onenand_base.c revision 67e5a28b35254bbbcd5bfce61ef646709e059bbf
1/*
2 *  linux/drivers/mtd/onenand/onenand_base.c
3 *
4 *  Copyright (C) 2005-2007 Samsung Electronics
5 *  Kyungmin Park <kyungmin.park@samsung.com>
6 *
7 *  Credits:
8 *	Adrian Hunter <ext-adrian.hunter@nokia.com>:
9 *	auto-placement support, read-while load support, various fixes
10 *	Copyright (C) Nokia Corporation, 2007
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License version 2 as
14 * published by the Free Software Foundation.
15 */
16
17#include <linux/kernel.h>
18#include <linux/module.h>
19#include <linux/init.h>
20#include <linux/sched.h>
21#include <linux/delay.h>
22#include <linux/interrupt.h>
23#include <linux/jiffies.h>
24#include <linux/mtd/mtd.h>
25#include <linux/mtd/onenand.h>
26#include <linux/mtd/partitions.h>
27
28#include <asm/io.h>
29
30/**
31 * onenand_oob_64 - oob info for large (2KB) page
32 */
33static struct nand_ecclayout onenand_oob_64 = {
34	.eccbytes	= 20,
35	.eccpos		= {
36		8, 9, 10, 11, 12,
37		24, 25, 26, 27, 28,
38		40, 41, 42, 43, 44,
39		56, 57, 58, 59, 60,
40		},
41	.oobfree	= {
42		{2, 3}, {14, 2}, {18, 3}, {30, 2},
43		{34, 3}, {46, 2}, {50, 3}, {62, 2}
44	}
45};
46
47/**
48 * onenand_oob_32 - oob info for middle (1KB) page
49 */
50static struct nand_ecclayout onenand_oob_32 = {
51	.eccbytes	= 10,
52	.eccpos		= {
53		8, 9, 10, 11, 12,
54		24, 25, 26, 27, 28,
55		},
56	.oobfree	= { {2, 3}, {14, 2}, {18, 3}, {30, 2} }
57};
58
59static const unsigned char ffchars[] = {
60	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
61	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 16 */
62	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
63	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 32 */
64	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
65	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 48 */
66	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
67	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 64 */
68};
69
70/**
71 * onenand_readw - [OneNAND Interface] Read OneNAND register
72 * @param addr		address to read
73 *
74 * Read OneNAND register
75 */
76static unsigned short onenand_readw(void __iomem *addr)
77{
78	return readw(addr);
79}
80
81/**
82 * onenand_writew - [OneNAND Interface] Write OneNAND register with value
83 * @param value		value to write
84 * @param addr		address to write
85 *
86 * Write OneNAND register with value
87 */
88static void onenand_writew(unsigned short value, void __iomem *addr)
89{
90	writew(value, addr);
91}
92
93/**
94 * onenand_block_address - [DEFAULT] Get block address
95 * @param this		onenand chip data structure
96 * @param block		the block
97 * @return		translated block address if DDP, otherwise same
98 *
99 * Setup Start Address 1 Register (F100h)
100 */
101static int onenand_block_address(struct onenand_chip *this, int block)
102{
103	/* Device Flash Core select, NAND Flash Block Address */
104	if (block & this->density_mask)
105		return ONENAND_DDP_CHIP1 | (block ^ this->density_mask);
106
107	return block;
108}
109
110/**
111 * onenand_bufferram_address - [DEFAULT] Get bufferram address
112 * @param this		onenand chip data structure
113 * @param block		the block
114 * @return		set DBS value if DDP, otherwise 0
115 *
116 * Setup Start Address 2 Register (F101h) for DDP
117 */
118static int onenand_bufferram_address(struct onenand_chip *this, int block)
119{
120	/* Device BufferRAM Select */
121	if (block & this->density_mask)
122		return ONENAND_DDP_CHIP1;
123
124	return ONENAND_DDP_CHIP0;
125}
126
127/**
128 * onenand_page_address - [DEFAULT] Get page address
129 * @param page		the page address
130 * @param sector	the sector address
131 * @return		combined page and sector address
132 *
133 * Setup Start Address 8 Register (F107h)
134 */
135static int onenand_page_address(int page, int sector)
136{
137	/* Flash Page Address, Flash Sector Address */
138	int fpa, fsa;
139
140	fpa = page & ONENAND_FPA_MASK;
141	fsa = sector & ONENAND_FSA_MASK;
142
143	return ((fpa << ONENAND_FPA_SHIFT) | fsa);
144}
145
146/**
147 * onenand_buffer_address - [DEFAULT] Get buffer address
148 * @param dataram1	DataRAM index
149 * @param sectors	the sector address
150 * @param count		the number of sectors
151 * @return		the start buffer value
152 *
153 * Setup Start Buffer Register (F200h)
154 */
155static int onenand_buffer_address(int dataram1, int sectors, int count)
156{
157	int bsa, bsc;
158
159	/* BufferRAM Sector Address */
160	bsa = sectors & ONENAND_BSA_MASK;
161
162	if (dataram1)
163		bsa |= ONENAND_BSA_DATARAM1;	/* DataRAM1 */
164	else
165		bsa |= ONENAND_BSA_DATARAM0;	/* DataRAM0 */
166
167	/* BufferRAM Sector Count */
168	bsc = count & ONENAND_BSC_MASK;
169
170	return ((bsa << ONENAND_BSA_SHIFT) | bsc);
171}
172
173/**
174 * onenand_get_density - [DEFAULT] Get OneNAND density
175 * @param dev_id	OneNAND device ID
176 *
177 * Get OneNAND density from device ID
178 */
179static inline int onenand_get_density(int dev_id)
180{
181	int density = dev_id >> ONENAND_DEVICE_DENSITY_SHIFT;
182	return (density & ONENAND_DEVICE_DENSITY_MASK);
183}
184
185/**
186 * onenand_command - [DEFAULT] Send command to OneNAND device
187 * @param mtd		MTD device structure
188 * @param cmd		the command to be sent
189 * @param addr		offset to read from or write to
190 * @param len		number of bytes to read or write
191 *
192 * Send command to OneNAND device. This function is used for middle/large page
193 * devices (1KB/2KB Bytes per page)
194 */
195static int onenand_command(struct mtd_info *mtd, int cmd, loff_t addr, size_t len)
196{
197	struct onenand_chip *this = mtd->priv;
198	int value, block, page;
199
200	/* Address translation */
201	switch (cmd) {
202	case ONENAND_CMD_UNLOCK:
203	case ONENAND_CMD_LOCK:
204	case ONENAND_CMD_LOCK_TIGHT:
205	case ONENAND_CMD_UNLOCK_ALL:
206		block = -1;
207		page = -1;
208		break;
209
210	case ONENAND_CMD_ERASE:
211	case ONENAND_CMD_BUFFERRAM:
212	case ONENAND_CMD_OTP_ACCESS:
213		block = (int) (addr >> this->erase_shift);
214		page = -1;
215		break;
216
217	default:
218		block = (int) (addr >> this->erase_shift);
219		page = (int) (addr >> this->page_shift);
220
221		if (ONENAND_IS_2PLANE(this)) {
222			/* Make the even block number */
223			block &= ~1;
224			/* Is it the odd plane? */
225			if (addr & this->writesize)
226				block++;
227			page >>= 1;
228		}
229		page &= this->page_mask;
230		break;
231	}
232
233	/* NOTE: The setting order of the registers is very important! */
234	if (cmd == ONENAND_CMD_BUFFERRAM) {
235		/* Select DataRAM for DDP */
236		value = onenand_bufferram_address(this, block);
237		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
238
239		if (ONENAND_IS_2PLANE(this))
240			/* It is always BufferRAM0 */
241			ONENAND_SET_BUFFERRAM0(this);
242		else
243			/* Switch to the next data buffer */
244			ONENAND_SET_NEXT_BUFFERRAM(this);
245
246		return 0;
247	}
248
249	if (block != -1) {
250		/* Write 'DFS, FBA' of Flash */
251		value = onenand_block_address(this, block);
252		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
253
254		/* Select DataRAM for DDP */
255		value = onenand_bufferram_address(this, block);
256		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
257	}
258
259	if (page != -1) {
260		/* Now we use page size operation */
261		int sectors = 4, count = 4;
262		int dataram;
263
264		switch (cmd) {
265		case ONENAND_CMD_READ:
266		case ONENAND_CMD_READOOB:
267			dataram = ONENAND_SET_NEXT_BUFFERRAM(this);
268			break;
269
270		default:
271			if (ONENAND_IS_2PLANE(this) && cmd == ONENAND_CMD_PROG)
272				cmd = ONENAND_CMD_2X_PROG;
273			dataram = ONENAND_CURRENT_BUFFERRAM(this);
274			break;
275		}
276
277		/* Write 'FPA, FSA' of Flash */
278		value = onenand_page_address(page, sectors);
279		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS8);
280
281		/* Write 'BSA, BSC' of DataRAM */
282		value = onenand_buffer_address(dataram, sectors, count);
283		this->write_word(value, this->base + ONENAND_REG_START_BUFFER);
284	}
285
286	/* Interrupt clear */
287	this->write_word(ONENAND_INT_CLEAR, this->base + ONENAND_REG_INTERRUPT);
288
289	/* Write command */
290	this->write_word(cmd, this->base + ONENAND_REG_COMMAND);
291
292	return 0;
293}
294
295/**
296 * onenand_wait - [DEFAULT] wait until the command is done
297 * @param mtd		MTD device structure
298 * @param state		state to select the max. timeout value
299 *
300 * Wait for command done. This applies to all OneNAND command
301 * Read can take up to 30us, erase up to 2ms and program up to 350us
302 * according to general OneNAND specs
303 */
304static int onenand_wait(struct mtd_info *mtd, int state)
305{
306	struct onenand_chip * this = mtd->priv;
307	unsigned long timeout;
308	unsigned int flags = ONENAND_INT_MASTER;
309	unsigned int interrupt = 0;
310	unsigned int ctrl;
311
312	/* The 20 msec is enough */
313	timeout = jiffies + msecs_to_jiffies(20);
314	while (time_before(jiffies, timeout)) {
315		interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
316
317		if (interrupt & flags)
318			break;
319
320		if (state != FL_READING)
321			cond_resched();
322	}
323	/* To get correct interrupt status in timeout case */
324	interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
325
326	ctrl = this->read_word(this->base + ONENAND_REG_CTRL_STATUS);
327
328	if (ctrl & ONENAND_CTRL_ERROR) {
329		printk(KERN_ERR "onenand_wait: controller error = 0x%04x\n", ctrl);
330		if (ctrl & ONENAND_CTRL_LOCK)
331			printk(KERN_ERR "onenand_wait: it's locked error.\n");
332		if (state == FL_READING) {
333			/*
334			 * A power loss while writing can result in a page
335			 * becoming unreadable.  When the device is mounted
336			 * again, reading that page gives controller errors.
337			 * Upper level software like JFFS2 treat -EIO as fatal,
338			 * refusing to mount at all.  That means it is necessary
339			 * to treat the error as an ECC error to allow recovery.
340			 * Note that typically in this case, the eraseblock can
341			 * still be erased and rewritten i.e. it has not become
342			 * a bad block.
343			 */
344			mtd->ecc_stats.failed++;
345			return -EBADMSG;
346		}
347		return -EIO;
348	}
349
350	if (interrupt & ONENAND_INT_READ) {
351		int ecc = this->read_word(this->base + ONENAND_REG_ECC_STATUS);
352		if (ecc) {
353			if (ecc & ONENAND_ECC_2BIT_ALL) {
354				printk(KERN_ERR "onenand_wait: ECC error = 0x%04x\n", ecc);
355				mtd->ecc_stats.failed++;
356				return -EBADMSG;
357			} else if (ecc & ONENAND_ECC_1BIT_ALL) {
358				printk(KERN_INFO "onenand_wait: correctable ECC error = 0x%04x\n", ecc);
359				mtd->ecc_stats.corrected++;
360			}
361		}
362	} else if (state == FL_READING) {
363		printk(KERN_ERR "onenand_wait: read timeout! ctrl=0x%04x intr=0x%04x\n", ctrl, interrupt);
364		return -EIO;
365	}
366
367	return 0;
368}
369
370/*
371 * onenand_interrupt - [DEFAULT] onenand interrupt handler
372 * @param irq		onenand interrupt number
373 * @param dev_id	interrupt data
374 *
375 * complete the work
376 */
377static irqreturn_t onenand_interrupt(int irq, void *data)
378{
379	struct onenand_chip *this = data;
380
381	/* To handle shared interrupt */
382	if (!this->complete.done)
383		complete(&this->complete);
384
385	return IRQ_HANDLED;
386}
387
388/*
389 * onenand_interrupt_wait - [DEFAULT] wait until the command is done
390 * @param mtd		MTD device structure
391 * @param state		state to select the max. timeout value
392 *
393 * Wait for command done.
