mb86a16.c revision b05c90de08b582172b8f63dd751ac0a1aee421e9
1/*
2	Fujitsu MB86A16 DVB-S/DSS DC Receiver driver
3
4	Copyright (C) 2005, 2006 Manu Abraham (abraham.manu@gmail.com)
5
6	This program is free software; you can redistribute it and/or modify
7	it under the terms of the GNU General Public License as published by
8	the Free Software Foundation; either version 2 of the License, or
9	(at your option) any later version.
10
11	This program is distributed in the hope that it will be useful,
12	but WITHOUT ANY WARRANTY; without even the implied warranty of
13	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14	GNU General Public License for more details.
15
16	You should have received a copy of the GNU General Public License
17	along with this program; if not, write to the Free Software
18	Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19*/
20
21#include <linux/init.h>
22#include <linux/kernel.h>
23#include <linux/module.h>
24#include <linux/moduleparam.h>
25
26#include "dvb_frontend.h"
27#include "mb86a16.h"
28#include "mb86a16_priv.h"
29
30unsigned int verbose = 5;
31module_param(verbose, int, 0644);
32
33#define ABS(x)		((x) < 0 ? (-x) : (x))
34
35struct mb86a16_state {
36	struct i2c_adapter		*i2c_adap;
37	const struct mb86a16_config	*config;
38	struct dvb_frontend		frontend;
39	u8				signal;
40
41	// tuning parameters
42	int				frequency;
43	int				srate;
44
45	// Internal stuff
46	int				master_clk;
47	int				deci;
48	int				csel;
49	int				rsel;
50};
51
52#define MB86A16_ERROR		0
53#define MB86A16_NOTICE		1
54#define MB86A16_INFO		2
55#define MB86A16_DEBUG		3
56
57#define dprintk(x, y, z, format, arg...) do {						\
58	if (z) {									\
59		if	((x > MB86A16_ERROR) && (x > y))				\
60			printk(KERN_ERR "%s: " format "\n", __func__, ##arg);		\
61		else if ((x > MB86A16_NOTICE) && (x > y))				\
62			printk(KERN_NOTICE "%s: " format "\n", __func__, ##arg);	\
63		else if ((x > MB86A16_INFO) && (x > y))					\
64			printk(KERN_INFO "%s: " format "\n", __func__, ##arg);		\
65		else if ((x > MB86A16_DEBUG) && (x > y))				\
66			printk(KERN_DEBUG "%s: " format "\n", __func__, ##arg);		\
67	} else {									\
68		if (x > y)								\
69			printk(format, ##arg);						\
70	}										\
71} while (0)
72
73#define TRACE_IN	dprintk(verbose, MB86A16_DEBUG, 1, "-->()")
74#define TRACE_OUT	dprintk(verbose, MB86A16_DEBUG, 1, "()-->")
75
76static int mb86a16_write(struct mb86a16_state *state, u8 reg, u8 val)
77{
78	int ret;
79	u8 buf[] = { reg, val };
80
81	struct i2c_msg msg = {
82		.addr = state->config->demod_address,
83		.flags = 0,
84		.buf = buf,
85		.len = 2
86	};
87
88	dprintk(verbose, MB86A16_DEBUG, 1,
89		"writing to [0x%02x],Reg[0x%02x],Data[0x%02x]",
90		state->config->demod_address, buf[0], buf[1]);
91
92	ret = i2c_transfer(state->i2c_adap, &msg, 1);
93
94	return (ret != 1) ? -EREMOTEIO : 0;
95}
96
97static int mb86a16_read(struct mb86a16_state *state, u8 reg, u8 *val)
98{
99	int ret;
100	u8 b0[] = { reg };
101	u8 b1[] = { 0 };
102
103	struct i2c_msg msg[] = {
104		{
105			.addr = state->config->demod_address,
106			.flags = 0,
107			.buf = b0,
108			.len = 1
109		},{
110			.addr = state->config->demod_address,
111			.flags = I2C_M_RD,
112			.buf = b1,
113			.len = 1
114		}
115	};
116	ret = i2c_transfer(state->i2c_adap, msg, 2);
117	if (ret != 2) {
118		dprintk(verbose, MB86A16_ERROR, 1, "read error(reg=0x%02x, ret=0x%i)",
119			reg, ret);
120
121		return -EREMOTEIO;
122	}
123	*val = b1[0];
124
125	return ret;
126}
127
128static int CNTM_set(struct mb86a16_state *state,
129		    unsigned char timint1,
130		    unsigned char timint2,
131		    unsigned char cnext)
132{
133	unsigned char val;
134
135	val = (timint1 << 4) | (timint2 << 2) | cnext;
136	if (mb86a16_write(state, MB86A16_CNTMR, val) < 0)
137		goto err;
138
139	return 0;
140
141err:
142	dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
143	return -EREMOTEIO;
144}
145
146static int smrt_set(struct mb86a16_state *state, int rate)
147{
148	int tmp ;
149	int m ;
150	unsigned char STOFS0, STOFS1;
151
152	m = 1 << state->deci;
153	tmp = (8192 * state->master_clk - 2 * m * rate * 8192 + state->master_clk / 2) / state->master_clk;
154
155	STOFS0 = tmp & 0x0ff;
156	STOFS1 = (tmp & 0xf00) >> 8;
157
158	if (mb86a16_write(state, MB86A16_SRATE1, (state->deci << 2) |
159				       (state->csel << 1) |
160					state->rsel) < 0)
161		goto err;
162	if (mb86a16_write(state, MB86A16_SRATE2, STOFS0) < 0)
163		goto err;
164	if (mb86a16_write(state, MB86A16_SRATE3, STOFS1) < 0)
165		goto err;
166
167	return 0;
168err:
169	dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
170	return -1;
171}
172
173static int srst(struct mb86a16_state *state)
174{
175	if (mb86a16_write(state, MB86A16_RESET, 0x04) < 0)
176		goto err;
177
178	return 0;
179err:
180	dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
181	return -EREMOTEIO;
182
183}
184
185static int afcex_data_set(struct mb86a16_state *state,
186			  unsigned char AFCEX_L,
187			  unsigned char AFCEX_H)
188{
189	if (mb86a16_write(state, MB86A16_AFCEXL, AFCEX_L) < 0)
190		goto err;
191	if (mb86a16_write(state, MB86A16_AFCEXH, AFCEX_H) < 0)
192		goto err;
193
194	return 0;
195err:
196	dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
197
198	return -1;
199}
200
201static int afcofs_data_set(struct mb86a16_state *state,
202			   unsigned char AFCEX_L,
203			   unsigned char AFCEX_H)
204{
205	if (mb86a16_write(state, 0x58, AFCEX_L) < 0)
206		goto err;
207	if (mb86a16_write(state, 0x59, AFCEX_H) < 0)
208		goto err;
209
210	return 0;
211err:
212	dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
213	return -EREMOTEIO;
214}
215
216static int stlp_set(struct mb86a16_state *state,
217		    unsigned char STRAS,
218		    unsigned char STRBS)
219{
220	if (mb86a16_write(state, MB86A16_STRFILTCOEF1, (STRBS << 3) | (STRAS)) < 0)
221		goto err;
222
223	return 0;
224err:
225	dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
226	return -EREMOTEIO;
227}
228
229static int Vi_set(struct mb86a16_state *state, unsigned char ETH, unsigned char VIA)
230{
231	if (mb86a16_write(state, MB86A16_VISET2, 0x04) < 0)
232		goto err;
233	if (mb86a16_write(state, MB86A16_VISET3, 0xf5) < 0)
234		goto err;
235
236	return 0;
237err:
