1) == WRITE)
3358		return biovec->bv_len; /* always allow writes to be mergeable */
3359
3360	if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3361		chunk_sectors = mddev->new_chunk_sectors;
3362	max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
3363	if (max < 0) max = 0;
3364	if (max <= biovec->bv_len && bio_sectors == 0)
3365		return biovec->bv_len;
3366	else
3367		return max;
3368}
3369
3370
3371static int in_chunk_boundary(mddev_t *mddev, struct bio *bio)
3372{
3373	sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3374	unsigned int chunk_sectors = mddev->chunk_sectors;
3375	unsigned int bio_sectors = bio->bi_size >> 9;
3376
3377	if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3378		chunk_sectors = mddev->new_chunk_sectors;
3379	return  chunk_sectors >=
3380		((sector & (chunk_sectors - 1)) + bio_sectors);
3381}
3382
3383/*
3384 *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
3385 *  later sampled by raid5d.
3386 */
3387static void add_bio_to_retry(struct bio *bi,raid5_conf_t *conf)
3388{
3389	unsigned long flags;
3390
3391	spin_lock_irqsave(&conf->device_lock, flags);
3392
3393	bi->bi_next = conf->retry_read_aligned_list;
3394	conf->retry_read_aligned_list = bi;
3395
3396	spin_unlock_irqrestore(&conf->device_lock, flags);
3397	md_wakeup_thread(conf->mddev->thread);
3398}
3399
3400
3401static struct bio *remove_bio_from_retry(raid5_conf_t *conf)
3402{
3403	struct bio *bi;
3404
3405	bi = conf->retry_read_aligned;
3406	if (bi) {
3407		conf->retry_read_aligned = NULL;
3408		return bi;
3409	}
3410	bi = conf->retry_read_aligned_list;
3411	if(bi) {
3412		conf->retry_read_aligned_list = bi->bi_next;
3413		bi->bi_next = NULL;
3414		/*
3415		 * this sets the active strip count to 1 and the processed
3416		 * strip count to zero (upper 8 bits)
3417		 */
3418		bi->bi_phys_segments = 1; /* biased count of active stripes */
3419	}
3420
3421	return bi;
3422}
3423
3424
3425/*
3426 *  The "raid5_align_endio" should check if the read succeeded and if it
3427 *  did, call bio_endio on the original bio (having bio_put the new bio
3428 *  first).
3429 *  If the read failed..
3430 */
3431static void raid5_align_endio(struct bio *bi, int error)
3432{
3433	struct bio* raid_bi  = bi->bi_private;
3434	mddev_t *mddev;
3435	raid5_conf_t *conf;
3436	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3437	mdk_rdev_t *rdev;
3438
3439	bio_put(bi);
3440
3441	mddev = raid_bi->bi_bdev->bd_disk->queue->queuedata;
3442	conf = mddev->private;
3443	rdev = (void*)raid_bi->bi_next;
3444	raid_bi->bi_next = NULL;
3445
3446	rdev_dec_pending(rdev, conf->mddev);
3447
3448	if (!error && uptodate) {
3449		bio_endio(raid_bi, 0);
3450		if (atomic_dec_and_test(&conf->active_aligned_reads))
3451			wake_up(&conf->wait_for_stripe);
3452		return;
3453	}
3454
3455
3456	pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3457
3458	add_bio_to_retry(raid_bi, conf);
3459}
3460
3461static int bio_fits_rdev(struct bio *bi)
3462{
3463	struct request_queue *q = bdev_get_queue(bi->bi_bdev);
3464
3465	if ((bi->bi_size>>9) > queue_max_sectors(q))
3466		return 0;
3467	blk_recount_segments(q, bi);
3468	if (bi->bi_phys_segments > queue_max_phys_segments(q))
3469		return 0;
3470
3471	if (q->merge_bvec_fn)
3472		/* it's too hard to apply the merge_bvec_fn at this stage,
3473		 * just just give up
3474		 */
3475		return 0;
3476
3477	return 1;
3478}
3479
3480
3481static int chunk_aligned_read(struct request_queue *q, struct bio * raid_bio)
3482{
3483	mddev_t *mddev = q->queuedata;
3484	raid5_conf_t *conf = mddev->private;
3485	unsigned int dd_idx;
3486	struct bio* align_bi;
3487	mdk_rdev_t *rdev;
3488
3489	if (!in_chunk_boundary(mddev, raid_bio)) {
3490		pr_debug("chunk_aligned_read : non aligned\n");
3491		return 0;
3492	}
3493	/*
3494	 * use bio_clone to make a copy of the bio
3495	 */
3496	align_bi = bio_clone(raid_bio, GFP_NOIO);
3497	if (!align_bi)
3498		return 0;
3499	/*
3500	 *   set bi_end_io to a new function, and set bi_private to the
3501	 *     original bio.
3502	 */
3503	align_bi->bi_end_io  = raid5_align_endio;
3504	align_bi->bi_private = raid_bio;
3505	/*
3506	 *	compute position
3507	 */
3508	align_bi->bi_sector =  raid5_compute_sector(conf, raid_bio->bi_sector,
3509						    0,
3510						    &dd_idx, NULL);
3511
3512	rcu_read_lock();
3513	rdev = rcu_dereference(conf->disks[dd_idx].rdev);
3514	if (rdev && test_bit(In_sync, &rdev->flags)) {
3515		atomic_inc(&rdev->nr_pending);
3516		rcu_read_unlock();
3517		raid_bio->bi_next = (void*)rdev;
3518		align_bi->bi_bdev =  rdev->bdev;
3519		align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
3520		align_bi->bi_sector += rdev->data_offset;
3521
3522		if (!bio_fits_rdev(align_bi)) {
3523			/* too big in some way */
3524			bio_put(align_bi);
3525			rdev_dec_pending(rdev, mddev);
3526			return 0;
3527		}
3528
3529		spin_lock_irq(&conf->device_lock);
3530		wait_event_lock_irq(conf->wait_for_stripe,
3531				    conf->quiesce == 0,
3532				    conf->device_lock, /* nothing */);
3533		atomic_inc(&conf->active_aligned_reads);
3534		spin_unlock_irq(&conf->device_lock);
3535
3536		generic_make_request(align_bi);
3537		return 1;
3538	} else {
3539		rcu_read_unlock();
3540		bio_put(align_bi);
3541		return 0;
3542	}
3543}
3544
3545/* __get_priority_stripe - get the next stripe to process
3546 *
3547 * Full stripe writes are allowed to pass preread active stripes up until
3548 * the bypass_threshold is exceeded.  In general the bypass_count
3549 * increments when the handle_list is handled before the hold_list; however, it
3550 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
3551 * stripe with in flight i/o.  The bypass_count will be reset when the
3552 * head of the hold_list has changed, i.e. the head was promoted to the
3553 * handle_list.
3554 */
3555static struct stripe_head *__get_priority_stripe(raid5_conf_t *conf)
3556{
3557	struct stripe_head *sh;
3558
3559	pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
3560		  __func__,
3561		  list_empty(&conf->handle_list) ? "empty" : "busy",
3562		  list_empty(&conf->hold_list) ? "empty" : "busy",
3563		  atomic_read(&conf->pending_full_writes), conf->bypass_count);
3564
3565	if (!list_empty(&conf->handle_list)) {
3566		sh = list_entry(conf->handle_list.next, typeof(*sh), lru);
3567
3568		if (list_empty(&conf->hold_list))
3569			conf->bypass_count = 0;
3570		else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
3571			if (conf->hold_list.next == conf->last_hold)
3572				conf->bypass_count++;
3573			else {
3574				conf->last_hold = conf->hold_list.next;
3575				conf->bypass_count -= conf->bypass_threshold;
3576				if (conf->bypass_count < 0)
3577					conf->bypass_count = 0;
3578			}
3579		}
3580	} else if (!list_empty(&conf->hold_list) &&
3581		   ((conf->bypass_threshold &&
3582		     conf->bypass_count > conf->bypass_threshold) ||
3583		    atomic_read(&conf->pending_full_writes) == 0)) {
3584		sh = list_entry(conf->hold_list.next,
3585				typeof(*sh), lru);
3586		conf->bypass_count -= conf->bypass_threshold;
3587		if (conf->bypass_count < 0)
3588			conf->bypass_count = 0;
3589	} else
3590		return NULL;
3591
3592	list_del_init(&sh->lru);
3593	atomic_inc(&sh->count);
3594	BUG_ON(atomic_read(&sh->count) != 1);
3595	return sh;
3596}
3597
3598static int make_request(struct request_queue *q, struct bio * bi)
3599{
3600	mddev_t *mddev = q->queuedata;
3601	raid5_conf_t *conf = mddev->private;
3602	int dd_idx;
3603	sector_t new_sector;
3604	sector_t logical_sector, last_sector;
3605	struct stripe_head *sh;
3606	const int rw = bio_data_dir(bi);
3607	int cpu, remaining;
3608
3609	if (unlikely(bio_barrier(bi))) {
3610		bio_endio(bi, -EOPNOTSUPP);
3611		return 0;
3612	}
3613
3614	md_write_start(mddev, bi);
3615
3616	cpu = part_stat_lock();
3617	part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
3618	part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw],
3619		      bio_sectors(bi));
3620	part_stat_unlock();
3621
3622	if (rw == READ &&
3623	     mddev->reshape_position == MaxSector &&
3624	     chunk_aligned_read(q,bi))
3625		return 0;
3626
3627	logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
3628	last_sector = bi->bi_sector + (bi->bi_size>>9);
3629	bi->bi_next = NULL;
3630	bi->bi_phys_segments = 1;	/* over-loaded to count active stripes */
3631
3632	for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
3633		DEFINE_WAIT(w);
3634		int disks, data_disks;
3635		int previous;
3636
3637	retry:
3638		previous = 0;
3639		disks = conf->raid_disks;
3640		prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
3641		if (unlikely(conf->reshape_progress != MaxSector)) {
3642			/* spinlock is needed as reshape_progress may be
3643			 * 64bit on a 32bit platform, and so it might be
3644			 * possible to see a half-updated value
3645			 * Ofcourse reshape_progress could change after
3646			 * the lock is dropped, so once we get a reference
3647			 * to the stripe that we think it is, we will have
3648			 * to check again.
