onenand_base.c revision 752870707f2818b5f0d94ca05e46cb0ffee6cbf9
1/*
2 *  linux/drivers/mtd/onenand/onenand_base.c
3 *
4 *  Copyright (C) 2005 Samsung Electronics
5 *  Kyungmin Park <kyungmin.park@samsung.com>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11
12#include <linux/kernel.h>
13#include <linux/module.h>
14#include <linux/init.h>
15#include <linux/sched.h>
16#include <linux/jiffies.h>
17#include <linux/mtd/mtd.h>
18#include <linux/mtd/onenand.h>
19#include <linux/mtd/partitions.h>
20
21#include <asm/io.h>
22
23/**
24 * onenand_oob_64 - oob info for large (2KB) page
25 */
26static struct nand_oobinfo onenand_oob_64 = {
27	.useecc		= MTD_NANDECC_AUTOPLACE,
28	.eccbytes	= 20,
29	.eccpos		= {
30		8, 9, 10, 11, 12,
31		24, 25, 26, 27, 28,
32		40, 41, 42, 43, 44,
33		56, 57, 58, 59, 60,
34		},
35	.oobfree	= {
36		{2, 3}, {14, 2}, {18, 3}, {30, 2},
37		{34, 3}, {46, 2}, {50, 3}, {62, 2}
38	}
39};
40
41/**
42 * onenand_oob_32 - oob info for middle (1KB) page
43 */
44static struct nand_oobinfo onenand_oob_32 = {
45	.useecc		= MTD_NANDECC_AUTOPLACE,
46	.eccbytes	= 10,
47	.eccpos		= {
48		8, 9, 10, 11, 12,
49		24, 25, 26, 27, 28,
50		},
51	.oobfree	= { {2, 3}, {14, 2}, {18, 3}, {30, 2} }
52};
53
54static const unsigned char ffchars[] = {
55	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
56	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 16 */
57	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
58	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 32 */
59	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
60	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 48 */
61	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
62	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 64 */
63};
64
65/**
66 * onenand_readw - [OneNAND Interface] Read OneNAND register
67 * @param addr		address to read
68 *
69 * Read OneNAND register
70 */
71static unsigned short onenand_readw(void __iomem *addr)
72{
73	return readw(addr);
74}
75
76/**
77 * onenand_writew - [OneNAND Interface] Write OneNAND register with value
78 * @param value		value to write
79 * @param addr		address to write
80 *
81 * Write OneNAND register with value
82 */
83static void onenand_writew(unsigned short value, void __iomem *addr)
84{
85	writew(value, addr);
86}
87
88/**
89 * onenand_block_address - [DEFAULT] Get block address
90 * @param this		onenand chip data structure
91 * @param block		the block
92 * @return		translated block address if DDP, otherwise same
93 *
94 * Setup Start Address 1 Register (F100h)
95 */
96static int onenand_block_address(struct onenand_chip *this, int block)
97{
98	if (this->device_id & ONENAND_DEVICE_IS_DDP) {
99		/* Device Flash Core select, NAND Flash Block Address */
100		int dfs = 0;
101
102		if (block & this->density_mask)
103			dfs = 1;
104
105		return (dfs << ONENAND_DDP_SHIFT) |
106			(block & (this->density_mask - 1));
107	}
108
109	return block;
110}
111
112/**
113 * onenand_bufferram_address - [DEFAULT] Get bufferram address
114 * @param this		onenand chip data structure
115 * @param block		the block
116 * @return		set DBS value if DDP, otherwise 0
117 *
118 * Setup Start Address 2 Register (F101h) for DDP
119 */
120static int onenand_bufferram_address(struct onenand_chip *this, int block)
121{
122	if (this->device_id & ONENAND_DEVICE_IS_DDP) {
123		/* Device BufferRAM Select */
124		int dbs = 0;
125
126		if (block & this->density_mask)
127			dbs = 1;
128
129		return (dbs << ONENAND_DDP_SHIFT);
130	}
131
132	return 0;
133}
134
135/**
136 * onenand_page_address - [DEFAULT] Get page address
137 * @param page		the page address
138 * @param sector	the sector address
139 * @return		combined page and sector address
140 *
141 * Setup Start Address 8 Register (F107h)
142 */
143static int onenand_page_address(int page, int sector)
144{
145	/* Flash Page Address, Flash Sector Address */
146	int fpa, fsa;
147
148	fpa = page & ONENAND_FPA_MASK;
149	fsa = sector & ONENAND_FSA_MASK;
150
151	return ((fpa << ONENAND_FPA_SHIFT) | fsa);
152}
153
154/**
155 * onenand_buffer_address - [DEFAULT] Get buffer address
156 * @param dataram1	DataRAM index
157 * @param sectors	the sector address
158 * @param count		the number of sectors
159 * @return		the start buffer value
160 *
161 * Setup Start Buffer Register (F200h)
162 */
163static int onenand_buffer_address(int dataram1, int sectors, int count)
164{
165	int bsa, bsc;
166
167	/* BufferRAM Sector Address */
168	bsa = sectors & ONENAND_BSA_MASK;
169
170	if (dataram1)
171		bsa |= ONENAND_BSA_DATARAM1;	/* DataRAM1 */
172	else
173		bsa |= ONENAND_BSA_DATARAM0;	/* DataRAM0 */
174
175	/* BufferRAM Sector Count */
176	bsc = count & ONENAND_BSC_MASK;
177
178	return ((bsa << ONENAND_BSA_SHIFT) | bsc);
179}
180
181/**
182 * onenand_command - [DEFAULT] Send command to OneNAND device
183 * @param mtd		MTD device structure
184 * @param cmd		the command to be sent
185 * @param addr		offset to read from or write to
186 * @param len		number of bytes to read or write
187 *
188 * Send command to OneNAND device. This function is used for middle/large page
189 * devices (1KB/2KB Bytes per page)
190 */
191static int onenand_command(struct mtd_info *mtd, int cmd, loff_t addr, size_t len)
192{
193	struct onenand_chip *this = mtd->priv;
194	int value, readcmd = 0, block_cmd = 0;
195	int block, page;
196	/* Now we use page size operation */
197	int sectors = 4, count = 4;
198
199	/* Address translation */
200	switch (cmd) {
201	case ONENAND_CMD_UNLOCK:
202	case ONENAND_CMD_LOCK:
203	case ONENAND_CMD_LOCK_TIGHT:
204		block = -1;
205		page = -1;
206		break;
207
208	case ONENAND_CMD_ERASE:
209	case ONENAND_CMD_BUFFERRAM:
210	case ONENAND_CMD_OTP_ACCESS:
211		block_cmd = 1;
212		block = (int) (addr >> this->erase_shift);
213		page = -1;
214		break;
215
216	default:
217		block = (int) (addr >> this->erase_shift);
218		page = (int) (addr >> this->page_shift);
219		page &= this->page_mask;
220		break;
221	}
222
223	/* NOTE: The setting order of the registers is very important! */
224	if (cmd == ONENAND_CMD_BUFFERRAM) {
225		/* Select DataRAM for DDP */
226		value = onenand_bufferram_address(this, block);
227		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
228
229		/* Switch to the next data buffer */
230		ONENAND_SET_NEXT_BUFFERRAM(this);
231
232		return 0;
233	}
234
235	if (block != -1) {
236		/* Write 'DFS, FBA' of Flash */
237		value = onenand_block_address(this, block);
238		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
239
240		if (block_cmd) {
241			/* Select DataRAM for DDP */
242			value = onenand_bufferram_address(this, block);
243			this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
244		}
245	}
246
247	if (page != -1) {
248		int dataram;
249
250		switch (cmd) {
251		case ONENAND_CMD_READ:
252		case ONENAND_CMD_READOOB:
253			dataram = ONENAND_SET_NEXT_BUFFERRAM(this);
254			readcmd = 1;
255			break;
256
257		default:
258			dataram = ONENAND_CURRENT_BUFFERRAM(this);
259			break;
260		}
261
262		/* Write 'FPA, FSA' of Flash */
263		value = onenand_page_address(page, sectors);
264		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS8);
265
266		/* Write 'BSA, BSC' of DataRAM */
267		value = onenand_buffer_address(dataram, sectors, count);
268		this->write_word(value, this->base + ONENAND_REG_START_BUFFER);
269
270		if (readcmd) {
271			/* Select DataRAM for DDP */
272			value = onenand_bufferram_address(this, block);
273			this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
274		}
275	}
276
277	/* Interrupt clear */
278	this->write_word(ONENAND_INT_CLEAR, this->base + ONENAND_REG_INTERRUPT);
279
280	/* Write command */