394 */
395static int onenand_interrupt_wait(struct mtd_info *mtd, int state)
396{
397	struct onenand_chip *this = mtd->priv;
398
399	wait_for_completion(&this->complete);
400
401	return onenand_wait(mtd, state);
402}
403
404/*
405 * onenand_try_interrupt_wait - [DEFAULT] try interrupt wait
406 * @param mtd		MTD device structure
407 * @param state		state to select the max. timeout value
408 *
409 * Try interrupt based wait (It is used one-time)
410 */
411static int onenand_try_interrupt_wait(struct mtd_info *mtd, int state)
412{
413	struct onenand_chip *this = mtd->priv;
414	unsigned long remain, timeout;
415
416	/* We use interrupt wait first */
417	this->wait = onenand_interrupt_wait;
418
419	timeout = msecs_to_jiffies(100);
420	remain = wait_for_completion_timeout(&this->complete, timeout);
421	if (!remain) {
422		printk(KERN_INFO "OneNAND: There's no interrupt. "
423				"We use the normal wait\n");
424
425		/* Release the irq */
426		free_irq(this->irq, this);
427
428		this->wait = onenand_wait;
429	}
430
431	return onenand_wait(mtd, state);
432}
433
434/*
435 * onenand_setup_wait - [OneNAND Interface] setup onenand wait method
436 * @param mtd		MTD device structure
437 *
438 * There's two method to wait onenand work
439 * 1. polling - read interrupt status register
440 * 2. interrupt - use the kernel interrupt method
441 */
442static void onenand_setup_wait(struct mtd_info *mtd)
443{
444	struct onenand_chip *this = mtd->priv;
445	int syscfg;
446
447	init_completion(&this->complete);
448
449	if (this->irq <= 0) {
450		this->wait = onenand_wait;
451		return;
452	}
453
454	if (request_irq(this->irq, &onenand_interrupt,
455				IRQF_SHARED, "onenand", this)) {
456		/* If we can't get irq, use the normal wait */
457		this->wait = onenand_wait;
458		return;
459	}
460
461	/* Enable interrupt */
462	syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
463	syscfg |= ONENAND_SYS_CFG1_IOBE;
464	this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);
465
466	this->wait = onenand_try_interrupt_wait;
467}
468
469/**
470 * onenand_bufferram_offset - [DEFAULT] BufferRAM offset
471 * @param mtd		MTD data structure
472 * @param area		BufferRAM area
473 * @return		offset given area
474 *
475 * Return BufferRAM offset given area
476 */
477static inline int onenand_bufferram_offset(struct mtd_info *mtd, int area)
478{
479	struct onenand_chip *this = mtd->priv;
480
481	if (ONENAND_CURRENT_BUFFERRAM(this)) {
482		/* Note: the 'this->writesize' is a real page size */
483		if (area == ONENAND_DATARAM)
484			return this->writesize;
485		if (area == ONENAND_SPARERAM)
486			return mtd->oobsize;
487	}
488
489	return 0;
490}
491
492/**
493 * onenand_read_bufferram - [OneNAND Interface] Read the bufferram area
494 * @param mtd		MTD data structure
495 * @param area		BufferRAM area
496 * @param buffer	the databuffer to put/get data
497 * @param offset	offset to read from or write to
498 * @param count		number of bytes to read/write
499 *
500 * Read the BufferRAM area
501 */
502static int onenand_read_bufferram(struct mtd_info *mtd, int area,
503		unsigned char *buffer, int offset, size_t count)
504{
505	struct onenand_chip *this = mtd->priv;
506	void __iomem *bufferram;
507
508	bufferram = this->base + area;
509
510	bufferram += onenand_bufferram_offset(mtd, area);
511
512	if (ONENAND_CHECK_BYTE_ACCESS(count)) {
513		unsigned short word;
514
515		/* Align with word(16-bit) size */
516		count--;
517
518		/* Read word and save byte */
519		word = this->read_word(bufferram + offset + count);
520		buffer[count] = (word & 0xff);
521	}
522
523	memcpy(buffer, bufferram + offset, count);
524
525	return 0;
526}
527
528/**
529 * onenand_sync_read_bufferram - [OneNAND Interface] Read the bufferram area with Sync. Burst mode
530 * @param mtd		MTD data structure
531 * @param area		BufferRAM area
532 * @param buffer	the databuffer to put/get data
533 * @param offset	offset to read from or write to
534 * @param count		number of bytes to read/write
535 *
536 * Read the BufferRAM area with Sync. Burst Mode
537 */
538static int onenand_sync_read_bufferram(struct mtd_info *mtd, int area,
539		unsigned char *buffer, int offset, size_t count)
540{
541	struct onenand_chip *this = mtd->priv;
542	void __iomem *bufferram;
543
544	bufferram = this->base + area;
545
546	bufferram += onenand_bufferram_offset(mtd, area);
547
548	this->mmcontrol(mtd, ONENAND_SYS_CFG1_SYNC_READ);
549
550	if (ONENAND_CHECK_BYTE_ACCESS(count)) {
551		unsigned short word;
552
553		/* Align with word(16-bit) size */
554		count--;
555
556		/* Read word and save byte */
557		word = this->read_word(bufferram + offset + count);
558		buffer[count] = (word & 0xff);
559	}
560
561	memcpy(buffer, bufferram + offset, count);
562
563	this->mmcontrol(mtd, 0);
564
565	return 0;
566}
567
568/**
569 * onenand_write_bufferram - [OneNAND Interface] Write the bufferram area
570 * @param mtd		MTD data structure
571 * @param area		BufferRAM area
572 * @param buffer	the databuffer to put/get data
573 * @param offset	offset to read from or write to
574 * @param count		number of bytes to read/write
575 *
576 * Write the BufferRAM area
577 */
578static int onenand_write_bufferram(struct mtd_info *mtd, int area,
579		const unsigned char *buffer, int offset, size_t count)
580{
581	struct onenand_chip *this = mtd->priv;
582	void __iomem *bufferram;
583
584	bufferram = this->base + area;
585
586	bufferram += onenand_bufferram_offset(mtd, area);
587
588	if (ONENAND_CHECK_BYTE_ACCESS(count)) {
589		unsigned short word;
590		int byte_offset;
591
592		/* Align with word(16-bit) size */
593		count--;
594
595		/* Calculate byte access offset */
596		byte_offset = offset + count;
597
598		/* Read word and save byte */
599		word = this->read_word(bufferram + byte_offset);
600		word = (word & ~0xff) | buffer[count];
601		this->write_word(word, bufferram + byte_offset);
602	}
603
604	memcpy(bufferram + offset, buffer, count);
605
606	return 0;
607}
608
609/**
610 * onenand_get_2x_blockpage - [GENERIC] Get blockpage at 2x program mode
611 * @param mtd		MTD data structure
612 * @param addr		address to check
613 * @return		blockpage address
614 *
615 * Get blockpage address at 2x program mode
616 */
617static int onenand_get_2x_blockpage(struct mtd_info *mtd, loff_t addr)
618{
619	struct onenand_chip *this = mtd->priv;
620	int blockpage, block, page;
621
622	/* Calculate the even block number */
623	block = (int) (addr >> this->erase_shift) & ~1;
624	/* Is it the odd plane? */
625	if (addr & this->writesize)
626		block++;
627	page = (int) (addr >> (this->page_shift + 1)) & this->page_mask;
628	blockpage = (block << 7) | page;
629
630	return blockpage;
631}
632
633/**
634 * onenand_check_bufferram - [GENERIC] Check BufferRAM information
635 * @param mtd		MTD data structure
636 * @param addr		address to check
637 * @return		1 if there are valid data, otherwise 0
638 *
639 * Check bufferram if there is data we required
640 */
641static int onenand_check_bufferram(struct mtd_info *mtd, loff_t addr)
642{
643	struct onenand_chip *this = mtd->priv;
644	int blockpage, found = 0;
645	unsigned int i;
646
647	if (ONENAND_IS_2PLANE(this))
648		blockpage = onenand_get_2x_blockpage(mtd, addr);
649	else
650		blockpage = (int) (addr >> this->page_shift);
651
652	/* Is there valid data? */
653	i = ONENAND_CURRENT_BUFFERRAM(this);
654	if (this->bufferram[i].blockpage == blockpage)
655		found = 1;
656	else {
657		/* Check another BufferRAM */
658		i = ONENAND_NEXT_BUFFERRAM(this);
659		if (this->bufferram[i].blockpage == blockpage) {
660			ONENAND_SET_NEXT_BUFFERRAM(this);
661			found = 1;
662		}
663	}
664
665	if (found && ONENAND_IS_DDP(this)) {
666		/* Select DataRAM for DDP */
667		int block = (int) (addr >> this->erase_shift);
668		int value = onenand_bufferram_address(this, block);
669		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
670	}
671
672	return found;
673}
674
675/**
676 * onenand_update_bufferram - [GENERIC] Update BufferRAM information
677 * @param mtd		MTD data structure
678 * @param addr		address to update
679 * @param valid		valid flag
680 *
681 * Update BufferRAM information
682 */
683static void onenand_update_bufferram(struct mtd_info *mtd, loff_t addr,
684		int valid)
685{
686	struct onenand_chip *this = mtd->priv;
687	int blockpage;
688	unsigned int i;
689
690	if (ONENAND_IS_2PLANE(this))
691		blockpage = onenand_get_2x_blockpage(mtd, addr);
692	else
693		blockpage = (int) (addr >> this->page_shift);
694
695	/* Invalidate another BufferRAM */
696	i = ONENAND_NEXT_BUFFERRAM(this);
697	if (this->bufferram[i].blockpage == blockpage)
698		this->bufferram[i].blockpage = -1;
699
700	/* Update BufferRAM */
701	i = ONENAND_CURRENT_BUFFERRAM(this);
702	if (valid)
703		this->bufferram[i].blockpage = blockpage;
704	else
705		this->bufferram[i].blockpage = -1;
706}
707
708/**
709 * onenand_invalidate_bufferram - [GENERIC] Invalidate BufferRAM information
710 * @param mtd		MTD data structure
711 * @param addr		start address to invalidate
712 * @param len		length to invalidate
713 *
714 * Invalidate BufferRAM information
715 */
716static void onenand_invalidate_bufferram(struct mtd_info *mtd, loff_t addr,
717		unsigned int len)
718{
719	struct onenand_chip *this = mtd->priv;
720	int i;
721	loff_t end_addr = addr + len;
722
723	/* Invalidate BufferRAM */
724	for (i = 0; i < MAX_BUFFERRAM; i++) {
725		loff_t buf_addr = this->bufferram[i].blockpage << this->page_shift;
726		if (buf_addr >= addr && buf_addr < end_addr)
727			this->bufferram[i].blockpage = -1;
728	}
729}
730
731/**
732 * onenand_get_device - [GENERIC] Get chip for selected access
733 * @param mtd		MTD device structure
734 * @param new_state	the state which is requested
735 *
736 * Get the device and lock it for exclusive access
737 */
738static int onenand_get_device(struct mtd_info *mtd, int new_state)
739{
740	struct onenand_chip *this = mtd->priv;
741	DECLARE_WAITQUEUE(wait, current);
742
743	/*
744	 * Grab the lock and see if the device is available
745	 */
746	while (1) {
747		spin_lock(&this->chip_lock);
748		if (this->state == FL_READY) {
749			this->state = new_state;
750			spin_unlock(&this->chip_lock);
751			break;
752		}
753		if (new_state == FL_PM_SUSPENDED) {
754			spin_unlock(&this->chip_lock);
755			return (this->state == FL_PM_SUSPENDED) ? 0 : -EAGAIN;
756		}
757		set_current_state(TASK_UNINTERRUPTIBLE);
758		add_wait_queue(&this->wq, &wait);
759		spin_unlock(&this->chip_lock);
760		schedule();
