cx23888-ir.c revision dc69798447173a6b711fe36b714892dd2e880297
1/*
2 *  Driver for the Conexant CX23885/7/8 PCIe bridge
3 *
4 *  CX23888 Integrated Consumer Infrared Controller
5 *
6 *  Copyright (C) 2009  Andy Walls <awalls@md.metrocast.net>
7 *
8 *  This program is free software; you can redistribute it and/or
9 *  modify it under the terms of the GNU General Public License
10 *  as published by the Free Software Foundation; either version 2
11 *  of the License, or (at your option) any later version.
12 *
13 *  This program is distributed in the hope that it will be useful,
14 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
15 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 *  GNU General Public License for more details.
17 *
18 *  You should have received a copy of the GNU General Public License
19 *  along with this program; if not, write to the Free Software
20 *  Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
21 *  02110-1301, USA.
22 */
23
24#include <linux/kfifo.h>
25#include <linux/slab.h>
26
27#include <media/v4l2-device.h>
28#include <media/v4l2-chip-ident.h>
29#include <media/ir-core.h>
30
31#include "cx23885.h"
32
33static unsigned int ir_888_debug;
34module_param(ir_888_debug, int, 0644);
35MODULE_PARM_DESC(ir_888_debug, "enable debug messages [CX23888 IR controller]");
36
37#define CX23888_IR_REG_BASE 	0x170000
38/*
39 * These CX23888 register offsets have a straightforward one to one mapping
40 * to the CX23885 register offsets of 0x200 through 0x218
41 */
42#define CX23888_IR_CNTRL_REG	0x170000
43#define CNTRL_WIN_3_3	0x00000000
44#define CNTRL_WIN_4_3	0x00000001
45#define CNTRL_WIN_3_4	0x00000002
46#define CNTRL_WIN_4_4	0x00000003
47#define CNTRL_WIN	0x00000003
48#define CNTRL_EDG_NONE	0x00000000
49#define CNTRL_EDG_FALL	0x00000004
50#define CNTRL_EDG_RISE	0x00000008
51#define CNTRL_EDG_BOTH	0x0000000C
52#define CNTRL_EDG	0x0000000C
53#define CNTRL_DMD	0x00000010
54#define CNTRL_MOD	0x00000020
55#define CNTRL_RFE	0x00000040
56#define CNTRL_TFE	0x00000080
57#define CNTRL_RXE	0x00000100
58#define CNTRL_TXE	0x00000200
59#define CNTRL_RIC	0x00000400
60#define CNTRL_TIC	0x00000800
61#define CNTRL_CPL	0x00001000
62#define CNTRL_LBM	0x00002000
63#define CNTRL_R		0x00004000
64/* CX23888 specific control flag */
65#define CNTRL_IVO	0x00008000
66
67#define CX23888_IR_TXCLK_REG	0x170004
68#define TXCLK_TCD	0x0000FFFF
69
70#define CX23888_IR_RXCLK_REG	0x170008
71#define RXCLK_RCD	0x0000FFFF
72
73#define CX23888_IR_CDUTY_REG	0x17000C
74#define CDUTY_CDC	0x0000000F
75
76#define CX23888_IR_STATS_REG	0x170010
77#define STATS_RTO	0x00000001
78#define STATS_ROR	0x00000002
79#define STATS_RBY	0x00000004
80#define STATS_TBY	0x00000008
81#define STATS_RSR	0x00000010
82#define STATS_TSR	0x00000020
83
84#define CX23888_IR_IRQEN_REG	0x170014
85#define IRQEN_RTE	0x00000001
86#define IRQEN_ROE	0x00000002
87#define IRQEN_RSE	0x00000010
88#define IRQEN_TSE	0x00000020
89
90#define CX23888_IR_FILTR_REG	0x170018
91#define FILTR_LPF	0x0000FFFF
92
93/* This register doesn't follow the pattern; it's 0x23C on a CX23885 */
94#define CX23888_IR_FIFO_REG	0x170040
95#define FIFO_RXTX	0x0000FFFF
96#define FIFO_RXTX_LVL	0x00010000
97#define FIFO_RXTX_RTO	0x0001FFFF
98#define FIFO_RX_NDV	0x00020000
99#define FIFO_RX_DEPTH	8
100#define FIFO_TX_DEPTH	8
101
102/* CX23888 unique registers */
103#define CX23888_IR_SEEDP_REG	0x17001C
104#define CX23888_IR_TIMOL_REG	0x170020
105#define CX23888_IR_WAKE0_REG	0x170024
106#define CX23888_IR_WAKE1_REG	0x170028
107#define CX23888_IR_WAKE2_REG	0x17002C
108#define CX23888_IR_MASK0_REG	0x170030
109#define CX23888_IR_MASK1_REG	0x170034
110#define CX23888_IR_MAKS2_REG	0x170038
111#define CX23888_IR_DPIPG_REG	0x17003C
112#define CX23888_IR_LEARN_REG	0x170044
113
114#define CX23888_VIDCLK_FREQ	108000000 /* 108 MHz, BT.656 */
115#define CX23888_IR_REFCLK_FREQ	(CX23888_VIDCLK_FREQ / 2)
116
117/*
118 * We use this union internally for convenience, but callers to tx_write
119 * and rx_read will be expecting records of type struct ir_raw_event.
120 * Always ensure the size of this union is dictated by struct ir_raw_event.
121 */
122union cx23888_ir_fifo_rec {
123	u32 hw_fifo_data;
124	struct ir_raw_event ir_core_data;
125};
126
127#define CX23888_IR_RX_KFIFO_SIZE    (256 * sizeof(union cx23888_ir_fifo_rec))
128#define CX23888_IR_TX_KFIFO_SIZE    (256 * sizeof(union cx23888_ir_fifo_rec))
129
130struct cx23888_ir_state {
131	struct v4l2_subdev sd;
132	struct cx23885_dev *dev;
133	u32 id;
134	u32 rev;
135
136	struct v4l2_subdev_ir_parameters rx_params;
137	struct mutex rx_params_lock;
138	atomic_t rxclk_divider;
139	atomic_t rx_invert;
140
141	struct kfifo rx_kfifo;
142	spinlock_t rx_kfifo_lock;
143
144	struct v4l2_subdev_ir_parameters tx_params;
145	struct mutex tx_params_lock;
146	atomic_t txclk_divider;
147};
148
149static inline struct cx23888_ir_state *to_state(struct v4l2_subdev *sd)
150{
151	return v4l2_get_subdevdata(sd);
152}
153
154/*
155 * IR register block read and write functions
156 */
157static
158inline int cx23888_ir_write4(struct cx23885_dev *dev, u32 addr, u32 value)
159{
160	cx_write(addr, value);
161	return 0;
162}
163
164static inline u32 cx23888_ir_read4(struct cx23885_dev *dev, u32 addr)
165{
166	return cx_read(addr);
167}
168
169static inline int cx23888_ir_and_or4(struct cx23885_dev *dev, u32 addr,
170				     u32 and_mask, u32 or_value)
171{
172	cx_andor(addr, ~and_mask, or_value);
173	return 0;
174}
175
176/*
177 * Rx and Tx Clock Divider register computations
178 *
179 * Note the largest clock divider value of 0xffff corresponds to:
180 * 	(0xffff + 1) * 1000 / 108/2 MHz = 1,213,629.629... ns
181 * which fits in 21 bits, so we'll use unsigned int for time arguments.