238	dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
239	return -EREMOTEIO;
240}
241
242static int initial_set(struct mb86a16_state *state)
243{
244	if (stlp_set(state, 5, 7))
245		goto err;
246
247	udelay(100);
248	if (afcex_data_set(state, 0, 0))
249		goto err;
250
251	udelay(100);
252	if (afcofs_data_set(state, 0, 0))
253		goto err;
254
255	udelay(100);
256	if (mb86a16_write(state, MB86A16_CRLFILTCOEF1, 0x16) < 0)
257		goto err;
258	if (mb86a16_write(state, 0x2f, 0x21) < 0)
259		goto err;
260	if (mb86a16_write(state, MB86A16_VIMAG, 0x38) < 0)
261		goto err;
262	if (mb86a16_write(state, MB86A16_FAGCS1, 0x00) < 0)
263		goto err;
264	if (mb86a16_write(state, MB86A16_FAGCS2, 0x1c) < 0)
265		goto err;
266	if (mb86a16_write(state, MB86A16_FAGCS3, 0x20) < 0)
267		goto err;
268	if (mb86a16_write(state, MB86A16_FAGCS4, 0x1e) < 0)
269		goto err;
270	if (mb86a16_write(state, MB86A16_FAGCS5, 0x23) < 0)
271		goto err;
272	if (mb86a16_write(state, 0x54, 0xff) < 0)
273		goto err;
274	if (mb86a16_write(state, MB86A16_TSOUT, 0x00) < 0)
275		goto err;
276
277	return 0;
278
279err:
280	dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
281	return -EREMOTEIO;
282}
283
284static int S01T_set(struct mb86a16_state *state,
285		    unsigned char s1t,
286		    unsigned s0t)
287{
288	if (mb86a16_write(state, 0x33, (s1t << 3) | s0t) < 0)
289		goto err;
290
291	return 0;
292err:
293	dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
294	return -EREMOTEIO;
295}
296
297
298static int EN_set(struct mb86a16_state *state,
299		  int cren,
300		  int afcen)
301{
302	unsigned char val;
303
304	val = 0x7a | (cren << 7) | (afcen << 2);
305	if (mb86a16_write(state, 0x49, val) < 0)
306		goto err;
307
308	return 0;
309err:
310	dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
311	return -EREMOTEIO;
312}
313
314static int AFCEXEN_set(struct mb86a16_state *state,
315		       int afcexen,
316		       int smrt)
317{
318	unsigned char AFCA ;
319
320	if (smrt > 18875)
321		AFCA = 4;
322	else if (smrt > 9375)
323		AFCA = 3;
324	else if (smrt > 2250)
325		AFCA = 2;
326	else
327		AFCA = 1;
328
329	if (mb86a16_write(state, 0x2a, 0x02 | (afcexen << 5) | (AFCA << 2)) < 0)
330		goto err;
331
332	return 0;
333
334err:
335	dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
336	return -EREMOTEIO;
337}
338
339static int DAGC_data_set(struct mb86a16_state *state,
340			 unsigned char DAGCA,
341			 unsigned char DAGCW)
342{
343	if (mb86a16_write(state, 0x2d, (DAGCA << 3) | DAGCW) < 0)
344		goto err;
345
346	return 0;
347
348err:
349	dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
350	return -EREMOTEIO;
351}
352
353static void smrt_info_get(struct mb86a16_state *state, int rate)
354{
355	if (rate >= 37501) {
356		state->deci = 0; state->csel = 0; state->rsel = 0;
357	} else if (rate >= 30001) {
358		state->deci = 0; state->csel = 0; state->rsel = 1;
359	} else if (rate >= 26251) {
360		state->deci = 0; state->csel = 1; state->rsel = 0;
361	} else if (rate >= 22501) {
362		state->deci = 0; state->csel = 1; state->rsel = 1;
363	} else if (rate >= 18751) {
364		state->deci = 1; state->csel = 0; state->rsel = 0;
365	} else if (rate >= 15001) {
366		state->deci = 1; state->csel = 0; state->rsel = 1;
367	} else if (rate >= 13126) {
368		state->deci = 1; state->csel = 1; state->rsel = 0;
369	} else if (rate >= 11251) {
370		state->deci = 1; state->csel = 1; state->rsel = 1;
371	} else if (rate >= 9376) {
372		state->deci = 2; state->csel = 0; state->rsel = 0;
373	} else if (rate >= 7501) {
374		state->deci = 2; state->csel = 0; state->rsel = 1;
375	} else if (rate >= 6563) {
376		state->deci = 2; state->csel = 1; state->rsel = 0;
377	} else if (rate >= 5626) {
378		state->deci = 2; state->csel = 1; state->rsel = 1;
379	} else if (rate >= 4688) {
380		state->deci = 3; state->csel = 0; state->rsel = 0;
381	} else if (rate >= 3751) {
382		state->deci = 3; state->csel = 0; state->rsel = 1;
383	} else if (rate >= 3282) {
384		state->deci = 3; state->csel = 1; state->rsel = 0;
385	} else if (rate >= 2814) {
386		state->deci = 3; state->csel = 1; state->rsel = 1;
387	} else if (rate >= 2344) {
388		state->deci = 4; state->csel = 0; state->rsel = 0;
389	} else if (rate >= 1876) {
390		state->deci = 4; state->csel = 0; state->rsel = 1;
391	} else if (rate >= 1641) {
392		state->deci = 4; state->csel = 1; state->rsel = 0;
393	} else if (rate >= 1407) {
394		state->deci = 4; state->csel = 1; state->rsel = 1;
395	} else if (rate >= 1172) {
396		state->deci = 5; state->csel = 0; state->rsel = 0;
397	} else if (rate >=  939) {
398		state->deci = 5; state->csel = 0; state->rsel = 1;
399	} else if (rate >=  821) {
400		state->deci = 5; state->csel = 1; state->rsel = 0;
401	} else {
402		state->deci = 5; state->csel = 1; state->rsel = 1;
403	}
404
405	if (state->csel == 0)
406		state->master_clk = 92000;
407	else
408		state->master_clk = 61333;
409
410}
411
412static int signal_det(struct mb86a16_state *state,
413		      int smrt,
414		      unsigned char *SIG)
415{
416
417	int ret ;
418	int smrtd ;
419	int wait_sym ;
420	int wait_t ;
421	unsigned char S[3] ;
422	int i ;
423
424	if (*SIG > 45) {
425		if (CNTM_set(state, 2, 1, 2) < 0) {
426			dprintk(verbose, MB86A16_ERROR, 1, "CNTM set Error");
427			return -1;
428		}
429		wait_sym = 40000;
430	} else {
431		if (CNTM_set(state, 3, 1, 2) < 0) {
432			dprintk(verbose, MB86A16_ERROR, 1, "CNTM set Error");
433			return -1;
434		}
435		wait_sym = 80000;
436	}
437	for (i = 0; i < 3; i++) {
438		if (i == 0 )
439			smrtd = smrt * 98 / 100;
440		else if (i == 1)
441			smrtd = smrt;
442		else
443			smrtd = smrt * 102 / 100;
444		smrt_info_get(state, smrtd);
445		smrt_set(state, smrtd);
446		srst(state);
447		wait_t = (wait_sym + 99 * smrtd / 100) / smrtd;
448		if (wait_t == 0)
449			wait_t = 1;
450		msleep_interruptible(10);
451		if (mb86a16_read(state, 0x37, &(S[i])) != 2) {
452			dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
453			return -EREMOTEIO;
454		}
455	}
456	if ((S[1] > S[0] * 112 / 100) &&
457	    (S[1] > S[2] * 112 / 100)) {
458
459		ret = 1;
460	} else {
461		ret = 0;
462	}
463	*SIG = S[1];
464
465	if (CNTM_set(state, 0, 1, 2) < 0) {
466		dprintk(verbose, MB86A16_ERROR, 1, "CNTM set Error");
467		return -1;
468	}
469
470	return ret;
471}
472
