onenand_base.c revision 3cd3a86b6fdcb80ad097850a0990bcf6251422fe
1/*
2 *  linux/drivers/mtd/onenand/onenand_base.c
3 *
4 *  Copyright (C) 2005-2007 Samsung Electronics
5 *  Kyungmin Park <kyungmin.park@samsung.com>
6 *
7 *  Credits:
8 *	Adrian Hunter <ext-adrian.hunter@nokia.com>:
9 *	auto-placement support, read-while load support, various fixes
10 *	Copyright (C) Nokia Corporation, 2007
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License version 2 as
14 * published by the Free Software Foundation.
15 */
16
17#include <linux/kernel.h>
18#include <linux/module.h>
19#include <linux/init.h>
20#include <linux/sched.h>
21#include <linux/interrupt.h>
22#include <linux/jiffies.h>
23#include <linux/mtd/mtd.h>
24#include <linux/mtd/onenand.h>
25#include <linux/mtd/partitions.h>
26
27#include <asm/io.h>
28
29/**
30 * onenand_oob_64 - oob info for large (2KB) page
31 */
32static struct nand_ecclayout onenand_oob_64 = {
33	.eccbytes	= 20,
34	.eccpos		= {
35		8, 9, 10, 11, 12,
36		24, 25, 26, 27, 28,
37		40, 41, 42, 43, 44,
38		56, 57, 58, 59, 60,
39		},
40	.oobfree	= {
41		{2, 3}, {14, 2}, {18, 3}, {30, 2},
42		{34, 3}, {46, 2}, {50, 3}, {62, 2}
43	}
44};
45
46/**
47 * onenand_oob_32 - oob info for middle (1KB) page
48 */
49static struct nand_ecclayout onenand_oob_32 = {
50	.eccbytes	= 10,
51	.eccpos		= {
52		8, 9, 10, 11, 12,
53		24, 25, 26, 27, 28,
54		},
55	.oobfree	= { {2, 3}, {14, 2}, {18, 3}, {30, 2} }
56};
57
58static const unsigned char ffchars[] = {
59	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
60	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 16 */
61	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
62	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 32 */
63	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
64	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 48 */
65	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
66	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 64 */
67};
68
69/**
70 * onenand_readw - [OneNAND Interface] Read OneNAND register
71 * @param addr		address to read
72 *
73 * Read OneNAND register
74 */
75static unsigned short onenand_readw(void __iomem *addr)
76{
77	return readw(addr);
78}
79
80/**
81 * onenand_writew - [OneNAND Interface] Write OneNAND register with value
82 * @param value		value to write
83 * @param addr		address to write
84 *
85 * Write OneNAND register with value
86 */
87static void onenand_writew(unsigned short value, void __iomem *addr)
88{
89	writew(value, addr);
90}
91
92/**
93 * onenand_block_address - [DEFAULT] Get block address
94 * @param this		onenand chip data structure
95 * @param block		the block
96 * @return		translated block address if DDP, otherwise same
97 *
98 * Setup Start Address 1 Register (F100h)
99 */
100static int onenand_block_address(struct onenand_chip *this, int block)
101{
102	/* Device Flash Core select, NAND Flash Block Address */
103	if (block & this->density_mask)
104		return ONENAND_DDP_CHIP1 | (block ^ this->density_mask);
105
106	return block;
107}
108
109/**
110 * onenand_bufferram_address - [DEFAULT] Get bufferram address
111 * @param this		onenand chip data structure
112 * @param block		the block
113 * @return		set DBS value if DDP, otherwise 0
114 *
115 * Setup Start Address 2 Register (F101h) for DDP
116 */
117static int onenand_bufferram_address(struct onenand_chip *this, int block)
118{
119	/* Device BufferRAM Select */
120	if (block & this->density_mask)
121		return ONENAND_DDP_CHIP1;
122
123	return ONENAND_DDP_CHIP0;
124}
125
126/**
127 * onenand_page_address - [DEFAULT] Get page address
128 * @param page		the page address
129 * @param sector	the sector address
130 * @return		combined page and sector address
131 *
132 * Setup Start Address 8 Register (F107h)
133 */
134static int onenand_page_address(int page, int sector)
135{
136	/* Flash Page Address, Flash Sector Address */
137	int fpa, fsa;
138
139	fpa = page & ONENAND_FPA_MASK;
140	fsa = sector & ONENAND_FSA_MASK;
141
142	return ((fpa << ONENAND_FPA_SHIFT) | fsa);
143}
144
145/**
146 * onenand_buffer_address - [DEFAULT] Get buffer address
147 * @param dataram1	DataRAM index
148 * @param sectors	the sector address
149 * @param count		the number of sectors
150 * @return		the start buffer value
151 *
152 * Setup Start Buffer Register (F200h)
153 */
154static int onenand_buffer_address(int dataram1, int sectors, int count)
155{
156	int bsa, bsc;
157
158	/* BufferRAM Sector Address */
159	bsa = sectors & ONENAND_BSA_MASK;
160
161	if (dataram1)
162		bsa |= ONENAND_BSA_DATARAM1;	/* DataRAM1 */
163	else
164		bsa |= ONENAND_BSA_DATARAM0;	/* DataRAM0 */
165
166	/* BufferRAM Sector Count */
167	bsc = count & ONENAND_BSC_MASK;
168
169	return ((bsa << ONENAND_BSA_SHIFT) | bsc);
170}
171
172/**
173 * onenand_command - [DEFAULT] Send command to OneNAND device
174 * @param mtd		MTD device structure
175 * @param cmd		the command to be sent
176 * @param addr		offset to read from or write to
177 * @param len		number of bytes to read or write
178 *
179 * Send command to OneNAND device. This function is used for middle/large page
180 * devices (1KB/2KB Bytes per page)
181 */
182static int onenand_command(struct mtd_info *mtd, int cmd, loff_t addr, size_t len)
183{
184	struct onenand_chip *this = mtd->priv;
185	int value, readcmd = 0, block_cmd = 0;
186	int block, page;
187
188	/* Address translation */
189	switch (cmd) {
190	case ONENAND_CMD_UNLOCK:
191	case ONENAND_CMD_LOCK:
192	case ONENAND_CMD_LOCK_TIGHT:
193	case ONENAND_CMD_UNLOCK_ALL:
194		block = -1;
195		page = -1;
196		break;
197
198	case ONENAND_CMD_ERASE:
199	case ONENAND_CMD_BUFFERRAM:
200	case ONENAND_CMD_OTP_ACCESS:
201		block_cmd = 1;
202		block = (int) (addr >> this->erase_shift);
203		page = -1;
204		break;
205
206	default:
207		block = (int) (addr >> this->erase_shift);
208		page = (int) (addr >> this->page_shift);
209
210		if (ONENAND_IS_2PLANE(this)) {
211			/* Make the even block number */
212			block &= ~1;
213			/* Is it the odd plane? */
214			if (addr & this->writesize)
215				block++;
216			page >>= 1;
217		}
218		page &= this->page_mask;
219		break;
220	}
221
222	/* NOTE: The setting order of the registers is very important! */
223	if (cmd == ONENAND_CMD_BUFFERRAM) {
224		/* Select DataRAM for DDP */
225		value = onenand_bufferram_address(this, block);
226		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
227
228		if (ONENAND_IS_2PLANE(this))
229			/* It is always BufferRAM0 */
230			ONENAND_SET_BUFFERRAM0(this);
231		else
232			/* Switch to the next data buffer */
233			ONENAND_SET_NEXT_BUFFERRAM(this);
234
235		return 0;
236	}
237
238	if (block != -1) {
239		/* Write 'DFS, FBA' of Flash */
240		value = onenand_block_address(this, block);
241		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
242
243		if (block_cmd) {
244			/* Select DataRAM for DDP */
245			value = onenand_bufferram_address(this, block);
246			this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
247		}
248	}
249
250	if (page != -1) {
251		/* Now we use page size operation */
252		int sectors = 4, count = 4;
253		int dataram;
254
255		switch (cmd) {
256		case ONENAND_CMD_READ:
257		case ONENAND_CMD_READOOB:
258			dataram = ONENAND_SET_NEXT_BUFFERRAM(this);
259			readcmd = 1;
260			break;
261
262		default:
263			if (ONENAND_IS_2PLANE(this) && cmd == ONENAND_CMD_PROG)
264				cmd = ONENAND_CMD_2X_PROG;
265			dataram = ONENAND_CURRENT_BUFFERRAM(this);
266			break;
267		}
268
269		/* Write 'FPA, FSA' of Flash */
270		value = onenand_page_address(page, sectors);
271		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS8);
272
273		/* Write 'BSA, BSC' of DataRAM */
274		value = onenand_buffer_address(dataram, sectors, count);
275		this->write_word(value, this->base + ONENAND_REG_START_BUFFER);
276
277		if (readcmd) {
278			/* Select DataRAM for DDP */
279			value = onenand_bufferram_address(this, block);
280			this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
281		}
282	}
283
284	/* Interrupt clear */
285	this->write_word(ONENAND_INT_CLEAR, this->base + ONENAND_REG_INTERRUPT);
286
287	/* Write command */
288	this->write_word(cmd, this->base + ONENAND_REG_COMMAND);
289
290	return 0;
291}
292
293/**
294 * onenand_wait - [DEFAULT] wait until the command is done
295 * @param mtd		MTD device structure
296 * @param state		state to select the max. timeout value
297 *
298 * Wait for command done. This applies to all OneNAND command
299 * Read can take up to 30us, erase up to 2ms and program up to 350us
300 * according to general OneNAND specs
301 */
302static int onenand_wait(struct mtd_info *mtd, int state)
303{
304	struct onenand_chip * this = mtd->priv;
305	unsigned long timeout;
306	unsigned int flags = ONENAND_INT_MASTER;
307	unsigned int interrupt = 0;
308	unsigned int ctrl;
309
310	/* The 20 msec is enough */
311	timeout = jiffies + msecs_to_jiffies(20);
312	while (time_before(jiffies, timeout)) {
313		interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
314
315		if (interrupt & flags)
316			break;
317
318		if (state != FL_READING)
319			cond_resched();
320	}
321	/* To get correct interrupt status in timeout case */
322	interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
323
324	ctrl = this->read_word(this->base + ONENAND_REG_CTRL_STATUS);
325
326	if (ctrl & ONENAND_CTRL_ERROR) {
327		printk(KERN_ERR "onenand_wait: controller error = 0x%04x\n", ctrl);
328		if (ctrl & ONENAND_CTRL_LOCK)
329			printk(KERN_ERR "onenand_wait: it's locked error.\n");
330		return -EIO;
331	}
332
333	if (interrupt & ONENAND_INT_READ) {
334		int ecc = this->read_word(this->base + ONENAND_REG_ECC_STATUS);
335		if (ecc) {
336			if (ecc & ONENAND_ECC_2BIT_ALL) {
337				printk(KERN_ERR "onenand_wait: ECC error = 0x%04x\n", ecc);
338				mtd->ecc_stats.failed++;
339				return -EBADMSG;
340			} else if (ecc & ONENAND_ECC_1BIT_ALL) {
341				printk(KERN_INFO "onenand_wait: correctable ECC error = 0x%04x\n", ecc);
342				mtd->ecc_stats.corrected++;
343			}
344		}
345	} else if (state == FL_READING) {
346		printk(KERN_ERR "onenand_wait: read timeout! ctrl=0x%04x intr=0x%04x\n", ctrl, interrupt);
347		return -EIO;
348	}
349
350	return 0;
351}
352
353/*
354 * onenand_interrupt - [DEFAULT] onenand interrupt handler
355 * @param irq		onenand interrupt number
356 * @param dev_id	interrupt data
357 *
358 * complete the work
359 */
360static irqreturn_t onenand_interrupt(int irq, void *data)
361{
362	struct onenand_chip *this = (struct onenand_chip *) data;
363
364	/* To handle shared interrupt */
365	if (!this->complete.done)
366		complete(&this->complete);
367
368	return IRQ_HANDLED;
369}
370
371/*
372 * onenand_interrupt_wait - [DEFAULT] wait until the command is done
373 * @param mtd		MTD device structure
374 * @param state		state to select the max. timeout value
375 *
376 * Wait for command done.
