1/*
2 * Copyright (C) STMicroelectronics 2009
3 * Copyright (C) ST-Ericsson SA 2010
4 *
5 * License Terms: GNU General Public License v2
6 * Author: Kumar Sanghvi <kumar.sanghvi@stericsson.com>
7 * Author: Sundar Iyer <sundar.iyer@stericsson.com>
8 * Author: Mattias Nilsson <mattias.i.nilsson@stericsson.com>
9 *
10 * U8500 PRCM Unit interface driver
11 *
12 */
13#include <linux/module.h>
14#include <linux/kernel.h>
15#include <linux/delay.h>
16#include <linux/errno.h>
17#include <linux/err.h>
18#include <linux/spinlock.h>
19#include <linux/io.h>
20#include <linux/slab.h>
21#include <linux/mutex.h>
22#include <linux/completion.h>
23#include <linux/irq.h>
24#include <linux/jiffies.h>
25#include <linux/bitops.h>
26#include <linux/fs.h>
27#include <linux/platform_device.h>
28#include <linux/uaccess.h>
29#include <linux/mfd/core.h>
30#include <linux/mfd/dbx500-prcmu.h>
31#include <linux/regulator/db8500-prcmu.h>
32#include <linux/regulator/machine.h>
33#include <asm/hardware/gic.h>
34#include <mach/hardware.h>
35#include <mach/irqs.h>
36#include <mach/db8500-regs.h>
37#include <mach/id.h>
38#include "dbx500-prcmu-regs.h"
39
40/* Offset for the firmware version within the TCPM */
41#define PRCMU_FW_VERSION_OFFSET 0xA4
42
43/* Index of different voltages to be used when accessing AVSData */
44#define PRCM_AVS_BASE		0x2FC
45#define PRCM_AVS_VBB_RET	(PRCM_AVS_BASE + 0x0)
46#define PRCM_AVS_VBB_MAX_OPP	(PRCM_AVS_BASE + 0x1)
47#define PRCM_AVS_VBB_100_OPP	(PRCM_AVS_BASE + 0x2)
48#define PRCM_AVS_VBB_50_OPP	(PRCM_AVS_BASE + 0x3)
49#define PRCM_AVS_VARM_MAX_OPP	(PRCM_AVS_BASE + 0x4)
50#define PRCM_AVS_VARM_100_OPP	(PRCM_AVS_BASE + 0x5)
51#define PRCM_AVS_VARM_50_OPP	(PRCM_AVS_BASE + 0x6)
52#define PRCM_AVS_VARM_RET	(PRCM_AVS_BASE + 0x7)
53#define PRCM_AVS_VAPE_100_OPP	(PRCM_AVS_BASE + 0x8)
54#define PRCM_AVS_VAPE_50_OPP	(PRCM_AVS_BASE + 0x9)
55#define PRCM_AVS_VMOD_100_OPP	(PRCM_AVS_BASE + 0xA)
56#define PRCM_AVS_VMOD_50_OPP	(PRCM_AVS_BASE + 0xB)
57#define PRCM_AVS_VSAFE		(PRCM_AVS_BASE + 0xC)
58
59#define PRCM_AVS_VOLTAGE		0
60#define PRCM_AVS_VOLTAGE_MASK		0x3f
61#define PRCM_AVS_ISSLOWSTARTUP		6
62#define PRCM_AVS_ISSLOWSTARTUP_MASK	(1 << PRCM_AVS_ISSLOWSTARTUP)
63#define PRCM_AVS_ISMODEENABLE		7
64#define PRCM_AVS_ISMODEENABLE_MASK	(1 << PRCM_AVS_ISMODEENABLE)
65
66#define PRCM_BOOT_STATUS	0xFFF
67#define PRCM_ROMCODE_A2P	0xFFE
68#define PRCM_ROMCODE_P2A	0xFFD
69#define PRCM_XP70_CUR_PWR_STATE 0xFFC      /* 4 BYTES */
70
71#define PRCM_SW_RST_REASON 0xFF8 /* 2 bytes */
72
73#define _PRCM_MBOX_HEADER		0xFE8 /* 16 bytes */
74#define PRCM_MBOX_HEADER_REQ_MB0	(_PRCM_MBOX_HEADER + 0x0)
75#define PRCM_MBOX_HEADER_REQ_MB1	(_PRCM_MBOX_HEADER + 0x1)
76#define PRCM_MBOX_HEADER_REQ_MB2	(_PRCM_MBOX_HEADER + 0x2)
77#define PRCM_MBOX_HEADER_REQ_MB3	(_PRCM_MBOX_HEADER + 0x3)
78#define PRCM_MBOX_HEADER_REQ_MB4	(_PRCM_MBOX_HEADER + 0x4)
79#define PRCM_MBOX_HEADER_REQ_MB5	(_PRCM_MBOX_HEADER + 0x5)
80#define PRCM_MBOX_HEADER_ACK_MB0	(_PRCM_MBOX_HEADER + 0x8)
81
82/* Req Mailboxes */
83#define PRCM_REQ_MB0 0xFDC /* 12 bytes  */
84#define PRCM_REQ_MB1 0xFD0 /* 12 bytes  */
85#define PRCM_REQ_MB2 0xFC0 /* 16 bytes  */
86#define PRCM_REQ_MB3 0xE4C /* 372 bytes  */
87#define PRCM_REQ_MB4 0xE48 /* 4 bytes  */
88#define PRCM_REQ_MB5 0xE44 /* 4 bytes  */
89
90/* Ack Mailboxes */
91#define PRCM_ACK_MB0 0xE08 /* 52 bytes  */
92#define PRCM_ACK_MB1 0xE04 /* 4 bytes */
93#define PRCM_ACK_MB2 0xE00 /* 4 bytes */
94#define PRCM_ACK_MB3 0xDFC /* 4 bytes */
95#define PRCM_ACK_MB4 0xDF8 /* 4 bytes */
96#define PRCM_ACK_MB5 0xDF4 /* 4 bytes */
97
98/* Mailbox 0 headers */
99#define MB0H_POWER_STATE_TRANS		0
100#define MB0H_CONFIG_WAKEUPS_EXE		1
101#define MB0H_READ_WAKEUP_ACK		3
102#define MB0H_CONFIG_WAKEUPS_SLEEP	4
103
104#define MB0H_WAKEUP_EXE 2
105#define MB0H_WAKEUP_SLEEP 5
106
107/* Mailbox 0 REQs */
108#define PRCM_REQ_MB0_AP_POWER_STATE	(PRCM_REQ_MB0 + 0x0)
109#define PRCM_REQ_MB0_AP_PLL_STATE	(PRCM_REQ_MB0 + 0x1)
110#define PRCM_REQ_MB0_ULP_CLOCK_STATE	(PRCM_REQ_MB0 + 0x2)
111#define PRCM_REQ_MB0_DO_NOT_WFI		(PRCM_REQ_MB0 + 0x3)
112#define PRCM_REQ_MB0_WAKEUP_8500	(PRCM_REQ_MB0 + 0x4)
113#define PRCM_REQ_MB0_WAKEUP_4500	(PRCM_REQ_MB0 + 0x8)
114
115/* Mailbox 0 ACKs */
116#define PRCM_ACK_MB0_AP_PWRSTTR_STATUS	(PRCM_ACK_MB0 + 0x0)
117#define PRCM_ACK_MB0_READ_POINTER	(PRCM_ACK_MB0 + 0x1)
118#define PRCM_ACK_MB0_WAKEUP_0_8500	(PRCM_ACK_MB0 + 0x4)
119#define PRCM_ACK_MB0_WAKEUP_0_4500	(PRCM_ACK_MB0 + 0x8)
120#define PRCM_ACK_MB0_WAKEUP_1_8500	(PRCM_ACK_MB0 + 0x1C)
121#define PRCM_ACK_MB0_WAKEUP_1_4500	(PRCM_ACK_MB0 + 0x20)
122#define PRCM_ACK_MB0_EVENT_4500_NUMBERS	20
123
124/* Mailbox 1 headers */
125#define MB1H_ARM_APE_OPP 0x0
126#define MB1H_RESET_MODEM 0x2
127#define MB1H_REQUEST_APE_OPP_100_VOLT 0x3
128#define MB1H_RELEASE_APE_OPP_100_VOLT 0x4
129#define MB1H_RELEASE_USB_WAKEUP 0x5
130#define MB1H_PLL_ON_OFF 0x6
131
132/* Mailbox 1 Requests */
133#define PRCM_REQ_MB1_ARM_OPP			(PRCM_REQ_MB1 + 0x0)
134#define PRCM_REQ_MB1_APE_OPP			(PRCM_REQ_MB1 + 0x1)
135#define PRCM_REQ_MB1_PLL_ON_OFF			(PRCM_REQ_MB1 + 0x4)
136#define PLL_SOC0_OFF	0x1
137#define PLL_SOC0_ON	0x2
138#define PLL_SOC1_OFF	0x4
139#define PLL_SOC1_ON	0x8
140
141/* Mailbox 1 ACKs */
142#define PRCM_ACK_MB1_CURRENT_ARM_OPP	(PRCM_ACK_MB1 + 0x0)
143#define PRCM_ACK_MB1_CURRENT_APE_OPP	(PRCM_ACK_MB1 + 0x1)
144#define PRCM_ACK_MB1_APE_VOLTAGE_STATUS	(PRCM_ACK_MB1 + 0x2)
145#define PRCM_ACK_MB1_DVFS_STATUS	(PRCM_ACK_MB1 + 0x3)
146
147/* Mailbox 2 headers */
148#define MB2H_DPS	0x0
149#define MB2H_AUTO_PWR	0x1
150
151/* Mailbox 2 REQs */
152#define PRCM_REQ_MB2_SVA_MMDSP		(PRCM_REQ_MB2 + 0x0)
153#define PRCM_REQ_MB2_SVA_PIPE		(PRCM_REQ_MB2 + 0x1)
154#define PRCM_REQ_MB2_SIA_MMDSP		(PRCM_REQ_MB2 + 0x2)
155#define PRCM_REQ_MB2_SIA_PIPE		(PRCM_REQ_MB2 + 0x3)
156#define PRCM_REQ_MB2_SGA		(PRCM_REQ_MB2 + 0x4)
157#define PRCM_REQ_MB2_B2R2_MCDE		(PRCM_REQ_MB2 + 0x5)
158#define PRCM_REQ_MB2_ESRAM12		(PRCM_REQ_MB2 + 0x6)
159#define PRCM_REQ_MB2_ESRAM34		(PRCM_REQ_MB2 + 0x7)
160#define PRCM_REQ_MB2_AUTO_PM_SLEEP	(PRCM_REQ_MB2 + 0x8)
161#define PRCM_REQ_MB2_AUTO_PM_IDLE	(PRCM_REQ_MB2 + 0xC)
162
163/* Mailbox 2 ACKs */
164#define PRCM_ACK_MB2_DPS_STATUS (PRCM_ACK_MB2 + 0x0)
165#define HWACC_PWR_ST_OK 0xFE
166
167/* Mailbox 3 headers */
168#define MB3H_ANC	0x0
169#define MB3H_SIDETONE	0x1
170#define MB3H_SYSCLK	0xE
171
172/* Mailbox 3 Requests */
173#define PRCM_REQ_MB3_ANC_FIR_COEFF	(PRCM_REQ_MB3 + 0x0)
174#define PRCM_REQ_MB3_ANC_IIR_COEFF	(PRCM_REQ_MB3 + 0x20)
175#define PRCM_REQ_MB3_ANC_SHIFTER	(PRCM_REQ_MB3 + 0x60)
176#define PRCM_REQ_MB3_ANC_WARP		(PRCM_REQ_MB3 + 0x64)
177#define PRCM_REQ_MB3_SIDETONE_FIR_GAIN	(PRCM_REQ_MB3 + 0x68)
178#define PRCM_REQ_MB3_SIDETONE_FIR_COEFF	(PRCM_REQ_MB3 + 0x6C)
179#define PRCM_REQ_MB3_SYSCLK_MGT		(PRCM_REQ_MB3 + 0x16C)
180
181/* Mailbox 4 headers */
182#define MB4H_DDR_INIT	0x0
183#define MB4H_MEM_ST	0x1
184#define MB4H_HOTDOG	0x12
185#define MB4H_HOTMON	0x13
186#define MB4H_HOT_PERIOD	0x14
187#define MB4H_A9WDOG_CONF 0x16
188#define MB4H_A9WDOG_EN   0x17
189#define MB4H_A9WDOG_DIS  0x18
190#define MB4H_A9WDOG_LOAD 0x19
191#define MB4H_A9WDOG_KICK 0x20
192
193/* Mailbox 4 Requests */
194#define PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE	(PRCM_REQ_MB4 + 0x0)
195#define PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE	(PRCM_REQ_MB4 + 0x1)
196#define PRCM_REQ_MB4_ESRAM0_ST			(PRCM_REQ_MB4 + 0x3)
197#define PRCM_REQ_MB4_HOTDOG_THRESHOLD		(PRCM_REQ_MB4 + 0x0)
198#define PRCM_REQ_MB4_HOTMON_LOW			(PRCM_REQ_MB4 + 0x0)
199#define PRCM_REQ_MB4_HOTMON_HIGH		(PRCM_REQ_MB4 + 0x1)
200#define PRCM_REQ_MB4_HOTMON_CONFIG		(PRCM_REQ_MB4 + 0x2)
201#define PRCM_REQ_MB4_HOT_PERIOD			(PRCM_REQ_MB4 + 0x0)
202#define HOTMON_CONFIG_LOW			BIT(0)
203#define HOTMON_CONFIG_HIGH			BIT(1)
204#define PRCM_REQ_MB4_A9WDOG_0			(PRCM_REQ_MB4 + 0x0)
205#define PRCM_REQ_MB4_A9WDOG_1			(PRCM_REQ_MB4 + 0x1)
206#define PRCM_REQ_MB4_A9WDOG_2			(PRCM_REQ_MB4 + 0x2)
207#define PRCM_REQ_MB4_A9WDOG_3			(PRCM_REQ_MB4 + 0x3)
208#define A9WDOG_AUTO_OFF_EN			BIT(7)
209#define A9WDOG_AUTO_OFF_DIS			0
210#define A9WDOG_ID_MASK				0xf
211
212/* Mailbox 5 Requests */
213#define PRCM_REQ_MB5_I2C_SLAVE_OP	(PRCM_REQ_MB5 + 0x0)
214#define PRCM_REQ_MB5_I2C_HW_BITS	(PRCM_REQ_MB5 + 0x1)
215#define PRCM_REQ_MB5_I2C_REG		(PRCM_REQ_MB5 + 0x2)
216#define PRCM_REQ_MB5_I2C_VAL		(PRCM_REQ_MB5 + 0x3)
217#define PRCMU_I2C_WRITE(slave) \
218	(((slave) << 1) | (cpu_is_u8500v2() ? BIT(6) : 0))
219#define PRCMU_I2C_READ(slave) \
220	(((slave) << 1) | BIT(0) | (cpu_is_u8500v2() ? BIT(6) : 0))
221#define PRCMU_I2C_STOP_EN		BIT(3)
222
223/* Mailbox 5 ACKs */
224#define PRCM_ACK_MB5_I2C_STATUS	(PRCM_ACK_MB5 + 0x1)
225#define PRCM_ACK_MB5_I2C_VAL	(PRCM_ACK_MB5 + 0x3)
226#define I2C_WR_OK 0x1
227#define I2C_RD_OK 0x2
228
229#define NUM_MB 8
230#define MBOX_BIT BIT
231#define ALL_MBOX_BITS (MBOX_BIT(NUM_MB) - 1)
232
233/*
234 * Wakeups/IRQs
235 */
236
237#define WAKEUP_BIT_RTC BIT(0)
238#define WAKEUP_BIT_RTT0 BIT(1)
239#define WAKEUP_BIT_RTT1 BIT(2)
240#define WAKEUP_BIT_HSI0 BIT(3)
241#define WAKEUP_BIT_HSI1 BIT(4)
242#define WAKEUP_BIT_CA_WAKE BIT(5)
243#define WAKEUP_BIT_USB BIT(6)
244#define WAKEUP_BIT_ABB BIT(7)
245#define WAKEUP_BIT_ABB_FIFO BIT(8)
246#define WAKEUP_BIT_SYSCLK_OK BIT(9)
247#define WAKEUP_BIT_CA_SLEEP BIT(10)
248#define WAKEUP_BIT_AC_WAKE_ACK BIT(11)
249#define WAKEUP_BIT_SIDE_TONE_OK BIT(12)
250#define WAKEUP_BIT_ANC_OK BIT(13)
251#define WAKEUP_BIT_SW_ERROR BIT(14)
252#define WAKEUP_BIT_AC_SLEEP_ACK BIT(15)
253#define WAKEUP_BIT_ARM BIT(17)
254#define WAKEUP_BIT_HOTMON_LOW BIT(18)
255#define WAKEUP_BIT_HOTMON_HIGH BIT(19)
256#define WAKEUP_BIT_MODEM_SW_RESET_REQ BIT(20)
257#define WAKEUP_BIT_GPIO0 BIT(23)
258#define WAKEUP_BIT_GPIO1 BIT(24)
259#define WAKEUP_BIT_GPIO2 BIT(25)
260#define WAKEUP_BIT_GPIO3 BIT(26)
261#define WAKEUP_BIT_GPIO4 BIT(27)
262#define WAKEUP_BIT_GPIO5 BIT(28)
263#define WAKEUP_BIT_GPIO6 BIT(29)
264#define WAKEUP_BIT_GPIO7 BIT(30)
265#define WAKEUP_BIT_GPIO8 BIT(31)
266
267static struct {
268	bool valid;
269	struct prcmu_fw_version version;
270} fw_info;
271
272/*
273 * This vector maps irq numbers to the bits in the bit field used in
274 * communication with the PRCMU firmware.