473static int rf_val_set(struct mb86a16_state *state,
474		      int f,
475		      int smrt,
476		      unsigned char R)
477{
478	unsigned char C, F, B;
479	int M;
480	unsigned char rf_val[5];
481	int ack = -1;
482
483	if (smrt > 37750 )
484		C = 1;
485	else if (smrt > 18875)
486		C = 2;
487	else if (smrt > 5500 )
488		C = 3;
489	else
490		C = 4;
491
492	if (smrt > 30500)
493		F = 3;
494	else if (smrt > 9375)
495		F = 1;
496	else if (smrt > 4625)
497		F = 0;
498	else
499		F = 2;
500
501	if (f < 1060)
502		B = 0;
503	else if (f < 1175)
504		B = 1;
505	else if (f < 1305)
506		B = 2;
507	else if (f < 1435)
508		B = 3;
509	else if (f < 1570)
510		B = 4;
511	else if (f < 1715)
512		B = 5;
513	else if (f < 1845)
514		B = 6;
515	else if (f < 1980)
516		B = 7;
517	else if (f < 2080)
518		B = 8;
519	else
520		B = 9;
521
522	M = f * (1 << R) / 2;
523
524	rf_val[0] = 0x01 | (C << 3) | (F << 1);
525	rf_val[1] = (R << 5) | ((M & 0x1f000) >> 12);
526	rf_val[2] = (M & 0x00ff0) >> 4;
527	rf_val[3] = ((M & 0x0000f) << 4) | B;
528
529	// Frequency Set
530	if (mb86a16_write(state, 0x21, rf_val[0]) < 0)
531		ack = 0;
532	if (mb86a16_write(state, 0x22, rf_val[1]) < 0)
533		ack = 0;
534	if (mb86a16_write(state, 0x23, rf_val[2]) < 0)
535		ack = 0;
536	if (mb86a16_write(state, 0x24, rf_val[3]) < 0)
537		ack = 0;
538	if (mb86a16_write(state, 0x25, 0x01) < 0)
539		ack = 0;
540	if (ack == 0) {
541		dprintk(verbose, MB86A16_ERROR, 1, "RF Setup - I2C transfer error");
542		return -EREMOTEIO;
543	}
544
545	return 0;
546}
547
548static int afcerr_chk(struct mb86a16_state *state)
549{
550	unsigned char AFCM_L, AFCM_H ;
551	int AFCM ;
552	int afcm, afcerr ;
553
554	if (mb86a16_read(state, 0x0e, &AFCM_L) != 2)
555		goto err;
556	if (mb86a16_read(state, 0x0f, &AFCM_H) != 2)
557		goto err;
558
559	AFCM = (AFCM_H << 8) + AFCM_L;
560
561	if (AFCM > 2048)
562		afcm = AFCM - 4096;
563	else
564		afcm = AFCM;
565	afcerr = afcm * state->master_clk / 8192;
566
567	return afcerr;
568
569err:
570	dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
571	return -EREMOTEIO;
572}
573
574static int dagcm_val_get(struct mb86a16_state *state)
575{
576	int DAGCM;
577	unsigned char DAGCM_H, DAGCM_L;
578
579	if (mb86a16_read(state, 0x45, &DAGCM_L) != 2)
580		goto err;
581	if (mb86a16_read(state, 0x46, &DAGCM_H) != 2)
582		goto err;
583
584	DAGCM = (DAGCM_H << 8) + DAGCM_L;
585
586	return DAGCM;
587
588err:
589	dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
590	return -EREMOTEIO;
591}
592
593static int mb86a16_read_status(struct dvb_frontend *fe, fe_status_t *status)
594{
595	struct mb86a16_state *state = fe->demodulator_priv;
596
597	if (state->signal & 0x02)
598		*status |= FE_HAS_VITERBI;
599	if (state->signal & 0x01)
600		*status |= FE_HAS_SYNC;
601	if (state->signal & 0x03)
602		*status |= FE_HAS_LOCK;
603
604	return 0;
605}
606
607static int sync_chk(struct mb86a16_state *state,
608		    unsigned char *VIRM)
609{
610	unsigned char val;
611	int sync;
612
613	if (mb86a16_read(state, 0x0d, &val) != 2)
614		goto err;
615
616	dprintk(verbose, MB86A16_INFO, 1, "Status = %02x,", val);
617	sync = val & 0x01;
618	*VIRM = (val & 0x1c) >> 2;
619
620	return sync;
621err:
622	dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
623	return -EREMOTEIO;
624
625}
626
627static int freqerr_chk(struct mb86a16_state *state,
628		       int fTP,
629		       int smrt,
630		       int unit)
631{
632	unsigned char CRM, AFCML, AFCMH;
633	unsigned char temp1, temp2, temp3;
634	int crm, afcm, AFCM;
635	int crrerr, afcerr;		// [kHz]
636	int frqerr;			// [MHz]
637	int afcen, afcexen = 0;
638	int R, M, fOSC, fOSC_OFS;
639
640	if (mb86a16_read(state, 0x43, &CRM) != 2)
641		goto err;
642
643	if (CRM > 127)
644		crm = CRM - 256;
645	else
646		crm = CRM;
647
648	crrerr = smrt * crm / 256;
649	if (mb86a16_read(state, 0x49, &temp1) != 2)
650		goto err;
651
652	afcen = (temp1 & 0x04) >> 2;
653	if (afcen == 0) {
654		if (mb86a16_read(state, 0x2a, &temp1) != 2)
655			goto err;
656		afcexen = (temp1 & 0x20) >> 5;
657	}
658
659	if (afcen == 1) {
660		if (mb86a16_read(state, 0x0e, &AFCML) != 2)
661			goto err;
662		if (mb86a16_read(state, 0x0f, &AFCMH) != 2)
663			goto err;
664	} else if (afcexen == 1) {
665		if (mb86a16_read(state, 0x2b, &AFCML) != 2)
666			goto err;
667		if (mb86a16_read(state, 0x2c, &AFCMH) != 2)
668			goto err;
669	}
670	if ((afcen == 1) || (afcexen == 1)) {
671		smrt_info_get(state, smrt);
672		AFCM = ((AFCMH & 0x01) << 8) + AFCML;
673		if (AFCM > 255)
674			afcm = AFCM - 512;
675		else
676			afcm = AFCM;
677
678		afcerr = afcm * state->master_clk / 8192;
679	} else
680		afcerr = 0;
681
682	if (mb86a16_read(state, 0x22, &temp1) != 2)
683		goto err;
684	if (mb86a16_read(state, 0x23, &temp2) != 2)
685		goto err;
686	if (mb86a16_read(state, 0x24, &temp3) != 2)
687		goto err;
688
689	R = (temp1 & 0xe0) >> 5;
690	M = ((temp1 & 0x1f) << 12) + (temp2 << 4) + (temp3 >> 4);
691	if (R == 0)
692		fOSC = 2 * M;
693	else
694		fOSC = M;
695
696	fOSC_OFS = fOSC - fTP;
697
698	if (unit == 0) {	//[MHz]
699		if (crrerr + afcerr + fOSC_OFS * 1000 >= 0)
700			frqerr = (crrerr + afcerr + fOSC_OFS * 1000 + 500) / 1000;
701		else
702			frqerr = (crrerr + afcerr + fOSC_OFS * 1000 - 500) / 1000;
703	} else {	//[kHz]
704		frqerr = crrerr + afcerr + fOSC_OFS * 1000;
705	}
706
707	return frqerr;
708err:
709	dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
710	return -EREMOTEIO;
711}
712
713static unsigned char vco_dev_get(struct mb86a16_state *state, int smrt)
714{
715	unsigned char R;
716
717	if (smrt > 9375)
718		R = 0;
719	else
720		R = 1;
721
722	return R;
723}
724
725static void swp_info_get(struct mb86a16_state *state,
726			 int fOSC_start,
727			 int smrt,
728			 int v, int R,
729			 int swp_ofs,
730			 int *fOSC,
731			 int *afcex_freq,
732			 unsigned char *AFCEX_L,
733			 unsigned char *AFCEX_H)
734{
735	int AFCEX ;
736	int crnt_swp_freq ;
737
738	crnt_swp_freq = fOSC_start * 1000 + v * swp_ofs;
739
740	if (R == 0 )
741		*fOSC = (crnt_swp_freq + 1000) / 2000 * 2;
742	else
743		*fOSC = (crnt_swp_freq + 500) / 1000;
744
745	if (*fOSC >= crnt_swp_freq)
746		*afcex_freq = *fOSC *1000 - crnt_swp_freq;
747	else
748		*afcex_freq = crnt_swp_freq - *fOSC * 1000;
749
750	AFCEX = *afcex_freq * 8192 / state->master_clk;
