raid5.c revision ec32a2bd35bd6b933a5db6542c48210ce069a376
1/*
2 * raid5.c : Multiple Devices driver for Linux
3 *	   Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4 *	   Copyright (C) 1999, 2000 Ingo Molnar
5 *	   Copyright (C) 2002, 2003 H. Peter Anvin
6 *
7 * RAID-4/5/6 management functions.
8 * Thanks to Penguin Computing for making the RAID-6 development possible
9 * by donating a test server!
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
21/*
22 * BITMAP UNPLUGGING:
23 *
24 * The sequencing for updating the bitmap reliably is a little
25 * subtle (and I got it wrong the first time) so it deserves some
26 * explanation.
27 *
28 * We group bitmap updates into batches.  Each batch has a number.
29 * We may write out several batches at once, but that isn't very important.
30 * conf->bm_write is the number of the last batch successfully written.
31 * conf->bm_flush is the number of the last batch that was closed to
32 *    new additions.
33 * When we discover that we will need to write to any block in a stripe
34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35 * the number of the batch it will be in. This is bm_flush+1.
36 * When we are ready to do a write, if that batch hasn't been written yet,
37 *   we plug the array and queue the stripe for later.
38 * When an unplug happens, we increment bm_flush, thus closing the current
39 *   batch.
40 * When we notice that bm_flush > bm_write, we write out all pending updates
41 * to the bitmap, and advance bm_write to where bm_flush was.
42 * This may occasionally write a bit out twice, but is sure never to
43 * miss any bits.
44 */
45
46#include <linux/blkdev.h>
47#include <linux/kthread.h>
48#include <linux/raid/pq.h>
49#include <linux/async_tx.h>
50#include <linux/seq_file.h>
51#include "md.h"
52#include "raid5.h"
53#include "bitmap.h"
54
55/*
56 * Stripe cache
57 */
58
59#define NR_STRIPES		256
60#define STRIPE_SIZE		PAGE_SIZE
61#define STRIPE_SHIFT		(PAGE_SHIFT - 9)
62#define STRIPE_SECTORS		(STRIPE_SIZE>>9)
63#define	IO_THRESHOLD		1
64#define BYPASS_THRESHOLD	1
65#define NR_HASH			(PAGE_SIZE / sizeof(struct hlist_head))
66#define HASH_MASK		(NR_HASH - 1)
67
68#define stripe_hash(conf, sect)	(&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
69
70/* bio's attached to a stripe+device for I/O are linked together in bi_sector
71 * order without overlap.  There may be several bio's per stripe+device, and
72 * a bio could span several devices.
73 * When walking this list for a particular stripe+device, we must never proceed
74 * beyond a bio that extends past this device, as the next bio might no longer
75 * be valid.
76 * This macro is used to determine the 'next' bio in the list, given the sector
77 * of the current stripe+device
78 */
79#define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
80/*
81 * The following can be used to debug the driver
82 */
83#define RAID5_PARANOIA	1
84#if RAID5_PARANOIA && defined(CONFIG_SMP)
85# define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
86#else
87# define CHECK_DEVLOCK()
88#endif
89
90#ifdef DEBUG
91#define inline
92#define __inline__
93#endif
94
95#define printk_rl(args...) ((void) (printk_ratelimit() && printk(args)))
96
97/*
98 * We maintain a biased count of active stripes in the bottom 16 bits of
99 * bi_phys_segments, and a count of processed stripes in the upper 16 bits
100 */
101static inline int raid5_bi_phys_segments(struct bio *bio)
102{
103	return bio->bi_phys_segments & 0xffff;
104}
105
106static inline int raid5_bi_hw_segments(struct bio *bio)
107{
108	return (bio->bi_phys_segments >> 16) & 0xffff;
109}
110
111static inline int raid5_dec_bi_phys_segments(struct bio *bio)
112{
113	--bio->bi_phys_segments;
114	return raid5_bi_phys_segments(bio);
115}
116
117static inline int raid5_dec_bi_hw_segments(struct bio *bio)
118{
119	unsigned short val = raid5_bi_hw_segments(bio);
120
121	--val;
122	bio->bi_phys_segments = (val << 16) | raid5_bi_phys_segments(bio);
123	return val;
124}
125
126static inline void raid5_set_bi_hw_segments(struct bio *bio, unsigned int cnt)
127{
128	bio->bi_phys_segments = raid5_bi_phys_segments(bio) || (cnt << 16);
129}
130
131/* Find first data disk in a raid6 stripe */
132static inline int raid6_d0(struct stripe_head *sh)
133{
134	if (sh->ddf_layout)
135		/* ddf always start from first device */
136		return 0;
137	/* md starts just after Q block */
138	if (sh->qd_idx == sh->disks - 1)
139		return 0;
140	else
141		return sh->qd_idx + 1;
142}
143static inline int raid6_next_disk(int disk, int raid_disks)
144{
145	disk++;
146	return (disk < raid_disks) ? disk : 0;
147}
148
149/* When walking through the disks in a raid5, starting at raid6_d0,
150 * We need to map each disk to a 'slot', where the data disks are slot
151 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
152 * is raid_disks-1.  This help does that mapping.
153 */
154static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
155			     int *count, int syndrome_disks)
156{
157	int slot;
158
159	if (idx == sh->pd_idx)
160		return syndrome_disks;
161	if (idx == sh->qd_idx)
162		return syndrome_disks + 1;
163	slot = (*count)++;
164	return slot;
165}
166
167static void return_io(struct bio *return_bi)
168{
169	struct bio *bi = return_bi;
170	while (bi) {
171
172		return_bi = bi->bi_next;
173		bi->bi_next = NULL;
174		bi->bi_size = 0;
175		bio_endio(bi, 0);
176		bi = return_bi;
177	}
178}
179
180static void print_raid5_conf (raid5_conf_t *conf);
181
182static int stripe_operations_active(struct stripe_head *sh)
183{
184	return sh->check_state || sh->reconstruct_state ||
185	       test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
186	       test_bit(STRIPE_COMPUTE_RUN, &sh->state);
187}
188
189static void __release_stripe(raid5_conf_t *conf, struct stripe_head *sh)
190{
191	if (atomic_dec_and_test(&sh->count)) {
192		BUG_ON(!list_empty(&sh->lru));
193		BUG_ON(atomic_read(&conf->active_stripes)==0);
194		if (test_bit(STRIPE_HANDLE, &sh->state)) {
195			if (test_bit(STRIPE_DELAYED, &sh->state)) {
196				list_add_tail(&sh->lru, &conf->delayed_list);
197				blk_plug_device(conf->mddev->queue);
198			} else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
199				   sh->bm_seq - conf->seq_write > 0) {
200				list_add_tail(&sh->lru, &conf->bitmap_list);
201				blk_plug_device(conf->mddev->queue);
202			} else {
203				clear_bit(STRIPE_BIT_DELAY, &sh->state);
204				list_add_tail(&sh->lru, &conf->handle_list);
205			}
206			md_wakeup_thread(conf->mddev->thread);
207		} else {
208			BUG_ON(stripe_operations_active(sh));
209			if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
210				atomic_dec(&conf->preread_active_stripes);
211				if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
212					md_wakeup_thread(conf->mddev->thread);
213			}
214			atomic_dec(&conf->active_stripes);
215			if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
216				list_add_tail(&sh->lru, &conf->inactive_list);
217				wake_up(&conf->wait_for_stripe);
218				if (conf->retry_read_aligned)
219					md_wakeup_thread(conf->mddev->thread);
220			}
221		}
222	}
223}
224
225static void release_stripe(struct stripe_head *sh)
226{
227	raid5_conf_t *conf = sh->raid_conf;
228	unsigned long flags;
229
230	spin_lock_irqsave(&conf->device_lock, flags);
231	__release_stripe(conf, sh);
232	spin_unlock_irqrestore(&conf->device_lock, flags);
233}
234
235static inline void remove_hash(struct stripe_head *sh)
236{
237	pr_debug("remove_hash(), stripe %llu\n",
238		(unsigned long long)sh->sector);
239
240	hlist_del_init(&sh->hash);
241}
242
243static inline void insert_hash(raid5_conf_t *conf, struct stripe_head *sh)
244{
245	struct hlist_head *hp = stripe_hash(conf, sh->sector);
246
247	pr_debug("insert_hash(), stripe %llu\n",
248		(unsigned long long)sh->sector);
249
250	CHECK_DEVLOCK();
251	hlist_add_head(&sh->hash, hp);
252}
253
254
255/* find an idle stripe, make sure it is unhashed, and return it. */
256static struct stripe_head *get_free_stripe(raid5_conf_t *conf)
257{
258	struct stripe_head *sh = NULL;
259	struct list_head *first;
260
261	CHECK_DEVLOCK();
262	if (list_empty(&conf->inactive_list))
263		goto out;
264	first = conf->inactive_list.next;
265	sh = list_entry(first, struct stripe_head, lru);
266	list_del_init(first);
267	remove_hash(sh);
268	atomic_inc(&conf->active_stripes);
269out:
270	return sh;
271}
272
273static void shrink_buffers(struct stripe_head *sh, int num)
274{
275	struct page *p;
276	int i;
277
278	for (i=0; i<num ; i++) {
279		p = sh->dev[i].page;
280		if (!p)
281			continue;
282		sh->dev[i].page = NULL;
283		put_page(p);
284	}
285}
286
287static int grow_buffers(struct stripe_head *sh, int num)
288{
289	int i;
290
291	for (i=0; i<num; i++) {
292		struct page *page;
293
294		if (!(page = alloc_page(GFP_KERNEL))) {
295			return 1;
296		}
297		sh->dev[i].page = page;
298	}
299	return 0;
300}
301
302static void raid5_build_block(struct stripe_head *sh, int i);
303static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
304			    struct stripe_head *sh);
305
306static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
307{
308	raid5_conf_t *conf = sh->raid_conf;
309	int i;
310
311	BUG_ON(atomic_read(&sh->count) != 0);
312	BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
313	BUG_ON(stripe_operations_active(sh));
314
315	CHECK_DEVLOCK();
316	pr_debug("init_stripe called, stripe %llu\n",
317		(unsigned long long)sh->sector);
318
319	remove_hash(sh);
320
321	sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
322	sh->sector = sector;
323	stripe_set_idx(sector, conf, previous, sh);
324	sh->state = 0;
325
326
327	for (i = sh->disks; i--; ) {
328		struct r5dev *dev = &sh->dev[i];
329
330		if (dev->toread || dev->read || dev->towrite || dev->written ||
331		    test_bit(R5_LOCKED, &dev->flags)) {
332			printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
333			       (unsigned long long)sh->sector, i, dev->toread,
334			       dev->read, dev->towrite, dev->written,
335			       test_bit(R5_LOCKED, &dev->flags));
336			BUG();
337		}
338		dev->flags = 0;
339		raid5_build_block(sh, i);
340	}
341	insert_hash(conf, sh);
342}
343
344static struct stripe_head *__find_stripe(raid5_conf_t *conf, sector_t sector, int disks)
345{
346	struct stripe_head *sh;
347	struct hlist_node *hn;
348
349	CHECK_DEVLOCK();
350	pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
351	hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
352		if (sh->sector == sector && sh->disks == disks)
353			return sh;
354	pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
355	return NULL;
356}
357
358static void unplug_slaves(mddev_t *mddev);
359static void raid5_unplug_device(struct request_queue *q);
360
361static struct stripe_head *
362get_active_stripe(raid5_conf_t *conf, sector_t sector,
363		  int previous, int noblock)
364{
365	struct stripe_head *sh;
366	int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
367
368	pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
369
370	spin_lock_irq(&conf->device_lock);
371
372	do {
373		wait_event_lock_irq(conf->wait_for_stripe,
374				    conf->quiesce == 0,
375				    conf->device_lock, /* nothing */);
376		sh = __find_stripe(conf, sector, disks);
377		if (!sh) {
378			if (!conf->inactive_blocked)
379				sh = get_free_stripe(conf);
380			if (noblock && sh == NULL)
381				break;
382			if (!sh) {
383				conf->inactive_blocked = 1;
384				wait_event_lock_irq(conf->wait_for_stripe,
385						    !list_empty(&conf->inactive_list) &&
386						    (atomic_read(&conf->active_stripes)
387						     < (conf->max_nr_stripes *3/4)
388						     || !conf->inactive_blocked),
389						    conf->device_lock,
390						    raid5_unplug_device(conf->mddev->queue)
391					);
392				conf->inactive_blocked = 0;
393			} else
394				init_stripe(sh, sector, previous);
395		} else {
396			if (atomic_read(&sh->count)) {
397			  BUG_ON(!list_empty(&sh->lru));
398			} else {
399				if (!test_bit(STRIPE_HANDLE, &sh->state))
400					atomic_inc(&conf->active_stripes);
401				if (list_empty(&sh->lru) &&
402				    !test_bit(STRIPE_EXPANDING, &sh->state))
403					BUG();
404				list_del_init(&sh->lru);
405			}
406		}
407	} while (sh == NULL);
408
409	if (sh)
410		atomic_inc(&sh->count);
411
412	spin_unlock_irq(&conf->device_lock);
413	return sh;
414}
415
416static void
417raid5_end_read_request(struct bio *bi, int error);
418static void
419raid5_end_write_request(struct bio *bi, int error);
420
421static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
422{
423	raid5_conf_t *conf = sh->raid_conf;
424	int i, disks = sh->disks;
425
426	might_sleep();
427
428	for (i = disks; i--; ) {
429		int rw;
430		struct bio *bi;
431		mdk_rdev_t *rdev;
432		if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags))
433			rw = WRITE;
434		else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
435			rw = READ;
436		else
437			continue;
438
439		bi = &sh->dev[i].req;
440
441		bi->bi_rw = rw;
442		if (rw == WRITE)
443			bi->bi_end_io = raid5_end_write_request;
444		else
445			bi->bi_end_io = raid5_end_read_request;
446
447		rcu_read_lock();
448		rdev = rcu_dereference(conf->disks[i].rdev);
449		if (rdev && test_bit(Faulty, &rdev->flags))
450			rdev = NULL;
451		if (rdev)
452			atomic_inc(&rdev->nr_pending);
453		rcu_read_unlock();
454
455		if (rdev) {
456			if (s->syncing || s->expanding || s->expanded)
457				md_sync_acct(rdev->bdev, STRIPE_SECTORS);
458
459			set_bit(STRIPE_IO_STARTED, &sh->state);
460
461			bi->bi_bdev = rdev->bdev;
462			pr_debug("%s: for %llu schedule op %ld on disc %d\n",
463				__func__, (unsigned long long)sh->sector,
464				bi->bi_rw, i);
465			atomic_inc(&sh->count);
466			bi->bi_sector = sh->sector + rdev->data_offset;
467			bi->bi_flags = 1 << BIO_UPTODATE;
468			bi->bi_vcnt = 1;
469			bi->bi_max_vecs = 1;
470			bi->bi_idx = 0;
471			bi->bi_io_vec = &sh->dev[i].vec;
472			bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
473			bi->bi_io_vec[0].bv_offset = 0;
474			bi->bi_size = STRIPE_SIZE;
475			bi->bi_next = NULL;
476			if (rw == WRITE &&
477			    test_bit(R5_ReWrite, &sh->dev[i].flags))
478				atomic_add(STRIPE_SECTORS,
479					&rdev->corrected_errors);
480			generic_make_request(bi);
481		} else {
482			if (rw == WRITE)
483				set_bit(STRIPE_DEGRADED, &sh->state);
484			pr_debug("skip op %ld on disc %d for sector %llu\n",
485				bi->bi_rw, i, (unsigned long long)sh->sector);
486			clear_bit(R5_LOCKED, &sh->dev[i].flags);
487			set_bit(STRIPE_HANDLE, &sh->state);
488		}
489	}
490}
491
492static struct dma_async_tx_descriptor *
493async_copy_data(int frombio, struct bio *bio, struct page *page,
494	sector_t sector, struct dma_async_tx_descriptor *tx)
495{
496	struct bio_vec *bvl;
497	struct page *bio_page;
498	int i;
499	int page_offset;
500
501	if (bio->bi_sector >= sector)
502		page_offset = (signed)(bio->bi_sector - sector) * 512;
503	else
504		page_offset = (signed)(sector - bio->bi_sector) * -512;
505	bio_for_each_segment(bvl, bio, i) {
506		int len = bio_iovec_idx(bio, i)->bv_len;
507		int clen;
508		int b_offset = 0;
509
510		if (page_offset < 0) {
511			b_offset = -page_offset;
512			page_offset += b_offset;
513			len -= b_offset;
514		}
515
516		if (len > 0 && page_offset + len > STRIPE_SIZE)
517			clen = STRIPE_SIZE - page_offset;
518		else
519			clen = len;
520
521		if (clen > 0) {
522			b_offset += bio_iovec_idx(bio, i)->bv_offset;
523			bio_page = bio_iovec_idx(bio, i)->bv_page;
524			if (frombio)
525				tx = async_memcpy(page, bio_page, page_offset,
526					b_offset, clen,
527					ASYNC_TX_DEP_ACK,
528					tx, NULL, NULL);
529			else
530				tx = async_memcpy(bio_page, page, b_offset,
531					page_offset, clen,
532					ASYNC_TX_DEP_ACK,
533					tx, NULL, NULL);
534		}
535		if (clen < len) /* hit end of page */
536			break;
537		page_offset +=  len;
538	}
539
540	return tx;
541}
542
543static void ops_complete_biofill(void *stripe_head_ref)
544{
545	struct stripe_head *sh = stripe_head_ref;
546	struct bio *return_bi = NULL;
547	raid5_conf_t *conf = sh->raid_conf;
548	int i;
549
550	pr_debug("%s: stripe %llu\n", __func__,
551		(unsigned long long)sh->sector);
552
553	/* clear completed biofills */
554	spin_lock_irq(&conf->device_lock);
555	for (i = sh->disks; i--; ) {
556		struct r5dev *dev = &sh->dev[i];
557
558		/* acknowledge completion of a biofill operation */
559		/* and check if we need to reply to a read request,
560		 * new R5_Wantfill requests are held off until
561		 * !STRIPE_BIOFILL_RUN
562		 */
563		if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
564			struct bio *rbi, *rbi2;
565
566			BUG_ON(!dev->read);
567			rbi = dev->read;
568			dev->read = NULL;
569			while (rbi && rbi->bi_sector <
570				dev->sector + STRIPE_SECTORS) {
571				rbi2 = r5_next_bio(rbi, dev->sector);
572				if (!raid5_dec_bi_phys_segments(rbi)) {
573					rbi->bi_next = return_bi;
574					return_bi = rbi;
575				}
576				rbi = rbi2;
577			}
578		}
579	}
580	spin_unlock_irq(&conf->device_lock);
581	clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
582
583	return_io(return_bi);
584
585	set_bit(STRIPE_HANDLE, &sh->state);
586	release_stripe(sh);
587}
588
589static void ops_run_biofill(struct stripe_head *sh)
590{
591	struct dma_async_tx_descriptor *tx = NULL;
592	raid5_conf_t *conf = sh->raid_conf;
593	int i;
594
595	pr_debug("%s: stripe %llu\n", __func__,
596		(unsigned long long)sh->sector);
597
598	for (i = sh->disks; i--; ) {
599		struct r5dev *dev = &sh->dev[i];
600		if (test_bit(R5_Wantfill, &dev->flags)) {
601			struct bio *rbi;
602			spin_lock_irq(&conf->device_lock);
603			dev->read = rbi = dev->toread;
604			dev->toread = NULL;
605			spin_unlock_irq(&conf->device_lock);
606			while (rbi && rbi->bi_sector <
607				dev->sector + STRIPE_SECTORS) {
608				tx = async_copy_data(0, rbi, dev->page,
609					dev->sector, tx);
610				rbi = r5_next_bio(rbi, dev->sector);
611			}
612		}
613	}
614
615	atomic_inc(&sh->count);
616	async_trigger_callback(ASYNC_TX_DEP_ACK | ASYNC_TX_ACK, tx,
617		ops_complete_biofill, sh);
618}
619
620static void ops_complete_compute5(void *stripe_head_ref)
621{
622	struct stripe_head *sh = stripe_head_ref;
623	int target = sh->ops.target;
624	struct r5dev *tgt = &sh->dev[target];
625
626	pr_debug("%s: stripe %llu\n", __func__,
627		(unsigned long long)sh->sector);
628
629	set_bit(R5_UPTODATE, &tgt->flags);
630	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
631	clear_bit(R5_Wantcompute, &tgt->flags);
632	clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
633	if (sh->check_state == check_state_compute_run)
634		sh->check_state = check_state_compute_result;
635	set_bit(STRIPE_HANDLE, &sh->state);
636	release_stripe(sh);
637}
638
639static struct dma_async_tx_descriptor *ops_run_compute5(struct stripe_head *sh)
640{
641	/* kernel stack size limits the total number of disks */
642	int disks = sh->disks;
643	struct page *xor_srcs[disks];
644	int target = sh->ops.target;
645	struct r5dev *tgt = &sh->dev[target];
646	struct page *xor_dest = tgt->page;
647	int count = 0;
648	struct dma_async_tx_descriptor *tx;
649	int i;
650
651	pr_debug("%s: stripe %llu block: %d\n",
652		__func__, (unsigned long long)sh->sector, target);
653	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
654
655	for (i = disks; i--; )
656		if (i != target)
657			xor_srcs[count++] = sh->dev[i].page;
658
659	atomic_inc(&sh->count);
660
661	if (unlikely(count == 1))
662		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE,
663			0, NULL, ops_complete_compute5, sh);
664	else
665		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
666			ASYNC_TX_XOR_ZERO_DST, NULL,
667			ops_complete_compute5, sh);
668
669	return tx;
670}
671
672static void ops_complete_prexor(void *stripe_head_ref)
673{
674	struct stripe_head *sh = stripe_head_ref;
675
676	pr_debug("%s: stripe %llu\n", __func__,
677		(unsigned long long)sh->sector);
678}
679
680static struct dma_async_tx_descriptor *
681ops_run_prexor(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
682{
683	/* kernel stack size limits the total number of disks */
684	int disks = sh->disks;
685	struct page *xor_srcs[disks];
686	int count = 0, pd_idx = sh->pd_idx, i;
687
688	/* existing parity data subtracted */
689	struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
690
691	pr_debug("%s: stripe %llu\n", __func__,
692		(unsigned long long)sh->sector);
693
694	for (i = disks; i--; ) {
695		struct r5dev *dev = &sh->dev[i];
696		/* Only process blocks that are known to be uptodate */
697		if (test_bit(R5_Wantdrain, &dev->flags))
698			xor_srcs[count++] = dev->page;
699	}
700
701	tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
702		ASYNC_TX_DEP_ACK | ASYNC_TX_XOR_DROP_DST, tx,
703		ops_complete_prexor, sh);
704
705	return tx;
706}
707
708static struct dma_async_tx_descriptor *
709ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
710{
711	int disks = sh->disks;
712	int i;
713
714	pr_debug("%s: stripe %llu\n", __func__,
715		(unsigned long long)sh->sector);
716
717	for (i = disks; i--; ) {
718		struct r5dev *dev = &sh->dev[i];
719		struct bio *chosen;
720
721		if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
722			struct bio *wbi;
723
724			spin_lock(&sh->lock);
725			chosen = dev->towrite;
726			dev->towrite = NULL;
727			BUG_ON(dev->written);
728			wbi = dev->written = chosen;
729			spin_unlock(&sh->lock);
730
731			while (wbi && wbi->bi_sector <
732				dev->sector + STRIPE_SECTORS) {
733				tx = async_copy_data(1, wbi, dev->page,
734					dev->sector, tx);
735				wbi = r5_next_bio(wbi, dev->sector);
736			}
737		}
738	}
739
740	return tx;
741}
742
743static void ops_complete_postxor(void *stripe_head_ref)
744{
745	struct stripe_head *sh = stripe_head_ref;
746	int disks = sh->disks, i, pd_idx = sh->pd_idx;
747
748	pr_debug("%s: stripe %llu\n", __func__,
749		(unsigned long long)sh->sector);
750
751	for (i = disks; i--; ) {
752		struct r5dev *dev = &sh->dev[i];
753		if (dev->written || i == pd_idx)
754			set_bit(R5_UPTODATE, &dev->flags);
755	}
756
757	if (sh->reconstruct_state == reconstruct_state_drain_run)
758		sh->reconstruct_state = reconstruct_state_drain_result;
759	else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
760		sh->reconstruct_state = reconstruct_state_prexor_drain_result;
761	else {
762		BUG_ON(sh->reconstruct_state != reconstruct_state_run);
763		sh->reconstruct_state = reconstruct_state_result;
764	}
765
766	set_bit(STRIPE_HANDLE, &sh->state);
767	release_stripe(sh);
768}
769
770static void
771ops_run_postxor(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
772{
773	/* kernel stack size limits the total number of disks */
774	int disks = sh->disks;
775	struct page *xor_srcs[disks];
776
777	int count = 0, pd_idx = sh->pd_idx, i;
778	struct page *xor_dest;
779	int prexor = 0;
780	unsigned long flags;
781
782	pr_debug("%s: stripe %llu\n", __func__,
783		(unsigned long long)sh->sector);
784
785	/* check if prexor is active which means only process blocks
786	 * that are part of a read-modify-write (written)
787	 */
788	if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
789		prexor = 1;
790		xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
791		for (i = disks; i--; ) {
792			struct r5dev *dev = &sh->dev[i];
793			if (dev->written)
794				xor_srcs[count++] = dev->page;
795		}
796	} else {
797		xor_dest = sh->dev[pd_idx].page;
798		for (i = disks; i--; ) {
799			struct r5dev *dev = &sh->dev[i];
800			if (i != pd_idx)
801				xor_srcs[count++] = dev->page;
802		}
803	}
804
805	/* 1/ if we prexor'd then the dest is reused as a source
806	 * 2/ if we did not prexor then we are redoing the parity
807	 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
808	 * for the synchronous xor case
809	 */
810	flags = ASYNC_TX_DEP_ACK | ASYNC_TX_ACK |
811		(prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
812
813	atomic_inc(&sh->count);
814
815	if (unlikely(count == 1)) {
816		flags &= ~(ASYNC_TX_XOR_DROP_DST | ASYNC_TX_XOR_ZERO_DST);
817		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE,
818			flags, tx, ops_complete_postxor, sh);
819	} else
820		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
821			flags, tx, ops_complete_postxor, sh);
822}
823
824static void ops_complete_check(void *stripe_head_ref)
825{
826	struct stripe_head *sh = stripe_head_ref;
827
828	pr_debug("%s: stripe %llu\n", __func__,
829		(unsigned long long)sh->sector);
830
831	sh->check_state = check_state_check_result;
832	set_bit(STRIPE_HANDLE, &sh->state);
833	release_stripe(sh);
834}
835
836static void ops_run_check(struct stripe_head *sh)
837{
838	/* kernel stack size limits the total number of disks */
839	int disks = sh->disks;
840	struct page *xor_srcs[disks];
841	struct dma_async_tx_descriptor *tx;
842
843	int count = 0, pd_idx = sh->pd_idx, i;
844	struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
845
846	pr_debug("%s: stripe %llu\n", __func__,
847		(unsigned long long)sh->sector);
848
849	for (i = disks; i--; ) {
850		struct r5dev *dev = &sh->dev[i];
851		if (i != pd_idx)
852			xor_srcs[count++] = dev->page;
853	}
854
855	tx = async_xor_zero_sum(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
856		&sh->ops.zero_sum_result, 0, NULL, NULL, NULL);
857
858	atomic_inc(&sh->count);
859	tx = async_trigger_callback(ASYNC_TX_DEP_ACK | ASYNC_TX_ACK, tx,
860		ops_complete_check, sh);
861}
862
863static void raid5_run_ops(struct stripe_head *sh, unsigned long ops_request)
864{
865	int overlap_clear = 0, i, disks = sh->disks;
866	struct dma_async_tx_descriptor *tx = NULL;
867
868	if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
869		ops_run_biofill(sh);
870		overlap_clear++;
871	}
872
873	if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
874		tx = ops_run_compute5(sh);
875		/* terminate the chain if postxor is not set to be run */
876		if (tx && !test_bit(STRIPE_OP_POSTXOR, &ops_request))
877			async_tx_ack(tx);
878	}
879
880	if (test_bit(STRIPE_OP_PREXOR, &ops_request))
881		tx = ops_run_prexor(sh, tx);
882
883	if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
884		tx = ops_run_biodrain(sh, tx);
885		overlap_clear++;
886	}
887
888	if (test_bit(STRIPE_OP_POSTXOR, &ops_request))
889		ops_run_postxor(sh, tx);
890
891	if (test_bit(STRIPE_OP_CHECK, &ops_request))
892		ops_run_check(sh);
893
894	if (overlap_clear)
895		for (i = disks; i--; ) {
896			struct r5dev *dev = &sh->dev[i];
897			if (test_and_clear_bit(R5_Overlap, &dev->flags))
898				wake_up(&sh->raid_conf->wait_for_overlap);
899		}
900}
901
902static int grow_one_stripe(raid5_conf_t *conf)
903{
904	struct stripe_head *sh;
905	sh = kmem_cache_alloc(conf->slab_cache, GFP_KERNEL);
906	if (!sh)
907		return 0;
908	memset(sh, 0, sizeof(*sh) + (conf->raid_disks-1)*sizeof(struct r5dev));
909	sh->raid_conf = conf;
910	spin_lock_init(&sh->lock);
911
912	if (grow_buffers(sh, conf->raid_disks)) {
913		shrink_buffers(sh, conf->raid_disks);
914		kmem_cache_free(conf->slab_cache, sh);
915		return 0;
916	}
917	sh->disks = conf->raid_disks;
918	/* we just created an active stripe so... */
919	atomic_set(&sh->count, 1);
920	atomic_inc(&conf->active_stripes);
921	INIT_LIST_HEAD(&sh->lru);
922	release_stripe(sh);
923	return 1;
924}
925
926static int grow_stripes(raid5_conf_t *conf, int num)
927{
928	struct kmem_cache *sc;
929	int devs = conf->raid_disks;
930
931	sprintf(conf->cache_name[0],
932		"raid%d-%s", conf->level, mdname(conf->mddev));
933	sprintf(conf->cache_name[1],
934		"raid%d-%s-alt", conf->level, mdname(conf->mddev));
935	conf->active_name = 0;
936	sc = kmem_cache_create(conf->cache_name[conf->active_name],
937			       sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
938			       0, 0, NULL);
939	if (!sc)
940		return 1;
941	conf->slab_cache = sc;
942	conf->pool_size = devs;
943	while (num--)
944		if (!grow_one_stripe(conf))
945			return 1;
946	return 0;
947}
948
949#ifdef CONFIG_MD_RAID5_RESHAPE
950static int resize_stripes(raid5_conf_t *conf, int newsize)
951{
952	/* Make all the stripes able to hold 'newsize' devices.
