mmc_spi.c revision e0626e3844e8f430fc1a4417f523a00797df7ca6
1/*
2 * mmc_spi.c - Access SD/MMC cards through SPI master controllers
3 *
4 * (C) Copyright 2005, Intec Automation,
5 *		Mike Lavender (mike@steroidmicros)
6 * (C) Copyright 2006-2007, David Brownell
7 * (C) Copyright 2007, Axis Communications,
8 *		Hans-Peter Nilsson (hp@axis.com)
9 * (C) Copyright 2007, ATRON electronic GmbH,
10 *		Jan Nikitenko <jan.nikitenko@gmail.com>
11 *
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
21 * GNU General Public License for more details.
22 *
23 * You should have received a copy of the GNU General Public License
24 * along with this program; if not, write to the Free Software
25 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
26 */
27#include <linux/sched.h>
28#include <linux/delay.h>
29#include <linux/bio.h>
30#include <linux/dma-mapping.h>
31#include <linux/crc7.h>
32#include <linux/crc-itu-t.h>
33#include <linux/scatterlist.h>
34
35#include <linux/mmc/host.h>
36#include <linux/mmc/mmc.h>		/* for R1_SPI_* bit values */
37
38#include <linux/spi/spi.h>
39#include <linux/spi/mmc_spi.h>
40
41#include <asm/unaligned.h>
42
43
44/* NOTES:
45 *
46 * - For now, we won't try to interoperate with a real mmc/sd/sdio
47 *   controller, although some of them do have hardware support for
48 *   SPI protocol.  The main reason for such configs would be mmc-ish
49 *   cards like DataFlash, which don't support that "native" protocol.
50 *
51 *   We don't have a "DataFlash/MMC/SD/SDIO card slot" abstraction to
52 *   switch between driver stacks, and in any case if "native" mode
53 *   is available, it will be faster and hence preferable.
54 *
55 * - MMC depends on a different chipselect management policy than the
56 *   SPI interface currently supports for shared bus segments:  it needs
57 *   to issue multiple spi_message requests with the chipselect active,
58 *   using the results of one message to decide the next one to issue.
59 *
60 *   Pending updates to the programming interface, this driver expects
61 *   that it not share the bus with other drivers (precluding conflicts).
62 *
63 * - We tell the controller to keep the chipselect active from the
64 *   beginning of an mmc_host_ops.request until the end.  So beware
65 *   of SPI controller drivers that mis-handle the cs_change flag!
66 *
67 *   However, many cards seem OK with chipselect flapping up/down
68 *   during that time ... at least on unshared bus segments.
69 */
70
71
72/*
73 * Local protocol constants, internal to data block protocols.
74 */
75
76/* Response tokens used to ack each block written: */
77#define SPI_MMC_RESPONSE_CODE(x)	((x) & 0x1f)
78#define SPI_RESPONSE_ACCEPTED		((2 << 1)|1)
79#define SPI_RESPONSE_CRC_ERR		((5 << 1)|1)
80#define SPI_RESPONSE_WRITE_ERR		((6 << 1)|1)
81
82/* Read and write blocks start with these tokens and end with crc;
83 * on error, read tokens act like a subset of R2_SPI_* values.
84 */
85#define SPI_TOKEN_SINGLE	0xfe	/* single block r/w, multiblock read */
86#define SPI_TOKEN_MULTI_WRITE	0xfc	/* multiblock write */
87#define SPI_TOKEN_STOP_TRAN	0xfd	/* terminate multiblock write */
88
89#define MMC_SPI_BLOCKSIZE	512
90
91
92/* These fixed timeouts come from the latest SD specs, which say to ignore
93 * the CSD values.  The R1B value is for card erase (e.g. the "I forgot the
94 * card's password" scenario); it's mostly applied to STOP_TRANSMISSION after
95 * reads which takes nowhere near that long.  Older cards may be able to use
96 * shorter timeouts ... but why bother?
97 */
98#define r1b_timeout		(HZ * 3)
99
100/* One of the critical speed parameters is the amount of data which may
101 * be transfered in one command. If this value is too low, the SD card
102 * controller has to do multiple partial block writes (argggh!). With
103 * today (2008) SD cards there is little speed gain if we transfer more
104 * than 64 KBytes at a time. So use this value until there is any indication
105 * that we should do more here.
106 */
107#define MMC_SPI_BLOCKSATONCE	128
108
109/****************************************************************************/
110
111/*
112 * Local Data Structures
113 */
114
115/* "scratch" is per-{command,block} data exchanged with the card */
116struct scratch {
117	u8			status[29];
118	u8			data_token;
119	__be16			crc_val;
120};
121
122struct mmc_spi_host {
123	struct mmc_host		*mmc;
124	struct spi_device	*spi;
125
126	unsigned char		power_mode;
127	u16			powerup_msecs;
128
129	struct mmc_spi_platform_data	*pdata;
130
131	/* for bulk data transfers */
132	struct spi_transfer	token, t, crc, early_status;
133	struct spi_message	m;
134
135	/* for status readback */
136	struct spi_transfer	status;
137	struct spi_message	readback;
138
139	/* underlying DMA-aware controller, or null */
140	struct device		*dma_dev;
141
142	/* buffer used for commands and for message "overhead" */
143	struct scratch		*data;
144	dma_addr_t		data_dma;
145
146	/* Specs say to write ones most of the time, even when the card
147	 * has no need to read its input data; and many cards won't care.
148	 * This is our source of those ones.
149	 */
150	void			*ones;
151	dma_addr_t		ones_dma;
152};
153
154
155/****************************************************************************/
156
157/*
158 * MMC-over-SPI protocol glue, used by the MMC stack interface
159 */
160
161static inline int mmc_cs_off(struct mmc_spi_host *host)
162{
163	/* chipselect will always be inactive after setup() */
164	return spi_setup(host->spi);
165}
166
167static int
168mmc_spi_readbytes(struct mmc_spi_host *host, unsigned len)
169{
170	int status;
171
172	if (len > sizeof(*host->data)) {
173		WARN_ON(1);
174		return -EIO;
175	}
176
177	host->status.len = len;
178
179	if (host->dma_dev)
180		dma_sync_single_for_device(host->dma_dev,
181				host->data_dma, sizeof(*host->data),
182				DMA_FROM_DEVICE);
183
184	status = spi_sync(host->spi, &host->readback);
185
186	if (host->dma_dev)
187		dma_sync_single_for_cpu(host->dma_dev,
188				host->data_dma, sizeof(*host->data),
189				DMA_FROM_DEVICE);
190
191	return status;
192}
193
194static int mmc_spi_skip(struct mmc_spi_host *host, unsigned long timeout,
195			unsigned n, u8 byte)
196{
197	u8		*cp = host->data->status;
198	unsigned long start = jiffies;
199
200	while (1) {
201		int		status;
202		unsigned	i;
203
204		status = mmc_spi_readbytes(host, n);
205		if (status < 0)
206			return status;
207
208		for (i = 0; i < n; i++) {
209			if (cp[i] != byte)
210				return cp[i];
211		}
212
213		if (time_is_before_jiffies(start + timeout))
214			break;
215
216		/* If we need long timeouts, we may release the CPU.
217		 * We use jiffies here because we want to have a relation
218		 * between elapsed time and the blocking of the scheduler.