275 *
276 * The reason for having this is to keep the irq numbers contiguous even though
277 * the bits in the bit field are not. (The bits also have a tendency to move
278 * around, to further complicate matters.)
279 */
280#define IRQ_INDEX(_name) ((IRQ_PRCMU_##_name) - IRQ_PRCMU_BASE)
281#define IRQ_ENTRY(_name)[IRQ_INDEX(_name)] = (WAKEUP_BIT_##_name)
282static u32 prcmu_irq_bit[NUM_PRCMU_WAKEUPS] = {
283	IRQ_ENTRY(RTC),
284	IRQ_ENTRY(RTT0),
285	IRQ_ENTRY(RTT1),
286	IRQ_ENTRY(HSI0),
287	IRQ_ENTRY(HSI1),
288	IRQ_ENTRY(CA_WAKE),
289	IRQ_ENTRY(USB),
290	IRQ_ENTRY(ABB),
291	IRQ_ENTRY(ABB_FIFO),
292	IRQ_ENTRY(CA_SLEEP),
293	IRQ_ENTRY(ARM),
294	IRQ_ENTRY(HOTMON_LOW),
295	IRQ_ENTRY(HOTMON_HIGH),
296	IRQ_ENTRY(MODEM_SW_RESET_REQ),
297	IRQ_ENTRY(GPIO0),
298	IRQ_ENTRY(GPIO1),
299	IRQ_ENTRY(GPIO2),
300	IRQ_ENTRY(GPIO3),
301	IRQ_ENTRY(GPIO4),
302	IRQ_ENTRY(GPIO5),
303	IRQ_ENTRY(GPIO6),
304	IRQ_ENTRY(GPIO7),
305	IRQ_ENTRY(GPIO8)
306};
307
308#define VALID_WAKEUPS (BIT(NUM_PRCMU_WAKEUP_INDICES) - 1)
309#define WAKEUP_ENTRY(_name)[PRCMU_WAKEUP_INDEX_##_name] = (WAKEUP_BIT_##_name)
310static u32 prcmu_wakeup_bit[NUM_PRCMU_WAKEUP_INDICES] = {
311	WAKEUP_ENTRY(RTC),
312	WAKEUP_ENTRY(RTT0),
313	WAKEUP_ENTRY(RTT1),
314	WAKEUP_ENTRY(HSI0),
315	WAKEUP_ENTRY(HSI1),
316	WAKEUP_ENTRY(USB),
317	WAKEUP_ENTRY(ABB),
318	WAKEUP_ENTRY(ABB_FIFO),
319	WAKEUP_ENTRY(ARM)
320};
321
322/*
323 * mb0_transfer - state needed for mailbox 0 communication.
324 * @lock:		The transaction lock.
325 * @dbb_events_lock:	A lock used to handle concurrent access to (parts of)
326 *			the request data.
327 * @mask_work:		Work structure used for (un)masking wakeup interrupts.
328 * @req:		Request data that need to persist between requests.
329 */
330static struct {
331	spinlock_t lock;
332	spinlock_t dbb_irqs_lock;
333	struct work_struct mask_work;
334	struct mutex ac_wake_lock;
335	struct completion ac_wake_work;
336	struct {
337		u32 dbb_irqs;
338		u32 dbb_wakeups;
339		u32 abb_events;
340	} req;
341} mb0_transfer;
342
343/*
344 * mb1_transfer - state needed for mailbox 1 communication.
345 * @lock:	The transaction lock.
346 * @work:	The transaction completion structure.
347 * @ape_opp:	The current APE OPP.
348 * @ack:	Reply ("acknowledge") data.
349 */
350static struct {
351	struct mutex lock;
352	struct completion work;
353	u8 ape_opp;
354	struct {
355		u8 header;
356		u8 arm_opp;
357		u8 ape_opp;
358		u8 ape_voltage_status;
359	} ack;
360} mb1_transfer;
361
362/*
363 * mb2_transfer - state needed for mailbox 2 communication.
364 * @lock:            The transaction lock.
365 * @work:            The transaction completion structure.
366 * @auto_pm_lock:    The autonomous power management configuration lock.
367 * @auto_pm_enabled: A flag indicating whether autonomous PM is enabled.
368 * @req:             Request data that need to persist between requests.
369 * @ack:             Reply ("acknowledge") data.
370 */
371static struct {
372	struct mutex lock;
373	struct completion work;
374	spinlock_t auto_pm_lock;
375	bool auto_pm_enabled;
376	struct {
377		u8 status;
378	} ack;
379} mb2_transfer;
380
381/*
382 * mb3_transfer - state needed for mailbox 3 communication.
383 * @lock:		The request lock.
384 * @sysclk_lock:	A lock used to handle concurrent sysclk requests.
385 * @sysclk_work:	Work structure used for sysclk requests.
386 */
387static struct {
388	spinlock_t lock;
389	struct mutex sysclk_lock;
390	struct completion sysclk_work;
391} mb3_transfer;
392
393/*
394 * mb4_transfer - state needed for mailbox 4 communication.
395 * @lock:	The transaction lock.
396 * @work:	The transaction completion structure.
397 */
398static struct {
399	struct mutex lock;
400	struct completion work;
401} mb4_transfer;
402
403/*
404 * mb5_transfer - state needed for mailbox 5 communication.
405 * @lock:	The transaction lock.
406 * @work:	The transaction completion structure.
407 * @ack:	Reply ("acknowledge") data.
408 */
409static struct {
410	struct mutex lock;
411	struct completion work;
412	struct {
413		u8 status;
414		u8 value;
415	} ack;
416} mb5_transfer;
417
418static atomic_t ac_wake_req_state = ATOMIC_INIT(0);
419
420/* Spinlocks */
421static DEFINE_SPINLOCK(prcmu_lock);
422static DEFINE_SPINLOCK(clkout_lock);
423
424/* Global var to runtime determine TCDM base for v2 or v1 */
425static __iomem void *tcdm_base;
426
427struct clk_mgt {
428	void __iomem *reg;
429	u32 pllsw;
430	int branch;
431	bool clk38div;
432};
433
434enum {
435	PLL_RAW,
436	PLL_FIX,
437	PLL_DIV
438};
439
440static DEFINE_SPINLOCK(clk_mgt_lock);
441
442#define CLK_MGT_ENTRY(_name, _branch, _clk38div)[PRCMU_##_name] = \
443	{ (PRCM_##_name##_MGT), 0 , _branch, _clk38div}
444struct clk_mgt clk_mgt[PRCMU_NUM_REG_CLOCKS] = {
445	CLK_MGT_ENTRY(SGACLK, PLL_DIV, false),
446	CLK_MGT_ENTRY(UARTCLK, PLL_FIX, true),
447	CLK_MGT_ENTRY(MSP02CLK, PLL_FIX, true),
448	CLK_MGT_ENTRY(MSP1CLK, PLL_FIX, true),
449	CLK_MGT_ENTRY(I2CCLK, PLL_FIX, true),
450	CLK_MGT_ENTRY(SDMMCCLK, PLL_DIV, true),
451	CLK_MGT_ENTRY(SLIMCLK, PLL_FIX, true),
452	CLK_MGT_ENTRY(PER1CLK, PLL_DIV, true),
453	CLK_MGT_ENTRY(PER2CLK, PLL_DIV, true),
454	CLK_MGT_ENTRY(PER3CLK, PLL_DIV, true),
455	CLK_MGT_ENTRY(PER5CLK, PLL_DIV, true),
456	CLK_MGT_ENTRY(PER6CLK, PLL_DIV, true),
457	CLK_MGT_ENTRY(PER7CLK, PLL_DIV, true),
458	CLK_MGT_ENTRY(LCDCLK, PLL_FIX, true),
459	CLK_MGT_ENTRY(BMLCLK, PLL_DIV, true),
460	CLK_MGT_ENTRY(HSITXCLK, PLL_DIV, true),
461	CLK_MGT_ENTRY(HSIRXCLK, PLL_DIV, true),
462	CLK_MGT_ENTRY(HDMICLK, PLL_FIX, false),
463	CLK_MGT_ENTRY(APEATCLK, PLL_DIV, true),
464	CLK_MGT_ENTRY(APETRACECLK, PLL_DIV, true),
465	CLK_MGT_ENTRY(MCDECLK, PLL_DIV, true),
466	CLK_MGT_ENTRY(IPI2CCLK, PLL_FIX, true),
467	CLK_MGT_ENTRY(DSIALTCLK, PLL_FIX, false),
468	CLK_MGT_ENTRY(DMACLK, PLL_DIV, true),
469	CLK_MGT_ENTRY(B2R2CLK, PLL_DIV, true),
470	CLK_MGT_ENTRY(TVCLK, PLL_FIX, true),
471	CLK_MGT_ENTRY(SSPCLK, PLL_FIX, true),
472	CLK_MGT_ENTRY(RNGCLK, PLL_FIX, true),
473	CLK_MGT_ENTRY(UICCCLK, PLL_FIX, false),
474};
475
476struct dsiclk {
477	u32 divsel_mask;
478	u32 divsel_shift;
479	u32 divsel;
480};
481
482static struct dsiclk dsiclk[2] = {
483	{
484		.divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_MASK,
485		.divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_SHIFT,
486		.divsel = PRCM_DSI_PLLOUT_SEL_PHI,
487	},
488	{
489		.divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_MASK,
490		.divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_SHIFT,
491		.divsel = PRCM_DSI_PLLOUT_SEL_PHI,
492	}
493};
494
495struct dsiescclk {
496	u32 en;
497	u32 div_mask;
498	u32 div_shift;
499};
500
501static struct dsiescclk dsiescclk[3] = {
502	{
503		.en = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_EN,
504		.div_mask = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_MASK,
505		.div_shift = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_SHIFT,
506	},
507	{
508		.en = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_EN,
509		.div_mask = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_MASK,
510		.div_shift = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_SHIFT,
511	},
512	{
513		.en = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_EN,
514		.div_mask = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_MASK,
515		.div_shift = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_SHIFT,
516	}
517};
518
519/*
520* Used by MCDE to setup all necessary PRCMU registers
521*/
522#define PRCMU_RESET_DSIPLL		0x00004000
523#define PRCMU_UNCLAMP_DSIPLL		0x00400800
524
525#define PRCMU_CLK_PLL_DIV_SHIFT		0
526#define PRCMU_CLK_PLL_SW_SHIFT		5
527#define PRCMU_CLK_38			(1 << 9)
528#define PRCMU_CLK_38_SRC		(1 << 10)
529#define PRCMU_CLK_38_DIV		(1 << 11)
530
531/* PLLDIV=12, PLLSW=4 (PLLDDR) */
532#define PRCMU_DSI_CLOCK_SETTING		0x0000008C
533
534/* DPI 50000000 Hz */
535#define PRCMU_DPI_CLOCK_SETTING		((1 << PRCMU_CLK_PLL_SW_SHIFT) | \
536					  (16 << PRCMU_CLK_PLL_DIV_SHIFT))
537#define PRCMU_DSI_LP_CLOCK_SETTING	0x00000E00
538
539/* D=101, N=1, R=4, SELDIV2=0 */
540#define PRCMU_PLLDSI_FREQ_SETTING	0x00040165
541
542#define PRCMU_ENABLE_PLLDSI		0x00000001
543#define PRCMU_DISABLE_PLLDSI		0x00000000
544#define PRCMU_RELEASE_RESET_DSS		0x0000400C
545#define PRCMU_DSI_PLLOUT_SEL_SETTING	0x00000202
546/* ESC clk, div0=1, div1=1, div2=3 */
547#define PRCMU_ENABLE_ESCAPE_CLOCK_DIV	0x07030101
548#define PRCMU_DISABLE_ESCAPE_CLOCK_DIV	0x00030101
549#define PRCMU_DSI_RESET_SW		0x00000007
550
551#define PRCMU_PLLDSI_LOCKP_LOCKED	0x3
552
553int db8500_prcmu_enable_dsipll(void)
554{
555	int i;
556
557	/* Clear DSIPLL_RESETN */
558	writel(PRCMU_RESET_DSIPLL, PRCM_APE_RESETN_CLR);
559	/* Unclamp DSIPLL in/out */
560	writel(PRCMU_UNCLAMP_DSIPLL, PRCM_MMIP_LS_CLAMP_CLR);
561
562	/* Set DSI PLL FREQ */
563	writel(PRCMU_PLLDSI_FREQ_SETTING, PRCM_PLLDSI_FREQ);
564	writel(PRCMU_DSI_PLLOUT_SEL_SETTING, PRCM_DSI_PLLOUT_SEL);
565	/* Enable Escape clocks */
566	writel(PRCMU_ENABLE_ESCAPE_CLOCK_DIV, PRCM_DSITVCLK_DIV);
567
568	/* Start DSI PLL */
569	writel(PRCMU_ENABLE_PLLDSI, PRCM_PLLDSI_ENABLE);
570	/* Reset DSI PLL */
571	writel(PRCMU_DSI_RESET_SW, PRCM_DSI_SW_RESET);
572	for (i = 0; i < 10; i++) {
573		if ((readl(PRCM_PLLDSI_LOCKP) & PRCMU_PLLDSI_LOCKP_LOCKED)
