cx23888-ir.c revision dc69798447173a6b711fe36b714892dd2e880297
1/* 2 * Driver for the Conexant CX23885/7/8 PCIe bridge 3 * 4 * CX23888 Integrated Consumer Infrared Controller 5 * 6 * Copyright (C) 2009 Andy Walls <awalls@md.metrocast.net> 7 * 8 * This program is free software; you can redistribute it and/or 9 * modify it under the terms of the GNU General Public License 10 * as published by the Free Software Foundation; either version 2 11 * of the License, or (at your option) any later version. 12 * 13 * This program is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 * GNU General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software 20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 21 * 02110-1301, USA. 22 */ 23 24#include <linux/kfifo.h> 25#include <linux/slab.h> 26 27#include <media/v4l2-device.h> 28#include <media/v4l2-chip-ident.h> 29#include <media/ir-core.h> 30 31#include "cx23885.h" 32 33static unsigned int ir_888_debug; 34module_param(ir_888_debug, int, 0644); 35MODULE_PARM_DESC(ir_888_debug, "enable debug messages [CX23888 IR controller]"); 36 37#define CX23888_IR_REG_BASE 0x170000 38/* 39 * These CX23888 register offsets have a straightforward one to one mapping 40 * to the CX23885 register offsets of 0x200 through 0x218 41 */ 42#define CX23888_IR_CNTRL_REG 0x170000 43#define CNTRL_WIN_3_3 0x00000000 44#define CNTRL_WIN_4_3 0x00000001 45#define CNTRL_WIN_3_4 0x00000002 46#define CNTRL_WIN_4_4 0x00000003 47#define CNTRL_WIN 0x00000003 48#define CNTRL_EDG_NONE 0x00000000 49#define CNTRL_EDG_FALL 0x00000004 50#define CNTRL_EDG_RISE 0x00000008 51#define CNTRL_EDG_BOTH 0x0000000C 52#define CNTRL_EDG 0x0000000C 53#define CNTRL_DMD 0x00000010 54#define CNTRL_MOD 0x00000020 55#define CNTRL_RFE 0x00000040 56#define CNTRL_TFE 0x00000080 57#define CNTRL_RXE 0x00000100 58#define CNTRL_TXE 0x00000200 59#define CNTRL_RIC 0x00000400 60#define CNTRL_TIC 0x00000800 61#define CNTRL_CPL 0x00001000 62#define CNTRL_LBM 0x00002000 63#define CNTRL_R 0x00004000 64/* CX23888 specific control flag */ 65#define CNTRL_IVO 0x00008000 66 67#define CX23888_IR_TXCLK_REG 0x170004 68#define TXCLK_TCD 0x0000FFFF 69 70#define CX23888_IR_RXCLK_REG 0x170008 71#define RXCLK_RCD 0x0000FFFF 72 73#define CX23888_IR_CDUTY_REG 0x17000C 74#define CDUTY_CDC 0x0000000F 75 76#define CX23888_IR_STATS_REG 0x170010 77#define STATS_RTO 0x00000001 78#define STATS_ROR 0x00000002 79#define STATS_RBY 0x00000004 80#define STATS_TBY 0x00000008 81#define STATS_RSR 0x00000010 82#define STATS_TSR 0x00000020 83 84#define CX23888_IR_IRQEN_REG 0x170014 85#define IRQEN_RTE 0x00000001 86#define IRQEN_ROE 0x00000002 87#define IRQEN_RSE 0x00000010 88#define IRQEN_TSE 0x00000020 89 90#define CX23888_IR_FILTR_REG 0x170018 91#define FILTR_LPF 0x0000FFFF 92 93/* This register doesn't follow the pattern; it's 0x23C on a CX23885 */ 94#define CX23888_IR_FIFO_REG 0x170040 95#define FIFO_RXTX 0x0000FFFF 96#define FIFO_RXTX_LVL 0x00010000 97#define FIFO_RXTX_RTO 0x0001FFFF 98#define FIFO_RX_NDV 0x00020000 99#define FIFO_RX_DEPTH 8 100#define FIFO_TX_DEPTH 8 101 102/* CX23888 unique registers */ 103#define CX23888_IR_SEEDP_REG 0x17001C 104#define CX23888_IR_TIMOL_REG 0x170020 105#define CX23888_IR_WAKE0_REG 0x170024 106#define CX23888_IR_WAKE1_REG 0x170028 107#define CX23888_IR_WAKE2_REG 0x17002C 108#define CX23888_IR_MASK0_REG 0x170030 109#define CX23888_IR_MASK1_REG 0x170034 110#define CX23888_IR_MAKS2_REG 0x170038 111#define CX23888_IR_DPIPG_REG 0x17003C 112#define CX23888_IR_LEARN_REG 0x170044 113 114#define CX23888_VIDCLK_FREQ 108000000 /* 108 MHz, BT.656 */ 115#define CX23888_IR_REFCLK_FREQ (CX23888_VIDCLK_FREQ / 2) 116 117/* 118 * We use this union internally for convenience, but callers to tx_write 119 * and rx_read will be expecting records of type struct ir_raw_event. 120 * Always ensure the size of this union is dictated by struct ir_raw_event. 121 */ 122union cx23888_ir_fifo_rec { 123 u32 hw_fifo_data; 124 struct ir_raw_event ir_core_data; 125}; 126 127#define CX23888_IR_RX_KFIFO_SIZE (256 * sizeof(union cx23888_ir_fifo_rec)) 128#define CX23888_IR_TX_KFIFO_SIZE (256 * sizeof(union cx23888_ir_fifo_rec)) 129 130struct cx23888_ir_state { 131 struct v4l2_subdev sd; 132 struct cx23885_dev *dev; 133 u32 id; 134 u32 rev; 135 136 struct v4l2_subdev_ir_parameters rx_params; 137 struct mutex rx_params_lock; 138 atomic_t rxclk_divider; 139 atomic_t rx_invert; 140 141 struct kfifo rx_kfifo; 142 spinlock_t rx_kfifo_lock; 143 144 struct v4l2_subdev_ir_parameters tx_params; 145 struct mutex tx_params_lock; 146 atomic_t txclk_divider; 147}; 148 149static inline struct cx23888_ir_state *to_state(struct v4l2_subdev *sd) 150{ 151 return v4l2_get_subdevdata(sd); 152} 153 154/* 155 * IR register block read and write functions 156 */ 157static 158inline int cx23888_ir_write4(struct cx23885_dev *dev, u32 addr, u32 value) 159{ 160 cx_write(addr, value); 161 return 0; 162} 163 164static inline u32 cx23888_ir_read4(struct cx23885_dev *dev, u32 addr) 165{ 166 return cx_read(addr); 167} 168 169static inline int cx23888_ir_and_or4(struct cx23885_dev *dev, u32 addr, 170 u32 and_mask, u32 or_value) 171{ 172 cx_andor(addr, ~and_mask, or_value); 173 return 0; 174} 175 176/* 177 * Rx and Tx Clock Divider register computations 178 * 179 * Note the largest clock divider value of 0xffff corresponds to: 180 * (0xffff + 1) * 1000 / 108/2 MHz = 1,213,629.629... ns 181 * which fits in 21 bits, so we'll use unsigned int for time arguments. 