219		 */
220		if (time_is_before_jiffies(start+1))
221			schedule();
222	}
223	return -ETIMEDOUT;
224}
225
226static inline int
227mmc_spi_wait_unbusy(struct mmc_spi_host *host, unsigned long timeout)
228{
229	return mmc_spi_skip(host, timeout, sizeof(host->data->status), 0);
230}
231
232static int mmc_spi_readtoken(struct mmc_spi_host *host, unsigned long timeout)
233{
234	return mmc_spi_skip(host, timeout, 1, 0xff);
235}
236
237
238/*
239 * Note that for SPI, cmd->resp[0] is not the same data as "native" protocol
240 * hosts return!  The low byte holds R1_SPI bits.  The next byte may hold
241 * R2_SPI bits ... for SEND_STATUS, or after data read errors.
242 *
243 * cmd->resp[1] holds any four-byte response, for R3 (READ_OCR) and on
244 * newer cards R7 (IF_COND).
245 */
246
247static char *maptype(struct mmc_command *cmd)
248{
249	switch (mmc_spi_resp_type(cmd)) {
250	case MMC_RSP_SPI_R1:	return "R1";
251	case MMC_RSP_SPI_R1B:	return "R1B";
252	case MMC_RSP_SPI_R2:	return "R2/R5";
253	case MMC_RSP_SPI_R3:	return "R3/R4/R7";
254	default:		return "?";
255	}
256}
257
258/* return zero, else negative errno after setting cmd->error */
259static int mmc_spi_response_get(struct mmc_spi_host *host,
260		struct mmc_command *cmd, int cs_on)
261{
262	u8	*cp = host->data->status;
263	u8	*end = cp + host->t.len;
264	int	value = 0;
265	int	bitshift;
266	u8 	leftover = 0;
267	unsigned short rotator;
268	int 	i;
269	char	tag[32];
270
271	snprintf(tag, sizeof(tag), "  ... CMD%d response SPI_%s",
272		cmd->opcode, maptype(cmd));
273
274	/* Except for data block reads, the whole response will already
275	 * be stored in the scratch buffer.  It's somewhere after the
276	 * command and the first byte we read after it.  We ignore that
277	 * first byte.  After STOP_TRANSMISSION command it may include
278	 * two data bits, but otherwise it's all ones.
279	 */
280	cp += 8;
281	while (cp < end && *cp == 0xff)
282		cp++;
283
284	/* Data block reads (R1 response types) may need more data... */
285	if (cp == end) {
286		cp = host->data->status;
287		end = cp+1;
288
289		/* Card sends N(CR) (== 1..8) bytes of all-ones then one
290		 * status byte ... and we already scanned 2 bytes.
291		 *
292		 * REVISIT block read paths use nasty byte-at-a-time I/O
293		 * so it can always DMA directly into the target buffer.
294		 * It'd probably be better to memcpy() the first chunk and
295		 * avoid extra i/o calls...
296		 *
297		 * Note we check for more than 8 bytes, because in practice,
298		 * some SD cards are slow...
299		 */
300		for (i = 2; i < 16; i++) {
301			value = mmc_spi_readbytes(host, 1);
302			if (value < 0)
303				goto done;
304			if (*cp != 0xff)
305				goto checkstatus;
306		}
307		value = -ETIMEDOUT;
308		goto done;
309	}
310
311checkstatus:
312	bitshift = 0;
313	if (*cp & 0x80)	{
314		/* Houston, we have an ugly card with a bit-shifted response */
315		rotator = *cp++ << 8;
316		/* read the next byte */
317		if (cp == end) {
318			value = mmc_spi_readbytes(host, 1);
319			if (value < 0)
320				goto done;
321			cp = host->data->status;
322			end = cp+1;
323		}
324		rotator |= *cp++;
325		while (rotator & 0x8000) {
326			bitshift++;
327			rotator <<= 1;
328		}
329		cmd->resp[0] = rotator >> 8;
330		leftover = rotator;
331	} else {
332		cmd->resp[0] = *cp++;
333	}
334	cmd->error = 0;
335
336	/* Status byte: the entire seven-bit R1 response.  */
337	if (cmd->resp[0] != 0) {
338		if ((R1_SPI_PARAMETER | R1_SPI_ADDRESS)
339				& cmd->resp[0])
340			value = -EFAULT; /* Bad address */
341		else if (R1_SPI_ILLEGAL_COMMAND & cmd->resp[0])
342			value = -ENOSYS; /* Function not implemented */
343		else if (R1_SPI_COM_CRC & cmd->resp[0])
344			value = -EILSEQ; /* Illegal byte sequence */
345		else if ((R1_SPI_ERASE_SEQ | R1_SPI_ERASE_RESET)
346				& cmd->resp[0])
347			value = -EIO;    /* I/O error */
348		/* else R1_SPI_IDLE, "it's resetting" */
349	}
350
351	switch (mmc_spi_resp_type(cmd)) {
352
353	/* SPI R1B == R1 + busy; STOP_TRANSMISSION (for multiblock reads)
354	 * and less-common stuff like various erase operations.
355	 */
356	case MMC_RSP_SPI_R1B:
357		/* maybe we read all the busy tokens already */
358		while (cp < end && *cp == 0)
359			cp++;
360		if (cp == end)
361			mmc_spi_wait_unbusy(host, r1b_timeout);
362		break;
363
364	/* SPI R2 == R1 + second status byte; SEND_STATUS
365	 * SPI R5 == R1 + data byte; IO_RW_DIRECT
366	 */
367	case MMC_RSP_SPI_R2:
368		/* read the next byte */
369		if (cp == end) {
370			value = mmc_spi_readbytes(host, 1);
371			if (value < 0)
372				goto done;
373			cp = host->data->status;
374			end = cp+1;
375		}
376		if (bitshift) {
377			rotator = leftover << 8;
378			rotator |= *cp << bitshift;
379			cmd->resp[0] |= (rotator & 0xFF00);
380		} else {
381			cmd->resp[0] |= *cp << 8;
382		}
383		break;
384
385	/* SPI R3, R4, or R7 == R1 + 4 bytes */
386	case MMC_RSP_SPI_R3:
387		rotator = leftover << 8;
388		cmd->resp[1] = 0;
389		for (i = 0; i < 4; i++) {
390			cmd->resp[1] <<= 8;
391			/* read the next byte */
392			if (cp == end) {
393				value = mmc_spi_readbytes(host, 1);
394				if (value < 0)
395					goto done;
396				cp = host->data->status;
397				end = cp+1;
398			}
399			if (bitshift) {
400				rotator |= *cp++ << bitshift;
401				cmd->resp[1] |= (rotator >> 8);
402				rotator <<= 8;
403			} else {
404				cmd->resp[1] |= *cp++;
405			}
406		}
407		break;
408
409	/* SPI R1 == just one status byte */
410	case MMC_RSP_SPI_R1:
411		break;
412
413	default:
414		dev_dbg(&host->spi->dev, "bad response type %04x\n",
415				mmc_spi_resp_type(cmd));
416		if (value >= 0)
417			value = -EINVAL;
418		goto done;
419	}
420
421	if (value < 0)
422		dev_dbg(&host->spi->dev, "%s: resp %04x %08x\n",
423			tag, cmd->resp[0], cmd->resp[1]);
424
425	/* disable chipselect on errors and some success cases */
426	if (value >= 0 && cs_on)
427		return value;
428done:
429	if (value < 0)
430		cmd->error = value;
431	mmc_cs_off(host);
432	return value;
433}
434
435/* Issue command and read its response.