377 */
378static int onenand_interrupt_wait(struct mtd_info *mtd, int state)
379{
380	struct onenand_chip *this = mtd->priv;
381
382	wait_for_completion(&this->complete);
383
384	return onenand_wait(mtd, state);
385}
386
387/*
388 * onenand_try_interrupt_wait - [DEFAULT] try interrupt wait
389 * @param mtd		MTD device structure
390 * @param state		state to select the max. timeout value
391 *
392 * Try interrupt based wait (It is used one-time)
393 */
394static int onenand_try_interrupt_wait(struct mtd_info *mtd, int state)
395{
396	struct onenand_chip *this = mtd->priv;
397	unsigned long remain, timeout;
398
399	/* We use interrupt wait first */
400	this->wait = onenand_interrupt_wait;
401
402	timeout = msecs_to_jiffies(100);
403	remain = wait_for_completion_timeout(&this->complete, timeout);
404	if (!remain) {
405		printk(KERN_INFO "OneNAND: There's no interrupt. "
406				"We use the normal wait\n");
407
408		/* Release the irq */
409		free_irq(this->irq, this);
410
411		this->wait = onenand_wait;
412	}
413
414	return onenand_wait(mtd, state);
415}
416
417/*
418 * onenand_setup_wait - [OneNAND Interface] setup onenand wait method
419 * @param mtd		MTD device structure
420 *
421 * There's two method to wait onenand work
422 * 1. polling - read interrupt status register
423 * 2. interrupt - use the kernel interrupt method
424 */
425static void onenand_setup_wait(struct mtd_info *mtd)
426{
427	struct onenand_chip *this = mtd->priv;
428	int syscfg;
429
430	init_completion(&this->complete);
431
432	if (this->irq <= 0) {
433		this->wait = onenand_wait;
434		return;
435	}
436
437	if (request_irq(this->irq, &onenand_interrupt,
438				IRQF_SHARED, "onenand", this)) {
439		/* If we can't get irq, use the normal wait */
440		this->wait = onenand_wait;
441		return;
442	}
443
444	/* Enable interrupt */
445	syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
446	syscfg |= ONENAND_SYS_CFG1_IOBE;
447	this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);
448
449	this->wait = onenand_try_interrupt_wait;
450}
451
452/**
453 * onenand_bufferram_offset - [DEFAULT] BufferRAM offset
454 * @param mtd		MTD data structure
455 * @param area		BufferRAM area
456 * @return		offset given area
457 *
458 * Return BufferRAM offset given area
459 */
460static inline int onenand_bufferram_offset(struct mtd_info *mtd, int area)
461{
462	struct onenand_chip *this = mtd->priv;
463
464	if (ONENAND_CURRENT_BUFFERRAM(this)) {
465		/* Note: the 'this->writesize' is a real page size */
466		if (area == ONENAND_DATARAM)
467			return this->writesize;
468		if (area == ONENAND_SPARERAM)
469			return mtd->oobsize;
470	}
471
472	return 0;
473}
474
475/**
476 * onenand_read_bufferram - [OneNAND Interface] Read the bufferram area
477 * @param mtd		MTD data structure
478 * @param area		BufferRAM area
479 * @param buffer	the databuffer to put/get data
480 * @param offset	offset to read from or write to
481 * @param count		number of bytes to read/write
482 *
483 * Read the BufferRAM area
484 */
485static int onenand_read_bufferram(struct mtd_info *mtd, int area,
486		unsigned char *buffer, int offset, size_t count)
487{
488	struct onenand_chip *this = mtd->priv;
489	void __iomem *bufferram;
490
491	bufferram = this->base + area;
492
493	bufferram += onenand_bufferram_offset(mtd, area);
494
495	if (ONENAND_CHECK_BYTE_ACCESS(count)) {
496		unsigned short word;
497
498		/* Align with word(16-bit) size */
499		count--;
500
501		/* Read word and save byte */
502		word = this->read_word(bufferram + offset + count);
503		buffer[count] = (word & 0xff);
504	}
505
506	memcpy(buffer, bufferram + offset, count);
507
508	return 0;
509}
510
511/**
512 * onenand_sync_read_bufferram - [OneNAND Interface] Read the bufferram area with Sync. Burst mode
513 * @param mtd		MTD data structure
514 * @param area		BufferRAM area
515 * @param buffer	the databuffer to put/get data
516 * @param offset	offset to read from or write to
517 * @param count		number of bytes to read/write
518 *
519 * Read the BufferRAM area with Sync. Burst Mode
520 */
521static int onenand_sync_read_bufferram(struct mtd_info *mtd, int area,
522		unsigned char *buffer, int offset, size_t count)
523{
524	struct onenand_chip *this = mtd->priv;
525	void __iomem *bufferram;
526
527	bufferram = this->base + area;
528
529	bufferram += onenand_bufferram_offset(mtd, area);
530
531	this->mmcontrol(mtd, ONENAND_SYS_CFG1_SYNC_READ);
532
533	if (ONENAND_CHECK_BYTE_ACCESS(count)) {
534		unsigned short word;
535
536		/* Align with word(16-bit) size */
537		count--;
538
539		/* Read word and save byte */
540		word = this->read_word(bufferram + offset + count);
541		buffer[count] = (word & 0xff);
542	}
543
544	memcpy(buffer, bufferram + offset, count);
545
546	this->mmcontrol(mtd, 0);
547
548	return 0;
549}
550
551/**
552 * onenand_write_bufferram - [OneNAND Interface] Write the bufferram area
553 * @param mtd		MTD data structure
554 * @param area		BufferRAM area
555 * @param buffer	the databuffer to put/get data
556 * @param offset	offset to read from or write to
557 * @param count		number of bytes to read/write
558 *
559 * Write the BufferRAM area
560 */
561static int onenand_write_bufferram(struct mtd_info *mtd, int area,
562		const unsigned char *buffer, int offset, size_t count)
563{
564	struct onenand_chip *this = mtd->priv;
565	void __iomem *bufferram;
566
567	bufferram = this->base + area;
568
569	bufferram += onenand_bufferram_offset(mtd, area);
570
571	if (ONENAND_CHECK_BYTE_ACCESS(count)) {
572		unsigned short word;
573		int byte_offset;
574
575		/* Align with word(16-bit) size */
576		count--;
577
578		/* Calculate byte access offset */
579		byte_offset = offset + count;
580
581		/* Read word and save byte */
582		word = this->read_word(bufferram + byte_offset);
583		word = (word & ~0xff) | buffer[count];
584		this->write_word(word, bufferram + byte_offset);
585	}
586
587	memcpy(bufferram + offset, buffer, count);
588
589	return 0;
590}
591
592/**
593 * onenand_get_2x_blockpage - [GENERIC] Get blockpage at 2x program mode
594 * @param mtd		MTD data structure
595 * @param addr		address to check
596 * @return		blockpage address
597 *
598 * Get blockpage address at 2x program mode
599 */
600static int onenand_get_2x_blockpage(struct mtd_info *mtd, loff_t addr)
601{
602	struct onenand_chip *this = mtd->priv;
603	int blockpage, block, page;
604
605	/* Calculate the even block number */
606	block = (int) (addr >> this->erase_shift) & ~1;
607	/* Is it the odd plane? */
608	if (addr & this->writesize)
609		block++;
610	page = (int) (addr >> (this->page_shift + 1)) & this->page_mask;
611	blockpage = (block << 7) | page;
612
613	return blockpage;
614}
615
616/**
617 * onenand_check_bufferram - [GENERIC] Check BufferRAM information
618 * @param mtd		MTD data structure
619 * @param addr		address to check
620 * @return		1 if there are valid data, otherwise 0
621 *
622 * Check bufferram if there is data we required
623 */
624static int onenand_check_bufferram(struct mtd_info *mtd, loff_t addr)
625{
626	struct onenand_chip *this = mtd->priv;
627	int blockpage, found = 0;
628	unsigned int i;
629
630	if (ONENAND_IS_2PLANE(this))
631		blockpage = onenand_get_2x_blockpage(mtd, addr);
632	else
633		blockpage = (int) (addr >> this->page_shift);
634
635	/* Is there valid data? */
636	i = ONENAND_CURRENT_BUFFERRAM(this);
637	if (this->bufferram[i].blockpage == blockpage)
638		found = 1;
639	else {
640		/* Check another BufferRAM */
641		i = ONENAND_NEXT_BUFFERRAM(this);
642		if (this->bufferram[i].blockpage == blockpage) {
643			ONENAND_SET_NEXT_BUFFERRAM(this);
644			found = 1;
645		}
646	}
647
648	if (found && ONENAND_IS_DDP(this)) {
649		/* Select DataRAM for DDP */
650		int block = (int) (addr >> this->erase_shift);
651		int value = onenand_bufferram_address(this, block);
652		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
653	}
654
655	return found;
656}
657
658/**
659 * onenand_update_bufferram - [GENERIC] Update BufferRAM information
660 * @param mtd		MTD data structure
661 * @param addr		address to update
662 * @param valid		valid flag
663 *
664 * Update BufferRAM information
665 */
666static void onenand_update_bufferram(struct mtd_info *mtd, loff_t addr,
667		int valid)
668{
669	struct onenand_chip *this = mtd->priv;
670	int blockpage;
671	unsigned int i;
672
673	if (ONENAND_IS_2PLANE(this))
674		blockpage = onenand_get_2x_blockpage(mtd, addr);
675	else
676		blockpage = (int) (addr >> this->page_shift);
677
678	/* Invalidate another BufferRAM */
679	i = ONENAND_NEXT_BUFFERRAM(this);
680	if (this->bufferram[i].blockpage == blockpage)
681		this->bufferram[i].blockpage = -1;
682
683	/* Update BufferRAM */
684	i = ONENAND_CURRENT_BUFFERRAM(this);
685	if (valid)
686		this->bufferram[i].blockpage = blockpage;
687	else
688		this->bufferram[i].blockpage = -1;
689}
690
691/**
692 * onenand_invalidate_bufferram - [GENERIC] Invalidate BufferRAM information
693 * @param mtd		MTD data structure
694 * @param addr		start address to invalidate
695 * @param len		length to invalidate
696 *
697 * Invalidate BufferRAM information
698 */
699static void onenand_invalidate_bufferram(struct mtd_info *mtd, loff_t addr,
700		unsigned int len)
701{
702	struct onenand_chip *this = mtd->priv;
703	int i;
704	loff_t end_addr = addr + len;
705
706	/* Invalidate BufferRAM */
707	for (i = 0; i < MAX_BUFFERRAM; i++) {
708		loff_t buf_addr = this->bufferram[i].blockpage << this->page_shift;
709		if (buf_addr >= addr && buf_addr < end_addr)
710			this->bufferram[i].blockpage = -1;
711	}
712}
713
714/**
715 * onenand_get_device - [GENERIC] Get chip for selected access
716 * @param mtd		MTD device structure
717 * @param new_state	the state which is requested
718 *
719 * Get the device and lock it for exclusive access
720 */
721static int onenand_get_device(struct mtd_info *mtd, int new_state)
722{
723	struct onenand_chip *this = mtd->priv;
724	DECLARE_WAITQUEUE(wait, current);
725
726	/*
727	 * Grab the lock and see if the device is available
728	 */
729	while (1) {
730		spin_lock(&this->chip_lock);
731		if (this->state == FL_READY) {
732			this->state = new_state;
733			spin_unlock(&this->chip_lock);
734			break;
735		}
736		if (new_state == FL_PM_SUSPENDED) {
737			spin_unlock(&this->chip_lock);
738			return (this->state == FL_PM_SUSPENDED) ? 0 : -EAGAIN;
739		}