3649			 */
3650			spin_lock_irq(&conf->device_lock);
3651			if (mddev->delta_disks < 0
3652			    ? logical_sector < conf->reshape_progress
3653			    : logical_sector >= conf->reshape_progress) {
3654				disks = conf->previous_raid_disks;
3655				previous = 1;
3656			} else {
3657				if (mddev->delta_disks < 0
3658				    ? logical_sector < conf->reshape_safe
3659				    : logical_sector >= conf->reshape_safe) {
3660					spin_unlock_irq(&conf->device_lock);
3661					schedule();
3662					goto retry;
3663				}
3664			}
3665			spin_unlock_irq(&conf->device_lock);
3666		}
3667		data_disks = disks - conf->max_degraded;
3668
3669		new_sector = raid5_compute_sector(conf, logical_sector,
3670						  previous,
3671						  &dd_idx, NULL);
3672		pr_debug("raid5: make_request, sector %llu logical %llu\n",
3673			(unsigned long long)new_sector,
3674			(unsigned long long)logical_sector);
3675
3676		sh = get_active_stripe(conf, new_sector, previous,
3677				       (bi->bi_rw&RWA_MASK), 0);
3678		if (sh) {
3679			if (unlikely(previous)) {
3680				/* expansion might have moved on while waiting for a
3681				 * stripe, so we must do the range check again.
3682				 * Expansion could still move past after this
3683				 * test, but as we are holding a reference to
3684				 * 'sh', we know that if that happens,
3685				 *  STRIPE_EXPANDING will get set and the expansion
3686				 * won't proceed until we finish with the stripe.
3687				 */
3688				int must_retry = 0;
3689				spin_lock_irq(&conf->device_lock);
3690				if (mddev->delta_disks < 0
3691				    ? logical_sector >= conf->reshape_progress
3692				    : logical_sector < conf->reshape_progress)
3693					/* mismatch, need to try again */
3694					must_retry = 1;
3695				spin_unlock_irq(&conf->device_lock);
3696				if (must_retry) {
3697					release_stripe(sh);
3698					schedule();
3699					goto retry;
3700				}
3701			}
3702
3703			if (bio_data_dir(bi) == WRITE &&
3704			    logical_sector >= mddev->suspend_lo &&
3705			    logical_sector < mddev->suspend_hi) {
3706				release_stripe(sh);
3707				/* As the suspend_* range is controlled by
3708				 * userspace, we want an interruptible
3709				 * wait.
3710				 */
3711				flush_signals(current);
3712				prepare_to_wait(&conf->wait_for_overlap,
3713						&w, TASK_INTERRUPTIBLE);
3714				if (logical_sector >= mddev->suspend_lo &&
3715				    logical_sector < mddev->suspend_hi)
3716					schedule();
3717				goto retry;
3718			}
3719
3720			if (test_bit(STRIPE_EXPANDING, &sh->state) ||
3721			    !add_stripe_bio(sh, bi, dd_idx, (bi->bi_rw&RW_MASK))) {
3722				/* Stripe is busy expanding or
3723				 * add failed due to overlap.  Flush everything
3724				 * and wait a while
3725				 */
3726				raid5_unplug_device(mddev->queue);
3727				release_stripe(sh);
3728				schedule();
3729				goto retry;
3730			}
3731			finish_wait(&conf->wait_for_overlap, &w);
3732			set_bit(STRIPE_HANDLE, &sh->state);
3733			clear_bit(STRIPE_DELAYED, &sh->state);
3734			release_stripe(sh);
3735		} else {
3736			/* cannot get stripe for read-ahead, just give-up */
3737			clear_bit(BIO_UPTODATE, &bi->bi_flags);
3738			finish_wait(&conf->wait_for_overlap, &w);
3739			break;
3740		}
3741
3742	}
3743	spin_lock_irq(&conf->device_lock);
3744	remaining = raid5_dec_bi_phys_segments(bi);
3745	spin_unlock_irq(&conf->device_lock);
3746	if (remaining == 0) {
3747
3748		if ( rw == WRITE )
3749			md_write_end(mddev);
3750
3751		bio_endio(bi, 0);
3752	}
3753	return 0;
3754}
3755
3756static sector_t raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks);
3757
3758static sector_t reshape_request(mddev_t *mddev, sector_t sector_nr, int *skipped)
3759{
3760	/* reshaping is quite different to recovery/resync so it is
3761	 * handled quite separately ... here.
3762	 *
3763	 * On each call to sync_request, we gather one chunk worth of
3764	 * destination stripes and flag them as expanding.
3765	 * Then we find all the source stripes and request reads.
3766	 * As the reads complete, handle_stripe will copy the data
3767	 * into the destination stripe and release that stripe.
3768	 */
3769	raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
3770	struct stripe_head *sh;
3771	sector_t first_sector, last_sector;
3772	int raid_disks = conf->previous_raid_disks;
3773	int data_disks = raid_disks - conf->max_degraded;
3774	int new_data_disks = conf->raid_disks - conf->max_degraded;
3775	int i;
3776	int dd_idx;
3777	sector_t writepos, readpos, safepos;
3778	sector_t stripe_addr;
3779	int reshape_sectors;
3780	struct list_head stripes;
3781
3782	if (sector_nr == 0) {
3783		/* If restarting in the middle, skip the initial sectors */
3784		if (mddev->delta_disks < 0 &&
3785		    conf->reshape_progress < raid5_size(mddev, 0, 0)) {
3786			sector_nr = raid5_size(mddev, 0, 0)
3787				- conf->reshape_progress;
3788		} else if (mddev->delta_disks > 0 &&
3789			   conf->reshape_progress > 0)
3790			sector_nr = conf->reshape_progress;
3791		sector_div(sector_nr, new_data_disks);
3792		if (sector_nr) {
3793			*skipped = 1;
3794			return sector_nr;
3795		}
3796	}
3797
3798	/* We need to process a full chunk at a time.
3799	 * If old and new chunk sizes differ, we need to process the
3800	 * largest of these
3801	 */
3802	if (mddev->new_chunk_sectors > mddev->chunk_sectors)
3803		reshape_sectors = mddev->new_chunk_sectors;
3804	else
3805		reshape_sectors = mddev->chunk_sectors;
3806
3807	/* we update the metadata when there is more than 3Meg
3808	 * in the block range (that is rather arbitrary, should
3809	 * probably be time based) or when the data about to be
3810	 * copied would over-write the source of the data at
3811	 * the front of the range.
3812	 * i.e. one new_stripe along from reshape_progress new_maps
3813	 * to after where reshape_safe old_maps to
3814	 */
3815	writepos = conf->reshape_progress;
3816	sector_div(writepos, new_data_disks);
3817	readpos = conf->reshape_progress;
3818	sector_div(readpos, data_disks);
3819	safepos = conf->reshape_safe;
3820	sector_div(safepos, data_disks);
3821	if (mddev->delta_disks < 0) {
3822		writepos -= min_t(sector_t, reshape_sectors, writepos);
3823		readpos += reshape_sectors;
3824		safepos += reshape_sectors;
3825	} else {
3826		writepos += reshape_sectors;
3827		readpos -= min_t(sector_t, reshape_sectors, readpos);
3828		safepos -= min_t(sector_t, reshape_sectors, safepos);
3829	}
3830
3831	/* 'writepos' is the most advanced device address we might write.
3832	 * 'readpos' is the least advanced device address we might read.
3833	 * 'safepos' is the least address recorded in the metadata as having
3834	 *     been reshaped.
3835	 * If 'readpos' is behind 'writepos', then there is no way that we can
3836	 * ensure safety in the face of a crash - that must be done by userspace
3837	 * making a backup of the data.  So in that case there is no particular
3838	 * rush to update metadata.
3839	 * Otherwise if 'safepos' is behind 'writepos', then we really need to
3840	 * update the metadata to advance 'safepos' to match 'readpos' so that
3841	 * we can be safe in the event of a crash.
3842	 * So we insist on updating metadata if safepos is behind writepos and
3843	 * readpos is beyond writepos.
3844	 * In any case, update the metadata every 10 seconds.
3845	 * Maybe that number should be configurable, but I'm not sure it is
3846	 * worth it.... maybe it could be a multiple of safemode_delay???