182 */
183static inline u16 count_to_clock_divider(unsigned int d)
184{
185	if (d > RXCLK_RCD + 1)
186		d = RXCLK_RCD;
187	else if (d < 2)
188		d = 1;
189	else
190		d--;
191	return (u16) d;
192}
193
194static inline u16 ns_to_clock_divider(unsigned int ns)
195{
196	return count_to_clock_divider(
197		DIV_ROUND_CLOSEST(CX23888_IR_REFCLK_FREQ / 1000000 * ns, 1000));
198}
199
200static inline unsigned int clock_divider_to_ns(unsigned int divider)
201{
202	/* Period of the Rx or Tx clock in ns */
203	return DIV_ROUND_CLOSEST((divider + 1) * 1000,
204				 CX23888_IR_REFCLK_FREQ / 1000000);
205}
206
207static inline u16 carrier_freq_to_clock_divider(unsigned int freq)
208{
209	return count_to_clock_divider(
210			  DIV_ROUND_CLOSEST(CX23888_IR_REFCLK_FREQ, freq * 16));
211}
212
213static inline unsigned int clock_divider_to_carrier_freq(unsigned int divider)
214{
215	return DIV_ROUND_CLOSEST(CX23888_IR_REFCLK_FREQ, (divider + 1) * 16);
216}
217
218static inline u16 freq_to_clock_divider(unsigned int freq,
219					unsigned int rollovers)
220{
221	return count_to_clock_divider(
222		   DIV_ROUND_CLOSEST(CX23888_IR_REFCLK_FREQ, freq * rollovers));
223}
224
225static inline unsigned int clock_divider_to_freq(unsigned int divider,
226						 unsigned int rollovers)
227{
228	return DIV_ROUND_CLOSEST(CX23888_IR_REFCLK_FREQ,
229				 (divider + 1) * rollovers);
230}
231
232/*
233 * Low Pass Filter register calculations
234 *
235 * Note the largest count value of 0xffff corresponds to:
236 * 	0xffff * 1000 / 108/2 MHz = 1,213,611.11... ns
237 * which fits in 21 bits, so we'll use unsigned int for time arguments.
238 */
239static inline u16 count_to_lpf_count(unsigned int d)
240{
241	if (d > FILTR_LPF)
242		d = FILTR_LPF;
243	else if (d < 4)
244		d = 0;
245	return (u16) d;
246}
247
248static inline u16 ns_to_lpf_count(unsigned int ns)
249{
250	return count_to_lpf_count(
251		DIV_ROUND_CLOSEST(CX23888_IR_REFCLK_FREQ / 1000000 * ns, 1000));
252}
253
254static inline unsigned int lpf_count_to_ns(unsigned int count)
255{
256	/* Duration of the Low Pass Filter rejection window in ns */
257	return DIV_ROUND_CLOSEST(count * 1000,
258				 CX23888_IR_REFCLK_FREQ / 1000000);
259}
260
261static inline unsigned int lpf_count_to_us(unsigned int count)
262{
263	/* Duration of the Low Pass Filter rejection window in us */
264	return DIV_ROUND_CLOSEST(count, CX23888_IR_REFCLK_FREQ / 1000000);
265}
266
267/*
268 * FIFO register pulse width count compuations
269 */
270static u32 clock_divider_to_resolution(u16 divider)
271{
272	/*
273	 * Resolution is the duration of 1 tick of the readable portion of
274	 * of the pulse width counter as read from the FIFO.  The two lsb's are
275	 * not readable, hence the << 2.  This function returns ns.
276	 */
277	return DIV_ROUND_CLOSEST((1 << 2)  * ((u32) divider + 1) * 1000,
278				 CX23888_IR_REFCLK_FREQ / 1000000);
279}
280
281static u64 pulse_width_count_to_ns(u16 count, u16 divider)
282{
283	u64 n;
284	u32 rem;
285
286	/*
287	 * The 2 lsb's of the pulse width timer count are not readable, hence
288	 * the (count << 2) | 0x3
289	 */
290	n = (((u64) count << 2) | 0x3) * (divider + 1) * 1000; /* millicycles */
291	rem = do_div(n, CX23888_IR_REFCLK_FREQ / 1000000);     /* / MHz => ns */
292	if (rem >= CX23888_IR_REFCLK_FREQ / 1000000 / 2)
293		n++;
294	return n;
295}
296
297static unsigned int pulse_width_count_to_us(u16 count, u16 divider)
298{
299	u64 n;
300	u32 rem;
301
302	/*
303	 * The 2 lsb's of the pulse width timer count are not readable, hence
304	 * the (count << 2) | 0x3
305	 */
306	n = (((u64) count << 2) | 0x3) * (divider + 1);    /* cycles      */
307	rem = do_div(n, CX23888_IR_REFCLK_FREQ / 1000000); /* / MHz => us */
308	if (rem >= CX23888_IR_REFCLK_FREQ / 1000000 / 2)
309		n++;
310	return (unsigned int) n;
311}
312
313/*
314 * Pulse Clocks computations: Combined Pulse Width Count & Rx Clock Counts
315 *
316 * The total pulse clock count is an 18 bit pulse width timer count as the most
317 * significant part and (up to) 16 bit clock divider count as a modulus.
318 * When the Rx clock divider ticks down to 0, it increments the 18 bit pulse
319 * width timer count's least significant bit.