281	this->write_word(cmd, this->base + ONENAND_REG_COMMAND);
282
283	return 0;
284}
285
286/**
287 * onenand_wait - [DEFAULT] wait until the command is done
288 * @param mtd		MTD device structure
289 * @param state		state to select the max. timeout value
290 *
291 * Wait for command done. This applies to all OneNAND command
292 * Read can take up to 30us, erase up to 2ms and program up to 350us
293 * according to general OneNAND specs
294 */
295static int onenand_wait(struct mtd_info *mtd, int state)
296{
297	struct onenand_chip * this = mtd->priv;
298	unsigned long timeout;
299	unsigned int flags = ONENAND_INT_MASTER;
300	unsigned int interrupt = 0;
301	unsigned int ctrl, ecc;
302
303	/* The 20 msec is enough */
304	timeout = jiffies + msecs_to_jiffies(20);
305	while (time_before(jiffies, timeout)) {
306		interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
307
308		if (interrupt & flags)
309			break;
310
311		if (state != FL_READING)
312			cond_resched();
313		touch_softlockup_watchdog();
314	}
315	/* To get correct interrupt status in timeout case */
316	interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
317
318	ctrl = this->read_word(this->base + ONENAND_REG_CTRL_STATUS);
319
320	if (ctrl & ONENAND_CTRL_ERROR) {
321		/* It maybe occur at initial bad block */
322		DEBUG(MTD_DEBUG_LEVEL0, "onenand_wait: controller error = 0x%04x\n", ctrl);
323		/* Clear other interrupt bits for preventing ECC error */
324		interrupt &= ONENAND_INT_MASTER;
325	}
326
327	if (ctrl & ONENAND_CTRL_LOCK) {
328		DEBUG(MTD_DEBUG_LEVEL0, "onenand_wait: it's locked error = 0x%04x\n", ctrl);
329		return -EACCES;
330	}
331
332	if (interrupt & ONENAND_INT_READ) {
333		ecc = this->read_word(this->base + ONENAND_REG_ECC_STATUS);
334		if (ecc & ONENAND_ECC_2BIT_ALL) {
335			DEBUG(MTD_DEBUG_LEVEL0, "onenand_wait: ECC error = 0x%04x\n", ecc);
336			return -EBADMSG;
337		}
338	}
339
340	return 0;
341}
342
343/**
344 * onenand_bufferram_offset - [DEFAULT] BufferRAM offset
345 * @param mtd		MTD data structure
346 * @param area		BufferRAM area
347 * @return		offset given area
348 *
349 * Return BufferRAM offset given area
350 */
351static inline int onenand_bufferram_offset(struct mtd_info *mtd, int area)
352{
353	struct onenand_chip *this = mtd->priv;
354
355	if (ONENAND_CURRENT_BUFFERRAM(this)) {
356		if (area == ONENAND_DATARAM)
357			return mtd->oobblock;
358		if (area == ONENAND_SPARERAM)
359			return mtd->oobsize;
360	}
361
362	return 0;
363}
364
365/**
366 * onenand_read_bufferram - [OneNAND Interface] Read the bufferram area
367 * @param mtd		MTD data structure
368 * @param area		BufferRAM area
369 * @param buffer	the databuffer to put/get data
370 * @param offset	offset to read from or write to
371 * @param count		number of bytes to read/write
372 *
373 * Read the BufferRAM area
374 */
375static int onenand_read_bufferram(struct mtd_info *mtd, int area,
376		unsigned char *buffer, int offset, size_t count)
377{
378	struct onenand_chip *this = mtd->priv;
379	void __iomem *bufferram;
380
381	bufferram = this->base + area;
382
383	bufferram += onenand_bufferram_offset(mtd, area);
384
385	if (ONENAND_CHECK_BYTE_ACCESS(count)) {
386		unsigned short word;
387
388		/* Align with word(16-bit) size */
389		count--;
390
391		/* Read word and save byte */
392		word = this->read_word(bufferram + offset + count);
393		buffer[count] = (word & 0xff);
394	}
395
396	memcpy(buffer, bufferram + offset, count);
397
398	return 0;
399}
400
401/**
402 * onenand_sync_read_bufferram - [OneNAND Interface] Read the bufferram area with Sync. Burst mode
403 * @param mtd		MTD data structure
404 * @param area		BufferRAM area
405 * @param buffer	the databuffer to put/get data
406 * @param offset	offset to read from or write to
407 * @param count		number of bytes to read/write
408 *
409 * Read the BufferRAM area with Sync. Burst Mode
410 */
411static int onenand_sync_read_bufferram(struct mtd_info *mtd, int area,
412		unsigned char *buffer, int offset, size_t count)
413{
414	struct onenand_chip *this = mtd->priv;
415	void __iomem *bufferram;
416
417	bufferram = this->base + area;
418
419	bufferram += onenand_bufferram_offset(mtd, area);
420
421	this->mmcontrol(mtd, ONENAND_SYS_CFG1_SYNC_READ);
422
423	if (ONENAND_CHECK_BYTE_ACCESS(count)) {
424		unsigned short word;
425
426		/* Align with word(16-bit) size */
427		count--;
428
429		/* Read word and save byte */
430		word = this->read_word(bufferram + offset + count);
431		buffer[count] = (word & 0xff);
432	}
433
434	memcpy(buffer, bufferram + offset, count);
435
436	this->mmcontrol(mtd, 0);
437
438	return 0;
439}
440
441/**
442 * onenand_write_bufferram - [OneNAND Interface] Write the bufferram area
443 * @param mtd		MTD data structure
444 * @param area		BufferRAM area
445 * @param buffer	the databuffer to put/get data
446 * @param offset	offset to read from or write to
447 * @param count		number of bytes to read/write
448 *
449 * Write the BufferRAM area
450 */
451static int onenand_write_bufferram(struct mtd_info *mtd, int area,
452		const unsigned char *buffer, int offset, size_t count)
453{
454	struct onenand_chip *this = mtd->priv;
455	void __iomem *bufferram;
456
457	bufferram = this->base + area;
458
459	bufferram += onenand_bufferram_offset(mtd, area);
460
461	if (ONENAND_CHECK_BYTE_ACCESS(count)) {
462		unsigned short word;
463		int byte_offset;
464
465		/* Align with word(16-bit) size */
466		count--;
467
468		/* Calculate byte access offset */
469		byte_offset = offset + count;
470
471		/* Read word and save byte */
472		word = this->read_word(bufferram + byte_offset);
473		word = (word & ~0xff) | buffer[count];
474		this->write_word(word, bufferram + byte_offset);
475	}
476
477	memcpy(bufferram + offset, buffer, count);
478
479	return 0;
480}
481
482/**
483 * onenand_check_bufferram - [GENERIC] Check BufferRAM information
484 * @param mtd		MTD data structure
485 * @param addr		address to check
486 * @return		1 if there are valid data, otherwise 0
487 *
488 * Check bufferram if there is data we required
489 */
490static int onenand_check_bufferram(struct mtd_info *mtd, loff_t addr)
491{
492	struct onenand_chip *this = mtd->priv;
493	int block, page;
494	int i;
495
496	block = (int) (addr >> this->erase_shift);
497	page = (int) (addr >> this->page_shift);
498	page &= this->page_mask;
499
500	i = ONENAND_CURRENT_BUFFERRAM(this);
501
502	/* Is there valid data? */
503	if (this->bufferram[i].block == block &&
504	    this->bufferram[i].page == page &&
505	    this->bufferram[i].valid)
506		return 1;
507
508	return 0;
509}
510
511/**
512 * onenand_update_bufferram - [GENERIC] Update BufferRAM information
513 * @param mtd		MTD data structure
514 * @param addr		address to update
515 * @param valid		valid flag
516 *
517 * Update BufferRAM information
518 */
519static int onenand_update_bufferram(struct mtd_info *mtd, loff_t addr,
520		int valid)
521{
522	struct onenand_chip *this = mtd->priv;
523	int block, page;
524	int i;
525
526	block = (int) (addr >> this->erase_shift);
527	page = (int) (addr >> this->page_shift);
528	page &= this->page_mask;
529
530	/* Invalidate BufferRAM */
531	for (i = 0; i < MAX_BUFFERRAM; i++) {
532		if (this->bufferram[i].block == block &&
533		    this->bufferram[i].page == page)
534			this->bufferram[i].valid = 0;
535	}
536
537	/* Update BufferRAM */
538	i = ONENAND_CURRENT_BUFFERRAM(this);
539	this->bufferram[i].block = block;
540	this->bufferram[i].page = page;
541	this->bufferram[i].valid = valid;
542
543	return 0;
544}
545
546/**
547 * onenand_get_device - [GENERIC] Get chip for selected access
548 * @param mtd		MTD device structure