740		set_current_state(TASK_UNINTERRUPTIBLE);
741		add_wait_queue(&this->wq, &wait);
742		spin_unlock(&this->chip_lock);
743		schedule();
744		remove_wait_queue(&this->wq, &wait);
745	}
746
747	return 0;
748}
749
750/**
751 * onenand_release_device - [GENERIC] release chip
752 * @param mtd		MTD device structure
753 *
754 * Deselect, release chip lock and wake up anyone waiting on the device
755 */
756static void onenand_release_device(struct mtd_info *mtd)
757{
758	struct onenand_chip *this = mtd->priv;
759
760	/* Release the chip */
761	spin_lock(&this->chip_lock);
762	this->state = FL_READY;
763	wake_up(&this->wq);
764	spin_unlock(&this->chip_lock);
765}
766
767/**
768 * onenand_transfer_auto_oob - [Internal] oob auto-placement transfer
769 * @param mtd		MTD device structure
770 * @param buf		destination address
771 * @param column	oob offset to read from
772 * @param thislen	oob length to read
773 */
774static int onenand_transfer_auto_oob(struct mtd_info *mtd, uint8_t *buf, int column,
775				int thislen)
776{
777	struct onenand_chip *this = mtd->priv;
778	struct nand_oobfree *free;
779	int readcol = column;
780	int readend = column + thislen;
781	int lastgap = 0;
782	unsigned int i;
783	uint8_t *oob_buf = this->oob_buf;
784
785	free = this->ecclayout->oobfree;
786	for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES && free->length; i++, free++) {
787		if (readcol >= lastgap)
788			readcol += free->offset - lastgap;
789		if (readend >= lastgap)
790			readend += free->offset - lastgap;
791		lastgap = free->offset + free->length;
792	}
793	this->read_bufferram(mtd, ONENAND_SPARERAM, oob_buf, 0, mtd->oobsize);
794	free = this->ecclayout->oobfree;
795	for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES && free->length; i++, free++) {
796		int free_end = free->offset + free->length;
797		if (free->offset < readend && free_end > readcol) {
798			int st = max_t(int,free->offset,readcol);
799			int ed = min_t(int,free_end,readend);
800			int n = ed - st;
801			memcpy(buf, oob_buf + st, n);
802			buf += n;
803		} else if (column == 0)
804			break;
805	}
806	return 0;
807}
808
809/**
810 * onenand_read_ops_nolock - [OneNAND Interface] OneNAND read main and/or out-of-band
811 * @param mtd		MTD device structure
812 * @param from		offset to read from
813 * @param ops:		oob operation description structure
814 *
815 * OneNAND read main and/or out-of-band data
816 */
817static int onenand_read_ops_nolock(struct mtd_info *mtd, loff_t from,
818				struct mtd_oob_ops *ops)
819{
820	struct onenand_chip *this = mtd->priv;
821	struct mtd_ecc_stats stats;
822	size_t len = ops->len;
823	size_t ooblen = ops->ooblen;
824	u_char *buf = ops->datbuf;
825	u_char *oobbuf = ops->oobbuf;
826	int read = 0, column, thislen;
827	int oobread = 0, oobcolumn, thisooblen, oobsize;
828	int ret = 0, boundary = 0;
829	int writesize = this->writesize;
830
831	DEBUG(MTD_DEBUG_LEVEL3, "onenand_read_ops_nolock: from = 0x%08x, len = %i\n", (unsigned int) from, (int) len);
832
833	if (ops->mode == MTD_OOB_AUTO)
834		oobsize = this->ecclayout->oobavail;
835	else
836		oobsize = mtd->oobsize;
837
838	oobcolumn = from & (mtd->oobsize - 1);
839
840	/* Do not allow reads past end of device */
841	if ((from + len) > mtd->size) {
842		printk(KERN_ERR "onenand_read_ops_nolock: Attempt read beyond end of device\n");
843		ops->retlen = 0;
844		ops->oobretlen = 0;
845		return -EINVAL;
846	}
847
848	stats = mtd->ecc_stats;
849
850 	/* Read-while-load method */
851
852 	/* Do first load to bufferRAM */
853 	if (read < len) {
854 		if (!onenand_check_bufferram(mtd, from)) {
855			this->command(mtd, ONENAND_CMD_READ, from, writesize);
856 			ret = this->wait(mtd, FL_READING);
857 			onenand_update_bufferram(mtd, from, !ret);
858 		}
859 	}
860
861	thislen = min_t(int, writesize, len - read);
862	column = from & (writesize - 1);
863	if (column + thislen > writesize)
864		thislen = writesize - column;
865
866 	while (!ret) {
867 		/* If there is more to load then start next load */
868 		from += thislen;
869 		if (read + thislen < len) {
870			this->command(mtd, ONENAND_CMD_READ, from, writesize);
871 			/*
872 			 * Chip boundary handling in DDP
873 			 * Now we issued chip 1 read and pointed chip 1
874 			 * bufferam so we have to point chip 0 bufferam.
875 			 */
876 			if (ONENAND_IS_DDP(this) &&
877 			    unlikely(from == (this->chipsize >> 1))) {
878 				this->write_word(ONENAND_DDP_CHIP0, this->base + ONENAND_REG_START_ADDRESS2);
879 				boundary = 1;
880 			} else
881 				boundary = 0;
882 			ONENAND_SET_PREV_BUFFERRAM(this);
883 		}
884 		/* While load is going, read from last bufferRAM */
885 		this->read_bufferram(mtd, ONENAND_DATARAM, buf, column, thislen);
886
887		/* Read oob area if needed */
888		if (oobbuf) {
889			thisooblen = oobsize - oobcolumn;
890			thisooblen = min_t(int, thisooblen, ooblen - oobread);
891
892			if (ops->mode == MTD_OOB_AUTO)
893				onenand_transfer_auto_oob(mtd, oobbuf, oobcolumn, thisooblen);
894			else
895				this->read_bufferram(mtd, ONENAND_SPARERAM, oobbuf, oobcolumn, thisooblen);
896			oobread += thisooblen;
897			oobbuf += thisooblen;
898			oobcolumn = 0;
899		}
900
901 		/* See if we are done */
902 		read += thislen;
903 		if (read == len)
904 			break;
905 		/* Set up for next read from bufferRAM */
906 		if (unlikely(boundary))
907 			this->write_word(ONENAND_DDP_CHIP1, this->base + ONENAND_REG_START_ADDRESS2);
908 		ONENAND_SET_NEXT_BUFFERRAM(this);
909 		buf += thislen;
910		thislen = min_t(int, writesize, len - read);
911 		column = 0;
912 		cond_resched();
913 		/* Now wait for load */
914 		ret = this->wait(mtd, FL_READING);
915 		onenand_update_bufferram(mtd, from, !ret);
916 	}
917
918	/*
919	 * Return success, if no ECC failures, else -EBADMSG
920	 * fs driver will take care of that, because
921	 * retlen == desired len and result == -EBADMSG
922	 */
923	ops->retlen = read;
924	ops->oobretlen = oobread;
925
926	if (mtd->ecc_stats.failed - stats.failed)
927		return -EBADMSG;
928
929	if (ret)
930		return ret;
931
932	return mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0;
933}
934
935/**
936 * onenand_read_oob_nolock - [MTD Interface] OneNAND read out-of-band
937 * @param mtd		MTD device structure
938 * @param from		offset to read from
939 * @param ops:		oob operation description structure
940 *
941 * OneNAND read out-of-band data from the spare area
942 */
943static int onenand_read_oob_nolock(struct mtd_info *mtd, loff_t from,
944			struct mtd_oob_ops *ops)
945{
946	struct onenand_chip *this = mtd->priv;
947	int read = 0, thislen, column, oobsize;
948	size_t len = ops->ooblen;
949	mtd_oob_mode_t mode = ops->mode;
950	u_char *buf = ops->oobbuf;
951	int ret = 0;
952
953	from += ops->ooboffs;
954
955	DEBUG(MTD_DEBUG_LEVEL3, "onenand_read_oob_nolock: from = 0x%08x, len = %i\n", (unsigned int) from, (int) len);
956
957	/* Initialize return length value */
958	ops->oobretlen = 0;
959
960	if (mode == MTD_OOB_AUTO)
961		oobsize = this->ecclayout->oobavail;
962	else
963		oobsize = mtd->oobsize;
964
965	column = from & (mtd->oobsize - 1);
966
967	if (unlikely(column >= oobsize)) {
968		printk(KERN_ERR "onenand_read_oob_nolock: Attempted to start read outside oob\n");
969		return -EINVAL;
970	}
971
972	/* Do not allow reads past end of device */
973	if (unlikely(from >= mtd->size ||
974		     column + len > ((mtd->size >> this->page_shift) -
975				     (from >> this->page_shift)) * oobsize)) {
976		printk(KERN_ERR "onenand_read_oob_nolock: Attempted to read beyond end of device\n");
977		return -EINVAL;
978	}
979
980	while (read < len) {
981		cond_resched();
982
983		thislen = oobsize - column;
984		thislen = min_t(int, thislen, len);
985
986		this->command(mtd, ONENAND_CMD_READOOB, from, mtd->oobsize);
987
988		onenand_update_bufferram(mtd, from, 0);
989
990		ret = this->wait(mtd, FL_READING);
991		/* First copy data and check return value for ECC handling */
992
993		if (mode == MTD_OOB_AUTO)
994			onenand_transfer_auto_oob(mtd, buf, column, thislen);
995		else
996			this->read_bufferram(mtd, ONENAND_SPARERAM, buf, column, thislen);
997
998		if (ret) {
999			printk(KERN_ERR "onenand_read_oob_nolock: read failed = 0x%x\n", ret);
1000			break;
1001		}
1002
1003		read += thislen;
1004
1005		if (read == len)
1006			break;
1007
1008		buf += thislen;
1009
1010		/* Read more? */
1011		if (read < len) {
1012			/* Page size */
1013			from += mtd->writesize;
1014			column = 0;
1015		}
1016	}
1017
1018	ops->oobretlen = read;
1019	return ret;
1020}
1021
1022/**
1023 * onenand_read - [MTD Interface] Read data from flash
1024 * @param mtd		MTD device structure
1025 * @param from		offset to read from
1026 * @param len		number of bytes to read
1027 * @param retlen	pointer to variable to store the number of read bytes
1028 * @param buf		the databuffer to put data
1029 *
1030 * Read with ecc
1031*/
1032static int onenand_read(struct mtd_info *mtd, loff_t from, size_t len,
1033	size_t *retlen, u_char *buf)
1034{
1035	struct mtd_oob_ops ops = {
1036		.len	= len,
1037		.ooblen	= 0,
1038		.datbuf	= buf,
1039		.oobbuf	= NULL,
1040	};
1041	int ret;
1042
1043	onenand_get_device(mtd, FL_READING);
1044	ret = onenand_read_ops_nolock(mtd, from, &ops);
1045	onenand_release_device(mtd);
1046
1047	*retlen = ops.retlen;
1048	return ret;
1049}
1050
1051/**
1052 * onenand_read_oob - [MTD Interface] Read main and/or out-of-band
1053 * @param mtd:		MTD device structure
1054 * @param from:		offset to read from
1055 * @param ops:		oob operation description structure
1056
1057 * Read main and/or out-of-band
1058 */
1059static int onenand_read_oob(struct mtd_info *mtd, loff_t from,
1060			    struct mtd_oob_ops *ops)
1061{
1062	int ret;
1063
1064	switch (ops->mode) {
1065	case MTD_OOB_PLACE:
1066	case MTD_OOB_AUTO:
1067		break;
1068	case MTD_OOB_RAW:
1069		/* Not implemented yet */
1070	default:
1071		return -EINVAL;
1072	}
1073
1074	onenand_get_device(mtd, FL_READING);
1075	if (ops->datbuf)
1076		ret = onenand_read_ops_nolock(mtd, from, ops);
1077	else
1078		ret = onenand_read_oob_nolock(mtd, from, ops);
1079	onenand_release_device(mtd);
1080
1081	return ret;
1082}
1083
1084/**
1085 * onenand_bbt_wait - [DEFAULT] wait until the command is done
1086 * @param mtd		MTD device structure
1087 * @param state		state to select the max. timeout value
1088 *
1089 * Wait for command done.
