s3c2410.c revision fb8d82a865b1ff601fad8293cd6a2a1b1908545b
1/* linux/drivers/mtd/nand/s3c2410.c
2 *
3 * Copyright (c) 2004,2005 Simtec Electronics
4 *	http://www.simtec.co.uk/products/SWLINUX/
5 *	Ben Dooks <ben@simtec.co.uk>
6 *
7 * Samsung S3C2410/S3C240 NAND driver
8 *
9 * Changelog:
10 *	21-Sep-2004  BJD  Initial version
11 *	23-Sep-2004  BJD  Mulitple device support
12 *	28-Sep-2004  BJD  Fixed ECC placement for Hardware mode
13 *	12-Oct-2004  BJD  Fixed errors in use of platform data
14 *	18-Feb-2005  BJD  Fix sparse errors
15 *	14-Mar-2005  BJD  Applied tglx's code reduction patch
16 *	02-May-2005  BJD  Fixed s3c2440 support
17 *	02-May-2005  BJD  Reduced hwcontrol decode
18 *	20-Jun-2005  BJD  Updated s3c2440 support, fixed timing bug
19 *	08-Jul-2005  BJD  Fix OOPS when no platform data supplied
20 *
21 * $Id: s3c2410.c,v 1.14 2005/07/06 20:05:06 bjd Exp $
22 *
23 * This program is free software; you can redistribute it and/or modify
24 * it under the terms of the GNU General Public License as published by
25 * the Free Software Foundation; either version 2 of the License, or
26 * (at your option) any later version.
27 *
28 * This program is distributed in the hope that it will be useful,
29 * but WITHOUT ANY WARRANTY; without even the implied warranty of
30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
31 * GNU General Public License for more details.
32 *
33 * You should have received a copy of the GNU General Public License
34 * along with this program; if not, write to the Free Software
35 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
36*/
37
38#include <config/mtd/nand/s3c2410/hwecc.h>
39#include <config/mtd/nand/s3c2410/debug.h>
40
41#ifdef CONFIG_MTD_NAND_S3C2410_DEBUG
42#define DEBUG
43#endif
44
45#include <linux/module.h>
46#include <linux/types.h>
47#include <linux/init.h>
48#include <linux/kernel.h>
49#include <linux/string.h>
50#include <linux/ioport.h>
51#include <linux/device.h>
52#include <linux/delay.h>
53#include <linux/err.h>
54
55#include <linux/mtd/mtd.h>
56#include <linux/mtd/nand.h>
57#include <linux/mtd/nand_ecc.h>
58#include <linux/mtd/partitions.h>
59
60#include <asm/io.h>
61#include <asm/mach-types.h>
62#include <asm/hardware/clock.h>
63
64#include <asm/arch/regs-nand.h>
65#include <asm/arch/nand.h>
66
67#define PFX "s3c2410-nand: "
68
69#ifdef CONFIG_MTD_NAND_S3C2410_HWECC
70static int hardware_ecc = 1;
71#else
72static int hardware_ecc = 0;
73#endif
74
75/* new oob placement block for use with hardware ecc generation
76 */
77
78static struct nand_oobinfo nand_hw_eccoob = {
79	.useecc		= MTD_NANDECC_AUTOPLACE,
80	.eccbytes	= 3,
81	.eccpos		= {0, 1, 2 },
82	.oobfree	= { {8, 8} }
83};
84
85/* controller and mtd information */
86
87struct s3c2410_nand_info;
88
89struct s3c2410_nand_mtd {
90	struct mtd_info			mtd;
91	struct nand_chip		chip;
92	struct s3c2410_nand_set		*set;
93	struct s3c2410_nand_info	*info;
94	int				scan_res;
95};
96
97/* overview of the s3c2410 nand state */
98
99struct s3c2410_nand_info {
100	/* mtd info */
101	struct nand_hw_control		controller;
102	struct s3c2410_nand_mtd		*mtds;
103	struct s3c2410_platform_nand	*platform;
104
105	/* device info */
106	struct device			*device;
107	struct resource			*area;
108	struct clk			*clk;
109	void __iomem			*regs;
110	int				mtd_count;
111
112	unsigned char			is_s3c2440;
113};
114
115/* conversion functions */
116
117static struct s3c2410_nand_mtd *s3c2410_nand_mtd_toours(struct mtd_info *mtd)
118{
119	return container_of(mtd, struct s3c2410_nand_mtd, mtd);
120}
121