320 */
321static u64 ns_to_pulse_clocks(u32 ns)
322{
323	u64 clocks;
324	u32 rem;
325	clocks = CX23888_IR_REFCLK_FREQ / 1000000 * (u64) ns; /* millicycles  */
326	rem = do_div(clocks, 1000);                         /* /1000 = cycles */
327	if (rem >= 1000 / 2)
328		clocks++;
329	return clocks;
330}
331
332static u16 pulse_clocks_to_clock_divider(u64 count)
333{
334	u32 rem;
335
336	rem = do_div(count, (FIFO_RXTX << 2) | 0x3);
337
338	/* net result needs to be rounded down and decremented by 1 */
339	if (count > RXCLK_RCD + 1)
340		count = RXCLK_RCD;
341	else if (count < 2)
342		count = 1;
343	else
344		count--;
345	return (u16) count;
346}
347
348/*
349 * IR Control Register helpers
350 */
351enum tx_fifo_watermark {
352	TX_FIFO_HALF_EMPTY = 0,
353	TX_FIFO_EMPTY      = CNTRL_TIC,
354};
355
356enum rx_fifo_watermark {
357	RX_FIFO_HALF_FULL = 0,
358	RX_FIFO_NOT_EMPTY = CNTRL_RIC,
359};
360
361static inline void control_tx_irq_watermark(struct cx23885_dev *dev,
362					    enum tx_fifo_watermark level)
363{
364	cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~CNTRL_TIC, level);
365}
366
367static inline void control_rx_irq_watermark(struct cx23885_dev *dev,
368					    enum rx_fifo_watermark level)
369{
370	cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~CNTRL_RIC, level);
371}
372
373static inline void control_tx_enable(struct cx23885_dev *dev, bool enable)
374{
375	cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~(CNTRL_TXE | CNTRL_TFE),
376			   enable ? (CNTRL_TXE | CNTRL_TFE) : 0);
377}
378
379static inline void control_rx_enable(struct cx23885_dev *dev, bool enable)
380{
381	cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~(CNTRL_RXE | CNTRL_RFE),
382			   enable ? (CNTRL_RXE | CNTRL_RFE) : 0);
383}
384
385static inline void control_tx_modulation_enable(struct cx23885_dev *dev,
386						bool enable)
387{
388	cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~CNTRL_MOD,
389			   enable ? CNTRL_MOD : 0);
390}
391
392static inline void control_rx_demodulation_enable(struct cx23885_dev *dev,
393						  bool enable)
394{
395	cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~CNTRL_DMD,
396			   enable ? CNTRL_DMD : 0);
397}
398
399static inline void control_rx_s_edge_detection(struct cx23885_dev *dev,
400					       u32 edge_types)
401{
402	cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~CNTRL_EDG_BOTH,
403			   edge_types & CNTRL_EDG_BOTH);
404}
405
406static void control_rx_s_carrier_window(struct cx23885_dev *dev,
407					unsigned int carrier,
408					unsigned int *carrier_range_low,
409					unsigned int *carrier_range_high)
410{
411	u32 v;
412	unsigned int c16 = carrier * 16;
413
414	if (*carrier_range_low < DIV_ROUND_CLOSEST(c16, 16 + 3)) {
415		v = CNTRL_WIN_3_4;
416		*carrier_range_low = DIV_ROUND_CLOSEST(c16, 16 + 4);
417	} else {
418		v = CNTRL_WIN_3_3;
419		*carrier_range_low = DIV_ROUND_CLOSEST(c16, 16 + 3);
420	}
421
422	if (*carrier_range_high > DIV_ROUND_CLOSEST(c16, 16 - 3)) {
423		v |= CNTRL_WIN_4_3;
424		*carrier_range_high = DIV_ROUND_CLOSEST(c16, 16 - 4);
425	} else {
426		v |= CNTRL_WIN_3_3;
427		*carrier_range_high = DIV_ROUND_CLOSEST(c16, 16 - 3);
428	}
429	cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~CNTRL_WIN, v);
430}
431
432static inline void control_tx_polarity_invert(struct cx23885_dev *dev,
433					      bool invert)
434{
435	cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~CNTRL_CPL,
436			   invert ? CNTRL_CPL : 0);
437}
438
439static inline void control_tx_level_invert(struct cx23885_dev *dev,
440					  bool invert)
441{
442	cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~CNTRL_IVO,
443			   invert ? CNTRL_IVO : 0);
444}
445
446/*
447 * IR Rx & Tx Clock Register helpers
448 */
449static unsigned int txclk_tx_s_carrier(struct cx23885_dev *dev,
450				       unsigned int freq,
451				       u16 *divider)
452{
453	*divider = carrier_freq_to_clock_divider(freq);
454	cx23888_ir_write4(dev, CX23888_IR_TXCLK_REG, *divider);
455	return clock_divider_to_carrier_freq(*divider);
456}
457
458static unsigned int rxclk_rx_s_carrier(struct cx23885_dev *dev,
459				       unsigned int freq,
460				       u16 *divider)
461{
462	*divider = carrier_freq_to_clock_divider(freq);
463	cx23888_ir_write4(dev, CX23888_IR_RXCLK_REG, *divider);
464	return clock_divider_to_carrier_freq(*divider);
465}
466
467static u32 txclk_tx_s_max_pulse_width(struct cx23885_dev *dev, u32 ns,
468				      u16 *divider)
469{
470	u64 pulse_clocks;
471
472	if (ns > IR_MAX_DURATION)
473		ns = IR_MAX_DURATION;
474	pulse_clocks = ns_to_pulse_clocks(ns);
475	*divider = pulse_clocks_to_clock_divider(pulse_clocks);
476	cx23888_ir_write4(dev, CX23888_IR_TXCLK_REG, *divider);
477	return (u32) pulse_width_count_to_ns(FIFO_RXTX, *divider);
478}
479
480static u32 rxclk_rx_s_max_pulse_width(struct cx23885_dev *dev, u32 ns,
481				      u16 *divider)
482{
483	u64 pulse_clocks;
484
485	if (ns > IR_MAX_DURATION)
486		ns = IR_MAX_DURATION;
487	pulse_clocks = ns_to_pulse_clocks(ns);
488	*divider = pulse_clocks_to_clock_divider(pulse_clocks);
489	cx23888_ir_write4(dev, CX23888_IR_RXCLK_REG, *divider);