436 * Returns zero on success, negative for error.
437 *
438 * On error, caller must cope with mmc core retry mechanism.  That
439 * means immediate low-level resubmit, which affects the bus lock...
440 */
441static int
442mmc_spi_command_send(struct mmc_spi_host *host,
443		struct mmc_request *mrq,
444		struct mmc_command *cmd, int cs_on)
445{
446	struct scratch		*data = host->data;
447	u8			*cp = data->status;
448	u32			arg = cmd->arg;
449	int			status;
450	struct spi_transfer	*t;
451
452	/* We can handle most commands (except block reads) in one full
453	 * duplex I/O operation before either starting the next transfer
454	 * (data block or command) or else deselecting the card.
455	 *
456	 * First, write 7 bytes:
457	 *  - an all-ones byte to ensure the card is ready
458	 *  - opcode byte (plus start and transmission bits)
459	 *  - four bytes of big-endian argument
460	 *  - crc7 (plus end bit) ... always computed, it's cheap
461	 *
462	 * We init the whole buffer to all-ones, which is what we need
463	 * to write while we're reading (later) response data.
464	 */
465	memset(cp++, 0xff, sizeof(data->status));
466
467	*cp++ = 0x40 | cmd->opcode;
468	*cp++ = (u8)(arg >> 24);
469	*cp++ = (u8)(arg >> 16);
470	*cp++ = (u8)(arg >> 8);
471	*cp++ = (u8)arg;
472	*cp++ = (crc7(0, &data->status[1], 5) << 1) | 0x01;
473
474	/* Then, read up to 13 bytes (while writing all-ones):
475	 *  - N(CR) (== 1..8) bytes of all-ones
476	 *  - status byte (for all response types)
477	 *  - the rest of the response, either:
478	 *      + nothing, for R1 or R1B responses
479	 *	+ second status byte, for R2 responses
480	 *	+ four data bytes, for R3 and R7 responses
481	 *
482	 * Finally, read some more bytes ... in the nice cases we know in
483	 * advance how many, and reading 1 more is always OK:
484	 *  - N(EC) (== 0..N) bytes of all-ones, before deselect/finish
485	 *  - N(RC) (== 1..N) bytes of all-ones, before next command
486	 *  - N(WR) (== 1..N) bytes of all-ones, before data write
487	 *
488	 * So in those cases one full duplex I/O of at most 21 bytes will
489	 * handle the whole command, leaving the card ready to receive a
490	 * data block or new command.  We do that whenever we can, shaving
491	 * CPU and IRQ costs (especially when using DMA or FIFOs).
492	 *
493	 * There are two other cases, where it's not generally practical
494	 * to rely on a single I/O:
495	 *
496	 *  - R1B responses need at least N(EC) bytes of all-zeroes.
497	 *
498	 *    In this case we can *try* to fit it into one I/O, then
499	 *    maybe read more data later.
500	 *
501	 *  - Data block reads are more troublesome, since a variable
502	 *    number of padding bytes precede the token and data.
503	 *      + N(CX) (== 0..8) bytes of all-ones, before CSD or CID
504	 *      + N(AC) (== 1..many) bytes of all-ones
505	 *
506	 *    In this case we currently only have minimal speedups here:
507	 *    when N(CR) == 1 we can avoid I/O in response_get().
508	 */
509	if (cs_on && (mrq->data->flags & MMC_DATA_READ)) {
510		cp += 2;	/* min(N(CR)) + status */
511		/* R1 */
512	} else {
513		cp += 10;	/* max(N(CR)) + status + min(N(RC),N(WR)) */
514		if (cmd->flags & MMC_RSP_SPI_S2)	/* R2/R5 */
515			cp++;
516		else if (cmd->flags & MMC_RSP_SPI_B4)	/* R3/R4/R7 */
517			cp += 4;
518		else if (cmd->flags & MMC_RSP_BUSY)	/* R1B */
519			cp = data->status + sizeof(data->status);
520		/* else:  R1 (most commands) */
521	}
522
523	dev_dbg(&host->spi->dev, "  mmc_spi: CMD%d, resp %s\n",
524		cmd->opcode, maptype(cmd));
525
526	/* send command, leaving chipselect active */
527	spi_message_init(&host->m);
528
529	t = &host->t;
530	memset(t, 0, sizeof(*t));
531	t->tx_buf = t->rx_buf = data->status;
532	t->tx_dma = t->rx_dma = host->data_dma;
533	t->len = cp - data->status;
534	t->cs_change = 1;
535	spi_message_add_tail(t, &host->m);
536
537	if (host->dma_dev) {
538		host->m.is_dma_mapped = 1;
539		dma_sync_single_for_device(host->dma_dev,
540				host->data_dma, sizeof(*host->data),
541				DMA_BIDIRECTIONAL);
542	}
543	status = spi_sync(host->spi, &host->m);
544
545	if (host->dma_dev)
546		dma_sync_single_for_cpu(host->dma_dev,
547				host->data_dma, sizeof(*host->data),
548				DMA_BIDIRECTIONAL);
549	if (status < 0) {
550		dev_dbg(&host->spi->dev, "  ... write returned %d\n", status);
551		cmd->error = status;
552		return status;
553	}
554
555	/* after no-data commands and STOP_TRANSMISSION, chipselect off */
556	return mmc_spi_response_get(host, cmd, cs_on);
557}
558
559/* Build data message with up to four separate transfers.  For TX, we
560 * start by writing the data token.  And in most cases, we finish with
561 * a status transfer.
562 *
563 * We always provide TX data for data and CRC.  The MMC/SD protocol
564 * requires us to write ones; but Linux defaults to writing zeroes;
565 * so we explicitly initialize it to all ones on RX paths.
566 *
567 * We also handle DMA mapping, so the underlying SPI controller does
568 * not need to (re)do it for each message.
569 */
570static void
571mmc_spi_setup_data_message(
572	struct mmc_spi_host	*host,
573	int			multiple,
574	enum dma_data_direction	direction)
575{
576	struct spi_transfer	*t;
577	struct scratch		*scratch = host->data;
578	dma_addr_t		dma = host->data_dma;
579
580	spi_message_init(&host->m);
581	if (dma)
582		host->m.is_dma_mapped = 1;
583
584	/* for reads, readblock() skips 0xff bytes before finding
585	 * the token; for writes, this transfer issues that token.
586	 */
587	if (direction == DMA_TO_DEVICE) {
588		t = &host->token;
589		memset(t, 0, sizeof(*t));
590		t->len = 1;
591		if (multiple)
592			scratch->data_token = SPI_TOKEN_MULTI_WRITE;
593		else
594			scratch->data_token = SPI_TOKEN_SINGLE;
595		t->tx_buf = &scratch->data_token;
596		if (dma)
597			t->tx_dma = dma + offsetof(struct scratch, data_token);
598		spi_message_add_tail(t, &host->m);
599	}
600
601	/* Body of transfer is buffer, then CRC ...
602	 * either TX-only, or RX with TX-ones.