1090 */
1091static int onenand_bbt_wait(struct mtd_info *mtd, int state)
1092{
1093	struct onenand_chip *this = mtd->priv;
1094	unsigned long timeout;
1095	unsigned int interrupt;
1096	unsigned int ctrl;
1097
1098	/* The 20 msec is enough */
1099	timeout = jiffies + msecs_to_jiffies(20);
1100	while (time_before(jiffies, timeout)) {
1101		interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
1102		if (interrupt & ONENAND_INT_MASTER)
1103			break;
1104	}
1105	/* To get correct interrupt status in timeout case */
1106	interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
1107	ctrl = this->read_word(this->base + ONENAND_REG_CTRL_STATUS);
1108
1109	if (ctrl & ONENAND_CTRL_ERROR) {
1110		printk(KERN_DEBUG "onenand_bbt_wait: controller error = 0x%04x\n", ctrl);
1111		/* Initial bad block case */
1112		if (ctrl & ONENAND_CTRL_LOAD)
1113			return ONENAND_BBT_READ_ERROR;
1114		return ONENAND_BBT_READ_FATAL_ERROR;
1115	}
1116
1117	if (interrupt & ONENAND_INT_READ) {
1118		int ecc = this->read_word(this->base + ONENAND_REG_ECC_STATUS);
1119		if (ecc & ONENAND_ECC_2BIT_ALL)
1120			return ONENAND_BBT_READ_ERROR;
1121	} else {
1122		printk(KERN_ERR "onenand_bbt_wait: read timeout!"
1123			"ctrl=0x%04x intr=0x%04x\n", ctrl, interrupt);
1124		return ONENAND_BBT_READ_FATAL_ERROR;
1125	}
1126
1127	return 0;
1128}
1129
1130/**
1131 * onenand_bbt_read_oob - [MTD Interface] OneNAND read out-of-band for bbt scan
1132 * @param mtd		MTD device structure
1133 * @param from		offset to read from
1134 * @param ops		oob operation description structure
1135 *
1136 * OneNAND read out-of-band data from the spare area for bbt scan
1137 */
1138int onenand_bbt_read_oob(struct mtd_info *mtd, loff_t from,
1139			    struct mtd_oob_ops *ops)
1140{
1141	struct onenand_chip *this = mtd->priv;
1142	int read = 0, thislen, column;
1143	int ret = 0;
1144	size_t len = ops->ooblen;
1145	u_char *buf = ops->oobbuf;
1146
1147	DEBUG(MTD_DEBUG_LEVEL3, "onenand_bbt_read_oob: from = 0x%08x, len = %zi\n", (unsigned int) from, len);
1148
1149	/* Initialize return value */
1150	ops->oobretlen = 0;
1151
1152	/* Do not allow reads past end of device */
1153	if (unlikely((from + len) > mtd->size)) {
1154		printk(KERN_ERR "onenand_bbt_read_oob: Attempt read beyond end of device\n");
1155		return ONENAND_BBT_READ_FATAL_ERROR;
1156	}
1157
1158	/* Grab the lock and see if the device is available */
1159	onenand_get_device(mtd, FL_READING);
1160
1161	column = from & (mtd->oobsize - 1);
1162
1163	while (read < len) {
1164		cond_resched();
1165
1166		thislen = mtd->oobsize - column;
1167		thislen = min_t(int, thislen, len);
1168
1169		this->command(mtd, ONENAND_CMD_READOOB, from, mtd->oobsize);
1170
1171		onenand_update_bufferram(mtd, from, 0);
1172
1173		ret = onenand_bbt_wait(mtd, FL_READING);
1174		if (ret)
1175			break;
1176
1177		this->read_bufferram(mtd, ONENAND_SPARERAM, buf, column, thislen);
1178		read += thislen;
1179		if (read == len)
1180			break;
1181
1182		buf += thislen;
1183
1184		/* Read more? */
1185		if (read < len) {
1186			/* Update Page size */
1187			from += this->writesize;
1188			column = 0;
1189		}
1190	}
1191
1192	/* Deselect and wake up anyone waiting on the device */
1193	onenand_release_device(mtd);
1194
1195	ops->oobretlen = read;
1196	return ret;
1197}
1198
1199#ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE
1200/**
1201 * onenand_verify_oob - [GENERIC] verify the oob contents after a write
1202 * @param mtd		MTD device structure
1203 * @param buf		the databuffer to verify
1204 * @param to		offset to read from
1205 */
1206static int onenand_verify_oob(struct mtd_info *mtd, const u_char *buf, loff_t to)
1207{
1208	struct onenand_chip *this = mtd->priv;
1209	char oobbuf[64];
1210	int status, i;
1211
1212	this->command(mtd, ONENAND_CMD_READOOB, to, mtd->oobsize);
1213	onenand_update_bufferram(mtd, to, 0);
1214	status = this->wait(mtd, FL_READING);
1215	if (status)
1216		return status;
1217
1218	this->read_bufferram(mtd, ONENAND_SPARERAM, oobbuf, 0, mtd->oobsize);
1219	for (i = 0; i < mtd->oobsize; i++)
1220		if (buf[i] != 0xFF && buf[i] != oobbuf[i])
1221			return -EBADMSG;
1222
1223	return 0;
1224}
1225
1226/**
1227 * onenand_verify - [GENERIC] verify the chip contents after a write
1228 * @param mtd          MTD device structure
1229 * @param buf          the databuffer to verify
1230 * @param addr         offset to read from
1231 * @param len          number of bytes to read and compare
1232 */
1233static int onenand_verify(struct mtd_info *mtd, const u_char *buf, loff_t addr, size_t len)
1234{
1235	struct onenand_chip *this = mtd->priv;
1236	void __iomem *dataram;
1237	int ret = 0;
1238	int thislen, column;
1239
1240	while (len != 0) {
1241		thislen = min_t(int, this->writesize, len);
1242		column = addr & (this->writesize - 1);
1243		if (column + thislen > this->writesize)
1244			thislen = this->writesize - column;
1245
1246		this->command(mtd, ONENAND_CMD_READ, addr, this->writesize);
1247
1248		onenand_update_bufferram(mtd, addr, 0);
1249
1250		ret = this->wait(mtd, FL_READING);
1251		if (ret)
1252			return ret;
1253
1254		onenand_update_bufferram(mtd, addr, 1);
1255
1256		dataram = this->base + ONENAND_DATARAM;
1257		dataram += onenand_bufferram_offset(mtd, ONENAND_DATARAM);
1258
1259		if (memcmp(buf, dataram + column, thislen))
1260			return -EBADMSG;
1261
1262		len -= thislen;
1263		buf += thislen;
1264		addr += thislen;
1265	}
1266
1267	return 0;
1268}
1269#else
1270#define onenand_verify(...)		(0)
1271#define onenand_verify_oob(...)		(0)
1272#endif
1273
1274#define NOTALIGNED(x)	((x & (this->subpagesize - 1)) != 0)
1275
1276/**
1277 * onenand_fill_auto_oob - [Internal] oob auto-placement transfer
1278 * @param mtd		MTD device structure
1279 * @param oob_buf	oob buffer
1280 * @param buf		source address
1281 * @param column	oob offset to write to
1282 * @param thislen	oob length to write
1283 */
1284static int onenand_fill_auto_oob(struct mtd_info *mtd, u_char *oob_buf,
1285				  const u_char *buf, int column, int thislen)
1286{
1287	struct onenand_chip *this = mtd->priv;
1288	struct nand_oobfree *free;
1289	int writecol = column;
1290	int writeend = column + thislen;
1291	int lastgap = 0;
1292	unsigned int i;
1293
1294	free = this->ecclayout->oobfree;
1295	for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES && free->length; i++, free++) {
1296		if (writecol >= lastgap)
1297			writecol += free->offset - lastgap;
1298		if (writeend >= lastgap)
1299			writeend += free->offset - lastgap;
1300		lastgap = free->offset + free->length;
1301	}
1302	free = this->ecclayout->oobfree;
1303	for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES && free->length; i++, free++) {
1304		int free_end = free->offset + free->length;
1305		if (free->offset < writeend && free_end > writecol) {
1306			int st = max_t(int,free->offset,writecol);
1307			int ed = min_t(int,free_end,writeend);
1308			int n = ed - st;
1309			memcpy(oob_buf + st, buf, n);
1310			buf += n;
1311		} else if (column == 0)
1312			break;
1313	}
1314	return 0;
1315}
1316
1317/**
1318 * onenand_write_ops_nolock - [OneNAND Interface] write main and/or out-of-band
1319 * @param mtd		MTD device structure
1320 * @param to		offset to write to
1321 * @param ops		oob operation description structure
1322 *
1323 * Write main and/or oob with ECC
1324 */
1325static int onenand_write_ops_nolock(struct mtd_info *mtd, loff_t to,
1326				struct mtd_oob_ops *ops)
1327{
1328	struct onenand_chip *this = mtd->priv;
1329	int written = 0, column, thislen, subpage;
1330	int oobwritten = 0, oobcolumn, thisooblen, oobsize;
1331	size_t len = ops->len;
1332	size_t ooblen = ops->ooblen;
1333	const u_char *buf = ops->datbuf;
1334	const u_char *oob = ops->oobbuf;
1335	u_char *oobbuf;
1336	int ret = 0;
1337
1338	DEBUG(MTD_DEBUG_LEVEL3, "onenand_write_ops_nolock: to = 0x%08x, len = %i\n", (unsigned int) to, (int) len);
1339
1340	/* Initialize retlen, in case of early exit */
1341	ops->retlen = 0;
1342	ops->oobretlen = 0;
1343
1344	/* Do not allow writes past end of device */
1345	if (unlikely((to + len) > mtd->size)) {
1346		printk(KERN_ERR "onenand_write_ops_nolock: Attempt write to past end of device\n");
1347		return -EINVAL;
1348	}
1349
1350	/* Reject writes, which are not page aligned */
1351        if (unlikely(NOTALIGNED(to)) || unlikely(NOTALIGNED(len))) {
1352                printk(KERN_ERR "onenand_write_ops_nolock: Attempt to write not page aligned data\n");
1353                return -EINVAL;
1354        }
1355
1356	if (ops->mode == MTD_OOB_AUTO)
1357		oobsize = this->ecclayout->oobavail;
1358	else
1359		oobsize = mtd->oobsize;
1360
1361	oobcolumn = to & (mtd->oobsize - 1);
1362
1363	column = to & (mtd->writesize - 1);
1364
1365	/* Loop until all data write */
1366	while (written < len) {
1367		u_char *wbuf = (u_char *) buf;
1368
1369		thislen = min_t(int, mtd->writesize - column, len - written);
1370		thisooblen = min_t(int, oobsize - oobcolumn, ooblen - oobwritten);
1371
1372		cond_resched();
1373
1374		this->command(mtd, ONENAND_CMD_BUFFERRAM, to, thislen);
1375
1376		/* Partial page write */
1377		subpage = thislen < mtd->writesize;
1378		if (subpage) {
1379			memset(this->page_buf, 0xff, mtd->writesize);
1380			memcpy(this->page_buf + column, buf, thislen);
1381			wbuf = this->page_buf;
1382		}
1383
1384		this->write_bufferram(mtd, ONENAND_DATARAM, wbuf, 0, mtd->writesize);
1385
1386		if (oob) {
1387			oobbuf = this->oob_buf;
1388
1389			/* We send data to spare ram with oobsize
1390			 * to prevent byte access */
1391			memset(oobbuf, 0xff, mtd->oobsize);
1392			if (ops->mode == MTD_OOB_AUTO)
1393				onenand_fill_auto_oob(mtd, oobbuf, oob, oobcolumn, thisooblen);
1394			else
1395				memcpy(oobbuf + oobcolumn, oob, thisooblen);
1396
1397			oobwritten += thisooblen;
1398			oob += thisooblen;
1399			oobcolumn = 0;
1400		} else
1401			oobbuf = (u_char *) ffchars;
1402
1403		this->write_bufferram(mtd, ONENAND_SPARERAM, oobbuf, 0, mtd->oobsize);
1404
1405		this->command(mtd, ONENAND_CMD_PROG, to, mtd->writesize);
1406
1407		ret = this->wait(mtd, FL_WRITING);
1408
1409		/* In partial page write we don't update bufferram */
1410		onenand_update_bufferram(mtd, to, !ret && !subpage);
1411		if (ONENAND_IS_2PLANE(this)) {
1412			ONENAND_SET_BUFFERRAM1(this);