3847	 */
3848	if ((mddev->delta_disks < 0
3849	     ? (safepos > writepos && readpos < writepos)
3850	     : (safepos < writepos && readpos > writepos)) ||
3851	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
3852		/* Cannot proceed until we've updated the superblock... */
3853		wait_event(conf->wait_for_overlap,
3854			   atomic_read(&conf->reshape_stripes)==0);
3855		mddev->reshape_position = conf->reshape_progress;
3856		mddev->curr_resync_completed = mddev->curr_resync;
3857		conf->reshape_checkpoint = jiffies;
3858		set_bit(MD_CHANGE_DEVS, &mddev->flags);
3859		md_wakeup_thread(mddev->thread);
3860		wait_event(mddev->sb_wait, mddev->flags == 0 ||
3861			   kthread_should_stop());
3862		spin_lock_irq(&conf->device_lock);
3863		conf->reshape_safe = mddev->reshape_position;
3864		spin_unlock_irq(&conf->device_lock);
3865		wake_up(&conf->wait_for_overlap);
3866		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
3867	}
3868
3869	if (mddev->delta_disks < 0) {
3870		BUG_ON(conf->reshape_progress == 0);
3871		stripe_addr = writepos;
3872		BUG_ON((mddev->dev_sectors &
3873			~((sector_t)reshape_sectors - 1))
3874		       - reshape_sectors - stripe_addr
3875		       != sector_nr);
3876	} else {
3877		BUG_ON(writepos != sector_nr + reshape_sectors);
3878		stripe_addr = sector_nr;
3879	}
3880	INIT_LIST_HEAD(&stripes);
3881	for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
3882		int j;
3883		int skipped = 0;
3884		sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
3885		set_bit(STRIPE_EXPANDING, &sh->state);
3886		atomic_inc(&conf->reshape_stripes);
3887		/* If any of this stripe is beyond the end of the old
3888		 * array, then we need to zero those blocks
3889		 */
3890		for (j=sh->disks; j--;) {
3891			sector_t s;
3892			if (j == sh->pd_idx)
3893				continue;
3894			if (conf->level == 6 &&
3895			    j == sh->qd_idx)
3896				continue;
3897			s = compute_blocknr(sh, j, 0);
3898			if (s < raid5_size(mddev, 0, 0)) {
3899				skipped = 1;
3900				continue;
3901			}
3902			memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
3903			set_bit(R5_Expanded, &sh->dev[j].flags);
3904			set_bit(R5_UPTODATE, &sh->dev[j].flags);
3905		}
3906		if (!skipped) {
3907			set_bit(STRIPE_EXPAND_READY, &sh->state);
3908			set_bit(STRIPE_HANDLE, &sh->state);
3909		}
3910		list_add(&sh->lru, &stripes);
3911	}
3912	spin_lock_irq(&conf->device_lock);
3913	if (mddev->delta_disks < 0)
3914		conf->reshape_progress -= reshape_sectors * new_data_disks;
3915	else
3916		conf->reshape_progress += reshape_sectors * new_data_disks;
3917	spin_unlock_irq(&conf->device_lock);
3918	/* Ok, those stripe are ready. We can start scheduling
3919	 * reads on the source stripes.
3920	 * The source stripes are determined by mapping the first and last
3921	 * block on the destination stripes.
3922	 */
3923	first_sector =
3924		raid5_compute_sector(conf, stripe_addr*(new_data_disks),
3925				     1, &dd_idx, NULL);
3926	last_sector =
3927		raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
3928					    * new_data_disks - 1),
3929				     1, &dd_idx, NULL);
3930	if (last_sector >= mddev->dev_sectors)
3931		last_sector = mddev->dev_sectors - 1;
3932	while (first_sector <= last_sector) {
3933		sh = get_active_stripe(conf, first_sector, 1, 0, 1);
3934		set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3935		set_bit(STRIPE_HANDLE, &sh->state);
3936		release_stripe(sh);
3937		first_sector += STRIPE_SECTORS;
3938	}
3939	/* Now that the sources are clearly marked, we can release
3940	 * the destination stripes
3941	 */
3942	while (!list_empty(&stripes)) {
3943		sh = list_entry(stripes.next, struct stripe_head, lru);
3944		list_del_init(&sh->lru);
3945		release_stripe(sh);
3946	}
3947	/* If this takes us to the resync_max point where we have to pause,
3948	 * then we need to write out the superblock.
3949	 */
3950	sector_nr += reshape_sectors;
3951	if ((sector_nr - mddev->curr_resync_completed) * 2
3952	    >= mddev->resync_max - mddev->curr_resync_completed) {
3953		/* Cannot proceed until we've updated the superblock... */
3954		wait_event(conf->wait_for_overlap,
3955			   atomic_read(&conf->reshape_stripes) == 0);
3956		mddev->reshape_position = conf->reshape_progress;
3957		mddev->curr_resync_completed = mddev->curr_resync + reshape_sectors;
3958		conf->reshape_checkpoint = jiffies;
3959		set_bit(MD_CHANGE_DEVS, &mddev->flags);
3960		md_wakeup_thread(mddev->thread);
3961		wait_event(mddev->sb_wait,
3962			   !test_bit(MD_CHANGE_DEVS, &mddev->flags)
3963			   || kthread_should_stop());
3964		spin_lock_irq(&conf->device_lock);
3965		conf->reshape_safe = mddev->reshape_position;
3966		spin_unlock_irq(&conf->device_lock);
3967		wake_up(&conf->wait_for_overlap);
3968		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
3969	}
3970	return reshape_sectors;
3971}
3972
3973/* FIXME go_faster isn't used */
3974static inline sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
3975{
3976	raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
3977	struct stripe_head *sh;
3978	sector_t max_sector = mddev->dev_sectors;
3979	int sync_blocks;
3980	int still_degraded = 0;
3981	int i;
3982
3983	if (sector_nr >= max_sector) {
3984		/* just being told to finish up .. nothing much to do */
3985		unplug_slaves(mddev);
3986
3987		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
3988			end_reshape(conf);
3989			return 0;
3990		}
3991
3992		if (mddev->curr_resync < max_sector) /* aborted */
3993			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
3994					&sync_blocks, 1);
3995		else /* completed sync */
3996			conf->fullsync = 0;
3997		bitmap_close_sync(mddev->bitmap);
3998
3999		return 0;
4000	}
4001
4002	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4003		return reshape_request(mddev, sector_nr, skipped);
4004
4005	/* No need to check resync_max as we never do more than one
4006	 * stripe, and as resync_max will always be on a chunk boundary,
4007	 * if the check in md_do_sync didn't fire, there is no chance
4008	 * of overstepping resync_max here
4009	 */
4010
4011	/* if there is too many failed drives and we are trying
4012	 * to resync, then assert that we are finished, because there is
4013	 * nothing we can do.
4014	 */
4015	if (mddev->degraded >= conf->max_degraded &&
4016	    test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4017		sector_t rv = mddev->dev_sectors - sector_nr;
4018		*skipped = 1;
4019		return rv;
4020	}
4021	if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
4022	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
4023	    !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
4024		/* we can skip this block, and probably more */
4025		sync_blocks /= STRIPE_SECTORS;
4026		*skipped = 1;
4027		return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
4028	}
4029
4030
4031	bitmap_cond_end_sync(mddev->bitmap, sector_nr);
4032
4033	sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
4034	if (sh == NULL) {
4035		sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
4036		/* make sure we don't swamp the stripe cache if someone else
4037		 * is trying to get access
4038		 */
4039		schedule_timeout_uninterruptible(1);
4040	}
4041	/* Need to check if array will still be degraded after recovery/resync
4042	 * We don't need to check the 'failed' flag as when that gets set,
4043	 * recovery aborts.
4044	 */
4045	for (i = 0; i < conf->raid_disks; i++)
4046		if (conf->disks[i].rdev == NULL)
4047			still_degraded = 1;
4048
4049	bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
4050
4051	spin_lock(&sh->lock);
4052	set_bit(STRIPE_SYNCING, &sh->state);
4053	clear_bit(STRIPE_INSYNC, &sh->state);
4054	spin_unlock(&sh->lock);
4055
4056	/* wait for any blocked device to be handled */
4057	while(unlikely(!handle_stripe(sh, NULL)))
4058		;
4059	release_stripe(sh);
4060
4061	return STRIPE_SECTORS;
4062}
4063
4064static int  retry_aligned_read(raid5_conf_t *conf, struct bio *raid_bio)
4065{
4066	/* We may not be able to submit a whole bio at once as there
4067	 * may not be enough stripe_heads available.
4068	 * We cannot pre-allocate enough stripe_heads as we may need
4069	 * more than exist in the cache (if we allow ever large chunks).
4070	 * So we do one stripe head at a time and record in
4071	 * ->bi_hw_segments how many have been done.
4072	 *
4073	 * We *know* that this entire raid_bio is in one chunk, so
4074	 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
4075	 */
4076	struct stripe_head *sh;
4077	int dd_idx;
4078	sector_t sector, logical_sector, last_sector;
4079	int scnt = 0;
4080	int remaining;
4081	int handled = 0;
4082
4083	logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4084	sector = raid5_compute_sector(conf, logical_sector,
4085				      0, &dd_idx, NULL);
4086	last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);
4087
4088	for (; logical_sector < last_sector;
4089	     logical_sector += STRIPE_SECTORS,
4090		     sector += STRIPE_SECTORS,
4091		     scnt++) {
4092
4093		if (scnt < raid5_bi_hw_segments(raid_bio))
4094			/* already done this stripe */
4095			continue;
4096
4097		sh = get_active_stripe(conf, sector, 0, 1, 0);
4098
4099		if (!sh) {
4100			/* failed to get a stripe - must wait */
4101			raid5_set_bi_hw_segments(raid_bio, scnt);
4102			conf->retry_read_aligned = raid_bio;
4103			return handled;
4104		}
4105
4106		set_bit(R5_ReadError, &sh->dev[dd_idx].flags);
4107		if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
4108			release_stripe(sh);
4109			raid5_set_bi_hw_segments(raid_bio, scnt);
4110			conf->retry_read_aligned = raid_bio;
4111			return handled;
4112		}
4113
4114		handle_stripe(sh, NULL);
4115		release_stripe(sh);
4116		handled++;
4117	}
4118	spin_lock_irq(&conf->device_lock);
4119	remaining = raid5_dec_bi_phys_segments(raid_bio);
4120	spin_unlock_irq(&conf->device_lock);
4121	if (remaining == 0)
4122		bio_endio(raid_bio, 0);
4123	if (atomic_dec_and_test(&conf->active_aligned_reads))
4124		wake_up(&conf->wait_for_stripe);
4125	return handled;
4126}
4127
4128
4129
4130/*
4131 * This is our raid5 kernel thread.