603	 */
604	t = &host->t;
605	memset(t, 0, sizeof(*t));
606	t->tx_buf = host->ones;
607	t->tx_dma = host->ones_dma;
608	/* length and actual buffer info are written later */
609	spi_message_add_tail(t, &host->m);
610
611	t = &host->crc;
612	memset(t, 0, sizeof(*t));
613	t->len = 2;
614	if (direction == DMA_TO_DEVICE) {
615		/* the actual CRC may get written later */
616		t->tx_buf = &scratch->crc_val;
617		if (dma)
618			t->tx_dma = dma + offsetof(struct scratch, crc_val);
619	} else {
620		t->tx_buf = host->ones;
621		t->tx_dma = host->ones_dma;
622		t->rx_buf = &scratch->crc_val;
623		if (dma)
624			t->rx_dma = dma + offsetof(struct scratch, crc_val);
625	}
626	spi_message_add_tail(t, &host->m);
627
628	/*
629	 * A single block read is followed by N(EC) [0+] all-ones bytes
630	 * before deselect ... don't bother.
631	 *
632	 * Multiblock reads are followed by N(AC) [1+] all-ones bytes before
633	 * the next block is read, or a STOP_TRANSMISSION is issued.  We'll
634	 * collect that single byte, so readblock() doesn't need to.
635	 *
636	 * For a write, the one-byte data response follows immediately, then
637	 * come zero or more busy bytes, then N(WR) [1+] all-ones bytes.
638	 * Then single block reads may deselect, and multiblock ones issue
639	 * the next token (next data block, or STOP_TRAN).  We can try to
640	 * minimize I/O ops by using a single read to collect end-of-busy.
641	 */
642	if (multiple || direction == DMA_TO_DEVICE) {
643		t = &host->early_status;
644		memset(t, 0, sizeof(*t));
645		t->len = (direction == DMA_TO_DEVICE)
646				? sizeof(scratch->status)
647				: 1;
648		t->tx_buf = host->ones;
649		t->tx_dma = host->ones_dma;
650		t->rx_buf = scratch->status;
651		if (dma)
652			t->rx_dma = dma + offsetof(struct scratch, status);
653		t->cs_change = 1;
654		spi_message_add_tail(t, &host->m);
655	}
656}
657
658/*
659 * Write one block:
660 *  - caller handled preceding N(WR) [1+] all-ones bytes
661 *  - data block
662 *	+ token
663 *	+ data bytes
664 *	+ crc16
665 *  - an all-ones byte ... card writes a data-response byte
666 *  - followed by N(EC) [0+] all-ones bytes, card writes zero/'busy'
667 *
668 * Return negative errno, else success.
669 */
670static int
671mmc_spi_writeblock(struct mmc_spi_host *host, struct spi_transfer *t,
672	unsigned long timeout)
673{
674	struct spi_device	*spi = host->spi;
675	int			status, i;
676	struct scratch		*scratch = host->data;
677	u32			pattern;
678
679	if (host->mmc->use_spi_crc)
680		scratch->crc_val = cpu_to_be16(
681				crc_itu_t(0, t->tx_buf, t->len));
682	if (host->dma_dev)
683		dma_sync_single_for_device(host->dma_dev,
684				host->data_dma, sizeof(*scratch),
685				DMA_BIDIRECTIONAL);
686
687	status = spi_sync(spi, &host->m);
688
689	if (status != 0) {
690		dev_dbg(&spi->dev, "write error (%d)\n", status);
691		return status;
692	}
693
694	if (host->dma_dev)
695		dma_sync_single_for_cpu(host->dma_dev,
696				host->data_dma, sizeof(*scratch),
697				DMA_BIDIRECTIONAL);
698
699	/*
700	 * Get the transmission data-response reply.  It must follow
701	 * immediately after the data block we transferred.  This reply
702	 * doesn't necessarily tell whether the write operation succeeded;
703	 * it just says if the transmission was ok and whether *earlier*
704	 * writes succeeded; see the standard.
705	 *
706	 * In practice, there are (even modern SDHC-)cards which are late
707	 * in sending the response, and miss the time frame by a few bits,
708	 * so we have to cope with this situation and check the response
709	 * bit-by-bit. Arggh!!!
710	 */
711	pattern  = scratch->status[0] << 24;
712	pattern |= scratch->status[1] << 16;
713	pattern |= scratch->status[2] << 8;
714	pattern |= scratch->status[3];
715
716	/* First 3 bit of pattern are undefined */
717	pattern |= 0xE0000000;
718
719	/* left-adjust to leading 0 bit */
720	while (pattern & 0x80000000)
721		pattern <<= 1;
722	/* right-adjust for pattern matching. Code is in bit 4..0 now. */
723	pattern >>= 27;
724
725	switch (pattern) {
726	case SPI_RESPONSE_ACCEPTED:
727		status = 0;
728		break;
729	case SPI_RESPONSE_CRC_ERR:
730		/* host shall then issue MMC_STOP_TRANSMISSION */
731		status = -EILSEQ;
732		break;
733	case SPI_RESPONSE_WRITE_ERR:
734		/* host shall then issue MMC_STOP_TRANSMISSION,
735		 * and should MMC_SEND_STATUS to sort it out
736		 */
737		status = -EIO;
738		break;
739	default:
740		status = -EPROTO;
741		break;
742	}
743	if (status != 0) {
744		dev_dbg(&spi->dev, "write error %02x (%d)\n",
745			scratch->status[0], status);
746		return status;
747	}
748
749	t->tx_buf += t->len;
750	if (host->dma_dev)
751		t->tx_dma += t->len;
752
753	/* Return when not busy.  If we didn't collect that status yet,
754	 * we'll need some more I/O.
755	 */
756	for (i = 4; i < sizeof(scratch->status); i++) {
757		/* card is non-busy if the most recent bit is 1 */
758		if (scratch->status[i] & 0x01)
759			return 0;
760	}
761	return mmc_spi_wait_unbusy(host, timeout);
762}
763
764/*
765 * Read one block:
766 *  - skip leading all-ones bytes ... either
767 *      + N(AC) [1..f(clock,CSD)] usually, else
768 *      + N(CX) [0..8] when reading CSD or CID
769 *  - data block
770 *	+ token ... if error token, no data or crc
771 *	+ data bytes
772 *	+ crc16
773 *
774 * After single block reads, we're done; N(EC) [0+] all-ones bytes follow
775 * before dropping chipselect.
776 *
777 * For multiblock reads, caller either reads the next block or issues a
778 * STOP_TRANSMISSION command.
779 */
780static int
781mmc_spi_readblock(struct mmc_spi_host *host, struct spi_transfer *t,
782	unsigned long timeout)
783{
784	struct spi_device	*spi = host->spi;
785	int			status;
786	struct scratch		*scratch = host->data;
787	unsigned int 		bitshift;
788	u8			leftover;
789
790	/* At least one SD card sends an all-zeroes byte when N(CX)
791	 * applies, before the all-ones bytes ... just cope with that.
792	 */
793	status = mmc_spi_readbytes(host, 1);
794	if (status < 0)
795		return status;
796	status = scratch->status[0];
797	if (status == 0xff || status == 0)
798		status = mmc_spi_readtoken(host, timeout);
799
800	if (status < 0) {
801		dev_dbg(&spi->dev, "read error %02x (%d)\n", status, status);
802		return status;
803	}
804
805	/* The token may be bit-shifted...