490	return (u32) pulse_width_count_to_ns(FIFO_RXTX, *divider);
491}
492
493/*
494 * IR Tx Carrier Duty Cycle register helpers
495 */
496static unsigned int cduty_tx_s_duty_cycle(struct cx23885_dev *dev,
497					  unsigned int duty_cycle)
498{
499	u32 n;
500	n = DIV_ROUND_CLOSEST(duty_cycle * 100, 625); /* 16ths of 100% */
501	if (n != 0)
502		n--;
503	if (n > 15)
504		n = 15;
505	cx23888_ir_write4(dev, CX23888_IR_CDUTY_REG, n);
506	return DIV_ROUND_CLOSEST((n + 1) * 100, 16);
507}
508
509/*
510 * IR Filter Register helpers
511 */
512static u32 filter_rx_s_min_width(struct cx23885_dev *dev, u32 min_width_ns)
513{
514	u32 count = ns_to_lpf_count(min_width_ns);
515	cx23888_ir_write4(dev, CX23888_IR_FILTR_REG, count);
516	return lpf_count_to_ns(count);
517}
518
519/*
520 * IR IRQ Enable Register helpers
521 */
522static inline void irqenable_rx(struct cx23885_dev *dev, u32 mask)
523{
524	mask &= (IRQEN_RTE | IRQEN_ROE | IRQEN_RSE);
525	cx23888_ir_and_or4(dev, CX23888_IR_IRQEN_REG,
526			   ~(IRQEN_RTE | IRQEN_ROE | IRQEN_RSE), mask);
527}
528
529static inline void irqenable_tx(struct cx23885_dev *dev, u32 mask)
530{
531	mask &= IRQEN_TSE;
532	cx23888_ir_and_or4(dev, CX23888_IR_IRQEN_REG, ~IRQEN_TSE, mask);
533}
534
535/*
536 * V4L2 Subdevice IR Ops
537 */
538static int cx23888_ir_irq_handler(struct v4l2_subdev *sd, u32 status,
539				  bool *handled)
540{
541	struct cx23888_ir_state *state = to_state(sd);
542	struct cx23885_dev *dev = state->dev;
543	unsigned long flags;
544
545	u32 cntrl = cx23888_ir_read4(dev, CX23888_IR_CNTRL_REG);
546	u32 irqen = cx23888_ir_read4(dev, CX23888_IR_IRQEN_REG);
547	u32 stats = cx23888_ir_read4(dev, CX23888_IR_STATS_REG);
548
549	union cx23888_ir_fifo_rec rx_data[FIFO_RX_DEPTH];
550	unsigned int i, j, k;
551	u32 events, v;
552	int tsr, rsr, rto, ror, tse, rse, rte, roe, kror;
553
554	tsr = stats & STATS_TSR; /* Tx FIFO Service Request */
555	rsr = stats & STATS_RSR; /* Rx FIFO Service Request */
556	rto = stats & STATS_RTO; /* Rx Pulse Width Timer Time Out */
557	ror = stats & STATS_ROR; /* Rx FIFO Over Run */
558
559	tse = irqen & IRQEN_TSE; /* Tx FIFO Service Request IRQ Enable */
560	rse = irqen & IRQEN_RSE; /* Rx FIFO Service Reuqest IRQ Enable */
561	rte = irqen & IRQEN_RTE; /* Rx Pulse Width Timer Time Out IRQ Enable */
562	roe = irqen & IRQEN_ROE; /* Rx FIFO Over Run IRQ Enable */
563
564	*handled = false;
565	v4l2_dbg(2, ir_888_debug, sd, "IRQ Status:  %s %s %s %s %s %s\n",
566		 tsr ? "tsr" : "   ", rsr ? "rsr" : "   ",
567		 rto ? "rto" : "   ", ror ? "ror" : "   ",
568		 stats & STATS_TBY ? "tby" : "   ",
569		 stats & STATS_RBY ? "rby" : "   ");
570
571	v4l2_dbg(2, ir_888_debug, sd, "IRQ Enables: %s %s %s %s\n",
572		 tse ? "tse" : "   ", rse ? "rse" : "   ",
573		 rte ? "rte" : "   ", roe ? "roe" : "   ");
574
575	/*
576	 * Transmitter interrupt service
577	 */
578	if (tse && tsr) {
579		/*
580		 * TODO:
581		 * Check the watermark threshold setting
582		 * Pull FIFO_TX_DEPTH or FIFO_TX_DEPTH/2 entries from tx_kfifo
583		 * Push the data to the hardware FIFO.
584		 * If there was nothing more to send in the tx_kfifo, disable
585		 *	the TSR IRQ and notify the v4l2_device.
586		 * If there was something in the tx_kfifo, check the tx_kfifo
587		 *      level and notify the v4l2_device, if it is low.
588		 */
589		/* For now, inhibit TSR interrupt until Tx is implemented */
590		irqenable_tx(dev, 0);
591		events = V4L2_SUBDEV_IR_TX_FIFO_SERVICE_REQ;
592		v4l2_subdev_notify(sd, V4L2_SUBDEV_IR_TX_NOTIFY, &events);
593		*handled = true;
594	}
595
596	/*
597	 * Receiver interrupt service
598	 */
599	kror = 0;
600	if ((rse && rsr) || (rte && rto)) {
601		/*
602		 * Receive data on RSR to clear the STATS_RSR.
603		 * Receive data on RTO, since we may not have yet hit the RSR
604		 * watermark when we receive the RTO.
605		 */
606		for (i = 0, v = FIFO_RX_NDV;
607		     (v & FIFO_RX_NDV) && !kror; i = 0) {
608			for (j = 0;
609			     (v & FIFO_RX_NDV) && j < FIFO_RX_DEPTH; j++) {
610				v = cx23888_ir_read4(dev, CX23888_IR_FIFO_REG);
611				rx_data[i].hw_fifo_data = v & ~FIFO_RX_NDV;
612				i++;
613			}
614			if (i == 0)
615				break;
616			j = i * sizeof(union cx23888_ir_fifo_rec);
617			k = kfifo_in_locked(&state->rx_kfifo,
618				      (unsigned char *) rx_data, j,
619				      &state->rx_kfifo_lock);
620			if (k != j)
621				kror++; /* rx_kfifo over run */
622		}
623		*handled = true;
624	}
625
626	events = 0;
627	v = 0;
628	if (kror) {
629		events |= V4L2_SUBDEV_IR_RX_SW_FIFO_OVERRUN;
630		v4l2_err(sd, "IR receiver software FIFO overrun\n");
631	}
632	if (roe && ror) {
633		/*
634		 * The RX FIFO Enable (CNTRL_RFE) must be toggled to clear
635		 * the Rx FIFO Over Run status (STATS_ROR)
636		 */
637		v |= CNTRL_RFE;
638		events |= V4L2_SUBDEV_IR_RX_HW_FIFO_OVERRUN;
639		v4l2_err(sd, "IR receiver hardware FIFO overrun\n");
640	}
641	if (rte && rto) {
642		/*
643		 * The IR Receiver Enable (CNTRL_RXE) must be toggled to clear
644		 * the Rx Pulse Width Timer Time Out (STATS_RTO)
645		 */
646		v |= CNTRL_RXE;
647		events |= V4L2_SUBDEV_IR_RX_END_OF_RX_DETECTED;
648	}
649	if (v) {
650		/* Clear STATS_ROR & STATS_RTO as needed by reseting hardware */