574					== PRCMU_PLLDSI_LOCKP_LOCKED)
575			break;
576		udelay(100);
577	}
578	/* Set DSIPLL_RESETN */
579	writel(PRCMU_RESET_DSIPLL, PRCM_APE_RESETN_SET);
580	return 0;
581}
582
583int db8500_prcmu_disable_dsipll(void)
584{
585	/* Disable dsi pll */
586	writel(PRCMU_DISABLE_PLLDSI, PRCM_PLLDSI_ENABLE);
587	/* Disable  escapeclock */
588	writel(PRCMU_DISABLE_ESCAPE_CLOCK_DIV, PRCM_DSITVCLK_DIV);
589	return 0;
590}
591
592int db8500_prcmu_set_display_clocks(void)
593{
594	unsigned long flags;
595
596	spin_lock_irqsave(&clk_mgt_lock, flags);
597
598	/* Grab the HW semaphore. */
599	while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
600		cpu_relax();
601
602	writel(PRCMU_DSI_CLOCK_SETTING, PRCM_HDMICLK_MGT);
603	writel(PRCMU_DSI_LP_CLOCK_SETTING, PRCM_TVCLK_MGT);
604	writel(PRCMU_DPI_CLOCK_SETTING, PRCM_LCDCLK_MGT);
605
606	/* Release the HW semaphore. */
607	writel(0, PRCM_SEM);
608
609	spin_unlock_irqrestore(&clk_mgt_lock, flags);
610
611	return 0;
612}
613
614u32 db8500_prcmu_read(unsigned int reg)
615{
616	return readl(_PRCMU_BASE + reg);
617}
618
619void db8500_prcmu_write(unsigned int reg, u32 value)
620{
621	unsigned long flags;
622
623	spin_lock_irqsave(&prcmu_lock, flags);
624	writel(value, (_PRCMU_BASE + reg));
625	spin_unlock_irqrestore(&prcmu_lock, flags);
626}
627
628void db8500_prcmu_write_masked(unsigned int reg, u32 mask, u32 value)
629{
630	u32 val;
631	unsigned long flags;
632
633	spin_lock_irqsave(&prcmu_lock, flags);
634	val = readl(_PRCMU_BASE + reg);
635	val = ((val & ~mask) | (value & mask));
636	writel(val, (_PRCMU_BASE + reg));
637	spin_unlock_irqrestore(&prcmu_lock, flags);
638}
639
640struct prcmu_fw_version *prcmu_get_fw_version(void)
641{
642	return fw_info.valid ? &fw_info.version : NULL;
643}
644
645bool prcmu_has_arm_maxopp(void)
646{
647	return (readb(tcdm_base + PRCM_AVS_VARM_MAX_OPP) &
648		PRCM_AVS_ISMODEENABLE_MASK) == PRCM_AVS_ISMODEENABLE_MASK;
649}
650
651/**
652 * prcmu_get_boot_status - PRCMU boot status checking
653 * Returns: the current PRCMU boot status
654 */
655int prcmu_get_boot_status(void)
656{
657	return readb(tcdm_base + PRCM_BOOT_STATUS);
658}
659
660/**
661 * prcmu_set_rc_a2p - This function is used to run few power state sequences
662 * @val: Value to be set, i.e. transition requested
663 * Returns: 0 on success, -EINVAL on invalid argument
664 *
665 * This function is used to run the following power state sequences -
666 * any state to ApReset,  ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
667 */
668int prcmu_set_rc_a2p(enum romcode_write val)
669{
670	if (val < RDY_2_DS || val > RDY_2_XP70_RST)
671		return -EINVAL;
672	writeb(val, (tcdm_base + PRCM_ROMCODE_A2P));
673	return 0;
674}
675
676/**
677 * prcmu_get_rc_p2a - This function is used to get power state sequences
678 * Returns: the power transition that has last happened
679 *
680 * This function can return the following transitions-
681 * any state to ApReset,  ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
682 */
683enum romcode_read prcmu_get_rc_p2a(void)
684{
685	return readb(tcdm_base + PRCM_ROMCODE_P2A);
686}
687
688/**
689 * prcmu_get_current_mode - Return the current XP70 power mode
690 * Returns: Returns the current AP(ARM) power mode: init,
691 * apBoot, apExecute, apDeepSleep, apSleep, apIdle, apReset
692 */
693enum ap_pwrst prcmu_get_xp70_current_state(void)
694{
695	return readb(tcdm_base + PRCM_XP70_CUR_PWR_STATE);
696}
697
698/**
699 * prcmu_config_clkout - Configure one of the programmable clock outputs.
700 * @clkout:	The CLKOUT number (0 or 1).
701 * @source:	The clock to be used (one of the PRCMU_CLKSRC_*).
702 * @div:	The divider to be applied.
703 *
704 * Configures one of the programmable clock outputs (CLKOUTs).
705 * @div should be in the range [1,63] to request a configuration, or 0 to
706 * inform that the configuration is no longer requested.
707 */
708int prcmu_config_clkout(u8 clkout, u8 source, u8 div)
709{
710	static int requests[2];
711	int r = 0;
712	unsigned long flags;
713	u32 val;
714	u32 bits;
715	u32 mask;
716	u32 div_mask;
717
718	BUG_ON(clkout > 1);
719	BUG_ON(div > 63);
720	BUG_ON((clkout == 0) && (source > PRCMU_CLKSRC_CLK009));
721
722	if (!div && !requests[clkout])
723		return -EINVAL;
724
725	switch (clkout) {
726	case 0:
727		div_mask = PRCM_CLKOCR_CLKODIV0_MASK;
728		mask = (PRCM_CLKOCR_CLKODIV0_MASK | PRCM_CLKOCR_CLKOSEL0_MASK);
729		bits = ((source << PRCM_CLKOCR_CLKOSEL0_SHIFT) |
730			(div << PRCM_CLKOCR_CLKODIV0_SHIFT));
731		break;
732	case 1:
733		div_mask = PRCM_CLKOCR_CLKODIV1_MASK;
734		mask = (PRCM_CLKOCR_CLKODIV1_MASK | PRCM_CLKOCR_CLKOSEL1_MASK |
735			PRCM_CLKOCR_CLK1TYPE);
736		bits = ((source << PRCM_CLKOCR_CLKOSEL1_SHIFT) |
737			(div << PRCM_CLKOCR_CLKODIV1_SHIFT));
738		break;
739	}
740	bits &= mask;
741
742	spin_lock_irqsave(&clkout_lock, flags);
743
744	val = readl(PRCM_CLKOCR);
745	if (val & div_mask) {
746		if (div) {
747			if ((val & mask) != bits) {
748				r = -EBUSY;
749				goto unlock_and_return;
750			}
751		} else {
752			if ((val & mask & ~div_mask) != bits) {
753				r = -EINVAL;
754				goto unlock_and_return;
755			}
756		}
757	}
758	writel((bits | (val & ~mask)), PRCM_CLKOCR);
759	requests[clkout] += (div ? 1 : -1);
760
761unlock_and_return:
762	spin_unlock_irqrestore(&clkout_lock, flags);
763
764	return r;
765}
766
767int db8500_prcmu_set_power_state(u8 state, bool keep_ulp_clk, bool keep_ap_pll)
768{
769	unsigned long flags;
770
771	BUG_ON((state < PRCMU_AP_SLEEP) || (PRCMU_AP_DEEP_IDLE < state));
772
773	spin_lock_irqsave(&mb0_transfer.lock, flags);
774
775	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
776		cpu_relax();
777
778	writeb(MB0H_POWER_STATE_TRANS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
779	writeb(state, (tcdm_base + PRCM_REQ_MB0_AP_POWER_STATE));
780	writeb((keep_ap_pll ? 1 : 0), (tcdm_base + PRCM_REQ_MB0_AP_PLL_STATE));
781	writeb((keep_ulp_clk ? 1 : 0),
782		(tcdm_base + PRCM_REQ_MB0_ULP_CLOCK_STATE));
783	writeb(0, (tcdm_base + PRCM_REQ_MB0_DO_NOT_WFI));
784	writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
785
786	spin_unlock_irqrestore(&mb0_transfer.lock, flags);
787
788	return 0;
789}
790
791u8 db8500_prcmu_get_power_state_result(void)
792{
793	return readb(tcdm_base + PRCM_ACK_MB0_AP_PWRSTTR_STATUS);
794}
795
796/* This function decouple the gic from the prcmu */
797int db8500_prcmu_gic_decouple(void)
798{
799	u32 val = readl(PRCM_A9_MASK_REQ);
800
801	/* Set bit 0 register value to 1 */
802	writel(val | PRCM_A9_MASK_REQ_PRCM_A9_MASK_REQ,
803	       PRCM_A9_MASK_REQ);
804
805	/* Make sure the register is updated */
806	readl(PRCM_A9_MASK_REQ);
807
808	/* Wait a few cycles for the gic mask completion */
809	udelay(1);
810
811	return 0;
812}
813
814/* This function recouple the gic with the prcmu */
815int db8500_prcmu_gic_recouple(void)
816{
817	u32 val = readl(PRCM_A9_MASK_REQ);
818
819	/* Set bit 0 register value to 0 */
820	writel(val & ~PRCM_A9_MASK_REQ_PRCM_A9_MASK_REQ, PRCM_A9_MASK_REQ);
821
822	return 0;
823}
824
825#define PRCMU_GIC_NUMBER_REGS 5
826
827/*
828 * This function checks if there are pending irq on the gic. It only
829 * makes sense if the gic has been decoupled before with the
830 * db8500_prcmu_gic_decouple function. Disabling an interrupt only
831 * disables the forwarding of the interrupt to any CPU interface. It
832 * does not prevent the interrupt from changing state, for example
833 * becoming pending, or active and pending if it is already
834 * active. Hence, we have to check the interrupt is pending *and* is
835 * active.
836 */
837bool db8500_prcmu_gic_pending_irq(void)
838{
839	u32 pr; /* Pending register */
840	u32 er; /* Enable register */
841	void __iomem *dist_base = __io_address(U8500_GIC_DIST_BASE);
842	int i;
843
844        /* 5 registers. STI & PPI not skipped */
845	for (i = 0; i < PRCMU_GIC_NUMBER_REGS; i++) {
846
847		pr = readl_relaxed(dist_base + GIC_DIST_PENDING_SET + i * 4);
848		er = readl_relaxed(dist_base + GIC_DIST_ENABLE_SET + i * 4);
849
850		if (pr & er)
851			return true; /* There is a pending interrupt */
852	}
853
854	return false;
855}
856
857/*
858 * This function checks if there are pending interrupt on the
859 * prcmu which has been delegated to monitor the irqs with the
860 * db8500_prcmu_copy_gic_settings function.
861 */
862bool db8500_prcmu_pending_irq(void)
863{
864	u32 it, im;
865	int i;
866
867	for (i = 0; i < PRCMU_GIC_NUMBER_REGS - 1; i++) {
868		it = readl(PRCM_ARMITVAL31TO0 + i * 4);
869		im = readl(PRCM_ARMITMSK31TO0 + i * 4);
870		if (it & im)
871			return true; /* There is a pending interrupt */
872	}
873
874	return false;
875}
876
877/*
878 * This function checks if the specified cpu is in in WFI. It's usage
879 * makes sense only if the gic is decoupled with the db8500_prcmu_gic_decouple
880 * function. Of course passing smp_processor_id() to this function will
881 * always return false...
882 */
883bool db8500_prcmu_is_cpu_in_wfi(int cpu)
884{
885	return readl(PRCM_ARM_WFI_STANDBY) & cpu ? PRCM_ARM_WFI_STANDBY_WFI1 :
886		     PRCM_ARM_WFI_STANDBY_WFI0;
887}
888
889/*
890 * This function copies the gic SPI settings to the prcmu in order to
891 * monitor them and abort/finish the retention/off sequence or state.