761		remove_wait_queue(&this->wq, &wait);
762	}
763
764	return 0;
765}
766
767/**
768 * onenand_release_device - [GENERIC] release chip
769 * @param mtd		MTD device structure
770 *
771 * Deselect, release chip lock and wake up anyone waiting on the device
772 */
773static void onenand_release_device(struct mtd_info *mtd)
774{
775	struct onenand_chip *this = mtd->priv;
776
777	/* Release the chip */
778	spin_lock(&this->chip_lock);
779	this->state = FL_READY;
780	wake_up(&this->wq);
781	spin_unlock(&this->chip_lock);
782}
783
784/**
785 * onenand_transfer_auto_oob - [Internal] oob auto-placement transfer
786 * @param mtd		MTD device structure
787 * @param buf		destination address
788 * @param column	oob offset to read from
789 * @param thislen	oob length to read
790 */
791static int onenand_transfer_auto_oob(struct mtd_info *mtd, uint8_t *buf, int column,
792				int thislen)
793{
794	struct onenand_chip *this = mtd->priv;
795	struct nand_oobfree *free;
796	int readcol = column;
797	int readend = column + thislen;
798	int lastgap = 0;
799	unsigned int i;
800	uint8_t *oob_buf = this->oob_buf;
801
802	free = this->ecclayout->oobfree;
803	for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES && free->length; i++, free++) {
804		if (readcol >= lastgap)
805			readcol += free->offset - lastgap;
806		if (readend >= lastgap)
807			readend += free->offset - lastgap;
808		lastgap = free->offset + free->length;
809	}
810	this->read_bufferram(mtd, ONENAND_SPARERAM, oob_buf, 0, mtd->oobsize);
811	free = this->ecclayout->oobfree;
812	for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES && free->length; i++, free++) {
813		int free_end = free->offset + free->length;
814		if (free->offset < readend && free_end > readcol) {
815			int st = max_t(int,free->offset,readcol);
816			int ed = min_t(int,free_end,readend);
817			int n = ed - st;
818			memcpy(buf, oob_buf + st, n);
819			buf += n;
820		} else if (column == 0)
821			break;
822	}
823	return 0;
824}
825
826/**
827 * onenand_read_ops_nolock - [OneNAND Interface] OneNAND read main and/or out-of-band
828 * @param mtd		MTD device structure
829 * @param from		offset to read from
830 * @param ops:		oob operation description structure
831 *
832 * OneNAND read main and/or out-of-band data
833 */
834static int onenand_read_ops_nolock(struct mtd_info *mtd, loff_t from,
835				struct mtd_oob_ops *ops)
836{
837	struct onenand_chip *this = mtd->priv;
838	struct mtd_ecc_stats stats;
839	size_t len = ops->len;
840	size_t ooblen = ops->ooblen;
841	u_char *buf = ops->datbuf;
842	u_char *oobbuf = ops->oobbuf;
843	int read = 0, column, thislen;
844	int oobread = 0, oobcolumn, thisooblen, oobsize;
845	int ret = 0, boundary = 0;
846	int writesize = this->writesize;
847
848	DEBUG(MTD_DEBUG_LEVEL3, "onenand_read_ops_nolock: from = 0x%08x, len = %i\n", (unsigned int) from, (int) len);
849
850	if (ops->mode == MTD_OOB_AUTO)
851		oobsize = this->ecclayout->oobavail;
852	else
853		oobsize = mtd->oobsize;
854
855	oobcolumn = from & (mtd->oobsize - 1);
856
857	/* Do not allow reads past end of device */
858	if ((from + len) > mtd->size) {
859		printk(KERN_ERR "onenand_read_ops_nolock: Attempt read beyond end of device\n");
860		ops->retlen = 0;
861		ops->oobretlen = 0;
862		return -EINVAL;
863	}
864
865	stats = mtd->ecc_stats;
866
867 	/* Read-while-load method */
868
869 	/* Do first load to bufferRAM */
870 	if (read < len) {
871 		if (!onenand_check_bufferram(mtd, from)) {
872			this->command(mtd, ONENAND_CMD_READ, from, writesize);
873 			ret = this->wait(mtd, FL_READING);
874 			onenand_update_bufferram(mtd, from, !ret);
875			if (ret == -EBADMSG)
876				ret = 0;
877 		}
878 	}
879
880	thislen = min_t(int, writesize, len - read);
881	column = from & (writesize - 1);
882	if (column + thislen > writesize)
883		thislen = writesize - column;
884
885 	while (!ret) {
886 		/* If there is more to load then start next load */
887 		from += thislen;
888 		if (read + thislen < len) {
889			this->command(mtd, ONENAND_CMD_READ, from, writesize);
890 			/*
891 			 * Chip boundary handling in DDP
892 			 * Now we issued chip 1 read and pointed chip 1
893 			 * bufferam so we have to point chip 0 bufferam.
894 			 */
895 			if (ONENAND_IS_DDP(this) &&
896 			    unlikely(from == (this->chipsize >> 1))) {
897 				this->write_word(ONENAND_DDP_CHIP0, this->base + ONENAND_REG_START_ADDRESS2);
898 				boundary = 1;
899 			} else
900 				boundary = 0;
901 			ONENAND_SET_PREV_BUFFERRAM(this);
902 		}
903 		/* While load is going, read from last bufferRAM */
904 		this->read_bufferram(mtd, ONENAND_DATARAM, buf, column, thislen);
905
906		/* Read oob area if needed */
907		if (oobbuf) {
908			thisooblen = oobsize - oobcolumn;
909			thisooblen = min_t(int, thisooblen, ooblen - oobread);
910
911			if (ops->mode == MTD_OOB_AUTO)
912				onenand_transfer_auto_oob(mtd, oobbuf, oobcolumn, thisooblen);
913			else
914				this->read_bufferram(mtd, ONENAND_SPARERAM, oobbuf, oobcolumn, thisooblen);
915			oobread += thisooblen;
916			oobbuf += thisooblen;
917			oobcolumn = 0;
918		}
919
920 		/* See if we are done */
921 		read += thislen;
922 		if (read == len)
923 			break;
924 		/* Set up for next read from bufferRAM */
925 		if (unlikely(boundary))
926 			this->write_word(ONENAND_DDP_CHIP1, this->base + ONENAND_REG_START_ADDRESS2);
927 		ONENAND_SET_NEXT_BUFFERRAM(this);
928 		buf += thislen;
929		thislen = min_t(int, writesize, len - read);
930 		column = 0;
931 		cond_resched();
932 		/* Now wait for load */
933 		ret = this->wait(mtd, FL_READING);
934 		onenand_update_bufferram(mtd, from, !ret);
935		if (ret == -EBADMSG)
936			ret = 0;
937 	}
938
939	/*
940	 * Return success, if no ECC failures, else -EBADMSG
941	 * fs driver will take care of that, because
942	 * retlen == desired len and result == -EBADMSG
943	 */
944	ops->retlen = read;
945	ops->oobretlen = oobread;
946
947	if (ret)
948		return ret;
949
950	if (mtd->ecc_stats.failed - stats.failed)
951		return -EBADMSG;
952
953	return mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0;
954}
955
956/**
957 * onenand_read_oob_nolock - [MTD Interface] OneNAND read out-of-band
958 * @param mtd		MTD device structure
959 * @param from		offset to read from
960 * @param ops:		oob operation description structure
961 *
962 * OneNAND read out-of-band data from the spare area
963 */
964static int onenand_read_oob_nolock(struct mtd_info *mtd, loff_t from,
965			struct mtd_oob_ops *ops)
966{
967	struct onenand_chip *this = mtd->priv;
968	struct mtd_ecc_stats stats;
969	int read = 0, thislen, column, oobsize;
970	size_t len = ops->ooblen;
971	mtd_oob_mode_t mode = ops->mode;
972	u_char *buf = ops->oobbuf;
973	int ret = 0;
974
975	from += ops->ooboffs;
976
977	DEBUG(MTD_DEBUG_LEVEL3, "onenand_read_oob_nolock: from = 0x%08x, len = %i\n", (unsigned int) from, (int) len);
978
979	/* Initialize return length value */
980	ops->oobretlen = 0;
981
982	if (mode == MTD_OOB_AUTO)
983		oobsize = this->ecclayout->oobavail;
984	else
985		oobsize = mtd->oobsize;
986
987	column = from & (mtd->oobsize - 1);
988
989	if (unlikely(column >= oobsize)) {
990		printk(KERN_ERR "onenand_read_oob_nolock: Attempted to start read outside oob\n");
991		return -EINVAL;
992	}
993
994	/* Do not allow reads past end of device */
995	if (unlikely(from >= mtd->size ||
996		     column + len > ((mtd->size >> this->page_shift) -
997				     (from >> this->page_shift)) * oobsize)) {
998		printk(KERN_ERR "onenand_read_oob_nolock: Attempted to read beyond end of device\n");
999		return -EINVAL;
1000	}
1001
1002	stats = mtd->ecc_stats;
1003
1004	while (read < len) {
1005		cond_resched();
1006
1007		thislen = oobsize - column;
1008		thislen = min_t(int, thislen, len);
1009
1010		this->command(mtd, ONENAND_CMD_READOOB, from, mtd->oobsize);
1011
1012		onenand_update_bufferram(mtd, from, 0);
1013
1014		ret = this->wait(mtd, FL_READING);
1015		if (ret && ret != -EBADMSG) {
1016			printk(KERN_ERR "onenand_read_oob_nolock: read failed = 0x%x\n", ret);
1017			break;
1018		}
1019
1020		if (mode == MTD_OOB_AUTO)
1021			onenand_transfer_auto_oob(mtd, buf, column, thislen);
1022		else
1023			this->read_bufferram(mtd, ONENAND_SPARERAM, buf, column, thislen);
1024
1025		read += thislen;
1026
1027		if (read == len)
1028			break;
1029
1030		buf += thislen;
1031
1032		/* Read more? */
1033		if (read < len) {
1034			/* Page size */
1035			from += mtd->writesize;
1036			column = 0;
1037		}
1038	}
1039
1040	ops->oobretlen = read;
1041
1042	if (ret)
1043		return ret;
1044
1045	if (mtd->ecc_stats.failed - stats.failed)
1046		return -EBADMSG;
1047
1048	return 0;
1049}
1050
1051/**
1052 * onenand_read - [MTD Interface] Read data from flash
1053 * @param mtd		MTD device structure
1054 * @param from		offset to read from
1055 * @param len		number of bytes to read
1056 * @param retlen	pointer to variable to store the number of read bytes
1057 * @param buf		the databuffer to put data
1058 *
1059 * Read with ecc
1060*/
1061static int onenand_read(struct mtd_info *mtd, loff_t from, size_t len,
1062	size_t *retlen, u_char *buf)
1063{
1064	struct mtd_oob_ops ops = {
1065		.len	= len,
1066		.ooblen	= 0,
1067		.datbuf	= buf,
1068		.oobbuf	= NULL,
1069	};
1070	int ret;
1071
1072	onenand_get_device(mtd, FL_READING);
1073	ret = onenand_read_ops_nolock(mtd, from, &ops);
1074	onenand_release_device(mtd);
1075
1076	*retlen = ops.retlen;
1077	return ret;
1078}
1079
1080/**
1081 * onenand_read_oob - [MTD Interface] Read main and/or out-of-band
1082 * @param mtd:		MTD device structure
1083 * @param from:		offset to read from
1084 * @param ops:		oob operation description structure
1085
1086 * Read main and/or out-of-band
1087 */
1088static int onenand_read_oob(struct mtd_info *mtd, loff_t from,
1089			    struct mtd_oob_ops *ops)
1090{
1091	int ret;
1092
1093	switch (ops->mode) {
1094	case MTD_OOB_PLACE:
1095	case MTD_OOB_AUTO:
1096		break;
1097	case MTD_OOB_RAW:
1098		/* Not implemented yet */
1099	default:
1100		return -EINVAL;
1101	}
1102
1103	onenand_get_device(mtd, FL_READING);
1104	if (ops->datbuf)
1105		ret = onenand_read_ops_nolock(mtd, from, ops);
1106	else
1107		ret = onenand_read_oob_nolock(mtd, from, ops);
1108	onenand_release_device(mtd);
1109
1110	return ret;
1111}
1112
1113/**
1114 * onenand_bbt_wait - [DEFAULT] wait until the command is done
1115 * @param mtd		MTD device structure
1116 * @param state		state to select the max. timeout value
1117 *
1118 * Wait for command done.
