xpc_main.c revision 6d4561110a3e9fa742aeec6717248a491dfb1878
1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License.  See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Copyright (c) 2004-2009 Silicon Graphics, Inc.  All Rights Reserved.
7 */
8
9/*
10 * Cross Partition Communication (XPC) support - standard version.
11 *
12 *	XPC provides a message passing capability that crosses partition
13 *	boundaries. This module is made up of two parts:
14 *
15 *	    partition	This part detects the presence/absence of other
16 *			partitions. It provides a heartbeat and monitors
17 *			the heartbeats of other partitions.
18 *
19 *	    channel	This part manages the channels and sends/receives
20 *			messages across them to/from other partitions.
21 *
22 *	There are a couple of additional functions residing in XP, which
23 *	provide an interface to XPC for its users.
24 *
25 *
26 *	Caveats:
27 *
28 *	  . Currently on sn2, we have no way to determine which nasid an IRQ
29 *	    came from. Thus, xpc_send_IRQ_sn2() does a remote amo write
30 *	    followed by an IPI. The amo indicates where data is to be pulled
31 *	    from, so after the IPI arrives, the remote partition checks the amo
32 *	    word. The IPI can actually arrive before the amo however, so other
33 *	    code must periodically check for this case. Also, remote amo
34 *	    operations do not reliably time out. Thus we do a remote PIO read
35 *	    solely to know whether the remote partition is down and whether we
36 *	    should stop sending IPIs to it. This remote PIO read operation is
37 *	    set up in a special nofault region so SAL knows to ignore (and
38 *	    cleanup) any errors due to the remote amo write, PIO read, and/or
39 *	    PIO write operations.
40 *
41 *	    If/when new hardware solves this IPI problem, we should abandon
42 *	    the current approach.
43 *
44 */
45
46#include <linux/module.h>
47#include <linux/sysctl.h>
48#include <linux/device.h>
49#include <linux/delay.h>
50#include <linux/reboot.h>
51#include <linux/kdebug.h>
52#include <linux/kthread.h>
53#include "xpc.h"
54
55/* define two XPC debug device structures to be used with dev_dbg() et al */
56
57struct device_driver xpc_dbg_name = {
58	.name = "xpc"
59};
60
61struct device xpc_part_dbg_subname = {
62	.init_name = "",	/* set to "part" at xpc_init() time */
63	.driver = &xpc_dbg_name
64};
65
66struct device xpc_chan_dbg_subname = {
67	.init_name = "",	/* set to "chan" at xpc_init() time */
68	.driver = &xpc_dbg_name
69};
70
71struct device *xpc_part = &xpc_part_dbg_subname;
72struct device *xpc_chan = &xpc_chan_dbg_subname;
73
74static int xpc_kdebug_ignore;
75
76/* systune related variables for /proc/sys directories */
77
78static int xpc_hb_interval = XPC_HB_DEFAULT_INTERVAL;
79static int xpc_hb_min_interval = 1;
80static int xpc_hb_max_interval = 10;
81
82static int xpc_hb_check_interval = XPC_HB_CHECK_DEFAULT_INTERVAL;
83static int xpc_hb_check_min_interval = 10;
84static int xpc_hb_check_max_interval = 120;
85
86int xpc_disengage_timelimit = XPC_DISENGAGE_DEFAULT_TIMELIMIT;
87static int xpc_disengage_min_timelimit;	/* = 0 */
88static int xpc_disengage_max_timelimit = 120;
89
90static ctl_table xpc_sys_xpc_hb_dir[] = {
91	{
92	 .procname = "hb_interval",
93	 .data = &xpc_hb_interval,
94	 .maxlen = sizeof(int),
95	 .mode = 0644,
96	 .proc_handler = proc_dointvec_minmax,
97	 .extra1 = &xpc_hb_min_interval,
98	 .extra2 = &xpc_hb_max_interval},
99	{
100	 .procname = "hb_check_interval",
101	 .data = &xpc_hb_check_interval,
102	 .maxlen = sizeof(int),
103	 .mode = 0644,
104	 .proc_handler = proc_dointvec_minmax,
105	 .extra1 = &xpc_hb_check_min_interval,
106	 .extra2 = &xpc_hb_check_max_interval},
107	{}
108};
109static ctl_table xpc_sys_xpc_dir[] = {
110	{
111	 .procname = "hb",
112	 .mode = 0555,
113	 .child = xpc_sys_xpc_hb_dir},
114	{
115	 .procname = "disengage_timelimit",
116	 .data = &xpc_disengage_timelimit,
117	 .maxlen = sizeof(int),
118	 .mode = 0644,
119	 .proc_handler = proc_dointvec_minmax,
120	 .extra1 = &xpc_disengage_min_timelimit,
121	 .extra2 = &xpc_disengage_max_timelimit},
122	{}
123};
124static ctl_table xpc_sys_dir[] = {
125	{
126	 .procname = "xpc",
127	 .mode = 0555,
128	 .child = xpc_sys_xpc_dir},
129	{}
130};
131static struct ctl_table_header *xpc_sysctl;
132
133/* non-zero if any remote partition disengage was timed out */
134int xpc_disengage_timedout;
135
136/* #of activate IRQs received and not yet processed */
137int xpc_activate_IRQ_rcvd;
138DEFINE_SPINLOCK(xpc_activate_IRQ_rcvd_lock);
139
140/* IRQ handler notifies this wait queue on receipt of an IRQ */
141DECLARE_WAIT_QUEUE_HEAD(xpc_activate_IRQ_wq);
142
143static unsigned long xpc_hb_check_timeout;
144static struct timer_list xpc_hb_timer;
145
146/* notification that the xpc_hb_checker thread has exited */
147static DECLARE_COMPLETION(xpc_hb_checker_exited);
148
149/* notification that the xpc_discovery thread has exited */
150static DECLARE_COMPLETION(xpc_discovery_exited);
151
152static void xpc_kthread_waitmsgs(struct xpc_partition *, struct xpc_channel *);
153
154static int xpc_system_reboot(struct notifier_block *, unsigned long, void *);
155static struct notifier_block xpc_reboot_notifier = {
156	.notifier_call = xpc_system_reboot,
157};
158
159static int xpc_system_die(struct notifier_block *, unsigned long, void *);
160static struct notifier_block xpc_die_notifier = {
161	.notifier_call = xpc_system_die,
162};
163
164struct xpc_arch_operations xpc_arch_ops;
165
166/*
167 * Timer function to enforce the timelimit on the partition disengage.