549 * @param new_state	the state which is requested
550 *
551 * Get the device and lock it for exclusive access
552 */
553static int onenand_get_device(struct mtd_info *mtd, int new_state)
554{
555	struct onenand_chip *this = mtd->priv;
556	DECLARE_WAITQUEUE(wait, current);
557
558	/*
559	 * Grab the lock and see if the device is available
560	 */
561	while (1) {
562		spin_lock(&this->chip_lock);
563		if (this->state == FL_READY) {
564			this->state = new_state;
565			spin_unlock(&this->chip_lock);
566			break;
567		}
568		if (new_state == FL_PM_SUSPENDED) {
569			spin_unlock(&this->chip_lock);
570			return (this->state == FL_PM_SUSPENDED) ? 0 : -EAGAIN;
571		}
572		set_current_state(TASK_UNINTERRUPTIBLE);
573		add_wait_queue(&this->wq, &wait);
574		spin_unlock(&this->chip_lock);
575		schedule();
576		remove_wait_queue(&this->wq, &wait);
577	}
578
579	return 0;
580}
581
582/**
583 * onenand_release_device - [GENERIC] release chip
584 * @param mtd		MTD device structure
585 *
586 * Deselect, release chip lock and wake up anyone waiting on the device
587 */
588static void onenand_release_device(struct mtd_info *mtd)
589{
590	struct onenand_chip *this = mtd->priv;
591
592	/* Release the chip */
593	spin_lock(&this->chip_lock);
594	this->state = FL_READY;
595	wake_up(&this->wq);
596	spin_unlock(&this->chip_lock);
597}
598
599/**
600 * onenand_read_ecc - [MTD Interface] Read data with ECC
601 * @param mtd		MTD device structure
602 * @param from		offset to read from
603 * @param len		number of bytes to read
604 * @param retlen	pointer to variable to store the number of read bytes
605 * @param buf		the databuffer to put data
606 * @param oob_buf	filesystem supplied oob data buffer
607 * @param oobsel	oob selection structure
608 *
609 * OneNAND read with ECC
610 */
611static int onenand_read_ecc(struct mtd_info *mtd, loff_t from, size_t len,
612	size_t *retlen, u_char *buf,
613	u_char *oob_buf, struct nand_oobinfo *oobsel)
614{
615	struct onenand_chip *this = mtd->priv;
616	int read = 0, column;
617	int thislen;
618	int ret = 0;
619
620	DEBUG(MTD_DEBUG_LEVEL3, "onenand_read_ecc: from = 0x%08x, len = %i\n", (unsigned int) from, (int) len);
621
622	/* Do not allow reads past end of device */
623	if ((from + len) > mtd->size) {
624		DEBUG(MTD_DEBUG_LEVEL0, "onenand_read_ecc: Attempt read beyond end of device\n");
625		*retlen = 0;
626		return -EINVAL;
627	}
628
629	/* Grab the lock and see if the device is available */
630	onenand_get_device(mtd, FL_READING);
631
632	/* TODO handling oob */
633
634	while (read < len) {
635		thislen = min_t(int, mtd->oobblock, len - read);
636
637		column = from & (mtd->oobblock - 1);
638		if (column + thislen > mtd->oobblock)
639			thislen = mtd->oobblock - column;
640
641		if (!onenand_check_bufferram(mtd, from)) {
642			this->command(mtd, ONENAND_CMD_READ, from, mtd->oobblock);
643
644			ret = this->wait(mtd, FL_READING);
645			/* First copy data and check return value for ECC handling */
646			onenand_update_bufferram(mtd, from, 1);
647		}
648
649		this->read_bufferram(mtd, ONENAND_DATARAM, buf, column, thislen);
650
651		read += thislen;
652
653		if (read == len)
654			break;
655
656		if (ret) {
657			DEBUG(MTD_DEBUG_LEVEL0, "onenand_read_ecc: read failed = %d\n", ret);
658			goto out;
659		}
660
661		from += thislen;
662		buf += thislen;
663	}
664
665out:
666	/* Deselect and wake up anyone waiting on the device */
667	onenand_release_device(mtd);
668
669	/*
670	 * Return success, if no ECC failures, else -EBADMSG
671	 * fs driver will take care of that, because
672	 * retlen == desired len and result == -EBADMSG
673	 */
674	*retlen = read;
675	return ret;
676}
677
678/**
679 * onenand_read - [MTD Interface] MTD compability function for onenand_read_ecc
680 * @param mtd		MTD device structure
681 * @param from		offset to read from
682 * @param len		number of bytes to read
683 * @param retlen	pointer to variable to store the number of read bytes
684 * @param buf		the databuffer to put data
685 *
686 * This function simply calls onenand_read_ecc with oob buffer and oobsel = NULL
687*/
688static int onenand_read(struct mtd_info *mtd, loff_t from, size_t len,
689	size_t *retlen, u_char *buf)
690{
691	return onenand_read_ecc(mtd, from, len, retlen, buf, NULL, NULL);
692}
693
694/**
695 * onenand_read_oob - [MTD Interface] OneNAND read out-of-band
696 * @param mtd		MTD device structure
697 * @param from		offset to read from
698 * @param len		number of bytes to read
699 * @param retlen	pointer to variable to store the number of read bytes
700 * @param buf		the databuffer to put data
701 *
702 * OneNAND read out-of-band data from the spare area
703 */
704static int onenand_read_oob(struct mtd_info *mtd, loff_t from, size_t len,
705	size_t *retlen, u_char *buf)
706{
707	struct onenand_chip *this = mtd->priv;
708	int read = 0, thislen, column;
709	int ret = 0;
710
711	DEBUG(MTD_DEBUG_LEVEL3, "onenand_read_oob: from = 0x%08x, len = %i\n", (unsigned int) from, (int) len);
712
713	/* Initialize return length value */
714	*retlen = 0;
715
716	/* Do not allow reads past end of device */
717	if (unlikely((from + len) > mtd->size)) {
718		DEBUG(MTD_DEBUG_LEVEL0, "onenand_read_oob: Attempt read beyond end of device\n");
719		return -EINVAL;
720	}
721
722	/* Grab the lock and see if the device is available */
723	onenand_get_device(mtd, FL_READING);
724
725	column = from & (mtd->oobsize - 1);
726
727	while (read < len) {
728		thislen = mtd->oobsize - column;
729		thislen = min_t(int, thislen, len);
730
731		this->command(mtd, ONENAND_CMD_READOOB, from, mtd->oobsize);
732
733		onenand_update_bufferram(mtd, from, 0);
734
735		ret = this->wait(mtd, FL_READING);
736		/* First copy data and check return value for ECC handling */
737
738		this->read_bufferram(mtd, ONENAND_SPARERAM, buf, column, thislen);
739
740		read += thislen;
741
742		if (read == len)
743			break;
744
745		if (ret) {
746			DEBUG(MTD_DEBUG_LEVEL0, "onenand_read_oob: read failed = %d\n", ret);
747			goto out;
748		}
749
750		buf += thislen;
751
752		/* Read more? */
753		if (read < len) {
754			/* Page size */
755			from += mtd->oobblock;
756			column = 0;
757		}
758	}
759
760out:
761	/* Deselect and wake up anyone waiting on the device */
762	onenand_release_device(mtd);
763
764	*retlen = read;
765	return ret;
766}
767
768#ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE
769/**
770 * onenand_verify_oob - [GENERIC] verify the oob contents after a write
771 * @param mtd		MTD device structure
772 * @param buf		the databuffer to verify
773 * @param to		offset to read from
774 * @param len		number of bytes to read and compare
775 *
776 */
777static int onenand_verify_oob(struct mtd_info *mtd, const u_char *buf, loff_t to, int len)
778{
779	struct onenand_chip *this = mtd->priv;
780	char *readp = this->page_buf;
781	int column = to & (mtd->oobsize - 1);
782	int status, i;
783
784	this->command(mtd, ONENAND_CMD_READOOB, to, mtd->oobsize);
785	onenand_update_bufferram(mtd, to, 0);
786	status = this->wait(mtd, FL_READING);
787	if (status)
788		return status;
789
790	this->read_bufferram(mtd, ONENAND_SPARERAM, readp, column, len);
791
792	for(i = 0; i < len; i++)
793		if (buf[i] != 0xFF && buf[i] != readp[i])
794			return -EBADMSG;
795
796	return 0;
797}
798
799/**
800 * onenand_verify_page - [GENERIC] verify the chip contents after a write
801 * @param mtd		MTD device structure
802 * @param buf		the databuffer to verify
803 *
804 * Check DataRAM area directly
805 */
806static int onenand_verify_page(struct mtd_info *mtd, u_char *buf, loff_t addr)
807{
808	struct onenand_chip *this = mtd->priv;
809	void __iomem *dataram0, *dataram1;