1119 */
1120static int onenand_bbt_wait(struct mtd_info *mtd, int state)
1121{
1122	struct onenand_chip *this = mtd->priv;
1123	unsigned long timeout;
1124	unsigned int interrupt;
1125	unsigned int ctrl;
1126
1127	/* The 20 msec is enough */
1128	timeout = jiffies + msecs_to_jiffies(20);
1129	while (time_before(jiffies, timeout)) {
1130		interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
1131		if (interrupt & ONENAND_INT_MASTER)
1132			break;
1133	}
1134	/* To get correct interrupt status in timeout case */
1135	interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
1136	ctrl = this->read_word(this->base + ONENAND_REG_CTRL_STATUS);
1137
1138	/* Initial bad block case: 0x2400 or 0x0400 */
1139	if (ctrl & ONENAND_CTRL_ERROR) {
1140		printk(KERN_DEBUG "onenand_bbt_wait: controller error = 0x%04x\n", ctrl);
1141		return ONENAND_BBT_READ_ERROR;
1142	}
1143
1144	if (interrupt & ONENAND_INT_READ) {
1145		int ecc = this->read_word(this->base + ONENAND_REG_ECC_STATUS);
1146		if (ecc & ONENAND_ECC_2BIT_ALL)
1147			return ONENAND_BBT_READ_ERROR;
1148	} else {
1149		printk(KERN_ERR "onenand_bbt_wait: read timeout!"
1150			"ctrl=0x%04x intr=0x%04x\n", ctrl, interrupt);
1151		return ONENAND_BBT_READ_FATAL_ERROR;
1152	}
1153
1154	return 0;
1155}
1156
1157/**
1158 * onenand_bbt_read_oob - [MTD Interface] OneNAND read out-of-band for bbt scan
1159 * @param mtd		MTD device structure
1160 * @param from		offset to read from
1161 * @param ops		oob operation description structure
1162 *
1163 * OneNAND read out-of-band data from the spare area for bbt scan
1164 */
1165int onenand_bbt_read_oob(struct mtd_info *mtd, loff_t from,
1166			    struct mtd_oob_ops *ops)
1167{
1168	struct onenand_chip *this = mtd->priv;
1169	int read = 0, thislen, column;
1170	int ret = 0;
1171	size_t len = ops->ooblen;
1172	u_char *buf = ops->oobbuf;
1173
1174	DEBUG(MTD_DEBUG_LEVEL3, "onenand_bbt_read_oob: from = 0x%08x, len = %zi\n", (unsigned int) from, len);
1175
1176	/* Initialize return value */
1177	ops->oobretlen = 0;
1178
1179	/* Do not allow reads past end of device */
1180	if (unlikely((from + len) > mtd->size)) {
1181		printk(KERN_ERR "onenand_bbt_read_oob: Attempt read beyond end of device\n");
1182		return ONENAND_BBT_READ_FATAL_ERROR;
1183	}
1184
1185	/* Grab the lock and see if the device is available */
1186	onenand_get_device(mtd, FL_READING);
1187
1188	column = from & (mtd->oobsize - 1);
1189
1190	while (read < len) {
1191		cond_resched();
1192
1193		thislen = mtd->oobsize - column;
1194		thislen = min_t(int, thislen, len);
1195
1196		this->command(mtd, ONENAND_CMD_READOOB, from, mtd->oobsize);
1197
1198		onenand_update_bufferram(mtd, from, 0);
1199
1200		ret = onenand_bbt_wait(mtd, FL_READING);
1201		if (ret)
1202			break;
1203
1204		this->read_bufferram(mtd, ONENAND_SPARERAM, buf, column, thislen);
1205		read += thislen;
1206		if (read == len)
1207			break;
1208
1209		buf += thislen;
1210
1211		/* Read more? */
1212		if (read < len) {
1213			/* Update Page size */
1214			from += this->writesize;
1215			column = 0;
1216		}
1217	}
1218
1219	/* Deselect and wake up anyone waiting on the device */
1220	onenand_release_device(mtd);
1221
1222	ops->oobretlen = read;
1223	return ret;
1224}
1225
1226#ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE
1227/**
1228 * onenand_verify_oob - [GENERIC] verify the oob contents after a write
1229 * @param mtd		MTD device structure
1230 * @param buf		the databuffer to verify
1231 * @param to		offset to read from
1232 */
1233static int onenand_verify_oob(struct mtd_info *mtd, const u_char *buf, loff_t to)
1234{
1235	struct onenand_chip *this = mtd->priv;
1236	u_char *oob_buf = this->oob_buf;
1237	int status, i;
1238
1239	this->command(mtd, ONENAND_CMD_READOOB, to, mtd->oobsize);
1240	onenand_update_bufferram(mtd, to, 0);
1241	status = this->wait(mtd, FL_READING);
1242	if (status)
1243		return status;
1244
1245	this->read_bufferram(mtd, ONENAND_SPARERAM, oob_buf, 0, mtd->oobsize);
1246	for (i = 0; i < mtd->oobsize; i++)
1247		if (buf[i] != 0xFF && buf[i] != oob_buf[i])
1248			return -EBADMSG;
1249
1250	return 0;
1251}
1252
1253/**
1254 * onenand_verify - [GENERIC] verify the chip contents after a write
1255 * @param mtd          MTD device structure
1256 * @param buf          the databuffer to verify
1257 * @param addr         offset to read from
1258 * @param len          number of bytes to read and compare
1259 */
1260static int onenand_verify(struct mtd_info *mtd, const u_char *buf, loff_t addr, size_t len)
1261{
1262	struct onenand_chip *this = mtd->priv;
1263	void __iomem *dataram;
1264	int ret = 0;
1265	int thislen, column;
1266
1267	while (len != 0) {
1268		thislen = min_t(int, this->writesize, len);
1269		column = addr & (this->writesize - 1);
1270		if (column + thislen > this->writesize)
1271			thislen = this->writesize - column;
1272
1273		this->command(mtd, ONENAND_CMD_READ, addr, this->writesize);
1274
1275		onenand_update_bufferram(mtd, addr, 0);
1276
1277		ret = this->wait(mtd, FL_READING);
1278		if (ret)
1279			return ret;
1280
1281		onenand_update_bufferram(mtd, addr, 1);
1282
1283		dataram = this->base + ONENAND_DATARAM;
1284		dataram += onenand_bufferram_offset(mtd, ONENAND_DATARAM);
1285
1286		if (memcmp(buf, dataram + column, thislen))
1287			return -EBADMSG;
1288
1289		len -= thislen;
1290		buf += thislen;
1291		addr += thislen;
1292	}
1293
1294	return 0;
1295}
1296#else
1297#define onenand_verify(...)		(0)
1298#define onenand_verify_oob(...)		(0)
1299#endif
1300
1301#define NOTALIGNED(x)	((x & (this->subpagesize - 1)) != 0)
1302
1303static void onenand_panic_wait(struct mtd_info *mtd)
1304{
1305	struct onenand_chip *this = mtd->priv;
1306	unsigned int interrupt;
1307	int i;
1308
1309	for (i = 0; i < 2000; i++) {
1310		interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
1311		if (interrupt & ONENAND_INT_MASTER)
1312			break;
1313		udelay(10);
1314	}
1315}
1316
1317/**
1318 * onenand_panic_write - [MTD Interface] write buffer to FLASH in a panic context
1319 * @param mtd		MTD device structure
1320 * @param to		offset to write to
1321 * @param len		number of bytes to write
1322 * @param retlen	pointer to variable to store the number of written bytes
1323 * @param buf		the data to write
1324 *
1325 * Write with ECC
1326 */
1327static int onenand_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
1328			 size_t *retlen, const u_char *buf)
1329{
1330	struct onenand_chip *this = mtd->priv;
1331	int column, subpage;
1332	int written = 0;
1333	int ret = 0;
1334
1335	if (this->state == FL_PM_SUSPENDED)
1336		return -EBUSY;
1337
1338	/* Wait for any existing operation to clear */
1339	onenand_panic_wait(mtd);
1340
1341	DEBUG(MTD_DEBUG_LEVEL3, "onenand_panic_write: to = 0x%08x, len = %i\n",
1342	      (unsigned int) to, (int) len);
1343
1344	/* Initialize retlen, in case of early exit */
1345	*retlen = 0;
1346
1347	/* Do not allow writes past end of device */
1348	if (unlikely((to + len) > mtd->size)) {
1349		printk(KERN_ERR "onenand_panic_write: Attempt write to past end of device\n");
1350		return -EINVAL;
1351	}
1352
1353	/* Reject writes, which are not page aligned */
1354        if (unlikely(NOTALIGNED(to) || NOTALIGNED(len))) {
1355                printk(KERN_ERR "onenand_panic_write: Attempt to write not page aligned data\n");
1356                return -EINVAL;
1357        }
1358
1359	column = to & (mtd->writesize - 1);
1360
1361	/* Loop until all data write */
1362	while (written < len) {
1363		int thislen = min_t(int, mtd->writesize - column, len - written);
1364		u_char *wbuf = (u_char *) buf;
1365
1366		this->command(mtd, ONENAND_CMD_BUFFERRAM, to, thislen);
1367
1368		/* Partial page write */
1369		subpage = thislen < mtd->writesize;
1370		if (subpage) {
1371			memset(this->page_buf, 0xff, mtd->writesize);
1372			memcpy(this->page_buf + column, buf, thislen);
1373			wbuf = this->page_buf;
1374		}
1375
1376		this->write_bufferram(mtd, ONENAND_DATARAM, wbuf, 0, mtd->writesize);
1377		this->write_bufferram(mtd, ONENAND_SPARERAM, ffchars, 0, mtd->oobsize);
1378
1379		this->command(mtd, ONENAND_CMD_PROG, to, mtd->writesize);
1380
1381		onenand_panic_wait(mtd);
1382
1383		/* In partial page write we don't update bufferram */
1384		onenand_update_bufferram(mtd, to, !ret && !subpage);
1385		if (ONENAND_IS_2PLANE(this)) {
1386			ONENAND_SET_BUFFERRAM1(this);
1387			onenand_update_bufferram(mtd, to + this->writesize, !ret && !subpage);
1388		}
1389
1390		if (ret) {
1391			printk(KERN_ERR "onenand_panic_write: write failed %d\n", ret);
1392			break;
1393		}
1394
1395		written += thislen;
1396
1397		if (written == len)
1398			break;
1399
1400		column = 0;
1401		to += thislen;
1402		buf += thislen;
1403	}
1404
1405	*retlen = written;
1406	return ret;
1407}
1408
1409/**
1410 * onenand_fill_auto_oob - [Internal] oob auto-placement transfer
1411 * @param mtd		MTD device structure
1412 * @param oob_buf	oob buffer
1413 * @param buf		source address
1414 * @param column	oob offset to write to
1415 * @param thislen	oob length to write
1416 */
1417static int onenand_fill_auto_oob(struct mtd_info *mtd, u_char *oob_buf,
1418				  const u_char *buf, int column, int thislen)
1419{
1420	struct onenand_chip *this = mtd->priv;
1421	struct nand_oobfree *free;
1422	int writecol = column;
1423	int writeend = column + thislen;
1424	int lastgap = 0;
1425	unsigned int i;
1426
1427	free = this->ecclayout->oobfree;
1428	for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES && free->length; i++, free++) {
1429		if (writecol >= lastgap)
1430			writecol += free->offset - lastgap;
1431		if (writeend >= lastgap)
1432			writeend += free->offset - lastgap;