168 */
169static void
170xpc_timeout_partition_disengage(unsigned long data)
171{
172	struct xpc_partition *part = (struct xpc_partition *)data;
173
174	DBUG_ON(time_is_after_jiffies(part->disengage_timeout));
175
176	(void)xpc_partition_disengaged(part);
177
178	DBUG_ON(part->disengage_timeout != 0);
179	DBUG_ON(xpc_arch_ops.partition_engaged(XPC_PARTID(part)));
180}
181
182/*
183 * Timer to produce the heartbeat.  The timer structures function is
184 * already set when this is initially called.  A tunable is used to
185 * specify when the next timeout should occur.
186 */
187static void
188xpc_hb_beater(unsigned long dummy)
189{
190	xpc_arch_ops.increment_heartbeat();
191
192	if (time_is_before_eq_jiffies(xpc_hb_check_timeout))
193		wake_up_interruptible(&xpc_activate_IRQ_wq);
194
195	xpc_hb_timer.expires = jiffies + (xpc_hb_interval * HZ);
196	add_timer(&xpc_hb_timer);
197}
198
199static void
200xpc_start_hb_beater(void)
201{
202	xpc_arch_ops.heartbeat_init();
203	init_timer(&xpc_hb_timer);
204	xpc_hb_timer.function = xpc_hb_beater;
205	xpc_hb_beater(0);
206}
207
208static void
209xpc_stop_hb_beater(void)
210{
211	del_timer_sync(&xpc_hb_timer);
212	xpc_arch_ops.heartbeat_exit();
213}
214
215/*
216 * At periodic intervals, scan through all active partitions and ensure
217 * their heartbeat is still active.  If not, the partition is deactivated.
218 */
219static void
220xpc_check_remote_hb(void)
221{
222	struct xpc_partition *part;
223	short partid;
224	enum xp_retval ret;
225
226	for (partid = 0; partid < xp_max_npartitions; partid++) {
227
228		if (xpc_exiting)
229			break;
230
231		if (partid == xp_partition_id)
232			continue;
233
234		part = &xpc_partitions[partid];
235
236		if (part->act_state == XPC_P_AS_INACTIVE ||
237		    part->act_state == XPC_P_AS_DEACTIVATING) {
238			continue;
239		}
240
241		ret = xpc_arch_ops.get_remote_heartbeat(part);
242		if (ret != xpSuccess)
243			XPC_DEACTIVATE_PARTITION(part, ret);
244	}
245}
246
247/*
248 * This thread is responsible for nearly all of the partition
249 * activation/deactivation.
250 */
251static int
252xpc_hb_checker(void *ignore)
253{
254	int force_IRQ = 0;
255
256	/* this thread was marked active by xpc_hb_init() */
257
258	set_cpus_allowed_ptr(current, cpumask_of(XPC_HB_CHECK_CPU));
259
260	/* set our heartbeating to other partitions into motion */
261	xpc_hb_check_timeout = jiffies + (xpc_hb_check_interval * HZ);
262	xpc_start_hb_beater();
263
264	while (!xpc_exiting) {
265
266		dev_dbg(xpc_part, "woke up with %d ticks rem; %d IRQs have "
267			"been received\n",
268			(int)(xpc_hb_check_timeout - jiffies),
269			xpc_activate_IRQ_rcvd);
270
271		/* checking of remote heartbeats is skewed by IRQ handling */
272		if (time_is_before_eq_jiffies(xpc_hb_check_timeout)) {
273			xpc_hb_check_timeout = jiffies +
274			    (xpc_hb_check_interval * HZ);
275
276			dev_dbg(xpc_part, "checking remote heartbeats\n");
277			xpc_check_remote_hb();
278
279			/*
280			 * On sn2 we need to periodically recheck to ensure no
281			 * IRQ/amo pairs have been missed.
282			 */
283			if (is_shub())
284				force_IRQ = 1;
285		}
286
287		/* check for outstanding IRQs */
288		if (xpc_activate_IRQ_rcvd > 0 || force_IRQ != 0) {
289			force_IRQ = 0;
290			dev_dbg(xpc_part, "processing activate IRQs "
291				"received\n");
292			xpc_arch_ops.process_activate_IRQ_rcvd();
293		}
294
295		/* wait for IRQ or timeout */
296		(void)wait_event_interruptible(xpc_activate_IRQ_wq,
297					       (time_is_before_eq_jiffies(
298						xpc_hb_check_timeout) ||
299						xpc_activate_IRQ_rcvd > 0 ||
300						xpc_exiting));
301	}
302
303	xpc_stop_hb_beater();
304
305	dev_dbg(xpc_part, "heartbeat checker is exiting\n");
306
307	/* mark this thread as having exited */
308	complete(&xpc_hb_checker_exited);
309	return 0;
310}
311
312/*
313 * This thread will attempt to discover other partitions to activate
314 * based on info provided by SAL. This new thread is short lived and
315 * will exit once discovery is complete.
316 */
317static int
318xpc_initiate_discovery(void *ignore)
319{
320	xpc_discovery();
321
322	dev_dbg(xpc_part, "discovery thread is exiting\n");
323
324	/* mark this thread as having exited */
325	complete(&xpc_discovery_exited);
326	return 0;
327}
328
329/*
330 * The first kthread assigned to a newly activated partition is the one
331 * created by XPC HB with which it calls xpc_activating(). XPC hangs on to
332 * that kthread until the partition is brought down, at which time that kthread
333 * returns back to XPC HB. (The return of that kthread will signify to XPC HB
334 * that XPC has dismantled all communication infrastructure for the associated
335 * partition.) This kthread becomes the channel manager for that partition.
336 *
337 * Each active partition has a channel manager, who, besides connecting and
338 * disconnecting channels, will ensure that each of the partition's connected
339 * channels has the required number of assigned kthreads to get the work done.