892 */
893int db8500_prcmu_copy_gic_settings(void)
894{
895	u32 er; /* Enable register */
896	void __iomem *dist_base = __io_address(U8500_GIC_DIST_BASE);
897	int i;
898
899        /* We skip the STI and PPI */
900	for (i = 0; i < PRCMU_GIC_NUMBER_REGS - 1; i++) {
901		er = readl_relaxed(dist_base +
902				   GIC_DIST_ENABLE_SET + (i + 1) * 4);
903		writel(er, PRCM_ARMITMSK31TO0 + i * 4);
904	}
905
906	return 0;
907}
908
909/* This function should only be called while mb0_transfer.lock is held. */
910static void config_wakeups(void)
911{
912	const u8 header[2] = {
913		MB0H_CONFIG_WAKEUPS_EXE,
914		MB0H_CONFIG_WAKEUPS_SLEEP
915	};
916	static u32 last_dbb_events;
917	static u32 last_abb_events;
918	u32 dbb_events;
919	u32 abb_events;
920	unsigned int i;
921
922	dbb_events = mb0_transfer.req.dbb_irqs | mb0_transfer.req.dbb_wakeups;
923	dbb_events |= (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK);
924
925	abb_events = mb0_transfer.req.abb_events;
926
927	if ((dbb_events == last_dbb_events) && (abb_events == last_abb_events))
928		return;
929
930	for (i = 0; i < 2; i++) {
931		while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
932			cpu_relax();
933		writel(dbb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_8500));
934		writel(abb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_4500));
935		writeb(header[i], (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
936		writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
937	}
938	last_dbb_events = dbb_events;
939	last_abb_events = abb_events;
940}
941
942void db8500_prcmu_enable_wakeups(u32 wakeups)
943{
944	unsigned long flags;
945	u32 bits;
946	int i;
947
948	BUG_ON(wakeups != (wakeups & VALID_WAKEUPS));
949
950	for (i = 0, bits = 0; i < NUM_PRCMU_WAKEUP_INDICES; i++) {
951		if (wakeups & BIT(i))
952			bits |= prcmu_wakeup_bit[i];
953	}
954
955	spin_lock_irqsave(&mb0_transfer.lock, flags);
956
957	mb0_transfer.req.dbb_wakeups = bits;
958	config_wakeups();
959
960	spin_unlock_irqrestore(&mb0_transfer.lock, flags);
961}
962
963void db8500_prcmu_config_abb_event_readout(u32 abb_events)
964{
965	unsigned long flags;
966
967	spin_lock_irqsave(&mb0_transfer.lock, flags);
968
969	mb0_transfer.req.abb_events = abb_events;
970	config_wakeups();
971
972	spin_unlock_irqrestore(&mb0_transfer.lock, flags);
973}
974
975void db8500_prcmu_get_abb_event_buffer(void __iomem **buf)
976{
977	if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
978		*buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_1_4500);
979	else
980		*buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_0_4500);
981}
982
983/**
984 * db8500_prcmu_set_arm_opp - set the appropriate ARM OPP
985 * @opp: The new ARM operating point to which transition is to be made
986 * Returns: 0 on success, non-zero on failure
987 *
988 * This function sets the the operating point of the ARM.
989 */
990int db8500_prcmu_set_arm_opp(u8 opp)
991{
992	int r;
993
994	if (opp < ARM_NO_CHANGE || opp > ARM_EXTCLK)
995		return -EINVAL;
996
997	r = 0;
998
999	mutex_lock(&mb1_transfer.lock);
1000
1001	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1002		cpu_relax();
1003
1004	writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1005	writeb(opp, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
1006	writeb(APE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_APE_OPP));
1007
1008	writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1009	wait_for_completion(&mb1_transfer.work);
1010
1011	if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
1012		(mb1_transfer.ack.arm_opp != opp))
1013		r = -EIO;
1014
1015	mutex_unlock(&mb1_transfer.lock);
1016
1017	return r;
1018}
1019
1020/**
1021 * db8500_prcmu_get_arm_opp - get the current ARM OPP
1022 *
1023 * Returns: the current ARM OPP
1024 */
1025int db8500_prcmu_get_arm_opp(void)
1026{
1027	return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_ARM_OPP);
1028}
1029
1030/**
1031 * db8500_prcmu_get_ddr_opp - get the current DDR OPP
1032 *
1033 * Returns: the current DDR OPP
1034 */
1035int db8500_prcmu_get_ddr_opp(void)
1036{
1037	return readb(PRCM_DDR_SUBSYS_APE_MINBW);
1038}
1039
1040/**
1041 * db8500_set_ddr_opp - set the appropriate DDR OPP
1042 * @opp: The new DDR operating point to which transition is to be made
1043 * Returns: 0 on success, non-zero on failure
1044 *
1045 * This function sets the operating point of the DDR.
1046 */
1047int db8500_prcmu_set_ddr_opp(u8 opp)
1048{
1049	if (opp < DDR_100_OPP || opp > DDR_25_OPP)
1050		return -EINVAL;
1051	/* Changing the DDR OPP can hang the hardware pre-v21 */
1052	if (cpu_is_u8500v20_or_later() && !cpu_is_u8500v20())
1053		writeb(opp, PRCM_DDR_SUBSYS_APE_MINBW);
1054
1055	return 0;
1056}
1057
1058/* Divide the frequency of certain clocks by 2 for APE_50_PARTLY_25_OPP. */
1059static void request_even_slower_clocks(bool enable)
1060{
1061	void __iomem *clock_reg[] = {
1062		PRCM_ACLK_MGT,
1063		PRCM_DMACLK_MGT
1064	};
1065	unsigned long flags;
1066	unsigned int i;
1067
1068	spin_lock_irqsave(&clk_mgt_lock, flags);
1069
1070	/* Grab the HW semaphore. */
1071	while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
1072		cpu_relax();
1073
1074	for (i = 0; i < ARRAY_SIZE(clock_reg); i++) {
1075		u32 val;
1076		u32 div;
1077
1078		val = readl(clock_reg[i]);
1079		div = (val & PRCM_CLK_MGT_CLKPLLDIV_MASK);
1080		if (enable) {
1081			if ((div <= 1) || (div > 15)) {
1082				pr_err("prcmu: Bad clock divider %d in %s\n",
1083					div, __func__);
1084				goto unlock_and_return;
1085			}
1086			div <<= 1;
1087		} else {
1088			if (div <= 2)
1089				goto unlock_and_return;
1090			div >>= 1;
1091		}
1092		val = ((val & ~PRCM_CLK_MGT_CLKPLLDIV_MASK) |
1093			(div & PRCM_CLK_MGT_CLKPLLDIV_MASK));
1094		writel(val, clock_reg[i]);
1095	}
1096
1097unlock_and_return:
1098	/* Release the HW semaphore. */
1099	writel(0, PRCM_SEM);
1100
1101	spin_unlock_irqrestore(&clk_mgt_lock, flags);
1102}
1103
1104/**
1105 * db8500_set_ape_opp - set the appropriate APE OPP
1106 * @opp: The new APE operating point to which transition is to be made
1107 * Returns: 0 on success, non-zero on failure
1108 *
1109 * This function sets the operating point of the APE.
1110 */
1111int db8500_prcmu_set_ape_opp(u8 opp)
1112{
1113	int r = 0;
1114
1115	if (opp == mb1_transfer.ape_opp)
1116		return 0;
1117
1118	mutex_lock(&mb1_transfer.lock);
1119
1120	if (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP)
1121		request_even_slower_clocks(false);
1122
1123	if ((opp != APE_100_OPP) && (mb1_transfer.ape_opp != APE_100_OPP))
1124		goto skip_message;
1125
1126	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1127		cpu_relax();
1128
1129	writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1130	writeb(ARM_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
1131	writeb(((opp == APE_50_PARTLY_25_OPP) ? APE_50_OPP : opp),
1132		(tcdm_base + PRCM_REQ_MB1_APE_OPP));
1133
1134	writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1135	wait_for_completion(&mb1_transfer.work);
1136
1137	if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
1138		(mb1_transfer.ack.ape_opp != opp))
1139		r = -EIO;
1140
1141skip_message:
1142	if ((!r && (opp == APE_50_PARTLY_25_OPP)) ||
1143		(r && (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP)))
1144		request_even_slower_clocks(true);
1145	if (!r)
1146		mb1_transfer.ape_opp = opp;
1147
1148	mutex_unlock(&mb1_transfer.lock);
1149
1150	return r;
1151}
1152
1153/**
1154 * db8500_prcmu_get_ape_opp - get the current APE OPP
1155 *
1156 * Returns: the current APE OPP
1157 */
1158int db8500_prcmu_get_ape_opp(void)
1159{
1160	return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_APE_OPP);
1161}
1162
1163/**
1164 * prcmu_request_ape_opp_100_voltage - Request APE OPP 100% voltage
1165 * @enable: true to request the higher voltage, false to drop a request.
1166 *
1167 * Calls to this function to enable and disable requests must be balanced.
1168 */
1169int prcmu_request_ape_opp_100_voltage(bool enable)
1170{
1171	int r = 0;
1172	u8 header;
1173	static unsigned int requests;
1174
1175	mutex_lock(&mb1_transfer.lock);
1176
1177	if (enable) {
1178		if (0 != requests++)
1179			goto unlock_and_return;
1180		header = MB1H_REQUEST_APE_OPP_100_VOLT;
1181	} else {
1182		if (requests == 0) {
1183			r = -EIO;
1184			goto unlock_and_return;
1185		} else if (1 != requests--) {
1186			goto unlock_and_return;
1187		}
1188		header = MB1H_RELEASE_APE_OPP_100_VOLT;
1189	}
1190
1191	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1192		cpu_relax();
1193
1194	writeb(header, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1195
1196	writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1197	wait_for_completion(&mb1_transfer.work);
1198
1199	if ((mb1_transfer.ack.header != header) ||
1200		((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
1201		r = -EIO;
1202
1203unlock_and_return:
1204	mutex_unlock(&mb1_transfer.lock);
1205
1206	return r;
1207}
1208
1209/**
1210 * prcmu_release_usb_wakeup_state - release the state required by a USB wakeup
1211 *
1212 * This function releases the power state requirements of a USB wakeup.
1213 */
1214int prcmu_release_usb_wakeup_state(void)
1215{
1216	int r = 0;
1217
1218	mutex_lock(&mb1_transfer.lock);
1219
1220	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1221		cpu_relax();
1222
1223	writeb(MB1H_RELEASE_USB_WAKEUP,
1224		(tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1225
1226	writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1227	wait_for_completion(&mb1_transfer.work);
1228
1229	if ((mb1_transfer.ack.header != MB1H_RELEASE_USB_WAKEUP) ||
1230		((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
1231		r = -EIO;
1232
1233	mutex_unlock(&mb1_transfer.lock);
1234
1235	return r;
1236}
1237
1238static int request_pll(u8 clock, bool enable)
1239{
1240	int r = 0;
1241
1242	if (clock == PRCMU_PLLSOC0)
1243		clock = (enable ? PLL_SOC0_ON : PLL_SOC0_OFF);
1244	else if (clock == PRCMU_PLLSOC1)
1245		clock = (enable ? PLL_SOC1_ON : PLL_SOC1_OFF);
1246	else
1247		return -EINVAL;
1248
1249	mutex_lock(&mb1_transfer.lock);
1250
1251	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1252		cpu_relax();
1253
1254	writeb(MB1H_PLL_ON_OFF, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1255	writeb(clock, (tcdm_base + PRCM_REQ_MB1_PLL_ON_OFF));
1256
1257	writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1258	wait_for_completion(&mb1_transfer.work);
1259
1260	if (mb1_transfer.ack.header != MB1H_PLL_ON_OFF)
1261		r = -EIO;
1262
1263	mutex_unlock(&mb1_transfer.lock);
1264
1265	return r;
1266}
1267
1268/**
1269 * db8500_prcmu_set_epod - set the state of a EPOD (power domain)
1270 * @epod_id: The EPOD to set
1271 * @epod_state: The new EPOD state
1272 *
1273 * This function sets the state of a EPOD (power domain). It may not be called
1274 * from interrupt context.
1275 */
1276int db8500_prcmu_set_epod(u16 epod_id, u8 epod_state)
1277{
1278	int r = 0;
1279	bool ram_retention = false;
1280	int i;
1281
1282	/* check argument */
1283	BUG_ON(epod_id >= NUM_EPOD_ID);
1284
1285	/* set flag if retention is possible */
1286	switch (epod_id) {
1287	case EPOD_ID_SVAMMDSP:
1288	case EPOD_ID_SIAMMDSP:
1289	case EPOD_ID_ESRAM12:
1290	case EPOD_ID_ESRAM34:
1291		ram_retention = true;
1292		break;
1293	}
1294
1295	/* check argument */
1296	BUG_ON(epod_state > EPOD_STATE_ON);
1297	BUG_ON(epod_state == EPOD_STATE_RAMRET && !ram_retention);
1298
1299	/* get lock */
1300	mutex_lock(&mb2_transfer.lock);
1301
1302	/* wait for mailbox */
1303	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(2))
1304		cpu_relax();
1305
1306	/* fill in mailbox */
1307	for (i = 0; i < NUM_EPOD_ID; i++)
1308		writeb(EPOD_STATE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB2 + i));
1309	writeb(epod_state, (tcdm_base + PRCM_REQ_MB2 + epod_id));
1310
1311	writeb(MB2H_DPS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB2));
1312
1313	writel(MBOX_BIT(2), PRCM_MBOX_CPU_SET);
1314
1315	/*
1316	 * The current firmware version does not handle errors correctly,
1317	 * and we cannot recover if there is an error.
1318	 * This is expected to change when the firmware is updated.
1319	 */
1320	if (!wait_for_completion_timeout(&mb2_transfer.work,
1321			msecs_to_jiffies(20000))) {
1322		pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1323			__func__);
1324		r = -EIO;
1325		goto unlock_and_return;
1326	}
1327
1328	if (mb2_transfer.ack.status != HWACC_PWR_ST_OK)
1329		r = -EIO;
1330
1331unlock_and_return:
1332	mutex_unlock(&mb2_transfer.lock);
1333	return r;
1334}
1335
1336/**
1337 * prcmu_configure_auto_pm - Configure autonomous power management.
1338 * @sleep: Configuration for ApSleep.
1339 * @idle:  Configuration for ApIdle.
1340 */
1341void prcmu_configure_auto_pm(struct prcmu_auto_pm_config *sleep,
1342	struct prcmu_auto_pm_config *idle)
1343{
1344	u32 sleep_cfg;
1345	u32 idle_cfg;
1346	unsigned long flags;
1347
1348	BUG_ON((sleep == NULL) || (idle == NULL));
1349
1350	sleep_cfg = (sleep->sva_auto_pm_enable & 0xF);
1351	sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_auto_pm_enable & 0xF));
1352	sleep_cfg = ((sleep_cfg << 8) | (sleep->sva_power_on & 0xFF));
1353	sleep_cfg = ((sleep_cfg << 8) | (sleep->sia_power_on & 0xFF));
1354	sleep_cfg = ((sleep_cfg << 4) | (sleep->sva_policy & 0xF));
1355	sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_policy & 0xF));
1356
1357	idle_cfg = (idle->sva_auto_pm_enable & 0xF);
1358	idle_cfg = ((idle_cfg << 4) | (idle->sia_auto_pm_enable & 0xF));
1359	idle_cfg = ((idle_cfg << 8) | (idle->sva_power_on & 0xFF));
1360	idle_cfg = ((idle_cfg << 8) | (idle->sia_power_on & 0xFF));
1361	idle_cfg = ((idle_cfg << 4) | (idle->sva_policy & 0xF));
1362	idle_cfg = ((idle_cfg << 4) | (idle->sia_policy & 0xF));
1363
1364	spin_lock_irqsave(&mb2_transfer.auto_pm_lock, flags);
1365
1366	/*
1367	 * The autonomous power management configuration is done through
1368	 * fields in mailbox 2, but these fields are only used as shared
1369	 * variables - i.e. there is no need to send a message.
