rc-main.c revision 829ba9fe34246f1f5e813b6bf84171d36e776734
1/* rc-main.c - Remote Controller core module
2 *
3 * Copyright (C) 2009-2010 by Mauro Carvalho Chehab <mchehab@redhat.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 *  it under the terms of the GNU General Public License as published by
7 *  the Free Software Foundation version 2 of the License.
8 *
9 *  This program is distributed in the hope that it will be useful,
10 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
11 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12 *  GNU General Public License for more details.
13 */
14
15#include <media/rc-core.h>
16#include <linux/spinlock.h>
17#include <linux/delay.h>
18#include <linux/input.h>
19#include <linux/slab.h>
20#include <linux/device.h>
21#include "rc-core-priv.h"
22
23/* Sizes are in bytes, 256 bytes allows for 32 entries on x64 */
24#define IR_TAB_MIN_SIZE	256
25#define IR_TAB_MAX_SIZE	8192
26
27/* FIXME: IR_KEYPRESS_TIMEOUT should be protocol specific */
28#define IR_KEYPRESS_TIMEOUT 250
29
30/* Used to keep track of known keymaps */
31static LIST_HEAD(rc_map_list);
32static DEFINE_SPINLOCK(rc_map_lock);
33
34static struct rc_map_list *seek_rc_map(const char *name)
35{
36	struct rc_map_list *map = NULL;
37
38	spin_lock(&rc_map_lock);
39	list_for_each_entry(map, &rc_map_list, list) {
40		if (!strcmp(name, map->map.name)) {
41			spin_unlock(&rc_map_lock);
42			return map;
43		}
44	}
45	spin_unlock(&rc_map_lock);
46
47	return NULL;
48}
49
50struct rc_map *rc_map_get(const char *name)
51{
52
53	struct rc_map_list *map;
54
55	map = seek_rc_map(name);
56#ifdef MODULE
57	if (!map) {
58		int rc = request_module(name);
59		if (rc < 0) {
60			printk(KERN_ERR "Couldn't load IR keymap %s\n", name);
61			return NULL;
62		}
63		msleep(20);	/* Give some time for IR to register */
64
65		map = seek_rc_map(name);
66	}
67#endif
68	if (!map) {
69		printk(KERN_ERR "IR keymap %s not found\n", name);
70		return NULL;
71	}
72
73	printk(KERN_INFO "Registered IR keymap %s\n", map->map.name);
74
75	return &map->map;
76}
77EXPORT_SYMBOL_GPL(rc_map_get);
78
79int rc_map_register(struct rc_map_list *map)
80{
81	spin_lock(&rc_map_lock);
82	list_add_tail(&map->list, &rc_map_list);
83	spin_unlock(&rc_map_lock);
84	return 0;
85}
86EXPORT_SYMBOL_GPL(rc_map_register);
87
88void rc_map_unregister(struct rc_map_list *map)
89{
90	spin_lock(&rc_map_lock);
91	list_del(&map->list);
92	spin_unlock(&rc_map_lock);
93}
94EXPORT_SYMBOL_GPL(rc_map_unregister);
95
96
97static struct rc_map_table empty[] = {
98	{ 0x2a, KEY_COFFEE },
99};
100
101static struct rc_map_list empty_map = {
102	.map = {
103		.scan    = empty,
104		.size    = ARRAY_SIZE(empty),
105		.rc_type = RC_TYPE_UNKNOWN,	/* Legacy IR type */
106		.name    = RC_MAP_EMPTY,
107	}
108};
109
110/**
111 * ir_create_table() - initializes a scancode table
112 * @rc_map:	the rc_map to initialize
113 * @name:	name to assign to the table
114 * @rc_type:	ir type to assign to the new table
115 * @size:	initial size of the table
116 * @return:	zero on success or a negative error code
117 *
118 * This routine will initialize the rc_map and will allocate
119 * memory to hold at least the specified number of elements.
120 */
121static int ir_create_table(struct rc_map *rc_map,
122			   const char *name, u64 rc_type, size_t size)
123{
124	rc_map->name = name;
125	rc_map->rc_type = rc_type;
126	rc_map->alloc = roundup_pow_of_two(size * sizeof(struct rc_map_table));
127	rc_map->size = rc_map->alloc / sizeof(struct rc_map_table);
128	rc_map->scan = kmalloc(rc_map->alloc, GFP_KERNEL);
129	if (!rc_map->scan)
130		return -ENOMEM;
131
132	IR_dprintk(1, "Allocated space for %u keycode entries (%u bytes)\n",
133		   rc_map->size, rc_map->alloc);
134	return 0;
135}
136
137/**
138 * ir_free_table() - frees memory allocated by a scancode table
139 * @rc_map:	the table whose mappings need to be freed
140 *
141 * This routine will free memory alloctaed for key mappings used by given
142 * scancode table.