122static struct s3c2410_nand_info *s3c2410_nand_mtd_toinfo(struct mtd_info *mtd)
123{
124	return s3c2410_nand_mtd_toours(mtd)->info;
125}
126
127static struct s3c2410_nand_info *to_nand_info(struct device *dev)
128{
129	return dev_get_drvdata(dev);
130}
131
132static struct s3c2410_platform_nand *to_nand_plat(struct device *dev)
133{
134	return dev->platform_data;
135}
136
137/* timing calculations */
138
139#define NS_IN_KHZ 10000000
140
141static int s3c2410_nand_calc_rate(int wanted, unsigned long clk, int max)
142{
143	int result;
144
145	result = (wanted * NS_IN_KHZ) / clk;
146	result++;
147
148	pr_debug("result %d from %ld, %d\n", result, clk, wanted);
149
150	if (result > max) {
151		printk("%d ns is too big for current clock rate %ld\n",
152		       wanted, clk);
153		return -1;
154	}
155
156	if (result < 1)
157		result = 1;
158
159	return result;
160}
161
162#define to_ns(ticks,clk) (((clk) * (ticks)) / NS_IN_KHZ)
163
164/* controller setup */
165
166static int s3c2410_nand_inithw(struct s3c2410_nand_info *info,
167			       struct device *dev)
168{
169	struct s3c2410_platform_nand *plat = to_nand_plat(dev);
170	unsigned int tacls, twrph0, twrph1;
171	unsigned long clkrate = clk_get_rate(info->clk);
172	unsigned long cfg;
173
174	/* calculate the timing information for the controller */
175
176	if (plat != NULL) {
177		tacls  = s3c2410_nand_calc_rate(plat->tacls, clkrate, 4);
178		twrph0 = s3c2410_nand_calc_rate(plat->twrph0, clkrate, 8);
179		twrph1 = s3c2410_nand_calc_rate(plat->twrph1, clkrate, 8);
180	} else {
181		/* default timings */
182		tacls = 4;
183		twrph0 = 8;
184		twrph1 = 8;
185	}
186
187	if (tacls < 0 || twrph0 < 0 || twrph1 < 0) {
188		printk(KERN_ERR PFX "cannot get timings suitable for board\n");
189		return -EINVAL;
190	}
191
192	printk(KERN_INFO PFX "timing: Tacls %ldns, Twrph0 %ldns, Twrph1 %ldns\n",
193	       to_ns(tacls, clkrate),
194	       to_ns(twrph0, clkrate),
195	       to_ns(twrph1, clkrate));
196
197	if (!info->is_s3c2440) {
198		cfg  = S3C2410_NFCONF_EN;
199		cfg |= S3C2410_NFCONF_TACLS(tacls-1);
200		cfg |= S3C2410_NFCONF_TWRPH0(twrph0-1);
201		cfg |= S3C2410_NFCONF_TWRPH1(twrph1-1);
202	} else {
203		cfg   = S3C2440_NFCONF_TACLS(tacls-1);
204		cfg  |= S3C2440_NFCONF_TWRPH0(twrph0-1);
205		cfg  |= S3C2440_NFCONF_TWRPH1(twrph1-1);
206	}
207
208	pr_debug(PFX "NF_CONF is 0x%lx\n", cfg);
209
210	writel(cfg, info->regs + S3C2410_NFCONF);
211	return 0;
212}
213
214/* select chip */
215
216static void s3c2410_nand_select_chip(struct mtd_info *mtd, int chip)
217{
218	struct s3c2410_nand_info *info;
219	struct s3c2410_nand_mtd *nmtd;
220	struct nand_chip *this = mtd->priv;
221	void __iomem *reg;
222	unsigned long cur;
223	unsigned long bit;
224
225	nmtd = this->priv;
226	info = nmtd->info;
227
228	bit = (info->is_s3c2440) ? S3C2440_NFCONT_nFCE : S3C2410_NFCONF_nFCE;
229	reg = info->regs+((info->is_s3c2440) ? S3C2440_NFCONT:S3C2410_NFCONF);
230
231	cur = readl(reg);
232
233	if (chip == -1) {
234		cur |= bit;
235	} else {
236		if (nmtd->set != NULL && chip > nmtd->set->nr_chips) {
237			printk(KERN_ERR PFX "chip %d out of range\n", chip);
238			return;
239		}
240
241		if (info->platform != NULL) {
242			if (info->platform->select_chip != NULL)
243				(info->platform->select_chip)(nmtd->set, chip);
244		}
245
246		cur &= ~bit;
247	}
248
249	writel(cur, reg);
250}
251
252/* command and control functions
253 *
254 * Note, these all use tglx's method of changing the IO_ADDR_W field
255 * to make the code simpler, and use the nand layer's code to issue the
256 * command and address sequences via the proper IO ports.
