1/* linux/drivers/mtd/nand/s3c2410.c
2 *
3 * Copyright © 2004-2008 Simtec Electronics
4 *	http://armlinux.simtec.co.uk/
5 *	Ben Dooks <ben@simtec.co.uk>
6 *
7 * Samsung S3C2410/S3C2440/S3C2412 NAND driver
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
22*/
23
24#ifdef CONFIG_MTD_NAND_S3C2410_DEBUG
25#define DEBUG
26#endif
27
28#include <linux/module.h>
29#include <linux/types.h>
30#include <linux/init.h>
31#include <linux/kernel.h>
32#include <linux/string.h>
33#include <linux/ioport.h>
34#include <linux/platform_device.h>
35#include <linux/delay.h>
36#include <linux/err.h>
37#include <linux/slab.h>
38#include <linux/clk.h>
39#include <linux/cpufreq.h>
40
41#include <linux/mtd/mtd.h>
42#include <linux/mtd/nand.h>
43#include <linux/mtd/nand_ecc.h>
44#include <linux/mtd/partitions.h>
45
46#include <asm/io.h>
47
48#include <plat/regs-nand.h>
49#include <plat/nand.h>
50
51#ifdef CONFIG_MTD_NAND_S3C2410_HWECC
52static int hardware_ecc = 1;
53#else
54static int hardware_ecc = 0;
55#endif
56
57#ifdef CONFIG_MTD_NAND_S3C2410_CLKSTOP
58static const int clock_stop = 1;
59#else
60static const int clock_stop = 0;
61#endif
62
63
64/* new oob placement block for use with hardware ecc generation
65 */
66
67static struct nand_ecclayout nand_hw_eccoob = {
68	.eccbytes = 3,
69	.eccpos = {0, 1, 2},
70	.oobfree = {{8, 8}}
71};
72
73/* controller and mtd information */
74
75struct s3c2410_nand_info;
76
77/**
78 * struct s3c2410_nand_mtd - driver MTD structure
79 * @mtd: The MTD instance to pass to the MTD layer.
80 * @chip: The NAND chip information.
81 * @set: The platform information supplied for this set of NAND chips.
82 * @info: Link back to the hardware information.
83 * @scan_res: The result from calling nand_scan_ident().
84*/
85struct s3c2410_nand_mtd {
86	struct mtd_info			mtd;
87	struct nand_chip		chip;
88	struct s3c2410_nand_set		*set;
89	struct s3c2410_nand_info	*info;
90	int				scan_res;
91};
92
93enum s3c_cpu_type {
94	TYPE_S3C2410,
95	TYPE_S3C2412,
96	TYPE_S3C2440,
97};
98
99enum s3c_nand_clk_state {
100	CLOCK_DISABLE	= 0,
101	CLOCK_ENABLE,
102	CLOCK_SUSPEND,
103};
104
105/* overview of the s3c2410 nand state */
106
107/**
108 * struct s3c2410_nand_info - NAND controller state.
109 * @mtds: An array of MTD instances on this controoler.
110 * @platform: The platform data for this board.
111 * @device: The platform device we bound to.
112 * @area: The IO area resource that came from request_mem_region().
113 * @clk: The clock resource for this controller.
114 * @regs: The area mapped for the hardware registers described by @area.
115 * @sel_reg: Pointer to the register controlling the NAND selection.
116 * @sel_bit: The bit in @sel_reg to select the NAND chip.
117 * @mtd_count: The number of MTDs created from this controller.
118 * @save_sel: The contents of @sel_reg to be saved over suspend.
119 * @clk_rate: The clock rate from @clk.
120 * @clk_state: The current clock state.
121 * @cpu_type: The exact type of this controller.
122 */
123struct s3c2410_nand_info {
124	/* mtd info */
125	struct nand_hw_control		controller;
126	struct s3c2410_nand_mtd		*mtds;
127	struct s3c2410_platform_nand	*platform;
128
129	/* device info */
130	struct device			*device;
131	struct resource			*area;
132	struct clk			*clk;
133	void __iomem			*regs;
134	void __iomem			*sel_reg;
135	int				sel_bit;
136	int				mtd_count;
137	unsigned long			save_sel;
138	unsigned long			clk_rate;
139	enum s3c_nand_clk_state		clk_state;
140
141	enum s3c_cpu_type		cpu_type;
142
143#ifdef CONFIG_CPU_FREQ
144	struct notifier_block	freq_transition;
145#endif
146};
147
148/* conversion functions */
149
150static struct s3c2410_nand_mtd *s3c2410_nand_mtd_toours(struct mtd_info *mtd)
151{
152	return container_of(mtd, struct s3c2410_nand_mtd, mtd);
153}
154
155static struct s3c2410_nand_info *s3c2410_nand_mtd_toinfo(struct mtd_info *mtd)
156{
157	return s3c2410_nand_mtd_toours(mtd)->info;
158}
159
160static struct s3c2410_nand_info *to_nand_info(struct platform_device *dev)
161{
162	return platform_get_drvdata(dev);
163}
164
165static struct s3c2410_platform_nand *to_nand_plat(struct platform_device *dev)
166{
167	return dev->dev.platform_data;
168}
169
170static inline int allow_clk_suspend(struct s3c2410_nand_info *info)
171{
172	return clock_stop;
173}
174
175/**
176 * s3c2410_nand_clk_set_state - Enable, disable or suspend NAND clock.