4132 *
4133 * We scan the hash table for stripes which can be handled now.
4134 * During the scan, completed stripes are saved for us by the interrupt
4135 * handler, so that they will not have to wait for our next wakeup.
4136 */
4137static void raid5d(mddev_t *mddev)
4138{
4139	struct stripe_head *sh;
4140	raid5_conf_t *conf = mddev->private;
4141	int handled;
4142
4143	pr_debug("+++ raid5d active\n");
4144
4145	md_check_recovery(mddev);
4146
4147	handled = 0;
4148	spin_lock_irq(&conf->device_lock);
4149	while (1) {
4150		struct bio *bio;
4151
4152		if (conf->seq_flush != conf->seq_write) {
4153			int seq = conf->seq_flush;
4154			spin_unlock_irq(&conf->device_lock);
4155			bitmap_unplug(mddev->bitmap);
4156			spin_lock_irq(&conf->device_lock);
4157			conf->seq_write = seq;
4158			activate_bit_delay(conf);
4159		}
4160
4161		while ((bio = remove_bio_from_retry(conf))) {
4162			int ok;
4163			spin_unlock_irq(&conf->device_lock);
4164			ok = retry_aligned_read(conf, bio);
4165			spin_lock_irq(&conf->device_lock);
4166			if (!ok)
4167				break;
4168			handled++;
4169		}
4170
4171		sh = __get_priority_stripe(conf);
4172
4173		if (!sh)
4174			break;
4175		spin_unlock_irq(&conf->device_lock);
4176
4177		handled++;
4178		handle_stripe(sh, conf->spare_page);
4179		release_stripe(sh);
4180
4181		spin_lock_irq(&conf->device_lock);
4182	}
4183	pr_debug("%d stripes handled\n", handled);
4184
4185	spin_unlock_irq(&conf->device_lock);
4186
4187	async_tx_issue_pending_all();
4188	unplug_slaves(mddev);
4189
4190	pr_debug("--- raid5d inactive\n");
4191}
4192
4193static ssize_t
4194raid5_show_stripe_cache_size(mddev_t *mddev, char *page)
4195{
4196	raid5_conf_t *conf = mddev->private;
4197	if (conf)
4198		return sprintf(page, "%d\n", conf->max_nr_stripes);
4199	else
4200		return 0;
4201}
4202
4203static ssize_t
4204raid5_store_stripe_cache_size(mddev_t *mddev, const char *page, size_t len)
4205{
4206	raid5_conf_t *conf = mddev->private;
4207	unsigned long new;
4208	int err;
4209
4210	if (len >= PAGE_SIZE)
4211		return -EINVAL;
4212	if (!conf)
4213		return -ENODEV;
4214
4215	if (strict_strtoul(page, 10, &new))
4216		return -EINVAL;
4217	if (new <= 16 || new > 32768)
4218		return -EINVAL;
4219	while (new < conf->max_nr_stripes) {
4220		if (drop_one_stripe(conf))
4221			conf->max_nr_stripes--;
4222		else
4223			break;
4224	}
4225	err = md_allow_write(mddev);
4226	if (err)
4227		return err;
4228	while (new > conf->max_nr_stripes) {
4229		if (grow_one_stripe(conf))
4230			conf->max_nr_stripes++;
4231		else break;
4232	}
4233	return len;
4234}
4235
4236static struct md_sysfs_entry
4237raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
4238				raid5_show_stripe_cache_size,
4239				raid5_store_stripe_cache_size);
4240
4241static ssize_t
4242raid5_show_preread_threshold(mddev_t *mddev, char *page)
4243{
4244	raid5_conf_t *conf = mddev->private;
4245	if (conf)
4246		return sprintf(page, "%d\n", conf->bypass_threshold);
4247	else
4248		return 0;
4249}
4250
4251static ssize_t
4252raid5_store_preread_threshold(mddev_t *mddev, const char *page, size_t len)
4253{
4254	raid5_conf_t *conf = mddev->private;
4255	unsigned long new;
4256	if (len >= PAGE_SIZE)
4257		return -EINVAL;
4258	if (!conf)
4259		return -ENODEV;
4260
4261	if (strict_strtoul(page, 10, &new))
4262		return -EINVAL;
4263	if (new > conf->max_nr_stripes)
4264		return -EINVAL;
4265	conf->bypass_threshold = new;
4266	return len;
4267}
4268
4269static struct md_sysfs_entry
4270raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
4271					S_IRUGO | S_IWUSR,
4272					raid5_show_preread_threshold,
4273					raid5_store_preread_threshold);
4274
4275static ssize_t
4276stripe_cache_active_show(mddev_t *mddev, char *page)
4277{
4278	raid5_conf_t *conf = mddev->private;
4279	if (conf)
4280		return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
4281	else
4282		return 0;
4283}
4284
4285static struct md_sysfs_entry
4286raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
4287
4288static struct attribute *raid5_attrs[] =  {
4289	&raid5_stripecache_size.attr,
4290	&raid5_stripecache_active.attr,
4291	&raid5_preread_bypass_threshold.attr,
4292	NULL,
4293};
4294static struct attribute_group raid5_attrs_group = {
4295	.name = NULL,
4296	.attrs = raid5_attrs,
4297};
4298
4299static sector_t
4300raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks)
4301{
4302	raid5_conf_t *conf = mddev->private;
4303
4304	if (!sectors)
4305		sectors = mddev->dev_sectors;
4306	if (!raid_disks) {
4307		/* size is defined by the smallest of previous and new size */
4308		if (conf->raid_disks < conf->previous_raid_disks)
4309			raid_disks = conf->raid_disks;
4310		else
4311			raid_disks = conf->previous_raid_disks;
4312	}
4313
4314	sectors &= ~((sector_t)mddev->chunk_sectors - 1);
4315	sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
4316	return sectors * (raid_disks - conf->max_degraded);
4317}
4318
4319static void free_conf(raid5_conf_t *conf)
4320{
4321	shrink_stripes(conf);
4322	safe_put_page(conf->spare_page);
4323	kfree(conf->disks);
4324	kfree(conf->stripe_hashtbl);
4325	kfree(conf);
4326}
4327
4328static raid5_conf_t *setup_conf(mddev_t *mddev)
4329{
4330	raid5_conf_t *conf;
4331	int raid_disk, memory;
4332	mdk_rdev_t *rdev;
4333	struct disk_info *disk;
4334
4335	if (mddev->new_level != 5
4336	    && mddev->new_level != 4
4337	    && mddev->new_level != 6) {
4338		printk(KERN_ERR "raid5: %s: raid level not set to 4/5/6 (%d)\n",
4339		       mdname(mddev), mddev->new_level);
4340		return ERR_PTR(-EIO);
4341	}
4342	if ((mddev->new_level == 5
4343	     && !algorithm_valid_raid5(mddev->new_layout)) ||
4344	    (mddev->new_level == 6
4345	     && !algorithm_valid_raid6(mddev->new_layout))) {
4346		printk(KERN_ERR "raid5: %s: layout %d not supported\n",
4347		       mdname(mddev), mddev->new_layout);
4348		return ERR_PTR(-EIO);
4349	}
4350	if (mddev->new_level == 6 && mddev->raid_disks < 4) {
4351		printk(KERN_ERR "raid6: not enough configured devices for %s (%d, minimum 4)\n",
4352		       mdname(mddev), mddev->raid_disks);
4353		return ERR_PTR(-EINVAL);
4354	}
4355
4356	if (!mddev->new_chunk_sectors ||
4357	    (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
4358	    !is_power_of_2(mddev->new_chunk_sectors)) {
4359		printk(KERN_ERR "raid5: invalid chunk size %d for %s\n",
4360		       mddev->new_chunk_sectors << 9, mdname(mddev));
4361		return ERR_PTR(-EINVAL);
4362	}
4363
4364	conf = kzalloc(sizeof(raid5_conf_t), GFP_KERNEL);
4365	if (conf == NULL)
4366		goto abort;
4367
4368	conf->raid_disks = mddev->raid_disks;
4369	if (mddev->reshape_position == MaxSector)
4370		conf->previous_raid_disks = mddev->raid_disks;
4371	else
4372		conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
4373
4374	conf->disks = kzalloc(conf->raid_disks * sizeof(struct disk_info),
4375			      GFP_KERNEL);
4376	if (!conf->disks)
4377		goto abort;
4378
4379	conf->mddev = mddev;
4380
4381	if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
4382		goto abort;
4383
4384	if (mddev->new_level == 6) {
4385		conf->spare_page = alloc_page(GFP_KERNEL);
4386		if (!conf->spare_page)
4387			goto abort;
4388	}
4389	spin_lock_init(&conf->device_lock);
4390	init_waitqueue_head(&conf->wait_for_stripe);
4391	init_waitqueue_head(&conf->wait_for_overlap);
4392	INIT_LIST_HEAD(&conf->handle_list);
4393	INIT_LIST_HEAD(&conf->hold_list);
4394	INIT_LIST_HEAD(&conf->delayed_list);
4395	INIT_LIST_HEAD(&conf->bitmap_list);
4396	INIT_LIST_HEAD(&conf->inactive_list);
4397	atomic_set(&conf->active_stripes, 0);
4398	atomic_set(&conf->preread_active_stripes, 0);
4399	atomic_set(&conf->active_aligned_reads, 0);
4400	conf->bypass_threshold = BYPASS_THRESHOLD;
4401
4402	pr_debug("raid5: run(%s) called.\n", mdname(mddev));
4403
4404	list_for_each_entry(rdev, &mddev->disks, same_set) {
4405		raid_disk = rdev->raid_disk;
4406		if (raid_disk >= conf->raid_disks
4407		    || raid_disk < 0)
4408			continue;
4409		disk = conf->disks + raid_disk;
4410