143 */
144static void ir_free_table(struct rc_map *rc_map)
145{
146	rc_map->size = 0;
147	kfree(rc_map->scan);
148	rc_map->scan = NULL;
149}
150
151/**
152 * ir_resize_table() - resizes a scancode table if necessary
153 * @rc_map:	the rc_map to resize
154 * @gfp_flags:	gfp flags to use when allocating memory
155 * @return:	zero on success or a negative error code
156 *
157 * This routine will shrink the rc_map if it has lots of
158 * unused entries and grow it if it is full.
159 */
160static int ir_resize_table(struct rc_map *rc_map, gfp_t gfp_flags)
161{
162	unsigned int oldalloc = rc_map->alloc;
163	unsigned int newalloc = oldalloc;
164	struct rc_map_table *oldscan = rc_map->scan;
165	struct rc_map_table *newscan;
166
167	if (rc_map->size == rc_map->len) {
168		/* All entries in use -> grow keytable */
169		if (rc_map->alloc >= IR_TAB_MAX_SIZE)
170			return -ENOMEM;
171
172		newalloc *= 2;
173		IR_dprintk(1, "Growing table to %u bytes\n", newalloc);
174	}
175
176	if ((rc_map->len * 3 < rc_map->size) && (oldalloc > IR_TAB_MIN_SIZE)) {
177		/* Less than 1/3 of entries in use -> shrink keytable */
178		newalloc /= 2;
179		IR_dprintk(1, "Shrinking table to %u bytes\n", newalloc);
180	}
181
182	if (newalloc == oldalloc)
183		return 0;
184
185	newscan = kmalloc(newalloc, gfp_flags);
186	if (!newscan) {
187		IR_dprintk(1, "Failed to kmalloc %u bytes\n", newalloc);
188		return -ENOMEM;
189	}
190
191	memcpy(newscan, rc_map->scan, rc_map->len * sizeof(struct rc_map_table));
192	rc_map->scan = newscan;
193	rc_map->alloc = newalloc;
194	rc_map->size = rc_map->alloc / sizeof(struct rc_map_table);
195	kfree(oldscan);
196	return 0;
197}
198
199/**
200 * ir_update_mapping() - set a keycode in the scancode->keycode table
201 * @dev:	the struct rc_dev device descriptor
202 * @rc_map:	scancode table to be adjusted
203 * @index:	index of the mapping that needs to be updated
204 * @keycode:	the desired keycode
205 * @return:	previous keycode assigned to the mapping
206 *
207 * This routine is used to update scancode->keycode mapping at given
208 * position.
209 */
210static unsigned int ir_update_mapping(struct rc_dev *dev,
211				      struct rc_map *rc_map,
212				      unsigned int index,
213				      unsigned int new_keycode)
214{
215	int old_keycode = rc_map->scan[index].keycode;
216	int i;
217
218	/* Did the user wish to remove the mapping? */
219	if (new_keycode == KEY_RESERVED || new_keycode == KEY_UNKNOWN) {
220		IR_dprintk(1, "#%d: Deleting scan 0x%04x\n",
221			   index, rc_map->scan[index].scancode);
222		rc_map->len--;
223		memmove(&rc_map->scan[index], &rc_map->scan[index+ 1],
224			(rc_map->len - index) * sizeof(struct rc_map_table));
225	} else {
226		IR_dprintk(1, "#%d: %s scan 0x%04x with key 0x%04x\n",
227			   index,
228			   old_keycode == KEY_RESERVED ? "New" : "Replacing",
229			   rc_map->scan[index].scancode, new_keycode);
230		rc_map->scan[index].keycode = new_keycode;
231		__set_bit(new_keycode, dev->input_dev->keybit);
232	}
233
234	if (old_keycode != KEY_RESERVED) {
235		/* A previous mapping was updated... */
236		__clear_bit(old_keycode, dev->input_dev->keybit);
237		/* ... but another scancode might use the same keycode */
238		for (i = 0; i < rc_map->len; i++) {
239			if (rc_map->scan[i].keycode == old_keycode) {
240				__set_bit(old_keycode, dev->input_dev->keybit);
241				break;
242			}
243		}
244
245		/* Possibly shrink the keytable, failure is not a problem */
246		ir_resize_table(rc_map, GFP_ATOMIC);
247	}
248
249	return old_keycode;
250}
251
252/**
253 * ir_establish_scancode() - set a keycode in the scancode->keycode table
254 * @dev:	the struct rc_dev device descriptor
255 * @rc_map:	scancode table to be searched
256 * @scancode:	the desired scancode
257 * @resize:	controls whether we allowed to resize the table to
258 *		accomodate not yet present scancodes
259 * @return:	index of the mapping containing scancode in question
260 *		or -1U in case of failure.
261 *
262 * This routine is used to locate given scancode in rc_map.
263 * If scancode is not yet present the routine will allocate a new slot
264 * for it.