177 * @info: The controller instance.
178 * @new_state: State to which clock should be set.
179 */
180static void s3c2410_nand_clk_set_state(struct s3c2410_nand_info *info,
181		enum s3c_nand_clk_state new_state)
182{
183	if (!allow_clk_suspend(info) && new_state == CLOCK_SUSPEND)
184		return;
185
186	if (info->clk_state == CLOCK_ENABLE) {
187		if (new_state != CLOCK_ENABLE)
188			clk_disable(info->clk);
189	} else {
190		if (new_state == CLOCK_ENABLE)
191			clk_enable(info->clk);
192	}
193
194	info->clk_state = new_state;
195}
196
197/* timing calculations */
198
199#define NS_IN_KHZ 1000000
200
201/**
202 * s3c_nand_calc_rate - calculate timing data.
203 * @wanted: The cycle time in nanoseconds.
204 * @clk: The clock rate in kHz.
205 * @max: The maximum divider value.
206 *
207 * Calculate the timing value from the given parameters.
208 */
209static int s3c_nand_calc_rate(int wanted, unsigned long clk, int max)
210{
211	int result;
212
213	result = DIV_ROUND_UP((wanted * clk), NS_IN_KHZ);
214
215	pr_debug("result %d from %ld, %d\n", result, clk, wanted);
216
217	if (result > max) {
218		printk("%d ns is too big for current clock rate %ld\n", wanted, clk);
219		return -1;
220	}
221
222	if (result < 1)
223		result = 1;
224
225	return result;
226}
227
228#define to_ns(ticks,clk) (((ticks) * NS_IN_KHZ) / (unsigned int)(clk))
229
230/* controller setup */
231
232/**
233 * s3c2410_nand_setrate - setup controller timing information.
234 * @info: The controller instance.
235 *
236 * Given the information supplied by the platform, calculate and set
237 * the necessary timing registers in the hardware to generate the
238 * necessary timing cycles to the hardware.
239 */
240static int s3c2410_nand_setrate(struct s3c2410_nand_info *info)
241{
242	struct s3c2410_platform_nand *plat = info->platform;
243	int tacls_max = (info->cpu_type == TYPE_S3C2412) ? 8 : 4;
244	int tacls, twrph0, twrph1;
245	unsigned long clkrate = clk_get_rate(info->clk);
246	unsigned long uninitialized_var(set), cfg, uninitialized_var(mask);
247	unsigned long flags;
248
249	/* calculate the timing information for the controller */
250
251	info->clk_rate = clkrate;
252	clkrate /= 1000;	/* turn clock into kHz for ease of use */
253
254	if (plat != NULL) {
255		tacls = s3c_nand_calc_rate(plat->tacls, clkrate, tacls_max);
256		twrph0 = s3c_nand_calc_rate(plat->twrph0, clkrate, 8);
257		twrph1 = s3c_nand_calc_rate(plat->twrph1, clkrate, 8);
258	} else {
259		/* default timings */
260		tacls = tacls_max;
261		twrph0 = 8;
262		twrph1 = 8;
263	}
264
265	if (tacls < 0 || twrph0 < 0 || twrph1 < 0) {
266		dev_err(info->device, "cannot get suitable timings\n");
267		return -EINVAL;
268	}
269
270	dev_info(info->device, "Tacls=%d, %dns Twrph0=%d %dns, Twrph1=%d %dns\n",
271	       tacls, to_ns(tacls, clkrate), twrph0, to_ns(twrph0, clkrate), twrph1, to_ns(twrph1, clkrate));
272
273	switch (info->cpu_type) {
274	case TYPE_S3C2410:
275		mask = (S3C2410_NFCONF_TACLS(3) |
276			S3C2410_NFCONF_TWRPH0(7) |
277			S3C2410_NFCONF_TWRPH1(7));
278		set = S3C2410_NFCONF_EN;
279		set |= S3C2410_NFCONF_TACLS(tacls - 1);
280		set |= S3C2410_NFCONF_TWRPH0(twrph0 - 1);
281		set |= S3C2410_NFCONF_TWRPH1(twrph1 - 1);
282		break;
283
284	case TYPE_S3C2440:
285	case TYPE_S3C2412:
286		mask = (S3C2440_NFCONF_TACLS(tacls_max - 1) |
287			S3C2440_NFCONF_TWRPH0(7) |
288			S3C2440_NFCONF_TWRPH1(7));
289
290		set = S3C2440_NFCONF_TACLS(tacls - 1);
291		set |= S3C2440_NFCONF_TWRPH0(twrph0 - 1);
292		set |= S3C2440_NFCONF_TWRPH1(twrph1 - 1);
293		break;
294
295	default:
296		BUG();
297	}
298
299	local_irq_save(flags);
300
301	cfg = readl(info->regs + S3C2410_NFCONF);
302	cfg &= ~mask;
303	cfg |= set;
304	writel(cfg, info->regs + S3C2410_NFCONF);
305
306	local_irq_restore(flags);
307
308	dev_dbg(info->device, "NF_CONF is 0x%lx\n", cfg);
309
310	return 0;
311}
312
313/**
314 * s3c2410_nand_inithw - basic hardware initialisation
315 * @info: The hardware state.