1370	 */
1371	writel(sleep_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_SLEEP));
1372	writel(idle_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_IDLE));
1373
1374	mb2_transfer.auto_pm_enabled =
1375		((sleep->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1376		 (sleep->sia_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1377		 (idle->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1378		 (idle->sia_auto_pm_enable == PRCMU_AUTO_PM_ON));
1379
1380	spin_unlock_irqrestore(&mb2_transfer.auto_pm_lock, flags);
1381}
1382EXPORT_SYMBOL(prcmu_configure_auto_pm);
1383
1384bool prcmu_is_auto_pm_enabled(void)
1385{
1386	return mb2_transfer.auto_pm_enabled;
1387}
1388
1389static int request_sysclk(bool enable)
1390{
1391	int r;
1392	unsigned long flags;
1393
1394	r = 0;
1395
1396	mutex_lock(&mb3_transfer.sysclk_lock);
1397
1398	spin_lock_irqsave(&mb3_transfer.lock, flags);
1399
1400	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(3))
1401		cpu_relax();
1402
1403	writeb((enable ? ON : OFF), (tcdm_base + PRCM_REQ_MB3_SYSCLK_MGT));
1404
1405	writeb(MB3H_SYSCLK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB3));
1406	writel(MBOX_BIT(3), PRCM_MBOX_CPU_SET);
1407
1408	spin_unlock_irqrestore(&mb3_transfer.lock, flags);
1409
1410	/*
1411	 * The firmware only sends an ACK if we want to enable the
1412	 * SysClk, and it succeeds.
1413	 */
1414	if (enable && !wait_for_completion_timeout(&mb3_transfer.sysclk_work,
1415			msecs_to_jiffies(20000))) {
1416		pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1417			__func__);
1418		r = -EIO;
1419	}
1420
1421	mutex_unlock(&mb3_transfer.sysclk_lock);
1422
1423	return r;
1424}
1425
1426static int request_timclk(bool enable)
1427{
1428	u32 val = (PRCM_TCR_DOZE_MODE | PRCM_TCR_TENSEL_MASK);
1429
1430	if (!enable)
1431		val |= PRCM_TCR_STOP_TIMERS;
1432	writel(val, PRCM_TCR);
1433
1434	return 0;
1435}
1436
1437static int request_clock(u8 clock, bool enable)
1438{
1439	u32 val;
1440	unsigned long flags;
1441
1442	spin_lock_irqsave(&clk_mgt_lock, flags);
1443
1444	/* Grab the HW semaphore. */
1445	while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
1446		cpu_relax();
1447
1448	val = readl(clk_mgt[clock].reg);
1449	if (enable) {
1450		val |= (PRCM_CLK_MGT_CLKEN | clk_mgt[clock].pllsw);
1451	} else {
1452		clk_mgt[clock].pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
1453		val &= ~(PRCM_CLK_MGT_CLKEN | PRCM_CLK_MGT_CLKPLLSW_MASK);
1454	}
1455	writel(val, clk_mgt[clock].reg);
1456
1457	/* Release the HW semaphore. */
1458	writel(0, PRCM_SEM);
1459
1460	spin_unlock_irqrestore(&clk_mgt_lock, flags);
1461
1462	return 0;
1463}
1464
1465static int request_sga_clock(u8 clock, bool enable)
1466{
1467	u32 val;
1468	int ret;
1469
1470	if (enable) {
1471		val = readl(PRCM_CGATING_BYPASS);
1472		writel(val | PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
1473	}
1474
1475	ret = request_clock(clock, enable);
1476
1477	if (!ret && !enable) {
1478		val = readl(PRCM_CGATING_BYPASS);
1479		writel(val & ~PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
1480	}
1481
1482	return ret;
1483}
1484
1485static inline bool plldsi_locked(void)
1486{
1487	return (readl(PRCM_PLLDSI_LOCKP) &
1488		(PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 |
1489		 PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3)) ==
1490		(PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 |
1491		 PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3);
1492}
1493
1494static int request_plldsi(bool enable)
1495{
1496	int r = 0;
1497	u32 val;
1498
1499	writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP |
1500		PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI), (enable ?
1501		PRCM_MMIP_LS_CLAMP_CLR : PRCM_MMIP_LS_CLAMP_SET));
1502
1503	val = readl(PRCM_PLLDSI_ENABLE);
1504	if (enable)
1505		val |= PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1506	else
1507		val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1508	writel(val, PRCM_PLLDSI_ENABLE);
1509
1510	if (enable) {
1511		unsigned int i;
1512		bool locked = plldsi_locked();
1513
1514		for (i = 10; !locked && (i > 0); --i) {
1515			udelay(100);
1516			locked = plldsi_locked();
1517		}
1518		if (locked) {
1519			writel(PRCM_APE_RESETN_DSIPLL_RESETN,
1520				PRCM_APE_RESETN_SET);
1521		} else {
1522			writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP |
1523				PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI),
1524				PRCM_MMIP_LS_CLAMP_SET);
1525			val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1526			writel(val, PRCM_PLLDSI_ENABLE);
1527			r = -EAGAIN;
1528		}
1529	} else {
1530		writel(PRCM_APE_RESETN_DSIPLL_RESETN, PRCM_APE_RESETN_CLR);
1531	}
1532	return r;
1533}
1534
1535static int request_dsiclk(u8 n, bool enable)
1536{
1537	u32 val;
1538
1539	val = readl(PRCM_DSI_PLLOUT_SEL);
1540	val &= ~dsiclk[n].divsel_mask;
1541	val |= ((enable ? dsiclk[n].divsel : PRCM_DSI_PLLOUT_SEL_OFF) <<
1542		dsiclk[n].divsel_shift);
1543	writel(val, PRCM_DSI_PLLOUT_SEL);
1544	return 0;
1545}
1546
1547static int request_dsiescclk(u8 n, bool enable)
1548{
1549	u32 val;
1550
1551	val = readl(PRCM_DSITVCLK_DIV);
1552	enable ? (val |= dsiescclk[n].en) : (val &= ~dsiescclk[n].en);
1553	writel(val, PRCM_DSITVCLK_DIV);
1554	return 0;
1555}
1556
1557/**
1558 * db8500_prcmu_request_clock() - Request for a clock to be enabled or disabled.
1559 * @clock:      The clock for which the request is made.
1560 * @enable:     Whether the clock should be enabled (true) or disabled (false).
1561 *
1562 * This function should only be used by the clock implementation.
1563 * Do not use it from any other place!
1564 */
1565int db8500_prcmu_request_clock(u8 clock, bool enable)
1566{
1567	if (clock == PRCMU_SGACLK)
1568		return request_sga_clock(clock, enable);
1569	else if (clock < PRCMU_NUM_REG_CLOCKS)
1570		return request_clock(clock, enable);
1571	else if (clock == PRCMU_TIMCLK)
1572		return request_timclk(enable);
1573	else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1574		return request_dsiclk((clock - PRCMU_DSI0CLK), enable);
1575	else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1576		return request_dsiescclk((clock - PRCMU_DSI0ESCCLK), enable);
1577	else if (clock == PRCMU_PLLDSI)
1578		return request_plldsi(enable);
1579	else if (clock == PRCMU_SYSCLK)
1580		return request_sysclk(enable);
1581	else if ((clock == PRCMU_PLLSOC0) || (clock == PRCMU_PLLSOC1))
1582		return request_pll(clock, enable);
1583	else
1584		return -EINVAL;
1585}
1586
1587static unsigned long pll_rate(void __iomem *reg, unsigned long src_rate,
1588	int branch)
1589{
1590	u64 rate;
1591	u32 val;
1592	u32 d;
1593	u32 div = 1;
1594
1595	val = readl(reg);
1596
1597	rate = src_rate;
1598	rate *= ((val & PRCM_PLL_FREQ_D_MASK) >> PRCM_PLL_FREQ_D_SHIFT);
1599
1600	d = ((val & PRCM_PLL_FREQ_N_MASK) >> PRCM_PLL_FREQ_N_SHIFT);
1601	if (d > 1)
1602		div *= d;
1603
1604	d = ((val & PRCM_PLL_FREQ_R_MASK) >> PRCM_PLL_FREQ_R_SHIFT);
1605	if (d > 1)
1606		div *= d;
1607
1608	if (val & PRCM_PLL_FREQ_SELDIV2)
1609		div *= 2;
1610
1611	if ((branch == PLL_FIX) || ((branch == PLL_DIV) &&
1612		(val & PRCM_PLL_FREQ_DIV2EN) &&
1613		((reg == PRCM_PLLSOC0_FREQ) ||
1614		 (reg == PRCM_PLLDDR_FREQ))))
1615		div *= 2;
1616
1617	(void)do_div(rate, div);
1618
1619	return (unsigned long)rate;
1620}
1621
1622#define ROOT_CLOCK_RATE 38400000
1623
1624static unsigned long clock_rate(u8 clock)
1625{
1626	u32 val;
1627	u32 pllsw;
1628	unsigned long rate = ROOT_CLOCK_RATE;
1629
1630	val = readl(clk_mgt[clock].reg);
1631
1632	if (val & PRCM_CLK_MGT_CLK38) {
1633		if (clk_mgt[clock].clk38div && (val & PRCM_CLK_MGT_CLK38DIV))
1634			rate /= 2;
1635		return rate;
1636	}
1637
1638	val |= clk_mgt[clock].pllsw;
1639	pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
1640
1641	if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC0)
1642		rate = pll_rate(PRCM_PLLSOC0_FREQ, rate, clk_mgt[clock].branch);
1643	else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC1)
1644		rate = pll_rate(PRCM_PLLSOC1_FREQ, rate, clk_mgt[clock].branch);
1645	else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_DDR)
1646		rate = pll_rate(PRCM_PLLDDR_FREQ, rate, clk_mgt[clock].branch);
1647	else
1648		return 0;
1649
1650	if ((clock == PRCMU_SGACLK) &&
1651		(val & PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN)) {
1652		u64 r = (rate * 10);
1653
1654		(void)do_div(r, 25);
1655		return (unsigned long)r;
1656	}
1657	val &= PRCM_CLK_MGT_CLKPLLDIV_MASK;
1658	if (val)
1659		return rate / val;
1660	else
1661		return 0;
1662}
1663
1664static unsigned long dsiclk_rate(u8 n)
1665{
1666	u32 divsel;
1667	u32 div = 1;
1668
1669	divsel = readl(PRCM_DSI_PLLOUT_SEL);
1670	divsel = ((divsel & dsiclk[n].divsel_mask) >> dsiclk[n].divsel_shift);
1671
1672	if (divsel == PRCM_DSI_PLLOUT_SEL_OFF)
1673		divsel = dsiclk[n].divsel;
1674
1675	switch (divsel) {
1676	case PRCM_DSI_PLLOUT_SEL_PHI_4:
1677		div *= 2;
1678	case PRCM_DSI_PLLOUT_SEL_PHI_2:
1679		div *= 2;
1680	case PRCM_DSI_PLLOUT_SEL_PHI:
1681		return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1682			PLL_RAW) / div;
1683	default:
1684		return 0;
1685	}
1686}
1687
1688static unsigned long dsiescclk_rate(u8 n)
1689{
1690	u32 div;
1691
1692	div = readl(PRCM_DSITVCLK_DIV);
1693	div = ((div & dsiescclk[n].div_mask) >> (dsiescclk[n].div_shift));
1694	return clock_rate(PRCMU_TVCLK) / max((u32)1, div);
1695}
1696
1697unsigned long prcmu_clock_rate(u8 clock)
1698{
1699	if (clock < PRCMU_NUM_REG_CLOCKS)
1700		return clock_rate(clock);
1701	else if (clock == PRCMU_TIMCLK)
1702		return ROOT_CLOCK_RATE / 16;
1703	else if (clock == PRCMU_SYSCLK)
1704		return ROOT_CLOCK_RATE;
1705	else if (clock == PRCMU_PLLSOC0)
1706		return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1707	else if (clock == PRCMU_PLLSOC1)
1708		return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1709	else if (clock == PRCMU_PLLDDR)
1710		return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1711	else if (clock == PRCMU_PLLDSI)
1712		return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1713			PLL_RAW);
1714	else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1715		return dsiclk_rate(clock - PRCMU_DSI0CLK);
1716	else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1717		return dsiescclk_rate(clock - PRCMU_DSI0ESCCLK);
1718	else
1719		return 0;
1720}
1721
1722static unsigned long clock_source_rate(u32 clk_mgt_val, int branch)
1723{
1724	if (clk_mgt_val & PRCM_CLK_MGT_CLK38)
1725		return ROOT_CLOCK_RATE;
1726	clk_mgt_val &= PRCM_CLK_MGT_CLKPLLSW_MASK;
1727	if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC0)
1728		return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, branch);
1729	else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC1)
1730		return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, branch);
1731	else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_DDR)
1732		return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, branch);
1733	else
1734		return 0;
1735}
1736
1737static u32 clock_divider(unsigned long src_rate, unsigned long rate)
1738{
1739	u32 div;
1740
1741	div = (src_rate / rate);
1742	if (div == 0)
1743		return 1;
1744	if (rate < (src_rate / div))
1745		div++;
1746	return div;
1747}
1748
1749static long round_clock_rate(u8 clock, unsigned long rate)
1750{
1751	u32 val;
1752	u32 div;
1753	unsigned long src_rate;
1754	long rounded_rate;
1755
1756	val = readl(clk_mgt[clock].reg);
1757	src_rate = clock_source_rate((val | clk_mgt[clock].pllsw),
1758		clk_mgt[clock].branch);
1759	div = clock_divider(src_rate, rate);
1760	if (val & PRCM_CLK_MGT_CLK38) {
1761		if (clk_mgt[clock].clk38div) {
1762			if (div > 2)
1763				div = 2;
1764		} else {
1765			div = 1;
1766		}
1767	} else if ((clock == PRCMU_SGACLK) && (div == 3)) {
1768		u64 r = (src_rate * 10);
1769
1770		(void)do_div(r, 25);
1771		if (r <= rate)
1772			return (unsigned long)r;
1773	}
1774	rounded_rate = (src_rate / min(div, (u32)31));
1775
1776	return rounded_rate;
1777}
1778
1779#define MIN_PLL_VCO_RATE 600000000ULL
1780#define MAX_PLL_VCO_RATE 1680640000ULL
1781
1782static long round_plldsi_rate(unsigned long rate)
1783{
1784	long rounded_rate = 0;
1785	unsigned long src_rate;
1786	unsigned long rem;
1787	u32 r;
1788