265 */
266static unsigned int ir_establish_scancode(struct rc_dev *dev,
267					  struct rc_map *rc_map,
268					  unsigned int scancode,
269					  bool resize)
270{
271	unsigned int i;
272
273	/*
274	 * Unfortunately, some hardware-based IR decoders don't provide
275	 * all bits for the complete IR code. In general, they provide only
276	 * the command part of the IR code. Yet, as it is possible to replace
277	 * the provided IR with another one, it is needed to allow loading
278	 * IR tables from other remotes. So, we support specifying a mask to
279	 * indicate the valid bits of the scancodes.
280	 */
281	if (dev->scanmask)
282		scancode &= dev->scanmask;
283
284	/* First check if we already have a mapping for this ir command */
285	for (i = 0; i < rc_map->len; i++) {
286		if (rc_map->scan[i].scancode == scancode)
287			return i;
288
289		/* Keytable is sorted from lowest to highest scancode */
290		if (rc_map->scan[i].scancode >= scancode)
291			break;
292	}
293
294	/* No previous mapping found, we might need to grow the table */
295	if (rc_map->size == rc_map->len) {
296		if (!resize || ir_resize_table(rc_map, GFP_ATOMIC))
297			return -1U;
298	}
299
300	/* i is the proper index to insert our new keycode */
301	if (i < rc_map->len)
302		memmove(&rc_map->scan[i + 1], &rc_map->scan[i],
303			(rc_map->len - i) * sizeof(struct rc_map_table));
304	rc_map->scan[i].scancode = scancode;
305	rc_map->scan[i].keycode = KEY_RESERVED;
306	rc_map->len++;
307
308	return i;
309}
310
311/**
312 * ir_setkeycode() - set a keycode in the scancode->keycode table
313 * @idev:	the struct input_dev device descriptor
314 * @scancode:	the desired scancode
315 * @keycode:	result
316 * @return:	-EINVAL if the keycode could not be inserted, otherwise zero.
317 *
318 * This routine is used to handle evdev EVIOCSKEY ioctl.
319 */
320static int ir_setkeycode(struct input_dev *idev,
321			 const struct input_keymap_entry *ke,
322			 unsigned int *old_keycode)
323{
324	struct rc_dev *rdev = input_get_drvdata(idev);
325	struct rc_map *rc_map = &rdev->rc_map;
326	unsigned int index;
327	unsigned int scancode;
328	int retval;
329	unsigned long flags;
330
331	spin_lock_irqsave(&rc_map->lock, flags);
332
333	if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
334		index = ke->index;
335		if (index >= rc_map->len) {
336			retval = -EINVAL;
337			goto out;
338		}
339	} else {
340		retval = input_scancode_to_scalar(ke, &scancode);
341		if (retval)
342			goto out;
343
344		index = ir_establish_scancode(rdev, rc_map, scancode, true);
345		if (index >= rc_map->len) {
346			retval = -ENOMEM;
347			goto out;
348		}
349	}
350
351	*old_keycode = ir_update_mapping(rdev, rc_map, index, ke->keycode);
352
353out:
354	spin_unlock_irqrestore(&rc_map->lock, flags);
355	return retval;
356}
357
358/**
359 * ir_setkeytable() - sets several entries in the scancode->keycode table
360 * @dev:	the struct rc_dev device descriptor
361 * @to:		the struct rc_map to copy entries to
362 * @from:	the struct rc_map to copy entries from
363 * @return:	-ENOMEM if all keycodes could not be inserted, otherwise zero.
364 *
365 * This routine is used to handle table initialization.
366 */
367static int ir_setkeytable(struct rc_dev *dev,
368			  const struct rc_map *from)
369{
370	struct rc_map *rc_map = &dev->rc_map;
371	unsigned int i, index;
372	int rc;
373
374	rc = ir_create_table(rc_map, from->name,
375			     from->rc_type, from->size);
376	if (rc)
377		return rc;
378
379	IR_dprintk(1, "Allocated space for %u keycode entries (%u bytes)\n",
380		   rc_map->size, rc_map->alloc);
381
382	for (i = 0; i < from->size; i++) {
383		index = ir_establish_scancode(dev, rc_map,
384					      from->scan[i].scancode, false);
385		if (index >= rc_map->len) {
386			rc = -ENOMEM;
387			break;
388		}
389
390		ir_update_mapping(dev, rc_map, index,
391				  from->scan[i].keycode);
392	}
393
394	if (rc)
395		ir_free_table(rc_map);
396
397	return rc;
398}
399
400/**
401 * ir_lookup_by_scancode() - locate mapping by scancode
402 * @rc_map:	the struct rc_map to search
403 * @scancode:	scancode to look for in the table
404 * @return:	index in the table, -1U if not found
405 *
406 * This routine performs binary search in RC keykeymap table for
407 * given scancode.
408 */
409static unsigned int ir_lookup_by_scancode(const struct rc_map *rc_map,
410					  unsigned int scancode)
411{
412	int start = 0;
413	int end = rc_map->len - 1;
414	int mid;
415
416	while (start <= end) {
417		mid = (start + end) / 2;
418		if (rc_map->scan[mid].scancode < scancode)
419			start = mid + 1;
420		else if (rc_map->scan[mid].scancode > scancode)
421			end = mid - 1;
422		else
423			return mid;
424	}
425
426	return -1U;
427}
428
429/**
430 * ir_getkeycode() - get a keycode from the scancode->keycode table
431 * @idev:	the struct input_dev device descriptor
432 * @scancode:	the desired scancode
433 * @keycode:	used to return the keycode, if found, or KEY_RESERVED
434 * @return:	always returns zero.