810	int ret = 0;
811
812	this->command(mtd, ONENAND_CMD_READ, addr, mtd->oobblock);
813
814	ret = this->wait(mtd, FL_READING);
815	if (ret)
816		return ret;
817
818	onenand_update_bufferram(mtd, addr, 1);
819
820	/* Check, if the two dataram areas are same */
821	dataram0 = this->base + ONENAND_DATARAM;
822	dataram1 = dataram0 + mtd->oobblock;
823
824	if (memcmp(dataram0, dataram1, mtd->oobblock))
825		return -EBADMSG;
826
827	return 0;
828}
829#else
830#define onenand_verify_page(...)	(0)
831#define onenand_verify_oob(...)		(0)
832#endif
833
834#define NOTALIGNED(x)	((x & (mtd->oobblock - 1)) != 0)
835
836/**
837 * onenand_write_ecc - [MTD Interface] OneNAND write with ECC
838 * @param mtd		MTD device structure
839 * @param to		offset to write to
840 * @param len		number of bytes to write
841 * @param retlen	pointer to variable to store the number of written bytes
842 * @param buf		the data to write
843 * @param eccbuf	filesystem supplied oob data buffer
844 * @param oobsel	oob selection structure
845 *
846 * OneNAND write with ECC
847 */
848static int onenand_write_ecc(struct mtd_info *mtd, loff_t to, size_t len,
849	size_t *retlen, const u_char *buf,
850	u_char *eccbuf, struct nand_oobinfo *oobsel)
851{
852	struct onenand_chip *this = mtd->priv;
853	int written = 0;
854	int ret = 0;
855
856	DEBUG(MTD_DEBUG_LEVEL3, "onenand_write_ecc: to = 0x%08x, len = %i\n", (unsigned int) to, (int) len);
857
858	/* Initialize retlen, in case of early exit */
859	*retlen = 0;
860
861	/* Do not allow writes past end of device */
862	if (unlikely((to + len) > mtd->size)) {
863		DEBUG(MTD_DEBUG_LEVEL0, "onenand_write_ecc: Attempt write to past end of device\n");
864		return -EINVAL;
865	}
866
867	/* Reject writes, which are not page aligned */
868        if (unlikely(NOTALIGNED(to)) || unlikely(NOTALIGNED(len))) {
869                DEBUG(MTD_DEBUG_LEVEL0, "onenand_write_ecc: Attempt to write not page aligned data\n");
870                return -EINVAL;
871        }
872
873	/* Grab the lock and see if the device is available */
874	onenand_get_device(mtd, FL_WRITING);
875
876	/* Loop until all data write */
877	while (written < len) {
878		int thislen = min_t(int, mtd->oobblock, len - written);
879
880		this->command(mtd, ONENAND_CMD_BUFFERRAM, to, mtd->oobblock);
881
882		this->write_bufferram(mtd, ONENAND_DATARAM, buf, 0, thislen);
883		this->write_bufferram(mtd, ONENAND_SPARERAM, ffchars, 0, mtd->oobsize);
884
885		this->command(mtd, ONENAND_CMD_PROG, to, mtd->oobblock);
886
887		onenand_update_bufferram(mtd, to, 1);
888
889		ret = this->wait(mtd, FL_WRITING);
890		if (ret) {
891			DEBUG(MTD_DEBUG_LEVEL0, "onenand_write_ecc: write filaed %d\n", ret);
892			goto out;
893		}
894
895		written += thislen;
896
897		/* Only check verify write turn on */
898		ret = onenand_verify_page(mtd, (u_char *) buf, to);
899		if (ret) {
900			DEBUG(MTD_DEBUG_LEVEL0, "onenand_write_ecc: verify failed %d\n", ret);
901			goto out;
902		}
903
904		if (written == len)
905			break;
906
907		to += thislen;
908		buf += thislen;
909	}
910
911out:
912	/* Deselect and wake up anyone waiting on the device */
913	onenand_release_device(mtd);
914
915	*retlen = written;
916
917	return ret;
918}
919
920/**
921 * onenand_write - [MTD Interface] compability function for onenand_write_ecc
922 * @param mtd		MTD device structure
923 * @param to		offset to write to
924 * @param len		number of bytes to write
925 * @param retlen	pointer to variable to store the number of written bytes
926 * @param buf		the data to write
927 *
928 * This function simply calls onenand_write_ecc
929 * with oob buffer and oobsel = NULL
930 */
931static int onenand_write(struct mtd_info *mtd, loff_t to, size_t len,
932	size_t *retlen, const u_char *buf)
933{
934	return onenand_write_ecc(mtd, to, len, retlen, buf, NULL, NULL);
935}
936
937/**
938 * onenand_write_oob - [MTD Interface] OneNAND write out-of-band
939 * @param mtd		MTD device structure
940 * @param to		offset to write to
941 * @param len		number of bytes to write
942 * @param retlen	pointer to variable to store the number of written bytes
943 * @param buf		the data to write
944 *
945 * OneNAND write out-of-band
946 */
947static int onenand_write_oob(struct mtd_info *mtd, loff_t to, size_t len,
948	size_t *retlen, const u_char *buf)
949{
950	struct onenand_chip *this = mtd->priv;
951	int column, ret = 0;
952	int written = 0;
953
954	DEBUG(MTD_DEBUG_LEVEL3, "onenand_write_oob: to = 0x%08x, len = %i\n", (unsigned int) to, (int) len);
955
956	/* Initialize retlen, in case of early exit */
957	*retlen = 0;
958
959	/* Do not allow writes past end of device */
960	if (unlikely((to + len) > mtd->size)) {
961		DEBUG(MTD_DEBUG_LEVEL0, "onenand_write_oob: Attempt write to past end of device\n");
962		return -EINVAL;
963	}
964
965	/* Grab the lock and see if the device is available */
966	onenand_get_device(mtd, FL_WRITING);
967
968	/* Loop until all data write */
969	while (written < len) {
970		int thislen = min_t(int, mtd->oobsize, len - written);
971
972		column = to & (mtd->oobsize - 1);
973
974		this->command(mtd, ONENAND_CMD_BUFFERRAM, to, mtd->oobsize);
975
976		/* We send data to spare ram with oobsize
977		 * to prevent byte access */
978		memset(this->page_buf, 0xff, mtd->oobsize);
979		memcpy(this->page_buf + column, buf, thislen);
980		this->write_bufferram(mtd, ONENAND_SPARERAM, this->page_buf, 0, mtd->oobsize);
981
982		this->command(mtd, ONENAND_CMD_PROGOOB, to, mtd->oobsize);
983
984		onenand_update_bufferram(mtd, to, 0);
985
986		ret = this->wait(mtd, FL_WRITING);
987		if (ret) {
988			DEBUG(MTD_DEBUG_LEVEL0, "onenand_write_oob: write filaed %d\n", ret);
989			goto out;
990		}
991
992		ret = onenand_verify_oob(mtd, buf, to, thislen);
993		if (ret) {
994			DEBUG(MTD_DEBUG_LEVEL0, "onenand_write_oob: verify failed %d\n", ret);
995			goto out;
996		}
997
998		written += thislen;
999
1000		if (written == len)
1001			break;
1002
1003		to += thislen;
1004		buf += thislen;
1005	}
1006
1007out:
1008	/* Deselect and wake up anyone waiting on the device */
1009	onenand_release_device(mtd);
1010
1011	*retlen = written;
1012
1013	return ret;
1014}
1015
1016/**
1017 * onenand_writev_ecc - [MTD Interface] write with iovec with ecc
1018 * @param mtd		MTD device structure
1019 * @param vecs		the iovectors to write
1020 * @param count		number of vectors
1021 * @param to		offset to write to
1022 * @param retlen	pointer to variable to store the number of written bytes
1023 * @param eccbuf	filesystem supplied oob data buffer
1024 * @param oobsel	oob selection structure
1025 *
1026 * OneNAND write with iovec with ecc
1027 */
1028static int onenand_writev_ecc(struct mtd_info *mtd, const struct kvec *vecs,
1029	unsigned long count, loff_t to, size_t *retlen,
1030	u_char *eccbuf, struct nand_oobinfo *oobsel)
1031{
1032	struct onenand_chip *this = mtd->priv;
1033	unsigned char *pbuf;
1034	size_t total_len, len;
1035	int i, written = 0;
1036	int ret = 0;
1037
1038	/* Preset written len for early exit */
1039	*retlen = 0;
1040
1041	/* Calculate total length of data */
1042	total_len = 0;
1043	for (i = 0; i < count; i++)
1044		total_len += vecs[i].iov_len;
1045
1046	DEBUG(MTD_DEBUG_LEVEL3, "onenand_writev_ecc: to = 0x%08x, len = %i, count = %ld\n", (unsigned int) to, (unsigned int) total_len, count);
1047
1048	/* Do not allow write past end of the device */
1049	if (unlikely((to + total_len) > mtd->size)) {
1050		DEBUG(MTD_DEBUG_LEVEL0, "onenand_writev_ecc: Attempted write past end of device\n");
1051		return -EINVAL;
1052	}
1053
1054	/* Reject writes, which are not page aligned */