257 *
258*/
259
260static void s3c2410_nand_hwcontrol(struct mtd_info *mtd, int cmd)
261{
262	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
263	struct nand_chip *chip = mtd->priv;
264
265	switch (cmd) {
266	case NAND_CTL_SETNCE:
267	case NAND_CTL_CLRNCE:
268		printk(KERN_ERR "%s: called for NCE\n", __FUNCTION__);
269		break;
270
271	case NAND_CTL_SETCLE:
272		chip->IO_ADDR_W = info->regs + S3C2410_NFCMD;
273		break;
274
275	case NAND_CTL_SETALE:
276		chip->IO_ADDR_W = info->regs + S3C2410_NFADDR;
277		break;
278
279		/* NAND_CTL_CLRCLE: */
280		/* NAND_CTL_CLRALE: */
281	default:
282		chip->IO_ADDR_W = info->regs + S3C2410_NFDATA;
283		break;
284	}
285}
286
287/* command and control functions */
288
289static void s3c2440_nand_hwcontrol(struct mtd_info *mtd, int cmd)
290{
291	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
292	struct nand_chip *chip = mtd->priv;
293
294	switch (cmd) {
295	case NAND_CTL_SETNCE:
296	case NAND_CTL_CLRNCE:
297		printk(KERN_ERR "%s: called for NCE\n", __FUNCTION__);
298		break;
299
300	case NAND_CTL_SETCLE:
301		chip->IO_ADDR_W = info->regs + S3C2440_NFCMD;
302		break;
303
304	case NAND_CTL_SETALE:
305		chip->IO_ADDR_W = info->regs + S3C2440_NFADDR;
306		break;
307
308		/* NAND_CTL_CLRCLE: */
309		/* NAND_CTL_CLRALE: */
310	default:
311		chip->IO_ADDR_W = info->regs + S3C2440_NFDATA;
312		break;
313	}
314}
315
316/* s3c2410_nand_devready()
317 *
318 * returns 0 if the nand is busy, 1 if it is ready
319*/
320
321static int s3c2410_nand_devready(struct mtd_info *mtd)
322{
323	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
324
325	if (info->is_s3c2440)
326		return readb(info->regs + S3C2440_NFSTAT) & S3C2440_NFSTAT_READY;
327	return readb(info->regs + S3C2410_NFSTAT) & S3C2410_NFSTAT_BUSY;
328}
329
330
331/* ECC handling functions */
332
333static int s3c2410_nand_correct_data(struct mtd_info *mtd, u_char *dat,
334				     u_char *read_ecc, u_char *calc_ecc)
335{
336	pr_debug("s3c2410_nand_correct_data(%p,%p,%p,%p)\n",
337		 mtd, dat, read_ecc, calc_ecc);
338
339	pr_debug("eccs: read %02x,%02x,%02x vs calc %02x,%02x,%02x\n",
340		 read_ecc[0], read_ecc[1], read_ecc[2],
341		 calc_ecc[0], calc_ecc[1], calc_ecc[2]);
342
343	if (read_ecc[0] == calc_ecc[0] &&
344	    read_ecc[1] == calc_ecc[1] &&
345	    read_ecc[2] == calc_ecc[2])
346		return 0;
347
348	/* we curently have no method for correcting the error */
349
350	return -1;
351}
352
353/* ECC functions
354 *
355 * These allow the s3c2410 and s3c2440 to use the controller's ECC
356 * generator block to ECC the data as it passes through]
357*/
358
359static void s3c2410_nand_enable_hwecc(struct mtd_info *mtd, int mode)
360{
361	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
362	unsigned long ctrl;
363
364	ctrl = readl(info->regs + S3C2410_NFCONF);
365	ctrl |= S3C2410_NFCONF_INITECC;
366	writel(ctrl, info->regs + S3C2410_NFCONF);
367}
368
369static void s3c2440_nand_enable_hwecc(struct mtd_info *mtd, int mode)
370{
371	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
372	unsigned long ctrl;
373
374	ctrl = readl(info->regs + S3C2440_NFCONT);