1413			onenand_update_bufferram(mtd, to + this->writesize, !ret && !subpage);
1414		}
1415
1416		if (ret) {
1417			printk(KERN_ERR "onenand_write_ops_nolock: write filaed %d\n", ret);
1418			break;
1419		}
1420
1421		/* Only check verify write turn on */
1422		ret = onenand_verify(mtd, (u_char *) wbuf, to, thislen);
1423		if (ret) {
1424			printk(KERN_ERR "onenand_write_ops_nolock: verify failed %d\n", ret);
1425			break;
1426		}
1427
1428		written += thislen;
1429
1430		if (written == len)
1431			break;
1432
1433		column = 0;
1434		to += thislen;
1435		buf += thislen;
1436	}
1437
1438	/* Deselect and wake up anyone waiting on the device */
1439	onenand_release_device(mtd);
1440
1441	ops->retlen = written;
1442
1443	return ret;
1444}
1445
1446
1447/**
1448 * onenand_write_oob_nolock - [Internal] OneNAND write out-of-band
1449 * @param mtd		MTD device structure
1450 * @param to		offset to write to
1451 * @param len		number of bytes to write
1452 * @param retlen	pointer to variable to store the number of written bytes
1453 * @param buf		the data to write
1454 * @param mode		operation mode
1455 *
1456 * OneNAND write out-of-band
1457 */
1458static int onenand_write_oob_nolock(struct mtd_info *mtd, loff_t to,
1459				    struct mtd_oob_ops *ops)
1460{
1461	struct onenand_chip *this = mtd->priv;
1462	int column, ret = 0, oobsize;
1463	int written = 0;
1464	u_char *oobbuf;
1465	size_t len = ops->ooblen;
1466	const u_char *buf = ops->oobbuf;
1467	mtd_oob_mode_t mode = ops->mode;
1468
1469	to += ops->ooboffs;
1470
1471	DEBUG(MTD_DEBUG_LEVEL3, "onenand_write_oob_nolock: to = 0x%08x, len = %i\n", (unsigned int) to, (int) len);
1472
1473	/* Initialize retlen, in case of early exit */
1474	ops->oobretlen = 0;
1475
1476	if (mode == MTD_OOB_AUTO)
1477		oobsize = this->ecclayout->oobavail;
1478	else
1479		oobsize = mtd->oobsize;
1480
1481	column = to & (mtd->oobsize - 1);
1482
1483	if (unlikely(column >= oobsize)) {
1484		printk(KERN_ERR "onenand_write_oob_nolock: Attempted to start write outside oob\n");
1485		return -EINVAL;
1486	}
1487
1488	/* For compatibility with NAND: Do not allow write past end of page */
1489	if (unlikely(column + len > oobsize)) {
1490		printk(KERN_ERR "onenand_write_oob_nolock: "
1491		      "Attempt to write past end of page\n");
1492		return -EINVAL;
1493	}
1494
1495	/* Do not allow reads past end of device */
1496	if (unlikely(to >= mtd->size ||
1497		     column + len > ((mtd->size >> this->page_shift) -
1498				     (to >> this->page_shift)) * oobsize)) {
1499		printk(KERN_ERR "onenand_write_oob_nolock: Attempted to write past end of device\n");
1500		return -EINVAL;
1501	}
1502
1503	oobbuf = this->oob_buf;
1504
1505	/* Loop until all data write */
1506	while (written < len) {
1507		int thislen = min_t(int, oobsize, len - written);
1508
1509		cond_resched();
1510
1511		this->command(mtd, ONENAND_CMD_BUFFERRAM, to, mtd->oobsize);
1512
1513		/* We send data to spare ram with oobsize
1514		 * to prevent byte access */
1515		memset(oobbuf, 0xff, mtd->oobsize);
1516		if (mode == MTD_OOB_AUTO)
1517			onenand_fill_auto_oob(mtd, oobbuf, buf, column, thislen);
1518		else
1519			memcpy(oobbuf + column, buf, thislen);
1520		this->write_bufferram(mtd, ONENAND_SPARERAM, oobbuf, 0, mtd->oobsize);
1521
1522		this->command(mtd, ONENAND_CMD_PROGOOB, to, mtd->oobsize);
1523
1524		onenand_update_bufferram(mtd, to, 0);
1525		if (ONENAND_IS_2PLANE(this)) {
1526			ONENAND_SET_BUFFERRAM1(this);
1527			onenand_update_bufferram(mtd, to + this->writesize, 0);
1528		}
1529
1530		ret = this->wait(mtd, FL_WRITING);
1531		if (ret) {
1532			printk(KERN_ERR "onenand_write_oob_nolock: write failed %d\n", ret);
1533			break;
1534		}
1535
1536		ret = onenand_verify_oob(mtd, oobbuf, to);
1537		if (ret) {
1538			printk(KERN_ERR "onenand_write_oob_nolock: verify failed %d\n", ret);
1539			break;
1540		}
1541
1542		written += thislen;
1543		if (written == len)
1544			break;
1545
1546		to += mtd->writesize;
1547		buf += thislen;
1548		column = 0;
1549	}
1550
1551	ops->oobretlen = written;
1552
1553	return ret;
1554}
1555
1556/**
1557 * onenand_write - [MTD Interface] write buffer to FLASH
1558 * @param mtd		MTD device structure
1559 * @param to		offset to write to
1560 * @param len		number of bytes to write
1561 * @param retlen	pointer to variable to store the number of written bytes
1562 * @param buf		the data to write
1563 *
1564 * Write with ECC
1565 */
1566static int onenand_write(struct mtd_info *mtd, loff_t to, size_t len,
1567	size_t *retlen, const u_char *buf)
1568{
1569	struct mtd_oob_ops ops = {
1570		.len	= len,
1571		.ooblen	= 0,
1572		.datbuf	= (u_char *) buf,
1573		.oobbuf	= NULL,
1574	};
1575	int ret;
1576
1577	onenand_get_device(mtd, FL_WRITING);
1578	ret = onenand_write_ops_nolock(mtd, to, &ops);
1579	onenand_release_device(mtd);
1580
1581	*retlen = ops.retlen;
1582	return ret;
1583}
1584
1585/**
1586 * onenand_write_oob - [MTD Interface] NAND write data and/or out-of-band
1587 * @param mtd:		MTD device structure
1588 * @param to:		offset to write
1589 * @param ops:		oob operation description structure
1590 */
1591static int onenand_write_oob(struct mtd_info *mtd, loff_t to,
1592			     struct mtd_oob_ops *ops)
1593{
1594	int ret;
1595
1596	switch (ops->mode) {
1597	case MTD_OOB_PLACE:
1598	case MTD_OOB_AUTO:
1599		break;
1600	case MTD_OOB_RAW:
1601		/* Not implemented yet */
1602	default:
1603		return -EINVAL;
1604	}
1605
1606	onenand_get_device(mtd, FL_WRITING);
1607	if (ops->datbuf)
1608		ret = onenand_write_ops_nolock(mtd, to, ops);
1609	else
1610		ret = onenand_write_oob_nolock(mtd, to, ops);
1611	onenand_release_device(mtd);
1612
1613	return ret;
1614}
1615
1616/**
1617 * onenand_block_isbad_nolock - [GENERIC] Check if a block is marked bad
1618 * @param mtd		MTD device structure
1619 * @param ofs		offset from device start
1620 * @param allowbbt	1, if its allowed to access the bbt area
1621 *
1622 * Check, if the block is bad. Either by reading the bad block table or
1623 * calling of the scan function.
1624 */
1625static int onenand_block_isbad_nolock(struct mtd_info *mtd, loff_t ofs, int allowbbt)
1626{
1627	struct onenand_chip *this = mtd->priv;
1628	struct bbm_info *bbm = this->bbm;
1629
1630	/* Return info from the table */
1631	return bbm->isbad_bbt(mtd, ofs, allowbbt);
1632}
1633
1634/**
1635 * onenand_erase - [MTD Interface] erase block(s)
1636 * @param mtd		MTD device structure
1637 * @param instr		erase instruction
1638 *
1639 * Erase one ore more blocks
1640 */
1641static int onenand_erase(struct mtd_info *mtd, struct erase_info *instr)
1642{
1643	struct onenand_chip *this = mtd->priv;
1644	unsigned int block_size;
1645	loff_t addr;
1646	int len;
1647	int ret = 0;
1648
1649	DEBUG(MTD_DEBUG_LEVEL3, "onenand_erase: start = 0x%08x, len = %i\n", (unsigned int) instr->addr, (unsigned int) instr->len);
1650
1651	block_size = (1 << this->erase_shift);
1652
1653	/* Start address must align on block boundary */
1654	if (unlikely(instr->addr & (block_size - 1))) {
1655		printk(KERN_ERR "onenand_erase: Unaligned address\n");
1656		return -EINVAL;
1657	}
1658
1659	/* Length must align on block boundary */
1660	if (unlikely(instr->len & (block_size - 1))) {
1661		printk(KERN_ERR "onenand_erase: Length not block aligned\n");
1662		return -EINVAL;
1663	}
1664
1665	/* Do not allow erase past end of device */
1666	if (unlikely((instr->len + instr->addr) > mtd->size)) {
1667		printk(KERN_ERR "onenand_erase: Erase past end of device\n");
1668		return -EINVAL;
1669	}
1670
1671	instr->fail_addr = 0xffffffff;
1672
1673	/* Grab the lock and see if the device is available */
1674	onenand_get_device(mtd, FL_ERASING);
1675
1676	/* Loop throught the pages */
1677	len = instr->len;
1678	addr = instr->addr;
1679
1680	instr->state = MTD_ERASING;
1681
1682	while (len) {
1683		cond_resched();
1684
1685		/* Check if we have a bad block, we do not erase bad blocks */
1686		if (onenand_block_isbad_nolock(mtd, addr, 0)) {
1687			printk (KERN_WARNING "onenand_erase: attempt to erase a bad block at addr 0x%08x\n", (unsigned int) addr);
1688			instr->state = MTD_ERASE_FAILED;
1689			goto erase_exit;
1690		}
1691
1692		this->command(mtd, ONENAND_CMD_ERASE, addr, block_size);
1693
1694		onenand_invalidate_bufferram(mtd, addr, block_size);
1695
1696		ret = this->wait(mtd, FL_ERASING);
1697		/* Check, if it is write protected */
1698		if (ret) {
1699			printk(KERN_ERR "onenand_erase: Failed erase, block %d\n", (unsigned) (addr >> this->erase_shift));
1700			instr->state = MTD_ERASE_FAILED;
1701			instr->fail_addr = addr;
1702			goto erase_exit;
1703		}
1704
1705		len -= block_size;
1706		addr += block_size;
1707	}
1708
1709	instr->state = MTD_ERASE_DONE;
1710
1711erase_exit:
1712
1713	ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO;
1714
1715	/* Deselect and wake up anyone waiting on the device */
1716	onenand_release_device(mtd);
1717
1718	/* Do call back function */
1719	if (!ret)
1720		mtd_erase_callback(instr);
1721
1722	return ret;
1723}
1724
1725/**
1726 * onenand_sync - [MTD Interface] sync
1727 * @param mtd		MTD device structure
1728 *
1729 * Sync is actually a wait for chip ready function
1730 */
1731static void onenand_sync(struct mtd_info *mtd)
1732{
1733	DEBUG(MTD_DEBUG_LEVEL3, "onenand_sync: called\n");
1734
1735	/* Grab the lock and see if the device is available */
1736	onenand_get_device(mtd, FL_SYNCING);
1737
1738	/* Release it and go back */
1739	onenand_release_device(mtd);
1740}
1741
1742/**
1743 * onenand_block_isbad - [MTD Interface] Check whether the block at the given offset is bad
1744 * @param mtd		MTD device structure
1745 * @param ofs		offset relative to mtd start
1746 *
1747 * Check whether the block is bad
1748 */
1749static int onenand_block_isbad(struct mtd_info *mtd, loff_t ofs)
1750{
1751	int ret;
1752
1753	/* Check for invalid offset */
1754	if (ofs > mtd->size)
1755		return -EINVAL;
1756
1757	onenand_get_device(mtd, FL_READING);
1758	ret = onenand_block_isbad_nolock(mtd, ofs, 0);
1759	onenand_release_device(mtd);
1760	return ret;
1761}
1762
1763/**
1764 * onenand_default_block_markbad - [DEFAULT] mark a block bad
1765 * @param mtd		MTD device structure
1766 * @param ofs		offset from device start
1767 *
1768 * This is the default implementation, which can be overridden by
1769 * a hardware specific driver.