1055        if (unlikely(NOTALIGNED(to)) || unlikely(NOTALIGNED(total_len))) {
1056                DEBUG(MTD_DEBUG_LEVEL0, "onenand_writev_ecc: Attempt to write not page aligned data\n");
1057                return -EINVAL;
1058        }
1059
1060	/* Grab the lock and see if the device is available */
1061	onenand_get_device(mtd, FL_WRITING);
1062
1063	/* TODO handling oob */
1064
1065	/* Loop until all keve's data has been written */
1066	len = 0;
1067	while (count) {
1068		pbuf = this->page_buf;
1069		/*
1070		 * If the given tuple is >= pagesize then
1071		 * write it out from the iov
1072		 */
1073		if ((vecs->iov_len - len) >= mtd->oobblock) {
1074			pbuf = vecs->iov_base + len;
1075
1076			len += mtd->oobblock;
1077
1078			/* Check, if we have to switch to the next tuple */
1079			if (len >= (int) vecs->iov_len) {
1080				vecs++;
1081				len = 0;
1082				count--;
1083			}
1084		} else {
1085			int cnt = 0, thislen;
1086			while (cnt < mtd->oobblock) {
1087				thislen = min_t(int, mtd->oobblock - cnt, vecs->iov_len - len);
1088				memcpy(this->page_buf + cnt, vecs->iov_base + len, thislen);
1089				cnt += thislen;
1090				len += thislen;
1091
1092				/* Check, if we have to switch to the next tuple */
1093				if (len >= (int) vecs->iov_len) {
1094					vecs++;
1095					len = 0;
1096					count--;
1097				}
1098			}
1099		}
1100
1101		this->command(mtd, ONENAND_CMD_BUFFERRAM, to, mtd->oobblock);
1102
1103		this->write_bufferram(mtd, ONENAND_DATARAM, pbuf, 0, mtd->oobblock);
1104		this->write_bufferram(mtd, ONENAND_SPARERAM, ffchars, 0, mtd->oobsize);
1105
1106		this->command(mtd, ONENAND_CMD_PROG, to, mtd->oobblock);
1107
1108		onenand_update_bufferram(mtd, to, 1);
1109
1110		ret = this->wait(mtd, FL_WRITING);
1111		if (ret) {
1112			DEBUG(MTD_DEBUG_LEVEL0, "onenand_writev_ecc: write failed %d\n", ret);
1113			goto out;
1114		}
1115
1116
1117		/* Only check verify write turn on */
1118		ret = onenand_verify_page(mtd, (u_char *) pbuf, to);
1119		if (ret) {
1120			DEBUG(MTD_DEBUG_LEVEL0, "onenand_writev_ecc: verify failed %d\n", ret);
1121			goto out;
1122		}
1123
1124		written += mtd->oobblock;
1125
1126		to += mtd->oobblock;
1127	}
1128
1129out:
1130	/* Deselect and wakt up anyone waiting on the device */
1131	onenand_release_device(mtd);
1132
1133	*retlen = written;
1134
1135	return 0;
1136}
1137
1138/**
1139 * onenand_writev - [MTD Interface] compabilty function for onenand_writev_ecc
1140 * @param mtd		MTD device structure
1141 * @param vecs		the iovectors to write
1142 * @param count		number of vectors
1143 * @param to		offset to write to
1144 * @param retlen	pointer to variable to store the number of written bytes
1145 *
1146 * OneNAND write with kvec. This just calls the ecc function
1147 */
1148static int onenand_writev(struct mtd_info *mtd, const struct kvec *vecs,
1149	unsigned long count, loff_t to, size_t *retlen)
1150{
1151	return onenand_writev_ecc(mtd, vecs, count, to, retlen, NULL, NULL);
1152}
1153
1154/**
1155 * onenand_block_checkbad - [GENERIC] Check if a block is marked bad
1156 * @param mtd		MTD device structure
1157 * @param ofs		offset from device start
1158 * @param getchip	0, if the chip is already selected
1159 * @param allowbbt	1, if its allowed to access the bbt area
1160 *
1161 * Check, if the block is bad. Either by reading the bad block table or
1162 * calling of the scan function.
1163 */
1164static int onenand_block_checkbad(struct mtd_info *mtd, loff_t ofs, int getchip, int allowbbt)
1165{
1166	struct onenand_chip *this = mtd->priv;
1167	struct bbm_info *bbm = this->bbm;
1168
1169	/* Return info from the table */
1170	return bbm->isbad_bbt(mtd, ofs, allowbbt);
1171}
1172
1173/**
1174 * onenand_erase - [MTD Interface] erase block(s)
1175 * @param mtd		MTD device structure
1176 * @param instr		erase instruction
1177 *
1178 * Erase one ore more blocks
1179 */
1180static int onenand_erase(struct mtd_info *mtd, struct erase_info *instr)
1181{
1182	struct onenand_chip *this = mtd->priv;
1183	unsigned int block_size;
1184	loff_t addr;
1185	int len;
1186	int ret = 0;
1187
1188	DEBUG(MTD_DEBUG_LEVEL3, "onenand_erase: start = 0x%08x, len = %i\n", (unsigned int) instr->addr, (unsigned int) instr->len);
1189
1190	block_size = (1 << this->erase_shift);
1191
1192	/* Start address must align on block boundary */
1193	if (unlikely(instr->addr & (block_size - 1))) {
1194		DEBUG(MTD_DEBUG_LEVEL0, "onenand_erase: Unaligned address\n");
1195		return -EINVAL;
1196	}
1197
1198	/* Length must align on block boundary */
1199	if (unlikely(instr->len & (block_size - 1))) {
1200		DEBUG(MTD_DEBUG_LEVEL0, "onenand_erase: Length not block aligned\n");
1201		return -EINVAL;
1202	}
1203
1204	/* Do not allow erase past end of device */
1205	if (unlikely((instr->len + instr->addr) > mtd->size)) {
1206		DEBUG(MTD_DEBUG_LEVEL0, "onenand_erase: Erase past end of device\n");
1207		return -EINVAL;
1208	}
1209
1210	instr->fail_addr = 0xffffffff;
1211
1212	/* Grab the lock and see if the device is available */
1213	onenand_get_device(mtd, FL_ERASING);
1214
1215	/* Loop throught the pages */
1216	len = instr->len;
1217	addr = instr->addr;
1218
1219	instr->state = MTD_ERASING;
1220
1221	while (len) {
1222
1223		/* Check if we have a bad block, we do not erase bad blocks */
1224		if (onenand_block_checkbad(mtd, addr, 0, 0)) {
1225			printk (KERN_WARNING "onenand_erase: attempt to erase a bad block at addr 0x%08x\n", (unsigned int) addr);
1226			instr->state = MTD_ERASE_FAILED;
1227			goto erase_exit;
1228		}
1229
1230		this->command(mtd, ONENAND_CMD_ERASE, addr, block_size);
1231
1232		ret = this->wait(mtd, FL_ERASING);
1233		/* Check, if it is write protected */
1234		if (ret) {
1235			if (ret == -EPERM)
1236				DEBUG(MTD_DEBUG_LEVEL0, "onenand_erase: Device is write protected!!!\n");
1237			else
1238				DEBUG(MTD_DEBUG_LEVEL0, "onenand_erase: Failed erase, block %d\n", (unsigned) (addr >> this->erase_shift));
1239			instr->state = MTD_ERASE_FAILED;
1240			instr->fail_addr = addr;
1241			goto erase_exit;
1242		}
1243
1244		len -= block_size;
1245		addr += block_size;
1246	}
1247
1248	instr->state = MTD_ERASE_DONE;
1249
1250erase_exit:
1251
1252	ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO;
1253	/* Do call back function */
1254	if (!ret)
1255		mtd_erase_callback(instr);
1256
1257	/* Deselect and wake up anyone waiting on the device */
1258	onenand_release_device(mtd);
1259
1260	return ret;
1261}
1262
1263/**
1264 * onenand_sync - [MTD Interface] sync
1265 * @param mtd		MTD device structure
1266 *
1267 * Sync is actually a wait for chip ready function
1268 */
1269static void onenand_sync(struct mtd_info *mtd)
1270{
1271	DEBUG(MTD_DEBUG_LEVEL3, "onenand_sync: called\n");
1272
1273	/* Grab the lock and see if the device is available */
1274	onenand_get_device(mtd, FL_SYNCING);
1275
1276	/* Release it and go back */
1277	onenand_release_device(mtd);
1278}
1279
1280
1281/**
1282 * onenand_block_isbad - [MTD Interface] Check whether the block at the given offset is bad
1283 * @param mtd		MTD device structure
1284 * @param ofs		offset relative to mtd start
1285 *
1286 * Check whether the block is bad
1287 */
1288static int onenand_block_isbad(struct mtd_info *mtd, loff_t ofs)
1289{
1290	/* Check for invalid offset */
1291	if (ofs > mtd->size)
1292		return -EINVAL;
1293
1294	return onenand_block_checkbad(mtd, ofs, 1, 0);
1295}
1296
1297/**
1298 * onenand_default_block_markbad - [DEFAULT] mark a block bad
1299 * @param mtd		MTD device structure
1300 * @param ofs		offset from device start
1301 *
1302 * This is the default implementation, which can be overridden by
1303 * a hardware specific driver.