182 */ 183static inline u16 count_to_clock_divider(unsigned int d) 184{ 185 if (d > RXCLK_RCD + 1) 186 d = RXCLK_RCD; 187 else if (d < 2) 188 d = 1; 189 else 190 d--; 191 return (u16) d; 192} 193 194static inline u16 ns_to_clock_divider(unsigned int ns) 195{ 196 return count_to_clock_divider( 197 DIV_ROUND_CLOSEST(CX23888_IR_REFCLK_FREQ / 1000000 * ns, 1000)); 198} 199 200static inline unsigned int clock_divider_to_ns(unsigned int divider) 201{ 202 /* Period of the Rx or Tx clock in ns */ 203 return DIV_ROUND_CLOSEST((divider + 1) * 1000, 204 CX23888_IR_REFCLK_FREQ / 1000000); 205} 206 207static inline u16 carrier_freq_to_clock_divider(unsigned int freq) 208{ 209 return count_to_clock_divider( 210 DIV_ROUND_CLOSEST(CX23888_IR_REFCLK_FREQ, freq * 16)); 211} 212 213static inline unsigned int clock_divider_to_carrier_freq(unsigned int divider) 214{ 215 return DIV_ROUND_CLOSEST(CX23888_IR_REFCLK_FREQ, (divider + 1) * 16); 216} 217 218static inline u16 freq_to_clock_divider(unsigned int freq, 219 unsigned int rollovers) 220{ 221 return count_to_clock_divider( 222 DIV_ROUND_CLOSEST(CX23888_IR_REFCLK_FREQ, freq * rollovers)); 223} 224 225static inline unsigned int clock_divider_to_freq(unsigned int divider, 226 unsigned int rollovers) 227{ 228 return DIV_ROUND_CLOSEST(CX23888_IR_REFCLK_FREQ, 229 (divider + 1) * rollovers); 230} 231 232/* 233 * Low Pass Filter register calculations 234 * 235 * Note the largest count value of 0xffff corresponds to: 236 * 0xffff * 1000 / 108/2 MHz = 1,213,611.11... ns 237 * which fits in 21 bits, so we'll use unsigned int for time arguments. 238 */ 239static inline u16 count_to_lpf_count(unsigned int d) 240{ 241 if (d > FILTR_LPF) 242 d = FILTR_LPF; 243 else if (d < 4) 244 d = 0; 245 return (u16) d; 246} 247 248static inline u16 ns_to_lpf_count(unsigned int ns) 249{ 250 return count_to_lpf_count( 251 DIV_ROUND_CLOSEST(CX23888_IR_REFCLK_FREQ / 1000000 * ns, 1000)); 252} 253 254static inline unsigned int lpf_count_to_ns(unsigned int count) 255{ 256 /* Duration of the Low Pass Filter rejection window in ns */ 257 return DIV_ROUND_CLOSEST(count * 1000, 258 CX23888_IR_REFCLK_FREQ / 1000000); 259} 260 261static inline unsigned int lpf_count_to_us(unsigned int count) 262{ 263 /* Duration of the Low Pass Filter rejection window in us */ 264 return DIV_ROUND_CLOSEST(count, CX23888_IR_REFCLK_FREQ / 1000000); 265} 266 267/* 268 * FIFO register pulse width count compuations 269 */ 270static u32 clock_divider_to_resolution(u16 divider) 271{ 272 /* 273 * Resolution is the duration of 1 tick of the readable portion of 274 * of the pulse width counter as read from the FIFO. The two lsb's are 275 * not readable, hence the << 2. This function returns ns. 276 */ 277 return DIV_ROUND_CLOSEST((1 << 2) * ((u32) divider + 1) * 1000, 278 CX23888_IR_REFCLK_FREQ / 1000000); 279} 280 281static u64 pulse_width_count_to_ns(u16 count, u16 divider) 282{ 283 u64 n; 284 u32 rem; 285 286 /* 287 * The 2 lsb's of the pulse width timer count are not readable, hence 288 * the (count << 2) | 0x3 289 */ 290 n = (((u64) count << 2) | 0x3) * (divider + 1) * 1000; /* millicycles */ 291 rem = do_div(n, CX23888_IR_REFCLK_FREQ / 1000000); /* / MHz => ns */ 292 if (rem >= CX23888_IR_REFCLK_FREQ / 1000000 / 2) 293 n++; 294 return n; 295} 296 297static unsigned int pulse_width_count_to_us(u16 count, u16 divider) 298{ 299 u64 n; 300 u32 rem; 301 302 /* 303 * The 2 lsb's of the pulse width timer count are not readable, hence 304 * the (count << 2) | 0x3 305 */ 306 n = (((u64) count << 2) | 0x3) * (divider + 1); /* cycles */ 307 rem = do_div(n, CX23888_IR_REFCLK_FREQ / 1000000); /* / MHz => us */ 308 if (rem >= CX23888_IR_REFCLK_FREQ / 1000000 / 2) 309 n++; 310 return (unsigned int) n; 311} 312 313/* 314 * Pulse Clocks computations: Combined Pulse Width Count & Rx Clock Counts 315 * 316 * The total pulse clock count is an 18 bit pulse width timer count as the most 317 * significant part and (up to) 16 bit clock divider count as a modulus. 