1433		lastgap = free->offset + free->length;
1434	}
1435	free = this->ecclayout->oobfree;
1436	for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES && free->length; i++, free++) {
1437		int free_end = free->offset + free->length;
1438		if (free->offset < writeend && free_end > writecol) {
1439			int st = max_t(int,free->offset,writecol);
1440			int ed = min_t(int,free_end,writeend);
1441			int n = ed - st;
1442			memcpy(oob_buf + st, buf, n);
1443			buf += n;
1444		} else if (column == 0)
1445			break;
1446	}
1447	return 0;
1448}
1449
1450/**
1451 * onenand_write_ops_nolock - [OneNAND Interface] write main and/or out-of-band
1452 * @param mtd		MTD device structure
1453 * @param to		offset to write to
1454 * @param ops		oob operation description structure
1455 *
1456 * Write main and/or oob with ECC
1457 */
1458static int onenand_write_ops_nolock(struct mtd_info *mtd, loff_t to,
1459				struct mtd_oob_ops *ops)
1460{
1461	struct onenand_chip *this = mtd->priv;
1462	int written = 0, column, thislen, subpage;
1463	int oobwritten = 0, oobcolumn, thisooblen, oobsize;
1464	size_t len = ops->len;
1465	size_t ooblen = ops->ooblen;
1466	const u_char *buf = ops->datbuf;
1467	const u_char *oob = ops->oobbuf;
1468	u_char *oobbuf;
1469	int ret = 0;
1470
1471	DEBUG(MTD_DEBUG_LEVEL3, "onenand_write_ops_nolock: to = 0x%08x, len = %i\n", (unsigned int) to, (int) len);
1472
1473	/* Initialize retlen, in case of early exit */
1474	ops->retlen = 0;
1475	ops->oobretlen = 0;
1476
1477	/* Do not allow writes past end of device */
1478	if (unlikely((to + len) > mtd->size)) {
1479		printk(KERN_ERR "onenand_write_ops_nolock: Attempt write to past end of device\n");
1480		return -EINVAL;
1481	}
1482
1483	/* Reject writes, which are not page aligned */
1484        if (unlikely(NOTALIGNED(to) || NOTALIGNED(len))) {
1485                printk(KERN_ERR "onenand_write_ops_nolock: Attempt to write not page aligned data\n");
1486                return -EINVAL;
1487        }
1488
1489	if (ops->mode == MTD_OOB_AUTO)
1490		oobsize = this->ecclayout->oobavail;
1491	else
1492		oobsize = mtd->oobsize;
1493
1494	oobcolumn = to & (mtd->oobsize - 1);
1495
1496	column = to & (mtd->writesize - 1);
1497
1498	/* Loop until all data write */
1499	while (written < len) {
1500		u_char *wbuf = (u_char *) buf;
1501
1502		thislen = min_t(int, mtd->writesize - column, len - written);
1503		thisooblen = min_t(int, oobsize - oobcolumn, ooblen - oobwritten);
1504
1505		cond_resched();
1506
1507		this->command(mtd, ONENAND_CMD_BUFFERRAM, to, thislen);
1508
1509		/* Partial page write */
1510		subpage = thislen < mtd->writesize;
1511		if (subpage) {
1512			memset(this->page_buf, 0xff, mtd->writesize);
1513			memcpy(this->page_buf + column, buf, thislen);
1514			wbuf = this->page_buf;
1515		}
1516
1517		this->write_bufferram(mtd, ONENAND_DATARAM, wbuf, 0, mtd->writesize);
1518
1519		if (oob) {
1520			oobbuf = this->oob_buf;
1521
1522			/* We send data to spare ram with oobsize
1523			 * to prevent byte access */
1524			memset(oobbuf, 0xff, mtd->oobsize);
1525			if (ops->mode == MTD_OOB_AUTO)
1526				onenand_fill_auto_oob(mtd, oobbuf, oob, oobcolumn, thisooblen);
1527			else
1528				memcpy(oobbuf + oobcolumn, oob, thisooblen);
1529
1530			oobwritten += thisooblen;
1531			oob += thisooblen;
1532			oobcolumn = 0;
1533		} else
1534			oobbuf = (u_char *) ffchars;
1535
1536		this->write_bufferram(mtd, ONENAND_SPARERAM, oobbuf, 0, mtd->oobsize);
1537
1538		this->command(mtd, ONENAND_CMD_PROG, to, mtd->writesize);
1539
1540		ret = this->wait(mtd, FL_WRITING);
1541
1542		/* In partial page write we don't update bufferram */
1543		onenand_update_bufferram(mtd, to, !ret && !subpage);
1544		if (ONENAND_IS_2PLANE(this)) {
1545			ONENAND_SET_BUFFERRAM1(this);
1546			onenand_update_bufferram(mtd, to + this->writesize, !ret && !subpage);
1547		}
1548
1549		if (ret) {
1550			printk(KERN_ERR "onenand_write_ops_nolock: write filaed %d\n", ret);
1551			break;
1552		}
1553
1554		/* Only check verify write turn on */
1555		ret = onenand_verify(mtd, buf, to, thislen);
1556		if (ret) {
1557			printk(KERN_ERR "onenand_write_ops_nolock: verify failed %d\n", ret);
1558			break;
1559		}
1560
1561		written += thislen;
1562
1563		if (written == len)
1564			break;
1565
1566		column = 0;
1567		to += thislen;
1568		buf += thislen;
1569	}
1570
1571	ops->retlen = written;
1572
1573	return ret;
1574}
1575
1576
1577/**
1578 * onenand_write_oob_nolock - [Internal] OneNAND write out-of-band
1579 * @param mtd		MTD device structure
1580 * @param to		offset to write to
1581 * @param len		number of bytes to write
1582 * @param retlen	pointer to variable to store the number of written bytes
1583 * @param buf		the data to write
1584 * @param mode		operation mode
1585 *
1586 * OneNAND write out-of-band
1587 */
1588static int onenand_write_oob_nolock(struct mtd_info *mtd, loff_t to,
1589				    struct mtd_oob_ops *ops)
1590{
1591	struct onenand_chip *this = mtd->priv;
1592	int column, ret = 0, oobsize;
1593	int written = 0;
1594	u_char *oobbuf;
1595	size_t len = ops->ooblen;
1596	const u_char *buf = ops->oobbuf;
1597	mtd_oob_mode_t mode = ops->mode;
1598
1599	to += ops->ooboffs;
1600
1601	DEBUG(MTD_DEBUG_LEVEL3, "onenand_write_oob_nolock: to = 0x%08x, len = %i\n", (unsigned int) to, (int) len);
1602
1603	/* Initialize retlen, in case of early exit */
1604	ops->oobretlen = 0;
1605
1606	if (mode == MTD_OOB_AUTO)
1607		oobsize = this->ecclayout->oobavail;
1608	else
1609		oobsize = mtd->oobsize;
1610
1611	column = to & (mtd->oobsize - 1);
1612
1613	if (unlikely(column >= oobsize)) {
1614		printk(KERN_ERR "onenand_write_oob_nolock: Attempted to start write outside oob\n");
1615		return -EINVAL;
1616	}
1617
1618	/* For compatibility with NAND: Do not allow write past end of page */
1619	if (unlikely(column + len > oobsize)) {
1620		printk(KERN_ERR "onenand_write_oob_nolock: "
1621		      "Attempt to write past end of page\n");
1622		return -EINVAL;
1623	}
1624
1625	/* Do not allow reads past end of device */
1626	if (unlikely(to >= mtd->size ||
1627		     column + len > ((mtd->size >> this->page_shift) -
1628				     (to >> this->page_shift)) * oobsize)) {
1629		printk(KERN_ERR "onenand_write_oob_nolock: Attempted to write past end of device\n");
1630		return -EINVAL;
1631	}
1632
1633	oobbuf = this->oob_buf;
1634
1635	/* Loop until all data write */
1636	while (written < len) {
1637		int thislen = min_t(int, oobsize, len - written);
1638
1639		cond_resched();
1640
1641		this->command(mtd, ONENAND_CMD_BUFFERRAM, to, mtd->oobsize);
1642
1643		/* We send data to spare ram with oobsize
1644		 * to prevent byte access */
1645		memset(oobbuf, 0xff, mtd->oobsize);
1646		if (mode == MTD_OOB_AUTO)
1647			onenand_fill_auto_oob(mtd, oobbuf, buf, column, thislen);
1648		else
1649			memcpy(oobbuf + column, buf, thislen);
1650		this->write_bufferram(mtd, ONENAND_SPARERAM, oobbuf, 0, mtd->oobsize);
1651
1652		this->command(mtd, ONENAND_CMD_PROGOOB, to, mtd->oobsize);
1653
1654		onenand_update_bufferram(mtd, to, 0);
1655		if (ONENAND_IS_2PLANE(this)) {
1656			ONENAND_SET_BUFFERRAM1(this);
1657			onenand_update_bufferram(mtd, to + this->writesize, 0);
1658		}
1659
1660		ret = this->wait(mtd, FL_WRITING);
1661		if (ret) {
1662			printk(KERN_ERR "onenand_write_oob_nolock: write failed %d\n", ret);
1663			break;
1664		}
1665
1666		ret = onenand_verify_oob(mtd, oobbuf, to);
1667		if (ret) {
1668			printk(KERN_ERR "onenand_write_oob_nolock: verify failed %d\n", ret);
1669			break;
1670		}
1671
1672		written += thislen;
1673		if (written == len)
1674			break;
1675
1676		to += mtd->writesize;
1677		buf += thislen;
1678		column = 0;
1679	}
1680
1681	ops->oobretlen = written;
1682
1683	return ret;
1684}
1685
1686/**
1687 * onenand_write - [MTD Interface] write buffer to FLASH
1688 * @param mtd		MTD device structure
1689 * @param to		offset to write to
1690 * @param len		number of bytes to write
1691 * @param retlen	pointer to variable to store the number of written bytes
1692 * @param buf		the data to write
1693 *
1694 * Write with ECC
1695 */
1696static int onenand_write(struct mtd_info *mtd, loff_t to, size_t len,
1697	size_t *retlen, const u_char *buf)
1698{
1699	struct mtd_oob_ops ops = {
1700		.len	= len,
1701		.ooblen	= 0,
1702		.datbuf	= (u_char *) buf,
1703		.oobbuf	= NULL,
1704	};
1705	int ret;
1706
1707	onenand_get_device(mtd, FL_WRITING);
1708	ret = onenand_write_ops_nolock(mtd, to, &ops);
1709	onenand_release_device(mtd);
1710
1711	*retlen = ops.retlen;
1712	return ret;
1713}
1714
1715/**
1716 * onenand_write_oob - [MTD Interface] NAND write data and/or out-of-band
1717 * @param mtd:		MTD device structure
1718 * @param to:		offset to write
1719 * @param ops:		oob operation description structure
1720 */
1721static int onenand_write_oob(struct mtd_info *mtd, loff_t to,
1722			     struct mtd_oob_ops *ops)
1723{
1724	int ret;
1725
1726	switch (ops->mode) {
1727	case MTD_OOB_PLACE:
1728	case MTD_OOB_AUTO:
1729		break;
1730	case MTD_OOB_RAW:
1731		/* Not implemented yet */
1732	default:
1733		return -EINVAL;
1734	}
1735
1736	onenand_get_device(mtd, FL_WRITING);
1737	if (ops->datbuf)
1738		ret = onenand_write_ops_nolock(mtd, to, ops);
1739	else
1740		ret = onenand_write_oob_nolock(mtd, to, ops);
1741	onenand_release_device(mtd);
1742
1743	return ret;
1744}
1745
1746/**
1747 * onenand_block_isbad_nolock - [GENERIC] Check if a block is marked bad
1748 * @param mtd		MTD device structure
1749 * @param ofs		offset from device start
1750 * @param allowbbt	1, if its allowed to access the bbt area
1751 *
1752 * Check, if the block is bad. Either by reading the bad block table or
1753 * calling of the scan function.