316 *
317 * Do the basic initialisation of the hardware, using s3c2410_nand_setrate()
318 * to setup the hardware access speeds and set the controller to be enabled.
319*/
320static int s3c2410_nand_inithw(struct s3c2410_nand_info *info)
321{
322	int ret;
323
324	ret = s3c2410_nand_setrate(info);
325	if (ret < 0)
326		return ret;
327
328 	switch (info->cpu_type) {
329 	case TYPE_S3C2410:
330	default:
331		break;
332
333 	case TYPE_S3C2440:
334 	case TYPE_S3C2412:
335		/* enable the controller and de-assert nFCE */
336
337		writel(S3C2440_NFCONT_ENABLE, info->regs + S3C2440_NFCONT);
338	}
339
340	return 0;
341}
342
343/**
344 * s3c2410_nand_select_chip - select the given nand chip
345 * @mtd: The MTD instance for this chip.
346 * @chip: The chip number.
347 *
348 * This is called by the MTD layer to either select a given chip for the
349 * @mtd instance, or to indicate that the access has finished and the
350 * chip can be de-selected.
351 *
352 * The routine ensures that the nFCE line is correctly setup, and any
353 * platform specific selection code is called to route nFCE to the specific
354 * chip.
355 */
356static void s3c2410_nand_select_chip(struct mtd_info *mtd, int chip)
357{
358	struct s3c2410_nand_info *info;
359	struct s3c2410_nand_mtd *nmtd;
360	struct nand_chip *this = mtd->priv;
361	unsigned long cur;
362
363	nmtd = this->priv;
364	info = nmtd->info;
365
366	if (chip != -1)
367		s3c2410_nand_clk_set_state(info, CLOCK_ENABLE);
368
369	cur = readl(info->sel_reg);
370
371	if (chip == -1) {
372		cur |= info->sel_bit;
373	} else {
374		if (nmtd->set != NULL && chip > nmtd->set->nr_chips) {
375			dev_err(info->device, "invalid chip %d\n", chip);
376			return;
377		}
378
379		if (info->platform != NULL) {
380			if (info->platform->select_chip != NULL)
381				(info->platform->select_chip) (nmtd->set, chip);
382		}
383
384		cur &= ~info->sel_bit;
385	}
386
387	writel(cur, info->sel_reg);
388
389	if (chip == -1)
390		s3c2410_nand_clk_set_state(info, CLOCK_SUSPEND);
391}
392
393/* s3c2410_nand_hwcontrol
394 *
395 * Issue command and address cycles to the chip
396*/
397
398static void s3c2410_nand_hwcontrol(struct mtd_info *mtd, int cmd,
399				   unsigned int ctrl)
400{
401	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
402
403	if (cmd == NAND_CMD_NONE)
404		return;
405
406	if (ctrl & NAND_CLE)
407		writeb(cmd, info->regs + S3C2410_NFCMD);
408	else
409		writeb(cmd, info->regs + S3C2410_NFADDR);
410}
411
412/* command and control functions */
413
414static void s3c2440_nand_hwcontrol(struct mtd_info *mtd, int cmd,
415				   unsigned int ctrl)
416{
417	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
418
419	if (cmd == NAND_CMD_NONE)
420		return;
421
422	if (ctrl & NAND_CLE)
423		writeb(cmd, info->regs + S3C2440_NFCMD);
424	else
425		writeb(cmd, info->regs + S3C2440_NFADDR);
426}
427
428/* s3c2410_nand_devready()
429 *
430 * returns 0 if the nand is busy, 1 if it is ready
431*/
432
433static int s3c2410_nand_devready(struct mtd_info *mtd)
434{
435	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
436	return readb(info->regs + S3C2410_NFSTAT) & S3C2410_NFSTAT_BUSY;
437}
438
439static int s3c2440_nand_devready(struct mtd_info *mtd)
440{
441	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
442	return readb(info->regs + S3C2440_NFSTAT) & S3C2440_NFSTAT_READY;
443}
444
445static int s3c2412_nand_devready(struct mtd_info *mtd)
446{
447	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
448	return readb(info->regs + S3C2412_NFSTAT) & S3C2412_NFSTAT_READY;
449}
450
451/* ECC handling functions */
452
453static int s3c2410_nand_correct_data(struct mtd_info *mtd, u_char *dat,
454				     u_char *read_ecc, u_char *calc_ecc)
455{
456	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
457	unsigned int diff0, diff1, diff2;
458	unsigned int bit, byte;
459
460	pr_debug("%s(%p,%p,%p,%p)\n", __func__, mtd, dat, read_ecc, calc_ecc);
461
462	diff0 = read_ecc[0] ^ calc_ecc[0];
463	diff1 = read_ecc[1] ^ calc_ecc[1];
464	diff2 = read_ecc[2] ^ calc_ecc[2];
465
466	pr_debug("%s: rd %02x%02x%02x calc %02x%02x%02x diff %02x%02x%02x\n",
467		 __func__,
468		 read_ecc[0], read_ecc[1], read_ecc[2],
469		 calc_ecc[0], calc_ecc[1], calc_ecc[2],
470		 diff0, diff1, diff2);
471
472	if (diff0 == 0 && diff1 == 0 && diff2 == 0)
473		return 0;		/* ECC is ok */
474
475	/* sometimes people do not think about using the ECC, so check
476	 * to see if we have an 0xff,0xff,0xff read ECC and then ignore
477	 * the error, on the assumption that this is an un-eccd page.