751	*AFCEX_L =  AFCEX & 0x00ff;
752	*AFCEX_H = (AFCEX & 0x0f00) >> 8;
753}
754
755
756static int swp_freq_calcuation(struct mb86a16_state *state, int i, int v, int *V,  int vmax, int vmin,
757			       int SIGMIN, int fOSC, int afcex_freq, int swp_ofs, unsigned char *SIG1)
758{
759	int swp_freq ;
760
761	if ((i % 2 == 1) && (v <= vmax)) {
762		// positive v (case 1)
763		if ((v - 1 == vmin)				&&
764		    (*(V + 30 + v) >= 0)			&&
765		    (*(V + 30 + v - 1) >= 0)			&&
766		    (*(V + 30 + v - 1) > *(V + 30 + v))		&&
767		    (*(V + 30 + v - 1) > SIGMIN)) {
768
769			swp_freq = fOSC * 1000 + afcex_freq - swp_ofs;
770			*SIG1 = *(V + 30 + v - 1);
771		} else if ((v == vmax)				&&
772			   (*(V + 30 + v) >= 0)			&&
773			   (*(V + 30 + v - 1) >= 0)		&&
774			   (*(V + 30 + v) > *(V + 30 + v - 1))	&&
775			   (*(V + 30 + v) > SIGMIN)) {
776			// (case 2)
777			swp_freq = fOSC * 1000 + afcex_freq;
778			*SIG1 = *(V + 30 + v);
779		} else if ((*(V + 30 + v) > 0)			&&
780			   (*(V + 30 + v - 1) > 0)		&&
781			   (*(V + 30 + v - 2) > 0)		&&
782			   (*(V + 30 + v - 3) > 0)		&&
783			   (*(V + 30 + v - 1) > *(V + 30 + v))	&&
784			   (*(V + 30 + v - 2) > *(V + 30 + v - 3)) &&
785			   ((*(V + 30 + v - 1) > SIGMIN)	||
786			   (*(V + 30 + v - 2) > SIGMIN))) {
787			// (case 3)
788			if (*(V + 30 + v - 1) >= *(V + 30 + v - 2)) {
789				swp_freq = fOSC * 1000 + afcex_freq - swp_ofs;
790				*SIG1 = *(V + 30 + v - 1);
791			} else {
792				swp_freq = fOSC * 1000 + afcex_freq - swp_ofs * 2;
793				*SIG1 = *(V + 30 + v - 2);
794			}
795		} else if ((v == vmax)				&&
796			   (*(V + 30 + v) >= 0)			&&
797			   (*(V + 30 + v - 1) >= 0)		&&
798			   (*(V + 30 + v - 2) >= 0)		&&
799			   (*(V + 30 + v) > *(V + 30 + v - 2))	&&
800			   (*(V + 30 + v - 1) > *(V + 30 + v - 2)) &&
801			   ((*(V + 30 + v) > SIGMIN)		||
802			   (*(V + 30 + v - 1) > SIGMIN))) {
803			// (case 4)
804			if (*(V + 30 + v) >= *(V + 30 + v - 1)) {
805				swp_freq = fOSC * 1000 + afcex_freq;
806				*SIG1 = *(V + 30 + v);
807			} else {
808				swp_freq = fOSC * 1000 + afcex_freq - swp_ofs;
809				*SIG1 = *(V + 30 + v - 1);
810			}
811		} else  {
812			swp_freq = -1 ;
813		}
814	} else if ((i % 2 == 0) && (v >= vmin)) {
815		// Negative v (case 1)
816		if ((*(V + 30 + v) > 0)				&&
817		    (*(V + 30 + v + 1) > 0)			&&
818		    (*(V + 30 + v + 2) > 0)			&&
819		    (*(V + 30 + v + 1) > *(V + 30 + v))		&&
820		    (*(V + 30 + v + 1) > *(V + 30 + v + 2))	&&
821		    (*(V + 30 + v + 1) > SIGMIN)) {
822
823			swp_freq = fOSC * 1000 + afcex_freq + swp_ofs;
824			*SIG1 = *(V + 30 + v + 1);
825		} else if ((v + 1 == vmax)			&&
826			   (*(V + 30 + v) >= 0)			&&
827			   (*(V + 30 + v + 1) >= 0)		&&
828			   (*(V + 30 + v + 1) > *(V + 30 + v))	&&
829			   (*(V + 30 + v + 1) > SIGMIN)) {
830			// (case 2)
831			swp_freq = fOSC * 1000 + afcex_freq + swp_ofs;
832			*SIG1 = *(V + 30 + v);
833		} else if ((v == vmin)				&&
834			   (*(V + 30 + v) > 0)			&&
835			   (*(V + 30 + v + 1) > 0)		&&
836			   (*(V + 30 + v + 2) > 0)		&&
837			   (*(V + 30 + v) > *(V + 30 + v + 1))	&&
838			   (*(V + 30 + v) > *(V + 30 + v + 2))	&&
839			   (*(V + 30 + v) > SIGMIN)) {
840			// (case 3)
841			swp_freq = fOSC * 1000 + afcex_freq;
842			*SIG1 = *(V + 30 + v);
843		} else if ((*(V + 30 + v) >= 0)			&&
844			   (*(V + 30 + v + 1) >= 0)		&&
845			   (*(V + 30 + v + 2) >= 0)		&&
846			   (*(V +30 + v + 3) >= 0)		&&
847			   (*(V + 30 + v + 1) > *(V + 30 + v))	&&
848			   (*(V + 30 + v + 2) > *(V + 30 + v + 3)) &&
849			   ((*(V + 30 + v + 1) > SIGMIN)	||
850			    (*(V + 30 + v + 2) > SIGMIN))) {
851			// (case 4)
852			if (*(V + 30 + v + 1) >= *(V + 30 + v + 2)) {
853				swp_freq = fOSC * 1000 + afcex_freq + swp_ofs;
854				*SIG1 = *(V + 30 + v + 1);
855			} else {
856				swp_freq = fOSC * 1000 + afcex_freq + swp_ofs * 2;
857				*SIG1 = *(V + 30 + v + 2);
858			}
859		} else if ((*(V + 30 + v) >= 0)			&&
860			   (*(V + 30 + v + 1) >= 0)		&&
861			   (*(V + 30 + v + 2) >= 0)		&&
862			   (*(V + 30 + v + 3) >= 0)		&&
863			   (*(V + 30 + v) > *(V + 30 + v + 2))	&&
864			   (*(V + 30 + v + 1) > *(V + 30 + v + 2)) &&
865			   (*(V + 30 + v) > *(V + 30 + v + 3))	&&
866			   (*(V + 30 + v + 1) > *(V + 30 + v + 3)) &&
867			   ((*(V + 30 + v) > SIGMIN)		||
868			    (*(V + 30 + v + 1) > SIGMIN))) {
869			// (case 5)
870			if (*(V + 30 + v) >= *(V + 30 + v + 1)) {
871				swp_freq = fOSC * 1000 + afcex_freq;
872				*SIG1 = *(V + 30 + v);
873			} else {
874				swp_freq = fOSC * 1000 + afcex_freq + swp_ofs;
875				*SIG1 = *(V + 30 + v + 1);
876			}
877		} else if ((v + 2 == vmin)			&&
878			   (*(V + 30 + v) >= 0)			&&
879			   (*(V + 30 + v + 1) >= 0)		&&
880			   (*(V + 30 + v + 2) >= 0)		&&
881			   (*(V + 30 + v + 1) > *(V + 30 + v))	&&
882			   (*(V + 30 + v + 2) > *(V + 30 + v))	&&
883			   ((*(V + 30 + v + 1) > SIGMIN)	||
884			    (*(V + 30 + v + 2) > SIGMIN))) {
885			// (case 6)
886			if (*(V + 30 + v + 1) >= *(V + 30 + v + 2)) {
887				swp_freq = fOSC * 1000 + afcex_freq + swp_ofs;
888				*SIG1 = *(V + 30 + v + 1);
889			} else {
890				swp_freq = fOSC * 1000 + afcex_freq + swp_ofs * 2;
891				*SIG1 = *(V + 30 + v + 2);
892			}
893		} else if ((vmax == 0) && (vmin == 0) && (*(V + 30 + v) > SIGMIN)) {
894			swp_freq = fOSC * 1000;
895			*SIG1 = *(V + 30 + v);
896		} else swp_freq = -1;
897	} else swp_freq = -1;
898
899	return swp_freq;
900}
901
902static void swp_info_get2(struct mb86a16_state *state,
903			  int smrt,
904			  int R,
905			  int swp_freq,
906			  int *afcex_freq,
907			  int *fOSC,
908			  unsigned char *AFCEX_L,
909			  unsigned char *AFCEX_H)
910{
911	int AFCEX ;
912
913	if (R == 0)
914		*fOSC = (swp_freq + 1000) / 2000 * 2;
915	else
916		*fOSC = (swp_freq + 500) / 1000;
917
918	if (*fOSC >= swp_freq)
919		*afcex_freq = *fOSC * 1000 - swp_freq;
920	else
921		*afcex_freq = swp_freq - *fOSC * 1000;
922
923	AFCEX = *afcex_freq * 8192 / state->master_clk;
924	*AFCEX_L =  AFCEX & 0x00ff;
925	*AFCEX_H = (AFCEX & 0x0f00) >> 8;
926}
927
928static void afcex_info_get(struct mb86a16_state *state,
929			   int afcex_freq,
930			   unsigned char *AFCEX_L,
931			   unsigned char *AFCEX_H)
932{
933	int AFCEX ;
934
935	AFCEX = afcex_freq * 8192 / state->master_clk;
936	*AFCEX_L =  AFCEX & 0x00ff;
937	*AFCEX_H = (AFCEX & 0x0f00) >> 8;