4411		disk->rdev = rdev;
4412
4413		if (test_bit(In_sync, &rdev->flags)) {
4414			char b[BDEVNAME_SIZE];
4415			printk(KERN_INFO "raid5: device %s operational as raid"
4416				" disk %d\n", bdevname(rdev->bdev,b),
4417				raid_disk);
4418		} else
4419			/* Cannot rely on bitmap to complete recovery */
4420			conf->fullsync = 1;
4421	}
4422
4423	conf->chunk_sectors = mddev->new_chunk_sectors;
4424	conf->level = mddev->new_level;
4425	if (conf->level == 6)
4426		conf->max_degraded = 2;
4427	else
4428		conf->max_degraded = 1;
4429	conf->algorithm = mddev->new_layout;
4430	conf->max_nr_stripes = NR_STRIPES;
4431	conf->reshape_progress = mddev->reshape_position;
4432	if (conf->reshape_progress != MaxSector) {
4433		conf->prev_chunk_sectors = mddev->chunk_sectors;
4434		conf->prev_algo = mddev->layout;
4435	}
4436
4437	memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
4438		 conf->raid_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
4439	if (grow_stripes(conf, conf->max_nr_stripes)) {
4440		printk(KERN_ERR
4441			"raid5: couldn't allocate %dkB for buffers\n", memory);
4442		goto abort;
4443	} else
4444		printk(KERN_INFO "raid5: allocated %dkB for %s\n",
4445			memory, mdname(mddev));
4446
4447	conf->thread = md_register_thread(raid5d, mddev, "%s_raid5");
4448	if (!conf->thread) {
4449		printk(KERN_ERR
4450		       "raid5: couldn't allocate thread for %s\n",
4451		       mdname(mddev));
4452		goto abort;
4453	}
4454
4455	return conf;
4456
4457 abort:
4458	if (conf) {
4459		free_conf(conf);
4460		return ERR_PTR(-EIO);
4461	} else
4462		return ERR_PTR(-ENOMEM);
4463}
4464
4465static int run(mddev_t *mddev)
4466{
4467	raid5_conf_t *conf;
4468	int working_disks = 0, chunk_size;
4469	mdk_rdev_t *rdev;
4470
4471	if (mddev->recovery_cp != MaxSector)
4472		printk(KERN_NOTICE "raid5: %s is not clean"
4473		       " -- starting background reconstruction\n",
4474		       mdname(mddev));
4475	if (mddev->reshape_position != MaxSector) {
4476		/* Check that we can continue the reshape.
4477		 * Currently only disks can change, it must
4478		 * increase, and we must be past the point where
4479		 * a stripe over-writes itself
4480		 */
4481		sector_t here_new, here_old;
4482		int old_disks;
4483		int max_degraded = (mddev->level == 6 ? 2 : 1);
4484
4485		if (mddev->new_level != mddev->level) {
4486			printk(KERN_ERR "raid5: %s: unsupported reshape "
4487			       "required - aborting.\n",
4488			       mdname(mddev));
4489			return -EINVAL;
4490		}
4491		old_disks = mddev->raid_disks - mddev->delta_disks;
4492		/* reshape_position must be on a new-stripe boundary, and one
4493		 * further up in new geometry must map after here in old
4494		 * geometry.
4495		 */
4496		here_new = mddev->reshape_position;
4497		if (sector_div(here_new, mddev->new_chunk_sectors *
4498			       (mddev->raid_disks - max_degraded))) {
4499			printk(KERN_ERR "raid5: reshape_position not "
4500			       "on a stripe boundary\n");
4501			return -EINVAL;
4502		}
4503		/* here_new is the stripe we will write to */
4504		here_old = mddev->reshape_position;
4505		sector_div(here_old, mddev->chunk_sectors *
4506			   (old_disks-max_degraded));
4507		/* here_old is the first stripe that we might need to read
4508		 * from */
4509		if (here_new >= here_old) {
4510			/* Reading from the same stripe as writing to - bad */
4511			printk(KERN_ERR "raid5: reshape_position too early for "
4512			       "auto-recovery - aborting.\n");
4513			return -EINVAL;
4514		}
4515		printk(KERN_INFO "raid5: reshape will continue\n");
4516		/* OK, we should be able to continue; */
4517	} else {
4518		BUG_ON(mddev->level != mddev->new_level);
4519		BUG_ON(mddev->layout != mddev->new_layout);
4520		BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
4521		BUG_ON(mddev->delta_disks != 0);
4522	}
4523
4524	if (mddev->private == NULL)
4525		conf = setup_conf(mddev);
4526	else
4527		conf = mddev->private;
4528
4529	if (IS_ERR(conf))
4530		return PTR_ERR(conf);
4531
4532	mddev->thread = conf->thread;
4533	conf->thread = NULL;
4534	mddev->private = conf;
4535
4536	/*
4537	 * 0 for a fully functional array, 1 or 2 for a degraded array.
4538	 */
4539	list_for_each_entry(rdev, &mddev->disks, same_set)
4540		if (rdev->raid_disk >= 0 &&
4541		    test_bit(In_sync, &rdev->flags))
4542			working_disks++;
4543
4544	mddev->degraded = conf->raid_disks - working_disks;
4545
4546	if (mddev->degraded > conf->max_degraded) {
4547		printk(KERN_ERR "raid5: not enough operational devices for %s"
4548			" (%d/%d failed)\n",
4549			mdname(mddev), mddev->degraded, conf->raid_disks);
4550		goto abort;
4551	}
4552
4553	/* device size must be a multiple of chunk size */
4554	mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
4555	mddev->resync_max_sectors = mddev->dev_sectors;
4556
4557	if (mddev->degraded > 0 &&
4558	    mddev->recovery_cp != MaxSector) {
4559		if (mddev->ok_start_degraded)
4560			printk(KERN_WARNING
4561			       "raid5: starting dirty degraded array: %s"
4562			       "- data corruption possible.\n",
4563			       mdname(mddev));
4564		else {
4565			printk(KERN_ERR
4566			       "raid5: cannot start dirty degraded array for %s\n",
4567			       mdname(mddev));
4568			goto abort;
4569		}
4570	}
4571
4572	if (mddev->degraded == 0)
4573		printk("raid5: raid level %d set %s active with %d out of %d"
4574		       " devices, algorithm %d\n", conf->level, mdname(mddev),
4575		       mddev->raid_disks-mddev->degraded, mddev->raid_disks,
4576		       mddev->new_layout);
4577	else
4578		printk(KERN_ALERT "raid5: raid level %d set %s active with %d"
4579			" out of %d devices, algorithm %d\n", conf->level,
4580			mdname(mddev), mddev->raid_disks - mddev->degraded,
4581			mddev->raid_disks, mddev->new_layout);
4582
4583	print_raid5_conf(conf);
4584
4585	if (conf->reshape_progress != MaxSector) {
4586		printk("...ok start reshape thread\n");
4587		conf->reshape_safe = conf->reshape_progress;
4588		atomic_set(&conf->reshape_stripes, 0);
4589		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4590		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4591		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4592		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4593		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4594							"%s_reshape");
4595	}
4596
4597	/* read-ahead size must cover two whole stripes, which is
4598	 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4599	 */
4600	{
4601		int data_disks = conf->previous_raid_disks - conf->max_degraded;
4602		int stripe = data_disks *
4603			((mddev->chunk_sectors << 9) / PAGE_SIZE);
4604		if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4605			mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4606	}
4607
4608	/* Ok, everything is just fine now */
4609	if (sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
4610		printk(KERN_WARNING
4611		       "raid5: failed to create sysfs attributes for %s\n",
4612		       mdname(mddev));
4613
4614	mddev->queue->queue_lock = &conf->device_lock;
4615
4616	mddev->queue->unplug_fn = raid5_unplug_device;
4617	mddev->queue->backing_dev_info.congested_data = mddev;
4618	mddev->queue->backing_dev_info.congested_fn = raid5_congested;
4619
4620	md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
4621
4622	blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
4623	chunk_size = mddev->chunk_sectors << 9;
4624	blk_queue_io_min(mddev->queue, chunk_size);
4625	blk_queue_io_opt(mddev->queue, chunk_size *
4626			 (conf->raid_disks - conf->max_degraded));
4627
4628	list_for_each_entry(rdev, &mddev->disks, same_set)
4629		disk_stack_limits(mddev->gendisk, rdev->bdev,
4630				  rdev->data_offset << 9);
4631
4632	return 0;
4633abort:
4634	md_unregister_thread(mddev->thread);
4635	mddev->thread = NULL;
4636	if (conf) {
4637		print_raid5_conf(conf);
4638		free_conf(conf);
4639	}
4640	mddev->private = NULL;
4641	printk(KERN_ALERT "raid5: failed to run raid set %s\n", mdname(mddev));
4642	return -EIO;
4643}