478	 */
479	if (read_ecc[0] == 0xff && read_ecc[1] == 0xff && read_ecc[2] == 0xff
480	    && info->platform->ignore_unset_ecc)
481		return 0;
482
483	/* Can we correct this ECC (ie, one row and column change).
484	 * Note, this is similar to the 256 error code on smartmedia */
485
486	if (((diff0 ^ (diff0 >> 1)) & 0x55) == 0x55 &&
487	    ((diff1 ^ (diff1 >> 1)) & 0x55) == 0x55 &&
488	    ((diff2 ^ (diff2 >> 1)) & 0x55) == 0x55) {
489		/* calculate the bit position of the error */
490
491		bit  = ((diff2 >> 3) & 1) |
492		       ((diff2 >> 4) & 2) |
493		       ((diff2 >> 5) & 4);
494
495		/* calculate the byte position of the error */
496
497		byte = ((diff2 << 7) & 0x100) |
498		       ((diff1 << 0) & 0x80)  |
499		       ((diff1 << 1) & 0x40)  |
500		       ((diff1 << 2) & 0x20)  |
501		       ((diff1 << 3) & 0x10)  |
502		       ((diff0 >> 4) & 0x08)  |
503		       ((diff0 >> 3) & 0x04)  |
504		       ((diff0 >> 2) & 0x02)  |
505		       ((diff0 >> 1) & 0x01);
506
507		dev_dbg(info->device, "correcting error bit %d, byte %d\n",
508			bit, byte);
509
510		dat[byte] ^= (1 << bit);
511		return 1;
512	}
513
514	/* if there is only one bit difference in the ECC, then
515	 * one of only a row or column parity has changed, which
516	 * means the error is most probably in the ECC itself */
517
518	diff0 |= (diff1 << 8);
519	diff0 |= (diff2 << 16);
520
521	if ((diff0 & ~(1<<fls(diff0))) == 0)
522		return 1;
523
524	return -1;
525}
526
527/* ECC functions
528 *
529 * These allow the s3c2410 and s3c2440 to use the controller's ECC
530 * generator block to ECC the data as it passes through]
531*/
532
533static void s3c2410_nand_enable_hwecc(struct mtd_info *mtd, int mode)
534{
535	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
536	unsigned long ctrl;
537
538	ctrl = readl(info->regs + S3C2410_NFCONF);
539	ctrl |= S3C2410_NFCONF_INITECC;
540	writel(ctrl, info->regs + S3C2410_NFCONF);
541}
542
543static void s3c2412_nand_enable_hwecc(struct mtd_info *mtd, int mode)
544{
545	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
546	unsigned long ctrl;
547
548	ctrl = readl(info->regs + S3C2440_NFCONT);
549	writel(ctrl | S3C2412_NFCONT_INIT_MAIN_ECC, info->regs + S3C2440_NFCONT);
550}
551
552static void s3c2440_nand_enable_hwecc(struct mtd_info *mtd, int mode)
553{
554	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
555	unsigned long ctrl;
556
557	ctrl = readl(info->regs + S3C2440_NFCONT);
558	writel(ctrl | S3C2440_NFCONT_INITECC, info->regs + S3C2440_NFCONT);
559}
560
561static int s3c2410_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat, u_char *ecc_code)
562{
563	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
564
565	ecc_code[0] = readb(info->regs + S3C2410_NFECC + 0);
566	ecc_code[1] = readb(info->regs + S3C2410_NFECC + 1);
567	ecc_code[2] = readb(info->regs + S3C2410_NFECC + 2);
568
569	pr_debug("%s: returning ecc %02x%02x%02x\n", __func__,
570		 ecc_code[0], ecc_code[1], ecc_code[2]);
571
572	return 0;
573}
574
575static int s3c2412_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat, u_char *ecc_code)
576{
577	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
578	unsigned long ecc = readl(info->regs + S3C2412_NFMECC0);
579
580	ecc_code[0] = ecc;
581	ecc_code[1] = ecc >> 8;
582	ecc_code[2] = ecc >> 16;
583
584	pr_debug("calculate_ecc: returning ecc %02x,%02x,%02x\n", ecc_code[0], ecc_code[1], ecc_code[2]);
585
586	return 0;
587}
588
589static int s3c2440_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat, u_char *ecc_code)
590{
591	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
592	unsigned long ecc = readl(info->regs + S3C2440_NFMECC0);
593
594	ecc_code[0] = ecc;
595	ecc_code[1] = ecc >> 8;
596	ecc_code[2] = ecc >> 16;
597
598	pr_debug("%s: returning ecc %06lx\n", __func__, ecc & 0xffffff);
599
600	return 0;
601}
602
603/* over-ride the standard functions for a little more speed. We can
604 * use read/write block to move the data buffers to/from the controller
605*/
606