340 */
341static void
342xpc_channel_mgr(struct xpc_partition *part)
343{
344	while (part->act_state != XPC_P_AS_DEACTIVATING ||
345	       atomic_read(&part->nchannels_active) > 0 ||
346	       !xpc_partition_disengaged(part)) {
347
348		xpc_process_sent_chctl_flags(part);
349
350		/*
351		 * Wait until we've been requested to activate kthreads or
352		 * all of the channel's message queues have been torn down or
353		 * a signal is pending.
354		 *
355		 * The channel_mgr_requests is set to 1 after being awakened,
356		 * This is done to prevent the channel mgr from making one pass
357		 * through the loop for each request, since he will
358		 * be servicing all the requests in one pass. The reason it's
359		 * set to 1 instead of 0 is so that other kthreads will know
360		 * that the channel mgr is running and won't bother trying to
361		 * wake him up.
362		 */
363		atomic_dec(&part->channel_mgr_requests);
364		(void)wait_event_interruptible(part->channel_mgr_wq,
365				(atomic_read(&part->channel_mgr_requests) > 0 ||
366				 part->chctl.all_flags != 0 ||
367				 (part->act_state == XPC_P_AS_DEACTIVATING &&
368				 atomic_read(&part->nchannels_active) == 0 &&
369				 xpc_partition_disengaged(part))));
370		atomic_set(&part->channel_mgr_requests, 1);
371	}
372}
373
374/*
375 * Guarantee that the kzalloc'd memory is cacheline aligned.
376 */
377void *
378xpc_kzalloc_cacheline_aligned(size_t size, gfp_t flags, void **base)
379{
380	/* see if kzalloc will give us cachline aligned memory by default */
381	*base = kzalloc(size, flags);
382	if (*base == NULL)
383		return NULL;
384
385	if ((u64)*base == L1_CACHE_ALIGN((u64)*base))
386		return *base;
387
388	kfree(*base);
389
390	/* nope, we'll have to do it ourselves */
391	*base = kzalloc(size + L1_CACHE_BYTES, flags);
392	if (*base == NULL)
393		return NULL;
394
395	return (void *)L1_CACHE_ALIGN((u64)*base);
396}
397
398/*
399 * Setup the channel structures necessary to support XPartition Communication
400 * between the specified remote partition and the local one.
401 */
402static enum xp_retval
403xpc_setup_ch_structures(struct xpc_partition *part)
404{
405	enum xp_retval ret;
406	int ch_number;
407	struct xpc_channel *ch;
408	short partid = XPC_PARTID(part);
409
410	/*
411	 * Allocate all of the channel structures as a contiguous chunk of
412	 * memory.
413	 */
414	DBUG_ON(part->channels != NULL);
415	part->channels = kzalloc(sizeof(struct xpc_channel) * XPC_MAX_NCHANNELS,
416				 GFP_KERNEL);
417	if (part->channels == NULL) {
418		dev_err(xpc_chan, "can't get memory for channels\n");
419		return xpNoMemory;
420	}
421
422	/* allocate the remote open and close args */
423
424	part->remote_openclose_args =
425	    xpc_kzalloc_cacheline_aligned(XPC_OPENCLOSE_ARGS_SIZE,
426					  GFP_KERNEL, &part->
427					  remote_openclose_args_base);
428	if (part->remote_openclose_args == NULL) {
429		dev_err(xpc_chan, "can't get memory for remote connect args\n");
430		ret = xpNoMemory;
431		goto out_1;
432	}
433
434	part->chctl.all_flags = 0;
435	spin_lock_init(&part->chctl_lock);
436
437	atomic_set(&part->channel_mgr_requests, 1);
438	init_waitqueue_head(&part->channel_mgr_wq);
439
440	part->nchannels = XPC_MAX_NCHANNELS;
441
442	atomic_set(&part->nchannels_active, 0);
443	atomic_set(&part->nchannels_engaged, 0);
444
445	for (ch_number = 0; ch_number < part->nchannels; ch_number++) {
446		ch = &part->channels[ch_number];
447
448		ch->partid = partid;
449		ch->number = ch_number;
450		ch->flags = XPC_C_DISCONNECTED;
451
452		atomic_set(&ch->kthreads_assigned, 0);
453		atomic_set(&ch->kthreads_idle, 0);
454		atomic_set(&ch->kthreads_active, 0);
455
456		atomic_set(&ch->references, 0);
457		atomic_set(&ch->n_to_notify, 0);
458
459		spin_lock_init(&ch->lock);
460		init_completion(&ch->wdisconnect_wait);
461
462		atomic_set(&ch->n_on_msg_allocate_wq, 0);
463		init_waitqueue_head(&ch->msg_allocate_wq);
464		init_waitqueue_head(&ch->idle_wq);
465	}
466
467	ret = xpc_arch_ops.setup_ch_structures(part);
468	if (ret != xpSuccess)
469		goto out_2;
470
471	/*
472	 * With the setting of the partition setup_state to XPC_P_SS_SETUP,
473	 * we're declaring that this partition is ready to go.
474	 */
475	part->setup_state = XPC_P_SS_SETUP;
476
477	return xpSuccess;
478
479	/* setup of ch structures failed */
480out_2:
481	kfree(part->remote_openclose_args_base);
482	part->remote_openclose_args = NULL;
483out_1:
484	kfree(part->channels);
485	part->channels = NULL;
486	return ret;
487}
488
489/*
490 * Teardown the channel structures necessary to support XPartition Communication
491 * between the specified remote partition and the local one.
492 */
493static void
494xpc_teardown_ch_structures(struct xpc_partition *part)
495{
496	DBUG_ON(atomic_read(&part->nchannels_engaged) != 0);
497	DBUG_ON(atomic_read(&part->nchannels_active) != 0);
498
499	/*
500	 * Make this partition inaccessible to local processes by marking it
501	 * as no longer setup. Then wait before proceeding with the teardown
502	 * until all existing references cease.