938}
939
940static int SEQ_set(struct mb86a16_state *state, unsigned char loop)
941{
942	// SLOCK0 = 0
943	if (mb86a16_write(state, 0x32, 0x02 | (loop << 2)) < 0) {
944		dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
945		return -EREMOTEIO;
946	}
947
948	return 0;
949}
950
951static int iq_vt_set(struct mb86a16_state *state, unsigned char IQINV)
952{
953	// Viterbi Rate, IQ Settings
954	if (mb86a16_write(state, 0x06, 0xdf | (IQINV << 5)) < 0) {
955		dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
956		return -EREMOTEIO;
957	}
958
959	return 0;
960}
961
962static int FEC_srst(struct mb86a16_state *state)
963{
964	if (mb86a16_write(state, MB86A16_RESET, 0x02) < 0) {
965		dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
966		return -EREMOTEIO;
967	}
968
969	return 0;
970}
971
972static int S2T_set(struct mb86a16_state *state, unsigned char S2T)
973{
974	if (mb86a16_write(state, 0x34, 0x70 | S2T) < 0) {
975		dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
976		return -EREMOTEIO;
977	}
978
979	return 0;
980}
981
982static int S45T_set(struct mb86a16_state *state, unsigned char S4T, unsigned char S5T)
983{
984	if (mb86a16_write(state, 0x35, 0x00 | (S5T << 4) | S4T) < 0) {
985		dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
986		return -EREMOTEIO;
987	}
988
989	return 0;
990}
991
992
993static int mb86a16_set_fe(struct mb86a16_state *state)
994{
995	u8 agcval, cnmval;
996
997	int i, j;
998	int fOSC = 0;
999	int fOSC_start = 0;
1000	int wait_t;
1001	int fcp;
1002	int swp_ofs;
1003	int V[60];
1004	u8 SIG1MIN;
1005
1006	unsigned char CREN, AFCEN, AFCEXEN;
1007	unsigned char SIG1;
1008	unsigned char TIMINT1, TIMINT2, TIMEXT;
1009	unsigned char S0T, S1T;
1010	unsigned char S2T;
1011//	unsigned char S2T, S3T;
1012	unsigned char S4T, S5T;
1013	unsigned char AFCEX_L, AFCEX_H;
1014	unsigned char R;
1015	unsigned char VIRM;
1016	unsigned char ETH, VIA;
1017	unsigned char junk;
1018
1019	int loop;
1020	int ftemp;
1021	int v, vmax, vmin;
1022	int vmax_his, vmin_his;
1023	int swp_freq, prev_swp_freq[20];
1024	int prev_freq_num;
1025	int signal_dupl;
1026	int afcex_freq;
1027	int signal;
1028	int afcerr;
1029	int temp_freq, delta_freq;
1030	int dagcm[4];
1031	int smrt_d;
1032//	int freq_err;
1033	int n;
1034	int ret = -1;
1035	int sync;
1036
1037	dprintk(verbose, MB86A16_INFO, 1, "freq=%d Mhz, symbrt=%d Ksps", state->frequency, state->srate);
1038
1039	fcp = 3000;
1040	swp_ofs = state->srate / 4;
1041
1042	for (i = 0; i < 60; i++)
1043		V[i] = -1;
1044
1045	for (i = 0; i < 20; i++)
1046		prev_swp_freq[i] = 0;
1047
1048	SIG1MIN = 25;
1049
1050	for (n = 0; ((n < 3) && (ret == -1)); n++) {
1051		SEQ_set(state, 0);
1052		iq_vt_set(state, 0);
1053
1054		CREN = 0;
1055		AFCEN = 0;
1056		AFCEXEN = 1;
1057		TIMINT1 = 0;
1058		TIMINT2 = 1;
1059		TIMEXT = 2;
1060		S1T = 0;
1061		S0T = 0;
1062
1063		if (initial_set(state) < 0) {
1064			dprintk(verbose, MB86A16_ERROR, 1, "initial set failed");
1065			return -1;
1066		}
1067		if (DAGC_data_set(state, 3, 2) < 0) {
1068			dprintk(verbose, MB86A16_ERROR, 1, "DAGC data set error");
1069			return -1;
1070		}
1071		if (EN_set(state, CREN, AFCEN) < 0) {
1072			dprintk(verbose, MB86A16_ERROR, 1, "EN set error");
1073			return -1; // (0, 0)
1074		}
1075		if (AFCEXEN_set(state, AFCEXEN, state->srate) < 0) {
1076			dprintk(verbose, MB86A16_ERROR, 1, "AFCEXEN set error");
1077			return -1; // (1, smrt) = (1, symbolrate)
1078		}
1079		if (CNTM_set(state, TIMINT1, TIMINT2, TIMEXT) < 0) {
1080			dprintk(verbose, MB86A16_ERROR, 1, "CNTM set error");
1081			return -1; // (0, 1, 2)
1082		}
1083		if (S01T_set(state, S1T, S0T) < 0) {
1084			dprintk(verbose, MB86A16_ERROR, 1, "S01T set error");
1085			return -1; // (0, 0)
1086		}
1087		smrt_info_get(state, state->srate);
1088		if (smrt_set(state, state->srate) < 0) {
1089			dprintk(verbose, MB86A16_ERROR, 1, "smrt info get error");
1090			return -1;
1091		}
1092
1093		R = vco_dev_get(state, state->srate);
1094		if (R == 1)
1095			fOSC_start = state->frequency;
1096
1097		else if (R == 0) {
1098			if (state->frequency % 2 == 0) {
1099				fOSC_start = state->frequency;
1100			} else {
1101				fOSC_start = state->frequency + 1;
1102				if (fOSC_start > 2150)
1103					fOSC_start = state->frequency - 1;
1104			}
1105		}
1106		loop = 1;
1107		ftemp = fOSC_start * 1000;
1108		vmax = 0 ;
1109		while (loop == 1) {
1110			ftemp = ftemp + swp_ofs;
1111			vmax++;
1112
1113			// Upper bound
1114			if (ftemp > 2150000) {
1115				loop = 0;
1116				vmax--;
1117			}
1118			else if ((ftemp == 2150000) || (ftemp - state->frequency * 1000 >= fcp + state->srate / 4))
1119				loop = 0;
1120		}
1121
1122		loop = 1;
1123		ftemp = fOSC_start * 1000;
1124		vmin = 0 ;
1125		while (loop == 1) {
1126			ftemp = ftemp - swp_ofs;
1127			vmin--;
1128
1129			// Lower bound
1130			if (ftemp < 950000) {
1131				loop = 0;
1132				vmin++;
1133			}
1134			else if ((ftemp == 950000) || (state->frequency * 1000 - ftemp >= fcp + state->srate / 4))
1135				loop = 0;
1136		}
1137
1138		wait_t = (8000 + state->srate / 2) / state->srate;
1139		if (wait_t == 0)
1140			wait_t = 1;
1141
1142		i = 0;
1143		j = 0;
1144		prev_freq_num = 0;
1145		loop = 1;
1146		signal = 0;
1147		vmax_his = 0;
1148		vmin_his = 0;
1149		v = 0;
1150
1151		while (loop == 1) {
1152			swp_info_get(state, fOSC_start, state->srate,
1153				     v, R, swp_ofs, &fOSC,
1154				     &afcex_freq, &AFCEX_L, &AFCEX_H);
1155
1156			udelay(100);
1157			if (rf_val_set(state, fOSC, state->srate, R) < 0) {
1158				dprintk(verbose, MB86A16_ERROR, 1, "rf val set error");
1159				return -1;
1160			}
1161			udelay(100);
1162			if (afcex_data_set(state, AFCEX_L, AFCEX_H) < 0) {
1163				dprintk(verbose, MB86A16_ERROR, 1, "afcex data set error");
1164				return -1;
1165			}
1166			if (srst(state) < 0) {
1167				dprintk(verbose, MB86A16_ERROR, 1, "srst error");
1168				return -1;
1169			}
1170			msleep_interruptible(wait_t);
1171
1172			if (mb86a16_read(state, 0x37, &SIG1) != 2) {
1173				dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
1174				return -1;
1175			}
1176			V[30 + v] = SIG1 ;
1177			swp_freq = swp_freq_calcuation(state, i, v, V, vmax, vmin,
1178						      SIG1MIN, fOSC, afcex_freq,
1179						      swp_ofs, &SIG1);	//changed