607static void s3c2410_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
608{
609	struct nand_chip *this = mtd->priv;
610	readsb(this->IO_ADDR_R, buf, len);
611}
612
613static void s3c2440_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
614{
615	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
616
617	readsl(info->regs + S3C2440_NFDATA, buf, len >> 2);
618
619	/* cleanup if we've got less than a word to do */
620	if (len & 3) {
621		buf += len & ~3;
622
623		for (; len & 3; len--)
624			*buf++ = readb(info->regs + S3C2440_NFDATA);
625	}
626}
627
628static void s3c2410_nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len)
629{
630	struct nand_chip *this = mtd->priv;
631	writesb(this->IO_ADDR_W, buf, len);
632}
633
634static void s3c2440_nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len)
635{
636	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
637
638	writesl(info->regs + S3C2440_NFDATA, buf, len >> 2);
639
640	/* cleanup any fractional write */
641	if (len & 3) {
642		buf += len & ~3;
643
644		for (; len & 3; len--, buf++)
645			writeb(*buf, info->regs + S3C2440_NFDATA);
646	}
647}
648
649/* cpufreq driver support */
650
651#ifdef CONFIG_CPU_FREQ
652
653static int s3c2410_nand_cpufreq_transition(struct notifier_block *nb,
654					  unsigned long val, void *data)
655{
656	struct s3c2410_nand_info *info;
657	unsigned long newclk;
658
659	info = container_of(nb, struct s3c2410_nand_info, freq_transition);
660	newclk = clk_get_rate(info->clk);
661
662	if ((val == CPUFREQ_POSTCHANGE && newclk < info->clk_rate) ||
663	    (val == CPUFREQ_PRECHANGE && newclk > info->clk_rate)) {
664		s3c2410_nand_setrate(info);
665	}
666
667	return 0;
668}
669
670static inline int s3c2410_nand_cpufreq_register(struct s3c2410_nand_info *info)
671{
672	info->freq_transition.notifier_call = s3c2410_nand_cpufreq_transition;
673
674	return cpufreq_register_notifier(&info->freq_transition,
675					 CPUFREQ_TRANSITION_NOTIFIER);
676}
677
678static inline void s3c2410_nand_cpufreq_deregister(struct s3c2410_nand_info *info)
679{
680	cpufreq_unregister_notifier(&info->freq_transition,
681				    CPUFREQ_TRANSITION_NOTIFIER);
682}
683
684#else
685static inline int s3c2410_nand_cpufreq_register(struct s3c2410_nand_info *info)
686{
687	return 0;
688}
689
690static inline void s3c2410_nand_cpufreq_deregister(struct s3c2410_nand_info *info)
691{
692}
693#endif
694
695/* device management functions */
696
697static int s3c24xx_nand_remove(struct platform_device *pdev)
698{
699	struct s3c2410_nand_info *info = to_nand_info(pdev);
700
701	platform_set_drvdata(pdev, NULL);
702
703	if (info == NULL)
704		return 0;
705
706	s3c2410_nand_cpufreq_deregister(info);
707
708	/* Release all our mtds  and their partitions, then go through
709	 * freeing the resources used
710	 */
711
712	if (info->mtds != NULL) {
713		struct s3c2410_nand_mtd *ptr = info->mtds;
714		int mtdno;
715
716		for (mtdno = 0; mtdno < info->mtd_count; mtdno++, ptr++) {
717			pr_debug("releasing mtd %d (%p)\n", mtdno, ptr);
718			nand_release(&ptr->mtd);
719		}
720
721		kfree(info->mtds);
722	}
723
724	/* free the common resources */
725
726	if (!IS_ERR(info->clk)) {
727		s3c2410_nand_clk_set_state(info, CLOCK_DISABLE);
728		clk_put(info->clk);
729	}
730
731	if (info->regs != NULL) {
732		iounmap(info->regs);
733		info->regs = NULL;
734	}
735
736	if (info->area != NULL) {
737		release_resource(info->area);
738		kfree(info->area);
739		info->area = NULL;
740	}
741
742	kfree(info);
743
744	return 0;
745}
746
747static int s3c2410_nand_add_partition(struct s3c2410_nand_info *info,
748				      struct s3c2410_nand_mtd *mtd,
749				      struct s3c2410_nand_set *set)
750{
751	if (set)
752		mtd->mtd.name = set->name;
753
754	return mtd_device_parse_register(&mtd->mtd, NULL, NULL,
755					 set->partitions, set->nr_partitions);
756}
757
758/**
759 * s3c2410_nand_init_chip - initialise a single instance of an chip
760 * @info: The base NAND controller the chip is on.