435 *
436 * This routine is used to handle evdev EVIOCGKEY ioctl.
437 */
438static int ir_getkeycode(struct input_dev *idev,
439			 struct input_keymap_entry *ke)
440{
441	struct rc_dev *rdev = input_get_drvdata(idev);
442	struct rc_map *rc_map = &rdev->rc_map;
443	struct rc_map_table *entry;
444	unsigned long flags;
445	unsigned int index;
446	unsigned int scancode;
447	int retval;
448
449	spin_lock_irqsave(&rc_map->lock, flags);
450
451	if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
452		index = ke->index;
453	} else {
454		retval = input_scancode_to_scalar(ke, &scancode);
455		if (retval)
456			goto out;
457
458		index = ir_lookup_by_scancode(rc_map, scancode);
459	}
460
461	if (index >= rc_map->len) {
462		if (!(ke->flags & INPUT_KEYMAP_BY_INDEX))
463			IR_dprintk(1, "unknown key for scancode 0x%04x\n",
464				   scancode);
465		retval = -EINVAL;
466		goto out;
467	}
468
469	entry = &rc_map->scan[index];
470
471	ke->index = index;
472	ke->keycode = entry->keycode;
473	ke->len = sizeof(entry->scancode);
474	memcpy(ke->scancode, &entry->scancode, sizeof(entry->scancode));
475
476	retval = 0;
477
478out:
479	spin_unlock_irqrestore(&rc_map->lock, flags);
480	return retval;
481}
482
483/**
484 * rc_g_keycode_from_table() - gets the keycode that corresponds to a scancode
485 * @dev:	the struct rc_dev descriptor of the device
486 * @scancode:	the scancode to look for
487 * @return:	the corresponding keycode, or KEY_RESERVED
488 *
489 * This routine is used by drivers which need to convert a scancode to a
490 * keycode. Normally it should not be used since drivers should have no
491 * interest in keycodes.
492 */
493u32 rc_g_keycode_from_table(struct rc_dev *dev, u32 scancode)
494{
495	struct rc_map *rc_map = &dev->rc_map;
496	unsigned int keycode;
497	unsigned int index;
498	unsigned long flags;
499
500	spin_lock_irqsave(&rc_map->lock, flags);
501
502	index = ir_lookup_by_scancode(rc_map, scancode);
503	keycode = index < rc_map->len ?
504			rc_map->scan[index].keycode : KEY_RESERVED;
505
506	spin_unlock_irqrestore(&rc_map->lock, flags);
507
508	if (keycode != KEY_RESERVED)
509		IR_dprintk(1, "%s: scancode 0x%04x keycode 0x%02x\n",
510			   dev->input_name, scancode, keycode);
511
512	return keycode;
513}
514EXPORT_SYMBOL_GPL(rc_g_keycode_from_table);
515
516/**
517 * ir_do_keyup() - internal function to signal the release of a keypress
518 * @dev:	the struct rc_dev descriptor of the device
519 *
520 * This function is used internally to release a keypress, it must be
521 * called with keylock held.
522 */
523static void ir_do_keyup(struct rc_dev *dev)
524{
525	if (!dev->keypressed)
526		return;
527
528	IR_dprintk(1, "keyup key 0x%04x\n", dev->last_keycode);
529	input_report_key(dev->input_dev, dev->last_keycode, 0);
530	input_sync(dev->input_dev);
531	dev->keypressed = false;
532}
533
534/**
535 * rc_keyup() - signals the release of a keypress
536 * @dev:	the struct rc_dev descriptor of the device
537 *
538 * This routine is used to signal that a key has been released on the
539 * remote control.
540 */
541void rc_keyup(struct rc_dev *dev)
542{
543	unsigned long flags;
544
545	spin_lock_irqsave(&dev->keylock, flags);
546	ir_do_keyup(dev);
547	spin_unlock_irqrestore(&dev->keylock, flags);
548}
549EXPORT_SYMBOL_GPL(rc_keyup);
550
551/**
552 * ir_timer_keyup() - generates a keyup event after a timeout
553 * @cookie:	a pointer to the struct rc_dev for the device
554 *
555 * This routine will generate a keyup event some time after a keydown event
556 * is generated when no further activity has been detected.
557 */
558static void ir_timer_keyup(unsigned long cookie)
559{
560	struct rc_dev *dev = (struct rc_dev *)cookie;
561	unsigned long flags;
562
563	/*
564	 * ir->keyup_jiffies is used to prevent a race condition if a
565	 * hardware interrupt occurs at this point and the keyup timer
566	 * event is moved further into the future as a result.