375	writel(ctrl | S3C2440_NFCONT_INITECC, info->regs + S3C2440_NFCONT);
376}
377
378static int s3c2410_nand_calculate_ecc(struct mtd_info *mtd,
379				      const u_char *dat, u_char *ecc_code)
380{
381	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
382
383	ecc_code[0] = readb(info->regs + S3C2410_NFECC + 0);
384	ecc_code[1] = readb(info->regs + S3C2410_NFECC + 1);
385	ecc_code[2] = readb(info->regs + S3C2410_NFECC + 2);
386
387	pr_debug("calculate_ecc: returning ecc %02x,%02x,%02x\n",
388		 ecc_code[0], ecc_code[1], ecc_code[2]);
389
390	return 0;
391}
392
393
394static int s3c2440_nand_calculate_ecc(struct mtd_info *mtd,
395				      const u_char *dat, u_char *ecc_code)
396{
397	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
398	unsigned long ecc = readl(info->regs + S3C2440_NFMECC0);
399
400	ecc_code[0] = ecc;
401	ecc_code[1] = ecc >> 8;
402	ecc_code[2] = ecc >> 16;
403
404	pr_debug("calculate_ecc: returning ecc %02x,%02x,%02x\n",
405		 ecc_code[0], ecc_code[1], ecc_code[2]);
406
407	return 0;
408}
409
410
411/* over-ride the standard functions for a little more speed. We can
412 * use read/write block to move the data buffers to/from the controller
413*/
414
415static void s3c2410_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
416{
417	struct nand_chip *this = mtd->priv;
418	readsb(this->IO_ADDR_R, buf, len);
419}
420
421static void s3c2410_nand_write_buf(struct mtd_info *mtd,
422				   const u_char *buf, int len)
423{
424	struct nand_chip *this = mtd->priv;
425	writesb(this->IO_ADDR_W, buf, len);
426}
427
428/* device management functions */
429
430static int s3c2410_nand_remove(struct device *dev)
431{
432	struct s3c2410_nand_info *info = to_nand_info(dev);
433
434	dev_set_drvdata(dev, NULL);
435
436	if (info == NULL)
437		return 0;
438
439	/* first thing we need to do is release all our mtds
440	 * and their partitions, then go through freeing the
441	 * resources used
442	 */
443
444	if (info->mtds != NULL) {
445		struct s3c2410_nand_mtd *ptr = info->mtds;
446		int mtdno;
447
448		for (mtdno = 0; mtdno < info->mtd_count; mtdno++, ptr++) {
449			pr_debug("releasing mtd %d (%p)\n", mtdno, ptr);
450			nand_release(&ptr->mtd);
451		}
452
453		kfree(info->mtds);
454	}
455
456	/* free the common resources */
457
458	if (info->clk != NULL && !IS_ERR(info->clk)) {
459		clk_disable(info->clk);
460		clk_unuse(info->clk);
461		clk_put(info->clk);
462	}
463
464	if (info->regs != NULL) {
465		iounmap(info->regs);
466		info->regs = NULL;
467	}
468
469	if (info->area != NULL) {
470		release_resource(info->area);
471		kfree(info->area);
472		info->area = NULL;
473	}
474
475	kfree(info);
476
477	return 0;
478}
479
480#ifdef CONFIG_MTD_PARTITIONS
481static int s3c2410_nand_add_partition(struct s3c2410_nand_info *info,
482				      struct s3c2410_nand_mtd *mtd,
483				      struct s3c2410_nand_set *set)
484{
485	if (set == NULL)
486		return add_mtd_device(&mtd->mtd);
487
488	if (set->nr_partitions > 0 && set->partitions != NULL) {
489		return add_mtd_partitions(&mtd->mtd,
490					  set->partitions,
491					  set->nr_partitions);
492	}
493
494	return add_mtd_device(&mtd->mtd);
495}
496#else