1304 */
1305static int onenand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
1306{
1307	struct onenand_chip *this = mtd->priv;
1308	struct bbm_info *bbm = this->bbm;
1309	u_char buf[2] = {0, 0};
1310	size_t retlen;
1311	int block;
1312
1313	/* Get block number */
1314	block = ((int) ofs) >> bbm->bbt_erase_shift;
1315        if (bbm->bbt)
1316                bbm->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1);
1317
1318        /* We write two bytes, so we dont have to mess with 16 bit access */
1319        ofs += mtd->oobsize + (bbm->badblockpos & ~0x01);
1320        return mtd->write_oob(mtd, ofs , 2, &retlen, buf);
1321}
1322
1323/**
1324 * onenand_block_markbad - [MTD Interface] Mark the block at the given offset as bad
1325 * @param mtd		MTD device structure
1326 * @param ofs		offset relative to mtd start
1327 *
1328 * Mark the block as bad
1329 */
1330static int onenand_block_markbad(struct mtd_info *mtd, loff_t ofs)
1331{
1332	struct onenand_chip *this = mtd->priv;
1333	int ret;
1334
1335	ret = onenand_block_isbad(mtd, ofs);
1336	if (ret) {
1337		/* If it was bad already, return success and do nothing */
1338		if (ret > 0)
1339			return 0;
1340		return ret;
1341	}
1342
1343	return this->block_markbad(mtd, ofs);
1344}
1345
1346/**
1347 * onenand_unlock - [MTD Interface] Unlock block(s)
1348 * @param mtd		MTD device structure
1349 * @param ofs		offset relative to mtd start
1350 * @param len		number of bytes to unlock
1351 *
1352 * Unlock one or more blocks
1353 */
1354static int onenand_unlock(struct mtd_info *mtd, loff_t ofs, size_t len)
1355{
1356	struct onenand_chip *this = mtd->priv;
1357	int start, end, block, value, status;
1358
1359	start = ofs >> this->erase_shift;
1360	end = len >> this->erase_shift;
1361
1362	/* Continuous lock scheme */
1363	if (this->options & ONENAND_CONT_LOCK) {
1364		/* Set start block address */
1365		this->write_word(start, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
1366		/* Set end block address */
1367		this->write_word(end - 1, this->base + ONENAND_REG_END_BLOCK_ADDRESS);
1368		/* Write unlock command */
1369		this->command(mtd, ONENAND_CMD_UNLOCK, 0, 0);
1370
1371		/* There's no return value */
1372		this->wait(mtd, FL_UNLOCKING);
1373
1374		/* Sanity check */
1375		while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
1376		    & ONENAND_CTRL_ONGO)
1377			continue;
1378
1379		/* Check lock status */
1380		status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
1381		if (!(status & ONENAND_WP_US))
1382			printk(KERN_ERR "wp status = 0x%x\n", status);
1383
1384		return 0;
1385	}
1386
1387	/* Block lock scheme */
1388	for (block = start; block < end; block++) {
1389		/* Set block address */
1390		value = onenand_block_address(this, block);
1391		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
1392		/* Select DataRAM for DDP */
1393		value = onenand_bufferram_address(this, block);
1394		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
1395		/* Set start block address */
1396		this->write_word(block, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
1397		/* Write unlock command */
1398		this->command(mtd, ONENAND_CMD_UNLOCK, 0, 0);
1399
1400		/* There's no return value */
1401		this->wait(mtd, FL_UNLOCKING);
1402
1403		/* Sanity check */
1404		while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
1405		    & ONENAND_CTRL_ONGO)
1406			continue;
1407
1408		/* Check lock status */
1409		status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
1410		if (!(status & ONENAND_WP_US))
1411			printk(KERN_ERR "block = %d, wp status = 0x%x\n", block, status);
1412	}
1413
1414	return 0;
1415}
1416
1417#ifdef CONFIG_MTD_ONENAND_OTP
1418
1419/* Interal OTP operation */
1420typedef int (*otp_op_t)(struct mtd_info *mtd, loff_t form, size_t len,
1421		size_t *retlen, u_char *buf);
1422
1423/**
1424 * do_otp_read - [DEFAULT] Read OTP block area
1425 * @param mtd		MTD device structure
1426 * @param from		The offset to read
1427 * @param len		number of bytes to read
1428 * @param retlen	pointer to variable to store the number of readbytes
1429 * @param buf		the databuffer to put/get data
1430 *
1431 * Read OTP block area.
1432 */
1433static int do_otp_read(struct mtd_info *mtd, loff_t from, size_t len,
1434		size_t *retlen, u_char *buf)
1435{
1436	struct onenand_chip *this = mtd->priv;
1437	int ret;
1438
1439	/* Enter OTP access mode */
1440	this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
1441	this->wait(mtd, FL_OTPING);
1442
1443	ret = mtd->read(mtd, from, len, retlen, buf);
1444
1445	/* Exit OTP access mode */
1446	this->command(mtd, ONENAND_CMD_RESET, 0, 0);
1447	this->wait(mtd, FL_RESETING);
1448
1449	return ret;
1450}
1451
1452/**
1453 * do_otp_write - [DEFAULT] Write OTP block area
1454 * @param mtd		MTD device structure
1455 * @param from		The offset to write
1456 * @param len		number of bytes to write
1457 * @param retlen	pointer to variable to store the number of write bytes
1458 * @param buf		the databuffer to put/get data
1459 *
1460 * Write OTP block area.
1461 */
1462static int do_otp_write(struct mtd_info *mtd, loff_t from, size_t len,
1463		size_t *retlen, u_char *buf)
1464{
1465	struct onenand_chip *this = mtd->priv;
1466	unsigned char *pbuf = buf;
1467	int ret;
1468
1469	/* Force buffer page aligned */
1470	if (len < mtd->oobblock) {
1471		memcpy(this->page_buf, buf, len);
1472		memset(this->page_buf + len, 0xff, mtd->oobblock - len);
1473		pbuf = this->page_buf;
1474		len = mtd->oobblock;
1475	}
1476
1477	/* Enter OTP access mode */
1478	this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
1479	this->wait(mtd, FL_OTPING);
1480
1481	ret = mtd->write(mtd, from, len, retlen, pbuf);
1482
1483	/* Exit OTP access mode */
1484	this->command(mtd, ONENAND_CMD_RESET, 0, 0);
1485	this->wait(mtd, FL_RESETING);
1486
1487	return ret;
1488}
1489
1490/**
1491 * do_otp_lock - [DEFAULT] Lock OTP block area
1492 * @param mtd		MTD device structure
1493 * @param from		The offset to lock
1494 * @param len		number of bytes to lock
1495 * @param retlen	pointer to variable to store the number of lock bytes
1496 * @param buf		the databuffer to put/get data
1497 *
1498 * Lock OTP block area.
1499 */
1500static int do_otp_lock(struct mtd_info *mtd, loff_t from, size_t len,
1501		size_t *retlen, u_char *buf)
1502{
1503	struct onenand_chip *this = mtd->priv;
1504	int ret;
1505
1506	/* Enter OTP access mode */
1507	this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
1508	this->wait(mtd, FL_OTPING);
1509
1510	ret = mtd->write_oob(mtd, from, len, retlen, buf);
1511
1512	/* Exit OTP access mode */
1513	this->command(mtd, ONENAND_CMD_RESET, 0, 0);
1514	this->wait(mtd, FL_RESETING);
1515
1516	return ret;
1517}
1518
1519/**
1520 * onenand_otp_walk - [DEFAULT] Handle OTP operation
1521 * @param mtd		MTD device structure
1522 * @param from		The offset to read/write
1523 * @param len		number of bytes to read/write
1524 * @param retlen	pointer to variable to store the number of read bytes
1525 * @param buf		the databuffer to put/get data
1526 * @param action	do given action
1527 * @param mode		specify user and factory
1528 *
1529 * Handle OTP operation.