567	 *
568	 * The timer will then be reactivated and this function called
569	 * again in the future. We need to exit gracefully in that case
570	 * to allow the input subsystem to do its auto-repeat magic or
571	 * a keyup event might follow immediately after the keydown.
572	 */
573	spin_lock_irqsave(&dev->keylock, flags);
574	if (time_is_before_eq_jiffies(dev->keyup_jiffies))
575		ir_do_keyup(dev);
576	spin_unlock_irqrestore(&dev->keylock, flags);
577}
578
579/**
580 * rc_repeat() - signals that a key is still pressed
581 * @dev:	the struct rc_dev descriptor of the device
582 *
583 * This routine is used by IR decoders when a repeat message which does
584 * not include the necessary bits to reproduce the scancode has been
585 * received.
586 */
587void rc_repeat(struct rc_dev *dev)
588{
589	unsigned long flags;
590
591	spin_lock_irqsave(&dev->keylock, flags);
592
593	input_event(dev->input_dev, EV_MSC, MSC_SCAN, dev->last_scancode);
594
595	if (!dev->keypressed)
596		goto out;
597
598	dev->keyup_jiffies = jiffies + msecs_to_jiffies(IR_KEYPRESS_TIMEOUT);
599	mod_timer(&dev->timer_keyup, dev->keyup_jiffies);
600
601out:
602	spin_unlock_irqrestore(&dev->keylock, flags);
603}
604EXPORT_SYMBOL_GPL(rc_repeat);
605
606/**
607 * ir_do_keydown() - internal function to process a keypress
608 * @dev:	the struct rc_dev descriptor of the device
609 * @scancode:   the scancode of the keypress
610 * @keycode:    the keycode of the keypress
611 * @toggle:     the toggle value of the keypress
612 *
613 * This function is used internally to register a keypress, it must be
614 * called with keylock held.
615 */
616static void ir_do_keydown(struct rc_dev *dev, int scancode,
617			  u32 keycode, u8 toggle)
618{
619	input_event(dev->input_dev, EV_MSC, MSC_SCAN, scancode);
620
621	/* Repeat event? */
622	if (dev->keypressed &&
623	    dev->last_scancode == scancode &&
624	    dev->last_toggle == toggle)
625		return;
626
627	/* Release old keypress */
628	ir_do_keyup(dev);
629
630	dev->last_scancode = scancode;
631	dev->last_toggle = toggle;
632	dev->last_keycode = keycode;
633
634	if (keycode == KEY_RESERVED)
635		return;
636
637	/* Register a keypress */
638	dev->keypressed = true;
639	IR_dprintk(1, "%s: key down event, key 0x%04x, scancode 0x%04x\n",
640		   dev->input_name, keycode, scancode);
641	input_report_key(dev->input_dev, dev->last_keycode, 1);
642	input_sync(dev->input_dev);
643}
644
645/**
646 * rc_keydown() - generates input event for a key press
647 * @dev:	the struct rc_dev descriptor of the device
648 * @scancode:   the scancode that we're seeking
649 * @toggle:     the toggle value (protocol dependent, if the protocol doesn't
650 *              support toggle values, this should be set to zero)
651 *
652 * This routine is used to signal that a key has been pressed on the
653 * remote control.
654 */
655void rc_keydown(struct rc_dev *dev, int scancode, u8 toggle)
656{
657	unsigned long flags;
658	u32 keycode = rc_g_keycode_from_table(dev, scancode);
659
660	spin_lock_irqsave(&dev->keylock, flags);
661	ir_do_keydown(dev, scancode, keycode, toggle);
662
663	if (dev->keypressed) {
664		dev->keyup_jiffies = jiffies + msecs_to_jiffies(IR_KEYPRESS_TIMEOUT);
665		mod_timer(&dev->timer_keyup, dev->keyup_jiffies);
666	}
667	spin_unlock_irqrestore(&dev->keylock, flags);
668}
669EXPORT_SYMBOL_GPL(rc_keydown);
670
671/**
672 * rc_keydown_notimeout() - generates input event for a key press without
673 *                          an automatic keyup event at a later time
674 * @dev:	the struct rc_dev descriptor of the device
675 * @scancode:   the scancode that we're seeking
676 * @toggle:     the toggle value (protocol dependent, if the protocol doesn't
677 *              support toggle values, this should be set to zero)
678 *
679 * This routine is used to signal that a key has been pressed on the
680 * remote control. The driver must manually call rc_keyup() at a later stage.