503	 */
504	DBUG_ON(part->setup_state != XPC_P_SS_SETUP);
505	part->setup_state = XPC_P_SS_WTEARDOWN;
506
507	wait_event(part->teardown_wq, (atomic_read(&part->references) == 0));
508
509	/* now we can begin tearing down the infrastructure */
510
511	xpc_arch_ops.teardown_ch_structures(part);
512
513	kfree(part->remote_openclose_args_base);
514	part->remote_openclose_args = NULL;
515	kfree(part->channels);
516	part->channels = NULL;
517
518	part->setup_state = XPC_P_SS_TORNDOWN;
519}
520
521/*
522 * When XPC HB determines that a partition has come up, it will create a new
523 * kthread and that kthread will call this function to attempt to set up the
524 * basic infrastructure used for Cross Partition Communication with the newly
525 * upped partition.
526 *
527 * The kthread that was created by XPC HB and which setup the XPC
528 * infrastructure will remain assigned to the partition becoming the channel
529 * manager for that partition until the partition is deactivating, at which
530 * time the kthread will teardown the XPC infrastructure and then exit.
531 */
532static int
533xpc_activating(void *__partid)
534{
535	short partid = (u64)__partid;
536	struct xpc_partition *part = &xpc_partitions[partid];
537	unsigned long irq_flags;
538
539	DBUG_ON(partid < 0 || partid >= xp_max_npartitions);
540
541	spin_lock_irqsave(&part->act_lock, irq_flags);
542
543	if (part->act_state == XPC_P_AS_DEACTIVATING) {
544		part->act_state = XPC_P_AS_INACTIVE;
545		spin_unlock_irqrestore(&part->act_lock, irq_flags);
546		part->remote_rp_pa = 0;
547		return 0;
548	}
549
550	/* indicate the thread is activating */
551	DBUG_ON(part->act_state != XPC_P_AS_ACTIVATION_REQ);
552	part->act_state = XPC_P_AS_ACTIVATING;
553
554	XPC_SET_REASON(part, 0, 0);
555	spin_unlock_irqrestore(&part->act_lock, irq_flags);
556
557	dev_dbg(xpc_part, "activating partition %d\n", partid);
558
559	xpc_arch_ops.allow_hb(partid);
560
561	if (xpc_setup_ch_structures(part) == xpSuccess) {
562		(void)xpc_part_ref(part);	/* this will always succeed */
563
564		if (xpc_arch_ops.make_first_contact(part) == xpSuccess) {
565			xpc_mark_partition_active(part);
566			xpc_channel_mgr(part);
567			/* won't return until partition is deactivating */
568		}
569
570		xpc_part_deref(part);
571		xpc_teardown_ch_structures(part);
572	}
573
574	xpc_arch_ops.disallow_hb(partid);
575	xpc_mark_partition_inactive(part);
576
577	if (part->reason == xpReactivating) {
578		/* interrupting ourselves results in activating partition */
579		xpc_arch_ops.request_partition_reactivation(part);
580	}
581
582	return 0;
583}
584
585void
586xpc_activate_partition(struct xpc_partition *part)
587{
588	short partid = XPC_PARTID(part);
589	unsigned long irq_flags;
590	struct task_struct *kthread;
591
592	spin_lock_irqsave(&part->act_lock, irq_flags);
593
594	DBUG_ON(part->act_state != XPC_P_AS_INACTIVE);
595
596	part->act_state = XPC_P_AS_ACTIVATION_REQ;
597	XPC_SET_REASON(part, xpCloneKThread, __LINE__);
598
599	spin_unlock_irqrestore(&part->act_lock, irq_flags);
600
601	kthread = kthread_run(xpc_activating, (void *)((u64)partid), "xpc%02d",
602			      partid);
603	if (IS_ERR(kthread)) {
604		spin_lock_irqsave(&part->act_lock, irq_flags);
605		part->act_state = XPC_P_AS_INACTIVE;
606		XPC_SET_REASON(part, xpCloneKThreadFailed, __LINE__);
607		spin_unlock_irqrestore(&part->act_lock, irq_flags);
608	}
609}
610
611void
612xpc_activate_kthreads(struct xpc_channel *ch, int needed)
613{
614	int idle = atomic_read(&ch->kthreads_idle);
615	int assigned = atomic_read(&ch->kthreads_assigned);
616	int wakeup;
617
618	DBUG_ON(needed <= 0);
619
620	if (idle > 0) {
621		wakeup = (needed > idle) ? idle : needed;
622		needed -= wakeup;
623
624		dev_dbg(xpc_chan, "wakeup %d idle kthreads, partid=%d, "
625			"channel=%d\n", wakeup, ch->partid, ch->number);
626
627		/* only wakeup the requested number of kthreads */
628		wake_up_nr(&ch->idle_wq, wakeup);
629	}
630
631	if (needed <= 0)
632		return;
633
634	if (needed + assigned > ch->kthreads_assigned_limit) {
635		needed = ch->kthreads_assigned_limit - assigned;
636		if (needed <= 0)
637			return;
638	}
639
640	dev_dbg(xpc_chan, "create %d new kthreads, partid=%d, channel=%d\n",
641		needed, ch->partid, ch->number);
642
643	xpc_create_kthreads(ch, needed, 0);
644}
645
646/*
647 * This function is where XPC's kthreads wait for messages to deliver.