1754 */
1755static int onenand_block_isbad_nolock(struct mtd_info *mtd, loff_t ofs, int allowbbt)
1756{
1757	struct onenand_chip *this = mtd->priv;
1758	struct bbm_info *bbm = this->bbm;
1759
1760	/* Return info from the table */
1761	return bbm->isbad_bbt(mtd, ofs, allowbbt);
1762}
1763
1764/**
1765 * onenand_erase - [MTD Interface] erase block(s)
1766 * @param mtd		MTD device structure
1767 * @param instr		erase instruction
1768 *
1769 * Erase one ore more blocks
1770 */
1771static int onenand_erase(struct mtd_info *mtd, struct erase_info *instr)
1772{
1773	struct onenand_chip *this = mtd->priv;
1774	unsigned int block_size;
1775	loff_t addr;
1776	int len;
1777	int ret = 0;
1778
1779	DEBUG(MTD_DEBUG_LEVEL3, "onenand_erase: start = 0x%08x, len = %i\n", (unsigned int) instr->addr, (unsigned int) instr->len);
1780
1781	block_size = (1 << this->erase_shift);
1782
1783	/* Start address must align on block boundary */
1784	if (unlikely(instr->addr & (block_size - 1))) {
1785		printk(KERN_ERR "onenand_erase: Unaligned address\n");
1786		return -EINVAL;
1787	}
1788
1789	/* Length must align on block boundary */
1790	if (unlikely(instr->len & (block_size - 1))) {
1791		printk(KERN_ERR "onenand_erase: Length not block aligned\n");
1792		return -EINVAL;
1793	}
1794
1795	/* Do not allow erase past end of device */
1796	if (unlikely((instr->len + instr->addr) > mtd->size)) {
1797		printk(KERN_ERR "onenand_erase: Erase past end of device\n");
1798		return -EINVAL;
1799	}
1800
1801	instr->fail_addr = 0xffffffff;
1802
1803	/* Grab the lock and see if the device is available */
1804	onenand_get_device(mtd, FL_ERASING);
1805
1806	/* Loop throught the pages */
1807	len = instr->len;
1808	addr = instr->addr;
1809
1810	instr->state = MTD_ERASING;
1811
1812	while (len) {
1813		cond_resched();
1814
1815		/* Check if we have a bad block, we do not erase bad blocks */
1816		if (onenand_block_isbad_nolock(mtd, addr, 0)) {
1817			printk (KERN_WARNING "onenand_erase: attempt to erase a bad block at addr 0x%08x\n", (unsigned int) addr);
1818			instr->state = MTD_ERASE_FAILED;
1819			goto erase_exit;
1820		}
1821
1822		this->command(mtd, ONENAND_CMD_ERASE, addr, block_size);
1823
1824		onenand_invalidate_bufferram(mtd, addr, block_size);
1825
1826		ret = this->wait(mtd, FL_ERASING);
1827		/* Check, if it is write protected */
1828		if (ret) {
1829			printk(KERN_ERR "onenand_erase: Failed erase, block %d\n", (unsigned) (addr >> this->erase_shift));
1830			instr->state = MTD_ERASE_FAILED;
1831			instr->fail_addr = addr;
1832			goto erase_exit;
1833		}
1834
1835		len -= block_size;
1836		addr += block_size;
1837	}
1838
1839	instr->state = MTD_ERASE_DONE;
1840
1841erase_exit:
1842
1843	ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO;
1844
1845	/* Deselect and wake up anyone waiting on the device */
1846	onenand_release_device(mtd);
1847
1848	/* Do call back function */
1849	if (!ret)
1850		mtd_erase_callback(instr);
1851
1852	return ret;
1853}
1854
1855/**
1856 * onenand_sync - [MTD Interface] sync
1857 * @param mtd		MTD device structure
1858 *
1859 * Sync is actually a wait for chip ready function
1860 */
1861static void onenand_sync(struct mtd_info *mtd)
1862{
1863	DEBUG(MTD_DEBUG_LEVEL3, "onenand_sync: called\n");
1864
1865	/* Grab the lock and see if the device is available */
1866	onenand_get_device(mtd, FL_SYNCING);
1867
1868	/* Release it and go back */
1869	onenand_release_device(mtd);
1870}
1871
1872/**
1873 * onenand_block_isbad - [MTD Interface] Check whether the block at the given offset is bad
1874 * @param mtd		MTD device structure
1875 * @param ofs		offset relative to mtd start
1876 *
1877 * Check whether the block is bad
1878 */
1879static int onenand_block_isbad(struct mtd_info *mtd, loff_t ofs)
1880{
1881	int ret;
1882
1883	/* Check for invalid offset */
1884	if (ofs > mtd->size)
1885		return -EINVAL;
1886
1887	onenand_get_device(mtd, FL_READING);
1888	ret = onenand_block_isbad_nolock(mtd, ofs, 0);
1889	onenand_release_device(mtd);
1890	return ret;
1891}
1892
1893/**
1894 * onenand_default_block_markbad - [DEFAULT] mark a block bad
1895 * @param mtd		MTD device structure
1896 * @param ofs		offset from device start
1897 *
1898 * This is the default implementation, which can be overridden by
1899 * a hardware specific driver.
1900 */
1901static int onenand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
1902{
1903	struct onenand_chip *this = mtd->priv;
1904	struct bbm_info *bbm = this->bbm;
1905	u_char buf[2] = {0, 0};
1906	struct mtd_oob_ops ops = {
1907		.mode = MTD_OOB_PLACE,
1908		.ooblen = 2,
1909		.oobbuf = buf,
1910		.ooboffs = 0,
1911	};
1912	int block;
1913
1914	/* Get block number */
1915	block = ((int) ofs) >> bbm->bbt_erase_shift;
1916        if (bbm->bbt)
1917                bbm->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1);
1918
1919        /* We write two bytes, so we dont have to mess with 16 bit access */
1920        ofs += mtd->oobsize + (bbm->badblockpos & ~0x01);
1921        return onenand_write_oob_nolock(mtd, ofs, &ops);
1922}
1923
1924/**
1925 * onenand_block_markbad - [MTD Interface] Mark the block at the given offset as bad
1926 * @param mtd		MTD device structure
1927 * @param ofs		offset relative to mtd start
1928 *
1929 * Mark the block as bad
1930 */
1931static int onenand_block_markbad(struct mtd_info *mtd, loff_t ofs)
1932{
1933	struct onenand_chip *this = mtd->priv;
1934	int ret;
1935
1936	ret = onenand_block_isbad(mtd, ofs);
1937	if (ret) {
1938		/* If it was bad already, return success and do nothing */
1939		if (ret > 0)
1940			return 0;
1941		return ret;
1942	}
1943
1944	onenand_get_device(mtd, FL_WRITING);
1945	ret = this->block_markbad(mtd, ofs);
1946	onenand_release_device(mtd);
1947	return ret;
1948}
1949
1950/**
1951 * onenand_do_lock_cmd - [OneNAND Interface] Lock or unlock block(s)
1952 * @param mtd		MTD device structure
1953 * @param ofs		offset relative to mtd start
1954 * @param len		number of bytes to lock or unlock
1955 * @param cmd		lock or unlock command
1956 *
1957 * Lock or unlock one or more blocks
1958 */
1959static int onenand_do_lock_cmd(struct mtd_info *mtd, loff_t ofs, size_t len, int cmd)
1960{
1961	struct onenand_chip *this = mtd->priv;
1962	int start, end, block, value, status;
1963	int wp_status_mask;
1964
1965	start = ofs >> this->erase_shift;
1966	end = len >> this->erase_shift;
1967
1968	if (cmd == ONENAND_CMD_LOCK)
1969		wp_status_mask = ONENAND_WP_LS;
1970	else
1971		wp_status_mask = ONENAND_WP_US;
1972
1973	/* Continuous lock scheme */
1974	if (this->options & ONENAND_HAS_CONT_LOCK) {
1975		/* Set start block address */
1976		this->write_word(start, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
1977		/* Set end block address */
1978		this->write_word(start + end - 1, this->base + ONENAND_REG_END_BLOCK_ADDRESS);
1979		/* Write lock command */
1980		this->command(mtd, cmd, 0, 0);
1981
1982		/* There's no return value */
1983		this->wait(mtd, FL_LOCKING);
1984
1985		/* Sanity check */
1986		while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
1987		    & ONENAND_CTRL_ONGO)
1988			continue;
1989
1990		/* Check lock status */
1991		status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
1992		if (!(status & wp_status_mask))
1993			printk(KERN_ERR "wp status = 0x%x\n", status);
1994
1995		return 0;
1996	}
1997
1998	/* Block lock scheme */
1999	for (block = start; block < start + end; block++) {
2000		/* Set block address */
2001		value = onenand_block_address(this, block);
2002		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
2003		/* Select DataRAM for DDP */
2004		value = onenand_bufferram_address(this, block);
2005		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
2006		/* Set start block address */
2007		this->write_word(block, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
2008		/* Write lock command */
2009		this->command(mtd, cmd, 0, 0);
2010
2011		/* There's no return value */
2012		this->wait(mtd, FL_LOCKING);
2013
2014		/* Sanity check */
2015		while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
2016		    & ONENAND_CTRL_ONGO)
2017			continue;
2018
2019		/* Check lock status */
2020		status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
2021		if (!(status & wp_status_mask))
2022			printk(KERN_ERR "block = %d, wp status = 0x%x\n", block, status);
2023	}
2024
2025	return 0;
2026}
2027
2028/**
2029 * onenand_lock - [MTD Interface] Lock block(s)
2030 * @param mtd		MTD device structure
2031 * @param ofs		offset relative to mtd start
2032 * @param len		number of bytes to unlock
2033 *
2034 * Lock one or more blocks
2035 */
2036static int onenand_lock(struct mtd_info *mtd, loff_t ofs, size_t len)
2037{
2038	int ret;
2039
2040	onenand_get_device(mtd, FL_LOCKING);
2041	ret = onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_LOCK);
2042	onenand_release_device(mtd);
2043	return ret;
2044}
2045
2046/**
2047 * onenand_unlock - [MTD Interface] Unlock block(s)
2048 * @param mtd		MTD device structure
2049 * @param ofs		offset relative to mtd start
2050 * @param len		number of bytes to unlock
2051 *
2052 * Unlock one or more blocks
2053 */
2054static int onenand_unlock(struct mtd_info *mtd, loff_t ofs, size_t len)
2055{
2056	int ret;
2057
2058	onenand_get_device(mtd, FL_LOCKING);
2059	ret = onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_UNLOCK);
2060	onenand_release_device(mtd);
2061	return ret;
2062}
2063
2064/**
2065 * onenand_check_lock_status - [OneNAND Interface] Check lock status
2066 * @param this		onenand chip data structure
2067 *
2068 * Check lock status
2069 */
2070static int onenand_check_lock_status(struct onenand_chip *this)
2071{
2072	unsigned int value, block, status;
2073	unsigned int end;
2074
2075	end = this->chipsize >> this->erase_shift;
2076	for (block = 0; block < end; block++) {
2077		/* Set block address */
2078		value = onenand_block_address(this, block);
2079		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
2080		/* Select DataRAM for DDP */
2081		value = onenand_bufferram_address(this, block);
2082		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
2083		/* Set start block address */
2084		this->write_word(block, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
2085
2086		/* Check lock status */
2087		status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
2088		if (!(status & ONENAND_WP_US)) {
2089			printk(KERN_ERR "block = %d, wp status = 0x%x\n", block, status);
2090			return 0;
2091		}
2092	}
2093
2094	return 1;
2095}
2096
2097/**
2098 * onenand_unlock_all - [OneNAND Interface] unlock all blocks
2099 * @param mtd		MTD device structure
2100 *
2101 * Unlock all blocks
2102 */
2103static void onenand_unlock_all(struct mtd_info *mtd)
2104{
2105	struct onenand_chip *this = mtd->priv;
2106	loff_t ofs = 0;
2107	size_t len = this->chipsize;
2108
2109	if (this->options & ONENAND_HAS_UNLOCK_ALL) {
2110		/* Set start block address */
2111		this->write_word(0, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
2112		/* Write unlock command */
2113		this->command(mtd, ONENAND_CMD_UNLOCK_ALL, 0, 0);
2114
2115		/* There's no return value */
2116		this->wait(mtd, FL_LOCKING);
2117
2118		/* Sanity check */
2119		while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
2120		    & ONENAND_CTRL_ONGO)
2121			continue;
2122
2123		/* Check lock status */
2124		if (onenand_check_lock_status(this))
2125			return;
2126
2127		/* Workaround for all block unlock in DDP */
2128		if (ONENAND_IS_DDP(this)) {
2129			/* All blocks on another chip */
2130			ofs = this->chipsize >> 1;
2131			len = this->chipsize >> 1;
2132		}
2133	}
2134
2135	onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_UNLOCK);
2136}
2137
2138#ifdef CONFIG_MTD_ONENAND_OTP
2139
2140/* Interal OTP operation */
2141typedef int (*otp_op_t)(struct mtd_info *mtd, loff_t form, size_t len,
2142		size_t *retlen, u_char *buf);
2143
2144/**
2145 * do_otp_read - [DEFAULT] Read OTP block area
2146 * @param mtd		MTD device structure
2147 * @param from		The offset to read
2148 * @param len		number of bytes to read
2149 * @param retlen	pointer to variable to store the number of readbytes
2150 * @param buf		the databuffer to put/get data
2151 *
2152 * Read OTP block area.
2153 */
2154static int do_otp_read(struct mtd_info *mtd, loff_t from, size_t len,
2155		size_t *retlen, u_char *buf)
2156{
2157	struct onenand_chip *this = mtd->priv;
2158	struct mtd_oob_ops ops = {
2159		.len	= len,
2160		.ooblen	= 0,
2161		.datbuf	= buf,
2162		.oobbuf	= NULL,
2163	};
2164	int ret;
2165
2166	/* Enter OTP access mode */
2167	this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
2168	this->wait(mtd, FL_OTPING);
2169
2170	ret = onenand_read_ops_nolock(mtd, from, &ops);
2171
2172	/* Exit OTP access mode */
2173	this->command(mtd, ONENAND_CMD_RESET, 0, 0);
2174	this->wait(mtd, FL_RESETING);
2175
2176	return ret;
2177}
2178
2179/**
2180 * do_otp_write - [DEFAULT] Write OTP block area
2181 * @param mtd		MTD device structure
2182 * @param to		The offset to write
2183 * @param len		number of bytes to write
2184 * @param retlen	pointer to variable to store the number of write bytes
2185 * @param buf		the databuffer to put/get data
2186 *
2187 * Write OTP block area.