4644
4645
4646
4647static int stop(mddev_t *mddev)
4648{
4649	raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
4650
4651	md_unregister_thread(mddev->thread);
4652	mddev->thread = NULL;
4653	mddev->queue->backing_dev_info.congested_fn = NULL;
4654	blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
4655	sysfs_remove_group(&mddev->kobj, &raid5_attrs_group);
4656	free_conf(conf);
4657	mddev->private = NULL;
4658	return 0;
4659}
4660
4661#ifdef DEBUG
4662static void print_sh(struct seq_file *seq, struct stripe_head *sh)
4663{
4664	int i;
4665
4666	seq_printf(seq, "sh %llu, pd_idx %d, state %ld.\n",
4667		   (unsigned long long)sh->sector, sh->pd_idx, sh->state);
4668	seq_printf(seq, "sh %llu,  count %d.\n",
4669		   (unsigned long long)sh->sector, atomic_read(&sh->count));
4670	seq_printf(seq, "sh %llu, ", (unsigned long long)sh->sector);
4671	for (i = 0; i < sh->disks; i++) {
4672		seq_printf(seq, "(cache%d: %p %ld) ",
4673			   i, sh->dev[i].page, sh->dev[i].flags);
4674	}
4675	seq_printf(seq, "\n");
4676}
4677
4678static void printall(struct seq_file *seq, raid5_conf_t *conf)
4679{
4680	struct stripe_head *sh;
4681	struct hlist_node *hn;
4682	int i;
4683
4684	spin_lock_irq(&conf->device_lock);
4685	for (i = 0; i < NR_HASH; i++) {
4686		hlist_for_each_entry(sh, hn, &conf->stripe_hashtbl[i], hash) {
4687			if (sh->raid_conf != conf)
4688				continue;
4689			print_sh(seq, sh);
4690		}
4691	}
4692	spin_unlock_irq(&conf->device_lock);
4693}
4694#endif
4695
4696static void status(struct seq_file *seq, mddev_t *mddev)
4697{
4698	raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
4699	int i;
4700
4701	seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
4702		mddev->chunk_sectors / 2, mddev->layout);
4703	seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
4704	for (i = 0; i < conf->raid_disks; i++)
4705		seq_printf (seq, "%s",
4706			       conf->disks[i].rdev &&
4707			       test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
4708	seq_printf (seq, "]");
4709#ifdef DEBUG
4710	seq_printf (seq, "\n");
4711	printall(seq, conf);
4712#endif
4713}
4714
4715static void print_raid5_conf (raid5_conf_t *conf)
4716{
4717	int i;
4718	struct disk_info *tmp;
4719
4720	printk("RAID5 conf printout:\n");
4721	if (!conf) {
4722		printk("(conf==NULL)\n");
4723		return;
4724	}
4725	printk(" --- rd:%d wd:%d\n", conf->raid_disks,
4726		 conf->raid_disks - conf->mddev->degraded);
4727
4728	for (i = 0; i < conf->raid_disks; i++) {
4729		char b[BDEVNAME_SIZE];
4730		tmp = conf->disks + i;
4731		if (tmp->rdev)
4732		printk(" disk %d, o:%d, dev:%s\n",
4733			i, !test_bit(Faulty, &tmp->rdev->flags),
4734			bdevname(tmp->rdev->bdev,b));
4735	}
4736}
4737
4738static int raid5_spare_active(mddev_t *mddev)
4739{
4740	int i;
4741	raid5_conf_t *conf = mddev->private;
4742	struct disk_info *tmp;
4743
4744	for (i = 0; i < conf->raid_disks; i++) {
4745		tmp = conf->disks + i;
4746		if (tmp->rdev
4747		    && !test_bit(Faulty, &tmp->rdev->flags)
4748		    && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
4749			unsigned long flags;
4750			spin_lock_irqsave(&conf->device_lock, flags);
4751			mddev->degraded--;
4752			spin_unlock_irqrestore(&conf->device_lock, flags);
4753		}
4754	}
4755	print_raid5_conf(conf);
4756	return 0;
4757}
4758
4759static int raid5_remove_disk(mddev_t *mddev, int number)
4760{
4761	raid5_conf_t *conf = mddev->private;
4762	int err = 0;
4763	mdk_rdev_t *rdev;
4764	struct disk_info *p = conf->disks + number;
4765
4766	print_raid5_conf(conf);
4767	rdev = p->rdev;
4768	if (rdev) {
4769		if (number >= conf->raid_disks &&
4770		    conf->reshape_progress == MaxSector)
4771			clear_bit(In_sync, &rdev->flags);
4772
4773		if (test_bit(In_sync, &rdev->flags) ||
4774		    atomic_read(&rdev->nr_pending)) {
4775			err = -EBUSY;
4776			goto abort;
4777		}
4778		/* Only remove non-faulty devices if recovery
4779		 * isn't possible.
4780		 */
4781		if (!test_bit(Faulty, &rdev->flags) &&
4782		    mddev->degraded <= conf->max_degraded &&
4783		    number < conf->raid_disks) {
4784			err = -EBUSY;
4785			goto abort;
4786		}
4787		p->rdev = NULL;
4788		synchronize_rcu();
4789		if (atomic_read(&rdev->nr_pending)) {
4790			/* lost the race, try later */
4791			err = -EBUSY;
4792			p->rdev = rdev;
4793		}
4794	}
4795abort:
4796
4797	print_raid5_conf(conf);
4798	return err;
4799}
4800
4801static int raid5_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
4802{
4803	raid5_conf_t *conf = mddev->private;
4804	int err = -EEXIST;
4805	int disk;
4806	struct disk_info *p;
4807	int first = 0;
4808	int last = conf->raid_disks - 1;
4809
4810	if (mddev->degraded > conf->max_degraded)
4811		/* no point adding a device */
4812		return -EINVAL;
4813
4814	if (rdev->raid_disk >= 0)
4815		first = last = rdev->raid_disk;
4816
4817	/*
4818	 * find the disk ... but prefer rdev->saved_raid_disk
4819	 * if possible.
4820	 */
4821	if (rdev->saved_raid_disk >= 0 &&
4822	    rdev->saved_raid_disk >= first &&
4823	    conf->disks[rdev->saved_raid_disk].rdev == NULL)
4824		disk = rdev->saved_raid_disk;
4825	else
4826		disk = first;
4827	for ( ; disk <= last ; disk++)
4828		if ((p=conf->disks + disk)->rdev == NULL) {
4829			clear_bit(In_sync, &rdev->flags);
4830			rdev->raid_disk = disk;
4831			err = 0;
4832			if (rdev->saved_raid_disk != disk)
4833				conf->fullsync = 1;
4834			rcu_assign_pointer(p->rdev, rdev);
4835			break;
4836		}
4837	print_raid5_conf(conf);
4838	return err;
4839}
4840
4841static int raid5_resize(mddev_t *mddev, sector_t sectors)
4842{
4843	/* no resync is happening, and there is enough space
4844	 * on all devices, so we can resize.
4845	 * We need to make sure resync covers any new space.
4846	 * If the array is shrinking we should possibly wait until
4847	 * any io in the removed space completes, but it hardly seems
4848	 * worth it.
4849	 */
4850	sectors &= ~((sector_t)mddev->chunk_sectors - 1);
4851	md_set_array_sectors(mddev, raid5_size(mddev, sectors,
4852					       mddev->raid_disks));
4853	if (mddev->array_sectors >
4854	    raid5_size(mddev, sectors, mddev->raid_disks))
4855		return -EINVAL;
4856	set_capacity(mddev->gendisk, mddev->array_sectors);
4857	mddev->changed = 1;
4858	if (sectors > mddev->dev_sectors && mddev->recovery_cp == MaxSector) {
4859		mddev->recovery_cp = mddev->dev_sectors;
4860		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4861	}
4862	mddev->dev_sectors = sectors;
4863	mddev->resync_max_sectors = sectors;
4864	return 0;
4865}
4866
4867static int check_stripe_cache(mddev_t *mddev)
4868{
4869	/* Can only proceed if there are plenty of stripe_heads.
4870	 * We need a minimum of one full stripe,, and for sensible progress
4871	 * it is best to have about 4 times that.
4872	 * If we require 4 times, then the default 256 4K stripe_heads will
4873	 * allow for chunk sizes up to 256K, which is probably OK.
4874	 * If the chunk size is greater, user-space should request more
4875	 * stripe_heads first.
4876	 */
4877	raid5_conf_t *conf = mddev->private;
4878	if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
4879	    > conf->max_nr_stripes ||
4880	    ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
4881	    > conf->max_nr_stripes) {
4882		printk(KERN_WARNING "raid5: reshape: not enough stripes.  Needed %lu\n",
4883		       ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
4884			/ STRIPE_SIZE)*4);
4885		return 0;
4886	}
4887	return 1;
4888}
4889
4890static int check_reshape(mddev_t *mddev)
4891{
4892	raid5_conf_t *conf = mddev->private;
4893
4894	if (mddev->delta_disks == 0 &&
4895	    mddev->new_layout == mddev->layout &&
4896	    mddev->new_chunk_sectors == mddev->chunk_sectors)
4897		return 0; /* nothing to do */
4898	if (mddev->bitmap)
4899		/* Cannot grow a bitmap yet */
4900		return -EBUSY;
4901	if (mddev->degraded > conf->max_degraded)
4902		return -EINVAL;
4903	if (mddev->delta_disks < 0) {
4904		/* We might be able to shrink, but the devices must
4905		 * be made bigger first.
