onenand_base.c revision 9d03280129e84f8cdfd83f84803a4548e3bf697d
1/*
2 *  linux/drivers/mtd/onenand/onenand_base.c
3 *
4 *  Copyright (C) 2005-2006 Samsung Electronics
5 *  Kyungmin Park <kyungmin.park@samsung.com>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11
12#include <linux/kernel.h>
13#include <linux/module.h>
14#include <linux/init.h>
15#include <linux/sched.h>
16#include <linux/interrupt.h>
17#include <linux/jiffies.h>
18#include <linux/mtd/mtd.h>
19#include <linux/mtd/onenand.h>
20#include <linux/mtd/partitions.h>
21
22#include <asm/io.h>
23
24/**
25 * onenand_oob_64 - oob info for large (2KB) page
26 */
27static struct nand_ecclayout onenand_oob_64 = {
28	.eccbytes	= 20,
29	.eccpos		= {
30		8, 9, 10, 11, 12,
31		24, 25, 26, 27, 28,
32		40, 41, 42, 43, 44,
33		56, 57, 58, 59, 60,
34		},
35	.oobfree	= {
36		{2, 3}, {14, 2}, {18, 3}, {30, 2},
37		{34, 3}, {46, 2}, {50, 3}, {62, 2}
38	}
39};
40
41/**
42 * onenand_oob_32 - oob info for middle (1KB) page
43 */
44static struct nand_ecclayout onenand_oob_32 = {
45	.eccbytes	= 10,
46	.eccpos		= {
47		8, 9, 10, 11, 12,
48		24, 25, 26, 27, 28,
49		},
50	.oobfree	= { {2, 3}, {14, 2}, {18, 3}, {30, 2} }
51};
52
53static const unsigned char ffchars[] = {
54	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
55	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 16 */
56	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
57	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 32 */
58	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
59	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 48 */
60	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
61	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 64 */
62};
63
64/**
65 * onenand_readw - [OneNAND Interface] Read OneNAND register
66 * @param addr		address to read
67 *
68 * Read OneNAND register
69 */
70static unsigned short onenand_readw(void __iomem *addr)
71{
72	return readw(addr);
73}
74
75/**
76 * onenand_writew - [OneNAND Interface] Write OneNAND register with value
77 * @param value		value to write
78 * @param addr		address to write
79 *
80 * Write OneNAND register with value
81 */
82static void onenand_writew(unsigned short value, void __iomem *addr)
83{
84	writew(value, addr);
85}
86
87/**
88 * onenand_block_address - [DEFAULT] Get block address
89 * @param this		onenand chip data structure
90 * @param block		the block
91 * @return		translated block address if DDP, otherwise same
92 *
93 * Setup Start Address 1 Register (F100h)
94 */
95static int onenand_block_address(struct onenand_chip *this, int block)
96{
97	if (this->device_id & ONENAND_DEVICE_IS_DDP) {
98		/* Device Flash Core select, NAND Flash Block Address */
99		int dfs = 0;
100
101		if (block & this->density_mask)
102			dfs = 1;
103
104		return (dfs << ONENAND_DDP_SHIFT) |
105			(block & (this->density_mask - 1));
106	}
107
108	return block;
109}
110
111/**
112 * onenand_bufferram_address - [DEFAULT] Get bufferram address
113 * @param this		onenand chip data structure
114 * @param block		the block
115 * @return		set DBS value if DDP, otherwise 0
116 *
117 * Setup Start Address 2 Register (F101h) for DDP
118 */
119static int onenand_bufferram_address(struct onenand_chip *this, int block)
120{
121	if (this->device_id & ONENAND_DEVICE_IS_DDP) {
122		/* Device BufferRAM Select */
123		int dbs = 0;
124
125		if (block & this->density_mask)
126			dbs = 1;
127
128		return (dbs << ONENAND_DDP_SHIFT);
129	}
130
131	return 0;
132}
133
134/**
135 * onenand_page_address - [DEFAULT] Get page address
136 * @param page		the page address
137 * @param sector	the sector address
138 * @return		combined page and sector address
139 *
140 * Setup Start Address 8 Register (F107h)
141 */
142static int onenand_page_address(int page, int sector)
143{
144	/* Flash Page Address, Flash Sector Address */
145	int fpa, fsa;
146
147	fpa = page & ONENAND_FPA_MASK;
148	fsa = sector & ONENAND_FSA_MASK;
149
150	return ((fpa << ONENAND_FPA_SHIFT) | fsa);
151}
152
153/**
154 * onenand_buffer_address - [DEFAULT] Get buffer address
155 * @param dataram1	DataRAM index
156 * @param sectors	the sector address
157 * @param count		the number of sectors
158 * @return		the start buffer value