497static int s3c2410_nand_add_partition(struct s3c2410_nand_info *info,
498				      struct s3c2410_nand_mtd *mtd,
499				      struct s3c2410_nand_set *set)
500{
501	return add_mtd_device(&mtd->mtd);
502}
503#endif
504
505/* s3c2410_nand_init_chip
506 *
507 * init a single instance of an chip
508*/
509
510static void s3c2410_nand_init_chip(struct s3c2410_nand_info *info,
511				   struct s3c2410_nand_mtd *nmtd,
512				   struct s3c2410_nand_set *set)
513{
514	struct nand_chip *chip = &nmtd->chip;
515
516	chip->IO_ADDR_R	   = info->regs + S3C2410_NFDATA;
517	chip->IO_ADDR_W    = info->regs + S3C2410_NFDATA;
518	chip->hwcontrol    = s3c2410_nand_hwcontrol;
519	chip->dev_ready    = s3c2410_nand_devready;
520	chip->write_buf    = s3c2410_nand_write_buf;
521	chip->read_buf     = s3c2410_nand_read_buf;
522	chip->select_chip  = s3c2410_nand_select_chip;
523	chip->chip_delay   = 50;
524	chip->priv	   = nmtd;
525	chip->options	   = 0;
526	chip->controller   = &info->controller;
527
528	if (info->is_s3c2440) {
529		chip->IO_ADDR_R	 = info->regs + S3C2440_NFDATA;
530		chip->IO_ADDR_W  = info->regs + S3C2440_NFDATA;
531		chip->hwcontrol  = s3c2440_nand_hwcontrol;
532	}
533
534	nmtd->info	   = info;
535	nmtd->mtd.priv	   = chip;
536	nmtd->set	   = set;
537
538	if (hardware_ecc) {
539		chip->correct_data  = s3c2410_nand_correct_data;
540		chip->enable_hwecc  = s3c2410_nand_enable_hwecc;
541		chip->calculate_ecc = s3c2410_nand_calculate_ecc;
542		chip->eccmode	    = NAND_ECC_HW3_512;
543		chip->autooob       = &nand_hw_eccoob;
544
545		if (info->is_s3c2440) {
546			chip->enable_hwecc  = s3c2440_nand_enable_hwecc;
547			chip->calculate_ecc = s3c2440_nand_calculate_ecc;
548		}
549	} else {
550		chip->eccmode	    = NAND_ECC_SOFT;
551	}
552}
553
554/* s3c2410_nand_probe
555 *
556 * called by device layer when it finds a device matching
557 * one our driver can handled. This code checks to see if
558 * it can allocate all necessary resources then calls the
559 * nand layer to look for devices
560*/
561
562static int s3c24xx_nand_probe(struct device *dev, int is_s3c2440)
563{
564	struct platform_device *pdev = to_platform_device(dev);
565	struct s3c2410_platform_nand *plat = to_nand_plat(dev);
566	struct s3c2410_nand_info *info;
567	struct s3c2410_nand_mtd *nmtd;
568	struct s3c2410_nand_set *sets;
569	struct resource *res;
570	int err = 0;
571	int size;
572	int nr_sets;
573	int setno;
574
575	pr_debug("s3c2410_nand_probe(%p)\n", dev);
576
577	info = kmalloc(sizeof(*info), GFP_KERNEL);
578	if (info == NULL) {
579		printk(KERN_ERR PFX "no memory for flash info\n");
580		err = -ENOMEM;
581		goto exit_error;
582	}
583
584	memzero(info, sizeof(*info));
585	dev_set_drvdata(dev, info);
586
587	spin_lock_init(&info->controller.lock);
588	init_waitqueue_head(&info->controller.wq);
589
590	/* get the clock source and enable it */
591
592	info->clk = clk_get(dev, "nand");
593	if (IS_ERR(info->clk)) {
594		printk(KERN_ERR PFX "failed to get clock");
595		err = -ENOENT;
596		goto exit_error;
597	}
598
599	clk_use(info->clk);
600	clk_enable(info->clk);
601
602	/* allocate and map the resource */
603