761 * @nmtd: The new controller MTD instance to fill in.
762 * @set: The information passed from the board specific platform data.
763 *
764 * Initialise the given @nmtd from the information in @info and @set. This
765 * readies the structure for use with the MTD layer functions by ensuring
766 * all pointers are setup and the necessary control routines selected.
767 */
768static void s3c2410_nand_init_chip(struct s3c2410_nand_info *info,
769				   struct s3c2410_nand_mtd *nmtd,
770				   struct s3c2410_nand_set *set)
771{
772	struct nand_chip *chip = &nmtd->chip;
773	void __iomem *regs = info->regs;
774
775	chip->write_buf    = s3c2410_nand_write_buf;
776	chip->read_buf     = s3c2410_nand_read_buf;
777	chip->select_chip  = s3c2410_nand_select_chip;
778	chip->chip_delay   = 50;
779	chip->priv	   = nmtd;
780	chip->options	   = set->options;
781	chip->controller   = &info->controller;
782
783	switch (info->cpu_type) {
784	case TYPE_S3C2410:
785		chip->IO_ADDR_W = regs + S3C2410_NFDATA;
786		info->sel_reg   = regs + S3C2410_NFCONF;
787		info->sel_bit	= S3C2410_NFCONF_nFCE;
788		chip->cmd_ctrl  = s3c2410_nand_hwcontrol;
789		chip->dev_ready = s3c2410_nand_devready;
790		break;
791
792	case TYPE_S3C2440:
793		chip->IO_ADDR_W = regs + S3C2440_NFDATA;
794		info->sel_reg   = regs + S3C2440_NFCONT;
795		info->sel_bit	= S3C2440_NFCONT_nFCE;
796		chip->cmd_ctrl  = s3c2440_nand_hwcontrol;
797		chip->dev_ready = s3c2440_nand_devready;
798		chip->read_buf  = s3c2440_nand_read_buf;
799		chip->write_buf	= s3c2440_nand_write_buf;
800		break;
801
802	case TYPE_S3C2412:
803		chip->IO_ADDR_W = regs + S3C2440_NFDATA;
804		info->sel_reg   = regs + S3C2440_NFCONT;
805		info->sel_bit	= S3C2412_NFCONT_nFCE0;
806		chip->cmd_ctrl  = s3c2440_nand_hwcontrol;
807		chip->dev_ready = s3c2412_nand_devready;
808
809		if (readl(regs + S3C2410_NFCONF) & S3C2412_NFCONF_NANDBOOT)
810			dev_info(info->device, "System booted from NAND\n");
811
812		break;
813  	}
814
815	chip->IO_ADDR_R = chip->IO_ADDR_W;
816
817	nmtd->info	   = info;
818	nmtd->mtd.priv	   = chip;
819	nmtd->mtd.owner    = THIS_MODULE;
820	nmtd->set	   = set;
821
822	if (hardware_ecc) {
823		chip->ecc.calculate = s3c2410_nand_calculate_ecc;
824		chip->ecc.correct   = s3c2410_nand_correct_data;
825		chip->ecc.mode	    = NAND_ECC_HW;
826		chip->ecc.strength  = 1;
827
828		switch (info->cpu_type) {
829		case TYPE_S3C2410:
830			chip->ecc.hwctl	    = s3c2410_nand_enable_hwecc;
831			chip->ecc.calculate = s3c2410_nand_calculate_ecc;
832			break;
833
834		case TYPE_S3C2412:
835  			chip->ecc.hwctl     = s3c2412_nand_enable_hwecc;
836  			chip->ecc.calculate = s3c2412_nand_calculate_ecc;
837			break;
838
839		case TYPE_S3C2440:
840  			chip->ecc.hwctl     = s3c2440_nand_enable_hwecc;
841  			chip->ecc.calculate = s3c2440_nand_calculate_ecc;
842			break;
843
844		}
845	} else {
846		chip->ecc.mode	    = NAND_ECC_SOFT;
847	}
848
849	if (set->ecc_layout != NULL)
850		chip->ecc.layout = set->ecc_layout;
851
852	if (set->disable_ecc)
853		chip->ecc.mode	= NAND_ECC_NONE;
854
855	switch (chip->ecc.mode) {
856	case NAND_ECC_NONE:
857		dev_info(info->device, "NAND ECC disabled\n");
858		break;
859	case NAND_ECC_SOFT:
860		dev_info(info->device, "NAND soft ECC\n");
861		break;
862	case NAND_ECC_HW:
863		dev_info(info->device, "NAND hardware ECC\n");
864		break;
865	default:
866		dev_info(info->device, "NAND ECC UNKNOWN\n");
867		break;
868	}
869
870	/* If you use u-boot BBT creation code, specifying this flag will
871	 * let the kernel fish out the BBT from the NAND, and also skip the
872	 * full NAND scan that can take 1/2s or so. Little things... */
873	if (set->flash_bbt) {
874		chip->bbt_options |= NAND_BBT_USE_FLASH;
875		chip->options |= NAND_SKIP_BBTSCAN;
876	}
877}
878
879/**
880 * s3c2410_nand_update_chip - post probe update
881 * @info: The controller instance.