681 */
682void rc_keydown_notimeout(struct rc_dev *dev, int scancode, u8 toggle)
683{
684	unsigned long flags;
685	u32 keycode = rc_g_keycode_from_table(dev, scancode);
686
687	spin_lock_irqsave(&dev->keylock, flags);
688	ir_do_keydown(dev, scancode, keycode, toggle);
689	spin_unlock_irqrestore(&dev->keylock, flags);
690}
691EXPORT_SYMBOL_GPL(rc_keydown_notimeout);
692
693static int ir_open(struct input_dev *idev)
694{
695	struct rc_dev *rdev = input_get_drvdata(idev);
696
697	return rdev->open(rdev);
698}
699
700static void ir_close(struct input_dev *idev)
701{
702	struct rc_dev *rdev = input_get_drvdata(idev);
703
704	rdev->close(rdev);
705}
706
707/* class for /sys/class/rc */
708static char *ir_devnode(struct device *dev, mode_t *mode)
709{
710	return kasprintf(GFP_KERNEL, "rc/%s", dev_name(dev));
711}
712
713static struct class ir_input_class = {
714	.name		= "rc",
715	.devnode	= ir_devnode,
716};
717
718static struct {
719	u64	type;
720	char	*name;
721} proto_names[] = {
722	{ RC_TYPE_UNKNOWN,	"unknown"	},
723	{ RC_TYPE_RC5,		"rc-5"		},
724	{ RC_TYPE_NEC,		"nec"		},
725	{ RC_TYPE_RC6,		"rc-6"		},
726	{ RC_TYPE_JVC,		"jvc"		},
727	{ RC_TYPE_SONY,		"sony"		},
728	{ RC_TYPE_RC5_SZ,	"rc-5-sz"	},
729	{ RC_TYPE_LIRC,		"lirc"		},
730};
731
732#define PROTO_NONE	"none"
733
734/**
735 * show_protocols() - shows the current IR protocol(s)
736 * @device:	the device descriptor
737 * @mattr:	the device attribute struct (unused)
738 * @buf:	a pointer to the output buffer
739 *
740 * This routine is a callback routine for input read the IR protocol type(s).
741 * it is trigged by reading /sys/class/rc/rc?/protocols.
742 * It returns the protocol names of supported protocols.
743 * Enabled protocols are printed in brackets.
744 */
745static ssize_t show_protocols(struct device *device,
746			      struct device_attribute *mattr, char *buf)
747{
748	struct rc_dev *dev = to_rc_dev(device);
749	u64 allowed, enabled;
750	char *tmp = buf;
751	int i;
752
753	/* Device is being removed */
754	if (!dev)
755		return -EINVAL;
756
757	if (dev->driver_type == RC_DRIVER_SCANCODE) {
758		enabled = dev->rc_map.rc_type;
759		allowed = dev->allowed_protos;
760	} else {
761		enabled = dev->raw->enabled_protocols;
762		allowed = ir_raw_get_allowed_protocols();
763	}
764
765	IR_dprintk(1, "allowed - 0x%llx, enabled - 0x%llx\n",
766		   (long long)allowed,
767		   (long long)enabled);
768
769	for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
770		if (allowed & enabled & proto_names[i].type)
771			tmp += sprintf(tmp, "[%s] ", proto_names[i].name);
772		else if (allowed & proto_names[i].type)
773			tmp += sprintf(tmp, "%s ", proto_names[i].name);
774	}
775
776	if (tmp != buf)
777		tmp--;
778	*tmp = '\n';
779	return tmp + 1 - buf;
780}
781
782/**
783 * store_protocols() - changes the current IR protocol(s)
784 * @device:	the device descriptor
785 * @mattr:	the device attribute struct (unused)
786 * @buf:	a pointer to the input buffer
787 * @len:	length of the input buffer
788 *
789 * This routine is for changing the IR protocol type.
790 * It is trigged by writing to /sys/class/rc/rc?/protocols.
791 * Writing "+proto" will add a protocol to the list of enabled protocols.
792 * Writing "-proto" will remove a protocol from the list of enabled protocols.
793 * Writing "proto" will enable only "proto".
794 * Writing "none" will disable all protocols.
795 * Returns -EINVAL if an invalid protocol combination or unknown protocol name
796 * is used, otherwise @len.