1770 */
1771static int onenand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
1772{
1773	struct onenand_chip *this = mtd->priv;
1774	struct bbm_info *bbm = this->bbm;
1775	u_char buf[2] = {0, 0};
1776	struct mtd_oob_ops ops = {
1777		.mode = MTD_OOB_PLACE,
1778		.ooblen = 2,
1779		.oobbuf = buf,
1780		.ooboffs = 0,
1781	};
1782	int block;
1783
1784	/* Get block number */
1785	block = ((int) ofs) >> bbm->bbt_erase_shift;
1786        if (bbm->bbt)
1787                bbm->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1);
1788
1789        /* We write two bytes, so we dont have to mess with 16 bit access */
1790        ofs += mtd->oobsize + (bbm->badblockpos & ~0x01);
1791        return onenand_write_oob_nolock(mtd, ofs, &ops);
1792}
1793
1794/**
1795 * onenand_block_markbad - [MTD Interface] Mark the block at the given offset as bad
1796 * @param mtd		MTD device structure
1797 * @param ofs		offset relative to mtd start
1798 *
1799 * Mark the block as bad
1800 */
1801static int onenand_block_markbad(struct mtd_info *mtd, loff_t ofs)
1802{
1803	struct onenand_chip *this = mtd->priv;
1804	int ret;
1805
1806	ret = onenand_block_isbad(mtd, ofs);
1807	if (ret) {
1808		/* If it was bad already, return success and do nothing */
1809		if (ret > 0)
1810			return 0;
1811		return ret;
1812	}
1813
1814	onenand_get_device(mtd, FL_WRITING);
1815	ret = this->block_markbad(mtd, ofs);
1816	onenand_release_device(mtd);
1817	return ret;
1818}
1819
1820/**
1821 * onenand_do_lock_cmd - [OneNAND Interface] Lock or unlock block(s)
1822 * @param mtd		MTD device structure
1823 * @param ofs		offset relative to mtd start
1824 * @param len		number of bytes to lock or unlock
1825 * @param cmd		lock or unlock command
1826 *
1827 * Lock or unlock one or more blocks
1828 */
1829static int onenand_do_lock_cmd(struct mtd_info *mtd, loff_t ofs, size_t len, int cmd)
1830{
1831	struct onenand_chip *this = mtd->priv;
1832	int start, end, block, value, status;
1833	int wp_status_mask;
1834
1835	start = ofs >> this->erase_shift;
1836	end = len >> this->erase_shift;
1837
1838	if (cmd == ONENAND_CMD_LOCK)
1839		wp_status_mask = ONENAND_WP_LS;
1840	else
1841		wp_status_mask = ONENAND_WP_US;
1842
1843	/* Continuous lock scheme */
1844	if (this->options & ONENAND_HAS_CONT_LOCK) {
1845		/* Set start block address */
1846		this->write_word(start, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
1847		/* Set end block address */
1848		this->write_word(start + end - 1, this->base + ONENAND_REG_END_BLOCK_ADDRESS);
1849		/* Write lock command */
1850		this->command(mtd, cmd, 0, 0);
1851
1852		/* There's no return value */
1853		this->wait(mtd, FL_LOCKING);
1854
1855		/* Sanity check */
1856		while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
1857		    & ONENAND_CTRL_ONGO)
1858			continue;
1859
1860		/* Check lock status */
1861		status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
1862		if (!(status & wp_status_mask))
1863			printk(KERN_ERR "wp status = 0x%x\n", status);
1864
1865		return 0;
1866	}
1867
1868	/* Block lock scheme */
1869	for (block = start; block < start + end; block++) {
1870		/* Set block address */
1871		value = onenand_block_address(this, block);
1872		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
1873		/* Select DataRAM for DDP */
1874		value = onenand_bufferram_address(this, block);
1875		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
1876		/* Set start block address */
1877		this->write_word(block, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
1878		/* Write lock command */
1879		this->command(mtd, cmd, 0, 0);
1880
1881		/* There's no return value */
1882		this->wait(mtd, FL_LOCKING);
1883
1884		/* Sanity check */
1885		while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
1886		    & ONENAND_CTRL_ONGO)
1887			continue;
1888
1889		/* Check lock status */
1890		status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
1891		if (!(status & wp_status_mask))
1892			printk(KERN_ERR "block = %d, wp status = 0x%x\n", block, status);
1893	}
1894
1895	return 0;
1896}
1897
1898/**
1899 * onenand_lock - [MTD Interface] Lock block(s)
1900 * @param mtd		MTD device structure
1901 * @param ofs		offset relative to mtd start
1902 * @param len		number of bytes to unlock
1903 *
1904 * Lock one or more blocks
1905 */
1906static int onenand_lock(struct mtd_info *mtd, loff_t ofs, size_t len)
1907{
1908	int ret;
1909
1910	onenand_get_device(mtd, FL_LOCKING);
1911	ret = onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_LOCK);
1912	onenand_release_device(mtd);
1913	return ret;
1914}
1915
1916/**
1917 * onenand_unlock - [MTD Interface] Unlock block(s)
1918 * @param mtd		MTD device structure
1919 * @param ofs		offset relative to mtd start
1920 * @param len		number of bytes to unlock
1921 *
1922 * Unlock one or more blocks
1923 */
1924static int onenand_unlock(struct mtd_info *mtd, loff_t ofs, size_t len)
1925{
1926	int ret;
1927
1928	onenand_get_device(mtd, FL_LOCKING);
1929	ret = onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_UNLOCK);
1930	onenand_release_device(mtd);
1931	return ret;
1932}
1933
1934/**
1935 * onenand_check_lock_status - [OneNAND Interface] Check lock status
1936 * @param this		onenand chip data structure
1937 *
1938 * Check lock status
1939 */
1940static void onenand_check_lock_status(struct onenand_chip *this)
1941{
1942	unsigned int value, block, status;
1943	unsigned int end;
1944
1945	end = this->chipsize >> this->erase_shift;
1946	for (block = 0; block < end; block++) {
1947		/* Set block address */
1948		value = onenand_block_address(this, block);
1949		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
1950		/* Select DataRAM for DDP */
1951		value = onenand_bufferram_address(this, block);
1952		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
1953		/* Set start block address */
1954		this->write_word(block, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
1955
1956		/* Check lock status */
1957		status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
1958		if (!(status & ONENAND_WP_US))
1959			printk(KERN_ERR "block = %d, wp status = 0x%x\n", block, status);
1960	}
1961}
1962
1963/**
1964 * onenand_unlock_all - [OneNAND Interface] unlock all blocks
1965 * @param mtd		MTD device structure
1966 *
1967 * Unlock all blocks
1968 */
1969static int onenand_unlock_all(struct mtd_info *mtd)
1970{
1971	struct onenand_chip *this = mtd->priv;
1972
1973	if (this->options & ONENAND_HAS_UNLOCK_ALL) {
1974		/* Set start block address */
1975		this->write_word(0, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
1976		/* Write unlock command */
1977		this->command(mtd, ONENAND_CMD_UNLOCK_ALL, 0, 0);
1978
1979		/* There's no return value */
1980		this->wait(mtd, FL_LOCKING);
1981
1982		/* Sanity check */
1983		while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
1984		    & ONENAND_CTRL_ONGO)
1985			continue;
1986
1987		/* Workaround for all block unlock in DDP */
1988		if (ONENAND_IS_DDP(this)) {
1989			/* 1st block on another chip */
1990			loff_t ofs = this->chipsize >> 1;
1991			size_t len = mtd->erasesize;
1992
1993			onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_UNLOCK);
1994		}
1995
1996		onenand_check_lock_status(this);
1997
1998		return 0;
1999	}
2000
2001	onenand_do_lock_cmd(mtd, 0x0, this->chipsize, ONENAND_CMD_UNLOCK);
2002
2003	return 0;
2004}
2005
2006#ifdef CONFIG_MTD_ONENAND_OTP
2007
2008/* Interal OTP operation */
2009typedef int (*otp_op_t)(struct mtd_info *mtd, loff_t form, size_t len,
2010		size_t *retlen, u_char *buf);
2011
2012/**
2013 * do_otp_read - [DEFAULT] Read OTP block area
2014 * @param mtd		MTD device structure
2015 * @param from		The offset to read
2016 * @param len		number of bytes to read
2017 * @param retlen	pointer to variable to store the number of readbytes
2018 * @param buf		the databuffer to put/get data
2019 *
2020 * Read OTP block area.
2021 */
2022static int do_otp_read(struct mtd_info *mtd, loff_t from, size_t len,
2023		size_t *retlen, u_char *buf)
2024{
2025	struct onenand_chip *this = mtd->priv;
2026	struct mtd_oob_ops ops = {
2027		.len	= len,
2028		.ooblen	= 0,
2029		.datbuf	= buf,
2030		.oobbuf	= NULL,
2031	};
2032	int ret;
2033
2034	/* Enter OTP access mode */
2035	this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
2036	this->wait(mtd, FL_OTPING);
2037
2038	ret = onenand_read_ops_nolock(mtd, from, &ops);
2039
2040	/* Exit OTP access mode */
2041	this->command(mtd, ONENAND_CMD_RESET, 0, 0);
2042	this->wait(mtd, FL_RESETING);
2043
2044	return ret;
2045}
2046
2047/**
2048 * do_otp_write - [DEFAULT] Write OTP block area
2049 * @param mtd		MTD device structure
2050 * @param to		The offset to write
2051 * @param len		number of bytes to write
2052 * @param retlen	pointer to variable to store the number of write bytes
2053 * @param buf		the databuffer to put/get data
2054 *
2055 * Write OTP block area.
2056 */
2057static int do_otp_write(struct mtd_info *mtd, loff_t to, size_t len,
2058		size_t *retlen, u_char *buf)
2059{
2060	struct onenand_chip *this = mtd->priv;
2061	unsigned char *pbuf = buf;
2062	int ret;
2063	struct mtd_oob_ops ops;
2064
2065	/* Force buffer page aligned */
2066	if (len < mtd->writesize) {
2067		memcpy(this->page_buf, buf, len);
2068		memset(this->page_buf + len, 0xff, mtd->writesize - len);
2069		pbuf = this->page_buf;
2070		len = mtd->writesize;
2071	}
2072
2073	/* Enter OTP access mode */
2074	this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
2075	this->wait(mtd, FL_OTPING);
2076
2077	ops.len = len;
2078	ops.ooblen = 0;
2079	ops.datbuf = pbuf;
2080	ops.oobbuf = NULL;
2081	ret = onenand_write_ops_nolock(mtd, to, &ops);
2082	*retlen = ops.retlen;
2083
2084	/* Exit OTP access mode */
2085	this->command(mtd, ONENAND_CMD_RESET, 0, 0);
2086	this->wait(mtd, FL_RESETING);
2087
2088	return ret;
2089}
2090
2091/**
2092 * do_otp_lock - [DEFAULT] Lock OTP block area
2093 * @param mtd		MTD device structure
2094 * @param from		The offset to lock
2095 * @param len		number of bytes to lock
2096 * @param retlen	pointer to variable to store the number of lock bytes
2097 * @param buf		the databuffer to put/get data
2098 *
2099 * Lock OTP block area.