651		cx23888_ir_write4(dev, CX23888_IR_CNTRL_REG, cntrl & ~v);
652		cx23888_ir_write4(dev, CX23888_IR_CNTRL_REG, cntrl);
653		*handled = true;
654	}
655
656	spin_lock_irqsave(&state->rx_kfifo_lock, flags);
657	if (kfifo_len(&state->rx_kfifo) >= CX23888_IR_RX_KFIFO_SIZE / 2)
658		events |= V4L2_SUBDEV_IR_RX_FIFO_SERVICE_REQ;
659	spin_unlock_irqrestore(&state->rx_kfifo_lock, flags);
660
661	if (events)
662		v4l2_subdev_notify(sd, V4L2_SUBDEV_IR_RX_NOTIFY, &events);
663	return 0;
664}
665
666/* Receiver */
667static int cx23888_ir_rx_read(struct v4l2_subdev *sd, u8 *buf, size_t count,
668			      ssize_t *num)
669{
670	struct cx23888_ir_state *state = to_state(sd);
671	bool invert = (bool) atomic_read(&state->rx_invert);
672	u16 divider = (u16) atomic_read(&state->rxclk_divider);
673
674	unsigned int i, n;
675	union cx23888_ir_fifo_rec *p;
676	unsigned u, v;
677
678	n = count / sizeof(union cx23888_ir_fifo_rec)
679		* sizeof(union cx23888_ir_fifo_rec);
680	if (n == 0) {
681		*num = 0;
682		return 0;
683	}
684
685	n = kfifo_out_locked(&state->rx_kfifo, buf, n, &state->rx_kfifo_lock);
686
687	n /= sizeof(union cx23888_ir_fifo_rec);
688	*num = n * sizeof(union cx23888_ir_fifo_rec);
689
690	for (p = (union cx23888_ir_fifo_rec *) buf, i = 0; i < n; p++, i++) {
691
692		if ((p->hw_fifo_data & FIFO_RXTX_RTO) == FIFO_RXTX_RTO) {
693			/* Assume RTO was because of no IR light input */
694			u = 0;
695			v4l2_dbg(2, ir_888_debug, sd, "rx read: end of rx\n");
696		} else {
697			u = (p->hw_fifo_data & FIFO_RXTX_LVL) ? 1 : 0;
698			if (invert)
699				u = u ? 0 : 1;
700		}
701
702		v = (unsigned) pulse_width_count_to_ns(
703				  (u16) (p->hw_fifo_data & FIFO_RXTX), divider);
704		if (v > IR_MAX_DURATION)
705			v = IR_MAX_DURATION;
706
707		init_ir_raw_event(&p->ir_core_data);
708		p->ir_core_data.pulse = u;
709		p->ir_core_data.duration = v;
710
711		v4l2_dbg(2, ir_888_debug, sd, "rx read: %10u ns  %s\n",
712			 v, u ? "mark" : "space");
713	}
714	return 0;
715}
716
717static int cx23888_ir_rx_g_parameters(struct v4l2_subdev *sd,
718				      struct v4l2_subdev_ir_parameters *p)
719{
720	struct cx23888_ir_state *state = to_state(sd);
721	mutex_lock(&state->rx_params_lock);
722	memcpy(p, &state->rx_params, sizeof(struct v4l2_subdev_ir_parameters));
723	mutex_unlock(&state->rx_params_lock);
724	return 0;
725}
726
727static int cx23888_ir_rx_shutdown(struct v4l2_subdev *sd)
728{
729	struct cx23888_ir_state *state = to_state(sd);
730	struct cx23885_dev *dev = state->dev;
731
732	mutex_lock(&state->rx_params_lock);
733
734	/* Disable or slow down all IR Rx circuits and counters */
735	irqenable_rx(dev, 0);
736	control_rx_enable(dev, false);
737	control_rx_demodulation_enable(dev, false);
738	control_rx_s_edge_detection(dev, CNTRL_EDG_NONE);
739	filter_rx_s_min_width(dev, 0);
740	cx23888_ir_write4(dev, CX23888_IR_RXCLK_REG, RXCLK_RCD);
741
742	state->rx_params.shutdown = true;
743
744	mutex_unlock(&state->rx_params_lock);
745	return 0;
746}
747
748static int cx23888_ir_rx_s_parameters(struct v4l2_subdev *sd,
749				      struct v4l2_subdev_ir_parameters *p)
750{
751	struct cx23888_ir_state *state = to_state(sd);
752	struct cx23885_dev *dev = state->dev;
753	struct v4l2_subdev_ir_parameters *o = &state->rx_params;
754	u16 rxclk_divider;
755
756	if (p->shutdown)
757		return cx23888_ir_rx_shutdown(sd);
758
759	if (p->mode != V4L2_SUBDEV_IR_MODE_PULSE_WIDTH)
760		return -ENOSYS;
761
762	mutex_lock(&state->rx_params_lock);
763
764	o->shutdown = p->shutdown;
765
766	o->mode = p->mode = V4L2_SUBDEV_IR_MODE_PULSE_WIDTH;
767
768	o->bytes_per_data_element = p->bytes_per_data_element
769				  = sizeof(union cx23888_ir_fifo_rec);
770
771	/* Before we tweak the hardware, we have to disable the receiver */
772	irqenable_rx(dev, 0);
773	control_rx_enable(dev, false);
774
775	control_rx_demodulation_enable(dev, p->modulation);
776	o->modulation = p->modulation;
777
778	if (p->modulation) {
779		p->carrier_freq = rxclk_rx_s_carrier(dev, p->carrier_freq,
780						     &rxclk_divider);
781
782		o->carrier_freq = p->carrier_freq;
783
784		o->duty_cycle = p->duty_cycle = 50;
785
786		control_rx_s_carrier_window(dev, p->carrier_freq,
787					    &p->carrier_range_lower,
788					    &p->carrier_range_upper);
789		o->carrier_range_lower = p->carrier_range_lower;
790		o->carrier_range_upper = p->carrier_range_upper;
791
792		p->max_pulse_width =
793			(u32) pulse_width_count_to_ns(FIFO_RXTX, rxclk_divider);
794	} else {
795		p->max_pulse_width =
796			    rxclk_rx_s_max_pulse_width(dev, p->max_pulse_width,
797						       &rxclk_divider);
798	}
799	o->max_pulse_width = p->max_pulse_width;
800	atomic_set(&state->rxclk_divider, rxclk_divider);
801
802	p->noise_filter_min_width =
803			  filter_rx_s_min_width(dev, p->noise_filter_min_width);
804	o->noise_filter_min_width = p->noise_filter_min_width;
805
806	p->resolution = clock_divider_to_resolution(rxclk_divider);
807	o->resolution = p->resolution;
808
809	/* FIXME - make this dependent on resolution for better performance */
810	control_rx_irq_watermark(dev, RX_FIFO_HALF_FULL);
811
812	control_rx_s_edge_detection(dev, CNTRL_EDG_BOTH);
813