1789	src_rate = clock_rate(PRCMU_HDMICLK);
1790	rem = rate;
1791
1792	for (r = 7; (rem > 0) && (r > 0); r--) {
1793		u64 d;
1794
1795		d = (r * rate);
1796		(void)do_div(d, src_rate);
1797		if (d < 6)
1798			d = 6;
1799		else if (d > 255)
1800			d = 255;
1801		d *= src_rate;
1802		if (((2 * d) < (r * MIN_PLL_VCO_RATE)) ||
1803			((r * MAX_PLL_VCO_RATE) < (2 * d)))
1804			continue;
1805		(void)do_div(d, r);
1806		if (rate < d) {
1807			if (rounded_rate == 0)
1808				rounded_rate = (long)d;
1809			break;
1810		}
1811		if ((rate - d) < rem) {
1812			rem = (rate - d);
1813			rounded_rate = (long)d;
1814		}
1815	}
1816	return rounded_rate;
1817}
1818
1819static long round_dsiclk_rate(unsigned long rate)
1820{
1821	u32 div;
1822	unsigned long src_rate;
1823	long rounded_rate;
1824
1825	src_rate = pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1826		PLL_RAW);
1827	div = clock_divider(src_rate, rate);
1828	rounded_rate = (src_rate / ((div > 2) ? 4 : div));
1829
1830	return rounded_rate;
1831}
1832
1833static long round_dsiescclk_rate(unsigned long rate)
1834{
1835	u32 div;
1836	unsigned long src_rate;
1837	long rounded_rate;
1838
1839	src_rate = clock_rate(PRCMU_TVCLK);
1840	div = clock_divider(src_rate, rate);
1841	rounded_rate = (src_rate / min(div, (u32)255));
1842
1843	return rounded_rate;
1844}
1845
1846long prcmu_round_clock_rate(u8 clock, unsigned long rate)
1847{
1848	if (clock < PRCMU_NUM_REG_CLOCKS)
1849		return round_clock_rate(clock, rate);
1850	else if (clock == PRCMU_PLLDSI)
1851		return round_plldsi_rate(rate);
1852	else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1853		return round_dsiclk_rate(rate);
1854	else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1855		return round_dsiescclk_rate(rate);
1856	else
1857		return (long)prcmu_clock_rate(clock);
1858}
1859
1860static void set_clock_rate(u8 clock, unsigned long rate)
1861{
1862	u32 val;
1863	u32 div;
1864	unsigned long src_rate;
1865	unsigned long flags;
1866
1867	spin_lock_irqsave(&clk_mgt_lock, flags);
1868
1869	/* Grab the HW semaphore. */
1870	while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
1871		cpu_relax();
1872
1873	val = readl(clk_mgt[clock].reg);
1874	src_rate = clock_source_rate((val | clk_mgt[clock].pllsw),
1875		clk_mgt[clock].branch);
1876	div = clock_divider(src_rate, rate);
1877	if (val & PRCM_CLK_MGT_CLK38) {
1878		if (clk_mgt[clock].clk38div) {
1879			if (div > 1)
1880				val |= PRCM_CLK_MGT_CLK38DIV;
1881			else
1882				val &= ~PRCM_CLK_MGT_CLK38DIV;
1883		}
1884	} else if (clock == PRCMU_SGACLK) {
1885		val &= ~(PRCM_CLK_MGT_CLKPLLDIV_MASK |
1886			PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN);
1887		if (div == 3) {
1888			u64 r = (src_rate * 10);
1889
1890			(void)do_div(r, 25);
1891			if (r <= rate) {
1892				val |= PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN;
1893				div = 0;
1894			}
1895		}
1896		val |= min(div, (u32)31);
1897	} else {
1898		val &= ~PRCM_CLK_MGT_CLKPLLDIV_MASK;
1899		val |= min(div, (u32)31);
1900	}
1901	writel(val, clk_mgt[clock].reg);
1902
1903	/* Release the HW semaphore. */
1904	writel(0, PRCM_SEM);
1905
1906	spin_unlock_irqrestore(&clk_mgt_lock, flags);
1907}
1908
1909static int set_plldsi_rate(unsigned long rate)
1910{
1911	unsigned long src_rate;
1912	unsigned long rem;
1913	u32 pll_freq = 0;
1914	u32 r;
1915
1916	src_rate = clock_rate(PRCMU_HDMICLK);
1917	rem = rate;
1918
1919	for (r = 7; (rem > 0) && (r > 0); r--) {
1920		u64 d;
1921		u64 hwrate;
1922
1923		d = (r * rate);
1924		(void)do_div(d, src_rate);
1925		if (d < 6)
1926			d = 6;
1927		else if (d > 255)
1928			d = 255;
1929		hwrate = (d * src_rate);
1930		if (((2 * hwrate) < (r * MIN_PLL_VCO_RATE)) ||
1931			((r * MAX_PLL_VCO_RATE) < (2 * hwrate)))
1932			continue;
1933		(void)do_div(hwrate, r);
1934		if (rate < hwrate) {
1935			if (pll_freq == 0)
1936				pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) |
1937					(r << PRCM_PLL_FREQ_R_SHIFT));
1938			break;
1939		}
1940		if ((rate - hwrate) < rem) {
1941			rem = (rate - hwrate);
1942			pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) |
1943				(r << PRCM_PLL_FREQ_R_SHIFT));
1944		}
1945	}
1946	if (pll_freq == 0)
1947		return -EINVAL;
1948
1949	pll_freq |= (1 << PRCM_PLL_FREQ_N_SHIFT);
1950	writel(pll_freq, PRCM_PLLDSI_FREQ);
1951
1952	return 0;
1953}
1954
1955static void set_dsiclk_rate(u8 n, unsigned long rate)
1956{
1957	u32 val;
1958	u32 div;
1959
1960	div = clock_divider(pll_rate(PRCM_PLLDSI_FREQ,
1961			clock_rate(PRCMU_HDMICLK), PLL_RAW), rate);
1962
1963	dsiclk[n].divsel = (div == 1) ? PRCM_DSI_PLLOUT_SEL_PHI :
1964			   (div == 2) ? PRCM_DSI_PLLOUT_SEL_PHI_2 :
1965			   /* else */	PRCM_DSI_PLLOUT_SEL_PHI_4;
1966
1967	val = readl(PRCM_DSI_PLLOUT_SEL);
1968	val &= ~dsiclk[n].divsel_mask;
1969	val |= (dsiclk[n].divsel << dsiclk[n].divsel_shift);
1970	writel(val, PRCM_DSI_PLLOUT_SEL);
1971}
1972
1973static void set_dsiescclk_rate(u8 n, unsigned long rate)
1974{
1975	u32 val;
1976	u32 div;
1977
1978	div = clock_divider(clock_rate(PRCMU_TVCLK), rate);
1979	val = readl(PRCM_DSITVCLK_DIV);
1980	val &= ~dsiescclk[n].div_mask;
1981	val |= (min(div, (u32)255) << dsiescclk[n].div_shift);
1982	writel(val, PRCM_DSITVCLK_DIV);
1983}
1984
1985int prcmu_set_clock_rate(u8 clock, unsigned long rate)
1986{
1987	if (clock < PRCMU_NUM_REG_CLOCKS)
1988		set_clock_rate(clock, rate);
1989	else if (clock == PRCMU_PLLDSI)
1990		return set_plldsi_rate(rate);
1991	else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1992		set_dsiclk_rate((clock - PRCMU_DSI0CLK), rate);
1993	else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1994		set_dsiescclk_rate((clock - PRCMU_DSI0ESCCLK), rate);
1995	return 0;
1996}
1997
1998int db8500_prcmu_config_esram0_deep_sleep(u8 state)
1999{
2000	if ((state > ESRAM0_DEEP_SLEEP_STATE_RET) ||
2001	    (state < ESRAM0_DEEP_SLEEP_STATE_OFF))
2002		return -EINVAL;
2003
2004	mutex_lock(&mb4_transfer.lock);
2005
2006	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2007		cpu_relax();
2008
2009	writeb(MB4H_MEM_ST, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2010	writeb(((DDR_PWR_STATE_OFFHIGHLAT << 4) | DDR_PWR_STATE_ON),
2011	       (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE));
2012	writeb(DDR_PWR_STATE_ON,
2013	       (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE));
2014	writeb(state, (tcdm_base + PRCM_REQ_MB4_ESRAM0_ST));
2015
2016	writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2017	wait_for_completion(&mb4_transfer.work);
2018
2019	mutex_unlock(&mb4_transfer.lock);
2020
2021	return 0;
2022}
2023
2024int db8500_prcmu_config_hotdog(u8 threshold)
2025{
2026	mutex_lock(&mb4_transfer.lock);
2027
2028	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2029		cpu_relax();
2030
2031	writeb(threshold, (tcdm_base + PRCM_REQ_MB4_HOTDOG_THRESHOLD));
2032	writeb(MB4H_HOTDOG, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2033
2034	writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2035	wait_for_completion(&mb4_transfer.work);
2036
2037	mutex_unlock(&mb4_transfer.lock);
2038
2039	return 0;
2040}
2041
2042int db8500_prcmu_config_hotmon(u8 low, u8 high)
2043{
2044	mutex_lock(&mb4_transfer.lock);
2045
2046	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2047		cpu_relax();
2048
2049	writeb(low, (tcdm_base + PRCM_REQ_MB4_HOTMON_LOW));
2050	writeb(high, (tcdm_base + PRCM_REQ_MB4_HOTMON_HIGH));
2051	writeb((HOTMON_CONFIG_LOW | HOTMON_CONFIG_HIGH),
2052		(tcdm_base + PRCM_REQ_MB4_HOTMON_CONFIG));
2053	writeb(MB4H_HOTMON, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2054
2055	writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2056	wait_for_completion(&mb4_transfer.work);
2057
2058	mutex_unlock(&mb4_transfer.lock);
2059
2060	return 0;
2061}
2062
2063static int config_hot_period(u16 val)
2064{
2065	mutex_lock(&mb4_transfer.lock);
2066
2067	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2068		cpu_relax();
2069
2070	writew(val, (tcdm_base + PRCM_REQ_MB4_HOT_PERIOD));
2071	writeb(MB4H_HOT_PERIOD, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2072
2073	writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2074	wait_for_completion(&mb4_transfer.work);
2075
2076	mutex_unlock(&mb4_transfer.lock);
2077
2078	return 0;
2079}
2080
2081int db8500_prcmu_start_temp_sense(u16 cycles32k)
2082{
2083	if (cycles32k == 0xFFFF)
2084		return -EINVAL;
2085
2086	return config_hot_period(cycles32k);
2087}
2088
2089int db8500_prcmu_stop_temp_sense(void)
2090{
2091	return config_hot_period(0xFFFF);
2092}
2093
2094static int prcmu_a9wdog(u8 cmd, u8 d0, u8 d1, u8 d2, u8 d3)
2095{
2096
2097	mutex_lock(&mb4_transfer.lock);
2098
2099	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2100		cpu_relax();
2101
2102	writeb(d0, (tcdm_base + PRCM_REQ_MB4_A9WDOG_0));
2103	writeb(d1, (tcdm_base + PRCM_REQ_MB4_A9WDOG_1));
2104	writeb(d2, (tcdm_base + PRCM_REQ_MB4_A9WDOG_2));
2105	writeb(d3, (tcdm_base + PRCM_REQ_MB4_A9WDOG_3));
2106
2107	writeb(cmd, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2108
2109	writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2110	wait_for_completion(&mb4_transfer.work);
2111
2112	mutex_unlock(&mb4_transfer.lock);
2113
2114	return 0;
2115
2116}
2117
2118int db8500_prcmu_config_a9wdog(u8 num, bool sleep_auto_off)
2119{
2120	BUG_ON(num == 0 || num > 0xf);
2121	return prcmu_a9wdog(MB4H_A9WDOG_CONF, num, 0, 0,
2122			    sleep_auto_off ? A9WDOG_AUTO_OFF_EN :
2123			    A9WDOG_AUTO_OFF_DIS);
2124}
2125
2126int db8500_prcmu_enable_a9wdog(u8 id)
2127{
2128	return prcmu_a9wdog(MB4H_A9WDOG_EN, id, 0, 0, 0);
2129}
2130
2131int db8500_prcmu_disable_a9wdog(u8 id)
2132{
2133	return prcmu_a9wdog(MB4H_A9WDOG_DIS, id, 0, 0, 0);
2134}
2135
2136int db8500_prcmu_kick_a9wdog(u8 id)
2137{
2138	return prcmu_a9wdog(MB4H_A9WDOG_KICK, id, 0, 0, 0);
2139}
2140
2141/*
2142 * timeout is 28 bit, in ms.
2143 */
2144int db8500_prcmu_load_a9wdog(u8 id, u32 timeout)
2145{
2146	return prcmu_a9wdog(MB4H_A9WDOG_LOAD,
2147			    (id & A9WDOG_ID_MASK) |
2148			    /*
2149			     * Put the lowest 28 bits of timeout at
2150			     * offset 4. Four first bits are used for id.
2151			     */
2152			    (u8)((timeout << 4) & 0xf0),
2153			    (u8)((timeout >> 4) & 0xff),
2154			    (u8)((timeout >> 12) & 0xff),
2155			    (u8)((timeout >> 20) & 0xff));
2156}
2157
2158/**
2159 * prcmu_abb_read() - Read register value(s) from the ABB.
2160 * @slave:	The I2C slave address.
2161 * @reg:	The (start) register address.
2162 * @value:	The read out value(s).
2163 * @size:	The number of registers to read.
2164 *
2165 * Reads register value(s) from the ABB.
2166 * @size has to be 1 for the current firmware version.
2167 */
2168int prcmu_abb_read(u8 slave, u8 reg, u8 *value, u8 size)
2169{
2170	int r;
2171
2172	if (size != 1)
2173		return -EINVAL;
2174
2175	mutex_lock(&mb5_transfer.lock);
2176
2177	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
2178		cpu_relax();
2179
2180	writeb(0, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5));
2181	writeb(PRCMU_I2C_READ(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
2182	writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
2183	writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
2184	writeb(0, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
2185
2186	writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
2187
2188	if (!wait_for_completion_timeout(&mb5_transfer.work,
2189				msecs_to_jiffies(20000))) {
2190		pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
2191			__func__);
2192		r = -EIO;
2193	} else {
2194		r = ((mb5_transfer.ack.status == I2C_RD_OK) ? 0 : -EIO);
2195	}
2196
2197	if (!r)
2198		*value = mb5_transfer.ack.value;
2199
2200	mutex_unlock(&mb5_transfer.lock);
2201
2202	return r;
2203}
2204
2205/**
2206 * prcmu_abb_write_masked() - Write masked register value(s) to the ABB.
2207 * @slave:	The I2C slave address.
2208 * @reg:	The (start) register address.
2209 * @value:	The value(s) to write.
2210 * @mask:	The mask(s) to use.
2211 * @size:	The number of registers to write.
2212 *
2213 * Writes masked register value(s) to the ABB.
2214 * For each @value, only the bits set to 1 in the corresponding @mask
2215 * will be written. The other bits are not changed.
2216 * @size has to be 1 for the current firmware version.