2100 */
2101static int do_otp_lock(struct mtd_info *mtd, loff_t from, size_t len,
2102		size_t *retlen, u_char *buf)
2103{
2104	struct onenand_chip *this = mtd->priv;
2105	struct mtd_oob_ops ops = {
2106		.mode = MTD_OOB_PLACE,
2107		.ooblen = len,
2108		.oobbuf = buf,
2109		.ooboffs = 0,
2110	};
2111	int ret;
2112
2113	/* Enter OTP access mode */
2114	this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
2115	this->wait(mtd, FL_OTPING);
2116
2117	ret = onenand_write_oob_nolock(mtd, from, &ops);
2118
2119	*retlen = ops.oobretlen;
2120
2121	/* Exit OTP access mode */
2122	this->command(mtd, ONENAND_CMD_RESET, 0, 0);
2123	this->wait(mtd, FL_RESETING);
2124
2125	return ret;
2126}
2127
2128/**
2129 * onenand_otp_walk - [DEFAULT] Handle OTP operation
2130 * @param mtd		MTD device structure
2131 * @param from		The offset to read/write
2132 * @param len		number of bytes to read/write
2133 * @param retlen	pointer to variable to store the number of read bytes
2134 * @param buf		the databuffer to put/get data
2135 * @param action	do given action
2136 * @param mode		specify user and factory
2137 *
2138 * Handle OTP operation.
2139 */
2140static int onenand_otp_walk(struct mtd_info *mtd, loff_t from, size_t len,
2141			size_t *retlen, u_char *buf,
2142			otp_op_t action, int mode)
2143{
2144	struct onenand_chip *this = mtd->priv;
2145	int otp_pages;
2146	int density;
2147	int ret = 0;
2148
2149	*retlen = 0;
2150
2151	density = this->device_id >> ONENAND_DEVICE_DENSITY_SHIFT;
2152	if (density < ONENAND_DEVICE_DENSITY_512Mb)
2153		otp_pages = 20;
2154	else
2155		otp_pages = 10;
2156
2157	if (mode == MTD_OTP_FACTORY) {
2158		from += mtd->writesize * otp_pages;
2159		otp_pages = 64 - otp_pages;
2160	}
2161
2162	/* Check User/Factory boundary */
2163	if (((mtd->writesize * otp_pages) - (from + len)) < 0)
2164		return 0;
2165
2166	onenand_get_device(mtd, FL_OTPING);
2167	while (len > 0 && otp_pages > 0) {
2168		if (!action) {	/* OTP Info functions */
2169			struct otp_info *otpinfo;
2170
2171			len -= sizeof(struct otp_info);
2172			if (len <= 0) {
2173				ret = -ENOSPC;
2174				break;
2175			}
2176
2177			otpinfo = (struct otp_info *) buf;
2178			otpinfo->start = from;
2179			otpinfo->length = mtd->writesize;
2180			otpinfo->locked = 0;
2181
2182			from += mtd->writesize;
2183			buf += sizeof(struct otp_info);
2184			*retlen += sizeof(struct otp_info);
2185		} else {
2186			size_t tmp_retlen;
2187			int size = len;
2188
2189			ret = action(mtd, from, len, &tmp_retlen, buf);
2190
2191			buf += size;
2192			len -= size;
2193			*retlen += size;
2194
2195			if (ret)
2196				break;
2197		}
2198		otp_pages--;
2199	}
2200	onenand_release_device(mtd);
2201
2202	return ret;
2203}
2204
2205/**
2206 * onenand_get_fact_prot_info - [MTD Interface] Read factory OTP info
2207 * @param mtd		MTD device structure
2208 * @param buf		the databuffer to put/get data
2209 * @param len		number of bytes to read
2210 *
2211 * Read factory OTP info.
2212 */
2213static int onenand_get_fact_prot_info(struct mtd_info *mtd,
2214			struct otp_info *buf, size_t len)
2215{
2216	size_t retlen;
2217	int ret;
2218
2219	ret = onenand_otp_walk(mtd, 0, len, &retlen, (u_char *) buf, NULL, MTD_OTP_FACTORY);
2220
2221	return ret ? : retlen;
2222}
2223
2224/**
2225 * onenand_read_fact_prot_reg - [MTD Interface] Read factory OTP area
2226 * @param mtd		MTD device structure
2227 * @param from		The offset to read
2228 * @param len		number of bytes to read
2229 * @param retlen	pointer to variable to store the number of read bytes
2230 * @param buf		the databuffer to put/get data
2231 *
2232 * Read factory OTP area.
2233 */
2234static int onenand_read_fact_prot_reg(struct mtd_info *mtd, loff_t from,
2235			size_t len, size_t *retlen, u_char *buf)
2236{
2237	return onenand_otp_walk(mtd, from, len, retlen, buf, do_otp_read, MTD_OTP_FACTORY);
2238}
2239
2240/**
2241 * onenand_get_user_prot_info - [MTD Interface] Read user OTP info
2242 * @param mtd		MTD device structure
2243 * @param buf		the databuffer to put/get data
2244 * @param len		number of bytes to read
2245 *
2246 * Read user OTP info.
2247 */
2248static int onenand_get_user_prot_info(struct mtd_info *mtd,
2249			struct otp_info *buf, size_t len)
2250{
2251	size_t retlen;
2252	int ret;
2253
2254	ret = onenand_otp_walk(mtd, 0, len, &retlen, (u_char *) buf, NULL, MTD_OTP_USER);
2255
2256	return ret ? : retlen;
2257}
2258
2259/**
2260 * onenand_read_user_prot_reg - [MTD Interface] Read user OTP area
2261 * @param mtd		MTD device structure
2262 * @param from		The offset to read
2263 * @param len		number of bytes to read
2264 * @param retlen	pointer to variable to store the number of read bytes
2265 * @param buf		the databuffer to put/get data
2266 *
2267 * Read user OTP area.
2268 */
2269static int onenand_read_user_prot_reg(struct mtd_info *mtd, loff_t from,
2270			size_t len, size_t *retlen, u_char *buf)
2271{
2272	return onenand_otp_walk(mtd, from, len, retlen, buf, do_otp_read, MTD_OTP_USER);
2273}
2274
2275/**
2276 * onenand_write_user_prot_reg - [MTD Interface] Write user OTP area
2277 * @param mtd		MTD device structure
2278 * @param from		The offset to write
2279 * @param len		number of bytes to write
2280 * @param retlen	pointer to variable to store the number of write bytes
2281 * @param buf		the databuffer to put/get data
2282 *
2283 * Write user OTP area.
2284 */
2285static int onenand_write_user_prot_reg(struct mtd_info *mtd, loff_t from,
2286			size_t len, size_t *retlen, u_char *buf)
2287{
2288	return onenand_otp_walk(mtd, from, len, retlen, buf, do_otp_write, MTD_OTP_USER);
2289}
2290
2291/**
2292 * onenand_lock_user_prot_reg - [MTD Interface] Lock user OTP area
2293 * @param mtd		MTD device structure
2294 * @param from		The offset to lock
2295 * @param len		number of bytes to unlock
2296 *
2297 * Write lock mark on spare area in page 0 in OTP block
2298 */
2299static int onenand_lock_user_prot_reg(struct mtd_info *mtd, loff_t from,
2300			size_t len)
2301{
2302	unsigned char oob_buf[64];
2303	size_t retlen;
2304	int ret;
2305
2306	memset(oob_buf, 0xff, mtd->oobsize);
2307	/*
2308	 * Note: OTP lock operation
2309	 *       OTP block : 0xXXFC
2310	 *       1st block : 0xXXF3 (If chip support)
2311	 *       Both      : 0xXXF0 (If chip support)
2312	 */
2313	oob_buf[ONENAND_OTP_LOCK_OFFSET] = 0xFC;
2314
2315	/*
2316	 * Write lock mark to 8th word of sector0 of page0 of the spare0.
2317	 * We write 16 bytes spare area instead of 2 bytes.
2318	 */
2319	from = 0;
2320	len = 16;
2321
2322	ret = onenand_otp_walk(mtd, from, len, &retlen, oob_buf, do_otp_lock, MTD_OTP_USER);
2323
2324	return ret ? : retlen;
2325}
2326#endif	/* CONFIG_MTD_ONENAND_OTP */
2327
2328/**
2329 * onenand_check_features - Check and set OneNAND features
2330 * @param mtd		MTD data structure
2331 *
2332 * Check and set OneNAND features
2333 * - lock scheme
2334 * - two plane
2335 */
2336static void onenand_check_features(struct mtd_info *mtd)
2337{
2338	struct onenand_chip *this = mtd->priv;
2339	unsigned int density, process;
2340
2341	/* Lock scheme depends on density and process */
2342	density = this->device_id >> ONENAND_DEVICE_DENSITY_SHIFT;
2343	process = this->version_id >> ONENAND_VERSION_PROCESS_SHIFT;
2344
2345	/* Lock scheme */
2346	switch (density) {
2347	case ONENAND_DEVICE_DENSITY_4Gb:
2348		this->options |= ONENAND_HAS_2PLANE;
2349
2350	case ONENAND_DEVICE_DENSITY_2Gb:
2351		/* 2Gb DDP don't have 2 plane */
2352		if (!ONENAND_IS_DDP(this))
2353			this->options |= ONENAND_HAS_2PLANE;
2354		this->options |= ONENAND_HAS_UNLOCK_ALL;
2355
2356	case ONENAND_DEVICE_DENSITY_1Gb:
2357		/* A-Die has all block unlock */
2358		if (process)
2359			this->options |= ONENAND_HAS_UNLOCK_ALL;
2360		break;
2361
2362	default:
2363		/* Some OneNAND has continuous lock scheme */
2364		if (!process)
2365			this->options |= ONENAND_HAS_CONT_LOCK;
2366		break;
2367	}
2368
2369	if (this->options & ONENAND_HAS_CONT_LOCK)
2370		printk(KERN_DEBUG "Lock scheme is Continuous Lock\n");
2371	if (this->options & ONENAND_HAS_UNLOCK_ALL)
2372		printk(KERN_DEBUG "Chip support all block unlock\n");
2373	if (this->options & ONENAND_HAS_2PLANE)
2374		printk(KERN_DEBUG "Chip has 2 plane\n");
2375}
2376
2377/**
2378 * onenand_print_device_info - Print device & version ID
2379 * @param device        device ID
2380 * @param version	version ID
2381 *
2382 * Print device & version ID
2383 */
2384static void onenand_print_device_info(int device, int version)
2385{
2386        int vcc, demuxed, ddp, density;
2387
2388        vcc = device & ONENAND_DEVICE_VCC_MASK;
2389        demuxed = device & ONENAND_DEVICE_IS_DEMUX;
2390        ddp = device & ONENAND_DEVICE_IS_DDP;
2391        density = device >> ONENAND_DEVICE_DENSITY_SHIFT;
2392        printk(KERN_INFO "%sOneNAND%s %dMB %sV 16-bit (0x%02x)\n",
2393                demuxed ? "" : "Muxed ",
2394                ddp ? "(DDP)" : "",
2395                (16 << density),
2396                vcc ? "2.65/3.3" : "1.8",
2397                device);
2398	printk(KERN_INFO "OneNAND version = 0x%04x\n", version);
2399}
2400
2401static const struct onenand_manufacturers onenand_manuf_ids[] = {
2402        {ONENAND_MFR_SAMSUNG, "Samsung"},
2403};
2404
2405/**
2406 * onenand_check_maf - Check manufacturer ID
2407 * @param manuf         manufacturer ID
2408 *
2409 * Check manufacturer ID
2410 */
2411static int onenand_check_maf(int manuf)
2412{
2413	int size = ARRAY_SIZE(onenand_manuf_ids);
2414	char *name;
2415        int i;
2416
2417	for (i = 0; i < size; i++)
2418                if (manuf == onenand_manuf_ids[i].id)
2419                        break;
2420