1530 */
1531static int onenand_otp_walk(struct mtd_info *mtd, loff_t from, size_t len,
1532			size_t *retlen, u_char *buf,
1533			otp_op_t action, int mode)
1534{
1535	struct onenand_chip *this = mtd->priv;
1536	int otp_pages;
1537	int density;
1538	int ret = 0;
1539
1540	*retlen = 0;
1541
1542	density = this->device_id >> ONENAND_DEVICE_DENSITY_SHIFT;
1543	if (density < ONENAND_DEVICE_DENSITY_512Mb)
1544		otp_pages = 20;
1545	else
1546		otp_pages = 10;
1547
1548	if (mode == MTD_OTP_FACTORY) {
1549		from += mtd->oobblock * otp_pages;
1550		otp_pages = 64 - otp_pages;
1551	}
1552
1553	/* Check User/Factory boundary */
1554	if (((mtd->oobblock * otp_pages) - (from + len)) < 0)
1555		return 0;
1556
1557	while (len > 0 && otp_pages > 0) {
1558		if (!action) {	/* OTP Info functions */
1559			struct otp_info *otpinfo;
1560
1561			len -= sizeof(struct otp_info);
1562			if (len <= 0)
1563				return -ENOSPC;
1564
1565			otpinfo = (struct otp_info *) buf;
1566			otpinfo->start = from;
1567			otpinfo->length = mtd->oobblock;
1568			otpinfo->locked = 0;
1569
1570			from += mtd->oobblock;
1571			buf += sizeof(struct otp_info);
1572			*retlen += sizeof(struct otp_info);
1573		} else {
1574			size_t tmp_retlen;
1575			int size = len;
1576
1577			ret = action(mtd, from, len, &tmp_retlen, buf);
1578
1579			buf += size;
1580			len -= size;
1581			*retlen += size;
1582
1583			if (ret < 0)
1584				return ret;
1585		}
1586		otp_pages--;
1587	}
1588
1589	return 0;
1590}
1591
1592/**
1593 * onenand_get_fact_prot_info - [MTD Interface] Read factory OTP info
1594 * @param mtd		MTD device structure
1595 * @param buf		the databuffer to put/get data
1596 * @param len		number of bytes to read
1597 *
1598 * Read factory OTP info.
1599 */
1600static int onenand_get_fact_prot_info(struct mtd_info *mtd,
1601			struct otp_info *buf, size_t len)
1602{
1603	size_t retlen;
1604	int ret;
1605
1606	ret = onenand_otp_walk(mtd, 0, len, &retlen, (u_char *) buf, NULL, MTD_OTP_FACTORY);
1607
1608	return ret ? : retlen;
1609}
1610
1611/**
1612 * onenand_read_fact_prot_reg - [MTD Interface] Read factory OTP area
1613 * @param mtd		MTD device structure
1614 * @param from		The offset to read
1615 * @param len		number of bytes to read
1616 * @param retlen	pointer to variable to store the number of read bytes
1617 * @param buf		the databuffer to put/get data
1618 *
1619 * Read factory OTP area.
1620 */
1621static int onenand_read_fact_prot_reg(struct mtd_info *mtd, loff_t from,
1622			size_t len, size_t *retlen, u_char *buf)
1623{
1624	return onenand_otp_walk(mtd, from, len, retlen, buf, do_otp_read, MTD_OTP_FACTORY);
1625}
1626
1627/**
1628 * onenand_get_user_prot_info - [MTD Interface] Read user OTP info
1629 * @param mtd		MTD device structure
1630 * @param buf		the databuffer to put/get data
1631 * @param len		number of bytes to read
1632 *
1633 * Read user OTP info.
1634 */
1635static int onenand_get_user_prot_info(struct mtd_info *mtd,
1636			struct otp_info *buf, size_t len)
1637{
1638	size_t retlen;
1639	int ret;
1640
1641	ret = onenand_otp_walk(mtd, 0, len, &retlen, (u_char *) buf, NULL, MTD_OTP_USER);
1642
1643	return ret ? : retlen;
1644}
1645
1646/**
1647 * onenand_read_user_prot_reg - [MTD Interface] Read user OTP area
1648 * @param mtd		MTD device structure
1649 * @param from		The offset to read
1650 * @param len		number of bytes to read
1651 * @param retlen	pointer to variable to store the number of read bytes
1652 * @param buf		the databuffer to put/get data
1653 *
1654 * Read user OTP area.
1655 */
1656static int onenand_read_user_prot_reg(struct mtd_info *mtd, loff_t from,
1657			size_t len, size_t *retlen, u_char *buf)
1658{
1659	return onenand_otp_walk(mtd, from, len, retlen, buf, do_otp_read, MTD_OTP_USER);
1660}
1661
1662/**
1663 * onenand_write_user_prot_reg - [MTD Interface] Write user OTP area
1664 * @param mtd		MTD device structure
1665 * @param from		The offset to write
1666 * @param len		number of bytes to write
1667 * @param retlen	pointer to variable to store the number of write bytes
1668 * @param buf		the databuffer to put/get data
1669 *
1670 * Write user OTP area.
1671 */
1672static int onenand_write_user_prot_reg(struct mtd_info *mtd, loff_t from,
1673			size_t len, size_t *retlen, u_char *buf)
1674{
1675	return onenand_otp_walk(mtd, from, len, retlen, buf, do_otp_write, MTD_OTP_USER);
1676}
1677
1678/**
1679 * onenand_lock_user_prot_reg - [MTD Interface] Lock user OTP area
1680 * @param mtd		MTD device structure
1681 * @param from		The offset to lock
1682 * @param len		number of bytes to unlock
1683 *
1684 * Write lock mark on spare area in page 0 in OTP block
1685 */
1686static int onenand_lock_user_prot_reg(struct mtd_info *mtd, loff_t from,
1687			size_t len)
1688{
1689	unsigned char oob_buf[64];
1690	size_t retlen;
1691	int ret;
1692
1693	memset(oob_buf, 0xff, mtd->oobsize);
1694	/*
1695	 * Note: OTP lock operation
1696	 *       OTP block : 0xXXFC
1697	 *       1st block : 0xXXF3 (If chip support)
1698	 *       Both      : 0xXXF0 (If chip support)
1699	 */
1700	oob_buf[ONENAND_OTP_LOCK_OFFSET] = 0xFC;
1701
1702	/*
1703	 * Write lock mark to 8th word of sector0 of page0 of the spare0.
1704	 * We write 16 bytes spare area instead of 2 bytes.
1705	 */
1706	from = 0;
1707	len = 16;
1708
1709	ret = onenand_otp_walk(mtd, from, len, &retlen, oob_buf, do_otp_lock, MTD_OTP_USER);
1710
1711	return ret ? : retlen;
1712}
1713#endif	/* CONFIG_MTD_ONENAND_OTP */
1714
1715/**
1716 * onenand_print_device_info - Print device ID
1717 * @param device        device ID
1718 *
1719 * Print device ID
1720 */
1721static void onenand_print_device_info(int device)
1722{
1723        int vcc, demuxed, ddp, density;
1724
1725        vcc = device & ONENAND_DEVICE_VCC_MASK;
1726        demuxed = device & ONENAND_DEVICE_IS_DEMUX;
1727        ddp = device & ONENAND_DEVICE_IS_DDP;
1728        density = device >> ONENAND_DEVICE_DENSITY_SHIFT;
1729        printk(KERN_INFO "%sOneNAND%s %dMB %sV 16-bit (0x%02x)\n",
1730                demuxed ? "" : "Muxed ",
1731                ddp ? "(DDP)" : "",
1732                (16 << density),
1733                vcc ? "2.65/3.3" : "1.8",
1734                device);
1735}
1736
1737static const struct onenand_manufacturers onenand_manuf_ids[] = {
1738        {ONENAND_MFR_SAMSUNG, "Samsung"},
1739};
1740
1741/**
1742 * onenand_check_maf - Check manufacturer ID
1743 * @param manuf         manufacturer ID
1744 *
1745 * Check manufacturer ID
1746 */
1747static int onenand_check_maf(int manuf)
1748{
1749	int size = ARRAY_SIZE(onenand_manuf_ids);
1750	char *name;
1751        int i;
1752
1753	for (i = 0; i < size; i++)
1754                if (manuf == onenand_manuf_ids[i].id)
1755                        break;
1756
1757	if (i < size)
1758		name = onenand_manuf_ids[i].name;
1759	else
1760		name = "Unknown";
1761
1762	printk(KERN_DEBUG "OneNAND Manufacturer: %s (0x%0x)\n", name, manuf);
1763
1764	return (i == size);
1765}
1766
1767/**
1768 * onenand_probe - [OneNAND Interface] Probe the OneNAND device
1769 * @param mtd		MTD device structure
1770 *
1771 * OneNAND detection method:
1772 *   Compare the the values from command with ones from register
1773 */
1774static int onenand_probe(struct mtd_info *mtd)
1775{
1776	struct onenand_chip *this = mtd->priv;
1777	int bram_maf_id, bram_dev_id, maf_id, dev_id;
1778	int version_id;
1779	int density;
1780
1781	/* Send the command for reading device ID from BootRAM */