2217 */
2218int prcmu_abb_write_masked(u8 slave, u8 reg, u8 *value, u8 *mask, u8 size)
2219{
2220	int r;
2221
2222	if (size != 1)
2223		return -EINVAL;
2224
2225	mutex_lock(&mb5_transfer.lock);
2226
2227	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
2228		cpu_relax();
2229
2230	writeb(~*mask, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5));
2231	writeb(PRCMU_I2C_WRITE(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
2232	writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
2233	writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
2234	writeb(*value, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
2235
2236	writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
2237
2238	if (!wait_for_completion_timeout(&mb5_transfer.work,
2239				msecs_to_jiffies(20000))) {
2240		pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
2241			__func__);
2242		r = -EIO;
2243	} else {
2244		r = ((mb5_transfer.ack.status == I2C_WR_OK) ? 0 : -EIO);
2245	}
2246
2247	mutex_unlock(&mb5_transfer.lock);
2248
2249	return r;
2250}
2251
2252/**
2253 * prcmu_abb_write() - Write register value(s) to the ABB.
2254 * @slave:	The I2C slave address.
2255 * @reg:	The (start) register address.
2256 * @value:	The value(s) to write.
2257 * @size:	The number of registers to write.
2258 *
2259 * Writes register value(s) to the ABB.
2260 * @size has to be 1 for the current firmware version.
2261 */
2262int prcmu_abb_write(u8 slave, u8 reg, u8 *value, u8 size)
2263{
2264	u8 mask = ~0;
2265
2266	return prcmu_abb_write_masked(slave, reg, value, &mask, size);
2267}
2268
2269/**
2270 * prcmu_ac_wake_req - should be called whenever ARM wants to wakeup Modem
2271 */
2272void prcmu_ac_wake_req(void)
2273{
2274	u32 val;
2275	u32 status;
2276
2277	mutex_lock(&mb0_transfer.ac_wake_lock);
2278
2279	val = readl(PRCM_HOSTACCESS_REQ);
2280	if (val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ)
2281		goto unlock_and_return;
2282
2283	atomic_set(&ac_wake_req_state, 1);
2284
2285retry:
2286	writel((val | PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ), PRCM_HOSTACCESS_REQ);
2287
2288	if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
2289			msecs_to_jiffies(5000))) {
2290		pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
2291			__func__);
2292		goto unlock_and_return;
2293	}
2294
2295	/*
2296	 * The modem can generate an AC_WAKE_ACK, and then still go to sleep.
2297	 * As a workaround, we wait, and then check that the modem is indeed
2298	 * awake (in terms of the value of the PRCM_MOD_AWAKE_STATUS
2299	 * register, which may not be the whole truth).
2300	 */
2301	udelay(400);
2302	status = (readl(PRCM_MOD_AWAKE_STATUS) & BITS(0, 2));
2303	if (status != (PRCM_MOD_AWAKE_STATUS_PRCM_MOD_AAPD_AWAKE |
2304			PRCM_MOD_AWAKE_STATUS_PRCM_MOD_COREPD_AWAKE)) {
2305		pr_err("prcmu: %s received ack, but modem not awake (0x%X).\n",
2306			__func__, status);
2307		udelay(1200);
2308		writel(val, PRCM_HOSTACCESS_REQ);
2309		if (wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
2310				msecs_to_jiffies(5000)))
2311			goto retry;
2312		pr_crit("prcmu: %s timed out (5 s) waiting for AC_SLEEP_ACK.\n",
2313			__func__);
2314	}
2315
2316unlock_and_return:
2317	mutex_unlock(&mb0_transfer.ac_wake_lock);
2318}
2319
2320/**
2321 * prcmu_ac_sleep_req - called when ARM no longer needs to talk to modem
2322 */
2323void prcmu_ac_sleep_req()
2324{
2325	u32 val;
2326
2327	mutex_lock(&mb0_transfer.ac_wake_lock);
2328
2329	val = readl(PRCM_HOSTACCESS_REQ);
2330	if (!(val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ))
2331		goto unlock_and_return;
2332
2333	writel((val & ~PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ),
2334		PRCM_HOSTACCESS_REQ);
2335
2336	if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
2337			msecs_to_jiffies(5000))) {
2338		pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
2339			__func__);
2340	}
2341
2342	atomic_set(&ac_wake_req_state, 0);
2343
2344unlock_and_return:
2345	mutex_unlock(&mb0_transfer.ac_wake_lock);
2346}
2347
2348bool db8500_prcmu_is_ac_wake_requested(void)
2349{
2350	return (atomic_read(&ac_wake_req_state) != 0);
2351}
2352
2353/**
2354 * db8500_prcmu_system_reset - System reset
2355 *
2356 * Saves the reset reason code and then sets the APE_SOFTRST register which
2357 * fires interrupt to fw
2358 */
2359void db8500_prcmu_system_reset(u16 reset_code)
2360{
2361	writew(reset_code, (tcdm_base + PRCM_SW_RST_REASON));
2362	writel(1, PRCM_APE_SOFTRST);
2363}
2364
2365/**
2366 * db8500_prcmu_get_reset_code - Retrieve SW reset reason code
2367 *
2368 * Retrieves the reset reason code stored by prcmu_system_reset() before
2369 * last restart.
2370 */
2371u16 db8500_prcmu_get_reset_code(void)
2372{
2373	return readw(tcdm_base + PRCM_SW_RST_REASON);
2374}
2375
2376/**
2377 * db8500_prcmu_reset_modem - ask the PRCMU to reset modem
2378 */
2379void db8500_prcmu_modem_reset(void)
2380{
2381	mutex_lock(&mb1_transfer.lock);
2382
2383	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
2384		cpu_relax();
2385
2386	writeb(MB1H_RESET_MODEM, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
2387	writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
2388	wait_for_completion(&mb1_transfer.work);
2389
2390	/*
2391	 * No need to check return from PRCMU as modem should go in reset state
2392	 * This state is already managed by upper layer
2393	 */
2394
2395	mutex_unlock(&mb1_transfer.lock);
2396}
2397
2398static void ack_dbb_wakeup(void)
2399{
2400	unsigned long flags;
2401
2402	spin_lock_irqsave(&mb0_transfer.lock, flags);
2403
2404	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
2405		cpu_relax();
2406
2407	writeb(MB0H_READ_WAKEUP_ACK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
2408	writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
2409
2410	spin_unlock_irqrestore(&mb0_transfer.lock, flags);
2411}
2412
2413static inline void print_unknown_header_warning(u8 n, u8 header)
2414{
2415	pr_warning("prcmu: Unknown message header (%d) in mailbox %d.\n",
2416		header, n);
2417}
2418
2419static bool read_mailbox_0(void)
2420{
2421	bool r;
2422	u32 ev;
2423	unsigned int n;
2424	u8 header;
2425
2426	header = readb(tcdm_base + PRCM_MBOX_HEADER_ACK_MB0);
2427	switch (header) {
2428	case MB0H_WAKEUP_EXE:
2429	case MB0H_WAKEUP_SLEEP:
2430		if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
2431			ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_1_8500);
2432		else
2433			ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_0_8500);
2434
2435		if (ev & (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK))
2436			complete(&mb0_transfer.ac_wake_work);
2437		if (ev & WAKEUP_BIT_SYSCLK_OK)
2438			complete(&mb3_transfer.sysclk_work);
2439
2440		ev &= mb0_transfer.req.dbb_irqs;
2441
2442		for (n = 0; n < NUM_PRCMU_WAKEUPS; n++) {
2443			if (ev & prcmu_irq_bit[n])
2444				generic_handle_irq(IRQ_PRCMU_BASE + n);
2445		}
2446		r = true;
2447		break;
2448	default:
2449		print_unknown_header_warning(0, header);
2450		r = false;
2451		break;
2452	}
2453	writel(MBOX_BIT(0), PRCM_ARM_IT1_CLR);
2454	return r;
2455}
2456
2457static bool read_mailbox_1(void)
2458{
2459	mb1_transfer.ack.header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB1);
2460	mb1_transfer.ack.arm_opp = readb(tcdm_base +
2461		PRCM_ACK_MB1_CURRENT_ARM_OPP);
2462	mb1_transfer.ack.ape_opp = readb(tcdm_base +
2463		PRCM_ACK_MB1_CURRENT_APE_OPP);
2464	mb1_transfer.ack.ape_voltage_status = readb(tcdm_base +
2465		PRCM_ACK_MB1_APE_VOLTAGE_STATUS);
2466	writel(MBOX_BIT(1), PRCM_ARM_IT1_CLR);
2467	complete(&mb1_transfer.work);
2468	return false;
2469}
2470
2471static bool read_mailbox_2(void)
2472{
2473	mb2_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB2_DPS_STATUS);
2474	writel(MBOX_BIT(2), PRCM_ARM_IT1_CLR);
2475	complete(&mb2_transfer.work);
2476	return false;
2477}
2478
2479static bool read_mailbox_3(void)
2480{
2481	writel(MBOX_BIT(3), PRCM_ARM_IT1_CLR);
2482	return false;
2483}
2484
2485static bool read_mailbox_4(void)
2486{
2487	u8 header;
2488	bool do_complete = true;
2489
2490	header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB4);
2491	switch (header) {
2492	case MB4H_MEM_ST:
2493	case MB4H_HOTDOG:
2494	case MB4H_HOTMON:
2495	case MB4H_HOT_PERIOD:
2496	case MB4H_A9WDOG_CONF:
2497	case MB4H_A9WDOG_EN:
2498	case MB4H_A9WDOG_DIS:
2499	case MB4H_A9WDOG_LOAD:
2500	case MB4H_A9WDOG_KICK:
2501		break;
2502	default:
2503		print_unknown_header_warning(4, header);
2504		do_complete = false;
2505		break;
2506	}
2507
2508	writel(MBOX_BIT(4), PRCM_ARM_IT1_CLR);
2509
2510	if (do_complete)
2511		complete(&mb4_transfer.work);
2512
2513	return false;
2514}
2515
2516static bool read_mailbox_5(void)
2517{
2518	mb5_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB5_I2C_STATUS);
2519	mb5_transfer.ack.value = readb(tcdm_base + PRCM_ACK_MB5_I2C_VAL);
2520	writel(MBOX_BIT(5), PRCM_ARM_IT1_CLR);
2521	complete(&mb5_transfer.work);
2522	return false;
2523}
2524
2525static bool read_mailbox_6(void)
2526{
2527	writel(MBOX_BIT(6), PRCM_ARM_IT1_CLR);
2528	return false;
2529}
2530
2531static bool read_mailbox_7(void)
2532{
2533	writel(MBOX_BIT(7), PRCM_ARM_IT1_CLR);
2534	return false;
2535}
2536
2537static bool (* const read_mailbox[NUM_MB])(void) = {
2538	read_mailbox_0,
2539	read_mailbox_1,
2540	read_mailbox_2,
2541	read_mailbox_3,
2542	read_mailbox_4,
2543	read_mailbox_5,
2544	read_mailbox_6,
2545	read_mailbox_7
2546};
2547
2548static irqreturn_t prcmu_irq_handler(int irq, void *data)
2549{
2550	u32 bits;
2551	u8 n;
2552	irqreturn_t r;
2553
2554	bits = (readl(PRCM_ARM_IT1_VAL) & ALL_MBOX_BITS);
2555	if (unlikely(!bits))
2556		return IRQ_NONE;
2557
2558	r = IRQ_HANDLED;
2559	for (n = 0; bits; n++) {
2560		if (bits & MBOX_BIT(n)) {
2561			bits -= MBOX_BIT(n);
2562			if (read_mailbox[n]())
2563				r = IRQ_WAKE_THREAD;
2564		}
2565	}
2566	return r;
2567}
2568
2569static irqreturn_t prcmu_irq_thread_fn(int irq, void *data)
2570{
2571	ack_dbb_wakeup();
2572	return IRQ_HANDLED;
2573}
2574
2575static void prcmu_mask_work(struct work_struct *work)
2576{
2577	unsigned long flags;
2578
2579	spin_lock_irqsave(&mb0_transfer.lock, flags);
2580
2581	config_wakeups();
2582
2583	spin_unlock_irqrestore(&mb0_transfer.lock, flags);
2584}
2585
2586static void prcmu_irq_mask(struct irq_data *d)
2587{
2588	unsigned long flags;
2589
2590	spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
2591
2592	mb0_transfer.req.dbb_irqs &= ~prcmu_irq_bit[d->irq - IRQ_PRCMU_BASE];
2593
2594	spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
2595
2596	if (d->irq != IRQ_PRCMU_CA_SLEEP)
2597		schedule_work(&mb0_transfer.mask_work);
2598}
2599
2600static void prcmu_irq_unmask(struct irq_data *d)
2601{
2602	unsigned long flags;
2603
2604	spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
2605
2606	mb0_transfer.req.dbb_irqs |= prcmu_irq_bit[d->irq - IRQ_PRCMU_BASE];
2607
2608	spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
2609
2610	if (d->irq != IRQ_PRCMU_CA_SLEEP)
2611		schedule_work(&mb0_transfer.mask_work);
2612}
2613
2614static void noop(struct irq_data *d)
2615{
2616}
2617
2618static struct irq_chip prcmu_irq_chip = {
2619	.name		= "prcmu",
2620	.irq_disable	= prcmu_irq_mask,
2621	.irq_ack	= noop,
2622	.irq_mask	= prcmu_irq_mask,
2623	.irq_unmask	= prcmu_irq_unmask,
2624};
2625
2626static char *fw_project_name(u8 project)
2627{
2628	switch (project) {
2629	case PRCMU_FW_PROJECT_U8500:
2630		return "U8500";
2631	case PRCMU_FW_PROJECT_U8500_C2:
2632		return "U8500 C2";
2633	case PRCMU_FW_PROJECT_U9500:
2634		return "U9500";
2635	case PRCMU_FW_PROJECT_U9500_C2:
2636		return "U9500 C2";
2637	case PRCMU_FW_PROJECT_U8520:
2638		return "U8520";
2639	case PRCMU_FW_PROJECT_U8420:
2640		return "U8420";
2641	default:
2642		return "Unknown";
2643	}
2644}
2645
2646void __init db8500_prcmu_early_init(void)
2647{
2648	unsigned int i;
2649	if (cpu_is_u8500v2()) {
2650		void *tcpm_base = ioremap_nocache(U8500_PRCMU_TCPM_BASE, SZ_4K);
2651
2652		if (tcpm_base != NULL) {
2653			u32 version;