797 */
798static ssize_t store_protocols(struct device *device,
799			       struct device_attribute *mattr,
800			       const char *data,
801			       size_t len)
802{
803	struct rc_dev *dev = to_rc_dev(device);
804	bool enable, disable;
805	const char *tmp;
806	u64 type;
807	u64 mask;
808	int rc, i, count = 0;
809	unsigned long flags;
810
811	/* Device is being removed */
812	if (!dev)
813		return -EINVAL;
814
815	if (dev->driver_type == RC_DRIVER_SCANCODE)
816		type = dev->rc_map.rc_type;
817	else if (dev->raw)
818		type = dev->raw->enabled_protocols;
819	else {
820		IR_dprintk(1, "Protocol switching not supported\n");
821		return -EINVAL;
822	}
823
824	while ((tmp = strsep((char **) &data, " \n")) != NULL) {
825		if (!*tmp)
826			break;
827
828		if (*tmp == '+') {
829			enable = true;
830			disable = false;
831			tmp++;
832		} else if (*tmp == '-') {
833			enable = false;
834			disable = true;
835			tmp++;
836		} else {
837			enable = false;
838			disable = false;
839		}
840
841		if (!enable && !disable && !strncasecmp(tmp, PROTO_NONE, sizeof(PROTO_NONE))) {
842			tmp += sizeof(PROTO_NONE);
843			mask = 0;
844			count++;
845		} else {
846			for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
847				if (!strncasecmp(tmp, proto_names[i].name, strlen(proto_names[i].name))) {
848					tmp += strlen(proto_names[i].name);
849					mask = proto_names[i].type;
850					break;
851				}
852			}
853			if (i == ARRAY_SIZE(proto_names)) {
854				IR_dprintk(1, "Unknown protocol: '%s'\n", tmp);
855				return -EINVAL;
856			}
857			count++;
858		}
859
860		if (enable)
861			type |= mask;
862		else if (disable)
863			type &= ~mask;
864		else
865			type = mask;
866	}
867
868	if (!count) {
869		IR_dprintk(1, "Protocol not specified\n");
870		return -EINVAL;
871	}
872
873	if (dev->change_protocol) {
874		rc = dev->change_protocol(dev, type);
875		if (rc < 0) {
876			IR_dprintk(1, "Error setting protocols to 0x%llx\n",
877				   (long long)type);
878			return -EINVAL;
879		}
880	}
881
882	if (dev->driver_type == RC_DRIVER_SCANCODE) {
883		spin_lock_irqsave(&dev->rc_map.lock, flags);
884		dev->rc_map.rc_type = type;
885		spin_unlock_irqrestore(&dev->rc_map.lock, flags);
886	} else {
887		dev->raw->enabled_protocols = type;
888	}
889
890	IR_dprintk(1, "Current protocol(s): 0x%llx\n",
891		   (long long)type);
892
893	return len;
894}
895
896static void rc_dev_release(struct device *device)
897{
898	struct rc_dev *dev = to_rc_dev(device);
899
900	kfree(dev);
901	module_put(THIS_MODULE);
902}
903
904#define ADD_HOTPLUG_VAR(fmt, val...)					\
905	do {								\
906		int err = add_uevent_var(env, fmt, val);		\
907		if (err)						\
908			return err;					\
909	} while (0)
910
911static int rc_dev_uevent(struct device *device, struct kobj_uevent_env *env)
912{
913	struct rc_dev *dev = to_rc_dev(device);
914
915	if (dev->rc_map.name)
916		ADD_HOTPLUG_VAR("NAME=%s", dev->rc_map.name);
917	if (dev->driver_name)
918		ADD_HOTPLUG_VAR("DRV_NAME=%s", dev->driver_name);
919
920	return 0;
921}
922
923/*
924 * Static device attribute struct with the sysfs attributes for IR's
925 */
926static DEVICE_ATTR(protocols, S_IRUGO | S_IWUSR,
927		   show_protocols, store_protocols);
928
929static struct attribute *rc_dev_attrs[] = {
930	&dev_attr_protocols.attr,
931	NULL,
932};
933
934static struct attribute_group rc_dev_attr_grp = {
935	.attrs	= rc_dev_attrs,
936};
937
938static const struct attribute_group *rc_dev_attr_groups[] = {
939	&rc_dev_attr_grp,
940	NULL
941};
942
943static struct device_type rc_dev_type = {
944	.groups		= rc_dev_attr_groups,
945	.release	= rc_dev_release,
946	.uevent		= rc_dev_uevent,
947};
948
949struct rc_dev *rc_allocate_device(void)
950{
951	struct rc_dev *dev;
952
953	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
954	if (!dev)
955		return NULL;
956
957	dev->input_dev = input_allocate_device();
958	if (!dev->input_dev) {
959		kfree(dev);
960		return NULL;
961	}
962
963	dev->input_dev->getkeycode_new = ir_getkeycode;
964	dev->input_dev->setkeycode_new = ir_setkeycode;
965	input_set_drvdata(dev->input_dev, dev);
966
967	spin_lock_init(&dev->rc_map.lock);
968	spin_lock_init(&dev->keylock);
969	setup_timer(&dev->timer_keyup, ir_timer_keyup, (unsigned long)dev);
970
971	dev->dev.type = &rc_dev_type;
972	dev->dev.class = &ir_input_class;
973	device_initialize(&dev->dev);
974
975	__module_get(THIS_MODULE);
976	return dev;
977}