814	o->invert_level = p->invert_level;
815	atomic_set(&state->rx_invert, p->invert_level);
816
817	o->interrupt_enable = p->interrupt_enable;
818	o->enable = p->enable;
819	if (p->enable) {
820		unsigned long flags;
821
822		spin_lock_irqsave(&state->rx_kfifo_lock, flags);
823		kfifo_reset(&state->rx_kfifo);
824		/* reset tx_fifo too if there is one... */
825		spin_unlock_irqrestore(&state->rx_kfifo_lock, flags);
826		if (p->interrupt_enable)
827			irqenable_rx(dev, IRQEN_RSE | IRQEN_RTE | IRQEN_ROE);
828		control_rx_enable(dev, p->enable);
829	}
830
831	mutex_unlock(&state->rx_params_lock);
832	return 0;
833}
834
835/* Transmitter */
836static int cx23888_ir_tx_write(struct v4l2_subdev *sd, u8 *buf, size_t count,
837			       ssize_t *num)
838{
839	struct cx23888_ir_state *state = to_state(sd);
840	struct cx23885_dev *dev = state->dev;
841	/* For now enable the Tx FIFO Service interrupt & pretend we did work */
842	irqenable_tx(dev, IRQEN_TSE);
843	*num = count;
844	return 0;
845}
846
847static int cx23888_ir_tx_g_parameters(struct v4l2_subdev *sd,
848				      struct v4l2_subdev_ir_parameters *p)
849{
850	struct cx23888_ir_state *state = to_state(sd);
851	mutex_lock(&state->tx_params_lock);
852	memcpy(p, &state->tx_params, sizeof(struct v4l2_subdev_ir_parameters));
853	mutex_unlock(&state->tx_params_lock);
854	return 0;
855}
856
857static int cx23888_ir_tx_shutdown(struct v4l2_subdev *sd)
858{
859	struct cx23888_ir_state *state = to_state(sd);
860	struct cx23885_dev *dev = state->dev;
861
862	mutex_lock(&state->tx_params_lock);
863
864	/* Disable or slow down all IR Tx circuits and counters */
865	irqenable_tx(dev, 0);
866	control_tx_enable(dev, false);
867	control_tx_modulation_enable(dev, false);
868	cx23888_ir_write4(dev, CX23888_IR_TXCLK_REG, TXCLK_TCD);
869
870	state->tx_params.shutdown = true;
871
872	mutex_unlock(&state->tx_params_lock);
873	return 0;
874}
875
876static int cx23888_ir_tx_s_parameters(struct v4l2_subdev *sd,
877				      struct v4l2_subdev_ir_parameters *p)
878{
879	struct cx23888_ir_state *state = to_state(sd);
880	struct cx23885_dev *dev = state->dev;
881	struct v4l2_subdev_ir_parameters *o = &state->tx_params;
882	u16 txclk_divider;
883
884	if (p->shutdown)
885		return cx23888_ir_tx_shutdown(sd);
886
887	if (p->mode != V4L2_SUBDEV_IR_MODE_PULSE_WIDTH)
888		return -ENOSYS;
889
890	mutex_lock(&state->tx_params_lock);
891
892	o->shutdown = p->shutdown;
893
894	o->mode = p->mode = V4L2_SUBDEV_IR_MODE_PULSE_WIDTH;
895
896	o->bytes_per_data_element = p->bytes_per_data_element
897				  = sizeof(union cx23888_ir_fifo_rec);
898
899	/* Before we tweak the hardware, we have to disable the transmitter */
900	irqenable_tx(dev, 0);
901	control_tx_enable(dev, false);
902
903	control_tx_modulation_enable(dev, p->modulation);
904	o->modulation = p->modulation;
905
906	if (p->modulation) {
907		p->carrier_freq = txclk_tx_s_carrier(dev, p->carrier_freq,
908						     &txclk_divider);
909		o->carrier_freq = p->carrier_freq;
910
911		p->duty_cycle = cduty_tx_s_duty_cycle(dev, p->duty_cycle);
912		o->duty_cycle = p->duty_cycle;
913
914		p->max_pulse_width =
915			(u32) pulse_width_count_to_ns(FIFO_RXTX, txclk_divider);
916	} else {
917		p->max_pulse_width =
918			    txclk_tx_s_max_pulse_width(dev, p->max_pulse_width,
919						       &txclk_divider);
920	}
921	o->max_pulse_width = p->max_pulse_width;
922	atomic_set(&state->txclk_divider, txclk_divider);
923
924	p->resolution = clock_divider_to_resolution(txclk_divider);
925	o->resolution = p->resolution;
926
927	/* FIXME - make this dependent on resolution for better performance */
928	control_tx_irq_watermark(dev, TX_FIFO_HALF_EMPTY);
929
930	control_tx_polarity_invert(dev, p->invert_carrier_sense);
931	o->invert_carrier_sense = p->invert_carrier_sense;
932
933	control_tx_level_invert(dev, p->invert_level);
934	o->invert_level = p->invert_level;
935
936	o->interrupt_enable = p->interrupt_enable;
937	o->enable = p->enable;
938	if (p->enable) {
939		if (p->interrupt_enable)
940			irqenable_tx(dev, IRQEN_TSE);
941		control_tx_enable(dev, p->enable);
942	}
943
944	mutex_unlock(&state->tx_params_lock);
945	return 0;
946}
947
948
949/*
950 * V4L2 Subdevice Core Ops
951 */
952static int cx23888_ir_log_status(struct v4l2_subdev *sd)
953{
954	struct cx23888_ir_state *state = to_state(sd);
955	struct cx23885_dev *dev = state->dev;
956	char *s;
957	int i, j;
958
959	u32 cntrl = cx23888_ir_read4(dev, CX23888_IR_CNTRL_REG);
960	u32 txclk = cx23888_ir_read4(dev, CX23888_IR_TXCLK_REG) & TXCLK_TCD;
961	u32 rxclk = cx23888_ir_read4(dev, CX23888_IR_RXCLK_REG) & RXCLK_RCD;
962	u32 cduty = cx23888_ir_read4(dev, CX23888_IR_CDUTY_REG) & CDUTY_CDC;
963	u32 stats = cx23888_ir_read4(dev, CX23888_IR_STATS_REG);
964	u32 irqen = cx23888_ir_read4(dev, CX23888_IR_IRQEN_REG);
965	u32 filtr = cx23888_ir_read4(dev, CX23888_IR_FILTR_REG) & FILTR_LPF;
966
967	v4l2_info(sd, "IR Receiver:\n");
968	v4l2_info(sd, "\tEnabled:                           %s\n",
969		  cntrl & CNTRL_RXE ? "yes" : "no");
970	v4l2_info(sd, "\tDemodulation from a carrier:       %s\n",
971		  cntrl & CNTRL_DMD ? "enabled" : "disabled");
972	v4l2_info(sd, "\tFIFO:                              %s\n",