882 * @nmtd: The driver version of the MTD instance.
883 *
884 * This routine is called after the chip probe has successfully completed
885 * and the relevant per-chip information updated. This call ensure that
886 * we update the internal state accordingly.
887 *
888 * The internal state is currently limited to the ECC state information.
889*/
890static void s3c2410_nand_update_chip(struct s3c2410_nand_info *info,
891				     struct s3c2410_nand_mtd *nmtd)
892{
893	struct nand_chip *chip = &nmtd->chip;
894
895	dev_dbg(info->device, "chip %p => page shift %d\n",
896		chip, chip->page_shift);
897
898	if (chip->ecc.mode != NAND_ECC_HW)
899		return;
900
901		/* change the behaviour depending on wether we are using
902		 * the large or small page nand device */
903
904	if (chip->page_shift > 10) {
905		chip->ecc.size	    = 256;
906		chip->ecc.bytes	    = 3;
907	} else {
908		chip->ecc.size	    = 512;
909		chip->ecc.bytes	    = 3;
910		chip->ecc.layout    = &nand_hw_eccoob;
911	}
912}
913
914/* s3c24xx_nand_probe
915 *
916 * called by device layer when it finds a device matching
917 * one our driver can handled. This code checks to see if
918 * it can allocate all necessary resources then calls the
919 * nand layer to look for devices
920*/
921static int s3c24xx_nand_probe(struct platform_device *pdev)
922{
923	struct s3c2410_platform_nand *plat = to_nand_plat(pdev);
924	enum s3c_cpu_type cpu_type;
925	struct s3c2410_nand_info *info;
926	struct s3c2410_nand_mtd *nmtd;
927	struct s3c2410_nand_set *sets;
928	struct resource *res;
929	int err = 0;
930	int size;
931	int nr_sets;
932	int setno;
933
934	cpu_type = platform_get_device_id(pdev)->driver_data;
935
936	pr_debug("s3c2410_nand_probe(%p)\n", pdev);
937
938	info = kzalloc(sizeof(*info), GFP_KERNEL);
939	if (info == NULL) {
940		dev_err(&pdev->dev, "no memory for flash info\n");
941		err = -ENOMEM;
942		goto exit_error;
943	}
944
945	platform_set_drvdata(pdev, info);
946
947	spin_lock_init(&info->controller.lock);
948	init_waitqueue_head(&info->controller.wq);
949
950	/* get the clock source and enable it */
951
952	info->clk = clk_get(&pdev->dev, "nand");
953	if (IS_ERR(info->clk)) {
954		dev_err(&pdev->dev, "failed to get clock\n");
955		err = -ENOENT;
956		goto exit_error;
957	}
958
959	s3c2410_nand_clk_set_state(info, CLOCK_ENABLE);
960
961	/* allocate and map the resource */
962
963	/* currently we assume we have the one resource */
964	res  = pdev->resource;
965	size = resource_size(res);
966
967	info->area = request_mem_region(res->start, size, pdev->name);
968
969	if (info->area == NULL) {
970		dev_err(&pdev->dev, "cannot reserve register region\n");
971		err = -ENOENT;
972		goto exit_error;
973	}
974
975	info->device     = &pdev->dev;
976	info->platform   = plat;
977	info->regs       = ioremap(res->start, size);
978	info->cpu_type   = cpu_type;
979
980	if (info->regs == NULL) {
981		dev_err(&pdev->dev, "cannot reserve register region\n");
982		err = -EIO;
983		goto exit_error;
984	}
985
986	dev_dbg(&pdev->dev, "mapped registers at %p\n", info->regs);
987
988	/* initialise the hardware */
989
990	err = s3c2410_nand_inithw(info);
991	if (err != 0)
992		goto exit_error;
993
994	sets = (plat != NULL) ? plat->sets : NULL;
995	nr_sets = (plat != NULL) ? plat->nr_sets : 1;
996
997	info->mtd_count = nr_sets;
998
999	/* allocate our information */
1000
1001	size = nr_sets * sizeof(*info->mtds);
1002	info->mtds = kzalloc(size, GFP_KERNEL);
1003	if (info->mtds == NULL) {
1004		dev_err(&pdev->dev, "failed to allocate mtd storage\n");
1005		err = -ENOMEM;
1006		goto exit_error;
1007	}
1008
1009	/* initialise all possible chips */
1010
1011	nmtd = info->mtds;
1012
1013	for (setno = 0; setno < nr_sets; setno++, nmtd++) {