953	 * New slots in each stripe get 'page' set to a new page.
954	 *
955	 * This happens in stages:
956	 * 1/ create a new kmem_cache and allocate the required number of
957	 *    stripe_heads.
958	 * 2/ gather all the old stripe_heads and tranfer the pages across
959	 *    to the new stripe_heads.  This will have the side effect of
960	 *    freezing the array as once all stripe_heads have been collected,
961	 *    no IO will be possible.  Old stripe heads are freed once their
962	 *    pages have been transferred over, and the old kmem_cache is
963	 *    freed when all stripes are done.
964	 * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
965	 *    we simple return a failre status - no need to clean anything up.
966	 * 4/ allocate new pages for the new slots in the new stripe_heads.
967	 *    If this fails, we don't bother trying the shrink the
968	 *    stripe_heads down again, we just leave them as they are.
969	 *    As each stripe_head is processed the new one is released into
970	 *    active service.
971	 *
972	 * Once step2 is started, we cannot afford to wait for a write,
973	 * so we use GFP_NOIO allocations.
974	 */
975	struct stripe_head *osh, *nsh;
976	LIST_HEAD(newstripes);
977	struct disk_info *ndisks;
978	int err;
979	struct kmem_cache *sc;
980	int i;
981
982	if (newsize <= conf->pool_size)
983		return 0; /* never bother to shrink */
984
985	err = md_allow_write(conf->mddev);
986	if (err)
987		return err;
988
989	/* Step 1 */
990	sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
991			       sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
992			       0, 0, NULL);
993	if (!sc)
994		return -ENOMEM;
995
996	for (i = conf->max_nr_stripes; i; i--) {
997		nsh = kmem_cache_alloc(sc, GFP_KERNEL);
998		if (!nsh)
999			break;
1000
1001		memset(nsh, 0, sizeof(*nsh) + (newsize-1)*sizeof(struct r5dev));
1002
1003		nsh->raid_conf = conf;
1004		spin_lock_init(&nsh->lock);
1005
1006		list_add(&nsh->lru, &newstripes);
1007	}
1008	if (i) {
1009		/* didn't get enough, give up */
1010		while (!list_empty(&newstripes)) {
1011			nsh = list_entry(newstripes.next, struct stripe_head, lru);
1012			list_del(&nsh->lru);
1013			kmem_cache_free(sc, nsh);
1014		}
1015		kmem_cache_destroy(sc);
1016		return -ENOMEM;
1017	}
1018	/* Step 2 - Must use GFP_NOIO now.
1019	 * OK, we have enough stripes, start collecting inactive
1020	 * stripes and copying them over
1021	 */
1022	list_for_each_entry(nsh, &newstripes, lru) {
1023		spin_lock_irq(&conf->device_lock);
1024		wait_event_lock_irq(conf->wait_for_stripe,
1025				    !list_empty(&conf->inactive_list),
1026				    conf->device_lock,
1027				    unplug_slaves(conf->mddev)
1028			);
1029		osh = get_free_stripe(conf);
1030		spin_unlock_irq(&conf->device_lock);
1031		atomic_set(&nsh->count, 1);
1032		for(i=0; i<conf->pool_size; i++)
1033			nsh->dev[i].page = osh->dev[i].page;
1034		for( ; i<newsize; i++)
1035			nsh->dev[i].page = NULL;
1036		kmem_cache_free(conf->slab_cache, osh);
1037	}
1038	kmem_cache_destroy(conf->slab_cache);
1039
1040	/* Step 3.
1041	 * At this point, we are holding all the stripes so the array
1042	 * is completely stalled, so now is a good time to resize
1043	 * conf->disks.
1044	 */
1045	ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1046	if (ndisks) {
1047		for (i=0; i<conf->raid_disks; i++)
1048			ndisks[i] = conf->disks[i];
1049		kfree(conf->disks);
1050		conf->disks = ndisks;
1051	} else
1052		err = -ENOMEM;
1053
1054	/* Step 4, return new stripes to service */
1055	while(!list_empty(&newstripes)) {
1056		nsh = list_entry(newstripes.next, struct stripe_head, lru);
1057		list_del_init(&nsh->lru);
1058		for (i=conf->raid_disks; i < newsize; i++)
1059			if (nsh->dev[i].page == NULL) {
1060				struct page *p = alloc_page(GFP_NOIO);
1061				nsh->dev[i].page = p;
1062				if (!p)
1063					err = -ENOMEM;
1064			}
1065		release_stripe(nsh);
1066	}
1067	/* critical section pass, GFP_NOIO no longer needed */
1068
1069	conf->slab_cache = sc;
1070	conf->active_name = 1-conf->active_name;
1071	conf->pool_size = newsize;
1072	return err;
1073}
1074#endif
1075
1076static int drop_one_stripe(raid5_conf_t *conf)
1077{
1078	struct stripe_head *sh;
1079
1080	spin_lock_irq(&conf->device_lock);
1081	sh = get_free_stripe(conf);
1082	spin_unlock_irq(&conf->device_lock);
1083	if (!sh)
1084		return 0;
1085	BUG_ON(atomic_read(&sh->count));
1086	shrink_buffers(sh, conf->pool_size);
1087	kmem_cache_free(conf->slab_cache, sh);
1088	atomic_dec(&conf->active_stripes);
1089	return 1;
1090}
1091
1092static void shrink_stripes(raid5_conf_t *conf)
1093{
1094	while (drop_one_stripe(conf))
1095		;
1096
1097	if (conf->slab_cache)
1098		kmem_cache_destroy(conf->slab_cache);
1099	conf->slab_cache = NULL;
1100}
1101
1102static void raid5_end_read_request(struct bio * bi, int error)
1103{
1104	struct stripe_head *sh = bi->bi_private;
1105	raid5_conf_t *conf = sh->raid_conf;
1106	int disks = sh->disks, i;
1107	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1108	char b[BDEVNAME_SIZE];
1109	mdk_rdev_t *rdev;
1110
1111
1112	for (i=0 ; i<disks; i++)
1113		if (bi == &sh->dev[i].req)
1114			break;
1115
1116	pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1117		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
1118		uptodate);
1119	if (i == disks) {
1120		BUG();
1121		return;
1122	}
1123
1124	if (uptodate) {
1125		set_bit(R5_UPTODATE, &sh->dev[i].flags);
1126		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1127			rdev = conf->disks[i].rdev;
1128			printk_rl(KERN_INFO "raid5:%s: read error corrected"
1129				  " (%lu sectors at %llu on %s)\n",
1130				  mdname(conf->mddev), STRIPE_SECTORS,
1131				  (unsigned long long)(sh->sector
1132						       + rdev->data_offset),
1133				  bdevname(rdev->bdev, b));
1134			clear_bit(R5_ReadError, &sh->dev[i].flags);
1135			clear_bit(R5_ReWrite, &sh->dev[i].flags);
1136		}
1137		if (atomic_read(&conf->disks[i].rdev->read_errors))
1138			atomic_set(&conf->disks[i].rdev->read_errors, 0);
1139	} else {
1140		const char *bdn = bdevname(conf->disks[i].rdev->bdev, b);
1141		int retry = 0;
1142		rdev = conf->disks[i].rdev;
1143
1144		clear_bit(R5_UPTODATE, &sh->dev[i].flags);
1145		atomic_inc(&rdev->read_errors);
1146		if (conf->mddev->degraded)
1147			printk_rl(KERN_WARNING
1148				  "raid5:%s: read error not correctable "
1149				  "(sector %llu on %s).\n",
1150				  mdname(conf->mddev),
1151				  (unsigned long long)(sh->sector
1152						       + rdev->data_offset),
1153				  bdn);
1154		else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
1155			/* Oh, no!!! */
1156			printk_rl(KERN_WARNING
1157				  "raid5:%s: read error NOT corrected!! "
1158				  "(sector %llu on %s).\n",
1159				  mdname(conf->mddev),
1160				  (unsigned long long)(sh->sector
1161						       + rdev->data_offset),
1162				  bdn);
1163		else if (atomic_read(&rdev->read_errors)
1164			 > conf->max_nr_stripes)
1165			printk(KERN_WARNING
1166			       "raid5:%s: Too many read errors, failing device %s.\n",
1167			       mdname(conf->mddev), bdn);
1168		else
1169			retry = 1;
1170		if (retry)
1171			set_bit(R5_ReadError, &sh->dev[i].flags);
1172		else {
1173			clear_bit(R5_ReadError, &sh->dev[i].flags);
1174			clear_bit(R5_ReWrite, &sh->dev[i].flags);
1175			md_error(conf->mddev, rdev);
1176		}
1177	}
1178	rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1179	clear_bit(R5_LOCKED, &sh->dev[i].flags);
1180	set_bit(STRIPE_HANDLE, &sh->state);
1181	release_stripe(sh);
1182}
1183
1184static void raid5_end_write_request(struct bio *bi, int error)
1185{
1186	struct stripe_head *sh = bi->bi_private;
1187	raid5_conf_t *conf = sh->raid_conf;
1188	int disks = sh->disks, i;
1189	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1190
1191	for (i=0 ; i<disks; i++)
1192		if (bi == &sh->dev[i].req)
1193			break;
1194
1195	pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1196		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
1197		uptodate);
1198	if (i == disks) {
1199		BUG();
1200		return;
1201	}
1202
1203	if (!uptodate)
1204		md_error(conf->mddev, conf->disks[i].rdev);
1205
1206	rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1207
1208	clear_bit(R5_LOCKED, &sh->dev[i].flags);
1209	set_bit(STRIPE_HANDLE, &sh->state);
1210	release_stripe(sh);
1211}
1212
1213
1214static sector_t compute_blocknr(struct stripe_head *sh, int i);
1215
1216static void raid5_build_block(struct stripe_head *sh, int i)
1217{
1218	struct r5dev *dev = &sh->dev[i];
1219
1220	bio_init(&dev->req);
1221	dev->req.bi_io_vec = &dev->vec;
1222	dev->req.bi_vcnt++;
1223	dev->req.bi_max_vecs++;
1224	dev->vec.bv_page = dev->page;
1225	dev->vec.bv_len = STRIPE_SIZE;
1226	dev->vec.bv_offset = 0;
1227
1228	dev->req.bi_sector = sh->sector;
1229	dev->req.bi_private = sh;
1230
1231	dev->flags = 0;
1232	dev->sector = compute_blocknr(sh, i);
1233}
1234
1235static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1236{
1237	char b[BDEVNAME_SIZE];
1238	raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
1239	pr_debug("raid5: error called\n");
1240
1241	if (!test_bit(Faulty, &rdev->flags)) {
1242		set_bit(MD_CHANGE_DEVS, &mddev->flags);
1243		if (test_and_clear_bit(In_sync, &rdev->flags)) {
1244			unsigned long flags;
1245			spin_lock_irqsave(&conf->device_lock, flags);
1246			mddev->degraded++;
1247			spin_unlock_irqrestore(&conf->device_lock, flags);
1248			/*
1249			 * if recovery was running, make sure it aborts.
1250			 */
1251			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1252		}
1253		set_bit(Faulty, &rdev->flags);
1254		printk(KERN_ALERT
1255		       "raid5: Disk failure on %s, disabling device.\n"
1256		       "raid5: Operation continuing on %d devices.\n",
1257		       bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded);
1258	}
1259}
1260
1261/*
1262 * Input: a 'big' sector number,
1263 * Output: index of the data and parity disk, and the sector # in them.
1264 */
1265static sector_t raid5_compute_sector(raid5_conf_t *conf, sector_t r_sector,
1266				     int previous, int *dd_idx,
1267				     struct stripe_head *sh)
1268{
1269	long stripe;
1270	unsigned long chunk_number;
1271	unsigned int chunk_offset;
1272	int pd_idx, qd_idx;
1273	int ddf_layout = 0;
1274	sector_t new_sector;
1275	int sectors_per_chunk = conf->chunk_size >> 9;
1276	int raid_disks = previous ? conf->previous_raid_disks
1277				  : conf->raid_disks;
1278	int data_disks = raid_disks - conf->max_degraded;
1279
1280	/* First compute the information on this sector */
1281
1282	/*
1283	 * Compute the chunk number and the sector offset inside the chunk
1284	 */
1285	chunk_offset = sector_div(r_sector, sectors_per_chunk);
1286	chunk_number = r_sector;
1287	BUG_ON(r_sector != chunk_number);
1288
1289	/*
1290	 * Compute the stripe number
1291	 */
1292	stripe = chunk_number / data_disks;
1293
1294	/*
1295	 * Compute the data disk and parity disk indexes inside the stripe
1296	 */
1297	*dd_idx = chunk_number % data_disks;
1298
1299	/*
1300	 * Select the parity disk based on the user selected algorithm.
1301	 */
1302	pd_idx = qd_idx = ~0;
1303	switch(conf->level) {
1304	case 4:
1305		pd_idx = data_disks;
1306		break;
1307	case 5:
1308		switch (conf->algorithm) {
1309		case ALGORITHM_LEFT_ASYMMETRIC:
1310			pd_idx = data_disks - stripe % raid_disks;
1311			if (*dd_idx >= pd_idx)
1312				(*dd_idx)++;
1313			break;
1314		case ALGORITHM_RIGHT_ASYMMETRIC:
1315			pd_idx = stripe % raid_disks;
1316			if (*dd_idx >= pd_idx)
1317				(*dd_idx)++;
1318			break;
1319		case ALGORITHM_LEFT_SYMMETRIC:
1320			pd_idx = data_disks - stripe % raid_disks;
1321			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1322			break;
1323		case ALGORITHM_RIGHT_SYMMETRIC:
1324			pd_idx = stripe % raid_disks;
1325			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1326			break;
1327		case ALGORITHM_PARITY_0:
1328			pd_idx = 0;
1329			(*dd_idx)++;
1330			break;
1331		case ALGORITHM_PARITY_N:
1332			pd_idx = data_disks;
1333			break;
1334		default:
1335			printk(KERN_ERR "raid5: unsupported algorithm %d\n",
1336				conf->algorithm);
1337			BUG();
1338		}
1339		break;
1340	case 6:
1341
1342		switch (conf->algorithm) {
1343		case ALGORITHM_LEFT_ASYMMETRIC:
1344			pd_idx = raid_disks - 1 - (stripe % raid_disks);
1345			qd_idx = pd_idx + 1;
1346			if (pd_idx == raid_disks-1) {
1347				(*dd_idx)++;	/* Q D D D P */
1348				qd_idx = 0;
1349			} else if (*dd_idx >= pd_idx)
1350				(*dd_idx) += 2; /* D D P Q D */
1351			break;
1352		case ALGORITHM_RIGHT_ASYMMETRIC:
1353			pd_idx = stripe % raid_disks;
1354			qd_idx = pd_idx + 1;
1355			if (pd_idx == raid_disks-1) {
1356				(*dd_idx)++;	/* Q D D D P */
1357				qd_idx = 0;
1358			} else if (*dd_idx >= pd_idx)
1359				(*dd_idx) += 2; /* D D P Q D */
1360			break;
1361		case ALGORITHM_LEFT_SYMMETRIC:
1362			pd_idx = raid_disks - 1 - (stripe % raid_disks);
1363			qd_idx = (pd_idx + 1) % raid_disks;
1364			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1365			break;
1366		case ALGORITHM_RIGHT_SYMMETRIC:
1367			pd_idx = stripe % raid_disks;
1368			qd_idx = (pd_idx + 1) % raid_disks;
1369			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1370			break;
1371
1372		case ALGORITHM_PARITY_0:
1373			pd_idx = 0;
1374			qd_idx = 1;
1375			(*dd_idx) += 2;
1376			break;
1377		case ALGORITHM_PARITY_N:
1378			pd_idx = data_disks;
1379			qd_idx = data_disks + 1;
1380			break;
1381
1382		case ALGORITHM_ROTATING_ZERO_RESTART:
1383			/* Exactly the same as RIGHT_ASYMMETRIC, but or
1384			 * of blocks for computing Q is different.