604	/* currently we assume we have the one resource */
605	res  = pdev->resource;
606	size = res->end - res->start + 1;
607
608	info->area = request_mem_region(res->start, size, pdev->name);
609
610	if (info->area == NULL) {
611		printk(KERN_ERR PFX "cannot reserve register region\n");
612		err = -ENOENT;
613		goto exit_error;
614	}
615
616	info->device     = dev;
617	info->platform   = plat;
618	info->regs       = ioremap(res->start, size);
619	info->is_s3c2440 = is_s3c2440;
620
621	if (info->regs == NULL) {
622		printk(KERN_ERR PFX "cannot reserve register region\n");
623		err = -EIO;
624		goto exit_error;
625	}
626
627	printk(KERN_INFO PFX "mapped registers at %p\n", info->regs);
628
629	/* initialise the hardware */
630
631	err = s3c2410_nand_inithw(info, dev);
632	if (err != 0)
633		goto exit_error;
634
635	sets = (plat != NULL) ? plat->sets : NULL;
636	nr_sets = (plat != NULL) ? plat->nr_sets : 1;
637
638	info->mtd_count = nr_sets;
639
640	/* allocate our information */
641
642	size = nr_sets * sizeof(*info->mtds);
643	info->mtds = kmalloc(size, GFP_KERNEL);
644	if (info->mtds == NULL) {
645		printk(KERN_ERR PFX "failed to allocate mtd storage\n");
646		err = -ENOMEM;
647		goto exit_error;
648	}
649
650	memzero(info->mtds, size);
651
652	/* initialise all possible chips */
653
654	nmtd = info->mtds;
655
656	for (setno = 0; setno < nr_sets; setno++, nmtd++) {
657		pr_debug("initialising set %d (%p, info %p)\n",
658			 setno, nmtd, info);
659
660		s3c2410_nand_init_chip(info, nmtd, sets);
661
662		nmtd->scan_res = nand_scan(&nmtd->mtd,
663					   (sets) ? sets->nr_chips : 1);
664
665		if (nmtd->scan_res == 0) {
666			s3c2410_nand_add_partition(info, nmtd, sets);
667		}
668
669		if (sets != NULL)
670			sets++;
671	}
672
673	pr_debug("initialised ok\n");
674	return 0;
675
676 exit_error:
677	s3c2410_nand_remove(dev);
678
679	if (err == 0)
680		err = -EINVAL;
681	return err;
682}
683
684/* driver device registration */
685
686static int s3c2410_nand_probe(struct device *dev)
687{
688	return s3c24xx_nand_probe(dev, 0);
689}
690
691static int s3c2440_nand_probe(struct device *dev)
692{
693	return s3c24xx_nand_probe(dev, 1);
694}
695
696static struct device_driver s3c2410_nand_driver = {
697	.name		= "s3c2410-nand",
698	.bus		= &platform_bus_type,
699	.probe		= s3c2410_nand_probe,
700	.remove		= s3c2410_nand_remove,
701};
702
703static struct device_driver s3c2440_nand_driver = {
704	.name		= "s3c2440-nand",
705	.bus		= &platform_bus_type,
706	.probe		= s3c2440_nand_probe,
707	.remove		= s3c2410_nand_remove,
708};
709
710static int __init s3c2410_nand_init(void)
711{
712	printk("S3C24XX NAND Driver, (c) 2004 Simtec Electronics\n");
713
714	driver_register(&s3c2440_nand_driver);
715	return driver_register(&s3c2410_nand_driver);
716}
717
718static void __exit s3c2410_nand_exit(void)
719{
720	driver_unregister(&s3c2440_nand_driver);
721	driver_unregister(&s3c2410_nand_driver);
722}
723
724module_init(s3c2410_nand_init);
725module_exit(s3c2410_nand_exit);
726
727MODULE_LICENSE("GPL");
728MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>");
729MODULE_DESCRIPTION("S3C24XX MTD NAND driver");
730