806	 * the first 0-bit precedes the data stream.
807	 */
808	bitshift = 7;
809	while (status & 0x80) {
810		status <<= 1;
811		bitshift--;
812	}
813	leftover = status << 1;
814
815	if (host->dma_dev) {
816		dma_sync_single_for_device(host->dma_dev,
817				host->data_dma, sizeof(*scratch),
818				DMA_BIDIRECTIONAL);
819		dma_sync_single_for_device(host->dma_dev,
820				t->rx_dma, t->len,
821				DMA_FROM_DEVICE);
822	}
823
824	status = spi_sync(spi, &host->m);
825
826	if (host->dma_dev) {
827		dma_sync_single_for_cpu(host->dma_dev,
828				host->data_dma, sizeof(*scratch),
829				DMA_BIDIRECTIONAL);
830		dma_sync_single_for_cpu(host->dma_dev,
831				t->rx_dma, t->len,
832				DMA_FROM_DEVICE);
833	}
834
835	if (bitshift) {
836		/* Walk through the data and the crc and do
837		 * all the magic to get byte-aligned data.
838		 */
839		u8 *cp = t->rx_buf;
840		unsigned int len;
841		unsigned int bitright = 8 - bitshift;
842		u8 temp;
843		for (len = t->len; len; len--) {
844			temp = *cp;
845			*cp++ = leftover | (temp >> bitshift);
846			leftover = temp << bitright;
847		}
848		cp = (u8 *) &scratch->crc_val;
849		temp = *cp;
850		*cp++ = leftover | (temp >> bitshift);
851		leftover = temp << bitright;
852		temp = *cp;
853		*cp = leftover | (temp >> bitshift);
854	}
855
856	if (host->mmc->use_spi_crc) {
857		u16 crc = crc_itu_t(0, t->rx_buf, t->len);
858
859		be16_to_cpus(&scratch->crc_val);
860		if (scratch->crc_val != crc) {
861			dev_dbg(&spi->dev, "read - crc error: crc_val=0x%04x, "
862					"computed=0x%04x len=%d\n",
863					scratch->crc_val, crc, t->len);
864			return -EILSEQ;
865		}
866	}
867
868	t->rx_buf += t->len;
869	if (host->dma_dev)
870		t->rx_dma += t->len;
871
872	return 0;
873}
874
875/*
876 * An MMC/SD data stage includes one or more blocks, optional CRCs,
877 * and inline handshaking.  That handhaking makes it unlike most
878 * other SPI protocol stacks.
879 */
880static void
881mmc_spi_data_do(struct mmc_spi_host *host, struct mmc_command *cmd,
882		struct mmc_data *data, u32 blk_size)
883{
884	struct spi_device	*spi = host->spi;
885	struct device		*dma_dev = host->dma_dev;
886	struct spi_transfer	*t;
887	enum dma_data_direction	direction;
888	struct scatterlist	*sg;
889	unsigned		n_sg;
890	int			multiple = (data->blocks > 1);
891	u32			clock_rate;
892	unsigned long		timeout;
893
894	if (data->flags & MMC_DATA_READ)
895		direction = DMA_FROM_DEVICE;
896	else
897		direction = DMA_TO_DEVICE;
898	mmc_spi_setup_data_message(host, multiple, direction);
899	t = &host->t;
900
901	if (t->speed_hz)
902		clock_rate = t->speed_hz;
903	else
904		clock_rate = spi->max_speed_hz;
905
906	timeout = data->timeout_ns +
907		  data->timeout_clks * 1000000 / clock_rate;
908	timeout = usecs_to_jiffies((unsigned int)(timeout / 1000)) + 1;
909
910	/* Handle scatterlist segments one at a time, with synch for
911	 * each 512-byte block
912	 */
913	for (sg = data->sg, n_sg = data->sg_len; n_sg; n_sg--, sg++) {
914		int			status = 0;
915		dma_addr_t		dma_addr = 0;
916		void			*kmap_addr;
917		unsigned		length = sg->length;
918		enum dma_data_direction	dir = direction;
919
920		/* set up dma mapping for controller drivers that might
921		 * use DMA ... though they may fall back to PIO
922		 */
923		if (dma_dev) {
924			/* never invalidate whole *shared* pages ... */
925			if ((sg->offset != 0 || length != PAGE_SIZE)
926					&& dir == DMA_FROM_DEVICE)
927				dir = DMA_BIDIRECTIONAL;
928
929			dma_addr = dma_map_page(dma_dev, sg_page(sg), 0,
930						PAGE_SIZE, dir);
931			if (direction == DMA_TO_DEVICE)
932				t->tx_dma = dma_addr + sg->offset;
933			else
934				t->rx_dma = dma_addr + sg->offset;
935		}
936
937		/* allow pio too; we don't allow highmem */
938		kmap_addr = kmap(sg_page(sg));
939		if (direction == DMA_TO_DEVICE)
940			t->tx_buf = kmap_addr + sg->offset;
941		else
942			t->rx_buf = kmap_addr + sg->offset;
943
944		/* transfer each block, and update request status */
945		while (length) {
946			t->len = min(length, blk_size);
947
948			dev_dbg(&host->spi->dev,
949				"    mmc_spi: %s block, %d bytes\n",
950				(direction == DMA_TO_DEVICE)
951				? "write"
952				: "read",
953				t->len);
954
955			if (direction == DMA_TO_DEVICE)
956				status = mmc_spi_writeblock(host, t, timeout);
957			else
958				status = mmc_spi_readblock(host, t, timeout);
959			if (status < 0)
960				break;
961
962			data->bytes_xfered += t->len;
963			length -= t->len;
964
965			if (!multiple)
966				break;
967		}
968
969		/* discard mappings */
970		if (direction == DMA_FROM_DEVICE)
971			flush_kernel_dcache_page(sg_page(sg));
972		kunmap(sg_page(sg));
973		if (dma_dev)
974			dma_unmap_page(dma_dev, dma_addr, PAGE_SIZE, dir);
975
976		if (status < 0) {
977			data->error = status;
978			dev_dbg(&spi->dev, "%s status %d\n",
979				(direction == DMA_TO_DEVICE)
980					? "write" : "read",
981				status);
982			break;
983		}
984	}
985
986	/* NOTE some docs describe an MMC-only SET_BLOCK_COUNT (CMD23) that
987	 * can be issued before multiblock writes.  Unlike its more widely
988	 * documented analogue for SD cards (SET_WR_BLK_ERASE_COUNT, ACMD23),
989	 * that can affect the STOP_TRAN logic.   Complete (and current)
990	 * MMC specs should sort that out before Linux starts using CMD23.
991	 */
992	if (direction == DMA_TO_DEVICE && multiple) {
993		struct scratch	*scratch = host->data;
994		int		tmp;
995		const unsigned	statlen = sizeof(scratch->status);
996
997		dev_dbg(&spi->dev, "    mmc_spi: STOP_TRAN\n");
998
999		/* Tweak the per-block message we set up earlier by morphing
1000		 * it to hold single buffer with the token followed by some
1001		 * all-ones bytes ... skip N(BR) (0..1), scan the rest for
1002		 * "not busy any longer" status, and leave chip selected.