1385			 */
1386			pd_idx = stripe % raid_disks;
1387			qd_idx = pd_idx + 1;
1388			if (pd_idx == raid_disks-1) {
1389				(*dd_idx)++;	/* Q D D D P */
1390				qd_idx = 0;
1391			} else if (*dd_idx >= pd_idx)
1392				(*dd_idx) += 2; /* D D P Q D */
1393			ddf_layout = 1;
1394			break;
1395
1396		case ALGORITHM_ROTATING_N_RESTART:
1397			/* Same a left_asymmetric, by first stripe is
1398			 * D D D P Q  rather than
1399			 * Q D D D P
1400			 */
1401			pd_idx = raid_disks - 1 - ((stripe + 1) % raid_disks);
1402			qd_idx = pd_idx + 1;
1403			if (pd_idx == raid_disks-1) {
1404				(*dd_idx)++;	/* Q D D D P */
1405				qd_idx = 0;
1406			} else if (*dd_idx >= pd_idx)
1407				(*dd_idx) += 2; /* D D P Q D */
1408			ddf_layout = 1;
1409			break;
1410
1411		case ALGORITHM_ROTATING_N_CONTINUE:
1412			/* Same as left_symmetric but Q is before P */
1413			pd_idx = raid_disks - 1 - (stripe % raid_disks);
1414			qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
1415			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1416			ddf_layout = 1;
1417			break;
1418
1419		case ALGORITHM_LEFT_ASYMMETRIC_6:
1420			/* RAID5 left_asymmetric, with Q on last device */
1421			pd_idx = data_disks - stripe % (raid_disks-1);
1422			if (*dd_idx >= pd_idx)
1423				(*dd_idx)++;
1424			qd_idx = raid_disks - 1;
1425			break;
1426
1427		case ALGORITHM_RIGHT_ASYMMETRIC_6:
1428			pd_idx = stripe % (raid_disks-1);
1429			if (*dd_idx >= pd_idx)
1430				(*dd_idx)++;
1431			qd_idx = raid_disks - 1;
1432			break;
1433
1434		case ALGORITHM_LEFT_SYMMETRIC_6:
1435			pd_idx = data_disks - stripe % (raid_disks-1);
1436			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
1437			qd_idx = raid_disks - 1;
1438			break;
1439
1440		case ALGORITHM_RIGHT_SYMMETRIC_6:
1441			pd_idx = stripe % (raid_disks-1);
1442			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
1443			qd_idx = raid_disks - 1;
1444			break;
1445
1446		case ALGORITHM_PARITY_0_6:
1447			pd_idx = 0;
1448			(*dd_idx)++;
1449			qd_idx = raid_disks - 1;
1450			break;
1451
1452
1453		default:
1454			printk(KERN_CRIT "raid6: unsupported algorithm %d\n",
1455			       conf->algorithm);
1456			BUG();
1457		}
1458		break;
1459	}
1460
1461	if (sh) {
1462		sh->pd_idx = pd_idx;
1463		sh->qd_idx = qd_idx;
1464		sh->ddf_layout = ddf_layout;
1465	}
1466	/*
1467	 * Finally, compute the new sector number
1468	 */
1469	new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
1470	return new_sector;
1471}
1472
1473
1474static sector_t compute_blocknr(struct stripe_head *sh, int i)
1475{
1476	raid5_conf_t *conf = sh->raid_conf;
1477	int raid_disks = sh->disks;
1478	int data_disks = raid_disks - conf->max_degraded;
1479	sector_t new_sector = sh->sector, check;
1480	int sectors_per_chunk = conf->chunk_size >> 9;
1481	sector_t stripe;
1482	int chunk_offset;
1483	int chunk_number, dummy1, dd_idx = i;
1484	sector_t r_sector;
1485	struct stripe_head sh2;
1486
1487
1488	chunk_offset = sector_div(new_sector, sectors_per_chunk);
1489	stripe = new_sector;
1490	BUG_ON(new_sector != stripe);
1491
1492	if (i == sh->pd_idx)
1493		return 0;
1494	switch(conf->level) {
1495	case 4: break;
1496	case 5:
1497		switch (conf->algorithm) {
1498		case ALGORITHM_LEFT_ASYMMETRIC:
1499		case ALGORITHM_RIGHT_ASYMMETRIC:
1500			if (i > sh->pd_idx)
1501				i--;
1502			break;
1503		case ALGORITHM_LEFT_SYMMETRIC:
1504		case ALGORITHM_RIGHT_SYMMETRIC:
1505			if (i < sh->pd_idx)
1506				i += raid_disks;
1507			i -= (sh->pd_idx + 1);
1508			break;
1509		case ALGORITHM_PARITY_0:
1510			i -= 1;
1511			break;
1512		case ALGORITHM_PARITY_N:
1513			break;
1514		default:
1515			printk(KERN_ERR "raid5: unsupported algorithm %d\n",
1516			       conf->algorithm);
1517			BUG();
1518		}
1519		break;
1520	case 6:
1521		if (i == sh->qd_idx)
1522			return 0; /* It is the Q disk */
1523		switch (conf->algorithm) {
1524		case ALGORITHM_LEFT_ASYMMETRIC:
1525		case ALGORITHM_RIGHT_ASYMMETRIC:
1526		case ALGORITHM_ROTATING_ZERO_RESTART:
1527		case ALGORITHM_ROTATING_N_RESTART:
1528			if (sh->pd_idx == raid_disks-1)
1529				i--;	/* Q D D D P */
1530			else if (i > sh->pd_idx)
1531				i -= 2; /* D D P Q D */
1532			break;
1533		case ALGORITHM_LEFT_SYMMETRIC:
1534		case ALGORITHM_RIGHT_SYMMETRIC:
1535			if (sh->pd_idx == raid_disks-1)
1536				i--; /* Q D D D P */
1537			else {
1538				/* D D P Q D */
1539				if (i < sh->pd_idx)
1540					i += raid_disks;
1541				i -= (sh->pd_idx + 2);
1542			}
1543			break;
1544		case ALGORITHM_PARITY_0:
1545			i -= 2;
1546			break;
1547		case ALGORITHM_PARITY_N:
1548			break;
1549		case ALGORITHM_ROTATING_N_CONTINUE:
1550			if (sh->pd_idx == 0)
1551				i--;	/* P D D D Q */
1552			else if (i > sh->pd_idx)
1553				i -= 2; /* D D Q P D */
1554			break;
1555		case ALGORITHM_LEFT_ASYMMETRIC_6:
1556		case ALGORITHM_RIGHT_ASYMMETRIC_6:
1557			if (i > sh->pd_idx)
1558				i--;
1559			break;
1560		case ALGORITHM_LEFT_SYMMETRIC_6:
1561		case ALGORITHM_RIGHT_SYMMETRIC_6:
1562			if (i < sh->pd_idx)
1563				i += data_disks + 1;
1564			i -= (sh->pd_idx + 1);
1565			break;
1566		case ALGORITHM_PARITY_0_6:
1567			i -= 1;
1568			break;
1569		default:
1570			printk(KERN_CRIT "raid6: unsupported algorithm %d\n",
1571			       conf->algorithm);
1572			BUG();
1573		}
1574		break;
1575	}
1576
1577	chunk_number = stripe * data_disks + i;
1578	r_sector = (sector_t)chunk_number * sectors_per_chunk + chunk_offset;
1579
1580	check = raid5_compute_sector(conf, r_sector,
1581				     (raid_disks != conf->raid_disks),
1582				     &dummy1, &sh2);
1583	if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
1584		|| sh2.qd_idx != sh->qd_idx) {
1585		printk(KERN_ERR "compute_blocknr: map not correct\n");
1586		return 0;
1587	}
1588	return r_sector;
1589}
1590
1591
1592
1593/*
1594 * Copy data between a page in the stripe cache, and one or more bion
1595 * The page could align with the middle of the bio, or there could be
1596 * several bion, each with several bio_vecs, which cover part of the page
1597 * Multiple bion are linked together on bi_next.  There may be extras
1598 * at the end of this list.  We ignore them.
1599 */
1600static void copy_data(int frombio, struct bio *bio,
1601		     struct page *page,
1602		     sector_t sector)
1603{
1604	char *pa = page_address(page);
1605	struct bio_vec *bvl;
1606	int i;
1607	int page_offset;
1608
1609	if (bio->bi_sector >= sector)
1610		page_offset = (signed)(bio->bi_sector - sector) * 512;
1611	else
1612		page_offset = (signed)(sector - bio->bi_sector) * -512;
1613	bio_for_each_segment(bvl, bio, i) {
1614		int len = bio_iovec_idx(bio,i)->bv_len;
1615		int clen;
1616		int b_offset = 0;
1617
1618		if (page_offset < 0) {
1619			b_offset = -page_offset;
1620			page_offset += b_offset;
1621			len -= b_offset;
1622		}
1623
1624		if (len > 0 && page_offset + len > STRIPE_SIZE)
1625			clen = STRIPE_SIZE - page_offset;
1626		else clen = len;
1627
1628		if (clen > 0) {
1629			char *ba = __bio_kmap_atomic(bio, i, KM_USER0);
1630			if (frombio)
1631				memcpy(pa+page_offset, ba+b_offset, clen);
1632			else
1633				memcpy(ba+b_offset, pa+page_offset, clen);
1634			__bio_kunmap_atomic(ba, KM_USER0);
1635		}
1636		if (clen < len) /* hit end of page */
1637			break;
1638		page_offset +=  len;
1639	}
1640}
1641
1642#define check_xor()	do {						  \
1643				if (count == MAX_XOR_BLOCKS) {		  \
1644				xor_blocks(count, STRIPE_SIZE, dest, ptr);\
1645				count = 0;				  \
1646			   }						  \
1647			} while(0)
1648
1649static void compute_parity6(struct stripe_head *sh, int method)
1650{
1651	raid5_conf_t *conf = sh->raid_conf;
1652	int i, pd_idx, qd_idx, d0_idx, disks = sh->disks, count;
1653	int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1654	struct bio *chosen;
1655	/**** FIX THIS: This could be very bad if disks is close to 256 ****/
1656	void *ptrs[syndrome_disks+2];
1657
1658	pd_idx = sh->pd_idx;
1659	qd_idx = sh->qd_idx;
1660	d0_idx = raid6_d0(sh);
1661
1662	pr_debug("compute_parity, stripe %llu, method %d\n",
1663		(unsigned long long)sh->sector, method);
1664
1665	switch(method) {
1666	case READ_MODIFY_WRITE:
1667		BUG();		/* READ_MODIFY_WRITE N/A for RAID-6 */
1668	case RECONSTRUCT_WRITE:
1669		for (i= disks; i-- ;)
1670			if ( i != pd_idx && i != qd_idx && sh->dev[i].towrite ) {
1671				chosen = sh->dev[i].towrite;
1672				sh->dev[i].towrite = NULL;
1673
1674				if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1675					wake_up(&conf->wait_for_overlap);
1676
1677				BUG_ON(sh->dev[i].written);
1678				sh->dev[i].written = chosen;
1679			}
1680		break;
1681	case CHECK_PARITY:
1682		BUG();		/* Not implemented yet */
1683	}
1684
1685	for (i = disks; i--;)
1686		if (sh->dev[i].written) {
1687			sector_t sector = sh->dev[i].sector;
1688			struct bio *wbi = sh->dev[i].written;
1689			while (wbi && wbi->bi_sector < sector + STRIPE_SECTORS) {
1690				copy_data(1, wbi, sh->dev[i].page, sector);
1691				wbi = r5_next_bio(wbi, sector);
1692			}
1693
1694			set_bit(R5_LOCKED, &sh->dev[i].flags);
1695			set_bit(R5_UPTODATE, &sh->dev[i].flags);
1696		}
1697
1698	/* Note that unlike RAID-5, the ordering of the disks matters greatly.*/
1699
1700	for (i = 0; i < disks; i++)
1701		ptrs[i] = (void *)raid6_empty_zero_page;
1702
1703	count = 0;
1704	i = d0_idx;
1705	do {
1706		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1707
1708		ptrs[slot] = page_address(sh->dev[i].page);
1709		if (slot < syndrome_disks &&
1710		    !test_bit(R5_UPTODATE, &sh->dev[i].flags)) {
1711			printk(KERN_ERR "block %d/%d not uptodate "
1712			       "on parity calc\n", i, count);
1713			BUG();
1714		}
1715
1716		i = raid6_next_disk(i, disks);
1717	} while (i != d0_idx);
1718	BUG_ON(count != syndrome_disks);
1719
1720	raid6_call.gen_syndrome(syndrome_disks+2, STRIPE_SIZE, ptrs);
1721
1722	switch(method) {
1723	case RECONSTRUCT_WRITE:
1724		set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1725		set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags);
1726		set_bit(R5_LOCKED,   &sh->dev[pd_idx].flags);
1727		set_bit(R5_LOCKED,   &sh->dev[qd_idx].flags);
1728		break;
1729	case UPDATE_PARITY:
1730		set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1731		set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags);
1732		break;
1733	}
1734}
1735
1736
1737/* Compute one missing block */
1738static void compute_block_1(struct stripe_head *sh, int dd_idx, int nozero)
1739{
1740	int i, count, disks = sh->disks;
1741	void *ptr[MAX_XOR_BLOCKS], *dest, *p;
1742	int qd_idx = sh->qd_idx;
1743
1744	pr_debug("compute_block_1, stripe %llu, idx %d\n",
1745		(unsigned long long)sh->sector, dd_idx);
1746
1747	if ( dd_idx == qd_idx ) {
1748		/* We're actually computing the Q drive */
1749		compute_parity6(sh, UPDATE_PARITY);
1750	} else {
1751		dest = page_address(sh->dev[dd_idx].page);
1752		if (!nozero) memset(dest, 0, STRIPE_SIZE);
1753		count = 0;
1754		for (i = disks ; i--; ) {
1755			if (i == dd_idx || i == qd_idx)
1756				continue;
1757			p = page_address(sh->dev[i].page);
1758			if (test_bit(R5_UPTODATE, &sh->dev[i].flags))
1759				ptr[count++] = p;
1760			else
1761				printk("compute_block() %d, stripe %llu, %d"
1762				       " not present\n", dd_idx,
1763				       (unsigned long long)sh->sector, i);
1764
1765			check_xor();
1766		}
1767		if (count)
1768			xor_blocks(count, STRIPE_SIZE, dest, ptr);
1769		if (!nozero) set_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
1770		else clear_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
1771	}
1772}
1773
1774/* Compute two missing blocks */
1775static void compute_block_2(struct stripe_head *sh, int dd_idx1, int dd_idx2)
1776{
1777	int i, count, disks = sh->disks;
1778	int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1779	int d0_idx = raid6_d0(sh);
1780	int faila = -1, failb = -1;
1781	/**** FIX THIS: This could be very bad if disks is close to 256 ****/
1782	void *ptrs[syndrome_disks+2];
1783
1784	for (i = 0; i < disks ; i++)
1785		ptrs[i] = (void *)raid6_empty_zero_page;
1786	count = 0;
1787	i = d0_idx;
1788	do {
1789		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1790
1791		ptrs[slot] = page_address(sh->dev[i].page);
1792
1793		if (i == dd_idx1)
1794			faila = slot;
1795		if (i == dd_idx2)
1796			failb = slot;
1797		i = raid6_next_disk(i, disks);
1798	} while (i != d0_idx);
1799	BUG_ON(count != syndrome_disks);
1800
1801	BUG_ON(faila == failb);
1802	if ( failb < faila ) { int tmp = faila; faila = failb; failb = tmp; }
1803
1804	pr_debug("compute_block_2, stripe %llu, idx %d,%d (%d,%d)\n",
1805		 (unsigned long long)sh->sector, dd_idx1, dd_idx2,
1806		 faila, failb);
1807
1808	if (failb == syndrome_disks+1) {
1809		/* Q disk is one of the missing disks */
1810		if (faila == syndrome_disks) {
1811			/* Missing P+Q, just recompute */
1812			compute_parity6(sh, UPDATE_PARITY);
1813			return;
1814		} else {
1815			/* We're missing D+Q; recompute D from P */
1816			compute_block_1(sh, ((dd_idx1 == sh->qd_idx) ?
1817					     dd_idx2 : dd_idx1),
1818					0);
1819			compute_parity6(sh, UPDATE_PARITY); /* Is this necessary? */
1820			return;
1821		}
1822	}
1823
1824	/* We're missing D+P or D+D; */
1825	if (failb == syndrome_disks) {
1826		/* We're missing D+P. */
1827		raid6_datap_recov(syndrome_disks+2, STRIPE_SIZE, faila, ptrs);
1828	} else {
1829		/* We're missing D+D. */
1830		raid6_2data_recov(syndrome_disks+2, STRIPE_SIZE, faila, failb,
1831				  ptrs);
1832	}
1833
1834	/* Both the above update both missing blocks */
1835	set_bit(R5_UPTODATE, &sh->dev[dd_idx1].flags);
1836	set_bit(R5_UPTODATE, &sh->dev[dd_idx2].flags);
1837}
1838
1839static void
1840schedule_reconstruction5(struct stripe_head *sh, struct stripe_head_state *s,
1841			 int rcw, int expand)
1842{
1843	int i, pd_idx = sh->pd_idx, disks = sh->disks;
1844
1845	if (rcw) {
1846		/* if we are not expanding this is a proper write request, and
1847		 * there will be bios with new data to be drained into the
1848		 * stripe cache
1849		 */
1850		if (!expand) {
1851			sh->reconstruct_state = reconstruct_state_drain_run;
1852			set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
1853		} else
1854			sh->reconstruct_state = reconstruct_state_run;
1855
1856		set_bit(STRIPE_OP_POSTXOR, &s->ops_request);
1857
1858		for (i = disks; i--; ) {
1859			struct r5dev *dev = &sh->dev[i];
1860
1861			if (dev->towrite) {
1862				set_bit(R5_LOCKED, &dev->flags);
1863				set_bit(R5_Wantdrain, &dev->flags);
1864				if (!expand)
1865					clear_bit(R5_UPTODATE, &dev->flags);
1866				s->locked++;
1867			}
1868		}
1869		if (s->locked + 1 == disks)
1870			if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
1871				atomic_inc(&sh->raid_conf->pending_full_writes);
1872	} else {
1873		BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
1874			test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
1875
1876		sh->reconstruct_state = reconstruct_state_prexor_drain_run;
1877		set_bit(STRIPE_OP_PREXOR, &s->ops_request);
1878		set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
1879		set_bit(STRIPE_OP_POSTXOR, &s->ops_request);
1880
1881		for (i = disks; i--; ) {
1882			struct r5dev *dev = &sh->dev[i];
1883			if (i == pd_idx)
1884				continue;
1885
1886			if (dev->towrite &&
1887			    (test_bit(R5_UPTODATE, &dev->flags) ||
1888			     test_bit(R5_Wantcompute, &dev->flags))) {
1889				set_bit(R5_Wantdrain, &dev->flags);
1890				set_bit(R5_LOCKED, &dev->flags);
1891				clear_bit(R5_UPTODATE, &dev->flags);
1892				s->locked++;
1893			}
1894		}
1895	}
1896
1897	/* keep the parity disk locked while asynchronous operations
1898	 * are in flight
1899	 */
1900	set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
1901	clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1902	s->locked++;
1903
1904	pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
1905		__func__, (unsigned long long)sh->sector,
1906		s->locked, s->ops_request);
1907}
1908
1909/*
1910 * Each stripe/dev can have one or more bion attached.
1911 * toread/towrite point to the first in a chain.
1912 * The bi_next chain must be in order.
1913 */
1914static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
1915{
1916	struct bio **bip;
1917	raid5_conf_t *conf = sh->raid_conf;
1918	int firstwrite=0;
1919
1920	pr_debug("adding bh b#%llu to stripe s#%llu\n",
1921		(unsigned long long)bi->bi_sector,
1922		(unsigned long long)sh->sector);
1923
1924
1925	spin_lock(&sh->lock);
1926	spin_lock_irq(&conf->device_lock);
1927	if (forwrite) {
1928		bip = &sh->dev[dd_idx].towrite;
1929		if (*bip == NULL && sh->dev[dd_idx].written == NULL)
1930			firstwrite = 1;
1931	} else
1932		bip = &sh->dev[dd_idx].toread;
1933	while (*bip && (*bip)->bi_sector < bi->bi_sector) {
1934		if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
1935			goto overlap;
1936		bip = & (*bip)->bi_next;
1937	}
1938	if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
1939		goto overlap;
1940
1941	BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
1942	if (*bip)
1943		bi->bi_next = *bip;
1944	*bip = bi;
1945	bi->bi_phys_segments++;
1946	spin_unlock_irq(&conf->device_lock);
1947	spin_unlock(&sh->lock);
1948
1949	pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
1950		(unsigned long long)bi->bi_sector,
1951		(unsigned long long)sh->sector, dd_idx);
1952
1953	if (conf->mddev->bitmap && firstwrite) {
1954		bitmap_startwrite(conf->mddev->bitmap, sh->sector,
1955				  STRIPE_SECTORS, 0);
1956		sh->bm_seq = conf->seq_flush+1;
1957		set_bit(STRIPE_BIT_DELAY, &sh->state);
1958	}
1959
1960	if (forwrite) {
1961		/* check if page is covered */
1962		sector_t sector = sh->dev[dd_idx].sector;
1963		for (bi=sh->dev[dd_idx].towrite;
1964		     sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
1965			     bi && bi->bi_sector <= sector;
1966		     bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
1967			if (bi->bi_sector + (bi->bi_size>>9) >= sector)
1968				sector = bi->bi_sector + (bi->bi_size>>9);
1969		}
1970		if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
1971			set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
1972	}
1973	return 1;
1974
1975 overlap:
1976	set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
1977	spin_unlock_irq(&conf->device_lock);
1978	spin_unlock(&sh->lock);
1979	return 0;
1980}
1981
1982static void end_reshape(raid5_conf_t *conf);
1983
1984static int page_is_zero(struct page *p)
1985{
1986	char *a = page_address(p);
1987	return ((*(u32*)a) == 0 &&
1988		memcmp(a, a+4, STRIPE_SIZE-4)==0);
1989}
1990
1991static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
1992			    struct stripe_head *sh)
1993{
1994	int sectors_per_chunk = conf->chunk_size >> 9;
1995	int dd_idx;
1996	int chunk_offset = sector_div(stripe, sectors_per_chunk);
1997	int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
1998
1999	raid5_compute_sector(conf,
2000			     stripe * (disks - conf->max_degraded)
2001			     *sectors_per_chunk + chunk_offset,
2002			     previous,
2003			     &dd_idx, sh);
2004}
2005
2006static void
2007handle_failed_stripe(raid5_conf_t *conf, struct stripe_head *sh,
2008				struct stripe_head_state *s, int disks,
2009				struct bio **return_bi)
2010{
2011	int i;
2012	for (i = disks; i--; ) {
2013		struct bio *bi;
2014		int bitmap_end = 0;
2015
2016		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2017			mdk_rdev_t *rdev;
2018			rcu_read_lock();
2019			rdev = rcu_dereference(conf->disks[i].rdev);
2020			if (rdev && test_bit(In_sync, &rdev->flags))
2021				/* multiple read failures in one stripe */
2022				md_error(conf->mddev, rdev);
2023			rcu_read_unlock();
2024		}
2025		spin_lock_irq(&conf->device_lock);
2026		/* fail all writes first */
2027		bi = sh->dev[i].towrite;
2028		sh->dev[i].towrite = NULL;
2029		if (bi) {
2030			s->to_write--;
2031			bitmap_end = 1;
2032		}
2033
2034		if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2035			wake_up(&conf->wait_for_overlap);
2036
2037		while (bi && bi->bi_sector <
2038			sh->dev[i].sector + STRIPE_SECTORS) {
2039			struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2040			clear_bit(BIO_UPTODATE, &bi->bi_flags);
2041			if (!raid5_dec_bi_phys_segments(bi)) {
2042				md_write_end(conf->mddev);
2043				bi->bi_next = *return_bi;
2044				*return_bi = bi;
2045			}
2046			bi = nextbi;
2047		}
2048		/* and fail all 'written' */
2049		bi = sh->dev[i].written;
2050		sh->dev[i].written = NULL;
2051		if (bi) bitmap_end = 1;
2052		while (bi && bi->bi_sector <
2053		       sh->dev[i].sector + STRIPE_SECTORS) {
2054			struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
2055			clear_bit(BIO_UPTODATE, &bi->bi_flags);
2056			if (!raid5_dec_bi_phys_segments(bi)) {
2057				md_write_end(conf->mddev);
2058				bi->bi_next = *return_bi;
2059				*return_bi = bi;
2060			}
2061			bi = bi2;
2062		}
2063
2064		/* fail any reads if this device is non-operational and
2065		 * the data has not reached the cache yet.