973		  cntrl & CNTRL_RFE ? "enabled" : "disabled");
974	switch (cntrl & CNTRL_EDG) {
975	case CNTRL_EDG_NONE:
976		s = "disabled";
977		break;
978	case CNTRL_EDG_FALL:
979		s = "falling edge";
980		break;
981	case CNTRL_EDG_RISE:
982		s = "rising edge";
983		break;
984	case CNTRL_EDG_BOTH:
985		s = "rising & falling edges";
986		break;
987	default:
988		s = "??? edge";
989		break;
990	}
991	v4l2_info(sd, "\tPulse timers' start/stop trigger:  %s\n", s);
992	v4l2_info(sd, "\tFIFO data on pulse timer overflow: %s\n",
993		  cntrl & CNTRL_R ? "not loaded" : "overflow marker");
994	v4l2_info(sd, "\tFIFO interrupt watermark:          %s\n",
995		  cntrl & CNTRL_RIC ? "not empty" : "half full or greater");
996	v4l2_info(sd, "\tLoopback mode:                     %s\n",
997		  cntrl & CNTRL_LBM ? "loopback active" : "normal receive");
998	if (cntrl & CNTRL_DMD) {
999		v4l2_info(sd, "\tExpected carrier (16 clocks):      %u Hz\n",
1000			  clock_divider_to_carrier_freq(rxclk));
1001		switch (cntrl & CNTRL_WIN) {
1002		case CNTRL_WIN_3_3:
1003			i = 3;
1004			j = 3;
1005			break;
1006		case CNTRL_WIN_4_3:
1007			i = 4;
1008			j = 3;
1009			break;
1010		case CNTRL_WIN_3_4:
1011			i = 3;
1012			j = 4;
1013			break;
1014		case CNTRL_WIN_4_4:
1015			i = 4;
1016			j = 4;
1017			break;
1018		default:
1019			i = 0;
1020			j = 0;
1021			break;
1022		}
1023		v4l2_info(sd, "\tNext carrier edge window:          16 clocks "
1024			  "-%1d/+%1d, %u to %u Hz\n", i, j,
1025			  clock_divider_to_freq(rxclk, 16 + j),
1026			  clock_divider_to_freq(rxclk, 16 - i));
1027	}
1028	v4l2_info(sd, "\tMax measurable pulse width:        %u us, %llu ns\n",
1029		  pulse_width_count_to_us(FIFO_RXTX, rxclk),
1030		  pulse_width_count_to_ns(FIFO_RXTX, rxclk));
1031	v4l2_info(sd, "\tLow pass filter:                   %s\n",
1032		  filtr ? "enabled" : "disabled");
1033	if (filtr)
1034		v4l2_info(sd, "\tMin acceptable pulse width (LPF):  %u us, "
1035			  "%u ns\n",
1036			  lpf_count_to_us(filtr),
1037			  lpf_count_to_ns(filtr));
1038	v4l2_info(sd, "\tPulse width timer timed-out:       %s\n",
1039		  stats & STATS_RTO ? "yes" : "no");
1040	v4l2_info(sd, "\tPulse width timer time-out intr:   %s\n",
1041		  irqen & IRQEN_RTE ? "enabled" : "disabled");
1042	v4l2_info(sd, "\tFIFO overrun:                      %s\n",
1043		  stats & STATS_ROR ? "yes" : "no");
1044	v4l2_info(sd, "\tFIFO overrun interrupt:            %s\n",
1045		  irqen & IRQEN_ROE ? "enabled" : "disabled");
1046	v4l2_info(sd, "\tBusy:                              %s\n",
1047		  stats & STATS_RBY ? "yes" : "no");
1048	v4l2_info(sd, "\tFIFO service requested:            %s\n",
1049		  stats & STATS_RSR ? "yes" : "no");
1050	v4l2_info(sd, "\tFIFO service request interrupt:    %s\n",
1051		  irqen & IRQEN_RSE ? "enabled" : "disabled");
1052
1053	v4l2_info(sd, "IR Transmitter:\n");
1054	v4l2_info(sd, "\tEnabled:                           %s\n",
1055		  cntrl & CNTRL_TXE ? "yes" : "no");
1056	v4l2_info(sd, "\tModulation onto a carrier:         %s\n",
1057		  cntrl & CNTRL_MOD ? "enabled" : "disabled");
1058	v4l2_info(sd, "\tFIFO:                              %s\n",
1059		  cntrl & CNTRL_TFE ? "enabled" : "disabled");
1060	v4l2_info(sd, "\tFIFO interrupt watermark:          %s\n",
1061		  cntrl & CNTRL_TIC ? "not empty" : "half full or less");
1062	v4l2_info(sd, "\tOutput pin level inversion         %s\n",
1063		  cntrl & CNTRL_IVO ? "yes" : "no");
1064	v4l2_info(sd, "\tCarrier polarity:                  %s\n",
1065		  cntrl & CNTRL_CPL ? "space:burst mark:noburst"
1066				    : "space:noburst mark:burst");
1067	if (cntrl & CNTRL_MOD) {
1068		v4l2_info(sd, "\tCarrier (16 clocks):               %u Hz\n",
1069			  clock_divider_to_carrier_freq(txclk));
1070		v4l2_info(sd, "\tCarrier duty cycle:                %2u/16\n",
1071			  cduty + 1);
1072	}
1073	v4l2_info(sd, "\tMax pulse width:                   %u us, %llu ns\n",
1074		  pulse_width_count_to_us(FIFO_RXTX, txclk),
1075		  pulse_width_count_to_ns(FIFO_RXTX, txclk));
1076	v4l2_info(sd, "\tBusy:                              %s\n",
1077		  stats & STATS_TBY ? "yes" : "no");
1078	v4l2_info(sd, "\tFIFO service requested:            %s\n",
1079		  stats & STATS_TSR ? "yes" : "no");
1080	v4l2_info(sd, "\tFIFO service request interrupt:    %s\n",
1081		  irqen & IRQEN_TSE ? "enabled" : "disabled");
1082
1083	return 0;
1084}
1085
1086static inline int cx23888_ir_dbg_match(const struct v4l2_dbg_match *match)
1087{
1088	return match->type == V4L2_CHIP_MATCH_HOST && match->addr == 2;
1089}
1090
1091static int cx23888_ir_g_chip_ident(struct v4l2_subdev *sd,
1092				   struct v4l2_dbg_chip_ident *chip)
1093{
1094	struct cx23888_ir_state *state = to_state(sd);
1095
1096	if (cx23888_ir_dbg_match(&chip->match)) {
1097		chip->ident = state->id;
1098		chip->revision = state->rev;
1099	}
1100	return 0;
1101}
1102
1103#ifdef CONFIG_VIDEO_ADV_DEBUG
1104static int cx23888_ir_g_register(struct v4l2_subdev *sd,
1105				 struct v4l2_dbg_register *reg)
1106{
1107	struct cx23888_ir_state *state = to_state(sd);
1108	u32 addr = CX23888_IR_REG_BASE + (u32) reg->reg;
1109
1110	if (!cx23888_ir_dbg_match(&reg->match))