648 */
649static void
650xpc_kthread_waitmsgs(struct xpc_partition *part, struct xpc_channel *ch)
651{
652	int (*n_of_deliverable_payloads) (struct xpc_channel *) =
653		xpc_arch_ops.n_of_deliverable_payloads;
654
655	do {
656		/* deliver messages to their intended recipients */
657
658		while (n_of_deliverable_payloads(ch) > 0 &&
659		       !(ch->flags & XPC_C_DISCONNECTING)) {
660			xpc_deliver_payload(ch);
661		}
662
663		if (atomic_inc_return(&ch->kthreads_idle) >
664		    ch->kthreads_idle_limit) {
665			/* too many idle kthreads on this channel */
666			atomic_dec(&ch->kthreads_idle);
667			break;
668		}
669
670		dev_dbg(xpc_chan, "idle kthread calling "
671			"wait_event_interruptible_exclusive()\n");
672
673		(void)wait_event_interruptible_exclusive(ch->idle_wq,
674				(n_of_deliverable_payloads(ch) > 0 ||
675				 (ch->flags & XPC_C_DISCONNECTING)));
676
677		atomic_dec(&ch->kthreads_idle);
678
679	} while (!(ch->flags & XPC_C_DISCONNECTING));
680}
681
682static int
683xpc_kthread_start(void *args)
684{
685	short partid = XPC_UNPACK_ARG1(args);
686	u16 ch_number = XPC_UNPACK_ARG2(args);
687	struct xpc_partition *part = &xpc_partitions[partid];
688	struct xpc_channel *ch;
689	int n_needed;
690	unsigned long irq_flags;
691	int (*n_of_deliverable_payloads) (struct xpc_channel *) =
692		xpc_arch_ops.n_of_deliverable_payloads;
693
694	dev_dbg(xpc_chan, "kthread starting, partid=%d, channel=%d\n",
695		partid, ch_number);
696
697	ch = &part->channels[ch_number];
698
699	if (!(ch->flags & XPC_C_DISCONNECTING)) {
700
701		/* let registerer know that connection has been established */
702
703		spin_lock_irqsave(&ch->lock, irq_flags);
704		if (!(ch->flags & XPC_C_CONNECTEDCALLOUT)) {
705			ch->flags |= XPC_C_CONNECTEDCALLOUT;
706			spin_unlock_irqrestore(&ch->lock, irq_flags);
707
708			xpc_connected_callout(ch);
709
710			spin_lock_irqsave(&ch->lock, irq_flags);
711			ch->flags |= XPC_C_CONNECTEDCALLOUT_MADE;
712			spin_unlock_irqrestore(&ch->lock, irq_flags);
713
714			/*
715			 * It is possible that while the callout was being
716			 * made that the remote partition sent some messages.
717			 * If that is the case, we may need to activate
718			 * additional kthreads to help deliver them. We only
719			 * need one less than total #of messages to deliver.
720			 */
721			n_needed = n_of_deliverable_payloads(ch) - 1;
722			if (n_needed > 0 && !(ch->flags & XPC_C_DISCONNECTING))
723				xpc_activate_kthreads(ch, n_needed);
724
725		} else {
726			spin_unlock_irqrestore(&ch->lock, irq_flags);
727		}
728
729		xpc_kthread_waitmsgs(part, ch);
730	}
731
732	/* let registerer know that connection is disconnecting */
733
734	spin_lock_irqsave(&ch->lock, irq_flags);
735	if ((ch->flags & XPC_C_CONNECTEDCALLOUT_MADE) &&
736	    !(ch->flags & XPC_C_DISCONNECTINGCALLOUT)) {
737		ch->flags |= XPC_C_DISCONNECTINGCALLOUT;
738		spin_unlock_irqrestore(&ch->lock, irq_flags);
739
740		xpc_disconnect_callout(ch, xpDisconnecting);
741
742		spin_lock_irqsave(&ch->lock, irq_flags);
743		ch->flags |= XPC_C_DISCONNECTINGCALLOUT_MADE;
744	}
745	spin_unlock_irqrestore(&ch->lock, irq_flags);
746
747	if (atomic_dec_return(&ch->kthreads_assigned) == 0 &&
748	    atomic_dec_return(&part->nchannels_engaged) == 0) {
749		xpc_arch_ops.indicate_partition_disengaged(part);
750	}
751
752	xpc_msgqueue_deref(ch);
753
754	dev_dbg(xpc_chan, "kthread exiting, partid=%d, channel=%d\n",
755		partid, ch_number);
756
757	xpc_part_deref(part);
758	return 0;
759}
760
761/*
762 * For each partition that XPC has established communications with, there is
763 * a minimum of one kernel thread assigned to perform any operation that
764 * may potentially sleep or block (basically the callouts to the asynchronous
765 * functions registered via xpc_connect()).
766 *
767 * Additional kthreads are created and destroyed by XPC as the workload
768 * demands.
769 *
770 * A kthread is assigned to one of the active channels that exists for a given
771 * partition.
772 */
773void
774xpc_create_kthreads(struct xpc_channel *ch, int needed,
775		    int ignore_disconnecting)
776{
777	unsigned long irq_flags;
778	u64 args = XPC_PACK_ARGS(ch->partid, ch->number);
779	struct xpc_partition *part = &xpc_partitions[ch->partid];
780	struct task_struct *kthread;
781	void (*indicate_partition_disengaged) (struct xpc_partition *) =
782		xpc_arch_ops.indicate_partition_disengaged;
783
784	while (needed-- > 0) {
785
786		/*
787		 * The following is done on behalf of the newly created
788		 * kthread. That kthread is responsible for doing the
789		 * counterpart to the following before it exits.
790		 */
791		if (ignore_disconnecting) {
792			if (!atomic_inc_not_zero(&ch->kthreads_assigned)) {
793				/* kthreads assigned had gone to zero */
794				BUG_ON(!(ch->flags &
795					 XPC_C_DISCONNECTINGCALLOUT_MADE));
796				break;
797			}
798
799		} else if (ch->flags & XPC_C_DISCONNECTING) {
800			break;
801
802		} else if (atomic_inc_return(&ch->kthreads_assigned) == 1 &&
803			   atomic_inc_return(&part->nchannels_engaged) == 1) {
804			xpc_arch_ops.indicate_partition_engaged(part);
805		}
806		(void)xpc_part_ref(part);
807		xpc_msgqueue_ref(ch);
808
809		kthread = kthread_run(xpc_kthread_start, (void *)args,
810				      "xpc%02dc%d", ch->partid, ch->number);
811		if (IS_ERR(kthread)) {
812			/* the fork failed */
813
814			/*
815			 * NOTE: if (ignore_disconnecting &&
816			 * !(ch->flags & XPC_C_DISCONNECTINGCALLOUT)) is true,
817			 * then we'll deadlock if all other kthreads assigned
818			 * to this channel are blocked in the channel's
819			 * registerer, because the only thing that will unblock
820			 * them is the xpDisconnecting callout that this
821			 * failed kthread_run() would have made.