2066		 */
2067		if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
2068		    (!test_bit(R5_Insync, &sh->dev[i].flags) ||
2069		      test_bit(R5_ReadError, &sh->dev[i].flags))) {
2070			bi = sh->dev[i].toread;
2071			sh->dev[i].toread = NULL;
2072			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2073				wake_up(&conf->wait_for_overlap);
2074			if (bi) s->to_read--;
2075			while (bi && bi->bi_sector <
2076			       sh->dev[i].sector + STRIPE_SECTORS) {
2077				struct bio *nextbi =
2078					r5_next_bio(bi, sh->dev[i].sector);
2079				clear_bit(BIO_UPTODATE, &bi->bi_flags);
2080				if (!raid5_dec_bi_phys_segments(bi)) {
2081					bi->bi_next = *return_bi;
2082					*return_bi = bi;
2083				}
2084				bi = nextbi;
2085			}
2086		}
2087		spin_unlock_irq(&conf->device_lock);
2088		if (bitmap_end)
2089			bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2090					STRIPE_SECTORS, 0, 0);
2091	}
2092
2093	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2094		if (atomic_dec_and_test(&conf->pending_full_writes))
2095			md_wakeup_thread(conf->mddev->thread);
2096}
2097
2098/* fetch_block5 - checks the given member device to see if its data needs
2099 * to be read or computed to satisfy a request.
2100 *
2101 * Returns 1 when no more member devices need to be checked, otherwise returns
2102 * 0 to tell the loop in handle_stripe_fill5 to continue
2103 */
2104static int fetch_block5(struct stripe_head *sh, struct stripe_head_state *s,
2105			int disk_idx, int disks)
2106{
2107	struct r5dev *dev = &sh->dev[disk_idx];
2108	struct r5dev *failed_dev = &sh->dev[s->failed_num];
2109
2110	/* is the data in this block needed, and can we get it? */
2111	if (!test_bit(R5_LOCKED, &dev->flags) &&
2112	    !test_bit(R5_UPTODATE, &dev->flags) &&
2113	    (dev->toread ||
2114	     (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2115	     s->syncing || s->expanding ||
2116	     (s->failed &&
2117	      (failed_dev->toread ||
2118	       (failed_dev->towrite &&
2119		!test_bit(R5_OVERWRITE, &failed_dev->flags)))))) {
2120		/* We would like to get this block, possibly by computing it,
2121		 * otherwise read it if the backing disk is insync
2122		 */
2123		if ((s->uptodate == disks - 1) &&
2124		    (s->failed && disk_idx == s->failed_num)) {
2125			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2126			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2127			set_bit(R5_Wantcompute, &dev->flags);
2128			sh->ops.target = disk_idx;
2129			s->req_compute = 1;
2130			/* Careful: from this point on 'uptodate' is in the eye
2131			 * of raid5_run_ops which services 'compute' operations
2132			 * before writes. R5_Wantcompute flags a block that will
2133			 * be R5_UPTODATE by the time it is needed for a
2134			 * subsequent operation.
2135			 */
2136			s->uptodate++;
2137			return 1; /* uptodate + compute == disks */
2138		} else if (test_bit(R5_Insync, &dev->flags)) {
2139			set_bit(R5_LOCKED, &dev->flags);
2140			set_bit(R5_Wantread, &dev->flags);
2141			s->locked++;
2142			pr_debug("Reading block %d (sync=%d)\n", disk_idx,
2143				s->syncing);
2144		}
2145	}
2146
2147	return 0;
2148}
2149
2150/**
2151 * handle_stripe_fill5 - read or compute data to satisfy pending requests.
2152 */
2153static void handle_stripe_fill5(struct stripe_head *sh,
2154			struct stripe_head_state *s, int disks)
2155{
2156	int i;
2157
2158	/* look for blocks to read/compute, skip this if a compute
2159	 * is already in flight, or if the stripe contents are in the
2160	 * midst of changing due to a write
2161	 */
2162	if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2163	    !sh->reconstruct_state)
2164		for (i = disks; i--; )
2165			if (fetch_block5(sh, s, i, disks))
2166				break;
2167	set_bit(STRIPE_HANDLE, &sh->state);
2168}
2169
2170static void handle_stripe_fill6(struct stripe_head *sh,
2171			struct stripe_head_state *s, struct r6_state *r6s,
2172			int disks)
2173{
2174	int i;
2175	for (i = disks; i--; ) {
2176		struct r5dev *dev = &sh->dev[i];
2177		if (!test_bit(R5_LOCKED, &dev->flags) &&
2178		    !test_bit(R5_UPTODATE, &dev->flags) &&
2179		    (dev->toread || (dev->towrite &&
2180		     !test_bit(R5_OVERWRITE, &dev->flags)) ||
2181		     s->syncing || s->expanding ||
2182		     (s->failed >= 1 &&
2183		      (sh->dev[r6s->failed_num[0]].toread ||
2184		       s->to_write)) ||
2185		     (s->failed >= 2 &&
2186		      (sh->dev[r6s->failed_num[1]].toread ||
2187		       s->to_write)))) {
2188			/* we would like to get this block, possibly
2189			 * by computing it, but we might not be able to
2190			 */
2191			if ((s->uptodate == disks - 1) &&
2192			    (s->failed && (i == r6s->failed_num[0] ||
2193					   i == r6s->failed_num[1]))) {
2194				pr_debug("Computing stripe %llu block %d\n",
2195				       (unsigned long long)sh->sector, i);
2196				compute_block_1(sh, i, 0);
2197				s->uptodate++;
2198			} else if ( s->uptodate == disks-2 && s->failed >= 2 ) {
2199				/* Computing 2-failure is *very* expensive; only
2200				 * do it if failed >= 2
2201				 */
2202				int other;
2203				for (other = disks; other--; ) {
2204					if (other == i)
2205						continue;
2206					if (!test_bit(R5_UPTODATE,
2207					      &sh->dev[other].flags))
2208						break;
2209				}
2210				BUG_ON(other < 0);
2211				pr_debug("Computing stripe %llu blocks %d,%d\n",
2212				       (unsigned long long)sh->sector,
2213				       i, other);
2214				compute_block_2(sh, i, other);
2215				s->uptodate += 2;
2216			} else if (test_bit(R5_Insync, &dev->flags)) {
2217				set_bit(R5_LOCKED, &dev->flags);
2218				set_bit(R5_Wantread, &dev->flags);
2219				s->locked++;
2220				pr_debug("Reading block %d (sync=%d)\n",
2221					i, s->syncing);
2222			}
2223		}
2224	}
2225	set_bit(STRIPE_HANDLE, &sh->state);
2226}
2227
2228
2229/* handle_stripe_clean_event
2230 * any written block on an uptodate or failed drive can be returned.
2231 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2232 * never LOCKED, so we don't need to test 'failed' directly.
2233 */
2234static void handle_stripe_clean_event(raid5_conf_t *conf,
2235	struct stripe_head *sh, int disks, struct bio **return_bi)
2236{
2237	int i;
2238	struct r5dev *dev;
2239
2240	for (i = disks; i--; )
2241		if (sh->dev[i].written) {
2242			dev = &sh->dev[i];
2243			if (!test_bit(R5_LOCKED, &dev->flags) &&
2244				test_bit(R5_UPTODATE, &dev->flags)) {
2245				/* We can return any write requests */
2246				struct bio *wbi, *wbi2;
2247				int bitmap_end = 0;
2248				pr_debug("Return write for disc %d\n", i);
2249				spin_lock_irq(&conf->device_lock);
2250				wbi = dev->written;
2251				dev->written = NULL;
2252				while (wbi && wbi->bi_sector <
2253					dev->sector + STRIPE_SECTORS) {
2254					wbi2 = r5_next_bio(wbi, dev->sector);
2255					if (!raid5_dec_bi_phys_segments(wbi)) {
2256						md_write_end(conf->mddev);
2257						wbi->bi_next = *return_bi;
2258						*return_bi = wbi;
2259					}
2260					wbi = wbi2;
2261				}
2262				if (dev->towrite == NULL)
2263					bitmap_end = 1;
2264				spin_unlock_irq(&conf->device_lock);
2265				if (bitmap_end)
2266					bitmap_endwrite(conf->mddev->bitmap,
2267							sh->sector,
2268							STRIPE_SECTORS,
2269					 !test_bit(STRIPE_DEGRADED, &sh->state),
2270							0);
2271			}
2272		}
2273
2274	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2275		if (atomic_dec_and_test(&conf->pending_full_writes))
2276			md_wakeup_thread(conf->mddev->thread);
2277}
2278
2279static void handle_stripe_dirtying5(raid5_conf_t *conf,
2280		struct stripe_head *sh,	struct stripe_head_state *s, int disks)
2281{
2282	int rmw = 0, rcw = 0, i;
2283	for (i = disks; i--; ) {
2284		/* would I have to read this buffer for read_modify_write */
2285		struct r5dev *dev = &sh->dev[i];
2286		if ((dev->towrite || i == sh->pd_idx) &&
2287		    !test_bit(R5_LOCKED, &dev->flags) &&
2288		    !(test_bit(R5_UPTODATE, &dev->flags) ||
2289		      test_bit(R5_Wantcompute, &dev->flags))) {
2290			if (test_bit(R5_Insync, &dev->flags))
2291				rmw++;
2292			else
2293				rmw += 2*disks;  /* cannot read it */
2294		}
2295		/* Would I have to read this buffer for reconstruct_write */
2296		if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
2297		    !test_bit(R5_LOCKED, &dev->flags) &&
2298		    !(test_bit(R5_UPTODATE, &dev->flags) ||
2299		    test_bit(R5_Wantcompute, &dev->flags))) {
2300			if (test_bit(R5_Insync, &dev->flags)) rcw++;
2301			else
2302				rcw += 2*disks;
2303		}
2304	}
2305	pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2306		(unsigned long long)sh->sector, rmw, rcw);
2307	set_bit(STRIPE_HANDLE, &sh->state);
2308	if (rmw < rcw && rmw > 0)
2309		/* prefer read-modify-write, but need to get some data */
2310		for (i = disks; i--; ) {
2311			struct r5dev *dev = &sh->dev[i];
2312			if ((dev->towrite || i == sh->pd_idx) &&
2313			    !test_bit(R5_LOCKED, &dev->flags) &&
2314			    !(test_bit(R5_UPTODATE, &dev->flags) ||
2315			    test_bit(R5_Wantcompute, &dev->flags)) &&
2316			    test_bit(R5_Insync, &dev->flags)) {
2317				if (
2318				  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2319					pr_debug("Read_old block "
2320						"%d for r-m-w\n", i);
2321					set_bit(R5_LOCKED, &dev->flags);
2322					set_bit(R5_Wantread, &dev->flags);
2323					s->locked++;
2324				} else {
2325					set_bit(STRIPE_DELAYED, &sh->state);
2326					set_bit(STRIPE_HANDLE, &sh->state);
2327				}
2328			}
2329		}
2330	if (rcw <= rmw && rcw > 0)
2331		/* want reconstruct write, but need to get some data */
2332		for (i = disks; i--; ) {
2333			struct r5dev *dev = &sh->dev[i];
2334			if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2335			    i != sh->pd_idx &&
2336			    !test_bit(R5_LOCKED, &dev->flags) &&
2337			    !(test_bit(R5_UPTODATE, &dev->flags) ||
2338			    test_bit(R5_Wantcompute, &dev->flags)) &&
2339			    test_bit(R5_Insync, &dev->flags)) {
2340				if (
2341				  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2342					pr_debug("Read_old block "
2343						"%d for Reconstruct\n", i);
2344					set_bit(R5_LOCKED, &dev->flags);
2345					set_bit(R5_Wantread, &dev->flags);
2346					s->locked++;
2347				} else {
2348					set_bit(STRIPE_DELAYED, &sh->state);
2349					set_bit(STRIPE_HANDLE, &sh->state);
2350				}
2351			}
2352		}
2353	/* now if nothing is locked, and if we have enough data,
2354	 * we can start a write request
2355	 */
2356	/* since handle_stripe can be called at any time we need to handle the
2357	 * case where a compute block operation has been submitted and then a
2358	 * subsequent call wants to start a write request.  raid5_run_ops only
2359	 * handles the case where compute block and postxor are requested
2360	 * simultaneously.  If this is not the case then new writes need to be
2361	 * held off until the compute completes.
2362	 */
2363	if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2364	    (s->locked == 0 && (rcw == 0 || rmw == 0) &&
2365	    !test_bit(STRIPE_BIT_DELAY, &sh->state)))
2366		schedule_reconstruction5(sh, s, rcw == 0, 0);
2367}
2368
2369static void handle_stripe_dirtying6(raid5_conf_t *conf,
2370		struct stripe_head *sh,	struct stripe_head_state *s,
2371		struct r6_state *r6s, int disks)
2372{
2373	int rcw = 0, must_compute = 0, pd_idx = sh->pd_idx, i;
2374	int qd_idx = sh->qd_idx;
2375	for (i = disks; i--; ) {
2376		struct r5dev *dev = &sh->dev[i];
2377		/* Would I have to read this buffer for reconstruct_write */
2378		if (!test_bit(R5_OVERWRITE, &dev->flags)
2379		    && i != pd_idx && i != qd_idx
2380		    && (!test_bit(R5_LOCKED, &dev->flags)
2381			    ) &&
2382		    !test_bit(R5_UPTODATE, &dev->flags)) {
2383			if (test_bit(R5_Insync, &dev->flags)) rcw++;
2384			else {
2385				pr_debug("raid6: must_compute: "
2386					"disk %d flags=%#lx\n", i, dev->flags);
2387				must_compute++;
2388			}
2389		}
2390	}
2391	pr_debug("for sector %llu, rcw=%d, must_compute=%d\n",
2392	       (unsigned long long)sh->sector, rcw, must_compute);
2393	set_bit(STRIPE_HANDLE, &sh->state);
2394
2395	if (rcw > 0)
2396		/* want reconstruct write, but need to get some data */
2397		for (i = disks; i--; ) {
2398			struct r5dev *dev = &sh->dev[i];
2399			if (!test_bit(R5_OVERWRITE, &dev->flags)
2400			    && !(s->failed == 0 && (i == pd_idx || i == qd_idx))
2401			    && !test_bit(R5_LOCKED, &dev->flags) &&
2402			    !test_bit(R5_UPTODATE, &dev->flags) &&
2403			    test_bit(R5_Insync, &dev->flags)) {
2404				if (
2405				  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2406					pr_debug("Read_old stripe %llu "
2407						"block %d for Reconstruct\n",
2408					     (unsigned long long)sh->sector, i);
2409					set_bit(R5_LOCKED, &dev->flags);
2410					set_bit(R5_Wantread, &dev->flags);
2411					s->locked++;
2412				} else {
2413					pr_debug("Request delayed stripe %llu "
2414						"block %d for Reconstruct\n",
2415					     (unsigned long long)sh->sector, i);
2416					set_bit(STRIPE_DELAYED, &sh->state);
2417					set_bit(STRIPE_HANDLE, &sh->state);
2418				}
2419			}
2420		}
2421	/* now if nothing is locked, and if we have enough data, we can start a
2422	 * write request
2423	 */
2424	if (s->locked == 0 && rcw == 0 &&
2425	    !test_bit(STRIPE_BIT_DELAY, &sh->state)) {
2426		if (must_compute > 0) {
2427			/* We have failed blocks and need to compute them */
2428			switch (s->failed) {
2429			case 0:
2430				BUG();
2431			case 1:
2432				compute_block_1(sh, r6s->failed_num[0], 0);
2433				break;
2434			case 2:
2435				compute_block_2(sh, r6s->failed_num[0],
2436						r6s->failed_num[1]);
2437				break;
2438			default: /* This request should have been failed? */
2439				BUG();
2440			}
2441		}
2442
2443		pr_debug("Computing parity for stripe %llu\n",
2444			(unsigned long long)sh->sector);
2445		compute_parity6(sh, RECONSTRUCT_WRITE);
2446		/* now every locked buffer is ready to be written */
2447		for (i = disks; i--; )
2448			if (test_bit(R5_LOCKED, &sh->dev[i].flags)) {
2449				pr_debug("Writing stripe %llu block %d\n",
2450				       (unsigned long long)sh->sector, i);
2451				s->locked++;
2452				set_bit(R5_Wantwrite, &sh->dev[i].flags);
2453			}
2454		if (s->locked == disks)
2455			if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2456				atomic_inc(&conf->pending_full_writes);
2457		/* after a RECONSTRUCT_WRITE, the stripe MUST be in-sync */
2458		set_bit(STRIPE_INSYNC, &sh->state);
2459
2460		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2461			atomic_dec(&conf->preread_active_stripes);
2462			if (atomic_read(&conf->preread_active_stripes) <
2463			    IO_THRESHOLD)
2464				md_wakeup_thread(conf->mddev->thread);
2465		}
2466	}
2467}
2468
2469static void handle_parity_checks5(raid5_conf_t *conf, struct stripe_head *sh,
2470				struct stripe_head_state *s, int disks)
2471{
2472	struct r5dev *dev = NULL;
2473
2474	set_bit(STRIPE_HANDLE, &sh->state);
2475
2476	switch (sh->check_state) {
2477	case check_state_idle:
2478		/* start a new check operation if there are no failures */
2479		if (s->failed == 0) {
2480			BUG_ON(s->uptodate != disks);
2481			sh->check_state = check_state_run;
2482			set_bit(STRIPE_OP_CHECK, &s->ops_request);
2483			clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
2484			s->uptodate--;
2485			break;
2486		}
2487		dev = &sh->dev[s->failed_num];
2488		/* fall through */
2489	case check_state_compute_result:
2490		sh->check_state = check_state_idle;
2491		if (!dev)
2492			dev = &sh->dev[sh->pd_idx];
2493
2494		/* check that a write has not made the stripe insync */
2495		if (test_bit(STRIPE_INSYNC, &sh->state))
2496			break;
2497
2498		/* either failed parity check, or recovery is happening */
2499		BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
2500		BUG_ON(s->uptodate != disks);
2501
2502		set_bit(R5_LOCKED, &dev->flags);
2503		s->locked++;
2504		set_bit(R5_Wantwrite, &dev->flags);
2505
2506		clear_bit(STRIPE_DEGRADED, &sh->state);
2507		set_bit(STRIPE_INSYNC, &sh->state);
2508		break;
2509	case check_state_run:
2510		break; /* we will be called again upon completion */
2511	case check_state_check_result:
2512		sh->check_state = check_state_idle;
2513
2514		/* if a failure occurred during the check operation, leave
2515		 * STRIPE_INSYNC not set and let the stripe be handled again
2516		 */
2517		if (s->failed)
2518			break;
2519
2520		/* handle a successful check operation, if parity is correct
2521		 * we are done.  Otherwise update the mismatch count and repair
2522		 * parity if !MD_RECOVERY_CHECK
2523		 */
2524		if (sh->ops.zero_sum_result == 0)
2525			/* parity is correct (on disc,
2526			 * not in buffer any more)
2527			 */
2528			set_bit(STRIPE_INSYNC, &sh->state);
2529		else {
2530			conf->mddev->resync_mismatches += STRIPE_SECTORS;
2531			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2532				/* don't try to repair!! */
2533				set_bit(STRIPE_INSYNC, &sh->state);
2534			else {
2535				sh->check_state = check_state_compute_run;
2536				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2537				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2538				set_bit(R5_Wantcompute,
2539					&sh->dev[sh->pd_idx].flags);
2540				sh->ops.target = sh->pd_idx;
2541				s->uptodate++;
2542			}
2543		}
2544		break;
2545	case check_state_compute_run:
2546		break;
2547	default:
2548		printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2549		       __func__, sh->check_state,
2550		       (unsigned long long) sh->sector);
2551		BUG();
2552	}
2553}
2554
2555
2556static void handle_parity_checks6(raid5_conf_t *conf, struct stripe_head *sh,
2557				struct stripe_head_state *s,
2558				struct r6_state *r6s, struct page *tmp_page,
2559				int disks)
2560{
2561	int update_p = 0, update_q = 0;
2562	struct r5dev *dev;
2563	int pd_idx = sh->pd_idx;
2564	int qd_idx = sh->qd_idx;
2565
2566	set_bit(STRIPE_HANDLE, &sh->state);
2567
2568	BUG_ON(s->failed > 2);
2569	BUG_ON(s->uptodate < disks);
2570	/* Want to check and possibly repair P and Q.
2571	 * However there could be one 'failed' device, in which
2572	 * case we can only check one of them, possibly using the
2573	 * other to generate missing data
2574	 */
2575
2576	/* If !tmp_page, we cannot do the calculations,
2577	 * but as we have set STRIPE_HANDLE, we will soon be called
2578	 * by stripe_handle with a tmp_page - just wait until then.
2579	 */
2580	if (tmp_page) {
2581		if (s->failed == r6s->q_failed) {
2582			/* The only possible failed device holds 'Q', so it
2583			 * makes sense to check P (If anything else were failed,
2584			 * we would have used P to recreate it).
2585			 */
2586			compute_block_1(sh, pd_idx, 1);
2587			if (!page_is_zero(sh->dev[pd_idx].page)) {
2588				compute_block_1(sh, pd_idx, 0);
2589				update_p = 1;
2590			}
2591		}
2592		if (!r6s->q_failed && s->failed < 2) {
2593			/* q is not failed, and we didn't use it to generate
2594			 * anything, so it makes sense to check it
2595			 */
2596			memcpy(page_address(tmp_page),
2597			       page_address(sh->dev[qd_idx].page),
2598			       STRIPE_SIZE);
2599			compute_parity6(sh, UPDATE_PARITY);
2600			if (memcmp(page_address(tmp_page),
2601				   page_address(sh->dev[qd_idx].page),
2602				   STRIPE_SIZE) != 0) {
2603				clear_bit(STRIPE_INSYNC, &sh->state);
2604				update_q = 1;
2605			}
2606		}
2607		if (update_p || update_q) {
2608			conf->mddev->resync_mismatches += STRIPE_SECTORS;
2609			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2610				/* don't try to repair!! */
2611				update_p = update_q = 0;
2612		}
2613
2614		/* now write out any block on a failed drive,
2615		 * or P or Q if they need it
2616		 */
2617
2618		if (s->failed == 2) {
2619			dev = &sh->dev[r6s->failed_num[1]];
2620			s->locked++;
2621			set_bit(R5_LOCKED, &dev->flags);
2622			set_bit(R5_Wantwrite, &dev->flags);
2623		}
2624		if (s->failed >= 1) {
2625			dev = &sh->dev[r6s->failed_num[0]];
2626			s->locked++;
2627			set_bit(R5_LOCKED, &dev->flags);
2628			set_bit(R5_Wantwrite, &dev->flags);
2629		}
2630
2631		if (update_p) {
2632			dev = &sh->dev[pd_idx];
2633			s->locked++;
2634			set_bit(R5_LOCKED, &dev->flags);
2635			set_bit(R5_Wantwrite, &dev->flags);
2636		}
2637		if (update_q) {
2638			dev = &sh->dev[qd_idx];
2639			s->locked++;
2640			set_bit(R5_LOCKED, &dev->flags);
2641			set_bit(R5_Wantwrite, &dev->flags);
2642		}
2643		clear_bit(STRIPE_DEGRADED, &sh->state);
2644
2645		set_bit(STRIPE_INSYNC, &sh->state);
2646	}
2647}
2648
2649static void handle_stripe_expansion(raid5_conf_t *conf, struct stripe_head *sh,
2650				struct r6_state *r6s)
2651{
2652	int i;
2653
2654	/* We have read all the blocks in this stripe and now we need to
2655	 * copy some of them into a target stripe for expand.