1180
1181			signal_dupl = 0;
1182			for (j = 0; j < prev_freq_num; j++) {
1183				if ((ABS(prev_swp_freq[j] - swp_freq)) < (swp_ofs * 3 / 2)) {
1184					signal_dupl = 1;
1185					dprintk(verbose, MB86A16_INFO, 1, "Probably Duplicate Signal, j = %d", j);
1186				}
1187			}
1188			if ((signal_dupl == 0) && (swp_freq > 0) && (ABS(swp_freq - state->frequency * 1000) < fcp + state->srate / 6)) {
1189				dprintk(verbose, MB86A16_DEBUG, 1, "------ Signal detect ------ [swp_freq=[%07d, srate=%05d]]", swp_freq, state->srate);
1190				prev_swp_freq[prev_freq_num] = swp_freq;
1191				prev_freq_num++;
1192				swp_info_get2(state, state->srate, R, swp_freq,
1193					      &afcex_freq, &fOSC,
1194					      &AFCEX_L, &AFCEX_H);
1195
1196				if (rf_val_set(state, fOSC, state->srate, R) < 0) {
1197					dprintk(verbose, MB86A16_ERROR, 1, "rf val set error");
1198					return -1;
1199				}
1200				if (afcex_data_set(state, AFCEX_L, AFCEX_H) < 0) {
1201					dprintk(verbose, MB86A16_ERROR, 1, "afcex data set error");
1202					return -1;
1203				}
1204				signal = signal_det(state, state->srate, &SIG1);
1205				if (signal == 1) {
1206					dprintk(verbose, MB86A16_ERROR, 1, "***** Signal Found *****");
1207					loop = 0;
1208				} else {
1209					dprintk(verbose, MB86A16_ERROR, 1, "!!!!! No signal !!!!!, try again...");
1210					smrt_info_get(state, state->srate);
1211					if (smrt_set(state, state->srate) < 0) {
1212						dprintk(verbose, MB86A16_ERROR, 1, "smrt set error");
1213						return -1;
1214					}
1215				}
1216			}
1217			if (v > vmax)
1218				vmax_his = 1 ;
1219			if (v < vmin)
1220				vmin_his = 1 ;
1221			i++;
1222
1223			if ((i % 2 == 1) && (vmax_his == 1))
1224				i++;
1225			if ((i % 2 == 0) && (vmin_his == 1))
1226				i++;
1227
1228			if (i % 2 == 1)
1229				v = (i + 1) / 2;
1230			else
1231				v = -i / 2;
1232
1233			if ((vmax_his == 1) && (vmin_his == 1))
1234				loop = 0 ;
1235		}
1236
1237		if (signal == 1) {
1238			dprintk(verbose, MB86A16_INFO, 1, " Start Freq Error Check");
1239			S1T = 7 ;
1240			S0T = 1 ;
1241			CREN = 0 ;
1242			AFCEN = 1 ;
1243			AFCEXEN = 0 ;
1244
1245			if (S01T_set(state, S1T, S0T) < 0) {
1246				dprintk(verbose, MB86A16_ERROR, 1, "S01T set error");
1247				return -1;
1248			}
1249			smrt_info_get(state, state->srate);
1250			if (smrt_set(state, state->srate) < 0) {
1251				dprintk(verbose, MB86A16_ERROR, 1, "smrt set error");
1252				return -1;
1253			}
1254			if (EN_set(state, CREN, AFCEN) < 0) {
1255				dprintk(verbose, MB86A16_ERROR, 1, "EN set error");
1256				return -1;
1257			}
1258			if (AFCEXEN_set(state, AFCEXEN, state->srate) < 0) {
1259				dprintk(verbose, MB86A16_ERROR, 1, "AFCEXEN set error");
1260				return -1;
1261			}
1262			afcex_info_get(state, afcex_freq, &AFCEX_L, &AFCEX_H);
1263			if (afcofs_data_set(state, AFCEX_L, AFCEX_H) < 0) {
1264				dprintk(verbose, MB86A16_ERROR, 1, "AFCOFS data set error");
1265				return -1;
1266			}
1267			if (srst(state) < 0) {
1268				dprintk(verbose, MB86A16_ERROR, 1, "srst error");
1269				return -1;
1270			}
1271			// delay 4~200
1272			wait_t = 200000 / state->master_clk + 200000 / state->srate;
1273			msleep(wait_t);
1274			afcerr = afcerr_chk(state);
1275			if (afcerr == -1)
1276				return -1;
1277
1278			swp_freq = fOSC * 1000 + afcerr ;
1279			AFCEXEN = 1 ;
1280			if (state->srate >= 1500)
1281				smrt_d = state->srate / 3;
1282			else
1283				smrt_d = state->srate / 2;
1284			smrt_info_get(state, smrt_d);
1285			if (smrt_set(state, smrt_d) < 0) {
1286				dprintk(verbose, MB86A16_ERROR, 1, "smrt set error");
1287				return -1;
1288			}
1289			if (AFCEXEN_set(state, AFCEXEN, smrt_d) < 0) {
1290				dprintk(verbose, MB86A16_ERROR, 1, "AFCEXEN set error");
1291				return -1;
1292			}
1293			R = vco_dev_get(state, smrt_d);
1294			if (DAGC_data_set(state, 2, 0) < 0) {
1295				dprintk(verbose, MB86A16_ERROR, 1, "DAGC data set error");
1296				return -1;
1297			}
1298			for (i = 0; i < 3; i++) {
1299				temp_freq = swp_freq + (i - 1) * state->srate / 8;
1300				swp_info_get2(state, smrt_d, R, temp_freq, &afcex_freq, &fOSC, &AFCEX_L, &AFCEX_H);
1301				if (rf_val_set(state, fOSC, smrt_d, R) < 0) {
1302					dprintk(verbose, MB86A16_ERROR, 1, "rf val set error");
1303					return -1;
1304				}
1305				if (afcex_data_set(state, AFCEX_L, AFCEX_H) < 0) {
1306					dprintk(verbose, MB86A16_ERROR, 1, "afcex data set error");
1307					return -1;
1308				}
1309				wait_t = 200000 / state->master_clk + 40000 / smrt_d;
1310				msleep(wait_t);
1311				dagcm[i] = dagcm_val_get(state);
1312			}
1313			if ((dagcm[0] > dagcm[1]) &&
1314			    (dagcm[0] > dagcm[2]) &&
1315			    (dagcm[0] - dagcm[1] > 2 * (dagcm[2] - dagcm[1]))) {
1316
1317				temp_freq = swp_freq - 2 * state->srate / 8;
1318				swp_info_get2(state, smrt_d, R, temp_freq, &afcex_freq, &fOSC, &AFCEX_L, &AFCEX_H);
1319				if (rf_val_set(state, fOSC, smrt_d, R) < 0) {
1320					dprintk(verbose, MB86A16_ERROR, 1, "rf val set error");
1321					return -1;
1322				}
1323				if (afcex_data_set(state, AFCEX_L, AFCEX_H) < 0) {
1324					dprintk(verbose, MB86A16_ERROR, 1, "afcex data set");
1325					return -1;
1326				}
1327				wait_t = 200000 / state->master_clk + 40000 / smrt_d;
1328				msleep(wait_t);
1329				dagcm[3] = dagcm_val_get(state);
1330				if (dagcm[3] > dagcm[1])
1331					delta_freq = (dagcm[2] - dagcm[0] + dagcm[1] - dagcm[3]) * state->srate / 300;
1332				else
1333					delta_freq = 0;
1334			} else if ((dagcm[2] > dagcm[1]) &&
1335				   (dagcm[2] > dagcm[0]) &&
1336				   (dagcm[2] - dagcm[1] > 2 * (dagcm[0] - dagcm[1]))) {
1337
1338				temp_freq = swp_freq + 2 * state->srate / 8;
1339				swp_info_get2(state, smrt_d, R, temp_freq, &afcex_freq, &fOSC, &AFCEX_L, &AFCEX_H);
1340				if (rf_val_set(state, fOSC, smrt_d, R) < 0) {
1341					dprintk(verbose, MB86A16_ERROR, 1, "rf val set");
1342					return -1;
1343				}
1344				if (afcex_data_set(state, AFCEX_L, AFCEX_H) < 0) {
1345					dprintk(verbose, MB86A16_ERROR, 1, "afcex data set");
1346					return -1;
1347				}
1348				wait_t = 200000 / state->master_clk + 40000 / smrt_d;
1349				msleep(wait_t);
1350				dagcm[3] = dagcm_val_get(state);
1351				if (dagcm[3] > dagcm[1])
1352					delta_freq = (dagcm[2] - dagcm[0] + dagcm[3] - dagcm[1]) * state->srate / 300;