2188 */
2189static int do_otp_write(struct mtd_info *mtd, loff_t to, size_t len,
2190		size_t *retlen, u_char *buf)
2191{
2192	struct onenand_chip *this = mtd->priv;
2193	unsigned char *pbuf = buf;
2194	int ret;
2195	struct mtd_oob_ops ops;
2196
2197	/* Force buffer page aligned */
2198	if (len < mtd->writesize) {
2199		memcpy(this->page_buf, buf, len);
2200		memset(this->page_buf + len, 0xff, mtd->writesize - len);
2201		pbuf = this->page_buf;
2202		len = mtd->writesize;
2203	}
2204
2205	/* Enter OTP access mode */
2206	this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
2207	this->wait(mtd, FL_OTPING);
2208
2209	ops.len = len;
2210	ops.ooblen = 0;
2211	ops.datbuf = pbuf;
2212	ops.oobbuf = NULL;
2213	ret = onenand_write_ops_nolock(mtd, to, &ops);
2214	*retlen = ops.retlen;
2215
2216	/* Exit OTP access mode */
2217	this->command(mtd, ONENAND_CMD_RESET, 0, 0);
2218	this->wait(mtd, FL_RESETING);
2219
2220	return ret;
2221}
2222
2223/**
2224 * do_otp_lock - [DEFAULT] Lock OTP block area
2225 * @param mtd		MTD device structure
2226 * @param from		The offset to lock
2227 * @param len		number of bytes to lock
2228 * @param retlen	pointer to variable to store the number of lock bytes
2229 * @param buf		the databuffer to put/get data
2230 *
2231 * Lock OTP block area.
2232 */
2233static int do_otp_lock(struct mtd_info *mtd, loff_t from, size_t len,
2234		size_t *retlen, u_char *buf)
2235{
2236	struct onenand_chip *this = mtd->priv;
2237	struct mtd_oob_ops ops = {
2238		.mode = MTD_OOB_PLACE,
2239		.ooblen = len,
2240		.oobbuf = buf,
2241		.ooboffs = 0,
2242	};
2243	int ret;
2244
2245	/* Enter OTP access mode */
2246	this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
2247	this->wait(mtd, FL_OTPING);
2248
2249	ret = onenand_write_oob_nolock(mtd, from, &ops);
2250
2251	*retlen = ops.oobretlen;
2252
2253	/* Exit OTP access mode */
2254	this->command(mtd, ONENAND_CMD_RESET, 0, 0);
2255	this->wait(mtd, FL_RESETING);
2256
2257	return ret;
2258}
2259
2260/**
2261 * onenand_otp_walk - [DEFAULT] Handle OTP operation
2262 * @param mtd		MTD device structure
2263 * @param from		The offset to read/write
2264 * @param len		number of bytes to read/write
2265 * @param retlen	pointer to variable to store the number of read bytes
2266 * @param buf		the databuffer to put/get data
2267 * @param action	do given action
2268 * @param mode		specify user and factory
2269 *
2270 * Handle OTP operation.
2271 */
2272static int onenand_otp_walk(struct mtd_info *mtd, loff_t from, size_t len,
2273			size_t *retlen, u_char *buf,
2274			otp_op_t action, int mode)
2275{
2276	struct onenand_chip *this = mtd->priv;
2277	int otp_pages;
2278	int density;
2279	int ret = 0;
2280
2281	*retlen = 0;
2282
2283	density = onenand_get_density(this->device_id);
2284	if (density < ONENAND_DEVICE_DENSITY_512Mb)
2285		otp_pages = 20;
2286	else
2287		otp_pages = 10;
2288
2289	if (mode == MTD_OTP_FACTORY) {
2290		from += mtd->writesize * otp_pages;
2291		otp_pages = 64 - otp_pages;
2292	}
2293
2294	/* Check User/Factory boundary */
2295	if (((mtd->writesize * otp_pages) - (from + len)) < 0)
2296		return 0;
2297
2298	onenand_get_device(mtd, FL_OTPING);
2299	while (len > 0 && otp_pages > 0) {
2300		if (!action) {	/* OTP Info functions */
2301			struct otp_info *otpinfo;
2302
2303			len -= sizeof(struct otp_info);
2304			if (len <= 0) {
2305				ret = -ENOSPC;
2306				break;
2307			}
2308
2309			otpinfo = (struct otp_info *) buf;
2310			otpinfo->start = from;
2311			otpinfo->length = mtd->writesize;
2312			otpinfo->locked = 0;
2313
2314			from += mtd->writesize;
2315			buf += sizeof(struct otp_info);
2316			*retlen += sizeof(struct otp_info);
2317		} else {
2318			size_t tmp_retlen;
2319			int size = len;
2320
2321			ret = action(mtd, from, len, &tmp_retlen, buf);
2322
2323			buf += size;
2324			len -= size;
2325			*retlen += size;
2326
2327			if (ret)
2328				break;
2329		}
2330		otp_pages--;
2331	}
2332	onenand_release_device(mtd);
2333
2334	return ret;
2335}
2336
2337/**
2338 * onenand_get_fact_prot_info - [MTD Interface] Read factory OTP info
2339 * @param mtd		MTD device structure
2340 * @param buf		the databuffer to put/get data
2341 * @param len		number of bytes to read
2342 *
2343 * Read factory OTP info.
2344 */
2345static int onenand_get_fact_prot_info(struct mtd_info *mtd,
2346			struct otp_info *buf, size_t len)
2347{
2348	size_t retlen;
2349	int ret;
2350
2351	ret = onenand_otp_walk(mtd, 0, len, &retlen, (u_char *) buf, NULL, MTD_OTP_FACTORY);
2352
2353	return ret ? : retlen;
2354}
2355
2356/**
2357 * onenand_read_fact_prot_reg - [MTD Interface] Read factory OTP area
2358 * @param mtd		MTD device structure
2359 * @param from		The offset to read
2360 * @param len		number of bytes to read
2361 * @param retlen	pointer to variable to store the number of read bytes
2362 * @param buf		the databuffer to put/get data
2363 *
2364 * Read factory OTP area.
2365 */
2366static int onenand_read_fact_prot_reg(struct mtd_info *mtd, loff_t from,
2367			size_t len, size_t *retlen, u_char *buf)
2368{
2369	return onenand_otp_walk(mtd, from, len, retlen, buf, do_otp_read, MTD_OTP_FACTORY);
2370}
2371
2372/**
2373 * onenand_get_user_prot_info - [MTD Interface] Read user OTP info
2374 * @param mtd		MTD device structure
2375 * @param buf		the databuffer to put/get data
2376 * @param len		number of bytes to read
2377 *
2378 * Read user OTP info.
2379 */
2380static int onenand_get_user_prot_info(struct mtd_info *mtd,
2381			struct otp_info *buf, size_t len)
2382{
2383	size_t retlen;
2384	int ret;
2385
2386	ret = onenand_otp_walk(mtd, 0, len, &retlen, (u_char *) buf, NULL, MTD_OTP_USER);
2387
2388	return ret ? : retlen;
2389}
2390
2391/**
2392 * onenand_read_user_prot_reg - [MTD Interface] Read user OTP area
2393 * @param mtd		MTD device structure
2394 * @param from		The offset to read
2395 * @param len		number of bytes to read
2396 * @param retlen	pointer to variable to store the number of read bytes
2397 * @param buf		the databuffer to put/get data
2398 *
2399 * Read user OTP area.
2400 */
2401static int onenand_read_user_prot_reg(struct mtd_info *mtd, loff_t from,
2402			size_t len, size_t *retlen, u_char *buf)
2403{
2404	return onenand_otp_walk(mtd, from, len, retlen, buf, do_otp_read, MTD_OTP_USER);
2405}
2406
2407/**
2408 * onenand_write_user_prot_reg - [MTD Interface] Write user OTP area
2409 * @param mtd		MTD device structure
2410 * @param from		The offset to write
2411 * @param len		number of bytes to write
2412 * @param retlen	pointer to variable to store the number of write bytes
2413 * @param buf		the databuffer to put/get data
2414 *
2415 * Write user OTP area.
2416 */
2417static int onenand_write_user_prot_reg(struct mtd_info *mtd, loff_t from,
2418			size_t len, size_t *retlen, u_char *buf)
2419{
2420	return onenand_otp_walk(mtd, from, len, retlen, buf, do_otp_write, MTD_OTP_USER);
2421}
2422
2423/**
2424 * onenand_lock_user_prot_reg - [MTD Interface] Lock user OTP area
2425 * @param mtd		MTD device structure
2426 * @param from		The offset to lock
2427 * @param len		number of bytes to unlock
2428 *
2429 * Write lock mark on spare area in page 0 in OTP block
2430 */
2431static int onenand_lock_user_prot_reg(struct mtd_info *mtd, loff_t from,
2432			size_t len)
2433{
2434	struct onenand_chip *this = mtd->priv;
2435	u_char *oob_buf = this->oob_buf;
2436	size_t retlen;
2437	int ret;
2438
2439	memset(oob_buf, 0xff, mtd->oobsize);
2440	/*
2441	 * Note: OTP lock operation
2442	 *       OTP block : 0xXXFC
2443	 *       1st block : 0xXXF3 (If chip support)
2444	 *       Both      : 0xXXF0 (If chip support)
2445	 */
2446	oob_buf[ONENAND_OTP_LOCK_OFFSET] = 0xFC;
2447
2448	/*
2449	 * Write lock mark to 8th word of sector0 of page0 of the spare0.
2450	 * We write 16 bytes spare area instead of 2 bytes.