2656	 */
2657	struct dma_async_tx_descriptor *tx = NULL;
2658	clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2659	for (i = 0; i < sh->disks; i++)
2660		if (i != sh->pd_idx && i != sh->qd_idx) {
2661			int dd_idx, j;
2662			struct stripe_head *sh2;
2663
2664			sector_t bn = compute_blocknr(sh, i);
2665			sector_t s = raid5_compute_sector(conf, bn, 0,
2666							  &dd_idx, NULL);
2667			sh2 = get_active_stripe(conf, s, 0, 1);
2668			if (sh2 == NULL)
2669				/* so far only the early blocks of this stripe
2670				 * have been requested.  When later blocks
2671				 * get requested, we will try again
2672				 */
2673				continue;
2674			if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
2675			   test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
2676				/* must have already done this block */
2677				release_stripe(sh2);
2678				continue;
2679			}
2680
2681			/* place all the copies on one channel */
2682			tx = async_memcpy(sh2->dev[dd_idx].page,
2683				sh->dev[i].page, 0, 0, STRIPE_SIZE,
2684				ASYNC_TX_DEP_ACK, tx, NULL, NULL);
2685
2686			set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
2687			set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
2688			for (j = 0; j < conf->raid_disks; j++)
2689				if (j != sh2->pd_idx &&
2690				    (!r6s || j != sh2->qd_idx) &&
2691				    !test_bit(R5_Expanded, &sh2->dev[j].flags))
2692					break;
2693			if (j == conf->raid_disks) {
2694				set_bit(STRIPE_EXPAND_READY, &sh2->state);
2695				set_bit(STRIPE_HANDLE, &sh2->state);
2696			}
2697			release_stripe(sh2);
2698
2699		}
2700	/* done submitting copies, wait for them to complete */
2701	if (tx) {
2702		async_tx_ack(tx);
2703		dma_wait_for_async_tx(tx);
2704	}
2705}
2706
2707
2708/*
2709 * handle_stripe - do things to a stripe.
2710 *
2711 * We lock the stripe and then examine the state of various bits
2712 * to see what needs to be done.
2713 * Possible results:
2714 *    return some read request which now have data
2715 *    return some write requests which are safely on disc
2716 *    schedule a read on some buffers
2717 *    schedule a write of some buffers
2718 *    return confirmation of parity correctness
2719 *
2720 * buffers are taken off read_list or write_list, and bh_cache buffers
2721 * get BH_Lock set before the stripe lock is released.
2722 *
2723 */
2724
2725static bool handle_stripe5(struct stripe_head *sh)
2726{
2727	raid5_conf_t *conf = sh->raid_conf;
2728	int disks = sh->disks, i;
2729	struct bio *return_bi = NULL;
2730	struct stripe_head_state s;
2731	struct r5dev *dev;
2732	mdk_rdev_t *blocked_rdev = NULL;
2733	int prexor;
2734
2735	memset(&s, 0, sizeof(s));
2736	pr_debug("handling stripe %llu, state=%#lx cnt=%d, pd_idx=%d check:%d "
2737		 "reconstruct:%d\n", (unsigned long long)sh->sector, sh->state,
2738		 atomic_read(&sh->count), sh->pd_idx, sh->check_state,
2739		 sh->reconstruct_state);
2740
2741	spin_lock(&sh->lock);
2742	clear_bit(STRIPE_HANDLE, &sh->state);
2743	clear_bit(STRIPE_DELAYED, &sh->state);
2744
2745	s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
2746	s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2747	s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
2748
2749	/* Now to look around and see what can be done */
2750	rcu_read_lock();
2751	for (i=disks; i--; ) {
2752		mdk_rdev_t *rdev;
2753		struct r5dev *dev = &sh->dev[i];
2754		clear_bit(R5_Insync, &dev->flags);
2755
2756		pr_debug("check %d: state 0x%lx toread %p read %p write %p "
2757			"written %p\n",	i, dev->flags, dev->toread, dev->read,
2758			dev->towrite, dev->written);
2759
2760		/* maybe we can request a biofill operation
2761		 *
2762		 * new wantfill requests are only permitted while
2763		 * ops_complete_biofill is guaranteed to be inactive
2764		 */
2765		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
2766		    !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
2767			set_bit(R5_Wantfill, &dev->flags);
2768
2769		/* now count some things */
2770		if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
2771		if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
2772		if (test_bit(R5_Wantcompute, &dev->flags)) s.compute++;
2773
2774		if (test_bit(R5_Wantfill, &dev->flags))
2775			s.to_fill++;
2776		else if (dev->toread)
2777			s.to_read++;
2778		if (dev->towrite) {
2779			s.to_write++;
2780			if (!test_bit(R5_OVERWRITE, &dev->flags))
2781				s.non_overwrite++;
2782		}
2783		if (dev->written)
2784			s.written++;
2785		rdev = rcu_dereference(conf->disks[i].rdev);
2786		if (blocked_rdev == NULL &&
2787		    rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
2788			blocked_rdev = rdev;
2789			atomic_inc(&rdev->nr_pending);
2790		}
2791		if (!rdev || !test_bit(In_sync, &rdev->flags)) {
2792			/* The ReadError flag will just be confusing now */
2793			clear_bit(R5_ReadError, &dev->flags);
2794			clear_bit(R5_ReWrite, &dev->flags);
2795		}
2796		if (!rdev || !test_bit(In_sync, &rdev->flags)
2797		    || test_bit(R5_ReadError, &dev->flags)) {
2798			s.failed++;
2799			s.failed_num = i;
2800		} else
2801			set_bit(R5_Insync, &dev->flags);
2802	}
2803	rcu_read_unlock();
2804
2805	if (unlikely(blocked_rdev)) {
2806		if (s.syncing || s.expanding || s.expanded ||
2807		    s.to_write || s.written) {
2808			set_bit(STRIPE_HANDLE, &sh->state);
2809			goto unlock;
2810		}
2811		/* There is nothing for the blocked_rdev to block */
2812		rdev_dec_pending(blocked_rdev, conf->mddev);
2813		blocked_rdev = NULL;
2814	}
2815
2816	if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
2817		set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
2818		set_bit(STRIPE_BIOFILL_RUN, &sh->state);
2819	}
2820
2821	pr_debug("locked=%d uptodate=%d to_read=%d"
2822		" to_write=%d failed=%d failed_num=%d\n",
2823		s.locked, s.uptodate, s.to_read, s.to_write,
2824		s.failed, s.failed_num);
2825	/* check if the array has lost two devices and, if so, some requests might
2826	 * need to be failed
2827	 */
2828	if (s.failed > 1 && s.to_read+s.to_write+s.written)
2829		handle_failed_stripe(conf, sh, &s, disks, &return_bi);
2830	if (s.failed > 1 && s.syncing) {
2831		md_done_sync(conf->mddev, STRIPE_SECTORS,0);
2832		clear_bit(STRIPE_SYNCING, &sh->state);
2833		s.syncing = 0;
2834	}
2835
2836	/* might be able to return some write requests if the parity block
2837	 * is safe, or on a failed drive
2838	 */
2839	dev = &sh->dev[sh->pd_idx];
2840	if ( s.written &&
2841	     ((test_bit(R5_Insync, &dev->flags) &&
2842	       !test_bit(R5_LOCKED, &dev->flags) &&
2843	       test_bit(R5_UPTODATE, &dev->flags)) ||
2844	       (s.failed == 1 && s.failed_num == sh->pd_idx)))
2845		handle_stripe_clean_event(conf, sh, disks, &return_bi);
2846
2847	/* Now we might consider reading some blocks, either to check/generate
2848	 * parity, or to satisfy requests
2849	 * or to load a block that is being partially written.
2850	 */
2851	if (s.to_read || s.non_overwrite ||
2852	    (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding)
2853		handle_stripe_fill5(sh, &s, disks);
2854
2855	/* Now we check to see if any write operations have recently
2856	 * completed
2857	 */
2858	prexor = 0;
2859	if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
2860		prexor = 1;
2861	if (sh->reconstruct_state == reconstruct_state_drain_result ||
2862	    sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
2863		sh->reconstruct_state = reconstruct_state_idle;
2864
2865		/* All the 'written' buffers and the parity block are ready to
2866		 * be written back to disk
2867		 */
2868		BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
2869		for (i = disks; i--; ) {
2870			dev = &sh->dev[i];
2871			if (test_bit(R5_LOCKED, &dev->flags) &&
2872				(i == sh->pd_idx || dev->written)) {
2873				pr_debug("Writing block %d\n", i);
2874				set_bit(R5_Wantwrite, &dev->flags);
2875				if (prexor)
2876					continue;
2877				if (!test_bit(R5_Insync, &dev->flags) ||
2878				    (i == sh->pd_idx && s.failed == 0))
2879					set_bit(STRIPE_INSYNC, &sh->state);
2880			}
2881		}
2882		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2883			atomic_dec(&conf->preread_active_stripes);
2884			if (atomic_read(&conf->preread_active_stripes) <
2885				IO_THRESHOLD)
2886				md_wakeup_thread(conf->mddev->thread);
2887		}
2888	}
2889
2890	/* Now to consider new write requests and what else, if anything
2891	 * should be read.  We do not handle new writes when:
2892	 * 1/ A 'write' operation (copy+xor) is already in flight.
2893	 * 2/ A 'check' operation is in flight, as it may clobber the parity
2894	 *    block.
2895	 */
2896	if (s.to_write && !sh->reconstruct_state && !sh->check_state)
2897		handle_stripe_dirtying5(conf, sh, &s, disks);
2898
2899	/* maybe we need to check and possibly fix the parity for this stripe
2900	 * Any reads will already have been scheduled, so we just see if enough
2901	 * data is available.  The parity check is held off while parity
2902	 * dependent operations are in flight.
2903	 */
2904	if (sh->check_state ||
2905	    (s.syncing && s.locked == 0 &&
2906	     !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
2907	     !test_bit(STRIPE_INSYNC, &sh->state)))
2908		handle_parity_checks5(conf, sh, &s, disks);
2909
2910	if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
2911		md_done_sync(conf->mddev, STRIPE_SECTORS,1);
2912		clear_bit(STRIPE_SYNCING, &sh->state);
2913	}
2914
2915	/* If the failed drive is just a ReadError, then we might need to progress
2916	 * the repair/check process
2917	 */
2918	if (s.failed == 1 && !conf->mddev->ro &&
2919	    test_bit(R5_ReadError, &sh->dev[s.failed_num].flags)
2920	    && !test_bit(R5_LOCKED, &sh->dev[s.failed_num].flags)
2921	    && test_bit(R5_UPTODATE, &sh->dev[s.failed_num].flags)
2922		) {
2923		dev = &sh->dev[s.failed_num];
2924		if (!test_bit(R5_ReWrite, &dev->flags)) {
2925			set_bit(R5_Wantwrite, &dev->flags);
2926			set_bit(R5_ReWrite, &dev->flags);
2927			set_bit(R5_LOCKED, &dev->flags);
2928			s.locked++;
2929		} else {
2930			/* let's read it back */
2931			set_bit(R5_Wantread, &dev->flags);
2932			set_bit(R5_LOCKED, &dev->flags);
2933			s.locked++;
2934		}
2935	}
2936
2937	/* Finish reconstruct operations initiated by the expansion process */
2938	if (sh->reconstruct_state == reconstruct_state_result) {
2939		sh->reconstruct_state = reconstruct_state_idle;
2940		clear_bit(STRIPE_EXPANDING, &sh->state);
2941		for (i = conf->raid_disks; i--; ) {
2942			set_bit(R5_Wantwrite, &sh->dev[i].flags);
2943			set_bit(R5_LOCKED, &sh->dev[i].flags);
2944			s.locked++;
2945		}
2946	}
2947
2948	if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
2949	    !sh->reconstruct_state) {
2950		/* Need to write out all blocks after computing parity */
2951		sh->disks = conf->raid_disks;
2952		stripe_set_idx(sh->sector, conf, 0, sh);
2953		schedule_reconstruction5(sh, &s, 1, 1);
2954	} else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
2955		clear_bit(STRIPE_EXPAND_READY, &sh->state);
2956		atomic_dec(&conf->reshape_stripes);
2957		wake_up(&conf->wait_for_overlap);
2958		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
2959	}
2960
2961	if (s.expanding && s.locked == 0 &&
2962	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
2963		handle_stripe_expansion(conf, sh, NULL);
2964
2965 unlock:
2966	spin_unlock(&sh->lock);
2967
2968	/* wait for this device to become unblocked */
2969	if (unlikely(blocked_rdev))
2970		md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);
2971
2972	if (s.ops_request)
2973		raid5_run_ops(sh, s.ops_request);
2974
2975	ops_run_io(sh, &s);
2976
2977	return_io(return_bi);
2978
2979	return blocked_rdev == NULL;
2980}
2981
2982static bool handle_stripe6(struct stripe_head *sh, struct page *tmp_page)
2983{
2984	raid5_conf_t *conf = sh->raid_conf;
2985	int disks = sh->disks;
2986	struct bio *return_bi = NULL;
2987	int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx;
2988	struct stripe_head_state s;
2989	struct r6_state r6s;
2990	struct r5dev *dev, *pdev, *qdev;
2991	mdk_rdev_t *blocked_rdev = NULL;
2992
2993	pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
2994		"pd_idx=%d, qd_idx=%d\n",
2995	       (unsigned long long)sh->sector, sh->state,
2996	       atomic_read(&sh->count), pd_idx, qd_idx);
2997	memset(&s, 0, sizeof(s));
2998
2999	spin_lock(&sh->lock);
3000	clear_bit(STRIPE_HANDLE, &sh->state);
3001	clear_bit(STRIPE_DELAYED, &sh->state);
3002
3003	s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
3004	s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3005	s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
3006	/* Now to look around and see what can be done */
3007
3008	rcu_read_lock();
3009	for (i=disks; i--; ) {
3010		mdk_rdev_t *rdev;
3011		dev = &sh->dev[i];
3012		clear_bit(R5_Insync, &dev->flags);
3013
3014		pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3015			i, dev->flags, dev->toread, dev->towrite, dev->written);
3016		/* maybe we can reply to a read */
3017		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread) {
3018			struct bio *rbi, *rbi2;
3019			pr_debug("Return read for disc %d\n", i);
3020			spin_lock_irq(&conf->device_lock);
3021			rbi = dev->toread;
3022			dev->toread = NULL;
3023			if (test_and_clear_bit(R5_Overlap, &dev->flags))
3024				wake_up(&conf->wait_for_overlap);
3025			spin_unlock_irq(&conf->device_lock);
3026			while (rbi && rbi->bi_sector < dev->sector + STRIPE_SECTORS) {
3027				copy_data(0, rbi, dev->page, dev->sector);
3028				rbi2 = r5_next_bio(rbi, dev->sector);
3029				spin_lock_irq(&conf->device_lock);
3030				if (!raid5_dec_bi_phys_segments(rbi)) {
3031					rbi->bi_next = return_bi;
3032					return_bi = rbi;
3033				}
3034				spin_unlock_irq(&conf->device_lock);
3035				rbi = rbi2;
3036			}
3037		}
3038
3039		/* now count some things */
3040		if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
3041		if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
3042
3043
3044		if (dev->toread)
3045			s.to_read++;
3046		if (dev->towrite) {
3047			s.to_write++;
3048			if (!test_bit(R5_OVERWRITE, &dev->flags))
3049				s.non_overwrite++;
3050		}
3051		if (dev->written)
3052			s.written++;
3053		rdev = rcu_dereference(conf->disks[i].rdev);
3054		if (blocked_rdev == NULL &&
3055		    rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
3056			blocked_rdev = rdev;
3057			atomic_inc(&rdev->nr_pending);
3058		}
3059		if (!rdev || !test_bit(In_sync, &rdev->flags)) {
3060			/* The ReadError flag will just be confusing now */
3061			clear_bit(R5_ReadError, &dev->flags);
3062			clear_bit(R5_ReWrite, &dev->flags);
3063		}
3064		if (!rdev || !test_bit(In_sync, &rdev->flags)
3065		    || test_bit(R5_ReadError, &dev->flags)) {
3066			if (s.failed < 2)
3067				r6s.failed_num[s.failed] = i;
3068			s.failed++;
3069		} else
3070			set_bit(R5_Insync, &dev->flags);
3071	}
3072	rcu_read_unlock();
3073
3074	if (unlikely(blocked_rdev)) {
3075		if (s.syncing || s.expanding || s.expanded ||
3076		    s.to_write || s.written) {
3077			set_bit(STRIPE_HANDLE, &sh->state);
3078			goto unlock;
3079		}
3080		/* There is nothing for the blocked_rdev to block */
3081		rdev_dec_pending(blocked_rdev, conf->mddev);
3082		blocked_rdev = NULL;
3083	}
3084
3085	pr_debug("locked=%d uptodate=%d to_read=%d"
3086	       " to_write=%d failed=%d failed_num=%d,%d\n",
3087	       s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
3088	       r6s.failed_num[0], r6s.failed_num[1]);
3089	/* check if the array has lost >2 devices and, if so, some requests
3090	 * might need to be failed
3091	 */
3092	if (s.failed > 2 && s.to_read+s.to_write+s.written)
3093		handle_failed_stripe(conf, sh, &s, disks, &return_bi);
3094	if (s.failed > 2 && s.syncing) {
3095		md_done_sync(conf->mddev, STRIPE_SECTORS,0);
3096		clear_bit(STRIPE_SYNCING, &sh->state);
3097		s.syncing = 0;
3098	}
3099
3100	/*
3101	 * might be able to return some write requests if the parity blocks
3102	 * are safe, or on a failed drive
3103	 */
3104	pdev = &sh->dev[pd_idx];
3105	r6s.p_failed = (s.failed >= 1 && r6s.failed_num[0] == pd_idx)
3106		|| (s.failed >= 2 && r6s.failed_num[1] == pd_idx);
3107	qdev = &sh->dev[qd_idx];
3108	r6s.q_failed = (s.failed >= 1 && r6s.failed_num[0] == qd_idx)
3109		|| (s.failed >= 2 && r6s.failed_num[1] == qd_idx);
3110
3111	if ( s.written &&
3112	     ( r6s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
3113			     && !test_bit(R5_LOCKED, &pdev->flags)
3114			     && test_bit(R5_UPTODATE, &pdev->flags)))) &&
3115	     ( r6s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3116			     && !test_bit(R5_LOCKED, &qdev->flags)
3117			     && test_bit(R5_UPTODATE, &qdev->flags)))))
3118		handle_stripe_clean_event(conf, sh, disks, &return_bi);
3119
3120	/* Now we might consider reading some blocks, either to check/generate
3121	 * parity, or to satisfy requests
3122	 * or to load a block that is being partially written.
3123	 */
3124	if (s.to_read || s.non_overwrite || (s.to_write && s.failed) ||
3125	    (s.syncing && (s.uptodate < disks)) || s.expanding)
3126		handle_stripe_fill6(sh, &s, &r6s, disks);
3127
3128	/* now to consider writing and what else, if anything should be read */
3129	if (s.to_write)
3130		handle_stripe_dirtying6(conf, sh, &s, &r6s, disks);
3131
3132	/* maybe we need to check and possibly fix the parity for this stripe
3133	 * Any reads will already have been scheduled, so we just see if enough
3134	 * data is available
3135	 */
3136	if (s.syncing && s.locked == 0 && !test_bit(STRIPE_INSYNC, &sh->state))
3137		handle_parity_checks6(conf, sh, &s, &r6s, tmp_page, disks);
3138
3139	if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
3140		md_done_sync(conf->mddev, STRIPE_SECTORS,1);
3141		clear_bit(STRIPE_SYNCING, &sh->state);
3142	}
3143
3144	/* If the failed drives are just a ReadError, then we might need
3145	 * to progress the repair/check process
3146	 */
3147	if (s.failed <= 2 && !conf->mddev->ro)
3148		for (i = 0; i < s.failed; i++) {
3149			dev = &sh->dev[r6s.failed_num[i]];
3150			if (test_bit(R5_ReadError, &dev->flags)
3151			    && !test_bit(R5_LOCKED, &dev->flags)
3152			    && test_bit(R5_UPTODATE, &dev->flags)
3153				) {
3154				if (!test_bit(R5_ReWrite, &dev->flags)) {
3155					set_bit(R5_Wantwrite, &dev->flags);
3156					set_bit(R5_ReWrite, &dev->flags);
3157					set_bit(R5_LOCKED, &dev->flags);
3158				} else {
3159					/* let's read it back */
3160					set_bit(R5_Wantread, &dev->flags);
3161					set_bit(R5_LOCKED, &dev->flags);
3162				}
3163			}
3164		}
3165
3166	if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state)) {
3167		/* Need to write out all blocks after computing P&Q */
3168		sh->disks = conf->raid_disks;
3169		stripe_set_idx(sh->sector, conf, 0, sh);
3170		compute_parity6(sh, RECONSTRUCT_WRITE);
3171		for (i = conf->raid_disks ; i-- ;  ) {
3172			set_bit(R5_LOCKED, &sh->dev[i].flags);
3173			s.locked++;
3174			set_bit(R5_Wantwrite, &sh->dev[i].flags);
3175		}
3176		clear_bit(STRIPE_EXPANDING, &sh->state);
3177	} else if (s.expanded) {
3178		clear_bit(STRIPE_EXPAND_READY, &sh->state);
3179		atomic_dec(&conf->reshape_stripes);
3180		wake_up(&conf->wait_for_overlap);
3181		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3182	}
3183
3184	if (s.expanding && s.locked == 0 &&
3185	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3186		handle_stripe_expansion(conf, sh, &r6s);
3187
3188 unlock:
3189	spin_unlock(&sh->lock);
3190
3191	/* wait for this device to become unblocked */
3192	if (unlikely(blocked_rdev))
3193		md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);
3194
3195	ops_run_io(sh, &s);
3196
3197	return_io(return_bi);
3198
3199	return blocked_rdev == NULL;
3200}
3201
3202/* returns true if the stripe was handled */
3203static bool handle_stripe(struct stripe_head *sh, struct page *tmp_page)
3204{
3205	if (sh->raid_conf->level == 6)
3206		return handle_stripe6(sh, tmp_page);
3207	else
3208		return handle_stripe5(sh);
3209}
3210
3211
3212
3213static void raid5_activate_delayed(raid5_conf_t *conf)
3214{
3215	if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
3216		while (!list_empty(&conf->delayed_list)) {
3217			struct list_head *l = conf->delayed_list.next;
3218			struct stripe_head *sh;
3219			sh = list_entry(l, struct stripe_head, lru);
3220			list_del_init(l);
3221			clear_bit(STRIPE_DELAYED, &sh->state);
3222			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3223				atomic_inc(&conf->preread_active_stripes);
3224			list_add_tail(&sh->lru, &conf->hold_list);
3225		}
3226	} else
3227		blk_plug_device(conf->mddev->queue);
3228}
3229
3230static void activate_bit_delay(raid5_conf_t *conf)
3231{
3232	/* device_lock is held */
3233	struct list_head head;
3234	list_add(&head, &conf->bitmap_list);
3235	list_del_init(&conf->bitmap_list);
3236	while (!list_empty(&head)) {
3237		struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
3238		list_del_init(&sh->lru);
3239		atomic_inc(&sh->count);
3240		__release_stripe(conf, sh);
3241	}
3242}
3243
3244static void unplug_slaves(mddev_t *mddev)
3245{
3246	raid5_conf_t *conf = mddev_to_conf(mddev);
3247	int i;
3248
3249	rcu_read_lock();
3250	for (i=0; i<mddev->raid_disks; i++) {
3251		mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
3252		if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
3253			struct request_queue *r_queue = bdev_get_queue(rdev->bdev);
3254
3255			atomic_inc(&rdev->nr_pending);
3256			rcu_read_unlock();
3257
3258			blk_unplug(r_queue);
3259
3260			rdev_dec_pending(rdev, mddev);
3261			rcu_read_lock();
3262		}
3263	}
3264	rcu_read_unlock();
3265}
3266
3267static void raid5_unplug_device(struct request_queue *q)
3268{
3269	mddev_t *mddev = q->queuedata;
3270	raid5_conf_t *conf = mddev_to_conf(mddev);
3271	unsigned long flags;
3272
3273	spin_lock_irqsave(&conf->device_lock, flags);
3274
3275	if (blk_remove_plug(q)) {
3276		conf->seq_flush++;
3277		raid5_activate_delayed(conf);
3278	}
3279	md_wakeup_thread(mddev->thread);
3280
3281	spin_unlock_irqrestore(&conf->device_lock, flags);
3282
3283	unplug_slaves(mddev);
3284}
3285
3286static int raid5_congested(void *data, int bits)
3287{
3288	mddev_t *mddev = data;
3289	raid5_conf_t *conf = mddev_to_conf(mddev);
3290
3291	/* No difference between reads and writes.  Just check
3292	 * how busy the stripe_cache is
3293	 */
3294	if (conf->inactive_blocked)
3295		return 1;
3296	if (conf->quiesce)
3297		return 1;
3298	if (list_empty_careful(&conf->inactive_list))
3299		return 1;
3300
3301	return 0;
3302}
3303
3304/* We want read requests to align with chunks where possible,
3305 * but write requests don't need to.