1003		 */
1004		INIT_LIST_HEAD(&host->m.transfers);
1005		list_add(&host->early_status.transfer_list,
1006				&host->m.transfers);
1007
1008		memset(scratch->status, 0xff, statlen);
1009		scratch->status[0] = SPI_TOKEN_STOP_TRAN;
1010
1011		host->early_status.tx_buf = host->early_status.rx_buf;
1012		host->early_status.tx_dma = host->early_status.rx_dma;
1013		host->early_status.len = statlen;
1014
1015		if (host->dma_dev)
1016			dma_sync_single_for_device(host->dma_dev,
1017					host->data_dma, sizeof(*scratch),
1018					DMA_BIDIRECTIONAL);
1019
1020		tmp = spi_sync(spi, &host->m);
1021
1022		if (host->dma_dev)
1023			dma_sync_single_for_cpu(host->dma_dev,
1024					host->data_dma, sizeof(*scratch),
1025					DMA_BIDIRECTIONAL);
1026
1027		if (tmp < 0) {
1028			if (!data->error)
1029				data->error = tmp;
1030			return;
1031		}
1032
1033		/* Ideally we collected "not busy" status with one I/O,
1034		 * avoiding wasteful byte-at-a-time scanning... but more
1035		 * I/O is often needed.
1036		 */
1037		for (tmp = 2; tmp < statlen; tmp++) {
1038			if (scratch->status[tmp] != 0)
1039				return;
1040		}
1041		tmp = mmc_spi_wait_unbusy(host, timeout);
1042		if (tmp < 0 && !data->error)
1043			data->error = tmp;
1044	}
1045}
1046
1047/****************************************************************************/
1048
1049/*
1050 * MMC driver implementation -- the interface to the MMC stack
1051 */
1052
1053static void mmc_spi_request(struct mmc_host *mmc, struct mmc_request *mrq)
1054{
1055	struct mmc_spi_host	*host = mmc_priv(mmc);
1056	int			status = -EINVAL;
1057
1058#ifdef DEBUG
1059	/* MMC core and layered drivers *MUST* issue SPI-aware commands */
1060	{
1061		struct mmc_command	*cmd;
1062		int			invalid = 0;
1063
1064		cmd = mrq->cmd;
1065		if (!mmc_spi_resp_type(cmd)) {
1066			dev_dbg(&host->spi->dev, "bogus command\n");
1067			cmd->error = -EINVAL;
1068			invalid = 1;
1069		}
1070
1071		cmd = mrq->stop;
1072		if (cmd && !mmc_spi_resp_type(cmd)) {
1073			dev_dbg(&host->spi->dev, "bogus STOP command\n");
1074			cmd->error = -EINVAL;
1075			invalid = 1;
1076		}
1077
1078		if (invalid) {
1079			dump_stack();
1080			mmc_request_done(host->mmc, mrq);
1081			return;
1082		}
1083	}
1084#endif
1085
1086	/* issue command; then optionally data and stop */
1087	status = mmc_spi_command_send(host, mrq, mrq->cmd, mrq->data != NULL);
1088	if (status == 0 && mrq->data) {
1089		mmc_spi_data_do(host, mrq->cmd, mrq->data, mrq->data->blksz);
1090		if (mrq->stop)
1091			status = mmc_spi_command_send(host, mrq, mrq->stop, 0);
1092		else
1093			mmc_cs_off(host);
1094	}
1095
1096	mmc_request_done(host->mmc, mrq);
1097}
1098
1099/* See Section 6.4.1, in SD "Simplified Physical Layer Specification 2.0"
1100 *
1101 * NOTE that here we can't know that the card has just been powered up;
1102 * not all MMC/SD sockets support power switching.
1103 *
1104 * FIXME when the card is still in SPI mode, e.g. from a previous kernel,
1105 * this doesn't seem to do the right thing at all...
1106 */
1107static void mmc_spi_initsequence(struct mmc_spi_host *host)
1108{
1109	/* Try to be very sure any previous command has completed;
1110	 * wait till not-busy, skip debris from any old commands.
1111	 */
1112	mmc_spi_wait_unbusy(host, r1b_timeout);
1113	mmc_spi_readbytes(host, 10);
1114
1115	/*
1116	 * Do a burst with chipselect active-high.  We need to do this to
1117	 * meet the requirement of 74 clock cycles with both chipselect
1118	 * and CMD (MOSI) high before CMD0 ... after the card has been
1119	 * powered up to Vdd(min), and so is ready to take commands.
1120	 *
1121	 * Some cards are particularly needy of this (e.g. Viking "SD256")
1122	 * while most others don't seem to care.
1123	 *
1124	 * Note that this is one of the places MMC/SD plays games with the
1125	 * SPI protocol.  Another is that when chipselect is released while
1126	 * the card returns BUSY status, the clock must issue several cycles
1127	 * with chipselect high before the card will stop driving its output.
1128	 */
1129	host->spi->mode |= SPI_CS_HIGH;
1130	if (spi_setup(host->spi) != 0) {
1131		/* Just warn; most cards work without it. */
1132		dev_warn(&host->spi->dev,
1133				"can't change chip-select polarity\n");
1134		host->spi->mode &= ~SPI_CS_HIGH;
1135	} else {
1136		mmc_spi_readbytes(host, 18);
1137
1138		host->spi->mode &= ~SPI_CS_HIGH;
1139		if (spi_setup(host->spi) != 0) {
1140			/* Wot, we can't get the same setup we had before? */
1141			dev_err(&host->spi->dev,
1142					"can't restore chip-select polarity\n");
1143		}
1144	}
1145}
1146
1147static char *mmc_powerstring(u8 power_mode)
1148{
1149	switch (power_mode) {
1150	case MMC_POWER_OFF: return "off";
1151	case MMC_POWER_UP:  return "up";
1152	case MMC_POWER_ON:  return "on";
1153	}
1154	return "?";
1155}
1156
1157static void mmc_spi_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1158{
1159	struct mmc_spi_host *host = mmc_priv(mmc);
1160
1161	if (host->power_mode != ios->power_mode) {
1162		int		canpower;
1163
1164		canpower = host->pdata && host->pdata->setpower;
1165
1166		dev_dbg(&host->spi->dev, "mmc_spi: power %s (%d)%s\n",
1167				mmc_powerstring(ios->power_mode),
1168				ios->vdd,
1169				canpower ? ", can switch" : "");
1170
1171		/* switch power on/off if possible, accounting for
1172		 * max 250msec powerup time if needed.
1173		 */
1174		if (canpower) {
1175			switch (ios->power_mode) {
1176			case MMC_POWER_OFF:
1177			case MMC_POWER_UP:
1178				host->pdata->setpower(&host->spi->dev,
1179						ios->vdd);
1180				if (ios->power_mode == MMC_POWER_UP)
1181					msleep(host->powerup_msecs);
1182			}
1183		}
1184
1185		/* See 6.4.1 in the simplified SD card physical spec 2.0 */
1186		if (ios->power_mode == MMC_POWER_ON)
1187			mmc_spi_initsequence(host);
1188
1189		/* If powering down, ground all card inputs to avoid power
1190		 * delivery from data lines!  On a shared SPI bus, this
1191		 * will probably be temporary; 6.4.2 of the simplified SD
1192		 * spec says this must last at least 1msec.