978EXPORT_SYMBOL_GPL(rc_allocate_device);
979
980void rc_free_device(struct rc_dev *dev)
981{
982	if (dev) {
983		input_free_device(dev->input_dev);
984		put_device(&dev->dev);
985	}
986}
987EXPORT_SYMBOL_GPL(rc_free_device);
988
989int rc_register_device(struct rc_dev *dev)
990{
991	static atomic_t devno = ATOMIC_INIT(0);
992	struct rc_map *rc_map;
993	const char *path;
994	int rc;
995
996	if (!dev || !dev->map_name)
997		return -EINVAL;
998
999	rc_map = rc_map_get(dev->map_name);
1000	if (!rc_map)
1001		rc_map = rc_map_get(RC_MAP_EMPTY);
1002	if (!rc_map || !rc_map->scan || rc_map->size == 0)
1003		return -EINVAL;
1004
1005	set_bit(EV_KEY, dev->input_dev->evbit);
1006	set_bit(EV_REP, dev->input_dev->evbit);
1007	set_bit(EV_MSC, dev->input_dev->evbit);
1008	set_bit(MSC_SCAN, dev->input_dev->mscbit);
1009	if (dev->open)
1010		dev->input_dev->open = ir_open;
1011	if (dev->close)
1012		dev->input_dev->close = ir_close;
1013
1014	dev->devno = (unsigned long)(atomic_inc_return(&devno) - 1);
1015	dev_set_name(&dev->dev, "rc%ld", dev->devno);
1016	dev_set_drvdata(&dev->dev, dev);
1017	rc = device_add(&dev->dev);
1018	if (rc)
1019		return rc;
1020
1021	rc = ir_setkeytable(dev, rc_map);
1022	if (rc)
1023		goto out_dev;
1024
1025	dev->input_dev->dev.parent = &dev->dev;
1026	memcpy(&dev->input_dev->id, &dev->input_id, sizeof(dev->input_id));
1027	dev->input_dev->phys = dev->input_phys;
1028	dev->input_dev->name = dev->input_name;
1029	rc = input_register_device(dev->input_dev);
1030	if (rc)
1031		goto out_table;
1032
1033	/*
1034	 * Default delay of 250ms is too short for some protocols, expecially
1035	 * since the timeout is currently set to 250ms. Increase it to 500ms,
1036	 * to avoid wrong repetition of the keycodes. Note that this must be
1037	 * set after the call to input_register_device().
1038	 */
1039	dev->input_dev->rep[REP_DELAY] = 500;
1040
1041	path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1042	printk(KERN_INFO "%s: %s as %s\n",
1043		dev_name(&dev->dev),
1044		dev->input_name ? dev->input_name : "Unspecified device",
1045		path ? path : "N/A");
1046	kfree(path);
1047
1048	if (dev->driver_type == RC_DRIVER_IR_RAW) {
1049		rc = ir_raw_event_register(dev);
1050		if (rc < 0)
1051			goto out_input;
1052	}
1053
1054	if (dev->change_protocol) {
1055		rc = dev->change_protocol(dev, rc_map->rc_type);
1056		if (rc < 0)
1057			goto out_raw;
1058	}
1059
1060	IR_dprintk(1, "Registered rc%ld (driver: %s, remote: %s, mode %s)\n",
1061		   dev->devno,
1062		   dev->driver_name ? dev->driver_name : "unknown",
1063		   rc_map->name ? rc_map->name : "unknown",
1064		   dev->driver_type == RC_DRIVER_IR_RAW ? "raw" : "cooked");
1065
1066	return 0;
1067
1068out_raw:
1069	if (dev->driver_type == RC_DRIVER_IR_RAW)
1070		ir_raw_event_unregister(dev);
1071out_input:
1072	input_unregister_device(dev->input_dev);
1073	dev->input_dev = NULL;
1074out_table:
1075	ir_free_table(&dev->rc_map);
1076out_dev:
1077	device_del(&dev->dev);
1078	return rc;
1079}
1080EXPORT_SYMBOL_GPL(rc_register_device);
1081
1082void rc_unregister_device(struct rc_dev *dev)
1083{
1084	if (!dev)
1085		return;
1086
1087	del_timer_sync(&dev->timer_keyup);
1088
1089	if (dev->driver_type == RC_DRIVER_IR_RAW)
1090		ir_raw_event_unregister(dev);
1091
1092	input_unregister_device(dev->input_dev);
1093	dev->input_dev = NULL;
1094
1095	ir_free_table(&dev->rc_map);
1096	IR_dprintk(1, "Freed keycode table\n");
1097
1098	device_unregister(&dev->dev);
1099}
1100EXPORT_SYMBOL_GPL(rc_unregister_device);
1101
1102/*
1103 * Init/exit code for the module. Basically, creates/removes /sys/class/rc
1104 */
1105
1106static int __init rc_core_init(void)
1107{
1108	int rc = class_register(&ir_input_class);
1109	if (rc) {
1110		printk(KERN_ERR "rc_core: unable to register rc class\n");
1111		return rc;
1112	}
1113
1114	/* Initialize/load the decoders/keymap code that will be used */
1115	ir_raw_init();
1116	rc_map_register(&empty_map);
1117
1118	return 0;
1119}
1120
1121static void __exit rc_core_exit(void)
1122{
1123	class_unregister(&ir_input_class);
1124	rc_map_unregister(&empty_map);
1125}
1126
1127module_init(rc_core_init);
1128module_exit(rc_core_exit);
1129
1130int rc_core_debug;    /* ir_debug level (0,1,2) */
1131EXPORT_SYMBOL_GPL(rc_core_debug);
1132module_param_named(debug, rc_core_debug, int, 0644);
1133
1134MODULE_AUTHOR("Mauro Carvalho Chehab <mchehab@redhat.com>");
1135MODULE_LICENSE("GPL");
1136