3306 */
3307static int raid5_mergeable_bvec(struct request_queue *q,
3308				struct bvec_merge_data *bvm,
3309				struct bio_vec *biovec)
3310{
3311	mddev_t *mddev = q->queuedata;
3312	sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
3313	int max;
3314	unsigned int chunk_sectors = mddev->chunk_size >> 9;
3315	unsigned int bio_sectors = bvm->bi_size >> 9;
3316
3317	if ((bvm->bi_rw & 1) == WRITE)
3318		return biovec->bv_len; /* always allow writes to be mergeable */
3319
3320	max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
3321	if (max < 0) max = 0;
3322	if (max <= biovec->bv_len && bio_sectors == 0)
3323		return biovec->bv_len;
3324	else
3325		return max;
3326}
3327
3328
3329static int in_chunk_boundary(mddev_t *mddev, struct bio *bio)
3330{
3331	sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3332	unsigned int chunk_sectors = mddev->chunk_size >> 9;
3333	unsigned int bio_sectors = bio->bi_size >> 9;
3334
3335	return  chunk_sectors >=
3336		((sector & (chunk_sectors - 1)) + bio_sectors);
3337}
3338
3339/*
3340 *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
3341 *  later sampled by raid5d.
3342 */
3343static void add_bio_to_retry(struct bio *bi,raid5_conf_t *conf)
3344{
3345	unsigned long flags;
3346
3347	spin_lock_irqsave(&conf->device_lock, flags);
3348
3349	bi->bi_next = conf->retry_read_aligned_list;
3350	conf->retry_read_aligned_list = bi;
3351
3352	spin_unlock_irqrestore(&conf->device_lock, flags);
3353	md_wakeup_thread(conf->mddev->thread);
3354}
3355
3356
3357static struct bio *remove_bio_from_retry(raid5_conf_t *conf)
3358{
3359	struct bio *bi;
3360
3361	bi = conf->retry_read_aligned;
3362	if (bi) {
3363		conf->retry_read_aligned = NULL;
3364		return bi;
3365	}
3366	bi = conf->retry_read_aligned_list;
3367	if(bi) {
3368		conf->retry_read_aligned_list = bi->bi_next;
3369		bi->bi_next = NULL;
3370		/*
3371		 * this sets the active strip count to 1 and the processed
3372		 * strip count to zero (upper 8 bits)
3373		 */
3374		bi->bi_phys_segments = 1; /* biased count of active stripes */
3375	}
3376
3377	return bi;
3378}
3379
3380
3381/*
3382 *  The "raid5_align_endio" should check if the read succeeded and if it
3383 *  did, call bio_endio on the original bio (having bio_put the new bio
3384 *  first).
3385 *  If the read failed..
3386 */
3387static void raid5_align_endio(struct bio *bi, int error)
3388{
3389	struct bio* raid_bi  = bi->bi_private;
3390	mddev_t *mddev;
3391	raid5_conf_t *conf;
3392	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3393	mdk_rdev_t *rdev;
3394
3395	bio_put(bi);
3396
3397	mddev = raid_bi->bi_bdev->bd_disk->queue->queuedata;
3398	conf = mddev_to_conf(mddev);
3399	rdev = (void*)raid_bi->bi_next;
3400	raid_bi->bi_next = NULL;
3401
3402	rdev_dec_pending(rdev, conf->mddev);
3403
3404	if (!error && uptodate) {
3405		bio_endio(raid_bi, 0);
3406		if (atomic_dec_and_test(&conf->active_aligned_reads))
3407			wake_up(&conf->wait_for_stripe);
3408		return;
3409	}
3410
3411
3412	pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3413
3414	add_bio_to_retry(raid_bi, conf);
3415}
3416
3417static int bio_fits_rdev(struct bio *bi)
3418{
3419	struct request_queue *q = bdev_get_queue(bi->bi_bdev);
3420
3421	if ((bi->bi_size>>9) > q->max_sectors)
3422		return 0;
3423	blk_recount_segments(q, bi);
3424	if (bi->bi_phys_segments > q->max_phys_segments)
3425		return 0;
3426
3427	if (q->merge_bvec_fn)
3428		/* it's too hard to apply the merge_bvec_fn at this stage,
3429		 * just just give up
3430		 */
3431		return 0;
3432
3433	return 1;
3434}
3435
3436
3437static int chunk_aligned_read(struct request_queue *q, struct bio * raid_bio)
3438{
3439	mddev_t *mddev = q->queuedata;
3440	raid5_conf_t *conf = mddev_to_conf(mddev);
3441	unsigned int dd_idx;
3442	struct bio* align_bi;
3443	mdk_rdev_t *rdev;
3444
3445	if (!in_chunk_boundary(mddev, raid_bio)) {
3446		pr_debug("chunk_aligned_read : non aligned\n");
3447		return 0;
3448	}
3449	/*
3450	 * use bio_clone to make a copy of the bio
3451	 */
3452	align_bi = bio_clone(raid_bio, GFP_NOIO);
3453	if (!align_bi)
3454		return 0;
3455	/*
3456	 *   set bi_end_io to a new function, and set bi_private to the
3457	 *     original bio.
3458	 */
3459	align_bi->bi_end_io  = raid5_align_endio;
3460	align_bi->bi_private = raid_bio;
3461	/*
3462	 *	compute position
3463	 */
3464	align_bi->bi_sector =  raid5_compute_sector(conf, raid_bio->bi_sector,
3465						    0,
3466						    &dd_idx, NULL);
3467
3468	rcu_read_lock();
3469	rdev = rcu_dereference(conf->disks[dd_idx].rdev);
3470	if (rdev && test_bit(In_sync, &rdev->flags)) {
3471		atomic_inc(&rdev->nr_pending);
3472		rcu_read_unlock();
3473		raid_bio->bi_next = (void*)rdev;
3474		align_bi->bi_bdev =  rdev->bdev;
3475		align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
3476		align_bi->bi_sector += rdev->data_offset;
3477
3478		if (!bio_fits_rdev(align_bi)) {
3479			/* too big in some way */
3480			bio_put(align_bi);
3481			rdev_dec_pending(rdev, mddev);
3482			return 0;
3483		}
3484
3485		spin_lock_irq(&conf->device_lock);
3486		wait_event_lock_irq(conf->wait_for_stripe,
3487				    conf->quiesce == 0,
3488				    conf->device_lock, /* nothing */);
3489		atomic_inc(&conf->active_aligned_reads);
3490		spin_unlock_irq(&conf->device_lock);
3491
3492		generic_make_request(align_bi);
3493		return 1;
3494	} else {
3495		rcu_read_unlock();
3496		bio_put(align_bi);
3497		return 0;
3498	}
3499}
3500
3501/* __get_priority_stripe - get the next stripe to process
3502 *
3503 * Full stripe writes are allowed to pass preread active stripes up until
3504 * the bypass_threshold is exceeded.  In general the bypass_count
3505 * increments when the handle_list is handled before the hold_list; however, it
3506 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
3507 * stripe with in flight i/o.  The bypass_count will be reset when the
3508 * head of the hold_list has changed, i.e. the head was promoted to the
3509 * handle_list.
3510 */
3511static struct stripe_head *__get_priority_stripe(raid5_conf_t *conf)
3512{
3513	struct stripe_head *sh;
3514
3515	pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
3516		  __func__,
3517		  list_empty(&conf->handle_list) ? "empty" : "busy",
3518		  list_empty(&conf->hold_list) ? "empty" : "busy",
3519		  atomic_read(&conf->pending_full_writes), conf->bypass_count);
3520
3521	if (!list_empty(&conf->handle_list)) {
3522		sh = list_entry(conf->handle_list.next, typeof(*sh), lru);
3523
3524		if (list_empty(&conf->hold_list))
3525			conf->bypass_count = 0;
3526		else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
3527			if (conf->hold_list.next == conf->last_hold)
3528				conf->bypass_count++;
3529			else {
3530				conf->last_hold = conf->hold_list.next;
3531				conf->bypass_count -= conf->bypass_threshold;
3532				if (conf->bypass_count < 0)
3533					conf->bypass_count = 0;
3534			}
3535		}
3536	} else if (!list_empty(&conf->hold_list) &&
3537		   ((conf->bypass_threshold &&
3538		     conf->bypass_count > conf->bypass_threshold) ||
3539		    atomic_read(&conf->pending_full_writes) == 0)) {
3540		sh = list_entry(conf->hold_list.next,
3541				typeof(*sh), lru);
3542		conf->bypass_count -= conf->bypass_threshold;
3543		if (conf->bypass_count < 0)
3544			conf->bypass_count = 0;
3545	} else
3546		return NULL;
3547
3548	list_del_init(&sh->lru);
3549	atomic_inc(&sh->count);
3550	BUG_ON(atomic_read(&sh->count) != 1);
3551	return sh;
3552}
3553
3554static int make_request(struct request_queue *q, struct bio * bi)
3555{
3556	mddev_t *mddev = q->queuedata;
3557	raid5_conf_t *conf = mddev_to_conf(mddev);
3558	int dd_idx;
3559	sector_t new_sector;
3560	sector_t logical_sector, last_sector;
3561	struct stripe_head *sh;
3562	const int rw = bio_data_dir(bi);
3563	int cpu, remaining;
3564
3565	if (unlikely(bio_barrier(bi))) {
3566		bio_endio(bi, -EOPNOTSUPP);
3567		return 0;
3568	}
3569
3570	md_write_start(mddev, bi);
3571
3572	cpu = part_stat_lock();
3573	part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
3574	part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw],
3575		      bio_sectors(bi));
3576	part_stat_unlock();
3577
3578	if (rw == READ &&
3579	     mddev->reshape_position == MaxSector &&
3580	     chunk_aligned_read(q,bi))
3581		return 0;
3582
3583	logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
3584	last_sector = bi->bi_sector + (bi->bi_size>>9);
3585	bi->bi_next = NULL;
3586	bi->bi_phys_segments = 1;	/* over-loaded to count active stripes */
3587
3588	for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
3589		DEFINE_WAIT(w);
3590		int disks, data_disks;
3591		int previous;
3592
3593	retry:
3594		previous = 0;
3595		prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
3596		if (likely(conf->reshape_progress == MaxSector))
3597			disks = conf->raid_disks;
3598		else {
3599			/* spinlock is needed as reshape_progress may be
3600			 * 64bit on a 32bit platform, and so it might be
3601			 * possible to see a half-updated value
3602			 * Ofcourse reshape_progress could change after
3603			 * the lock is dropped, so once we get a reference
3604			 * to the stripe that we think it is, we will have
3605			 * to check again.
3606			 */
3607			spin_lock_irq(&conf->device_lock);
3608			disks = conf->raid_disks;
3609			if (mddev->delta_disks < 0
3610			    ? logical_sector < conf->reshape_progress
3611			    : logical_sector >= conf->reshape_progress) {
3612				disks = conf->previous_raid_disks;
3613				previous = 1;
3614			} else {
3615				if (mddev->delta_disks < 0
3616				    ? logical_sector < conf->reshape_safe
3617				    : logical_sector >= conf->reshape_safe) {
3618					spin_unlock_irq(&conf->device_lock);
3619					schedule();
3620					goto retry;
3621				}
3622			}
3623			spin_unlock_irq(&conf->device_lock);
3624		}
3625		data_disks = disks - conf->max_degraded;
3626
3627		new_sector = raid5_compute_sector(conf, logical_sector,
3628						  previous,
3629						  &dd_idx, NULL);
3630		pr_debug("raid5: make_request, sector %llu logical %llu\n",
3631			(unsigned long long)new_sector,
3632			(unsigned long long)logical_sector);
3633
3634		sh = get_active_stripe(conf, new_sector, previous,
3635				       (bi->bi_rw&RWA_MASK));
3636		if (sh) {
3637			if (unlikely(conf->reshape_progress != MaxSector)) {
3638				/* expansion might have moved on while waiting for a
3639				 * stripe, so we must do the range check again.
3640				 * Expansion could still move past after this
3641				 * test, but as we are holding a reference to
3642				 * 'sh', we know that if that happens,
3643				 *  STRIPE_EXPANDING will get set and the expansion
3644				 * won't proceed until we finish with the stripe.
3645				 */
3646				int must_retry = 0;
3647				spin_lock_irq(&conf->device_lock);
3648				if ((mddev->delta_disks < 0
3649				     ? logical_sector >= conf->reshape_progress
3650				     : logical_sector < conf->reshape_progress)
3651				    && disks == conf->previous_raid_disks)
3652					/* mismatch, need to try again */
3653					must_retry = 1;
3654				spin_unlock_irq(&conf->device_lock);
3655				if (must_retry) {
3656					release_stripe(sh);
3657					goto retry;
3658				}
3659			}
3660			/* FIXME what if we get a false positive because these
3661			 * are being updated.
3662			 */
3663			if (logical_sector >= mddev->suspend_lo &&
3664			    logical_sector < mddev->suspend_hi) {
3665				release_stripe(sh);
3666				schedule();
3667				goto retry;
3668			}
3669
3670			if (test_bit(STRIPE_EXPANDING, &sh->state) ||
3671			    !add_stripe_bio(sh, bi, dd_idx, (bi->bi_rw&RW_MASK))) {
3672				/* Stripe is busy expanding or
3673				 * add failed due to overlap.  Flush everything
3674				 * and wait a while
3675				 */
3676				raid5_unplug_device(mddev->queue);
3677				release_stripe(sh);
3678				schedule();
3679				goto retry;
3680			}
3681			finish_wait(&conf->wait_for_overlap, &w);
3682			set_bit(STRIPE_HANDLE, &sh->state);
3683			clear_bit(STRIPE_DELAYED, &sh->state);
3684			release_stripe(sh);
3685		} else {
3686			/* cannot get stripe for read-ahead, just give-up */
3687			clear_bit(BIO_UPTODATE, &bi->bi_flags);
3688			finish_wait(&conf->wait_for_overlap, &w);
3689			break;
3690		}
3691
3692	}
3693	spin_lock_irq(&conf->device_lock);
3694	remaining = raid5_dec_bi_phys_segments(bi);
3695	spin_unlock_irq(&conf->device_lock);
3696	if (remaining == 0) {
3697
3698		if ( rw == WRITE )
3699			md_write_end(mddev);
3700
3701		bio_endio(bi, 0);
3702	}
3703	return 0;
3704}
3705
3706static sector_t raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks);
3707
3708static sector_t reshape_request(mddev_t *mddev, sector_t sector_nr, int *skipped)
3709{
3710	/* reshaping is quite different to recovery/resync so it is
3711	 * handled quite separately ... here.
3712	 *
3713	 * On each call to sync_request, we gather one chunk worth of
3714	 * destination stripes and flag them as expanding.
3715	 * Then we find all the source stripes and request reads.
3716	 * As the reads complete, handle_stripe will copy the data
3717	 * into the destination stripe and release that stripe.
3718	 */
3719	raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
3720	struct stripe_head *sh;
3721	sector_t first_sector, last_sector;
3722	int raid_disks = conf->previous_raid_disks;
3723	int data_disks = raid_disks - conf->max_degraded;
3724	int new_data_disks = conf->raid_disks - conf->max_degraded;
3725	int i;
3726	int dd_idx;
3727	sector_t writepos, safepos, gap;
3728	sector_t stripe_addr;
3729
3730	if (sector_nr == 0) {
3731		/* If restarting in the middle, skip the initial sectors */
3732		if (mddev->delta_disks < 0 &&
3733		    conf->reshape_progress < raid5_size(mddev, 0, 0)) {
3734			sector_nr = raid5_size(mddev, 0, 0)
3735				- conf->reshape_progress;
3736		} else if (mddev->delta_disks > 0 &&
3737			   conf->reshape_progress > 0)
3738			sector_nr = conf->reshape_progress;
3739		sector_div(sector_nr, new_data_disks);
3740		if (sector_nr) {
3741			*skipped = 1;
3742			return sector_nr;
3743		}
3744	}
3745
3746	/* we update the metadata when there is more than 3Meg
3747	 * in the block range (that is rather arbitrary, should
3748	 * probably be time based) or when the data about to be
3749	 * copied would over-write the source of the data at
3750	 * the front of the range.
3751	 * i.e. one new_stripe along from reshape_progress new_maps
3752	 * to after where reshape_safe old_maps to
3753	 */
3754	writepos = conf->reshape_progress;
3755	sector_div(writepos, new_data_disks);
3756	safepos = conf->reshape_safe;
3757	sector_div(safepos, data_disks);
3758	if (mddev->delta_disks < 0) {
3759		writepos -= conf->chunk_size/512;
3760		safepos += conf->chunk_size/512;
3761		gap = conf->reshape_safe - conf->reshape_progress;
3762	} else {
3763		writepos += conf->chunk_size/512;
3764		safepos -= conf->chunk_size/512;
3765		gap = conf->reshape_progress - conf->reshape_safe;
3766	}
3767
3768	if ((mddev->delta_disks < 0
3769	     ? writepos < safepos
3770	     : writepos > safepos) ||
3771	    gap > (new_data_disks)*3000*2 /*3Meg*/) {
3772		/* Cannot proceed until we've updated the superblock... */
3773		wait_event(conf->wait_for_overlap,
3774			   atomic_read(&conf->reshape_stripes)==0);
3775		mddev->reshape_position = conf->reshape_progress;
3776		set_bit(MD_CHANGE_DEVS, &mddev->flags);
3777		md_wakeup_thread(mddev->thread);
3778		wait_event(mddev->sb_wait, mddev->flags == 0 ||
3779			   kthread_should_stop());
3780		spin_lock_irq(&conf->device_lock);
3781		conf->reshape_safe = mddev->reshape_position;
3782		spin_unlock_irq(&conf->device_lock);
3783		wake_up(&conf->wait_for_overlap);
3784	}
3785
3786	if (mddev->delta_disks < 0) {
3787		BUG_ON(conf->reshape_progress == 0);
3788		stripe_addr = writepos;
3789		BUG_ON((mddev->dev_sectors &
3790			~((sector_t)mddev->chunk_size / 512 - 1))
3791		       - (conf->chunk_size / 512) - stripe_addr
3792		       != sector_nr);
3793	} else {
3794		BUG_ON(writepos != sector_nr + conf->chunk_size / 512);
3795		stripe_addr = sector_nr;
3796	}
3797	for (i=0; i < conf->chunk_size/512; i+= STRIPE_SECTORS) {
3798		int j;
3799		int skipped = 0;
3800		sh = get_active_stripe(conf, stripe_addr+i, 0, 0);
3801		set_bit(STRIPE_EXPANDING, &sh->state);
3802		atomic_inc(&conf->reshape_stripes);
3803		/* If any of this stripe is beyond the end of the old
3804		 * array, then we need to zero those blocks
3805		 */
3806		for (j=sh->disks; j--;) {
3807			sector_t s;
3808			if (j == sh->pd_idx)
3809				continue;
3810			if (conf->level == 6 &&
3811			    j == sh->qd_idx)
3812				continue;
3813			s = compute_blocknr(sh, j);
3814			if (s < raid5_size(mddev, 0, 0)) {
3815				skipped = 1;
3816				continue;
3817			}
3818			memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
3819			set_bit(R5_Expanded, &sh->dev[j].flags);
3820			set_bit(R5_UPTODATE, &sh->dev[j].flags);
3821		}
3822		if (!skipped) {
3823			set_bit(STRIPE_EXPAND_READY, &sh->state);
3824			set_bit(STRIPE_HANDLE, &sh->state);
3825		}
3826		release_stripe(sh);
3827	}
3828	spin_lock_irq(&conf->device_lock);
3829	if (mddev->delta_disks < 0)
3830		conf->reshape_progress -= i * new_data_disks;
3831	else
3832		conf->reshape_progress += i * new_data_disks;
3833	spin_unlock_irq(&conf->device_lock);
3834	/* Ok, those stripe are ready. We can start scheduling
3835	 * reads on the source stripes.
3836	 * The source stripes are determined by mapping the first and last
3837	 * block on the destination stripes.
3838	 */
3839	first_sector =
3840		raid5_compute_sector(conf, stripe_addr*(new_data_disks),
3841				     1, &dd_idx, NULL);
3842	last_sector =
3843		raid5_compute_sector(conf, ((stripe_addr+conf->chunk_size/512)
3844					    *(new_data_disks) - 1),
3845				     1, &dd_idx, NULL);
3846	if (last_sector >= mddev->dev_sectors)
3847		last_sector = mddev->dev_sectors - 1;
3848	while (first_sector <= last_sector) {
3849		sh = get_active_stripe(conf, first_sector, 1, 0);
3850		set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3851		set_bit(STRIPE_HANDLE, &sh->state);
3852		release_stripe(sh);
3853		first_sector += STRIPE_SECTORS;
3854	}
3855	/* If this takes us to the resync_max point where we have to pause,
3856	 * then we need to write out the superblock.
3857	 */
3858	sector_nr += conf->chunk_size>>9;
3859	if (sector_nr >= mddev->resync_max) {
3860		/* Cannot proceed until we've updated the superblock... */
3861		wait_event(conf->wait_for_overlap,
3862			   atomic_read(&conf->reshape_stripes) == 0);
3863		mddev->reshape_position = conf->reshape_progress;
3864		set_bit(MD_CHANGE_DEVS, &mddev->flags);
3865		md_wakeup_thread(mddev->thread);
3866		wait_event(mddev->sb_wait,
3867			   !test_bit(MD_CHANGE_DEVS, &mddev->flags)
3868			   || kthread_should_stop());
3869		spin_lock_irq(&conf->device_lock);
3870		conf->reshape_safe = mddev->reshape_position;
3871		spin_unlock_irq(&conf->device_lock);
3872		wake_up(&conf->wait_for_overlap);
3873	}
3874	return conf->chunk_size>>9;
3875}
3876
3877/* FIXME go_faster isn't used */
3878static inline sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
3879{
3880	raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
3881	struct stripe_head *sh;
3882	sector_t max_sector = mddev->dev_sectors;
3883	int sync_blocks;
3884	int still_degraded = 0;
3885	int i;
3886
3887	if (sector_nr >= max_sector) {
3888		/* just being told to finish up .. nothing much to do */
3889		unplug_slaves(mddev);
3890
3891		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
3892			end_reshape(conf);
3893			return 0;
3894		}
3895
3896		if (mddev->curr_resync < max_sector) /* aborted */
3897			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
3898					&sync_blocks, 1);
3899		else /* completed sync */
3900			conf->fullsync = 0;
3901		bitmap_close_sync(mddev->bitmap);
3902
3903		return 0;
3904	}
3905
3906	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3907		return reshape_request(mddev, sector_nr, skipped);
3908
3909	/* No need to check resync_max as we never do more than one
3910	 * stripe, and as resync_max will always be on a chunk boundary,
3911	 * if the check in md_do_sync didn't fire, there is no chance
3912	 * of overstepping resync_max here
3913	 */
3914
3915	/* if there is too many failed drives and we are trying
3916	 * to resync, then assert that we are finished, because there is
3917	 * nothing we can do.
3918	 */
3919	if (mddev->degraded >= conf->max_degraded &&
3920	    test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3921		sector_t rv = mddev->dev_sectors - sector_nr;
3922		*skipped = 1;
3923		return rv;
3924	}
3925	if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
3926	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
3927	    !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
3928		/* we can skip this block, and probably more */
3929		sync_blocks /= STRIPE_SECTORS;
3930		*skipped = 1;
3931		return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
3932	}
3933
3934
3935	bitmap_cond_end_sync(mddev->bitmap, sector_nr);
3936
3937	sh = get_active_stripe(conf, sector_nr, 0, 1);
3938	if (sh == NULL) {
3939		sh = get_active_stripe(conf, sector_nr, 0, 0);
3940		/* make sure we don't swamp the stripe cache if someone else
3941		 * is trying to get access
3942		 */
3943		schedule_timeout_uninterruptible(1);
3944	}
3945	/* Need to check if array will still be degraded after recovery/resync
3946	 * We don't need to check the 'failed' flag as when that gets set,
3947	 * recovery aborts.