318 * When the Rx clock divider ticks down to 0, it increments the 18 bit pulse 319 * width timer count's least significant bit. 320 */ 321static u64 ns_to_pulse_clocks(u32 ns) 322{ 323 u64 clocks; 324 u32 rem; 325 clocks = CX23888_IR_REFCLK_FREQ / 1000000 * (u64) ns; /* millicycles */ 326 rem = do_div(clocks, 1000); /* /1000 = cycles */ 327 if (rem >= 1000 / 2) 328 clocks++; 329 return clocks; 330} 331 332static u16 pulse_clocks_to_clock_divider(u64 count) 333{ 334 u32 rem; 335 336 rem = do_div(count, (FIFO_RXTX << 2) | 0x3); 337 338 /* net result needs to be rounded down and decremented by 1 */ 339 if (count > RXCLK_RCD + 1) 340 count = RXCLK_RCD; 341 else if (count < 2) 342 count = 1; 343 else 344 count--; 345 return (u16) count; 346} 347 348/* 349 * IR Control Register helpers 350 */ 351enum tx_fifo_watermark { 352 TX_FIFO_HALF_EMPTY = 0, 353 TX_FIFO_EMPTY = CNTRL_TIC, 354}; 355 356enum rx_fifo_watermark { 357 RX_FIFO_HALF_FULL = 0, 358 RX_FIFO_NOT_EMPTY = CNTRL_RIC, 359}; 360 361static inline void control_tx_irq_watermark(struct cx23885_dev *dev, 362 enum tx_fifo_watermark level) 363{ 364 cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~CNTRL_TIC, level); 365} 366 367static inline void control_rx_irq_watermark(struct cx23885_dev *dev, 368 enum rx_fifo_watermark level) 369{ 370 cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~CNTRL_RIC, level); 371} 372 373static inline void control_tx_enable(struct cx23885_dev *dev, bool enable) 374{ 375 cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~(CNTRL_TXE | CNTRL_TFE), 376 enable ? (CNTRL_TXE | CNTRL_TFE) : 0); 377} 378 379static inline void control_rx_enable(struct cx23885_dev *dev, bool enable) 380{ 381 cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~(CNTRL_RXE | CNTRL_RFE), 382 enable ? (CNTRL_RXE | CNTRL_RFE) : 0); 383} 384 385static inline void control_tx_modulation_enable(struct cx23885_dev *dev, 386 bool enable) 387{ 388 cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~CNTRL_MOD, 389 enable ? CNTRL_MOD : 0); 390} 391 392static inline void control_rx_demodulation_enable(struct cx23885_dev *dev, 393 bool enable) 394{ 395 cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~CNTRL_DMD, 396 enable ? CNTRL_DMD : 0); 397} 398 399static inline void control_rx_s_edge_detection(struct cx23885_dev *dev, 400 u32 edge_types) 401{ 402 cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~CNTRL_EDG_BOTH, 403 edge_types & CNTRL_EDG_BOTH); 404} 405 406static void control_rx_s_carrier_window(struct cx23885_dev *dev, 407 unsigned int carrier, 408 unsigned int *carrier_range_low, 409 unsigned int *carrier_range_high) 410{ 411 u32 v; 412 unsigned int c16 = carrier * 16; 413 414 if (*carrier_range_low < DIV_ROUND_CLOSEST(c16, 16 + 3)) { 415 v = CNTRL_WIN_3_4; 416 *carrier_range_low = DIV_ROUND_CLOSEST(c16, 16 + 4); 417 } else { 418 v = CNTRL_WIN_3_3; 419 *carrier_range_low = DIV_ROUND_CLOSEST(c16, 16 + 3); 420 } 421 422 if (*carrier_range_high > DIV_ROUND_CLOSEST(c16, 16 - 3)) { 423 v |= CNTRL_WIN_4_3; 424 *carrier_range_high = DIV_ROUND_CLOSEST(c16, 16 - 4); 425 } else { 426 v |= CNTRL_WIN_3_3; 427 *carrier_range_high = DIV_ROUND_CLOSEST(c16, 16 - 3); 428 } 429 cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~CNTRL_WIN, v); 430} 431 432static inline void control_tx_polarity_invert(struct cx23885_dev *dev, 433 bool invert) 434{ 435 cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~CNTRL_CPL, 436 invert ? CNTRL_CPL : 0); 437} 438 439static inline void control_tx_level_invert(struct cx23885_dev *dev, 440 bool invert) 441{ 442 cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~CNTRL_IVO, 443 invert ? CNTRL_IVO : 0); 444} 445 446/* 447 * IR Rx & Tx Clock Register helpers 448 */ 449static unsigned int txclk_tx_s_carrier(struct cx23885_dev *dev, 450 unsigned int freq, 451 u16 *divider) 452{ 453 *divider = carrier_freq_to_clock_divider(freq); 454 cx23888_ir_write4(dev, CX23888_IR_TXCLK_REG, *divider); 455 return clock_divider_to_carrier_freq(*divider); 456} 457 458static unsigned int rxclk_rx_s_carrier(struct cx23885_dev *dev, 459 unsigned int freq, 460 u16 *divider) 461{ 462 *divider = carrier_freq_to_clock_divider(freq); 463 cx23888_ir_write4(dev, CX23888_IR_RXCLK_REG, *divider); 464 return clock_divider_to_carrier_freq(*divider); 465} 466 467static u32 txclk_tx_s_max_pulse_width(struct cx23885_dev *dev, u32 ns, 468 u16 *divider) 469{ 470 u64 pulse_clocks; 471 472 if (ns > IR_MAX_DURATION) 473 ns = IR_MAX_DURATION; 474 pulse_clocks = ns_to_pulse_clocks(ns); 475 *divider = pulse_clocks_to_clock_divider(pulse_clocks); 476 cx23888_ir_write4(dev, CX23888_IR_TXCLK_REG, *divider); 477 return (u32) pulse_width_count_to_ns(FIFO_RXTX, *divider); 478} 479 480static u32 rxclk_rx_s_max_pulse_width(struct cx23885_dev *dev, u32 ns, 481 u16 *divider) 482{ 483 u64 pulse_clocks; 484 485 if (ns > IR_MAX_DURATION) 486 ns = IR_MAX_DURATION; 487 pulse_clocks = ns_to_pulse_clocks(ns); 488 *divider = pulse_clocks_to_clock_divider(pulse_clocks); 489 cx23888_ir_write4(dev, CX23888_IR_RXCLK_REG, *divider); 490 return (u32) pulse_width_count_to_ns(FIFO_RXTX, *divider); 491} 492 493/* 494 * IR Tx Carrier Duty Cycle register helpers 495 */ 496static unsigned int cduty_tx_s_duty_cycle(struct cx23885_dev *dev, 497 unsigned