2451	 */
2452	from = 0;
2453	len = 16;
2454
2455	ret = onenand_otp_walk(mtd, from, len, &retlen, oob_buf, do_otp_lock, MTD_OTP_USER);
2456
2457	return ret ? : retlen;
2458}
2459#endif	/* CONFIG_MTD_ONENAND_OTP */
2460
2461/**
2462 * onenand_check_features - Check and set OneNAND features
2463 * @param mtd		MTD data structure
2464 *
2465 * Check and set OneNAND features
2466 * - lock scheme
2467 * - two plane
2468 */
2469static void onenand_check_features(struct mtd_info *mtd)
2470{
2471	struct onenand_chip *this = mtd->priv;
2472	unsigned int density, process;
2473
2474	/* Lock scheme depends on density and process */
2475	density = onenand_get_density(this->device_id);
2476	process = this->version_id >> ONENAND_VERSION_PROCESS_SHIFT;
2477
2478	/* Lock scheme */
2479	switch (density) {
2480	case ONENAND_DEVICE_DENSITY_4Gb:
2481		this->options |= ONENAND_HAS_2PLANE;
2482
2483	case ONENAND_DEVICE_DENSITY_2Gb:
2484		/* 2Gb DDP don't have 2 plane */
2485		if (!ONENAND_IS_DDP(this))
2486			this->options |= ONENAND_HAS_2PLANE;
2487		this->options |= ONENAND_HAS_UNLOCK_ALL;
2488
2489	case ONENAND_DEVICE_DENSITY_1Gb:
2490		/* A-Die has all block unlock */
2491		if (process)
2492			this->options |= ONENAND_HAS_UNLOCK_ALL;
2493		break;
2494
2495	default:
2496		/* Some OneNAND has continuous lock scheme */
2497		if (!process)
2498			this->options |= ONENAND_HAS_CONT_LOCK;
2499		break;
2500	}
2501
2502	if (this->options & ONENAND_HAS_CONT_LOCK)
2503		printk(KERN_DEBUG "Lock scheme is Continuous Lock\n");
2504	if (this->options & ONENAND_HAS_UNLOCK_ALL)
2505		printk(KERN_DEBUG "Chip support all block unlock\n");
2506	if (this->options & ONENAND_HAS_2PLANE)
2507		printk(KERN_DEBUG "Chip has 2 plane\n");
2508}
2509
2510/**
2511 * onenand_print_device_info - Print device & version ID
2512 * @param device        device ID
2513 * @param version	version ID
2514 *
2515 * Print device & version ID
2516 */
2517static void onenand_print_device_info(int device, int version)
2518{
2519        int vcc, demuxed, ddp, density;
2520
2521        vcc = device & ONENAND_DEVICE_VCC_MASK;
2522        demuxed = device & ONENAND_DEVICE_IS_DEMUX;
2523        ddp = device & ONENAND_DEVICE_IS_DDP;
2524        density = onenand_get_density(device);
2525        printk(KERN_INFO "%sOneNAND%s %dMB %sV 16-bit (0x%02x)\n",
2526                demuxed ? "" : "Muxed ",
2527                ddp ? "(DDP)" : "",
2528                (16 << density),
2529                vcc ? "2.65/3.3" : "1.8",
2530                device);
2531	printk(KERN_INFO "OneNAND version = 0x%04x\n", version);
2532}
2533
2534static const struct onenand_manufacturers onenand_manuf_ids[] = {
2535        {ONENAND_MFR_SAMSUNG, "Samsung"},
2536};
2537
2538/**
2539 * onenand_check_maf - Check manufacturer ID
2540 * @param manuf         manufacturer ID
2541 *
2542 * Check manufacturer ID
2543 */
2544static int onenand_check_maf(int manuf)
2545{
2546	int size = ARRAY_SIZE(onenand_manuf_ids);
2547	char *name;
2548        int i;
2549
2550	for (i = 0; i < size; i++)
2551                if (manuf == onenand_manuf_ids[i].id)
2552                        break;
2553
2554	if (i < size)
2555		name = onenand_manuf_ids[i].name;
2556	else
2557		name = "Unknown";
2558
2559	printk(KERN_DEBUG "OneNAND Manufacturer: %s (0x%0x)\n", name, manuf);
2560
2561	return (i == size);
2562}
2563
2564/**
2565 * onenand_probe - [OneNAND Interface] Probe the OneNAND device
2566 * @param mtd		MTD device structure
2567 *
2568 * OneNAND detection method:
2569 *   Compare the values from command with ones from register
2570 */
2571static int onenand_probe(struct mtd_info *mtd)
2572{
2573	struct onenand_chip *this = mtd->priv;
2574	int bram_maf_id, bram_dev_id, maf_id, dev_id, ver_id;
2575	int density;
2576	int syscfg;
2577
2578	/* Save system configuration 1 */
2579	syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
2580	/* Clear Sync. Burst Read mode to read BootRAM */
2581	this->write_word((syscfg & ~ONENAND_SYS_CFG1_SYNC_READ), this->base + ONENAND_REG_SYS_CFG1);
2582
2583	/* Send the command for reading device ID from BootRAM */
2584	this->write_word(ONENAND_CMD_READID, this->base + ONENAND_BOOTRAM);
2585
2586	/* Read manufacturer and device IDs from BootRAM */
2587	bram_maf_id = this->read_word(this->base + ONENAND_BOOTRAM + 0x0);
2588	bram_dev_id = this->read_word(this->base + ONENAND_BOOTRAM + 0x2);
2589
2590	/* Reset OneNAND to read default register values */
2591	this->write_word(ONENAND_CMD_RESET, this->base + ONENAND_BOOTRAM);
2592	/* Wait reset */
2593	this->wait(mtd, FL_RESETING);
2594
2595	/* Restore system configuration 1 */
2596	this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);
2597
2598	/* Check manufacturer ID */
2599	if (onenand_check_maf(bram_maf_id))
2600		return -ENXIO;
2601
2602	/* Read manufacturer and device IDs from Register */
2603	maf_id = this->read_word(this->base + ONENAND_REG_MANUFACTURER_ID);
2604	dev_id = this->read_word(this->base + ONENAND_REG_DEVICE_ID);
2605	ver_id = this->read_word(this->base + ONENAND_REG_VERSION_ID);
2606
2607	/* Check OneNAND device */
2608	if (maf_id != bram_maf_id || dev_id != bram_dev_id)
2609		return -ENXIO;
2610
2611	/* Flash device information */
2612	onenand_print_device_info(dev_id, ver_id);
2613	this->device_id = dev_id;
2614	this->version_id = ver_id;
2615
2616	density = onenand_get_density(dev_id);
2617	this->chipsize = (16 << density) << 20;
2618	/* Set density mask. it is used for DDP */
2619	if (ONENAND_IS_DDP(this))
2620		this->density_mask = (1 << (density + 6));
2621	else
2622		this->density_mask = 0;
2623
2624	/* OneNAND page size & block size */
2625	/* The data buffer size is equal to page size */
2626	mtd->writesize = this->read_word(this->base + ONENAND_REG_DATA_BUFFER_SIZE);
2627	mtd->oobsize = mtd->writesize >> 5;
2628	/* Pages per a block are always 64 in OneNAND */
2629	mtd->erasesize = mtd->writesize << 6;
2630
2631	this->erase_shift = ffs(mtd->erasesize) - 1;
2632	this->page_shift = ffs(mtd->writesize) - 1;
2633	this->page_mask = (1 << (this->erase_shift - this->page_shift)) - 1;
2634	/* It's real page size */
2635	this->writesize = mtd->writesize;
2636
2637	/* REVIST: Multichip handling */
2638
2639	mtd->size = this->chipsize;
2640
2641	/* Check OneNAND features */
2642	onenand_check_features(mtd);
2643
2644	/*
2645	 * We emulate the 4KiB page and 256KiB erase block size
2646	 * But oobsize is still 64 bytes.
2647	 * It is only valid if you turn on 2X program support,
2648	 * Otherwise it will be ignored by compiler.
2649	 */
2650	if (ONENAND_IS_2PLANE(this)) {
2651		mtd->writesize <<= 1;
2652		mtd->erasesize <<= 1;
2653	}
2654
2655	return 0;
2656}
2657
2658/**
2659 * onenand_suspend - [MTD Interface] Suspend the OneNAND flash
2660 * @param mtd		MTD device structure
2661 */
2662static int onenand_suspend(struct mtd_info *mtd)
2663{
2664	return onenand_get_device(mtd, FL_PM_SUSPENDED);
2665}
2666
2667/**
2668 * onenand_resume - [MTD Interface] Resume the OneNAND flash
2669 * @param mtd		MTD device structure
2670 */
2671static void onenand_resume(struct mtd_info *mtd)
2672{
2673	struct onenand_chip *this = mtd->priv;
2674
2675	if (this->state == FL_PM_SUSPENDED)
2676		onenand_release_device(mtd);
2677	else
2678		printk(KERN_ERR "resume() called for the chip which is not"
2679				"in suspended state\n");
2680}
2681
2682/**
2683 * onenand_scan - [OneNAND Interface] Scan for the OneNAND device
2684 * @param mtd		MTD device structure
2685 * @param maxchips	Number of chips to scan for
2686 *
2687 * This fills out all the not initialized function pointers
2688 * with the defaults.
2689 * The flash ID is read and the mtd/chip structures are
2690 * filled with the appropriate values.
2691 */
2692int onenand_scan(struct mtd_info *mtd, int maxchips)
2693{
2694	int i;
2695	struct onenand_chip *this = mtd->priv;
2696
2697	if (!this->read_word)
2698		this->read_word = onenand_readw;
2699	if (!this->write_word)
2700		this->write_word = onenand_writew;
2701
2702	if (!this->command)
2703		this->command = onenand_command;
2704	if (!this->wait)
2705		onenand_setup_wait(mtd);
2706
2707	if (!this->read_bufferram)
2708		this->read_bufferram = onenand_read_bufferram;
2709	if (!this->write_bufferram)
2710		this->write_bufferram = onenand_write_bufferram;
2711
2712	if (!this->block_markbad)
2713		this->block_markbad = onenand_default_block_markbad;
2714	if (!this->scan_bbt)
2715		this->scan_bbt = onenand_default_bbt;
2716
2717	if (onenand_probe(mtd))
2718		return -ENXIO;
2719
2720	/* Set Sync. Burst Read after probing */
2721	if (this->mmcontrol) {
2722		printk(KERN_INFO "OneNAND Sync. Burst Read support\n");
2723		this->read_bufferram = onenand_sync_read_bufferram;
2724	}
2725
2726	/* Allocate buffers, if necessary */
2727	if (!this->page_buf) {
2728		this->page_buf = kzalloc(mtd->writesize, GFP_KERNEL);
2729		if (!this->page_buf) {
2730			printk(KERN_ERR "onenand_scan(): Can't allocate page_buf\n");
2731			return -ENOMEM;
2732		}
2733		this->options |= ONENAND_PAGEBUF_ALLOC;
2734	}
2735	if (!this->oob_buf) {
2736		this->oob_buf = kzalloc(mtd->oobsize, GFP_KERNEL);
2737		if (!this->oob_buf) {
2738			printk(KERN_ERR "onenand_scan(): Can't allocate oob_buf\n");
2739			if (this->options & ONENAND_PAGEBUF_ALLOC) {
2740				this->options &= ~ONENAND_PAGEBUF_ALLOC;
2741				kfree(this->page_buf);
2742			}
2743			return -ENOMEM;
2744		}
2745		this->options |= ONENAND_OOBBUF_ALLOC;
2746	}
2747
2748	this->state = FL_READY;
2749	init_waitqueue_head(&this->wq);
2750	spin_lock_init(&this->chip_lock);
2751
2752	/*
2753	 * Allow subpage writes up to oobsize.
2754	 */
2755	switch (mtd->oobsize) {
2756	case 64:
2757		this->ecclayout = &onenand_oob_64;
2758		mtd->subpage_sft = 2;
2759		break;
2760
2761	case 32:
2762		this->ecclayout = &onenand_oob_32;
2763		mtd->subpage_sft = 1;
2764		break;
2765
2766	default:
2767		printk(KERN_WARNING "No OOB scheme defined for oobsize %d\n",
2768			mtd->oobsize);
2769		mtd->subpage_sft = 0;
2770		/* To prevent kernel oops */
2771		this->ecclayout = &onenand_oob_32;
2772		break;
2773	}
2774
2775	this->subpagesize = mtd->writesize >> mtd->subpage_sft;
2776
2777	/*
2778	 * The number of bytes available for a client to place data into
2779	 * the out of band area
2780	 */
2781	this->ecclayout->oobavail = 0;
2782	for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES &&
2783	    this->ecclayout->oobfree[i].length; i++)
2784		this->ecclayout->oobavail +=
2785			this->ecclayout->oobfree[i].length;
2786	mtd->oobavail = this->ecclayout->oobavail;
2787
2788	mtd->ecclayout = this->ecclayout;
2789
2790	/* Fill in remaining MTD driver data */
2791	mtd->type = MTD_NANDFLASH;
2792	mtd->flags = MTD_CAP_NANDFLASH;
2793	mtd->erase = onenand_erase;
2794	mtd->point = NULL;
2795	mtd->unpoint = NULL;
2796	mtd->read = onenand_read;
2797	mtd->write = onenand_write;
2798	mtd->read_oob = onenand_read_oob;
2799	mtd->write_oob = onenand_write_oob;
2800	mtd->panic_write = onenand_panic_write;
2801#ifdef CONFIG_MTD_ONENAND_OTP
2802	mtd->get_fact_prot_info = onenand_get_fact_prot_info;
2803	mtd->read_fact_prot_reg = onenand_read_fact_prot_reg;
2804	mtd->get_user_prot_info = onenand_get_user_prot_info;
2805	mtd->read_user_prot_reg = onenand_read_user_prot_reg;
2806	mtd->write_user_prot_reg = onenand_write_user_prot_reg;
2807	mtd->lock_user_prot_reg = onenand_lock_user_prot_reg;
2808#endif
2809	mtd->sync = onenand_sync;
2810	mtd->lock = onenand_lock;
2811	mtd->unlock = onenand_unlock;
2812	mtd->suspend = onenand_suspend;
2813	mtd->resume = onenand_resume;
2814	mtd->block_isbad = onenand_block_isbad;
2815	mtd->block_markbad = onenand_block_markbad;
2816	mtd->owner = THIS_MODULE;
2817
2818	/* Unlock whole block */
2819	onenand_unlock_all(mtd);
2820
2821	return this->scan_bbt(mtd);
2822}
2823
2824/**
2825 * onenand_release - [OneNAND Interface] Free resources held by the OneNAND device
2826 * @param mtd		MTD device structure
2827 */
2828void onenand_release(struct mtd_info *mtd)
2829{
2830	struct onenand_chip *this = mtd->priv;
2831
2832#ifdef CONFIG_MTD_PARTITIONS
2833	/* Deregister partitions */
2834	del_mtd_partitions (mtd);
2835#endif
2836	/* Deregister the device */
2837	del_mtd_device (mtd);
2838
2839	/* Free bad block table memory, if allocated */
2840	if (this->bbm) {
2841		struct bbm_info *bbm = this->bbm;
2842		kfree(bbm->bbt);
2843		kfree(this->bbm);
2844	}
2845	/* Buffers allocated by onenand_scan */
2846	if (this->options & ONENAND_PAGEBUF_ALLOC)
2847		kfree(this->page_buf);
2848	if (this->options & ONENAND_OOBBUF_ALLOC)
2849		kfree(this->oob_buf);
2850}
2851
2852EXPORT_SYMBOL_GPL(onenand_scan);
2853EXPORT_SYMBOL_GPL(onenand_release);
2854
2855MODULE_LICENSE("GPL");
2856MODULE_AUTHOR("Kyungmin Park <kyungmin.park@samsung.com>");
2857MODULE_DESCRIPTION("Generic OneNAND flash driver code");
2858