1782	this->write_word(ONENAND_CMD_READID, this->base + ONENAND_BOOTRAM);
1783
1784	/* Read manufacturer and device IDs from BootRAM */
1785	bram_maf_id = this->read_word(this->base + ONENAND_BOOTRAM + 0x0);
1786	bram_dev_id = this->read_word(this->base + ONENAND_BOOTRAM + 0x2);
1787
1788	/* Check manufacturer ID */
1789	if (onenand_check_maf(bram_maf_id))
1790		return -ENXIO;
1791
1792	/* Reset OneNAND to read default register values */
1793	this->write_word(ONENAND_CMD_RESET, this->base + ONENAND_BOOTRAM);
1794
1795	/* Read manufacturer and device IDs from Register */
1796	maf_id = this->read_word(this->base + ONENAND_REG_MANUFACTURER_ID);
1797	dev_id = this->read_word(this->base + ONENAND_REG_DEVICE_ID);
1798
1799	/* Check OneNAND device */
1800	if (maf_id != bram_maf_id || dev_id != bram_dev_id)
1801		return -ENXIO;
1802
1803	/* Flash device information */
1804	onenand_print_device_info(dev_id);
1805	this->device_id = dev_id;
1806
1807	density = dev_id >> ONENAND_DEVICE_DENSITY_SHIFT;
1808	this->chipsize = (16 << density) << 20;
1809	/* Set density mask. it is used for DDP */
1810	this->density_mask = (1 << (density + 6));
1811
1812	/* OneNAND page size & block size */
1813	/* The data buffer size is equal to page size */
1814	mtd->oobblock = this->read_word(this->base + ONENAND_REG_DATA_BUFFER_SIZE);
1815	mtd->oobsize = mtd->oobblock >> 5;
1816	/* Pagers per block is always 64 in OneNAND */
1817	mtd->erasesize = mtd->oobblock << 6;
1818
1819	this->erase_shift = ffs(mtd->erasesize) - 1;
1820	this->page_shift = ffs(mtd->oobblock) - 1;
1821	this->ppb_shift = (this->erase_shift - this->page_shift);
1822	this->page_mask = (mtd->erasesize / mtd->oobblock) - 1;
1823
1824	/* REVIST: Multichip handling */
1825
1826	mtd->size = this->chipsize;
1827
1828	/* Version ID */
1829	version_id = this->read_word(this->base + ONENAND_REG_VERSION_ID);
1830	printk(KERN_DEBUG "OneNAND version = 0x%04x\n", version_id);
1831
1832	/* Lock scheme */
1833	if (density <= ONENAND_DEVICE_DENSITY_512Mb &&
1834	    !(version_id >> ONENAND_VERSION_PROCESS_SHIFT)) {
1835		printk(KERN_INFO "Lock scheme is Continues Lock\n");
1836		this->options |= ONENAND_CONT_LOCK;
1837	}
1838
1839	return 0;
1840}
1841
1842/**
1843 * onenand_suspend - [MTD Interface] Suspend the OneNAND flash
1844 * @param mtd		MTD device structure
1845 */
1846static int onenand_suspend(struct mtd_info *mtd)
1847{
1848	return onenand_get_device(mtd, FL_PM_SUSPENDED);
1849}
1850
1851/**
1852 * onenand_resume - [MTD Interface] Resume the OneNAND flash
1853 * @param mtd		MTD device structure
1854 */
1855static void onenand_resume(struct mtd_info *mtd)
1856{
1857	struct onenand_chip *this = mtd->priv;
1858
1859	if (this->state == FL_PM_SUSPENDED)
1860		onenand_release_device(mtd);
1861	else
1862		printk(KERN_ERR "resume() called for the chip which is not"
1863				"in suspended state\n");
1864}
1865
1866/**
1867 * onenand_scan - [OneNAND Interface] Scan for the OneNAND device
1868 * @param mtd		MTD device structure
1869 * @param maxchips	Number of chips to scan for
1870 *
1871 * This fills out all the not initialized function pointers
1872 * with the defaults.
1873 * The flash ID is read and the mtd/chip structures are
1874 * filled with the appropriate values.
1875 */
1876int onenand_scan(struct mtd_info *mtd, int maxchips)
1877{
1878	struct onenand_chip *this = mtd->priv;
1879
1880	if (!this->read_word)
1881		this->read_word = onenand_readw;
1882	if (!this->write_word)
1883		this->write_word = onenand_writew;
1884
1885	if (!this->command)
1886		this->command = onenand_command;
1887	if (!this->wait)
1888		this->wait = onenand_wait;
1889
1890	if (!this->read_bufferram)
1891		this->read_bufferram = onenand_read_bufferram;
1892	if (!this->write_bufferram)
1893		this->write_bufferram = onenand_write_bufferram;
1894
1895	if (!this->block_markbad)
1896		this->block_markbad = onenand_default_block_markbad;
1897	if (!this->scan_bbt)
1898		this->scan_bbt = onenand_default_bbt;
1899
1900	if (onenand_probe(mtd))
1901		return -ENXIO;
1902
1903	/* Set Sync. Burst Read after probing */
1904	if (this->mmcontrol) {
1905		printk(KERN_INFO "OneNAND Sync. Burst Read support\n");
1906		this->read_bufferram = onenand_sync_read_bufferram;
1907	}
1908
1909	/* Allocate buffers, if necessary */
1910	if (!this->page_buf) {
1911		size_t len;
1912		len = mtd->oobblock + mtd->oobsize;
1913		this->page_buf = kmalloc(len, GFP_KERNEL);
1914		if (!this->page_buf) {
1915			printk(KERN_ERR "onenand_scan(): Can't allocate page_buf\n");
1916			return -ENOMEM;
1917		}
1918		this->options |= ONENAND_PAGEBUF_ALLOC;
1919	}
1920
1921	this->state = FL_READY;
1922	init_waitqueue_head(&this->wq);
1923	spin_lock_init(&this->chip_lock);
1924
1925	switch (mtd->oobsize) {
1926	case 64:
1927		this->autooob = &onenand_oob_64;
1928		break;
1929
1930	case 32:
1931		this->autooob = &onenand_oob_32;
1932		break;
1933
1934	default:
1935		printk(KERN_WARNING "No OOB scheme defined for oobsize %d\n",
1936			mtd->oobsize);
1937		/* To prevent kernel oops */
1938		this->autooob = &onenand_oob_32;
1939		break;
1940	}
1941
1942	memcpy(&mtd->oobinfo, this->autooob, sizeof(mtd->oobinfo));
1943
1944	/* Fill in remaining MTD driver data */
1945	mtd->type = MTD_NANDFLASH;
1946	mtd->flags = MTD_CAP_NANDFLASH | MTD_ECC;
1947	mtd->ecctype = MTD_ECC_SW;
1948	mtd->erase = onenand_erase;
1949	mtd->point = NULL;
1950	mtd->unpoint = NULL;
1951	mtd->read = onenand_read;
1952	mtd->write = onenand_write;
1953	mtd->read_ecc = onenand_read_ecc;
1954	mtd->write_ecc = onenand_write_ecc;
1955	mtd->read_oob = onenand_read_oob;
1956	mtd->write_oob = onenand_write_oob;
1957#ifdef CONFIG_MTD_ONENAND_OTP
1958	mtd->get_fact_prot_info = onenand_get_fact_prot_info;
1959	mtd->read_fact_prot_reg = onenand_read_fact_prot_reg;
1960	mtd->get_user_prot_info = onenand_get_user_prot_info;
1961	mtd->read_user_prot_reg = onenand_read_user_prot_reg;
1962	mtd->write_user_prot_reg = onenand_write_user_prot_reg;
1963	mtd->lock_user_prot_reg = onenand_lock_user_prot_reg;
1964#endif
1965	mtd->readv = NULL;
1966	mtd->readv_ecc = NULL;
1967	mtd->writev = onenand_writev;
1968	mtd->writev_ecc = onenand_writev_ecc;
1969	mtd->sync = onenand_sync;
1970	mtd->lock = NULL;
1971	mtd->unlock = onenand_unlock;
1972	mtd->suspend = onenand_suspend;
1973	mtd->resume = onenand_resume;
1974	mtd->block_isbad = onenand_block_isbad;
1975	mtd->block_markbad = onenand_block_markbad;
1976	mtd->owner = THIS_MODULE;
1977
1978	/* Unlock whole block */
1979	mtd->unlock(mtd, 0x0, this->chipsize);
1980
1981	return this->scan_bbt(mtd);
1982}
1983
1984/**
1985 * onenand_release - [OneNAND Interface] Free resources held by the OneNAND device
1986 * @param mtd		MTD device structure
1987 */
1988void onenand_release(struct mtd_info *mtd)
1989{
1990	struct onenand_chip *this = mtd->priv;
1991
1992#ifdef CONFIG_MTD_PARTITIONS
1993	/* Deregister partitions */
1994	del_mtd_partitions (mtd);
1995#endif
1996	/* Deregister the device */
1997	del_mtd_device (mtd);
1998
1999	/* Free bad block table memory, if allocated */
2000	if (this->bbm)
2001		kfree(this->bbm);
2002	/* Buffer allocated by onenand_scan */
2003	if (this->options & ONENAND_PAGEBUF_ALLOC)
2004		kfree(this->page_buf);
2005}
2006
2007EXPORT_SYMBOL_GPL(onenand_scan);
2008EXPORT_SYMBOL_GPL(onenand_release);
2009
2010MODULE_LICENSE("GPL");
2011MODULE_AUTHOR("Kyungmin Park <kyungmin.park@samsung.com>");
2012MODULE_DESCRIPTION("Generic OneNAND flash driver code");
2013