1353				else
1354					delta_freq = 0 ;
1355
1356			} else {
1357				delta_freq = 0 ;
1358			}
1359			dprintk(verbose, MB86A16_INFO, 1, "SWEEP Frequency = %d", swp_freq);
1360			swp_freq += delta_freq;
1361			dprintk(verbose, MB86A16_INFO, 1, "Adjusting .., DELTA Freq = %d, SWEEP Freq=%d", delta_freq, swp_freq);
1362			if (ABS(state->frequency * 1000 - swp_freq) > 3800) {
1363				dprintk(verbose, MB86A16_INFO, 1, "NO  --  SIGNAL !");
1364			} else {
1365
1366				S1T = 0;
1367				S0T = 3;
1368				CREN = 1;
1369				AFCEN = 0;
1370				AFCEXEN = 1;
1371
1372				if (S01T_set(state, S1T, S0T) < 0) {
1373					dprintk(verbose, MB86A16_ERROR, 1, "S01T set error");
1374					return -1;
1375				}
1376				if (DAGC_data_set(state, 0, 0) < 0) {
1377					dprintk(verbose, MB86A16_ERROR, 1, "DAGC data set error");
1378					return -1;
1379				}
1380				R = vco_dev_get(state, state->srate);
1381				smrt_info_get(state, state->srate);
1382				if (smrt_set(state, state->srate) < 0) {
1383					dprintk(verbose, MB86A16_ERROR, 1, "smrt set error");
1384					return -1;
1385				}
1386				if (EN_set(state, CREN, AFCEN) < 0) {
1387					dprintk(verbose, MB86A16_ERROR, 1, "EN set error");
1388					return -1;
1389				}
1390				if (AFCEXEN_set(state, AFCEXEN, state->srate) < 0) {
1391					dprintk(verbose, MB86A16_ERROR, 1, "AFCEXEN set error");
1392					return -1;
1393				}
1394				swp_info_get2(state, state->srate, R, swp_freq, &afcex_freq, &fOSC, &AFCEX_L, &AFCEX_H);
1395				if (rf_val_set(state, fOSC, state->srate, R) < 0) {
1396					dprintk(verbose, MB86A16_ERROR, 1, "rf val set error");
1397					return -1;
1398				}
1399				if (afcex_data_set(state, AFCEX_L, AFCEX_H) < 0) {
1400					dprintk(verbose, MB86A16_ERROR, 1, "afcex data set error");
1401					return -1;
1402				}
1403				if (srst(state) < 0) {
1404					dprintk(verbose, MB86A16_ERROR, 1, "srst error");
1405					return -1;
1406				}
1407				wait_t = 7 + (10000 + state->srate / 2) / state->srate;
1408				if (wait_t == 0)
1409					wait_t = 1;
1410				msleep_interruptible(wait_t);
1411				if (mb86a16_read(state, 0x37, &SIG1) != 2) {
1412					dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
1413					return -EREMOTEIO;
1414				}
1415
1416				if (SIG1 > 110) {
1417					S2T = 4; S4T = 1; S5T = 6; ETH = 4; VIA = 6;
1418					wait_t = 7 + (917504 + state->srate / 2) / state->srate;
1419				} else if (SIG1 > 105) {
1420					S2T = 4; S4T = 2; S5T = 8; ETH = 7; VIA = 2;
1421					wait_t = 7 + (1048576 + state->srate / 2) / state->srate;
1422				} else if (SIG1 > 85) {
1423					S2T = 5; S4T = 2; S5T = 8; ETH = 7; VIA = 2;
1424					wait_t = 7 + (1310720 + state->srate / 2) / state->srate;
1425				} else if (SIG1 > 65) {
1426					S2T = 6; S4T = 2; S5T = 8; ETH = 7; VIA = 2;
1427					wait_t = 7 + (1572864 + state->srate / 2) / state->srate;
1428				} else {
1429					S2T = 7; S4T = 2; S5T = 8; ETH = 7; VIA = 2;
1430					wait_t = 7 + (2097152 + state->srate / 2) / state->srate;
1431				}
1432				S2T_set(state, S2T);
1433				S45T_set(state, S4T, S5T);
1434				Vi_set(state, ETH, VIA);
1435				srst(state);
1436				msleep_interruptible(wait_t);
1437				sync = sync_chk(state, &VIRM);
1438				dprintk(verbose, MB86A16_INFO, 1, "-------- Viterbi=[%d] SYNC=[%d] ---------", VIRM, sync);
1439				if (mb86a16_read(state, 0x0d, &state->signal) != 2) {
1440					dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
1441					return -EREMOTEIO;
1442				}
1443				if (VIRM) {
1444					if (VIRM == 4) { // 5/6
1445						if (SIG1 > 110)
1446							wait_t = ( 786432 + state->srate / 2) / state->srate;
1447						else
1448							wait_t = (1572864 + state->srate / 2) / state->srate;
1449						if (state->srate < 5000)
1450							// FIXME ! , should be a long wait !
1451							msleep_interruptible(wait_t);
1452						else
1453							msleep_interruptible(wait_t);
1454
1455						if (sync_chk(state, &junk) == 0) {
1456							iq_vt_set(state, 1);
1457							FEC_srst(state);
1458						}
1459						if (SIG1 > 110)
1460							wait_t = ( 786432 + state->srate / 2) / state->srate;
1461						else
1462							wait_t = (1572864 + state->srate / 2) / state->srate;
1463
1464						msleep_interruptible(wait_t);
1465						SEQ_set(state, 1);
1466					} else { // 1/2, 2/3, 3/4, 7/8
1467						if (SIG1 > 110)
1468							wait_t = ( 786432 + state->srate / 2) / state->srate;
1469						else
1470							wait_t = (1572864 + state->srate / 2) / state->srate;
1471
1472						msleep_interruptible(wait_t);
1473						SEQ_set(state, 1);
1474					}
1475				} else {
1476					dprintk(verbose, MB86A16_INFO, 1, "NO  -- SIGNAL");
1477					SEQ_set(state, 1);
1478				}
1479			}
1480		} else {
1481			dprintk (verbose, MB86A16_INFO, 1, "NO  -- SIGNAL");
1482		}
1483
1484		sync = sync_chk(state, &junk);
1485		if (sync) {
1486			dprintk(verbose, MB86A16_INFO, 1, "******* SYNC *******");
1487			freqerr_chk(state, state->frequency, state->srate, 1);
1488		}
1489	}
1490
1491	mb86a16_read(state, 0x15, &agcval);
1492	mb86a16_read(state, 0x26, &cnmval);
1493	dprintk(verbose, MB86A16_INFO, 1, "AGC = %02x CNM = %02x", agcval, cnmval);
1494
1495	return ret;
1496}
1497
1498static int mb86a16_send_diseqc_msg(struct dvb_frontend *fe,
1499				   struct dvb_diseqc_master_cmd *cmd)
1500{
1501	struct mb86a16_state *state = fe->demodulator_priv;
1502	int i;
1503	u8 regs;
1504
1505	if (mb86a16_write(state, MB86A16_DCC1, MB86A16_DCC1_DISTA) < 0)
1506		goto err;
1507	if (mb86a16_write(state, MB86A16_DCCOUT, 0x00) < 0)
1508		goto err;
1509	if (mb86a16_write(state, MB86A16_TONEOUT2, 0x04) < 0)
1510		goto err;
1511
1512	regs = 0x18;
1513
1514	if (cmd->msg_len > 5 || cmd->msg_len < 4)
1515		return -EINVAL;
1516
1517	for (i = 0; i < cmd->msg_len; i++) {
1518		if (mb86a16_write(state, regs, cmd->msg[i]) < 0)
1519			goto err;
1520
1521		regs++;
1522	}
1523	i += 0x90;
1524
1525	msleep_interruptible(10);
1526
1527	if (mb86a16_write(state, MB86A16_DCC1, i) < 0)
1528		goto err;
1529	if (mb86a16_write(state, MB86A16_DCCOUT, MB86A16_DCCOUT_DISEN) < 0)
1530		goto err;
1531
1532	return 0;
1533
1534err:
1535	dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
1536	return -EREMOTEIO;
1537}
1538
1539static int mb86a16_send_diseqc_burst(struct dvb_frontend *fe, fe_sec_mini_cmd_t burst)
1540{
1541	struct mb86a16_state *state = fe->demodulator_priv;