int duty_cycle) 498{ 499 u32 n; 500 n = DIV_ROUND_CLOSEST(duty_cycle * 100, 625); /* 16ths of 100% */ 501 if (n != 0) 502 n--; 503 if (n > 15) 504 n = 15; 505 cx23888_ir_write4(dev, CX23888_IR_CDUTY_REG, n); 506 return DIV_ROUND_CLOSEST((n + 1) * 100, 16); 507} 508 509/* 510 * IR Filter Register helpers 511 */ 512static u32 filter_rx_s_min_width(struct cx23885_dev *dev, u32 min_width_ns) 513{ 514 u32 count = ns_to_lpf_count(min_width_ns); 515 cx23888_ir_write4(dev, CX23888_IR_FILTR_REG, count); 516 return lpf_count_to_ns(count); 517} 518 519/* 520 * IR IRQ Enable Register helpers 521 */ 522static inline void irqenable_rx(struct cx23885_dev *dev, u32 mask) 523{ 524 mask &= (IRQEN_RTE | IRQEN_ROE | IRQEN_RSE); 525 cx23888_ir_and_or4(dev, CX23888_IR_IRQEN_REG, 526 ~(IRQEN_RTE | IRQEN_ROE | IRQEN_RSE), mask); 527} 528 529static inline void irqenable_tx(struct cx23885_dev *dev, u32 mask) 530{ 531 mask &= IRQEN_TSE; 532 cx23888_ir_and_or4(dev, CX23888_IR_IRQEN_REG, ~IRQEN_TSE, mask); 533} 534 535/* 536 * V4L2 Subdevice IR Ops 537 */ 538static int cx23888_ir_irq_handler(struct v4l2_subdev *sd, u32 status, 539 bool *handled) 540{ 541 struct cx23888_ir_state *state = to_state(sd); 542 struct cx23885_dev *dev = state->dev; 543 unsigned long flags; 544 545 u32 cntrl = cx23888_ir_read4(dev, CX23888_IR_CNTRL_REG); 546 u32 irqen = cx23888_ir_read4(dev, CX23888_IR_IRQEN_REG); 547 u32 stats = cx23888_ir_read4(dev, CX23888_IR_STATS_REG); 548 549 union cx23888_ir_fifo_rec rx_data[FIFO_RX_DEPTH]; 550 unsigned int i, j, k; 551 u32 events, v; 552 int tsr, rsr, rto, ror, tse, rse, rte, roe, kror; 553 554 tsr = stats & STATS_TSR; /* Tx FIFO Service Request */ 555 rsr = stats & STATS_RSR; /* Rx FIFO Service Request */ 556 rto = stats & STATS_RTO; /* Rx Pulse Width Timer Time Out */ 557 ror = stats & STATS_ROR; /* Rx FIFO Over Run */ 558 559 tse = irqen & IRQEN_TSE; /* Tx FIFO Service Request IRQ Enable */ 560 rse = irqen & IRQEN_RSE; /* Rx FIFO Service Reuqest IRQ Enable */ 561 rte = irqen & IRQEN_RTE; /* Rx Pulse Width Timer Time Out IRQ Enable */ 562 roe = irqen & IRQEN_ROE; /* Rx FIFO Over Run IRQ Enable */ 563 564 *handled = false; 565 v4l2_dbg(2, ir_888_debug, sd, "IRQ Status: %s %s %s %s %s %s\n", 566 tsr ? "tsr" : " ", rsr ? "rsr" : " ", 567 rto ? "rto" : " ", ror ? "ror" : " ", 568 stats & STATS_TBY ? "tby" : " ", 569 stats & STATS_RBY ? "rby" : " "); 570 571 v4l2_dbg(2, ir_888_debug, sd, "IRQ Enables: %s %s %s %s\n", 572 tse ? "tse" : " ", rse ? "rse" : " ", 573 rte ? "rte" : " ", roe ? "roe" : " "); 574 575 /* 576 * Transmitter interrupt service 577 */ 578 if (tse && tsr) { 579 /* 580 * TODO: 581 * Check the watermark threshold setting 582 * Pull FIFO_TX_DEPTH or FIFO_TX_DEPTH/2 entries from tx_kfifo 583 * Push the data to the hardware FIFO. 584 * If there was nothing more to send in the tx_kfifo, disable 585 * the TSR IRQ and notify the v4l2_device. 586 * If there was something in the tx_kfifo, check the tx_kfifo 587 * level and notify the v4l2_device, if it is low. 588 */ 589 /* For now, inhibit TSR interrupt until Tx is implemented */ 590 irqenable_tx(dev, 0); 591 events = V4L2_SUBDEV_IR_TX_FIFO_SERVICE_REQ; 592 v4l2_subdev_notify(sd, V4L2_SUBDEV_IR_TX_NOTIFY, &events); 593 *handled = true; 594 } 595 596 /* 597 * Receiver interrupt service 598 */ 599 kror = 0; 600 if ((rse && rsr) || (rte && rto)) { 601 /* 602 * Receive data on RSR to clear the STATS_RSR. 603 * Receive data on RTO, since we may not have yet hit the RSR 604 * watermark when we receive the RTO. 605 */ 606 for (i = 0, v = FIFO_RX_NDV; 607 (v & FIFO_RX_NDV) && !kror; i = 0) { 608 for (j = 0; 609 (v & FIFO_RX_NDV) && j < FIFO_RX_DEPTH; j++) { 610 v = cx23888_ir_read4(dev, CX23888_IR_FIFO_REG); 611 rx_data[i].hw_fifo_data = v & ~FIFO_RX_NDV; 612 i++; 613 } 614 if (i == 0) 615 break; 616 j = i * sizeof(union cx23888_ir_fifo_rec); 617 k = kfifo_in_locked(&state->rx_kfifo, 618 (unsigned char *) rx_data, j, 619 &state->rx_kfifo_lock); 620 if (k != j) 621 kror++; /* rx_kfifo over run */ 622 } 623 *handled = true; 624 } 625 626 events = 0; 627 v = 0; 628 if (kror) { 629 events |= V4L2_SUBDEV_IR_RX_SW_FIFO_OVERRUN; 630 v4l2_err(sd, "IR receiver software FIFO overrun\n"); 631 } 632 if (roe && ror) { 633 /* 634 * The RX FIFO Enable (CNTRL_RFE) must be toggled to clear 635 * the Rx FIFO Over Run status (STATS_ROR) 636 */ 637 v |= CNTRL_RFE; 638 events |= V4L2_SUBDEV_IR_RX_HW_FIFO_OVERRUN; 639 v4l2_err(sd, "IR receiver hardware FIFO overrun\n"); 640 } 641 if (rte && rto) { 642 /* 643 * The IR Receiver Enable (CNTRL_RXE) must be toggled to clear 644 * the Rx Pulse Width Timer Time Out (STATS_RTO) 645 */ 646 v |= CNTRL_RXE; 647 events |= V4L2_SUBDEV_IR_RX_END_OF_RX_DETECTED; 648 } 649 if (v) { 650 /* Clear STATS_ROR & STATS_RTO as needed by reseting hardware */ 651 cx23888_ir_write4(dev, CX23888_IR_CNTRL_REG, cntrl & ~v); 652 cx23888_ir_write4(dev, CX23888_IR_CNTRL_REG, cntrl); 