1193		 *
1194		 *   - Clock low means CPOL 0, e.g. mode 0
1195		 *   - MOSI low comes from writing zero
1196		 *   - Chipselect is usually active low...
1197		 */
1198		if (canpower && ios->power_mode == MMC_POWER_OFF) {
1199			int mres;
1200			u8 nullbyte = 0;
1201
1202			host->spi->mode &= ~(SPI_CPOL|SPI_CPHA);
1203			mres = spi_setup(host->spi);
1204			if (mres < 0)
1205				dev_dbg(&host->spi->dev,
1206					"switch to SPI mode 0 failed\n");
1207
1208			if (spi_write(host->spi, &nullbyte, 1) < 0)
1209				dev_dbg(&host->spi->dev,
1210					"put spi signals to low failed\n");
1211
1212			/*
1213			 * Now clock should be low due to spi mode 0;
1214			 * MOSI should be low because of written 0x00;
1215			 * chipselect should be low (it is active low)
1216			 * power supply is off, so now MMC is off too!
1217			 *
1218			 * FIXME no, chipselect can be high since the
1219			 * device is inactive and SPI_CS_HIGH is clear...
1220			 */
1221			msleep(10);
1222			if (mres == 0) {
1223				host->spi->mode |= (SPI_CPOL|SPI_CPHA);
1224				mres = spi_setup(host->spi);
1225				if (mres < 0)
1226					dev_dbg(&host->spi->dev,
1227						"switch back to SPI mode 3"
1228						" failed\n");
1229			}
1230		}
1231
1232		host->power_mode = ios->power_mode;
1233	}
1234
1235	if (host->spi->max_speed_hz != ios->clock && ios->clock != 0) {
1236		int		status;
1237
1238		host->spi->max_speed_hz = ios->clock;
1239		status = spi_setup(host->spi);
1240		dev_dbg(&host->spi->dev,
1241			"mmc_spi:  clock to %d Hz, %d\n",
1242			host->spi->max_speed_hz, status);
1243	}
1244}
1245
1246static int mmc_spi_get_ro(struct mmc_host *mmc)
1247{
1248	struct mmc_spi_host *host = mmc_priv(mmc);
1249
1250	if (host->pdata && host->pdata->get_ro)
1251		return !!host->pdata->get_ro(mmc->parent);
1252	/*
1253	 * Board doesn't support read only detection; let the mmc core
1254	 * decide what to do.
1255	 */
1256	return -ENOSYS;
1257}
1258
1259static int mmc_spi_get_cd(struct mmc_host *mmc)
1260{
1261	struct mmc_spi_host *host = mmc_priv(mmc);
1262
1263	if (host->pdata && host->pdata->get_cd)
1264		return !!host->pdata->get_cd(mmc->parent);
1265	return -ENOSYS;
1266}
1267
1268static const struct mmc_host_ops mmc_spi_ops = {
1269	.request	= mmc_spi_request,
1270	.set_ios	= mmc_spi_set_ios,
1271	.get_ro		= mmc_spi_get_ro,
1272	.get_cd		= mmc_spi_get_cd,
1273};
1274
1275
1276/****************************************************************************/
1277
1278/*
1279 * SPI driver implementation
1280 */
1281
1282static irqreturn_t
1283mmc_spi_detect_irq(int irq, void *mmc)
1284{
1285	struct mmc_spi_host *host = mmc_priv(mmc);
1286	u16 delay_msec = max(host->pdata->detect_delay, (u16)100);
1287
1288	mmc_detect_change(mmc, msecs_to_jiffies(delay_msec));
1289	return IRQ_HANDLED;
1290}
1291
1292struct count_children {
1293	unsigned	n;
1294	struct bus_type	*bus;
1295};
1296
1297static int maybe_count_child(struct device *dev, void *c)
1298{
1299	struct count_children *ccp = c;
1300
1301	if (dev->bus == ccp->bus) {
1302		if (ccp->n)
1303			return -EBUSY;
1304		ccp->n++;
1305	}
1306	return 0;
1307}
1308
1309static int mmc_spi_probe(struct spi_device *spi)
1310{
1311	void			*ones;
1312	struct mmc_host		*mmc;
1313	struct mmc_spi_host	*host;
1314	int			status;
1315
1316	/* We rely on full duplex transfers, mostly to reduce
1317	 * per-transfer overheads (by making fewer transfers).
1318	 */
1319	if (spi->master->flags & SPI_MASTER_HALF_DUPLEX)
1320		return -EINVAL;
1321
1322	/* MMC and SD specs only seem to care that sampling is on the
1323	 * rising edge ... meaning SPI modes 0 or 3.  So either SPI mode
1324	 * should be legit.  We'll use mode 0 since the steady state is 0,
1325	 * which is appropriate for hotplugging, unless the platform data
1326	 * specify mode 3 (if hardware is not compatible to mode 0).
1327	 */
1328	if (spi->mode != SPI_MODE_3)
1329		spi->mode = SPI_MODE_0;
1330	spi->bits_per_word = 8;
1331
1332	status = spi_setup(spi);
1333	if (status < 0) {
1334		dev_dbg(&spi->dev, "needs SPI mode %02x, %d KHz; %d\n",
1335				spi->mode, spi->max_speed_hz / 1000,
1336				status);
1337		return status;
1338	}
1339
1340	/* We can use the bus safely iff nobody else will interfere with us.
1341	 * Most commands consist of one SPI message to issue a command, then
1342	 * several more to collect its response, then possibly more for data
1343	 * transfer.  Clocking access to other devices during that period will
1344	 * corrupt the command execution.
1345	 *
1346	 * Until we have software primitives which guarantee non-interference,
1347	 * we'll aim for a hardware-level guarantee.
1348	 *
1349	 * REVISIT we can't guarantee another device won't be added later...
1350	 */
1351	if (spi->master->num_chipselect > 1) {
1352		struct count_children cc;
1353
1354		cc.n = 0;
1355		cc.bus = spi->dev.bus;
1356		status = device_for_each_child(spi->dev.parent, &cc,
1357				maybe_count_child);
1358		if (status < 0) {
1359			dev_err(&spi->dev, "can't share SPI bus\n");
1360			return status;
1361		}
1362
1363		dev_warn(&spi->dev, "ASSUMING SPI bus stays unshared!\n");
1364	}
1365
1366	/* We need a supply of ones to transmit.  This is the only time
1367	 * the CPU touches these, so cache coherency isn't a concern.
1368	 *
1369	 * NOTE if many systems use more than one MMC-over-SPI connector
1370	 * it'd save some memory to share this.  That's evidently rare.
1371	 */
1372	status = -ENOMEM;
1373	ones = kmalloc(MMC_SPI_BLOCKSIZE, GFP_KERNEL);
1374	if (!ones)
1375		goto nomem;
1376	memset(ones, 0xff, MMC_SPI_BLOCKSIZE);
1377
1378	mmc = mmc_alloc_host(sizeof(*host), &spi->dev);
1379	if (!mmc)
1380		goto nomem;
1381
1382	mmc->ops = &mmc_spi_ops;
1383	mmc->max_blk_size = MMC_SPI_BLOCKSIZE;
1384	mmc->max_hw_segs = MMC_SPI_BLOCKSATONCE;
1385	mmc->max_phys_segs = MMC_SPI_BLOCKSATONCE;
1386	mmc->max_req_size = MMC_SPI_BLOCKSATONCE * MMC_SPI_BLOCKSIZE;
1387	mmc->max_blk_count = MMC_SPI_BLOCKSATONCE;
1388
1389	mmc->caps = MMC_CAP_SPI;
1390
1391	/* SPI doesn't need the lowspeed device identification thing for
1392	 * MMC or SD cards, since it never comes up in open drain mode.