822			 */
823
824			if (atomic_dec_return(&ch->kthreads_assigned) == 0 &&
825			    atomic_dec_return(&part->nchannels_engaged) == 0) {
826				indicate_partition_disengaged(part);
827			}
828			xpc_msgqueue_deref(ch);
829			xpc_part_deref(part);
830
831			if (atomic_read(&ch->kthreads_assigned) <
832			    ch->kthreads_idle_limit) {
833				/*
834				 * Flag this as an error only if we have an
835				 * insufficient #of kthreads for the channel
836				 * to function.
837				 */
838				spin_lock_irqsave(&ch->lock, irq_flags);
839				XPC_DISCONNECT_CHANNEL(ch, xpLackOfResources,
840						       &irq_flags);
841				spin_unlock_irqrestore(&ch->lock, irq_flags);
842			}
843			break;
844		}
845	}
846}
847
848void
849xpc_disconnect_wait(int ch_number)
850{
851	unsigned long irq_flags;
852	short partid;
853	struct xpc_partition *part;
854	struct xpc_channel *ch;
855	int wakeup_channel_mgr;
856
857	/* now wait for all callouts to the caller's function to cease */
858	for (partid = 0; partid < xp_max_npartitions; partid++) {
859		part = &xpc_partitions[partid];
860
861		if (!xpc_part_ref(part))
862			continue;
863
864		ch = &part->channels[ch_number];
865
866		if (!(ch->flags & XPC_C_WDISCONNECT)) {
867			xpc_part_deref(part);
868			continue;
869		}
870
871		wait_for_completion(&ch->wdisconnect_wait);
872
873		spin_lock_irqsave(&ch->lock, irq_flags);
874		DBUG_ON(!(ch->flags & XPC_C_DISCONNECTED));
875		wakeup_channel_mgr = 0;
876
877		if (ch->delayed_chctl_flags) {
878			if (part->act_state != XPC_P_AS_DEACTIVATING) {
879				spin_lock(&part->chctl_lock);
880				part->chctl.flags[ch->number] |=
881				    ch->delayed_chctl_flags;
882				spin_unlock(&part->chctl_lock);
883				wakeup_channel_mgr = 1;
884			}
885			ch->delayed_chctl_flags = 0;
886		}
887
888		ch->flags &= ~XPC_C_WDISCONNECT;
889		spin_unlock_irqrestore(&ch->lock, irq_flags);
890
891		if (wakeup_channel_mgr)
892			xpc_wakeup_channel_mgr(part);
893
894		xpc_part_deref(part);
895	}
896}
897
898static int
899xpc_setup_partitions(void)
900{
901	short partid;
902	struct xpc_partition *part;
903
904	xpc_partitions = kzalloc(sizeof(struct xpc_partition) *
905				 xp_max_npartitions, GFP_KERNEL);
906	if (xpc_partitions == NULL) {
907		dev_err(xpc_part, "can't get memory for partition structure\n");
908		return -ENOMEM;
909	}
910
911	/*
912	 * The first few fields of each entry of xpc_partitions[] need to
913	 * be initialized now so that calls to xpc_connect() and
914	 * xpc_disconnect() can be made prior to the activation of any remote
915	 * partition. NOTE THAT NONE OF THE OTHER FIELDS BELONGING TO THESE
916	 * ENTRIES ARE MEANINGFUL UNTIL AFTER AN ENTRY'S CORRESPONDING
917	 * PARTITION HAS BEEN ACTIVATED.
918	 */
919	for (partid = 0; partid < xp_max_npartitions; partid++) {
920		part = &xpc_partitions[partid];
921
922		DBUG_ON((u64)part != L1_CACHE_ALIGN((u64)part));
923
924		part->activate_IRQ_rcvd = 0;
925		spin_lock_init(&part->act_lock);
926		part->act_state = XPC_P_AS_INACTIVE;
927		XPC_SET_REASON(part, 0, 0);
928
929		init_timer(&part->disengage_timer);
930		part->disengage_timer.function =
931		    xpc_timeout_partition_disengage;
932		part->disengage_timer.data = (unsigned long)part;
933
934		part->setup_state = XPC_P_SS_UNSET;
935		init_waitqueue_head(&part->teardown_wq);
936		atomic_set(&part->references, 0);
937	}
938
939	return xpc_arch_ops.setup_partitions();
940}
941
942static void
943xpc_teardown_partitions(void)
944{
945	xpc_arch_ops.teardown_partitions();
946	kfree(xpc_partitions);
947}
948
949static void
950xpc_do_exit(enum xp_retval reason)
951{
952	short partid;
953	int active_part_count, printed_waiting_msg = 0;
954	struct xpc_partition *part;
955	unsigned long printmsg_time, disengage_timeout = 0;
956
957	/* a 'rmmod XPC' and a 'reboot' cannot both end up here together */
958	DBUG_ON(xpc_exiting == 1);
959
960	/*
961	 * Let the heartbeat checker thread and the discovery thread
962	 * (if one is running) know that they should exit. Also wake up
963	 * the heartbeat checker thread in case it's sleeping.