2421	if (i < size)
2422		name = onenand_manuf_ids[i].name;
2423	else
2424		name = "Unknown";
2425
2426	printk(KERN_DEBUG "OneNAND Manufacturer: %s (0x%0x)\n", name, manuf);
2427
2428	return (i == size);
2429}
2430
2431/**
2432 * onenand_probe - [OneNAND Interface] Probe the OneNAND device
2433 * @param mtd		MTD device structure
2434 *
2435 * OneNAND detection method:
2436 *   Compare the values from command with ones from register
2437 */
2438static int onenand_probe(struct mtd_info *mtd)
2439{
2440	struct onenand_chip *this = mtd->priv;
2441	int bram_maf_id, bram_dev_id, maf_id, dev_id, ver_id;
2442	int density;
2443	int syscfg;
2444
2445	/* Save system configuration 1 */
2446	syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
2447	/* Clear Sync. Burst Read mode to read BootRAM */
2448	this->write_word((syscfg & ~ONENAND_SYS_CFG1_SYNC_READ), this->base + ONENAND_REG_SYS_CFG1);
2449
2450	/* Send the command for reading device ID from BootRAM */
2451	this->write_word(ONENAND_CMD_READID, this->base + ONENAND_BOOTRAM);
2452
2453	/* Read manufacturer and device IDs from BootRAM */
2454	bram_maf_id = this->read_word(this->base + ONENAND_BOOTRAM + 0x0);
2455	bram_dev_id = this->read_word(this->base + ONENAND_BOOTRAM + 0x2);
2456
2457	/* Reset OneNAND to read default register values */
2458	this->write_word(ONENAND_CMD_RESET, this->base + ONENAND_BOOTRAM);
2459	/* Wait reset */
2460	this->wait(mtd, FL_RESETING);
2461
2462	/* Restore system configuration 1 */
2463	this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);
2464
2465	/* Check manufacturer ID */
2466	if (onenand_check_maf(bram_maf_id))
2467		return -ENXIO;
2468
2469	/* Read manufacturer and device IDs from Register */
2470	maf_id = this->read_word(this->base + ONENAND_REG_MANUFACTURER_ID);
2471	dev_id = this->read_word(this->base + ONENAND_REG_DEVICE_ID);
2472	ver_id = this->read_word(this->base + ONENAND_REG_VERSION_ID);
2473
2474	/* Check OneNAND device */
2475	if (maf_id != bram_maf_id || dev_id != bram_dev_id)
2476		return -ENXIO;
2477
2478	/* Flash device information */
2479	onenand_print_device_info(dev_id, ver_id);
2480	this->device_id = dev_id;
2481	this->version_id = ver_id;
2482
2483	density = dev_id >> ONENAND_DEVICE_DENSITY_SHIFT;
2484	this->chipsize = (16 << density) << 20;
2485	/* Set density mask. it is used for DDP */
2486	if (ONENAND_IS_DDP(this))
2487		this->density_mask = (1 << (density + 6));
2488	else
2489		this->density_mask = 0;
2490
2491	/* OneNAND page size & block size */
2492	/* The data buffer size is equal to page size */
2493	mtd->writesize = this->read_word(this->base + ONENAND_REG_DATA_BUFFER_SIZE);
2494	mtd->oobsize = mtd->writesize >> 5;
2495	/* Pages per a block are always 64 in OneNAND */
2496	mtd->erasesize = mtd->writesize << 6;
2497
2498	this->erase_shift = ffs(mtd->erasesize) - 1;
2499	this->page_shift = ffs(mtd->writesize) - 1;
2500	this->page_mask = (1 << (this->erase_shift - this->page_shift)) - 1;
2501	/* It's real page size */
2502	this->writesize = mtd->writesize;
2503
2504	/* REVIST: Multichip handling */
2505
2506	mtd->size = this->chipsize;
2507
2508	/* Check OneNAND features */
2509	onenand_check_features(mtd);
2510
2511	/*
2512	 * We emulate the 4KiB page and 256KiB erase block size
2513	 * But oobsize is still 64 bytes.
2514	 * It is only valid if you turn on 2X program support,
2515	 * Otherwise it will be ignored by compiler.
2516	 */
2517	if (ONENAND_IS_2PLANE(this)) {
2518		mtd->writesize <<= 1;
2519		mtd->erasesize <<= 1;
2520	}
2521
2522	return 0;
2523}
2524
2525/**
2526 * onenand_suspend - [MTD Interface] Suspend the OneNAND flash
2527 * @param mtd		MTD device structure
2528 */
2529static int onenand_suspend(struct mtd_info *mtd)
2530{
2531	return onenand_get_device(mtd, FL_PM_SUSPENDED);
2532}
2533
2534/**
2535 * onenand_resume - [MTD Interface] Resume the OneNAND flash
2536 * @param mtd		MTD device structure
2537 */
2538static void onenand_resume(struct mtd_info *mtd)
2539{
2540	struct onenand_chip *this = mtd->priv;
2541
2542	if (this->state == FL_PM_SUSPENDED)
2543		onenand_release_device(mtd);
2544	else
2545		printk(KERN_ERR "resume() called for the chip which is not"
2546				"in suspended state\n");
2547}
2548
2549/**
2550 * onenand_scan - [OneNAND Interface] Scan for the OneNAND device
2551 * @param mtd		MTD device structure
2552 * @param maxchips	Number of chips to scan for
2553 *
2554 * This fills out all the not initialized function pointers
2555 * with the defaults.
2556 * The flash ID is read and the mtd/chip structures are
2557 * filled with the appropriate values.
2558 */
2559int onenand_scan(struct mtd_info *mtd, int maxchips)
2560{
2561	int i;
2562	struct onenand_chip *this = mtd->priv;
2563
2564	if (!this->read_word)
2565		this->read_word = onenand_readw;
2566	if (!this->write_word)
2567		this->write_word = onenand_writew;
2568
2569	if (!this->command)
2570		this->command = onenand_command;
2571	if (!this->wait)
2572		onenand_setup_wait(mtd);
2573
2574	if (!this->read_bufferram)
2575		this->read_bufferram = onenand_read_bufferram;
2576	if (!this->write_bufferram)
2577		this->write_bufferram = onenand_write_bufferram;
2578
2579	if (!this->block_markbad)
2580		this->block_markbad = onenand_default_block_markbad;
2581	if (!this->scan_bbt)
2582		this->scan_bbt = onenand_default_bbt;
2583
2584	if (onenand_probe(mtd))
2585		return -ENXIO;
2586
2587	/* Set Sync. Burst Read after probing */
2588	if (this->mmcontrol) {
2589		printk(KERN_INFO "OneNAND Sync. Burst Read support\n");
2590		this->read_bufferram = onenand_sync_read_bufferram;
2591	}
2592
2593	/* Allocate buffers, if necessary */
2594	if (!this->page_buf) {
2595		this->page_buf = kzalloc(mtd->writesize, GFP_KERNEL);
2596		if (!this->page_buf) {
2597			printk(KERN_ERR "onenand_scan(): Can't allocate page_buf\n");
2598			return -ENOMEM;
2599		}
2600		this->options |= ONENAND_PAGEBUF_ALLOC;
2601	}
2602	if (!this->oob_buf) {
2603		this->oob_buf = kzalloc(mtd->oobsize, GFP_KERNEL);
2604		if (!this->oob_buf) {
2605			printk(KERN_ERR "onenand_scan(): Can't allocate oob_buf\n");
2606			if (this->options & ONENAND_PAGEBUF_ALLOC) {
2607				this->options &= ~ONENAND_PAGEBUF_ALLOC;
2608				kfree(this->page_buf);
2609			}
2610			return -ENOMEM;
2611		}
2612		this->options |= ONENAND_OOBBUF_ALLOC;
2613	}
2614
2615	this->state = FL_READY;
2616	init_waitqueue_head(&this->wq);
2617	spin_lock_init(&this->chip_lock);
2618
2619	/*
2620	 * Allow subpage writes up to oobsize.
2621	 */
2622	switch (mtd->oobsize) {
2623	case 64:
2624		this->ecclayout = &onenand_oob_64;
2625		mtd->subpage_sft = 2;
2626		break;
2627
2628	case 32:
2629		this->ecclayout = &onenand_oob_32;
2630		mtd->subpage_sft = 1;
2631		break;
2632
2633	default:
2634		printk(KERN_WARNING "No OOB scheme defined for oobsize %d\n",
2635			mtd->oobsize);
2636		mtd->subpage_sft = 0;
2637		/* To prevent kernel oops */
2638		this->ecclayout = &onenand_oob_32;
2639		break;
2640	}
2641
2642	this->subpagesize = mtd->writesize >> mtd->subpage_sft;
2643
2644	/*
2645	 * The number of bytes available for a client to place data into
2646	 * the out of band area
2647	 */
2648	this->ecclayout->oobavail = 0;
2649	for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES &&
2650	    this->ecclayout->oobfree[i].length; i++)
2651		this->ecclayout->oobavail +=
2652			this->ecclayout->oobfree[i].length;
2653	mtd->oobavail = this->ecclayout->oobavail;
2654
2655	mtd->ecclayout = this->ecclayout;
2656
2657	/* Fill in remaining MTD driver data */
2658	mtd->type = MTD_NANDFLASH;
2659	mtd->flags = MTD_CAP_NANDFLASH;
2660	mtd->erase = onenand_erase;
2661	mtd->point = NULL;
2662	mtd->unpoint = NULL;
2663	mtd->read = onenand_read;
2664	mtd->write = onenand_write;
2665	mtd->read_oob = onenand_read_oob;
2666	mtd->write_oob = onenand_write_oob;
2667#ifdef CONFIG_MTD_ONENAND_OTP
2668	mtd->get_fact_prot_info = onenand_get_fact_prot_info;
2669	mtd->read_fact_prot_reg = onenand_read_fact_prot_reg;
2670	mtd->get_user_prot_info = onenand_get_user_prot_info;
2671	mtd->read_user_prot_reg = onenand_read_user_prot_reg;
2672	mtd->write_user_prot_reg = onenand_write_user_prot_reg;
2673	mtd->lock_user_prot_reg = onenand_lock_user_prot_reg;
2674#endif
2675	mtd->sync = onenand_sync;
2676	mtd->lock = onenand_lock;
2677	mtd->unlock = onenand_unlock;
2678	mtd->suspend = onenand_suspend;
2679	mtd->resume = onenand_resume;
2680	mtd->block_isbad = onenand_block_isbad;
2681	mtd->block_markbad = onenand_block_markbad;
2682	mtd->owner = THIS_MODULE;
2683
2684	/* Unlock whole block */
2685	onenand_unlock_all(mtd);
2686
2687	return this->scan_bbt(mtd);
2688}
2689
2690/**
2691 * onenand_release - [OneNAND Interface] Free resources held by the OneNAND device
2692 * @param mtd		MTD device structure
2693 */
2694void onenand_release(struct mtd_info *mtd)
2695{
2696	struct onenand_chip *this = mtd->priv;
2697
2698#ifdef CONFIG_MTD_PARTITIONS
2699	/* Deregister partitions */
2700	del_mtd_partitions (mtd);
2701#endif
2702	/* Deregister the device */
2703	del_mtd_device (mtd);
2704
2705	/* Free bad block table memory, if allocated */
2706	if (this->bbm) {
2707		struct bbm_info *bbm = this->bbm;
2708		kfree(bbm->bbt);
2709		kfree(this->bbm);
2710	}
2711	/* Buffers allocated by onenand_scan */
2712	if (this->options & ONENAND_PAGEBUF_ALLOC)
2713		kfree(this->page_buf);
2714	if (this->options & ONENAND_OOBBUF_ALLOC)
2715		kfree(this->oob_buf);
2716}
2717
2718EXPORT_SYMBOL_GPL(onenand_scan);
2719EXPORT_SYMBOL_GPL(onenand_release);
2720
2721MODULE_LICENSE("GPL");
2722MODULE_AUTHOR("Kyungmin Park <kyungmin.park@samsung.com>");
2723MODULE_DESCRIPTION("Generic OneNAND flash driver code");
2724