653 *handled = true; 654 } 655 656 spin_lock_irqsave(&state->rx_kfifo_lock, flags); 657 if (kfifo_len(&state->rx_kfifo) >= CX23888_IR_RX_KFIFO_SIZE / 2) 658 events |= V4L2_SUBDEV_IR_RX_FIFO_SERVICE_REQ; 659 spin_unlock_irqrestore(&state->rx_kfifo_lock, flags); 660 661 if (events) 662 v4l2_subdev_notify(sd, V4L2_SUBDEV_IR_RX_NOTIFY, &events); 663 return 0; 664} 665 666/* Receiver */ 667static int cx23888_ir_rx_read(struct v4l2_subdev *sd, u8 *buf, size_t count, 668 ssize_t *num) 669{ 670 struct cx23888_ir_state *state = to_state(sd); 671 bool invert = (bool) atomic_read(&state->rx_invert); 672 u16 divider = (u16) atomic_read(&state->rxclk_divider); 673 674 unsigned int i, n; 675 union cx23888_ir_fifo_rec *p; 676 unsigned u, v; 677 678 n = count / sizeof(union cx23888_ir_fifo_rec) 679 * sizeof(union cx23888_ir_fifo_rec); 680 if (n == 0) { 681 *num = 0; 682 return 0; 683 } 684 685 n = kfifo_out_locked(&state->rx_kfifo, buf, n, &state->rx_kfifo_lock); 686 687 n /= sizeof(union cx23888_ir_fifo_rec); 688 *num = n * sizeof(union cx23888_ir_fifo_rec); 689 690 for (p = (union cx23888_ir_fifo_rec *) buf, i = 0; i < n; p++, i++) { 691 692 if ((p->hw_fifo_data & FIFO_RXTX_RTO) == FIFO_RXTX_RTO) { 693 /* Assume RTO was because of no IR light input */ 694 u = 0; 695 v4l2_dbg(2, ir_888_debug, sd, "rx read: end of rx\n"); 696 } else { 697 u = (p->hw_fifo_data & FIFO_RXTX_LVL) ? 1 : 0; 698 if (invert) 699 u = u ? 0 : 1; 700 } 701 702 v = (unsigned) pulse_width_count_to_ns( 703 (u16) (p->hw_fifo_data & FIFO_RXTX), divider); 704 if (v > IR_MAX_DURATION) 705 v = IR_MAX_DURATION; 706 707 init_ir_raw_event(&p->ir_core_data); 708 p->ir_core_data.pulse = u; 709 p->ir_core_data.duration = v; 710 711 v4l2_dbg(2, ir_888_debug, sd, "rx read: %10u ns %s\n", 712 v, u ? "mark" : "space"); 713 } 714 return 0; 715} 716 717static int cx23888_ir_rx_g_parameters(struct v4l2_subdev *sd, 718 struct v4l2_subdev_ir_parameters *p) 719{ 720 struct cx23888_ir_state *state = to_state(sd); 721 mutex_lock(&state->rx_params_lock); 722 memcpy(p, &state->rx_params, sizeof(struct v4l2_subdev_ir_parameters)); 723 mutex_unlock(&state->rx_params_lock); 724 return 0; 725} 726 727static int cx23888_ir_rx_shutdown(struct v4l2_subdev *sd) 728{ 729 struct cx23888_ir_state *state = to_state(sd); 730 struct cx23885_dev *dev = state->dev; 731 732 mutex_lock(&state->rx_params_lock); 733 734 /* Disable or slow down all IR Rx circuits and counters */ 735 irqenable_rx(dev, 0); 736 control_rx_enable(dev, false); 737 control_rx_demodulation_enable(dev, false); 738 control_rx_s_edge_detection(dev, CNTRL_EDG_NONE); 739 filter_rx_s_min_width(dev, 0); 740 cx23888_ir_write4(dev, CX23888_IR_RXCLK_REG, RXCLK_RCD); 741 742 state->rx_params.shutdown = true; 743 744 mutex_unlock(&state->rx_params_lock); 745 return 0; 746} 747 748static int cx23888_ir_rx_s_parameters(struct v4l2_subdev *sd, 749 struct v4l2_subdev_ir_parameters *p) 750{ 751 struct cx23888_ir_state *state = to_state(sd); 752 struct cx23885_dev *dev = state->dev; 753 struct v4l2_subdev_ir_parameters *o = &state->rx_params; 754 u16 rxclk_divider; 755 756 if (p->shutdown) 757 return cx23888_ir_rx_shutdown(sd); 758 759 if (p->mode != V4L2_SUBDEV_IR_MODE_PULSE_WIDTH) 760 return -ENOSYS; 761 762 mutex_lock(&state->rx_params_lock); 763 764 o->shutdown = p->shutdown; 765 766 o->mode = p->mode = V4L2_SUBDEV_IR_MODE_PULSE_WIDTH; 767 768 o->bytes_per_data_element = p->bytes_per_data_element 769 = sizeof(union cx23888_ir_fifo_rec); 770 771 /* Before we tweak the hardware, we have to disable the receiver */ 772 irqenable_rx(dev, 0); 773 control_rx_enable(dev, false); 774 775 control_rx_demodulation_enable(dev, p->modulation); 776 o->modulation = p->modulation; 777 778 if (p->modulation) { 779 p->carrier_freq = rxclk_rx_s_carrier(dev, p->carrier_freq, 780 &rxclk_divider); 781 782 o->carrier_freq = p->carrier_freq; 783 784 o->duty_cycle = p->duty_cycle = 50; 785 786 control_rx_s_carrier_window(dev, p->carrier_freq, 787 &p->carrier_range_lower, 788 &p->carrier_range_upper); 789 o->carrier_range_lower = p->carrier_range_lower; 790 o->carrier_range_upper = p->carrier_range_upper; 791 792 p->max_pulse_width = 793 (u32) pulse_width_count_to_ns(FIFO_RXTX, rxclk_divider); 794 } else { 795 p->max_pulse_width = 796 rxclk_rx_s_max_pulse_width(dev, p->max_pulse_width, 797 &rxclk_divider); 798 } 799 o->max_pulse_width = p->max_pulse_width; 800 atomic_set(&state->rxclk_divider, rxclk_divider); 801 802 p->noise_filter_min_width = 803 filter_rx_s_min_width(dev, p->noise_filter_min_width); 804 o->noise_filter_min_width = p->noise_filter_min_width; 805 806 p->resolution = clock_divider_to_resolution(rxclk_divider); 807 o->resolution = p->resolution; 808 809 /* FIXME - make this dependent on resolution for better performance */ 810 control_rx_irq_watermark(dev, RX_FIFO_HALF_FULL); 811 812 control_rx_s_edge_detection(dev, CNTRL_EDG_BOTH); 813 814 o->invert_level = p->invert_level; 815 atomic_set(&state->rx_invert, p->invert_level); 816 817 o->interrupt_enable = p->interrupt_enable; 818 o->enable = p->enable; 819 if (p->enable) { 820 unsigned long flags; 821 822 spin_lock_irqsave(&state->rx_kfifo_lock, flags); 823 kfifo_reset(&state->rx_kfifo); 824 /* reset tx_fifo too if there is one... */ 825 spin_unlock_irqrestore(&state->rx_kfifo_lock, flags); 826 if (p->interrupt_enable) 827 irqenable_rx(dev, IRQEN_RSE | IRQEN_RTE | IRQEN_ROE); 828 control_rx_enable(dev, p->enable); 829 } 830 831 mutex_unlock(&state->rx_params_lock); 832 return 0; 833} 834 835/* Transmitter */ 836static int cx23888_ir_tx_write(struct v4l2_subdev *sd, u8 *buf, size_t count, 837 ssize_t *num) 838{ 839 struct cx23888_ir_state *state = to_state(sd); 840 struct cx23885_dev *dev = state->dev; 841 /* For now enable the Tx FIFO Service interrupt & pretend we did work */ 842 irqenable_tx(dev, IRQEN_TSE); 843 *num = count; 844 return 0; 845} 846 847static int cx23888_ir_tx_g_parameters(struct v4l2_subdev *sd, 848 struct v4l2_subdev_ir_parameters *p) 849{ 850 struct cx23888_ir_state *state = to_state(sd); 851 mutex_lock(&state->tx_params_lock); 852 memcpy(p, &state->tx_params, sizeof(struct v4l2_subdev_ir_parameters)); 853 mutex_unlock(&state->tx_params_lock); 854 return 0; 855} 856 857static int cx23888_ir_tx_shutdown(struct v4l2_subdev *sd) 858{ 859 struct cx23888_ir_state *state = to_state(sd); 860 struct cx23885_dev *dev = state->dev; 861 862 mutex_lock(&state->tx_params_lock); 863 864 /* Disable or slow down all IR Tx circuits and counters */ 865 irqenable_tx(dev, 0); 866 control_tx_enable(dev, false); 867 control_tx_modulation_enable(dev, false); 868 cx23888_ir_write4(dev, CX23888_IR_TXCLK_REG, TXCLK_TCD); 869 870 state->tx_params.shutdown = true; 871 872 mutex_unlock(&state->tx_params_lock); 873 return 0; 874} 875 876static int cx23888_ir_tx_s_parameters(struct v4l2_subdev *sd, 877 struct v4l2_subdev_ir_parameters *p) 878{ 879 struct cx23888_ir_state *state = to_state(sd); 880 struct cx23885_dev *dev = state->dev; 881 struct v4l2_subdev_ir_parameters *o = &state->tx_params; 882 u16 txclk_divider; 883 884 if (p->shutdown) 885 return cx23888_ir_tx_shutdown(sd); 886 887 if (p->mode != V4L2_SUBDEV_IR_MODE_PULSE_WIDTH) 888 return -ENOSYS; 889 890 mutex_lock(&state->tx_params_lock); 891 892 o->shutdown = p->shutdown; 893 894 o->mode = p->mode = V4L2_SUBDEV_IR_MODE_PULSE_WIDTH; 895 896 o->bytes_per_data_element = p->bytes_per_data_element 897 = sizeof(union cx23888_ir_fifo_rec); 898 899 /* Before we tweak the hardware, we have to disable the transmitter */ 900 irqenable_tx(dev, 0); 901 control_tx_enable(dev, false); 902 903 control_tx_modulation_enable(dev, p->modulation); 904 o->modulation = p->modulation; 905 906 if (p->modulation) { 907 p->carrier_freq = txclk_tx_s_carrier(dev, p->carrier_freq, 908 &txclk_divider); 909 o->carrier_freq = p->carrier_freq; 910 911 p->duty_cycle = cduty_tx_s_duty_cycle(dev, p->duty_cycle); 912 o->duty_cycle = p->duty_cycle; 913 914 p->max_pulse_width = 915 (u32) pulse_width_count_to_ns(FIFO_RXTX, txclk_divider); 916 } else { 917 p->max_pulse_width = 918 txclk_tx_s_max_pulse_width(dev, p->max_pulse_width, 919 &txclk_divider); 920 } 921 o->max_pulse_width = p->max_pulse_width; 922 atomic_set(&state->txclk_divider, txclk_divider); 923 924 p->resolution = clock_divider_to_resolution(txclk_divider); 925 o->resolution = p->resolution; 926 927 /* FIXME - make this dependent on resolution for better performance */ 928 control_tx_irq_watermark(dev, TX_FIFO_HALF_EMPTY); 929 930 control_tx_polarity_invert(dev, p->invert_carrier_sense); 931 o->invert_carrier_sense = p->invert_carrier_sense; 932 933 control_tx_level_invert(dev, p->invert_level); 934 o->invert_level = p->invert_level; 935 936 o->interrupt_enable = p->interrupt_enable; 937 o->enable = p->enable; 938 if (p->enable) { 939 if (p->interrupt_enable) 940 irqenable_tx(dev, IRQEN_TSE); 941 control_tx_enable(dev, p->enable); 942 } 943 944 mutex_unlock(&state->tx_params_lock); 945 return 0; 946} 947 948 949/* 950 * V4L2 Subdevice Core Ops 951 */ 952static int cx23888_ir_log_status(struct v4l2_subdev *sd) 953{ 954 struct cx23888_ir_state *state = to_state(sd); 955 struct cx23885_dev *dev = state->dev; 956 char *s; 957 int i, j; 958 959 u32 cntrl = cx23888_ir_read4(dev, CX23888_IR_CNTRL_REG); 960 u32 txclk = cx23888_ir_read4(dev, CX23888_IR_TXCLK_REG) & TXCLK_TCD; 961 u32 rxclk = cx23888_ir_read4(dev, CX23888_IR_RXCLK_REG) & RXCLK_RCD; 962 u32 cduty = cx23888_ir_read4(dev, CX23888_IR_CDUTY_REG) & CDUTY_CDC; 963 u32 stats = cx23888_ir_read4(dev, CX23888_IR_STATS_REG); 964 u32 irqen = cx23888_ir_read4(dev, CX23888_IR_IRQEN_REG); 965 u32 filtr = cx23888_ir_read4(dev, CX23888_IR_FILTR_REG) & FILTR_LPF; 966 967 v4l2_info(sd, "IR Receiver:\n"); 968 v4l2_info(sd, "\tEnabled: %s\n", 969 cntrl & CNTRL_RXE ? "yes" : "no"); 970 v4l2_info(sd, "\tDemodulation