964	 */
965	xpc_exiting = 1;
966	wake_up_interruptible(&xpc_activate_IRQ_wq);
967
968	/* wait for the discovery thread to exit */
969	wait_for_completion(&xpc_discovery_exited);
970
971	/* wait for the heartbeat checker thread to exit */
972	wait_for_completion(&xpc_hb_checker_exited);
973
974	/* sleep for a 1/3 of a second or so */
975	(void)msleep_interruptible(300);
976
977	/* wait for all partitions to become inactive */
978
979	printmsg_time = jiffies + (XPC_DEACTIVATE_PRINTMSG_INTERVAL * HZ);
980	xpc_disengage_timedout = 0;
981
982	do {
983		active_part_count = 0;
984
985		for (partid = 0; partid < xp_max_npartitions; partid++) {
986			part = &xpc_partitions[partid];
987
988			if (xpc_partition_disengaged(part) &&
989			    part->act_state == XPC_P_AS_INACTIVE) {
990				continue;
991			}
992
993			active_part_count++;
994
995			XPC_DEACTIVATE_PARTITION(part, reason);
996
997			if (part->disengage_timeout > disengage_timeout)
998				disengage_timeout = part->disengage_timeout;
999		}
1000
1001		if (xpc_arch_ops.any_partition_engaged()) {
1002			if (time_is_before_jiffies(printmsg_time)) {
1003				dev_info(xpc_part, "waiting for remote "
1004					 "partitions to deactivate, timeout in "
1005					 "%ld seconds\n", (disengage_timeout -
1006					 jiffies) / HZ);
1007				printmsg_time = jiffies +
1008				    (XPC_DEACTIVATE_PRINTMSG_INTERVAL * HZ);
1009				printed_waiting_msg = 1;
1010			}
1011
1012		} else if (active_part_count > 0) {
1013			if (printed_waiting_msg) {
1014				dev_info(xpc_part, "waiting for local partition"
1015					 " to deactivate\n");
1016				printed_waiting_msg = 0;
1017			}
1018
1019		} else {
1020			if (!xpc_disengage_timedout) {
1021				dev_info(xpc_part, "all partitions have "
1022					 "deactivated\n");
1023			}
1024			break;
1025		}
1026
1027		/* sleep for a 1/3 of a second or so */
1028		(void)msleep_interruptible(300);
1029
1030	} while (1);
1031
1032	DBUG_ON(xpc_arch_ops.any_partition_engaged());
1033
1034	xpc_teardown_rsvd_page();
1035
1036	if (reason == xpUnloading) {
1037		(void)unregister_die_notifier(&xpc_die_notifier);
1038		(void)unregister_reboot_notifier(&xpc_reboot_notifier);
1039	}
1040
1041	/* clear the interface to XPC's functions */
1042	xpc_clear_interface();
1043
1044	if (xpc_sysctl)
1045		unregister_sysctl_table(xpc_sysctl);
1046
1047	xpc_teardown_partitions();
1048
1049	if (is_shub())
1050		xpc_exit_sn2();
1051	else if (is_uv())
1052		xpc_exit_uv();
1053}
1054
1055/*
1056 * This function is called when the system is being rebooted.
1057 */
1058static int
1059xpc_system_reboot(struct notifier_block *nb, unsigned long event, void *unused)
1060{
1061	enum xp_retval reason;
1062
1063	switch (event) {
1064	case SYS_RESTART:
1065		reason = xpSystemReboot;
1066		break;
1067	case SYS_HALT:
1068		reason = xpSystemHalt;
1069		break;
1070	case SYS_POWER_OFF:
1071		reason = xpSystemPoweroff;
1072		break;
1073	default:
1074		reason = xpSystemGoingDown;
1075	}
1076
1077	xpc_do_exit(reason);
1078	return NOTIFY_DONE;
1079}
1080
1081/*
1082 * Notify other partitions to deactivate from us by first disengaging from all
1083 * references to our memory.
1084 */
1085static void
1086xpc_die_deactivate(void)
1087{
1088	struct xpc_partition *part;
1089	short partid;
1090	int any_engaged;
1091	long keep_waiting;
1092	long wait_to_print;
1093
1094	/* keep xpc_hb_checker thread from doing anything (just in case) */
1095	xpc_exiting = 1;
1096
1097	xpc_arch_ops.disallow_all_hbs();   /*indicate we're deactivated */
1098
1099	for (partid = 0; partid < xp_max_npartitions; partid++) {
1100		part = &xpc_partitions[partid];
1101
1102		if (xpc_arch_ops.partition_engaged(partid) ||
1103		    part->act_state != XPC_P_AS_INACTIVE) {
1104			xpc_arch_ops.request_partition_deactivation(part);
1105			xpc_arch_ops.indicate_partition_disengaged(part);
1106		}
1107	}
1108
1109	/*
1110	 * Though we requested that all other partitions deactivate from us,
1111	 * we only wait until they've all disengaged or we've reached the
1112	 * defined timelimit.
1113	 *
1114	 * Given that one iteration through the following while-loop takes
1115	 * approximately 200 microseconds, calculate the #of loops to take
1116	 * before bailing and the #of loops before printing a waiting message.
1117	 */
1118	keep_waiting = xpc_disengage_timelimit * 1000 * 5;
1119	wait_to_print = XPC_DEACTIVATE_PRINTMSG_INTERVAL * 1000 * 5;
1120
1121	while (1) {
1122		any_engaged = xpc_arch_ops.any_partition_engaged();
1123		if (!any_engaged) {
1124			dev_info(xpc_part, "all partitions have deactivated\n");
1125			break;
1126		}
1127
1128		if (!keep_waiting--) {
1129			for (partid = 0; partid < xp_max_npartitions;
1130			     partid++) {
1131				if (xpc_arch_ops.partition_engaged(partid)) {
1132					dev_info(xpc_part, "deactivate from "
1133						 "remote partition %d timed "
1134						 "out\n", partid);
1135				}
1136			}
1137			break;
1138		}
1139
1140		if (!wait_to_print--) {
1141			dev_info(xpc_part, "waiting for remote partitions to "
1142				 "deactivate, timeout in %ld seconds\n",
1143				 keep_waiting / (1000 * 5));
1144			wait_to_print = XPC_DEACTIVATE_PRINTMSG_INTERVAL *
1145			    1000 * 5;
1146		}
1147
1148		udelay(200);
1149	}
1150}
1151
1152/*
1153 * This function is called when the system is being restarted or halted due
1154 * to some sort of system failure. If this is the case we need to notify the
1155 * other partitions to disengage from all references to our memory.
1156 * This function can also be called when our heartbeater could be offlined
1157 * for a time. In this case we need to notify other partitions to not worry
1158 * about the lack of a heartbeat.