2654			version = readl(tcpm_base + PRCMU_FW_VERSION_OFFSET);
2655			fw_info.version.project = version & 0xFF;
2656			fw_info.version.api_version = (version >> 8) & 0xFF;
2657			fw_info.version.func_version = (version >> 16) & 0xFF;
2658			fw_info.version.errata = (version >> 24) & 0xFF;
2659			fw_info.valid = true;
2660			pr_info("PRCMU firmware: %s, version %d.%d.%d\n",
2661				fw_project_name(fw_info.version.project),
2662				(version >> 8) & 0xFF, (version >> 16) & 0xFF,
2663				(version >> 24) & 0xFF);
2664			iounmap(tcpm_base);
2665		}
2666
2667		tcdm_base = __io_address(U8500_PRCMU_TCDM_BASE);
2668	} else {
2669		pr_err("prcmu: Unsupported chip version\n");
2670		BUG();
2671	}
2672
2673	spin_lock_init(&mb0_transfer.lock);
2674	spin_lock_init(&mb0_transfer.dbb_irqs_lock);
2675	mutex_init(&mb0_transfer.ac_wake_lock);
2676	init_completion(&mb0_transfer.ac_wake_work);
2677	mutex_init(&mb1_transfer.lock);
2678	init_completion(&mb1_transfer.work);
2679	mb1_transfer.ape_opp = APE_NO_CHANGE;
2680	mutex_init(&mb2_transfer.lock);
2681	init_completion(&mb2_transfer.work);
2682	spin_lock_init(&mb2_transfer.auto_pm_lock);
2683	spin_lock_init(&mb3_transfer.lock);
2684	mutex_init(&mb3_transfer.sysclk_lock);
2685	init_completion(&mb3_transfer.sysclk_work);
2686	mutex_init(&mb4_transfer.lock);
2687	init_completion(&mb4_transfer.work);
2688	mutex_init(&mb5_transfer.lock);
2689	init_completion(&mb5_transfer.work);
2690
2691	INIT_WORK(&mb0_transfer.mask_work, prcmu_mask_work);
2692
2693	/* Initalize irqs. */
2694	for (i = 0; i < NUM_PRCMU_WAKEUPS; i++) {
2695		unsigned int irq;
2696
2697		irq = IRQ_PRCMU_BASE + i;
2698		irq_set_chip_and_handler(irq, &prcmu_irq_chip,
2699					 handle_simple_irq);
2700		set_irq_flags(irq, IRQF_VALID);
2701	}
2702}
2703
2704static void __init init_prcm_registers(void)
2705{
2706	u32 val;
2707
2708	val = readl(PRCM_A9PL_FORCE_CLKEN);
2709	val &= ~(PRCM_A9PL_FORCE_CLKEN_PRCM_A9PL_FORCE_CLKEN |
2710		PRCM_A9PL_FORCE_CLKEN_PRCM_A9AXI_FORCE_CLKEN);
2711	writel(val, (PRCM_A9PL_FORCE_CLKEN));
2712}
2713
2714/*
2715 * Power domain switches (ePODs) modeled as regulators for the DB8500 SoC
2716 */
2717static struct regulator_consumer_supply db8500_vape_consumers[] = {
2718	REGULATOR_SUPPLY("v-ape", NULL),
2719	REGULATOR_SUPPLY("v-i2c", "nmk-i2c.0"),
2720	REGULATOR_SUPPLY("v-i2c", "nmk-i2c.1"),
2721	REGULATOR_SUPPLY("v-i2c", "nmk-i2c.2"),
2722	REGULATOR_SUPPLY("v-i2c", "nmk-i2c.3"),
2723	/* "v-mmc" changed to "vcore" in the mainline kernel */
2724	REGULATOR_SUPPLY("vcore", "sdi0"),
2725	REGULATOR_SUPPLY("vcore", "sdi1"),
2726	REGULATOR_SUPPLY("vcore", "sdi2"),
2727	REGULATOR_SUPPLY("vcore", "sdi3"),
2728	REGULATOR_SUPPLY("vcore", "sdi4"),
2729	REGULATOR_SUPPLY("v-dma", "dma40.0"),
2730	REGULATOR_SUPPLY("v-ape", "ab8500-usb.0"),
2731	/* "v-uart" changed to "vcore" in the mainline kernel */
2732	REGULATOR_SUPPLY("vcore", "uart0"),
2733	REGULATOR_SUPPLY("vcore", "uart1"),
2734	REGULATOR_SUPPLY("vcore", "uart2"),
2735	REGULATOR_SUPPLY("v-ape", "nmk-ske-keypad.0"),
2736	REGULATOR_SUPPLY("v-hsi", "ste_hsi.0"),
2737};
2738
2739static struct regulator_consumer_supply db8500_vsmps2_consumers[] = {
2740	REGULATOR_SUPPLY("musb_1v8", "ab8500-usb.0"),
2741	/* AV8100 regulator */
2742	REGULATOR_SUPPLY("hdmi_1v8", "0-0070"),
2743};
2744
2745static struct regulator_consumer_supply db8500_b2r2_mcde_consumers[] = {
2746	REGULATOR_SUPPLY("vsupply", "b2r2_bus"),
2747	REGULATOR_SUPPLY("vsupply", "mcde"),
2748};
2749
2750/* SVA MMDSP regulator switch */
2751static struct regulator_consumer_supply db8500_svammdsp_consumers[] = {
2752	REGULATOR_SUPPLY("sva-mmdsp", "cm_control"),
2753};
2754
2755/* SVA pipe regulator switch */
2756static struct regulator_consumer_supply db8500_svapipe_consumers[] = {
2757	REGULATOR_SUPPLY("sva-pipe", "cm_control"),
2758};
2759
2760/* SIA MMDSP regulator switch */
2761static struct regulator_consumer_supply db8500_siammdsp_consumers[] = {
2762	REGULATOR_SUPPLY("sia-mmdsp", "cm_control"),
2763};
2764
2765/* SIA pipe regulator switch */
2766static struct regulator_consumer_supply db8500_siapipe_consumers[] = {
2767	REGULATOR_SUPPLY("sia-pipe", "cm_control"),
2768};
2769
2770static struct regulator_consumer_supply db8500_sga_consumers[] = {
2771	REGULATOR_SUPPLY("v-mali", NULL),
2772};
2773
2774/* ESRAM1 and 2 regulator switch */
2775static struct regulator_consumer_supply db8500_esram12_consumers[] = {
2776	REGULATOR_SUPPLY("esram12", "cm_control"),
2777};
2778
2779/* ESRAM3 and 4 regulator switch */
2780static struct regulator_consumer_supply db8500_esram34_consumers[] = {
2781	REGULATOR_SUPPLY("v-esram34", "mcde"),
2782	REGULATOR_SUPPLY("esram34", "cm_control"),
2783	REGULATOR_SUPPLY("lcla_esram", "dma40.0"),
2784};
2785
2786static struct regulator_init_data db8500_regulators[DB8500_NUM_REGULATORS] = {
2787	[DB8500_REGULATOR_VAPE] = {
2788		.constraints = {
2789			.name = "db8500-vape",
2790			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2791			.always_on = true,
2792		},
2793		.consumer_supplies = db8500_vape_consumers,
2794		.num_consumer_supplies = ARRAY_SIZE(db8500_vape_consumers),
2795	},
2796	[DB8500_REGULATOR_VARM] = {
2797		.constraints = {
2798			.name = "db8500-varm",
2799			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2800		},
2801	},
2802	[DB8500_REGULATOR_VMODEM] = {
2803		.constraints = {
2804			.name = "db8500-vmodem",
2805			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2806		},
2807	},
2808	[DB8500_REGULATOR_VPLL] = {
2809		.constraints = {
2810			.name = "db8500-vpll",
2811			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2812		},
2813	},
2814	[DB8500_REGULATOR_VSMPS1] = {
2815		.constraints = {
2816			.name = "db8500-vsmps1",
2817			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2818		},
2819	},
2820	[DB8500_REGULATOR_VSMPS2] = {
2821		.constraints = {
2822			.name = "db8500-vsmps2",
2823			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2824		},
2825		.consumer_supplies = db8500_vsmps2_consumers,
2826		.num_consumer_supplies = ARRAY_SIZE(db8500_vsmps2_consumers),
2827	},
2828	[DB8500_REGULATOR_VSMPS3] = {
2829		.constraints = {
2830			.name = "db8500-vsmps3",
2831			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2832		},
2833	},
2834	[DB8500_REGULATOR_VRF1] = {
2835		.constraints = {
2836			.name = "db8500-vrf1",
2837			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2838		},
2839	},
2840	[DB8500_REGULATOR_SWITCH_SVAMMDSP] = {
2841		/* dependency to u8500-vape is handled outside regulator framework */
2842		.constraints = {
2843			.name = "db8500-sva-mmdsp",
2844			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2845		},
2846		.consumer_supplies = db8500_svammdsp_consumers,
2847		.num_consumer_supplies = ARRAY_SIZE(db8500_svammdsp_consumers),
2848	},
2849	[DB8500_REGULATOR_SWITCH_SVAMMDSPRET] = {
2850		.constraints = {
2851			/* "ret" means "retention" */
2852			.name = "db8500-sva-mmdsp-ret",
2853			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2854		},
2855	},
2856	[DB8500_REGULATOR_SWITCH_SVAPIPE] = {
2857		/* dependency to u8500-vape is handled outside regulator framework */
2858		.constraints = {
2859			.name = "db8500-sva-pipe",
2860			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2861		},
2862		.consumer_supplies = db8500_svapipe_consumers,
2863		.num_consumer_supplies = ARRAY_SIZE(db8500_svapipe_consumers),
2864	},
2865	[DB8500_REGULATOR_SWITCH_SIAMMDSP] = {
2866		/* dependency to u8500-vape is handled outside regulator framework */
2867		.constraints = {
2868			.name = "db8500-sia-mmdsp",
2869			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2870		},
2871		.consumer_supplies = db8500_siammdsp_consumers,
2872		.num_consumer_supplies = ARRAY_SIZE(db8500_siammdsp_consumers),
2873	},
2874	[DB8500_REGULATOR_SWITCH_SIAMMDSPRET] = {
2875		.constraints = {
2876			.name = "db8500-sia-mmdsp-ret",
2877			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2878		},
2879	},
2880	[DB8500_REGULATOR_SWITCH_SIAPIPE] = {
2881		/* dependency to u8500-vape is handled outside regulator framework */
2882		.constraints = {
2883			.name = "db8500-sia-pipe",
2884			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2885		},
2886		.consumer_supplies = db8500_siapipe_consumers,
2887		.num_consumer_supplies = ARRAY_SIZE(db8500_siapipe_consumers),
2888	},
2889	[DB8500_REGULATOR_SWITCH_SGA] = {
2890		.supply_regulator = "db8500-vape",
2891		.constraints = {
2892			.name = "db8500-sga",
2893			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2894		},
2895		.consumer_supplies = db8500_sga_consumers,
2896		.num_consumer_supplies = ARRAY_SIZE(db8500_sga_consumers),
2897
2898	},
2899	[DB8500_REGULATOR_SWITCH_B2R2_MCDE] = {
2900		.supply_regulator = "db8500-vape",
2901		.constraints = {
2902			.name = "db8500-b2r2-mcde",
2903			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2904		},
2905		.consumer_supplies = db8500_b2r2_mcde_consumers,
2906		.num_consumer_supplies = ARRAY_SIZE(db8500_b2r2_mcde_consumers),
2907	},
2908	[DB8500_REGULATOR_SWITCH_ESRAM12] = {
2909		/*
2910		 * esram12 is set in retention and supplied by Vsafe when Vape is off,
2911		 * no need to hold Vape
2912		 */
2913		.constraints = {
2914			.name = "db8500-esram12",
2915			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2916		},
2917		.consumer_supplies = db8500_esram12_consumers,
2918		.num_consumer_supplies = ARRAY_SIZE(db8500_esram12_consumers),
2919	},
2920	[DB8500_REGULATOR_SWITCH_ESRAM12RET] = {
2921		.constraints = {
2922			.name = "db8500-esram12-ret",
2923			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2924		},
2925	},
2926	[DB8500_REGULATOR_SWITCH_ESRAM34] = {
2927		/*
2928		 * esram34 is set in retention and supplied by Vsafe when Vape is off,
2929		 * no need to hold Vape
2930		 */
2931		.constraints = {
2932			.name = "db8500-esram34",
2933			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2934		},
2935		.consumer_supplies = db8500_esram34_consumers,
2936		.num_consumer_supplies = ARRAY_SIZE(db8500_esram34_consumers),
2937	},
2938	[DB8500_REGULATOR_SWITCH_ESRAM34RET] = {
2939		.constraints = {
2940			.name = "db8500-esram34-ret",
2941			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2942		},
2943	},
2944};
2945
2946static struct mfd_cell db8500_prcmu_devs[] = {
2947	{
2948		.name = "db8500-prcmu-regulators",
2949		.platform_data = &db8500_regulators,
2950		.pdata_size = sizeof(db8500_regulators),
2951	},
2952	{
2953		.name = "cpufreq-u8500",
2954	},
2955};
2956
2957/**
2958 * prcmu_fw_init - arch init call for the Linux PRCMU fw init logic
2959 *
2960 */
2961static int __init db8500_prcmu_probe(struct platform_device *pdev)
2962{
2963	int err = 0;
2964
2965	if (ux500_is_svp())
2966		return -ENODEV;
2967
2968	init_prcm_registers();
2969
2970	/* Clean up the mailbox interrupts after pre-kernel code. */
2971	writel(ALL_MBOX_BITS, PRCM_ARM_IT1_CLR);
2972
2973	err = request_threaded_irq(IRQ_DB8500_PRCMU1, prcmu_irq_handler,
2974		prcmu_irq_thread_fn, IRQF_NO_SUSPEND, "prcmu", NULL);
2975	if (err < 0) {
2976		pr_err("prcmu: Failed to allocate IRQ_DB8500_PRCMU1.\n");
2977		err = -EBUSY;
2978		goto no_irq_return;
2979	}
2980
2981	if (cpu_is_u8500v20_or_later())
2982		prcmu_config_esram0_deep_sleep(ESRAM0_DEEP_SLEEP_STATE_RET);
2983
2984	err = mfd_add_devices(&pdev->dev, 0, db8500_prcmu_devs,
2985			      ARRAY_SIZE(db8500_prcmu_devs), NULL,
2986			      0);
2987
2988	if (err)
2989		pr_err("prcmu: Failed to add subdevices\n");
2990	else
2991		pr_info("DB8500 PRCMU initialized\n");
2992
2993no_irq_return:
2994	return err;
2995}
2996
2997static struct platform_driver db8500_prcmu_driver = {
2998	.driver = {
2999		.name = "db8500-prcmu",
3000		.owner = THIS_MODULE,
3001	},
3002};
3003
3004static int __init db8500_prcmu_init(void)
3005{
3006	return platform_driver_probe(&db8500_prcmu_driver, db8500_prcmu_probe);
3007}
3008
3009arch_initcall(db8500_prcmu_init);
3010
3011MODULE_AUTHOR("Mattias Nilsson <mattias.i.nilsson@stericsson.com>");
3012MODULE_DESCRIPTION("DB8500 PRCM Unit driver");
3013MODULE_LICENSE("GPL v2");
3014