3948	 */
3949	for (i=0; i<mddev->raid_disks; i++)
3950		if (conf->disks[i].rdev == NULL)
3951			still_degraded = 1;
3952
3953	bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
3954
3955	spin_lock(&sh->lock);
3956	set_bit(STRIPE_SYNCING, &sh->state);
3957	clear_bit(STRIPE_INSYNC, &sh->state);
3958	spin_unlock(&sh->lock);
3959
3960	/* wait for any blocked device to be handled */
3961	while(unlikely(!handle_stripe(sh, NULL)))
3962		;
3963	release_stripe(sh);
3964
3965	return STRIPE_SECTORS;
3966}
3967
3968static int  retry_aligned_read(raid5_conf_t *conf, struct bio *raid_bio)
3969{
3970	/* We may not be able to submit a whole bio at once as there
3971	 * may not be enough stripe_heads available.
3972	 * We cannot pre-allocate enough stripe_heads as we may need
3973	 * more than exist in the cache (if we allow ever large chunks).
3974	 * So we do one stripe head at a time and record in
3975	 * ->bi_hw_segments how many have been done.
3976	 *
3977	 * We *know* that this entire raid_bio is in one chunk, so
3978	 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
3979	 */
3980	struct stripe_head *sh;
3981	int dd_idx;
3982	sector_t sector, logical_sector, last_sector;
3983	int scnt = 0;
3984	int remaining;
3985	int handled = 0;
3986
3987	logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
3988	sector = raid5_compute_sector(conf, logical_sector,
3989				      0, &dd_idx, NULL);
3990	last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);
3991
3992	for (; logical_sector < last_sector;
3993	     logical_sector += STRIPE_SECTORS,
3994		     sector += STRIPE_SECTORS,
3995		     scnt++) {
3996
3997		if (scnt < raid5_bi_hw_segments(raid_bio))
3998			/* already done this stripe */
3999			continue;
4000
4001		sh = get_active_stripe(conf, sector, 0, 1);
4002
4003		if (!sh) {
4004			/* failed to get a stripe - must wait */
4005			raid5_set_bi_hw_segments(raid_bio, scnt);
4006			conf->retry_read_aligned = raid_bio;
4007			return handled;
4008		}
4009
4010		set_bit(R5_ReadError, &sh->dev[dd_idx].flags);
4011		if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
4012			release_stripe(sh);
4013			raid5_set_bi_hw_segments(raid_bio, scnt);
4014			conf->retry_read_aligned = raid_bio;
4015			return handled;
4016		}
4017
4018		handle_stripe(sh, NULL);
4019		release_stripe(sh);
4020		handled++;
4021	}
4022	spin_lock_irq(&conf->device_lock);
4023	remaining = raid5_dec_bi_phys_segments(raid_bio);
4024	spin_unlock_irq(&conf->device_lock);
4025	if (remaining == 0)
4026		bio_endio(raid_bio, 0);
4027	if (atomic_dec_and_test(&conf->active_aligned_reads))
4028		wake_up(&conf->wait_for_stripe);
4029	return handled;
4030}
4031
4032
4033
4034/*
4035 * This is our raid5 kernel thread.
4036 *
4037 * We scan the hash table for stripes which can be handled now.
4038 * During the scan, completed stripes are saved for us by the interrupt
4039 * handler, so that they will not have to wait for our next wakeup.
4040 */
4041static void raid5d(mddev_t *mddev)
4042{
4043	struct stripe_head *sh;
4044	raid5_conf_t *conf = mddev_to_conf(mddev);
4045	int handled;
4046
4047	pr_debug("+++ raid5d active\n");
4048
4049	md_check_recovery(mddev);
4050
4051	handled = 0;
4052	spin_lock_irq(&conf->device_lock);
4053	while (1) {
4054		struct bio *bio;
4055
4056		if (conf->seq_flush != conf->seq_write) {
4057			int seq = conf->seq_flush;
4058			spin_unlock_irq(&conf->device_lock);
4059			bitmap_unplug(mddev->bitmap);
4060			spin_lock_irq(&conf->device_lock);
4061			conf->seq_write = seq;
4062			activate_bit_delay(conf);
4063		}
4064
4065		while ((bio = remove_bio_from_retry(conf))) {
4066			int ok;
4067			spin_unlock_irq(&conf->device_lock);
4068			ok = retry_aligned_read(conf, bio);
4069			spin_lock_irq(&conf->device_lock);
4070			if (!ok)
4071				break;
4072			handled++;
4073		}
4074
4075		sh = __get_priority_stripe(conf);
4076
4077		if (!sh)
4078			break;
4079		spin_unlock_irq(&conf->device_lock);
4080
4081		handled++;
4082		handle_stripe(sh, conf->spare_page);
4083		release_stripe(sh);
4084
4085		spin_lock_irq(&conf->device_lock);
4086	}
4087	pr_debug("%d stripes handled\n", handled);
4088
4089	spin_unlock_irq(&conf->device_lock);
4090
4091	async_tx_issue_pending_all();
4092	unplug_slaves(mddev);
4093
4094	pr_debug("--- raid5d inactive\n");
4095}
4096
4097static ssize_t
4098raid5_show_stripe_cache_size(mddev_t *mddev, char *page)
4099{
4100	raid5_conf_t *conf = mddev_to_conf(mddev);
4101	if (conf)
4102		return sprintf(page, "%d\n", conf->max_nr_stripes);
4103	else
4104		return 0;
4105}
4106
4107static ssize_t
4108raid5_store_stripe_cache_size(mddev_t *mddev, const char *page, size_t len)
4109{
4110	raid5_conf_t *conf = mddev_to_conf(mddev);
4111	unsigned long new;
4112	int err;
4113
4114	if (len >= PAGE_SIZE)
4115		return -EINVAL;
4116	if (!conf)
4117		return -ENODEV;
4118
4119	if (strict_strtoul(page, 10, &new))
4120		return -EINVAL;
4121	if (new <= 16 || new > 32768)
4122		return -EINVAL;
4123	while (new < conf->max_nr_stripes) {
4124		if (drop_one_stripe(conf))
4125			conf->max_nr_stripes--;
4126		else
4127			break;
4128	}
4129	err = md_allow_write(mddev);
4130	if (err)
4131		return err;
4132	while (new > conf->max_nr_stripes) {
4133		if (grow_one_stripe(conf))
4134			conf->max_nr_stripes++;
4135		else break;
4136	}
4137	return len;
4138}
4139
4140static struct md_sysfs_entry
4141raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
4142				raid5_show_stripe_cache_size,
4143				raid5_store_stripe_cache_size);
4144
4145static ssize_t
4146raid5_show_preread_threshold(mddev_t *mddev, char *page)
4147{
4148	raid5_conf_t *conf = mddev_to_conf(mddev);
4149	if (conf)
4150		return sprintf(page, "%d\n", conf->bypass_threshold);
4151	else
4152		return 0;
4153}
4154
4155static ssize_t
4156raid5_store_preread_threshold(mddev_t *mddev, const char *page, size_t len)
4157{
4158	raid5_conf_t *conf = mddev_to_conf(mddev);
4159	unsigned long new;
4160	if (len >= PAGE_SIZE)
4161		return -EINVAL;
4162	if (!conf)
4163		return -ENODEV;
4164
4165	if (strict_strtoul(page, 10, &new))
4166		return -EINVAL;
4167	if (new > conf->max_nr_stripes)
4168		return -EINVAL;
4169	conf->bypass_threshold = new;
4170	return len;
4171}
4172
4173static struct md_sysfs_entry
4174raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
4175					S_IRUGO | S_IWUSR,
4176					raid5_show_preread_threshold,
4177					raid5_store_preread_threshold);
4178
4179static ssize_t
4180stripe_cache_active_show(mddev_t *mddev, char *page)
4181{
4182	raid5_conf_t *conf = mddev_to_conf(mddev);
4183	if (conf)
4184		return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
4185	else
4186		return 0;
4187}
4188
4189static struct md_sysfs_entry
4190raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
4191
4192static struct attribute *raid5_attrs[] =  {
4193	&raid5_stripecache_size.attr,
4194	&raid5_stripecache_active.attr,
4195	&raid5_preread_bypass_threshold.attr,
4196	NULL,
4197};
4198static struct attribute_group raid5_attrs_group = {
4199	.name = NULL,
4200	.attrs = raid5_attrs,
4201};
4202
4203static sector_t
4204raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks)
4205{
4206	raid5_conf_t *conf = mddev_to_conf(mddev);
4207
4208	if (!sectors)
4209		sectors = mddev->dev_sectors;
4210	if (!raid_disks) {
4211		/* size is defined by the smallest of previous and new size */
4212		if (conf->raid_disks < conf->previous_raid_disks)
4213			raid_disks = conf->raid_disks;
4214		else
4215			raid_disks = conf->previous_raid_disks;
4216	}
4217
4218	sectors &= ~((sector_t)mddev->chunk_size/512 - 1);
4219	return sectors * (raid_disks - conf->max_degraded);
4220}
4221
4222static raid5_conf_t *setup_conf(mddev_t *mddev)
4223{
4224	raid5_conf_t *conf;
4225	int raid_disk, memory;
4226	mdk_rdev_t *rdev;
4227	struct disk_info *disk;
4228
4229	if (mddev->new_level != 5
4230	    && mddev->new_level != 4
4231	    && mddev->new_level != 6) {
4232		printk(KERN_ERR "raid5: %s: raid level not set to 4/5/6 (%d)\n",
4233		       mdname(mddev), mddev->new_level);
4234		return ERR_PTR(-EIO);
4235	}
4236	if ((mddev->new_level == 5
4237	     && !algorithm_valid_raid5(mddev->new_layout)) ||
4238	    (mddev->new_level == 6
4239	     && !algorithm_valid_raid6(mddev->new_layout))) {
4240		printk(KERN_ERR "raid5: %s: layout %d not supported\n",
4241		       mdname(mddev), mddev->new_layout);
4242		return ERR_PTR(-EIO);
4243	}
4244	if (mddev->new_level == 6 && mddev->raid_disks < 4) {
4245		printk(KERN_ERR "raid6: not enough configured devices for %s (%d, minimum 4)\n",
4246		       mdname(mddev), mddev->raid_disks);
4247		return ERR_PTR(-EINVAL);
4248	}
4249
4250	if (!mddev->new_chunk || mddev->new_chunk % PAGE_SIZE) {
4251		printk(KERN_ERR "raid5: invalid chunk size %d for %s\n",
4252			mddev->new_chunk, mdname(mddev));
4253		return ERR_PTR(-EINVAL);
4254	}
4255
4256	conf = kzalloc(sizeof(raid5_conf_t), GFP_KERNEL);
4257	if (conf == NULL)
4258		goto abort;
4259
4260	conf->raid_disks = mddev->raid_disks;
4261	if (mddev->reshape_position == MaxSector)
4262		conf->previous_raid_disks = mddev->raid_disks;
4263	else
4264		conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
4265
4266	conf->disks = kzalloc(conf->raid_disks * sizeof(struct disk_info),
4267			      GFP_KERNEL);
4268	if (!conf->disks)
4269		goto abort;
4270
4271	conf->mddev = mddev;
4272
4273	if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
4274		goto abort;
4275
4276	if (mddev->new_level == 6) {
4277		conf->spare_page = alloc_page(GFP_KERNEL);
4278		if (!conf->spare_page)
4279			goto abort;
4280	}
4281	spin_lock_init(&conf->device_lock);
4282	init_waitqueue_head(&conf->wait_for_stripe);
4283	init_waitqueue_head(&conf->wait_for_overlap);
4284	INIT_LIST_HEAD(&conf->handle_list);
4285	INIT_LIST_HEAD(&conf->hold_list);
4286	INIT_LIST_HEAD(&conf->delayed_list);
4287	INIT_LIST_HEAD(&conf->bitmap_list);
4288	INIT_LIST_HEAD(&conf->inactive_list);
4289	atomic_set(&conf->active_stripes, 0);
4290	atomic_set(&conf->preread_active_stripes, 0);
4291	atomic_set(&conf->active_aligned_reads, 0);
4292	conf->bypass_threshold = BYPASS_THRESHOLD;
4293
4294	pr_debug("raid5: run(%s) called.\n", mdname(mddev));
4295
4296	list_for_each_entry(rdev, &mddev->disks, same_set) {
4297		raid_disk = rdev->raid_disk;
4298		if (raid_disk >= conf->raid_disks
4299		    || raid_disk < 0)
4300			continue;
4301		disk = conf->disks + raid_disk;
4302
4303		disk->rdev = rdev;
4304
4305		if (test_bit(In_sync, &rdev->flags)) {
4306			char b[BDEVNAME_SIZE];
4307			printk(KERN_INFO "raid5: device %s operational as raid"
4308				" disk %d\n", bdevname(rdev->bdev,b),
4309				raid_disk);
4310		} else
4311			/* Cannot rely on bitmap to complete recovery */
4312			conf->fullsync = 1;
4313	}
4314
4315	conf->chunk_size = mddev->new_chunk;
4316	conf->level = mddev->new_level;
4317	if (conf->level == 6)
4318		conf->max_degraded = 2;
4319	else
4320		conf->max_degraded = 1;
4321	conf->algorithm = mddev->new_layout;
4322	conf->max_nr_stripes = NR_STRIPES;
4323	conf->reshape_progress = mddev->reshape_position;
4324
4325	memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
4326		 conf->raid_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
4327	if (grow_stripes(conf, conf->max_nr_stripes)) {
4328		printk(KERN_ERR
4329			"raid5: couldn't allocate %dkB for buffers\n", memory);
4330		goto abort;
4331	} else
4332		printk(KERN_INFO "raid5: allocated %dkB for %s\n",
4333			memory, mdname(mddev));
4334
4335	conf->thread = md_register_thread(raid5d, mddev, "%s_raid5");
4336	if (!conf->thread) {
4337		printk(KERN_ERR
4338		       "raid5: couldn't allocate thread for %s\n",
4339		       mdname(mddev));
4340		goto abort;
4341	}
4342
4343	return conf;
4344
4345 abort:
4346	if (conf) {
4347		shrink_stripes(conf);
4348		safe_put_page(conf->spare_page);
4349		kfree(conf->disks);
4350		kfree(conf->stripe_hashtbl);
4351		kfree(conf);
4352		return ERR_PTR(-EIO);
4353	} else
4354		return ERR_PTR(-ENOMEM);
4355}
4356
4357static int run(mddev_t *mddev)
4358{
4359	raid5_conf_t *conf;
4360	int working_disks = 0;
4361	mdk_rdev_t *rdev;
4362
4363	if (mddev->reshape_position != MaxSector) {
4364		/* Check that we can continue the reshape.
4365		 * Currently only disks can change, it must
4366		 * increase, and we must be past the point where
4367		 * a stripe over-writes itself
4368		 */
4369		sector_t here_new, here_old;
4370		int old_disks;
4371		int max_degraded = (mddev->level == 6 ? 2 : 1);
4372
4373		if (mddev->new_level != mddev->level ||
4374		    mddev->new_layout != mddev->layout ||
4375		    mddev->new_chunk != mddev->chunk_size) {
4376			printk(KERN_ERR "raid5: %s: unsupported reshape "
4377			       "required - aborting.\n",
4378			       mdname(mddev));
4379			return -EINVAL;
4380		}
4381		old_disks = mddev->raid_disks - mddev->delta_disks;
4382		/* reshape_position must be on a new-stripe boundary, and one
4383		 * further up in new geometry must map after here in old
4384		 * geometry.
4385		 */
4386		here_new = mddev->reshape_position;
4387		if (sector_div(here_new, (mddev->chunk_size>>9)*
4388			       (mddev->raid_disks - max_degraded))) {
4389			printk(KERN_ERR "raid5: reshape_position not "
4390			       "on a stripe boundary\n");
4391			return -EINVAL;
4392		}
4393		/* here_new is the stripe we will write to */
4394		here_old = mddev->reshape_position;
4395		sector_div(here_old, (mddev->chunk_size>>9)*
4396			   (old_disks-max_degraded));
4397		/* here_old is the first stripe that we might need to read
4398		 * from */
4399		if (here_new >= here_old) {
4400			/* Reading from the same stripe as writing to - bad */
4401			printk(KERN_ERR "raid5: reshape_position too early for "
4402			       "auto-recovery - aborting.\n");
4403			return -EINVAL;
4404		}
4405		printk(KERN_INFO "raid5: reshape will continue\n");
4406		/* OK, we should be able to continue; */
4407	} else {
4408		BUG_ON(mddev->level != mddev->new_level);
4409		BUG_ON(mddev->layout != mddev->new_layout);
4410		BUG_ON(mddev->chunk_size != mddev->new_chunk);
4411		BUG_ON(mddev->delta_disks != 0);
4412	}
4413
4414	if (mddev->private == NULL)
4415		conf = setup_conf(mddev);
4416	else
4417		conf = mddev->private;
4418
4419	if (IS_ERR(conf))
4420		return PTR_ERR(conf);
4421
4422	mddev->thread = conf->thread;
4423	conf->thread = NULL;
4424	mddev->private = conf;
4425
4426	/*
4427	 * 0 for a fully functional array, 1 or 2 for a degraded array.
4428	 */
4429	list_for_each_entry(rdev, &mddev->disks, same_set)
4430		if (rdev->raid_disk >= 0 &&
4431		    test_bit(In_sync, &rdev->flags))
4432			working_disks++;
4433
4434	mddev->degraded = conf->raid_disks - working_disks;
4435
4436	if (mddev->degraded > conf->max_degraded) {
4437		printk(KERN_ERR "raid5: not enough operational devices for %s"
4438			" (%d/%d failed)\n",
4439			mdname(mddev), mddev->degraded, conf->raid_disks);
4440		goto abort;
4441	}
4442
4443	/* device size must be a multiple of chunk size */
4444	mddev->dev_sectors &= ~(mddev->chunk_size / 512 - 1);
4445	mddev->resync_max_sectors = mddev->dev_sectors;
4446
4447	if (mddev->degraded > 0 &&
4448	    mddev->recovery_cp != MaxSector) {
4449		if (mddev->ok_start_degraded)
4450			printk(KERN_WARNING
4451			       "raid5: starting dirty degraded array: %s"
4452			       "- data corruption possible.\n",
4453			       mdname(mddev));
4454		else {
4455			printk(KERN_ERR
4456			       "raid5: cannot start dirty degraded array for %s\n",
4457			       mdname(mddev));
4458			goto abort;
4459		}
4460	}
4461
4462	if (mddev->degraded == 0)
4463		printk("raid5: raid level %d set %s active with %d out of %d"
4464			" devices, algorithm %d\n", conf->level, mdname(mddev),
4465			mddev->raid_disks-mddev->degraded, mddev->raid_disks,
4466			conf->algorithm);
4467	else
4468		printk(KERN_ALERT "raid5: raid level %d set %s active with %d"
4469			" out of %d devices, algorithm %d\n", conf->level,
4470			mdname(mddev), mddev->raid_disks - mddev->degraded,
4471			mddev->raid_disks, conf->algorithm);
4472
4473	print_raid5_conf(conf);
4474
4475	if (conf->reshape_progress != MaxSector) {
4476		printk("...ok start reshape thread\n");
4477		conf->reshape_safe = conf->reshape_progress;
4478		atomic_set(&conf->reshape_stripes, 0);
4479		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4480		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4481		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4482		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4483		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4484							"%s_reshape");
4485	}
4486
4487	/* read-ahead size must cover two whole stripes, which is
4488	 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4489	 */
4490	{
4491		int data_disks = conf->previous_raid_disks - conf->max_degraded;
4492		int stripe = data_disks *
4493			(mddev->chunk_size / PAGE_SIZE);
4494		if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4495			mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4496	}
4497
4498	/* Ok, everything is just fine now */
4499	if (sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
4500		printk(KERN_WARNING
4501		       "raid5: failed to create sysfs attributes for %s\n",
4502		       mdname(mddev));
4503
4504	mddev->queue->queue_lock = &conf->device_lock;
4505
4506	mddev->queue->unplug_fn = raid5_unplug_device;
4507	mddev->queue->backing_dev_info.congested_data = mddev;
4508	mddev->queue->backing_dev_info.congested_fn = raid5_congested;
4509
4510	md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
4511
4512	blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
4513
4514	return 0;
4515abort:
4516	md_unregister_thread(mddev->thread);
4517	mddev->thread = NULL;
4518	if (conf) {
4519		shrink_stripes(conf);
4520		print_raid5_conf(conf);
4521		safe_put_page(conf->spare_page);
4522		kfree(conf->disks);
4523		kfree(conf->stripe_hashtbl);
4524		kfree(conf);
4525	}
4526	mddev->private = NULL;
4527	printk(KERN_ALERT "raid5: failed to run raid set %s\n", mdname(mddev));
4528	return -EIO;
4529}
4530
4531
4532
4533static int stop(mddev_t *mddev)
4534{
4535	raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
4536
4537	md_unregister_thread(mddev->thread);
4538	mddev->thread = NULL;
4539	shrink_stripes(conf);
4540	kfree(conf->stripe_hashtbl);
4541	mddev->queue->backing_dev_info.congested_fn = NULL;
4542	blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
4543	sysfs_remove_group(&mddev->kobj, &raid5_attrs_group);
4544	kfree(conf->disks);
4545	kfree(conf);
4546	mddev->private = NULL;
4547	return 0;
4548}
4549
4550#ifdef DEBUG
4551static void print_sh(struct seq_file *seq, struct stripe_head *sh)
4552{
4553	int i;
4554
4555	seq_printf(seq, "sh %llu, pd_idx %d, state %ld.\n",
4556		   (unsigned long long)sh->sector, sh->pd_idx, sh->state);
4557	seq_printf(seq, "sh %llu,  count %d.\n",
4558		   (unsigned long long)sh->sector, atomic_read(&sh->count));
4559	seq_printf(seq, "sh %llu, ", (unsigned long long)sh->sector);
4560	for (i = 0; i < sh->disks; i++) {
4561		seq_printf(seq, "(cache%d: %p %ld) ",
4562			   i, sh->dev[i].page, sh->dev[i].flags);
4563	}
4564	seq_printf(seq, "\n");
4565}
4566
4567static void printall(struct seq_file *seq, raid5_conf_t *conf)
4568{
4569	struct stripe_head *sh;
4570	struct hlist_node *hn;
4571	int i;
4572
4573	spin_lock_irq(&conf->device_lock);
4574	for (i = 0; i < NR_HASH; i++) {
4575		hlist_for_each_entry(sh, hn, &conf->stripe_hashtbl[i], hash) {
4576			if (sh->raid_conf != conf)
4577				continue;
4578			print_sh(seq, sh);
4579		}
4580	}
4581	spin_unlock_irq(&conf->device_lock);
4582}
4583#endif
4584
4585static void status(struct seq_file *seq, mddev_t *mddev)
4586{
4587	raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
4588	int i;
4589
4590	seq_printf (seq, " level %d, %dk chunk, algorithm %d", mddev->level, mddev->chunk_size >> 10, mddev->layout);
4591	seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
4592	for (i = 0; i < conf->raid_disks; i++)
4593		seq_printf (seq, "%s",
4594			       conf->disks[i].rdev &&
4595			       test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
4596	seq_printf (seq, "]");
4597#ifdef DEBUG
4598	seq_printf (seq, "\n");
4599	printall(seq, conf);
4600#endif
4601}
4602
4603static void print_raid5_conf (raid5_conf_t *conf)
4604{
4605	int i;
4606	struct disk_info *tmp;
4607
4608	printk("RAID5 conf printout:\n");
4609	if (!conf) {
4610		printk("(conf==NULL)\n");
4611		return;
4612	}
4613	printk(" --- rd:%d wd:%d\n", conf->raid_disks,
4614		 conf->raid_disks - conf->mddev->degraded);
4615
4616	for (i = 0; i < conf->raid_disks; i++) {
4617		char b[BDEVNAME_SIZE];
4618		tmp = conf->disks + i;
4619		if (tmp->rdev)
4620		printk(" disk %d, o:%d, dev:%s\n",
4621			i, !test_bit(Faulty, &tmp->rdev->flags),
4622			bdevname(tmp->rdev->bdev,b));
4623	}
4624}
4625
4626static int raid5_spare_active(mddev_t *mddev)
4627{
4628	int i;
4629	raid5_conf_t *conf = mddev->private;
4630	struct disk_info *tmp;
4631
4632	for (i = 0; i < conf->raid_disks; i++) {
4633		tmp = conf->disks + i;
4634		if (tmp->rdev
4635		    && !test_bit(Faulty, &tmp->rdev->flags)
4636		    && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
4637			unsigned long flags;
4638			spin_lock_irqsave(&conf->device_lock, flags);
4639			mddev->degraded--;
4640			spin_unlock_irqrestore(&conf->device_lock, flags);
4641		}
4642	}
4643	print_raid5_conf(conf);
4644	return 0;
4645}
4646
4647static int raid5_remove_disk(mddev_t *mddev, int number)
4648{
4649	raid5_conf_t *conf = mddev->private;
4650	int err = 0;
4651	mdk_rdev_t *rdev;
4652	struct disk_info *p = conf->disks + number;
4653
4654	print_raid5_conf(conf);
4655	rdev = p->rdev;
4656	if (rdev) {
4657		if (number >= conf->raid_disks &&
4658		    conf->reshape_progress == MaxSector)
4659			clear_bit(In_sync, &rdev->flags);
4660
4661		if (test_bit(In_sync, &rdev->flags) ||
4662		    atomic_read(&rdev->nr_pending)) {
4663			err = -EBUSY;
4664			goto abort;
4665		}
4666		/* Only remove non-faulty devices if recovery
4667		 * isn't possible.