1542
1543	switch (burst) {
1544	case SEC_MINI_A:
1545		if (mb86a16_write(state, MB86A16_DCC1, MB86A16_DCC1_DISTA |
1546						       MB86A16_DCC1_TBEN  |
1547						       MB86A16_DCC1_TBO) < 0)
1548			goto err;
1549		if (mb86a16_write(state, MB86A16_DCCOUT, MB86A16_DCCOUT_DISEN) < 0)
1550			goto err;
1551		break;
1552	case SEC_MINI_B:
1553		if (mb86a16_write(state, MB86A16_DCC1, MB86A16_DCC1_DISTA |
1554						       MB86A16_DCC1_TBEN) < 0)
1555			goto err;
1556		if (mb86a16_write(state, MB86A16_DCCOUT, MB86A16_DCCOUT_DISEN) < 0)
1557			goto err;
1558		break;
1559	}
1560
1561	return 0;
1562err:
1563	dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
1564	return -EREMOTEIO;
1565}
1566
1567static int mb86a16_set_tone(struct dvb_frontend *fe, fe_sec_tone_mode_t tone)
1568{
1569	struct mb86a16_state *state = fe->demodulator_priv;
1570
1571	switch (tone) {
1572	case SEC_TONE_ON:
1573		if (mb86a16_write(state, MB86A16_TONEOUT2, 0x00) < 0)
1574			goto err;
1575		if (mb86a16_write(state, MB86A16_DCC1, MB86A16_DCC1_DISTA |
1576						       MB86A16_DCC1_CTOE) < 0)
1577
1578			goto err;
1579		if (mb86a16_write(state, MB86A16_DCCOUT, MB86A16_DCCOUT_DISEN) < 0)
1580			goto err;
1581		break;
1582	case SEC_TONE_OFF:
1583		if (mb86a16_write(state, MB86A16_TONEOUT2, 0x04) < 0)
1584			goto err;
1585		if (mb86a16_write(state, MB86A16_DCC1, MB86A16_DCC1_DISTA) < 0)
1586			goto err;
1587		if (mb86a16_write(state, MB86A16_DCCOUT, 0x00) < 0)
1588			goto err;
1589		break;
1590	default:
1591		return -EINVAL;
1592	}
1593	return 0;
1594
1595err:
1596	dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
1597	return -EREMOTEIO;
1598}
1599
1600#define MB86A16_FE_ALGO		1
1601
1602static int mb86a16_frontend_algo(struct dvb_frontend *fe)
1603{
1604	return MB86A16_FE_ALGO;
1605}
1606
1607static int mb86a16_set_frontend(struct dvb_frontend *fe,
1608				struct dvb_frontend_parameters *p,
1609				unsigned int mode_flags,
1610				int *delay,
1611				fe_status_t *status)
1612{
1613	int ret = 0;
1614	struct mb86a16_state *state = fe->demodulator_priv;
1615
1616	if (p != NULL) {
1617		state->frequency = p->frequency / 1000;
1618		state->srate = p->u.qpsk.symbol_rate / 1000;
1619		ret = mb86a16_set_fe(state);
1620	}
1621	if (!(mode_flags & FE_TUNE_MODE_ONESHOT))
1622		mb86a16_read_status(fe, status);
1623
1624	*delay = HZ/3000;
1625
1626	return ret;
1627}
1628
1629static void mb86a16_release(struct dvb_frontend *fe)
1630{
1631	struct mb86a16_state *state = fe->demodulator_priv;
1632	kfree(state);
1633}
1634
1635static int mb86a16_init(struct dvb_frontend *fe)
1636{
1637	return 0;
1638}
1639
1640static int mb86a16_sleep(struct dvb_frontend *fe)
1641{
1642	return 0;
1643}
1644
1645static int mb86a16_read_ber(struct dvb_frontend *fe, u32 *ber)
1646{
1647	return 0;
1648}
1649
1650static int mb86a16_read_signal_strength(struct dvb_frontend *fe, u16 *strength)
1651{
1652	*strength = 0;
1653
1654	return 0;
1655}
1656
1657struct cnr {
1658	u8 cn_reg;
1659	u8 cn_val;
1660};
1661
1662static const struct cnr cnr_tab[] = {
1663	{  35,  2 },
1664	{  40,  3 },
1665	{  50,  4 },
1666	{  60,  5 },
1667	{  70,  6 },
1668	{  80,  7 },
1669	{  92,  8 },
1670	{ 103,  9 },
1671	{ 115, 10 },
1672	{ 138, 12 },
1673	{ 162, 15 },
1674	{ 180, 18 },
1675	{ 185, 19 },
1676	{ 189, 20 },
1677	{ 195, 22 },
1678	{ 199, 24 },
1679	{ 201, 25 },
1680	{ 202, 26 },
1681	{ 203, 27 },
1682	{ 205, 28 },
1683	{ 208, 30 }
1684};
1685
1686static int mb86a16_read_snr(struct dvb_frontend *fe, u16 *snr)
1687{
1688	struct mb86a16_state *state = fe->demodulator_priv;
1689	int i = 0;
1690	int low_tide = 2, high_tide = 30, q_level;
1691	u8  cn;
1692
1693	if (mb86a16_read(state, 0x26, &cn) != 2) {
1694		dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
1695		return -EREMOTEIO;
1696	}
1697
1698	for (i = 0; i < ARRAY_SIZE(cnr_tab); i++) {
1699		if (cn < cnr_tab[i].cn_reg) {
1700			*snr = cnr_tab[i].cn_val;
1701			break;
1702		}
1703	}
1704	q_level = (*snr * 100) / (high_tide - low_tide);
1705	dprintk(verbose, MB86A16_ERROR, 1, "SNR (Quality) = [%d dB], Level=%d %%", *snr, q_level);
1706
1707	return 0;
1708}
1709
1710static int mb86a16_read_ucblocks(struct dvb_frontend *fe, u32 *ucblocks)
1711{
1712	return 0;
1713}
1714
1715static struct dvb_frontend_ops mb86a16_ops = {
1716	.info = {
1717		.name			= "Fujitsu MB86A16 DVB-S",
1718		.type			= FE_QPSK,
1719		.frequency_min		= 950000,
1720		.frequency_max		= 2150000,
1721		.frequency_stepsize	= 125,
1722		.frequency_tolerance	= 0,
1723		.symbol_rate_min	= 1000000,
1724		.symbol_rate_max	= 45000000,
1725		.symbol_rate_tolerance	= 500,
1726		.caps			= FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 |
1727					  FE_CAN_FEC_3_4 | FE_CAN_FEC_5_6 |
1728					  FE_CAN_FEC_7_8 | FE_CAN_QPSK    |
1729					  FE_CAN_FEC_AUTO
1730	},
1731	.release			= mb86a16_release,
1732	.tune				= mb86a16_set_frontend,
1733	.read_status			= mb86a16_read_status,
1734	.get_frontend_algo		= mb86a16_frontend_algo,
1735	.init				= mb86a16_init,
1736	.sleep				= mb86a16_sleep,
1737	.read_status			= mb86a16_read_status,
1738
1739	.read_ber			= mb86a16_read_ber,
1740	.read_signal_strength		= mb86a16_read_signal_strength,
1741	.read_snr			= mb86a16_read_snr,
1742	.read_ucblocks			= mb86a16_read_ucblocks,
1743
1744	.diseqc_send_master_cmd		= mb86a16_send_diseqc_msg,
1745	.diseqc_send_burst		= mb86a16_send_diseqc_burst,
1746	.set_tone			= mb86a16_set_tone,
1747};
1748
1749struct dvb_frontend *mb86a16_attach(const struct mb86a16_config *config,
1750				    struct i2c_adapter *i2c_adap)
1751{
1752	u8 dev_id = 0;
1753	struct mb86a16_state *state = NULL;
1754
1755	state = kmalloc(sizeof (struct mb86a16_state), GFP_KERNEL);
1756	if (state == NULL)
1757		goto error;
1758
1759	state->config = config;
1760	state->i2c_adap = i2c_adap;
1761
1762	mb86a16_read(state, 0x7f, &dev_id);
1763	if (dev_id != 0xfe)
1764		goto error;
1765
1766	memcpy(&state->frontend.ops, &mb86a16_ops, sizeof (struct dvb_frontend_ops));
1767	state->frontend.demodulator_priv = state;
1768	state->frontend.ops.set_voltage = state->config->set_voltage;
1769
1770	return &state->frontend;
1771error:
1772	kfree(state);
1773	return NULL;
1774}
1775EXPORT_SYMBOL(mb86a16_attach);
1776MODULE_LICENSE("GPL");
1777MODULE_AUTHOR("Manu Abraham");
1778