4906		 * For raid6, 4 is the minimum size.
4907		 * Otherwise 2 is the minimum
4908		 */
4909		int min = 2;
4910		if (mddev->level == 6)
4911			min = 4;
4912		if (mddev->raid_disks + mddev->delta_disks < min)
4913			return -EINVAL;
4914	}
4915
4916	if (!check_stripe_cache(mddev))
4917		return -ENOSPC;
4918
4919	return resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
4920}
4921
4922static int raid5_start_reshape(mddev_t *mddev)
4923{
4924	raid5_conf_t *conf = mddev->private;
4925	mdk_rdev_t *rdev;
4926	int spares = 0;
4927	int added_devices = 0;
4928	unsigned long flags;
4929
4930	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4931		return -EBUSY;
4932
4933	if (!check_stripe_cache(mddev))
4934		return -ENOSPC;
4935
4936	list_for_each_entry(rdev, &mddev->disks, same_set)
4937		if (rdev->raid_disk < 0 &&
4938		    !test_bit(Faulty, &rdev->flags))
4939			spares++;
4940
4941	if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
4942		/* Not enough devices even to make a degraded array
4943		 * of that size
4944		 */
4945		return -EINVAL;
4946
4947	/* Refuse to reduce size of the array.  Any reductions in
4948	 * array size must be through explicit setting of array_size
4949	 * attribute.
4950	 */
4951	if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
4952	    < mddev->array_sectors) {
4953		printk(KERN_ERR "md: %s: array size must be reduced "
4954		       "before number of disks\n", mdname(mddev));
4955		return -EINVAL;
4956	}
4957
4958	atomic_set(&conf->reshape_stripes, 0);
4959	spin_lock_irq(&conf->device_lock);
4960	conf->previous_raid_disks = conf->raid_disks;
4961	conf->raid_disks += mddev->delta_disks;
4962	conf->prev_chunk_sectors = conf->chunk_sectors;
4963	conf->chunk_sectors = mddev->new_chunk_sectors;
4964	conf->prev_algo = conf->algorithm;
4965	conf->algorithm = mddev->new_layout;
4966	if (mddev->delta_disks < 0)
4967		conf->reshape_progress = raid5_size(mddev, 0, 0);
4968	else
4969		conf->reshape_progress = 0;
4970	conf->reshape_safe = conf->reshape_progress;
4971	conf->generation++;
4972	spin_unlock_irq(&conf->device_lock);
4973
4974	/* Add some new drives, as many as will fit.
4975	 * We know there are enough to make the newly sized array work.
4976	 */
4977	list_for_each_entry(rdev, &mddev->disks, same_set)
4978		if (rdev->raid_disk < 0 &&
4979		    !test_bit(Faulty, &rdev->flags)) {
4980			if (raid5_add_disk(mddev, rdev) == 0) {
4981				char nm[20];
4982				set_bit(In_sync, &rdev->flags);
4983				added_devices++;
4984				rdev->recovery_offset = 0;
4985				sprintf(nm, "rd%d", rdev->raid_disk);
4986				if (sysfs_create_link(&mddev->kobj,
4987						      &rdev->kobj, nm))
4988					printk(KERN_WARNING
4989					       "raid5: failed to create "
4990					       " link %s for %s\n",
4991					       nm, mdname(mddev));
4992			} else
4993				break;
4994		}
4995
4996	if (mddev->delta_disks > 0) {
4997		spin_lock_irqsave(&conf->device_lock, flags);
4998		mddev->degraded = (conf->raid_disks - conf->previous_raid_disks)
4999			- added_devices;
5000		spin_unlock_irqrestore(&conf->device_lock, flags);
5001	}
5002	mddev->raid_disks = conf->raid_disks;
5003	mddev->reshape_position = conf->reshape_progress;
5004	set_bit(MD_CHANGE_DEVS, &mddev->flags);
5005
5006	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5007	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5008	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5009	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5010	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5011						"%s_reshape");
5012	if (!mddev->sync_thread) {
5013		mddev->recovery = 0;
5014		spin_lock_irq(&conf->device_lock);
5015		mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
5016		conf->reshape_progress = MaxSector;
5017		spin_unlock_irq(&conf->device_lock);
5018		return -EAGAIN;
5019	}
5020	conf->reshape_checkpoint = jiffies;
5021	md_wakeup_thread(mddev->sync_thread);
5022	md_new_event(mddev);
5023	return 0;
5024}
5025
5026/* This is called from the reshape thread and should make any
5027 * changes needed in 'conf'
5028 */
5029static void end_reshape(raid5_conf_t *conf)
5030{
5031
5032	if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
5033
5034		spin_lock_irq(&conf->device_lock);
5035		conf->previous_raid_disks = conf->raid_disks;
5036		conf->reshape_progress = MaxSector;
5037		spin_unlock_irq(&conf->device_lock);
5038		wake_up(&conf->wait_for_overlap);
5039
5040		/* read-ahead size must cover two whole stripes, which is
5041		 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
5042		 */
5043		{
5044			int data_disks = conf->raid_disks - conf->max_degraded;
5045			int stripe = data_disks * ((conf->chunk_sectors << 9)
5046						   / PAGE_SIZE);
5047			if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5048				conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
5049		}
5050	}
5051}
5052
5053/* This is called from the raid5d thread with mddev_lock held.
5054 * It makes config changes to the device.
5055 */
5056static void raid5_finish_reshape(mddev_t *mddev)
5057{
5058	struct block_device *bdev;
5059	raid5_conf_t *conf = mddev->private;
5060
5061	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
5062
5063		if (mddev->delta_disks > 0) {
5064			md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5065			set_capacity(mddev->gendisk, mddev->array_sectors);
5066			mddev->changed = 1;
5067
5068			bdev = bdget_disk(mddev->gendisk, 0);
5069			if (bdev) {
5070				mutex_lock(&bdev->bd_inode->i_mutex);
5071				i_size_write(bdev->bd_inode,
5072					     (loff_t)mddev->array_sectors << 9);
5073				mutex_unlock(&bdev->bd_inode->i_mutex);
5074				bdput(bdev);
5075			}
5076		} else {
5077			int d;
5078			mddev->degraded = conf->raid_disks;
5079			for (d = 0; d < conf->raid_disks ; d++)
5080				if (conf->disks[d].rdev &&
5081				    test_bit(In_sync,
5082					     &conf->disks[d].rdev->flags))
5083					mddev->degraded--;
5084			for (d = conf->raid_disks ;
5085			     d < conf->raid_disks - mddev->delta_disks;
5086			     d++)
5087				raid5_remove_disk(mddev, d);
5088		}
5089		mddev->layout = conf->algorithm;
5090		mddev->chunk_sectors = conf->chunk_sectors;
5091		mddev->reshape_position = MaxSector;
5092		mddev->delta_disks = 0;
5093	}
5094}
5095
5096static void raid5_quiesce(mddev_t *mddev, int state)
5097{
5098	raid5_conf_t *conf = mddev->private;
5099
5100	switch(state) {
5101	case 2: /* resume for a suspend */
5102		wake_up(&conf->wait_for_overlap);
5103		break;
5104
5105	case 1: /* stop all writes */
5106		spin_lock_irq(&conf->device_lock);
5107		conf->quiesce = 1;
5108		wait_event_lock_irq(conf->wait_for_stripe,
5109				    atomic_read(&conf->active_stripes) == 0 &&
5110				    atomic_read(&conf->active_aligned_reads) == 0,
5111				    conf->device_lock, /* nothing */);
5112		spin_unlock_irq(&conf->device_lock);
5113		break;
5114
5115	case 0: /* re-enable writes */
5116		spin_lock_irq(&conf->device_lock);
5117		conf->quiesce = 0;
5118		wake_up(&conf->wait_for_stripe);
5119		wake_up(&conf->wait_for_overlap);
5120		spin_unlock_irq(&conf->device_lock);
5121		break;
5122	}
5123}
5124
5125
5126static void *raid5_takeover_raid1(mddev_t *mddev)
5127{
5128	int chunksect;
5129
5130	if (mddev->raid_disks != 2 ||
5131	    mddev->degraded > 1)
5132		return ERR_PTR(-EINVAL);
5133
5134	/* Should check if there are write-behind devices? */
5135
5136	chunksect = 64*2; /* 64K by default */
5137
5138	/* The array must be an exact multiple of chunksize */
5139	while (chunksect && (mddev->array_sectors & (chunksect-1)))
5140		chunksect >>= 1;
5141
5142	if ((chunksect<<9) < STRIPE_SIZE)
5143		/* array size does not allow a suitable chunk size */
5144		return ERR_PTR(-EINVAL);
5145
5146	mddev->new_level = 5;
5147	mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
5148	mddev->new_chunk_sectors = chunksect;
5149
5150	return setup_conf(mddev);
5151}
5152
5153static void *raid5_takeover_raid6(mddev_t *mddev)
5154{
5155	int new_layout;
5156
5157	switch (mddev->layout) {
5158	case ALGORITHM_LEFT_ASYMMETRIC_6:
5159		new_layout = ALGORITHM_LEFT_ASYMMETRIC;
5160		break;
5161	case ALGORITHM_RIGHT_ASYMMETRIC_6:
5162		new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
5163		break;
5164	case ALGORITHM_LEFT_SYMMETRIC_6:
5165		new_layout = ALGORITHM_LEFT_SYMMETRIC;
5166		break;
5167	case ALGORITHM_RIGHT_SYMMETRIC_6:
5168		new_layout = ALGORITHM_RIGHT_SYMMETRIC;
5169		break;
5170	case ALGORITHM_PARITY_0_6:
5171		new_layout = ALGORITHM_PARITY_0;
5172		break;
5173	case ALGORITHM_PARITY_N:
5174		new_layout = ALGORITHM_PARITY_N;
5175		break;
5176	default:
5177		return ERR_PTR(-EINVAL);
5178	}
5179	mddev->new_level = 5;
5180	mddev->new_layout = new_layout;
5181	mddev->delta_disks = -1;
5182	mddev->raid_disks -= 1;
5183	return setup_conf(mddev);
5184}
5185
5186
5187static int raid5_check_reshape(mddev_t *mddev)
5188{
5189	/* For a 2-drive array, the layout and chunk size can be changed
5190	 * immediately as not restriping is needed.