from a carrier: %s\n", 971 cntrl & CNTRL_DMD ? "enabled" : "disabled"); 972 v4l2_info(sd, "\tFIFO: %s\n", 973 cntrl & CNTRL_RFE ? "enabled" : "disabled"); 974 switch (cntrl & CNTRL_EDG) { 975 case CNTRL_EDG_NONE: 976 s = "disabled"; 977 break; 978 case CNTRL_EDG_FALL: 979 s = "falling edge"; 980 break; 981 case CNTRL_EDG_RISE: 982 s = "rising edge"; 983 break; 984 case CNTRL_EDG_BOTH: 985 s = "rising & falling edges"; 986 break; 987 default: 988 s = "??? edge"; 989 break; 990 } 991 v4l2_info(sd, "\tPulse timers' start/stop trigger: %s\n", s); 992 v4l2_info(sd, "\tFIFO data on pulse timer overflow: %s\n", 993 cntrl & CNTRL_R ? "not loaded" : "overflow marker"); 994 v4l2_info(sd, "\tFIFO interrupt watermark: %s\n", 995 cntrl & CNTRL_RIC ? "not empty" : "half full or greater"); 996 v4l2_info(sd, "\tLoopback mode: %s\n", 997 cntrl & CNTRL_LBM ? "loopback active" : "normal receive"); 998 if (cntrl & CNTRL_DMD) { 999 v4l2_info(sd, "\tExpected carrier (16 clocks): %u Hz\n", 1000 clock_divider_to_carrier_freq(rxclk)); 1001 switch (cntrl & CNTRL_WIN) { 1002 case CNTRL_WIN_3_3: 1003 i = 3; 1004 j = 3; 1005 break; 1006 case CNTRL_WIN_4_3: 1007 i = 4; 1008 j = 3; 1009 break; 1010 case CNTRL_WIN_3_4: 1011 i = 3; 1012 j = 4; 1013 break; 1014 case CNTRL_WIN_4_4: 1015 i = 4; 1016 j = 4; 1017 break; 1018 default: 1019 i = 0; 1020 j = 0; 1021 break; 1022 } 1023 v4l2_info(sd, "\tNext carrier edge window: 16 clocks " 1024 "-%1d/+%1d, %u to %u Hz\n", i, j, 1025 clock_divider_to_freq(rxclk, 16 + j), 1026 clock_divider_to_freq(rxclk, 16 - i)); 1027 } 1028 v4l2_info(sd, "\tMax measurable pulse width: %u us, %llu ns\n", 1029 pulse_width_count_to_us(FIFO_RXTX, rxclk), 1030 pulse_width_count_to_ns(FIFO_RXTX, rxclk)); 1031 v4l2_info(sd, "\tLow pass filter: %s\n", 1032 filtr ? "enabled" : "disabled"); 1033 if (filtr) 1034 v4l2_info(sd, "\tMin acceptable pulse width (LPF): %u us, " 1035 "%u ns\n", 1036 lpf_count_to_us(filtr), 1037 lpf_count_to_ns(filtr)); 1038 v4l2_info(sd, "\tPulse width timer timed-out: %s\n", 1039 stats & STATS_RTO ? "yes" : "no"); 1040 v4l2_info(sd, "\tPulse width timer time-out intr: %s\n", 1041 irqen & IRQEN_RTE ? "enabled" : "disabled"); 1042 v4l2_info(sd, "\tFIFO overrun: %s\n", 1043 stats & STATS_ROR ? "yes" : "no"); 1044 v4l2_info(sd, "\tFIFO overrun interrupt: %s\n", 1045 irqen & IRQEN_ROE ? "enabled" : "disabled"); 1046 v4l2_info(sd, "\tBusy: %s\n", 1047 stats & STATS_RBY ? "yes" : "no"); 1048 v4l2_info(sd, "\tFIFO service requested: %s\n", 1049 stats & STATS_RSR ? "yes" : "no"); 1050 v4l2_info(sd, "\tFIFO service request interrupt: %s\n", 1051 irqen & IRQEN_RSE ? "enabled" : "disabled"); 1052 1053 v4l2_info(sd, "IR Transmitter:\n"); 1054 v4l2_info(sd, "\tEnabled: %s\n", 1055 cntrl & CNTRL_TXE ? "yes" : "no"); 1056 v4l2_info(sd, "\tModulation onto a carrier: %s\n", 1057 cntrl & CNTRL_MOD ? "enabled" : "disabled"); 1058 v4l2_info(sd, "\tFIFO: %s\n", 1059 cntrl & CNTRL_TFE ? "enabled" : "disabled"); 1060 v4l2_info(sd, "\tFIFO interrupt watermark: %s\n", 1061 cntrl & CNTRL_TIC ? "not empty" : "half full or less"); 1062 v4l2_info(sd, "\tOutput pin level inversion %s\n", 1063 cntrl & CNTRL_IVO ? "yes" : "no"); 1064 v4l2_info(sd, "\tCarrier polarity: %s\n", 1065 cntrl & CNTRL_CPL ? "space:burst mark:noburst" 1066 : "space:noburst mark:burst"); 1067 if (cntrl & CNTRL_MOD) { 1068 v4l2_info(sd, "\tCarrier (16 clocks): %u Hz\n", 1069 clock_divider_to_carrier_freq(txclk)); 1070 v4l2_info(sd, "\tCarrier duty cycle: %2u/16\n", 1071 cduty + 1); 1072 } 1073 v4l2_info(sd, "\tMax pulse width: %u us, %llu ns\n", 1074 pulse_width_count_to_us(FIFO_RXTX, txclk), 1075 pulse_width_count_to_ns(FIFO_RXTX, txclk)); 1076 v4l2_info(sd, "\tBusy: %s\n", 1077 stats & STATS_TBY ? "yes" : "no"); 1078 v4l2_info(sd, "\tFIFO service requested: %s\n", 1079 stats & STATS_TSR ? "yes" : "no"); 1080 v4l2_info(sd, "\tFIFO service request interrupt: %s\n", 1081 irqen & IRQEN_TSE ? "enabled" : "disabled"); 1082 1083 return 0; 1084} 1085 1086static inline int cx23888_ir_dbg_match(const struct v4l2_dbg_match *match) 1087{ 1088 return match->type == V4L2_CHIP_MATCH_HOST && match->addr == 2; 1089} 1090 1091static int cx23888_ir_g_chip_ident(struct v4l2_subdev *sd, 1092 struct v4l2_dbg_chip_ident *chip) 1093{ 1094 struct cx23888_ir_state *state = to_state(sd); 1095 1096 if (cx23888_ir_dbg_match(&chip->match)) { 1097 chip->ident = state->id; 1098 chip->revision = state->rev; 1099 } 1100 return 0; 1101} 1102 1103#ifdef CONFIG_VIDEO_ADV_DEBUG 1104static int cx23888_ir_g_register(struct v4l2_subdev *sd, 1105 struct v4l2_dbg_register *reg) 1106{ 1107 struct cx23888_ir_state *state = to_state(sd); 1108 u32 addr = CX23888_IR_REG_BASE + (u32) reg->reg; 1109 1110 if (!cx23888_ir_dbg_match(®->match)) 1111 return -EINVAL; 1112 if ((addr & 0x3) != 0) 1113 return -EINVAL; 1114 if (addr < CX23888_IR_CNTRL_REG || addr > CX23888_IR_LEARN_REG) 1115 return -EINVAL; 1116 