1111		return -EINVAL;
1112	if ((addr & 0x3) != 0)
1113		return -EINVAL;
1114	if (addr < CX23888_IR_CNTRL_REG || addr > CX23888_IR_LEARN_REG)
1115		return -EINVAL;
1116	if (!capable(CAP_SYS_ADMIN))
1117		return -EPERM;
1118	reg->size = 4;
1119	reg->val = cx23888_ir_read4(state->dev, addr);
1120	return 0;
1121}
1122
1123static int cx23888_ir_s_register(struct v4l2_subdev *sd,
1124				 struct v4l2_dbg_register *reg)
1125{
1126	struct cx23888_ir_state *state = to_state(sd);
1127	u32 addr = CX23888_IR_REG_BASE + (u32) reg->reg;
1128
1129	if (!cx23888_ir_dbg_match(&reg->match))
1130		return -EINVAL;
1131	if ((addr & 0x3) != 0)
1132		return -EINVAL;
1133	if (addr < CX23888_IR_CNTRL_REG || addr > CX23888_IR_LEARN_REG)
1134		return -EINVAL;
1135	if (!capable(CAP_SYS_ADMIN))
1136		return -EPERM;
1137	cx23888_ir_write4(state->dev, addr, reg->val);
1138	return 0;
1139}
1140#endif
1141
1142static const struct v4l2_subdev_core_ops cx23888_ir_core_ops = {
1143	.g_chip_ident = cx23888_ir_g_chip_ident,
1144	.log_status = cx23888_ir_log_status,
1145#ifdef CONFIG_VIDEO_ADV_DEBUG
1146	.g_register = cx23888_ir_g_register,
1147	.s_register = cx23888_ir_s_register,
1148#endif
1149	.interrupt_service_routine = cx23888_ir_irq_handler,
1150};
1151
1152static const struct v4l2_subdev_ir_ops cx23888_ir_ir_ops = {
1153	.rx_read = cx23888_ir_rx_read,
1154	.rx_g_parameters = cx23888_ir_rx_g_parameters,
1155	.rx_s_parameters = cx23888_ir_rx_s_parameters,
1156
1157	.tx_write = cx23888_ir_tx_write,
1158	.tx_g_parameters = cx23888_ir_tx_g_parameters,
1159	.tx_s_parameters = cx23888_ir_tx_s_parameters,
1160};
1161
1162static const struct v4l2_subdev_ops cx23888_ir_controller_ops = {
1163	.core = &cx23888_ir_core_ops,
1164	.ir = &cx23888_ir_ir_ops,
1165};
1166
1167static const struct v4l2_subdev_ir_parameters default_rx_params = {
1168	.bytes_per_data_element = sizeof(union cx23888_ir_fifo_rec),
1169	.mode = V4L2_SUBDEV_IR_MODE_PULSE_WIDTH,
1170
1171	.enable = false,
1172	.interrupt_enable = false,
1173	.shutdown = true,
1174
1175	.modulation = true,
1176	.carrier_freq = 36000, /* 36 kHz - RC-5, RC-6, and RC-6A carrier */
1177
1178	/* RC-5:    666,667 ns = 1/36 kHz * 32 cycles * 1 mark * 0.75 */
1179	/* RC-6A:   333,333 ns = 1/36 kHz * 16 cycles * 1 mark * 0.75 */
1180	.noise_filter_min_width = 333333, /* ns */
1181	.carrier_range_lower = 35000,
1182	.carrier_range_upper = 37000,
1183	.invert_level = false,
1184};
1185
1186static const struct v4l2_subdev_ir_parameters default_tx_params = {
1187	.bytes_per_data_element = sizeof(union cx23888_ir_fifo_rec),
1188	.mode = V4L2_SUBDEV_IR_MODE_PULSE_WIDTH,
1189
1190	.enable = false,
1191	.interrupt_enable = false,
1192	.shutdown = true,
1193
1194	.modulation = true,
1195	.carrier_freq = 36000, /* 36 kHz - RC-5 carrier */
1196	.duty_cycle = 25,      /* 25 %   - RC-5 carrier */
1197	.invert_level = false,
1198	.invert_carrier_sense = false,
1199};
1200
1201int cx23888_ir_probe(struct cx23885_dev *dev)
1202{
1203	struct cx23888_ir_state *state;
1204	struct v4l2_subdev *sd;
1205	struct v4l2_subdev_ir_parameters default_params;
1206	int ret;
1207
1208	state = kzalloc(sizeof(struct cx23888_ir_state), GFP_KERNEL);
1209	if (state == NULL)
1210		return -ENOMEM;
1211
1212	spin_lock_init(&state->rx_kfifo_lock);
1213	if (kfifo_alloc(&state->rx_kfifo, CX23888_IR_RX_KFIFO_SIZE, GFP_KERNEL))
1214		return -ENOMEM;
1215
1216	state->dev = dev;
1217	state->id = V4L2_IDENT_CX23888_IR;
1218	state->rev = 0;
1219	sd = &state->sd;
1220
1221	v4l2_subdev_init(sd, &cx23888_ir_controller_ops);
1222	v4l2_set_subdevdata(sd, state);
1223	/* FIXME - fix the formatting of dev->v4l2_dev.name and use it */
1224	snprintf(sd->name, sizeof(sd->name), "%s/888-ir", dev->name);
1225	sd->grp_id = CX23885_HW_888_IR;
1226
1227	ret = v4l2_device_register_subdev(&dev->v4l2_dev, sd);
1228	if (ret == 0) {
1229		/*
1230		 * Ensure no interrupts arrive from '888 specific conditions,
1231		 * since we ignore them in this driver to have commonality with
1232		 * similar IR controller cores.
1233		 */
1234		cx23888_ir_write4(dev, CX23888_IR_IRQEN_REG, 0);
1235
1236		mutex_init(&state->rx_params_lock);
1237		memcpy(&default_params, &default_rx_params,
1238		       sizeof(struct v4l2_subdev_ir_parameters));
1239		v4l2_subdev_call(sd, ir, rx_s_parameters, &default_params);
1240
1241		mutex_init(&state->tx_params_lock);
1242		memcpy(&default_params, &default_tx_params,
1243		       sizeof(struct v4l2_subdev_ir_parameters));
1244		v4l2_subdev_call(sd, ir, tx_s_parameters, &default_params);
1245	} else {
1246		kfifo_free(&state->rx_kfifo);
1247	}
1248	return ret;
1249}
1250
1251int cx23888_ir_remove(struct cx23885_dev *dev)
1252{
1253	struct v4l2_subdev *sd;
1254	struct cx23888_ir_state *state;
1255
1256	sd = cx23885_find_hw(dev, CX23885_HW_888_IR);
1257	if (sd == NULL)
1258		return -ENODEV;
1259
1260	cx23888_ir_rx_shutdown(sd);
1261	cx23888_ir_tx_shutdown(sd);
1262
1263	state = to_state(sd);
1264	v4l2_device_unregister_subdev(sd);
1265	kfifo_free(&state->rx_kfifo);
1266	kfree(state);
1267	/* Nothing more to free() as state held the actual v4l2_subdev object */
1268	return 0;
1269}
1270