1014		pr_debug("initialising set %d (%p, info %p)\n", setno, nmtd, info);
1015
1016		s3c2410_nand_init_chip(info, nmtd, sets);
1017
1018		nmtd->scan_res = nand_scan_ident(&nmtd->mtd,
1019						 (sets) ? sets->nr_chips : 1,
1020						 NULL);
1021
1022		if (nmtd->scan_res == 0) {
1023			s3c2410_nand_update_chip(info, nmtd);
1024			nand_scan_tail(&nmtd->mtd);
1025			s3c2410_nand_add_partition(info, nmtd, sets);
1026		}
1027
1028		if (sets != NULL)
1029			sets++;
1030	}
1031
1032	err = s3c2410_nand_cpufreq_register(info);
1033	if (err < 0) {
1034		dev_err(&pdev->dev, "failed to init cpufreq support\n");
1035		goto exit_error;
1036	}
1037
1038	if (allow_clk_suspend(info)) {
1039		dev_info(&pdev->dev, "clock idle support enabled\n");
1040		s3c2410_nand_clk_set_state(info, CLOCK_SUSPEND);
1041	}
1042
1043	pr_debug("initialised ok\n");
1044	return 0;
1045
1046 exit_error:
1047	s3c24xx_nand_remove(pdev);
1048
1049	if (err == 0)
1050		err = -EINVAL;
1051	return err;
1052}
1053
1054/* PM Support */
1055#ifdef CONFIG_PM
1056
1057static int s3c24xx_nand_suspend(struct platform_device *dev, pm_message_t pm)
1058{
1059	struct s3c2410_nand_info *info = platform_get_drvdata(dev);
1060
1061	if (info) {
1062		info->save_sel = readl(info->sel_reg);
1063
1064		/* For the moment, we must ensure nFCE is high during
1065		 * the time we are suspended. This really should be
1066		 * handled by suspending the MTDs we are using, but
1067		 * that is currently not the case. */
1068
1069		writel(info->save_sel | info->sel_bit, info->sel_reg);
1070
1071		s3c2410_nand_clk_set_state(info, CLOCK_DISABLE);
1072	}
1073
1074	return 0;
1075}
1076
1077static int s3c24xx_nand_resume(struct platform_device *dev)
1078{
1079	struct s3c2410_nand_info *info = platform_get_drvdata(dev);
1080	unsigned long sel;
1081
1082	if (info) {
1083		s3c2410_nand_clk_set_state(info, CLOCK_ENABLE);
1084		s3c2410_nand_inithw(info);
1085
1086		/* Restore the state of the nFCE line. */
1087
1088		sel = readl(info->sel_reg);
1089		sel &= ~info->sel_bit;
1090		sel |= info->save_sel & info->sel_bit;
1091		writel(sel, info->sel_reg);
1092
1093		s3c2410_nand_clk_set_state(info, CLOCK_SUSPEND);
1094	}
1095
1096	return 0;
1097}
1098
1099#else
1100#define s3c24xx_nand_suspend NULL
1101#define s3c24xx_nand_resume NULL
1102#endif
1103
1104/* driver device registration */
1105
1106static struct platform_device_id s3c24xx_driver_ids[] = {
1107	{
1108		.name		= "s3c2410-nand",
1109		.driver_data	= TYPE_S3C2410,
1110	}, {
1111		.name		= "s3c2440-nand",
1112		.driver_data	= TYPE_S3C2440,
1113	}, {
1114		.name		= "s3c2412-nand",
1115		.driver_data	= TYPE_S3C2412,
1116	}, {
1117		.name		= "s3c6400-nand",
1118		.driver_data	= TYPE_S3C2412, /* compatible with 2412 */
1119	},
1120	{ }
1121};
1122
1123MODULE_DEVICE_TABLE(platform, s3c24xx_driver_ids);
1124
1125static struct platform_driver s3c24xx_nand_driver = {
1126	.probe		= s3c24xx_nand_probe,
1127	.remove		= s3c24xx_nand_remove,
1128	.suspend	= s3c24xx_nand_suspend,
1129	.resume		= s3c24xx_nand_resume,
1130	.id_table	= s3c24xx_driver_ids,
1131	.driver		= {
1132		.name	= "s3c24xx-nand",
1133		.owner	= THIS_MODULE,
1134	},
1135};
1136
1137static int __init s3c2410_nand_init(void)
1138{
1139	printk("S3C24XX NAND Driver, (c) 2004 Simtec Electronics\n");
1140
1141	return platform_driver_register(&s3c24xx_nand_driver);
1142}
1143
1144static void __exit s3c2410_nand_exit(void)
1145{
1146	platform_driver_unregister(&s3c24xx_nand_driver);
1147}
1148
1149module_init(s3c2410_nand_init);
1150module_exit(s3c2410_nand_exit);
1151
1152MODULE_LICENSE("GPL");
1153MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>");
1154MODULE_DESCRIPTION("S3C24XX MTD NAND driver");
1155