if (!capable(CAP_SYS_ADMIN)) 1117 return -EPERM; 1118 reg->size = 4; 1119 reg->val = cx23888_ir_read4(state->dev, addr); 1120 return 0; 1121} 1122 1123static int cx23888_ir_s_register(struct v4l2_subdev *sd, 1124 struct v4l2_dbg_register *reg) 1125{ 1126 struct cx23888_ir_state *state = to_state(sd); 1127 u32 addr = CX23888_IR_REG_BASE + (u32) reg->reg; 1128 1129 if (!cx23888_ir_dbg_match(®->match)) 1130 return -EINVAL; 1131 if ((addr & 0x3) != 0) 1132 return -EINVAL; 1133 if (addr < CX23888_IR_CNTRL_REG || addr > CX23888_IR_LEARN_REG) 1134 return -EINVAL; 1135 if (!capable(CAP_SYS_ADMIN)) 1136 return -EPERM; 1137 cx23888_ir_write4(state->dev, addr, reg->val); 1138 return 0; 1139} 1140#endif 1141 1142static const struct v4l2_subdev_core_ops cx23888_ir_core_ops = { 1143 .g_chip_ident = cx23888_ir_g_chip_ident, 1144 .log_status = cx23888_ir_log_status, 1145#ifdef CONFIG_VIDEO_ADV_DEBUG 1146 .g_register = cx23888_ir_g_register, 1147 .s_register = cx23888_ir_s_register, 1148#endif 1149 .interrupt_service_routine = cx23888_ir_irq_handler, 1150}; 1151 1152static const struct v4l2_subdev_ir_ops cx23888_ir_ir_ops = { 1153 .rx_read = cx23888_ir_rx_read, 1154 .rx_g_parameters = cx23888_ir_rx_g_parameters, 1155 .rx_s_parameters = cx23888_ir_rx_s_parameters, 1156 1157 .tx_write = cx23888_ir_tx_write, 1158 .tx_g_parameters = cx23888_ir_tx_g_parameters, 1159 .tx_s_parameters = cx23888_ir_tx_s_parameters, 1160}; 1161 1162static const struct v4l2_subdev_ops cx23888_ir_controller_ops = { 1163 .core = &cx23888_ir_core_ops, 1164 .ir = &cx23888_ir_ir_ops, 1165}; 1166 1167static const struct v4l2_subdev_ir_parameters default_rx_params = { 1168 .bytes_per_data_element = sizeof(union cx23888_ir_fifo_rec), 1169 .mode = V4L2_SUBDEV_IR_MODE_PULSE_WIDTH, 1170 1171 .enable = false, 1172 .interrupt_enable = false, 1173 .shutdown = true, 1174 1175 .modulation = true, 1176 .carrier_freq = 36000, /* 36 kHz - RC-5, RC-6, and RC-6A carrier */ 1177 1178 /* RC-5: 666,667 ns = 1/36 kHz * 32 cycles * 1 mark * 0.75 */ 1179 /* RC-6A: 333,333 ns = 1/36 kHz * 16 cycles * 1 mark * 0.75 */ 1180 .noise_filter_min_width = 333333, /* ns */ 1181 .carrier_range_lower = 35000, 1182 .carrier_range_upper = 37000, 1183 .invert_level = false, 1184}; 1185 1186static const struct v4l2_subdev_ir_parameters default_tx_params = { 1187 .bytes_per_data_element = sizeof(union cx23888_ir_fifo_rec), 1188 .mode = V4L2_SUBDEV_IR_MODE_PULSE_WIDTH, 1189 1190 .enable = false, 1191 .interrupt_enable = false, 1192 .shutdown = true, 1193 1194 .modulation = true, 1195 .carrier_freq = 36000, /* 36 kHz - RC-5 carrier */ 1196 .duty_cycle = 25, /* 25 % - RC-5 carrier */ 1197 .invert_level = false, 1198 .invert_carrier_sense = false, 1199}; 1200 1201int cx23888_ir_probe(struct cx23885_dev *dev) 1202{ 1203 struct cx23888_ir_state *state; 1204 struct v4l2_subdev *sd; 1205 struct v4l2_subdev_ir_parameters default_params; 1206 int ret; 1207 1208 state = kzalloc(sizeof(struct cx23888_ir_state), GFP_KERNEL); 1209 if (state == NULL) 1210 return -ENOMEM; 1211 1212 spin_lock_init(&state->rx_kfifo_lock); 1213 if (kfifo_alloc(&state->rx_kfifo, CX23888_IR_RX_KFIFO_SIZE, GFP_KERNEL)) 1214 return -ENOMEM; 1215 1216 state->dev = dev; 1217 state->id = V4L2_IDENT_CX23888_IR; 1218 state->rev = 0; 1219 sd = &state->sd; 1220 1221 v4l2_subdev_init(sd, &cx23888_ir_controller_ops); 1222 v4l2_set_subdevdata(sd, state); 1223 /* FIXME - fix the formatting of dev->v4l2_dev.name and use it */ 1224 snprintf(sd->name, sizeof(sd->name), "%s/888-ir", dev->name); 1225 sd->grp_id = CX23885_HW_888_IR; 1226 1227 ret = v4l2_device_register_subdev(&dev->v4l2_dev, sd); 1228 if (ret == 0) { 1229 /* 1230 * Ensure no interrupts arrive from '888 specific conditions, 1231 * since we ignore them in this driver to have commonality with 1232 * similar IR controller cores. 1233 */ 1234 cx23888_ir_write4(dev, CX23888_IR_IRQEN_REG, 0); 1235 1236 mutex_init(&state->rx_params_lock); 1237 memcpy(&default_params, &default_rx_params, 1238 sizeof(struct v4l2_subdev_ir_parameters)); 1239 v4l2_subdev_call(sd, ir, rx_s_parameters, &default_params); 1240 1241 mutex_init(&state->tx_params_lock); 1242 memcpy(&default_params, &default_tx_params, 1243 sizeof(struct v4l2_subdev_ir_parameters)); 1244 v4l2_subdev_call(sd, ir, tx_s_parameters, &default_params); 1245 } else { 1246 kfifo_free(&state->rx_kfifo); 1247 } 1248 return ret; 1249} 1250 1251int cx23888_ir_remove(struct cx23885_dev *dev) 1252{ 1253 struct v4l2_subdev *sd; 1254 struct cx23888_ir_state *state; 1255 1256 sd = cx23885_find_hw(dev, CX23885_HW_888_IR); 1257 if (sd == NULL) 1258 return -ENODEV; 1259 1260 cx23888_ir_rx_shutdown(sd); 1261 cx23888_ir_tx_shutdown(sd); 1262 1263 state = to_state(sd); 1264 v4l2_device_unregister_subdev(sd); 1265 kfifo_free(&state->rx_kfifo); 1266 kfree(state); 1267 /* Nothing more to free() as state held the actual v4l2_subdev object */ 1268 return 0; 1269} 1270