4668		 */
4669		if (!test_bit(Faulty, &rdev->flags) &&
4670		    mddev->degraded <= conf->max_degraded &&
4671		    number < conf->raid_disks) {
4672			err = -EBUSY;
4673			goto abort;
4674		}
4675		p->rdev = NULL;
4676		synchronize_rcu();
4677		if (atomic_read(&rdev->nr_pending)) {
4678			/* lost the race, try later */
4679			err = -EBUSY;
4680			p->rdev = rdev;
4681		}
4682	}
4683abort:
4684
4685	print_raid5_conf(conf);
4686	return err;
4687}
4688
4689static int raid5_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
4690{
4691	raid5_conf_t *conf = mddev->private;
4692	int err = -EEXIST;
4693	int disk;
4694	struct disk_info *p;
4695	int first = 0;
4696	int last = conf->raid_disks - 1;
4697
4698	if (mddev->degraded > conf->max_degraded)
4699		/* no point adding a device */
4700		return -EINVAL;
4701
4702	if (rdev->raid_disk >= 0)
4703		first = last = rdev->raid_disk;
4704
4705	/*
4706	 * find the disk ... but prefer rdev->saved_raid_disk
4707	 * if possible.
4708	 */
4709	if (rdev->saved_raid_disk >= 0 &&
4710	    rdev->saved_raid_disk >= first &&
4711	    conf->disks[rdev->saved_raid_disk].rdev == NULL)
4712		disk = rdev->saved_raid_disk;
4713	else
4714		disk = first;
4715	for ( ; disk <= last ; disk++)
4716		if ((p=conf->disks + disk)->rdev == NULL) {
4717			clear_bit(In_sync, &rdev->flags);
4718			rdev->raid_disk = disk;
4719			err = 0;
4720			if (rdev->saved_raid_disk != disk)
4721				conf->fullsync = 1;
4722			rcu_assign_pointer(p->rdev, rdev);
4723			break;
4724		}
4725	print_raid5_conf(conf);
4726	return err;
4727}
4728
4729static int raid5_resize(mddev_t *mddev, sector_t sectors)
4730{
4731	/* no resync is happening, and there is enough space
4732	 * on all devices, so we can resize.
4733	 * We need to make sure resync covers any new space.
4734	 * If the array is shrinking we should possibly wait until
4735	 * any io in the removed space completes, but it hardly seems
4736	 * worth it.
4737	 */
4738	sectors &= ~((sector_t)mddev->chunk_size/512 - 1);
4739	md_set_array_sectors(mddev, raid5_size(mddev, sectors,
4740					       mddev->raid_disks));
4741	if (mddev->array_sectors >
4742	    raid5_size(mddev, sectors, mddev->raid_disks))
4743		return -EINVAL;
4744	set_capacity(mddev->gendisk, mddev->array_sectors);
4745	mddev->changed = 1;
4746	if (sectors > mddev->dev_sectors && mddev->recovery_cp == MaxSector) {
4747		mddev->recovery_cp = mddev->dev_sectors;
4748		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4749	}
4750	mddev->dev_sectors = sectors;
4751	mddev->resync_max_sectors = sectors;
4752	return 0;
4753}
4754
4755#ifdef CONFIG_MD_RAID5_RESHAPE
4756static int raid5_check_reshape(mddev_t *mddev)
4757{
4758	raid5_conf_t *conf = mddev_to_conf(mddev);
4759
4760	if (mddev->delta_disks == 0)
4761		return 0; /* nothing to do */
4762	if (mddev->bitmap)
4763		/* Cannot grow a bitmap yet */
4764		return -EBUSY;
4765	if (mddev->degraded > conf->max_degraded)
4766		return -EINVAL;
4767	if (mddev->delta_disks < 0) {
4768		/* We might be able to shrink, but the devices must
4769		 * be made bigger first.
4770		 * For raid6, 4 is the minimum size.
4771		 * Otherwise 2 is the minimum
4772		 */
4773		int min = 2;
4774		if (mddev->level == 6)
4775			min = 4;
4776		if (mddev->raid_disks + mddev->delta_disks < min)
4777			return -EINVAL;
4778	}
4779
4780	/* Can only proceed if there are plenty of stripe_heads.
4781	 * We need a minimum of one full stripe,, and for sensible progress
4782	 * it is best to have about 4 times that.
4783	 * If we require 4 times, then the default 256 4K stripe_heads will
4784	 * allow for chunk sizes up to 256K, which is probably OK.
4785	 * If the chunk size is greater, user-space should request more
4786	 * stripe_heads first.
4787	 */
4788	if ((mddev->chunk_size / STRIPE_SIZE) * 4 > conf->max_nr_stripes ||
4789	    (mddev->new_chunk / STRIPE_SIZE) * 4 > conf->max_nr_stripes) {
4790		printk(KERN_WARNING "raid5: reshape: not enough stripes.  Needed %lu\n",
4791		       (mddev->chunk_size / STRIPE_SIZE)*4);
4792		return -ENOSPC;
4793	}
4794
4795	return resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
4796}
4797
4798static int raid5_start_reshape(mddev_t *mddev)
4799{
4800	raid5_conf_t *conf = mddev_to_conf(mddev);
4801	mdk_rdev_t *rdev;
4802	int spares = 0;
4803	int added_devices = 0;
4804	unsigned long flags;
4805
4806	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4807		return -EBUSY;
4808
4809	list_for_each_entry(rdev, &mddev->disks, same_set)
4810		if (rdev->raid_disk < 0 &&
4811		    !test_bit(Faulty, &rdev->flags))
4812			spares++;
4813
4814	if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
4815		/* Not enough devices even to make a degraded array
4816		 * of that size
4817		 */
4818		return -EINVAL;
4819
4820	/* Refuse to reduce size of the array.  Any reductions in
4821	 * array size must be through explicit setting of array_size
4822	 * attribute.
4823	 */
4824	if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
4825	    < mddev->array_sectors) {
4826		printk(KERN_ERR "md: %s: array size must be reduced "
4827		       "before number of disks\n", mdname(mddev));
4828		return -EINVAL;
4829	}
4830
4831	atomic_set(&conf->reshape_stripes, 0);
4832	spin_lock_irq(&conf->device_lock);
4833	conf->previous_raid_disks = conf->raid_disks;
4834	conf->raid_disks += mddev->delta_disks;
4835	if (mddev->delta_disks < 0)
4836		conf->reshape_progress = raid5_size(mddev, 0, 0);
4837	else
4838		conf->reshape_progress = 0;
4839	conf->reshape_safe = conf->reshape_progress;
4840	spin_unlock_irq(&conf->device_lock);
4841
4842	/* Add some new drives, as many as will fit.
4843	 * We know there are enough to make the newly sized array work.
4844	 */
4845	list_for_each_entry(rdev, &mddev->disks, same_set)
4846		if (rdev->raid_disk < 0 &&
4847		    !test_bit(Faulty, &rdev->flags)) {
4848			if (raid5_add_disk(mddev, rdev) == 0) {
4849				char nm[20];
4850				set_bit(In_sync, &rdev->flags);
4851				added_devices++;
4852				rdev->recovery_offset = 0;
4853				sprintf(nm, "rd%d", rdev->raid_disk);
4854				if (sysfs_create_link(&mddev->kobj,
4855						      &rdev->kobj, nm))
4856					printk(KERN_WARNING
4857					       "raid5: failed to create "
4858					       " link %s for %s\n",
4859					       nm, mdname(mddev));
4860			} else
4861				break;
4862		}
4863
4864	if (mddev->delta_disks > 0) {
4865		spin_lock_irqsave(&conf->device_lock, flags);
4866		mddev->degraded = (conf->raid_disks - conf->previous_raid_disks)
4867			- added_devices;
4868		spin_unlock_irqrestore(&conf->device_lock, flags);
4869	}
4870	mddev->raid_disks = conf->raid_disks;
4871	mddev->reshape_position = 0;
4872	set_bit(MD_CHANGE_DEVS, &mddev->flags);
4873
4874	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4875	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4876	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4877	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4878	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4879						"%s_reshape");
4880	if (!mddev->sync_thread) {
4881		mddev->recovery = 0;
4882		spin_lock_irq(&conf->device_lock);
4883		mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
4884		conf->reshape_progress = MaxSector;
4885		spin_unlock_irq(&conf->device_lock);
4886		return -EAGAIN;
4887	}
4888	md_wakeup_thread(mddev->sync_thread);
4889	md_new_event(mddev);
4890	return 0;
4891}
4892#endif
4893
4894/* This is called from the reshape thread and should make any
4895 * changes needed in 'conf'
4896 */
4897static void end_reshape(raid5_conf_t *conf)
4898{
4899
4900	if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
4901
4902		spin_lock_irq(&conf->device_lock);
4903		conf->previous_raid_disks = conf->raid_disks;
4904		conf->reshape_progress = MaxSector;
4905		spin_unlock_irq(&conf->device_lock);
4906
4907		/* read-ahead size must cover two whole stripes, which is
4908		 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4909		 */
4910		{
4911			int data_disks = conf->raid_disks - conf->max_degraded;
4912			int stripe = data_disks * (conf->chunk_size
4913						   / PAGE_SIZE);
4914			if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4915				conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4916		}
4917	}
4918}
4919
4920/* This is called from the raid5d thread with mddev_lock held.
4921 * It makes config changes to the device.
4922 */
4923static void raid5_finish_reshape(mddev_t *mddev)
4924{
4925	struct block_device *bdev;
4926
4927	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4928
4929		if (mddev->delta_disks > 0) {
4930			md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
4931			set_capacity(mddev->gendisk, mddev->array_sectors);
4932			mddev->changed = 1;
4933
4934			bdev = bdget_disk(mddev->gendisk, 0);
4935			if (bdev) {
4936				mutex_lock(&bdev->bd_inode->i_mutex);
4937				i_size_write(bdev->bd_inode,
4938					     (loff_t)mddev->array_sectors << 9);
4939				mutex_unlock(&bdev->bd_inode->i_mutex);
4940				bdput(bdev);
4941			}
4942		} else {
4943			int d;
4944			raid5_conf_t *conf = mddev_to_conf(mddev);
4945			mddev->degraded = conf->raid_disks;
4946			for (d = 0; d < conf->raid_disks ; d++)
4947				if (conf->disks[d].rdev &&
4948				    test_bit(In_sync,
4949					     &conf->disks[d].rdev->flags))
4950					mddev->degraded--;
4951			for (d = conf->raid_disks ;
4952			     d < conf->raid_disks - mddev->delta_disks;
4953			     d++)
4954				raid5_remove_disk(mddev, d);
4955		}
4956		mddev->reshape_position = MaxSector;
4957		mddev->delta_disks = 0;
4958	}
4959}
4960
4961static void raid5_quiesce(mddev_t *mddev, int state)
4962{
4963	raid5_conf_t *conf = mddev_to_conf(mddev);
4964
4965	switch(state) {
4966	case 2: /* resume for a suspend */
4967		wake_up(&conf->wait_for_overlap);
4968		break;
4969
4970	case 1: /* stop all writes */
4971		spin_lock_irq(&conf->device_lock);
4972		conf->quiesce = 1;
4973		wait_event_lock_irq(conf->wait_for_stripe,
4974				    atomic_read(&conf->active_stripes) == 0 &&
4975				    atomic_read(&conf->active_aligned_reads) == 0,
4976				    conf->device_lock, /* nothing */);
4977		spin_unlock_irq(&conf->device_lock);
4978		break;
4979
4980	case 0: /* re-enable writes */
4981		spin_lock_irq(&conf->device_lock);
4982		conf->quiesce = 0;
4983		wake_up(&conf->wait_for_stripe);
4984		wake_up(&conf->wait_for_overlap);
4985		spin_unlock_irq(&conf->device_lock);
4986		break;
4987	}
4988}
4989
4990
4991static void *raid5_takeover_raid1(mddev_t *mddev)
4992{
4993	int chunksect;
4994
4995	if (mddev->raid_disks != 2 ||
4996	    mddev->degraded > 1)
4997		return ERR_PTR(-EINVAL);
4998
4999	/* Should check if there are write-behind devices? */
5000
5001	chunksect = 64*2; /* 64K by default */
5002
5003	/* The array must be an exact multiple of chunksize */
5004	while (chunksect && (mddev->array_sectors & (chunksect-1)))
5005		chunksect >>= 1;
5006
5007	if ((chunksect<<9) < STRIPE_SIZE)
5008		/* array size does not allow a suitable chunk size */
5009		return ERR_PTR(-EINVAL);
5010
5011	mddev->new_level = 5;
5012	mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
5013	mddev->new_chunk = chunksect << 9;
5014
5015	return setup_conf(mddev);
5016}
5017
5018static void *raid5_takeover_raid6(mddev_t *mddev)
5019{
5020	int new_layout;
5021
5022	switch (mddev->layout) {
5023	case ALGORITHM_LEFT_ASYMMETRIC_6:
5024		new_layout = ALGORITHM_LEFT_ASYMMETRIC;
5025		break;
5026	case ALGORITHM_RIGHT_ASYMMETRIC_6:
5027		new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
5028		break;
5029	case ALGORITHM_LEFT_SYMMETRIC_6:
5030		new_layout = ALGORITHM_LEFT_SYMMETRIC;
5031		break;
5032	case ALGORITHM_RIGHT_SYMMETRIC_6:
5033		new_layout = ALGORITHM_RIGHT_SYMMETRIC;
5034		break;
5035	case ALGORITHM_PARITY_0_6:
5036		new_layout = ALGORITHM_PARITY_0;
5037		break;
5038	case ALGORITHM_PARITY_N:
5039		new_layout = ALGORITHM_PARITY_N;
5040		break;
5041	default:
5042		return ERR_PTR(-EINVAL);
5043	}
5044	mddev->new_level = 5;
5045	mddev->new_layout = new_layout;
5046	mddev->delta_disks = -1;
5047	mddev->raid_disks -= 1;
5048	return setup_conf(mddev);
5049}
5050
5051
5052static int raid5_reconfig(mddev_t *mddev, int new_layout, int new_chunk)
5053{
5054	/* Currently the layout and chunk size can only be changed
5055	 * for a 2-drive raid array, as in that case no data shuffling
5056	 * is required.
5057	 * Later we might validate these and set new_* so a reshape
5058	 * can complete the change.
5059	 */
5060	raid5_conf_t *conf = mddev_to_conf(mddev);
5061
5062	if (new_layout >= 0 && !algorithm_valid_raid5(new_layout))
5063		return -EINVAL;
5064	if (new_chunk > 0) {
5065		if (new_chunk & (new_chunk-1))
5066			/* not a power of 2 */
5067			return -EINVAL;
5068		if (new_chunk < PAGE_SIZE)
5069			return -EINVAL;
5070		if (mddev->array_sectors & ((new_chunk>>9)-1))
5071			/* not factor of array size */
5072			return -EINVAL;
5073	}
5074
5075	/* They look valid */
5076
5077	if (mddev->raid_disks != 2)
5078		return -EINVAL;
5079
5080	if (new_layout >= 0) {
5081		conf->algorithm = new_layout;
5082		mddev->layout = mddev->new_layout = new_layout;
5083	}
5084	if (new_chunk > 0) {
5085		conf->chunk_size = new_chunk;
5086		mddev->chunk_size = mddev->new_chunk = new_chunk;
5087	}
5088	set_bit(MD_CHANGE_DEVS, &mddev->flags);
5089	md_wakeup_thread(mddev->thread);
5090	return 0;
5091}
5092
5093static void *raid5_takeover(mddev_t *mddev)
5094{
5095	/* raid5 can take over:
5096	 *  raid0 - if all devices are the same - make it a raid4 layout
5097	 *  raid1 - if there are two drives.  We need to know the chunk size
5098	 *  raid4 - trivial - just use a raid4 layout.
5099	 *  raid6 - Providing it is a *_6 layout
5100	 *
5101	 * For now, just do raid1
5102	 */
5103
5104	if (mddev->level == 1)
5105		return raid5_takeover_raid1(mddev);
5106	if (mddev->level == 4) {
5107		mddev->new_layout = ALGORITHM_PARITY_N;
5108		mddev->new_level = 5;
5109		return setup_conf(mddev);
5110	}
5111	if (mddev->level == 6)
5112		return raid5_takeover_raid6(mddev);
5113
5114	return ERR_PTR(-EINVAL);
5115}
5116
5117
5118static struct mdk_personality raid5_personality;
5119
5120static void *raid6_takeover(mddev_t *mddev)
5121{
5122	/* Currently can only take over a raid5.  We map the
5123	 * personality to an equivalent raid6 personality
5124	 * with the Q block at the end.
5125	 */
5126	int new_layout;
5127
5128	if (mddev->pers != &raid5_personality)
5129		return ERR_PTR(-EINVAL);
5130	if (mddev->degraded > 1)
5131		return ERR_PTR(-EINVAL);
5132	if (mddev->raid_disks > 253)
5133		return ERR_PTR(-EINVAL);
5134	if (mddev->raid_disks < 3)
5135		return ERR_PTR(-EINVAL);
5136
5137	switch (mddev->layout) {
5138	case ALGORITHM_LEFT_ASYMMETRIC:
5139		new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
5140		break;
5141	case ALGORITHM_RIGHT_ASYMMETRIC:
5142		new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
5143		break;
5144	case ALGORITHM_LEFT_SYMMETRIC:
5145		new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
5146		break;
5147	case ALGORITHM_RIGHT_SYMMETRIC:
5148		new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
5149		break;
5150	case ALGORITHM_PARITY_0:
5151		new_layout = ALGORITHM_PARITY_0_6;
5152		break;
5153	case ALGORITHM_PARITY_N:
5154		new_layout = ALGORITHM_PARITY_N;
5155		break;
5156	default:
5157		return ERR_PTR(-EINVAL);
5158	}
5159	mddev->new_level = 6;
5160	mddev->new_layout = new_layout;
5161	mddev->delta_disks = 1;
5162	mddev->raid_disks += 1;
5163	return setup_conf(mddev);
5164}
5165
5166
5167static struct mdk_personality raid6_personality =
5168{
5169	.name		= "raid6",
5170	.level		= 6,
5171	.owner		= THIS_MODULE,
5172	.make_request	= make_request,
5173	.run		= run,
5174	.stop		= stop,
5175	.status		= status,
5176	.error_handler	= error,
5177	.hot_add_disk	= raid5_add_disk,
5178	.hot_remove_disk= raid5_remove_disk,
5179	.spare_active	= raid5_spare_active,
5180	.sync_request	= sync_request,
5181	.resize		= raid5_resize,
5182	.size		= raid5_size,
5183#ifdef CONFIG_MD_RAID5_RESHAPE
5184	.check_reshape	= raid5_check_reshape,
5185	.start_reshape  = raid5_start_reshape,
5186	.finish_reshape = raid5_finish_reshape,
5187#endif
5188	.quiesce	= raid5_quiesce,
5189	.takeover	= raid6_takeover,
5190};
5191static struct mdk_personality raid5_personality =
5192{
5193	.name		= "raid5",
5194	.level		= 5,
5195	.owner		= THIS_MODULE,
5196	.make_request	= make_request,
5197	.run		= run,
5198	.stop		= stop,
5199	.status		= status,
5200	.error_handler	= error,
5201	.hot_add_disk	= raid5_add_disk,
5202	.hot_remove_disk= raid5_remove_disk,
5203	.spare_active	= raid5_spare_active,
5204	.sync_request	= sync_request,
5205	.resize		= raid5_resize,
5206	.size		= raid5_size,
5207#ifdef CONFIG_MD_RAID5_RESHAPE
5208	.check_reshape	= raid5_check_reshape,
5209	.start_reshape  = raid5_start_reshape,
5210	.finish_reshape = raid5_finish_reshape,
5211#endif
5212	.quiesce	= raid5_quiesce,
5213	.takeover	= raid5_takeover,
5214	.reconfig	= raid5_reconfig,
5215};
5216
5217static struct mdk_personality raid4_personality =
5218{
5219	.name		= "raid4",
5220	.level		= 4,
5221	.owner		= THIS_MODULE,
5222	.make_request	= make_request,
5223	.run		= run,
5224	.stop		= stop,
5225	.status		= status,
5226	.error_handler	= error,
5227	.hot_add_disk	= raid5_add_disk,
5228	.hot_remove_disk= raid5_remove_disk,
5229	.spare_active	= raid5_spare_active,
5230	.sync_request	= sync_request,
5231	.resize		= raid5_resize,
5232	.size		= raid5_size,
5233#ifdef CONFIG_MD_RAID5_RESHAPE
5234	.check_reshape	= raid5_check_reshape,
5235	.start_reshape  = raid5_start_reshape,
5236	.finish_reshape = raid5_finish_reshape,
5237#endif
5238	.quiesce	= raid5_quiesce,
5239};
5240
5241static int __init raid5_init(void)
5242{
5243	register_md_personality(&raid6_personality);
5244	register_md_personality(&raid5_personality);
5245	register_md_personality(&raid4_personality);
5246	return 0;
5247}
5248
5249static void raid5_exit(void)
5250{
5251	unregister_md_personality(&raid6_personality);
5252	unregister_md_personality(&raid5_personality);
5253	unregister_md_personality(&raid4_personality);
5254}
5255
5256module_init(raid5_init);
5257module_exit(raid5_exit);
5258MODULE_LICENSE("GPL");
5259MODULE_ALIAS("md-personality-4"); /* RAID5 */
5260MODULE_ALIAS("md-raid5");
5261MODULE_ALIAS("md-raid4");
5262MODULE_ALIAS("md-level-5");
5263MODULE_ALIAS("md-level-4");
5264MODULE_ALIAS("md-personality-8"); /* RAID6 */
5265MODULE_ALIAS("md-raid6");
5266MODULE_ALIAS("md-level-6");
5267
5268/* This used to be two separate modules, they were: */
5269MODULE_ALIAS("raid5");
5270MODULE_ALIAS("raid6");
5271