1159 */
1160static int
1161xpc_system_die(struct notifier_block *nb, unsigned long event, void *unused)
1162{
1163#ifdef CONFIG_IA64		/* !!! temporary kludge */
1164	switch (event) {
1165	case DIE_MACHINE_RESTART:
1166	case DIE_MACHINE_HALT:
1167		xpc_die_deactivate();
1168		break;
1169
1170	case DIE_KDEBUG_ENTER:
1171		/* Should lack of heartbeat be ignored by other partitions? */
1172		if (!xpc_kdebug_ignore)
1173			break;
1174
1175		/* fall through */
1176	case DIE_MCA_MONARCH_ENTER:
1177	case DIE_INIT_MONARCH_ENTER:
1178		xpc_arch_ops.offline_heartbeat();
1179		break;
1180
1181	case DIE_KDEBUG_LEAVE:
1182		/* Is lack of heartbeat being ignored by other partitions? */
1183		if (!xpc_kdebug_ignore)
1184			break;
1185
1186		/* fall through */
1187	case DIE_MCA_MONARCH_LEAVE:
1188	case DIE_INIT_MONARCH_LEAVE:
1189		xpc_arch_ops.online_heartbeat();
1190		break;
1191	}
1192#else
1193	xpc_die_deactivate();
1194#endif
1195
1196	return NOTIFY_DONE;
1197}
1198
1199int __init
1200xpc_init(void)
1201{
1202	int ret;
1203	struct task_struct *kthread;
1204
1205	dev_set_name(xpc_part, "part");
1206	dev_set_name(xpc_chan, "chan");
1207
1208	if (is_shub()) {
1209		/*
1210		 * The ia64-sn2 architecture supports at most 64 partitions.
1211		 * And the inability to unregister remote amos restricts us
1212		 * further to only support exactly 64 partitions on this
1213		 * architecture, no less.
1214		 */
1215		if (xp_max_npartitions != 64) {
1216			dev_err(xpc_part, "max #of partitions not set to 64\n");
1217			ret = -EINVAL;
1218		} else {
1219			ret = xpc_init_sn2();
1220		}
1221
1222	} else if (is_uv()) {
1223		ret = xpc_init_uv();
1224
1225	} else {
1226		ret = -ENODEV;
1227	}
1228
1229	if (ret != 0)
1230		return ret;
1231
1232	ret = xpc_setup_partitions();
1233	if (ret != 0) {
1234		dev_err(xpc_part, "can't get memory for partition structure\n");
1235		goto out_1;
1236	}
1237
1238	xpc_sysctl = register_sysctl_table(xpc_sys_dir);
1239
1240	/*
1241	 * Fill the partition reserved page with the information needed by
1242	 * other partitions to discover we are alive and establish initial
1243	 * communications.
1244	 */
1245	ret = xpc_setup_rsvd_page();
1246	if (ret != 0) {
1247		dev_err(xpc_part, "can't setup our reserved page\n");
1248		goto out_2;
1249	}
1250
1251	/* add ourselves to the reboot_notifier_list */
1252	ret = register_reboot_notifier(&xpc_reboot_notifier);
1253	if (ret != 0)
1254		dev_warn(xpc_part, "can't register reboot notifier\n");
1255
1256	/* add ourselves to the die_notifier list */
1257	ret = register_die_notifier(&xpc_die_notifier);
1258	if (ret != 0)
1259		dev_warn(xpc_part, "can't register die notifier\n");
1260
1261	/*
1262	 * The real work-horse behind xpc.  This processes incoming
1263	 * interrupts and monitors remote heartbeats.
1264	 */
1265	kthread = kthread_run(xpc_hb_checker, NULL, XPC_HB_CHECK_THREAD_NAME);
1266	if (IS_ERR(kthread)) {
1267		dev_err(xpc_part, "failed while forking hb check thread\n");
1268		ret = -EBUSY;
1269		goto out_3;
1270	}
1271
1272	/*
1273	 * Startup a thread that will attempt to discover other partitions to
1274	 * activate based on info provided by SAL. This new thread is short
1275	 * lived and will exit once discovery is complete.
1276	 */
1277	kthread = kthread_run(xpc_initiate_discovery, NULL,
1278			      XPC_DISCOVERY_THREAD_NAME);
1279	if (IS_ERR(kthread)) {
1280		dev_err(xpc_part, "failed while forking discovery thread\n");
1281
1282		/* mark this new thread as a non-starter */
1283		complete(&xpc_discovery_exited);
1284
1285		xpc_do_exit(xpUnloading);
1286		return -EBUSY;
1287	}
1288
1289	/* set the interface to point at XPC's functions */
1290	xpc_set_interface(xpc_initiate_connect, xpc_initiate_disconnect,
1291			  xpc_initiate_send, xpc_initiate_send_notify,
1292			  xpc_initiate_received, xpc_initiate_partid_to_nasids);
1293
1294	return 0;
1295
1296	/* initialization was not successful */
1297out_3:
1298	xpc_teardown_rsvd_page();
1299
1300	(void)unregister_die_notifier(&xpc_die_notifier);
1301	(void)unregister_reboot_notifier(&xpc_reboot_notifier);
1302out_2:
1303	if (xpc_sysctl)
1304		unregister_sysctl_table(xpc_sysctl);
1305
1306	xpc_teardown_partitions();
1307out_1:
1308	if (is_shub())
1309		xpc_exit_sn2();
1310	else if (is_uv())
1311		xpc_exit_uv();
1312	return ret;
1313}
1314
1315module_init(xpc_init);
1316
1317void __exit
1318xpc_exit(void)
1319{
1320	xpc_do_exit(xpUnloading);
1321}
1322
1323module_exit(xpc_exit);
1324
1325MODULE_AUTHOR("Silicon Graphics, Inc.");
1326MODULE_DESCRIPTION("Cross Partition Communication (XPC) support");
1327MODULE_LICENSE("GPL");
1328
1329module_param(xpc_hb_interval, int, 0);
1330MODULE_PARM_DESC(xpc_hb_interval, "Number of seconds between "
1331		 "heartbeat increments.");
1332
1333module_param(xpc_hb_check_interval, int, 0);
1334MODULE_PARM_DESC(xpc_hb_check_interval, "Number of seconds between "
1335		 "heartbeat checks.");
1336
1337module_param(xpc_disengage_timelimit, int, 0);
1338MODULE_PARM_DESC(xpc_disengage_timelimit, "Number of seconds to wait "
1339		 "for disengage to complete.");
1340
1341module_param(xpc_kdebug_ignore, int, 0);
1342MODULE_PARM_DESC(xpc_kdebug_ignore, "Should lack of heartbeat be ignored by "
1343		 "other partitions when dropping into kdebug.");
1344