5191	 * For larger arrays we record the new value - after validation
5192	 * to be used by a reshape pass.
5193	 */
5194	raid5_conf_t *conf = mddev->private;
5195	int new_chunk = mddev->new_chunk_sectors;
5196
5197	if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
5198		return -EINVAL;
5199	if (new_chunk > 0) {
5200		if (!is_power_of_2(new_chunk))
5201			return -EINVAL;
5202		if (new_chunk < (PAGE_SIZE>>9))
5203			return -EINVAL;
5204		if (mddev->array_sectors & (new_chunk-1))
5205			/* not factor of array size */
5206			return -EINVAL;
5207	}
5208
5209	/* They look valid */
5210
5211	if (mddev->raid_disks == 2) {
5212		/* can make the change immediately */
5213		if (mddev->new_layout >= 0) {
5214			conf->algorithm = mddev->new_layout;
5215			mddev->layout = mddev->new_layout;
5216		}
5217		if (new_chunk > 0) {
5218			conf->chunk_sectors = new_chunk ;
5219			mddev->chunk_sectors = new_chunk;
5220		}
5221		set_bit(MD_CHANGE_DEVS, &mddev->flags);
5222		md_wakeup_thread(mddev->thread);
5223	}
5224	return check_reshape(mddev);
5225}
5226
5227static int raid6_check_reshape(mddev_t *mddev)
5228{
5229	int new_chunk = mddev->new_chunk_sectors;
5230
5231	if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
5232		return -EINVAL;
5233	if (new_chunk > 0) {
5234		if (!is_power_of_2(new_chunk))
5235			return -EINVAL;
5236		if (new_chunk < (PAGE_SIZE >> 9))
5237			return -EINVAL;
5238		if (mddev->array_sectors & (new_chunk-1))
5239			/* not factor of array size */
5240			return -EINVAL;
5241	}
5242
5243	/* They look valid */
5244	return check_reshape(mddev);
5245}
5246
5247static void *raid5_takeover(mddev_t *mddev)
5248{
5249	/* raid5 can take over:
5250	 *  raid0 - if all devices are the same - make it a raid4 layout
5251	 *  raid1 - if there are two drives.  We need to know the chunk size
5252	 *  raid4 - trivial - just use a raid4 layout.
5253	 *  raid6 - Providing it is a *_6 layout
5254	 */
5255
5256	if (mddev->level == 1)
5257		return raid5_takeover_raid1(mddev);
5258	if (mddev->level == 4) {
5259		mddev->new_layout = ALGORITHM_PARITY_N;
5260		mddev->new_level = 5;
5261		return setup_conf(mddev);
5262	}
5263	if (mddev->level == 6)
5264		return raid5_takeover_raid6(mddev);
5265
5266	return ERR_PTR(-EINVAL);
5267}
5268
5269
5270static struct mdk_personality raid5_personality;
5271
5272static void *raid6_takeover(mddev_t *mddev)
5273{
5274	/* Currently can only take over a raid5.  We map the
5275	 * personality to an equivalent raid6 personality
5276	 * with the Q block at the end.
5277	 */
5278	int new_layout;
5279
5280	if (mddev->pers != &raid5_personality)
5281		return ERR_PTR(-EINVAL);
5282	if (mddev->degraded > 1)
5283		return ERR_PTR(-EINVAL);
5284	if (mddev->raid_disks > 253)
5285		return ERR_PTR(-EINVAL);
5286	if (mddev->raid_disks < 3)
5287		return ERR_PTR(-EINVAL);
5288
5289	switch (mddev->layout) {
5290	case ALGORITHM_LEFT_ASYMMETRIC:
5291		new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
5292		break;
5293	case ALGORITHM_RIGHT_ASYMMETRIC:
5294		new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
5295		break;
5296	case ALGORITHM_LEFT_SYMMETRIC:
5297		new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
5298		break;
5299	case ALGORITHM_RIGHT_SYMMETRIC:
5300		new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
5301		break;
5302	case ALGORITHM_PARITY_0:
5303		new_layout = ALGORITHM_PARITY_0_6;
5304		break;
5305	case ALGORITHM_PARITY_N:
5306		new_layout = ALGORITHM_PARITY_N;
5307		break;
5308	default:
5309		return ERR_PTR(-EINVAL);
5310	}
5311	mddev->new_level = 6;
5312	mddev->new_layout = new_layout;
5313	mddev->delta_disks = 1;
5314	mddev->raid_disks += 1;
5315	return setup_conf(mddev);
5316}
5317
5318
5319static struct mdk_personality raid6_personality =
5320{
5321	.name		= "raid6",
5322	.level		= 6,
5323	.owner		= THIS_MODULE,
5324	.make_request	= make_request,
5325	.run		= run,
5326	.stop		= stop,
5327	.status		= status,
5328	.error_handler	= error,
5329	.hot_add_disk	= raid5_add_disk,
5330	.hot_remove_disk= raid5_remove_disk,
5331	.spare_active	= raid5_spare_active,
5332	.sync_request	= sync_request,
5333	.resize		= raid5_resize,
5334	.size		= raid5_size,
5335	.check_reshape	= raid6_check_reshape,
5336	.start_reshape  = raid5_start_reshape,
5337	.finish_reshape = raid5_finish_reshape,
5338	.quiesce	= raid5_quiesce,
5339	.takeover	= raid6_takeover,
5340};
5341static struct mdk_personality raid5_personality =
5342{
5343	.name		= "raid5",
5344	.level		= 5,
5345	.owner		= THIS_MODULE,
5346	.make_request	= make_request,
5347	.run		= run,
5348	.stop		= stop,
5349	.status		= status,
5350	.error_handler	= error,
5351	.hot_add_disk	= raid5_add_disk,
5352	.hot_remove_disk= raid5_remove_disk,
5353	.spare_active	= raid5_spare_active,
5354	.sync_request	= sync_request,
5355	.resize		= raid5_resize,
5356	.size		= raid5_size,
5357	.check_reshape	= raid5_check_reshape,
5358	.start_reshape  = raid5_start_reshape,
5359	.finish_reshape = raid5_finish_reshape,
5360	.quiesce	= raid5_quiesce,
5361	.takeover	= raid5_takeover,
5362};
5363
5364static struct mdk_personality raid4_personality =
5365{
5366	.name		= "raid4",
5367	.level		= 4,
5368	.owner		= THIS_MODULE,
5369	.make_request	= make_request,
5370	.run		= run,
5371	.stop		= stop,
5372	.status		= status,
5373	.error_handler	= error,
5374	.hot_add_disk	= raid5_add_disk,
5375	.hot_remove_disk= raid5_remove_disk,
5376	.spare_active	= raid5_spare_active,
5377	.sync_request	= sync_request,
5378	.resize		= raid5_resize,
5379	.size		= raid5_size,
5380	.check_reshape	= raid5_check_reshape,
5381	.start_reshape  = raid5_start_reshape,
5382	.finish_reshape = raid5_finish_reshape,
5383	.quiesce	= raid5_quiesce,
5384};
5385
5386static int __init raid5_init(void)
5387{
5388	register_md_personality(&raid6_personality);
5389	register_md_personality(&raid5_personality);
5390	register_md_personality(&raid4_personality);
5391	return 0;
5392}
5393
5394static void raid5_exit(void)
5395{
5396	unregister_md_personality(&raid6_personality);
5397	unregister_md_personality(&raid5_personality);
5398	unregister_md_personality(&raid4_personality);
5399}
5400
5401module_init(raid5_init);
5402module_exit(raid5_exit);
5403MODULE_LICENSE("GPL");
5404MODULE_ALIAS("md-personality-4"); /* RAID5 */
5405MODULE_ALIAS("md-raid5");
5406MODULE_ALIAS("md-raid4");
5407MODULE_ALIAS("md-level-5");
5408MODULE_ALIAS("md-level-4");
5409MODULE_ALIAS("md-personality-8"); /* RAID6 */
5410MODULE_ALIAS("md-raid6");
5411MODULE_ALIAS("md-level-6");
5412
5413/* This used to be two separate modules, they were: */
5414MODULE_ALIAS("raid5");
5415MODULE_ALIAS("raid6");
5416