1393	 * That's good; some SPI masters can't handle very low speeds!
1394	 *
1395	 * However, low speed SDIO cards need not handle over 400 KHz;
1396	 * that's the only reason not to use a few MHz for f_min (until
1397	 * the upper layer reads the target frequency from the CSD).
1398	 */
1399	mmc->f_min = 400000;
1400	mmc->f_max = spi->max_speed_hz;
1401
1402	host = mmc_priv(mmc);
1403	host->mmc = mmc;
1404	host->spi = spi;
1405
1406	host->ones = ones;
1407
1408	/* Platform data is used to hook up things like card sensing
1409	 * and power switching gpios.
1410	 */
1411	host->pdata = mmc_spi_get_pdata(spi);
1412	if (host->pdata)
1413		mmc->ocr_avail = host->pdata->ocr_mask;
1414	if (!mmc->ocr_avail) {
1415		dev_warn(&spi->dev, "ASSUMING 3.2-3.4 V slot power\n");
1416		mmc->ocr_avail = MMC_VDD_32_33|MMC_VDD_33_34;
1417	}
1418	if (host->pdata && host->pdata->setpower) {
1419		host->powerup_msecs = host->pdata->powerup_msecs;
1420		if (!host->powerup_msecs || host->powerup_msecs > 250)
1421			host->powerup_msecs = 250;
1422	}
1423
1424	dev_set_drvdata(&spi->dev, mmc);
1425
1426	/* preallocate dma buffers */
1427	host->data = kmalloc(sizeof(*host->data), GFP_KERNEL);
1428	if (!host->data)
1429		goto fail_nobuf1;
1430
1431	if (spi->master->dev.parent->dma_mask) {
1432		struct device	*dev = spi->master->dev.parent;
1433
1434		host->dma_dev = dev;
1435		host->ones_dma = dma_map_single(dev, ones,
1436				MMC_SPI_BLOCKSIZE, DMA_TO_DEVICE);
1437		host->data_dma = dma_map_single(dev, host->data,
1438				sizeof(*host->data), DMA_BIDIRECTIONAL);
1439
1440		/* REVISIT in theory those map operations can fail... */
1441
1442		dma_sync_single_for_cpu(host->dma_dev,
1443				host->data_dma, sizeof(*host->data),
1444				DMA_BIDIRECTIONAL);
1445	}
1446
1447	/* setup message for status/busy readback */
1448	spi_message_init(&host->readback);
1449	host->readback.is_dma_mapped = (host->dma_dev != NULL);
1450
1451	spi_message_add_tail(&host->status, &host->readback);
1452	host->status.tx_buf = host->ones;
1453	host->status.tx_dma = host->ones_dma;
1454	host->status.rx_buf = &host->data->status;
1455	host->status.rx_dma = host->data_dma + offsetof(struct scratch, status);
1456	host->status.cs_change = 1;
1457
1458	/* register card detect irq */
1459	if (host->pdata && host->pdata->init) {
1460		status = host->pdata->init(&spi->dev, mmc_spi_detect_irq, mmc);
1461		if (status != 0)
1462			goto fail_glue_init;
1463	}
1464
1465	/* pass platform capabilities, if any */
1466	if (host->pdata)
1467		mmc->caps |= host->pdata->caps;
1468
1469	status = mmc_add_host(mmc);
1470	if (status != 0)
1471		goto fail_add_host;
1472
1473	dev_info(&spi->dev, "SD/MMC host %s%s%s%s%s\n",
1474			dev_name(&mmc->class_dev),
1475			host->dma_dev ? "" : ", no DMA",
1476			(host->pdata && host->pdata->get_ro)
1477				? "" : ", no WP",
1478			(host->pdata && host->pdata->setpower)
1479				? "" : ", no poweroff",
1480			(mmc->caps & MMC_CAP_NEEDS_POLL)
1481				? ", cd polling" : "");
1482	return 0;
1483
1484fail_add_host:
1485	mmc_remove_host (mmc);
1486fail_glue_init:
1487	if (host->dma_dev)
1488		dma_unmap_single(host->dma_dev, host->data_dma,
1489				sizeof(*host->data), DMA_BIDIRECTIONAL);
1490	kfree(host->data);
1491
1492fail_nobuf1:
1493	mmc_free_host(mmc);
1494	mmc_spi_put_pdata(spi);
1495	dev_set_drvdata(&spi->dev, NULL);
1496
1497nomem:
1498	kfree(ones);
1499	return status;
1500}
1501
1502
1503static int __devexit mmc_spi_remove(struct spi_device *spi)
1504{
1505	struct mmc_host		*mmc = dev_get_drvdata(&spi->dev);
1506	struct mmc_spi_host	*host;
1507
1508	if (mmc) {
1509		host = mmc_priv(mmc);
1510
1511		/* prevent new mmc_detect_change() calls */
1512		if (host->pdata && host->pdata->exit)
1513			host->pdata->exit(&spi->dev, mmc);
1514
1515		mmc_remove_host(mmc);
1516
1517		if (host->dma_dev) {
1518			dma_unmap_single(host->dma_dev, host->ones_dma,
1519				MMC_SPI_BLOCKSIZE, DMA_TO_DEVICE);
1520			dma_unmap_single(host->dma_dev, host->data_dma,
1521				sizeof(*host->data), DMA_BIDIRECTIONAL);
1522		}
1523
1524		kfree(host->data);
1525		kfree(host->ones);
1526
1527		spi->max_speed_hz = mmc->f_max;
1528		mmc_free_host(mmc);
1529		mmc_spi_put_pdata(spi);
1530		dev_set_drvdata(&spi->dev, NULL);
1531	}
1532	return 0;
1533}
1534
1535
1536static struct spi_driver mmc_spi_driver = {
1537	.driver = {
1538		.name =		"mmc_spi",
1539		.bus =		&spi_bus_type,
1540		.owner =	THIS_MODULE,
1541	},
1542	.probe =	mmc_spi_probe,
1543	.remove =	__devexit_p(mmc_spi_remove),
1544};
1545
1546
1547static int __init mmc_spi_init(void)
1548{
1549	return spi_register_driver(&mmc_spi_driver);
1550}
1551module_init(mmc_spi_init);
1552
1553
1554static void __exit mmc_spi_exit(void)
1555{
1556	spi_unregister_driver(&mmc_spi_driver);
1557}
1558module_exit(mmc_spi_exit);
1559
1560
1561MODULE_AUTHOR("Mike Lavender, David Brownell, "
1562		"Hans-Peter Nilsson, Jan Nikitenko");
1563MODULE_DESCRIPTION("SPI SD/MMC host driver");
1564MODULE_LICENSE("GPL");
1565MODULE_ALIAS("spi:mmc_spi");
1566