159 *
160 * Setup Start Buffer Register (F200h)
161 */
162static int onenand_buffer_address(int dataram1, int sectors, int count)
163{
164	int bsa, bsc;
165
166	/* BufferRAM Sector Address */
167	bsa = sectors & ONENAND_BSA_MASK;
168
169	if (dataram1)
170		bsa |= ONENAND_BSA_DATARAM1;	/* DataRAM1 */
171	else
172		bsa |= ONENAND_BSA_DATARAM0;	/* DataRAM0 */
173
174	/* BufferRAM Sector Count */
175	bsc = count & ONENAND_BSC_MASK;
176
177	return ((bsa << ONENAND_BSA_SHIFT) | bsc);
178}
179
180/**
181 * onenand_command - [DEFAULT] Send command to OneNAND device
182 * @param mtd		MTD device structure
183 * @param cmd		the command to be sent
184 * @param addr		offset to read from or write to
185 * @param len		number of bytes to read or write
186 *
187 * Send command to OneNAND device. This function is used for middle/large page
188 * devices (1KB/2KB Bytes per page)
189 */
190static int onenand_command(struct mtd_info *mtd, int cmd, loff_t addr, size_t len)
191{
192	struct onenand_chip *this = mtd->priv;
193	int value, readcmd = 0, block_cmd = 0;
194	int block, page;
195
196	/* Address translation */
197	switch (cmd) {
198	case ONENAND_CMD_UNLOCK:
199	case ONENAND_CMD_LOCK:
200	case ONENAND_CMD_LOCK_TIGHT:
201	case ONENAND_CMD_UNLOCK_ALL:
202		block = -1;
203		page = -1;
204		break;
205
206	case ONENAND_CMD_ERASE:
207	case ONENAND_CMD_BUFFERRAM:
208	case ONENAND_CMD_OTP_ACCESS:
209		block_cmd = 1;
210		block = (int) (addr >> this->erase_shift);
211		page = -1;
212		break;
213
214	default:
215		block = (int) (addr >> this->erase_shift);
216		page = (int) (addr >> this->page_shift);
217		page &= this->page_mask;
218		break;
219	}
220
221	/* NOTE: The setting order of the registers is very important! */
222	if (cmd == ONENAND_CMD_BUFFERRAM) {
223		/* Select DataRAM for DDP */
224		value = onenand_bufferram_address(this, block);
225		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
226
227		/* Switch to the next data buffer */
228		ONENAND_SET_NEXT_BUFFERRAM(this);
229
230		return 0;
231	}
232
233	if (block != -1) {
234		/* Write 'DFS, FBA' of Flash */
235		value = onenand_block_address(this, block);
236		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
237
238		if (block_cmd) {
239			/* Select DataRAM for DDP */
240			value = onenand_bufferram_address(this, block);
241			this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
242		}
243	}
244
245	if (page != -1) {
246		/* Now we use page size operation */
247		int sectors = 4, count = 4;
248		int dataram;
249
250		switch (cmd) {
251		case ONENAND_CMD_READ:
252		case ONENAND_CMD_READOOB:
253			dataram = ONENAND_SET_NEXT_BUFFERRAM(this);
254			readcmd = 1;
255			break;
256
257		default:
258			dataram = ONENAND_CURRENT_BUFFERRAM(this);
259			break;
260		}
261
262		/* Write 'FPA, FSA' of Flash */
263		value = onenand_page_address(page, sectors);
264		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS8);
265
266		/* Write 'BSA, BSC' of DataRAM */
267		value = onenand_buffer_address(dataram, sectors, count);
268		this->write_word(value, this->base + ONENAND_REG_START_BUFFER);
269
270		if (readcmd) {
271			/* Select DataRAM for DDP */
272			value = onenand_bufferram_address(this, block);
273			this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
274		}
275	}
276
277	/* Interrupt clear */
278	this->write_word(ONENAND_INT_CLEAR, this->base + ONENAND_REG_INTERRUPT);
279
280	/* Write command */
281	this->write_word(cmd, this->base + ONENAND_REG_COMMAND);
282
283	return 0;
284}
285
286/**
287 * onenand_wait - [DEFAULT] wait until the command is done
288 * @param mtd		MTD device structure
289 * @param state		state to select the max. timeout value
290 *
291 * Wait for command done. This applies to all OneNAND command
292 * Read can take up to 30us, erase up to 2ms and program up to 350us
293 * according to general OneNAND specs
294 */
295static int onenand_wait(struct mtd_info *mtd, int state)
296{
297	struct onenand_chip * this = mtd->priv;
298	unsigned long timeout;
299	unsigned int flags = ONENAND_INT_MASTER;
300	unsigned int interrupt = 0;
301	unsigned int ctrl;
302
303	/* The 20 msec is enough */
304	timeout = jiffies + msecs_to_jiffies(20);
305	while (time_before(jiffies, timeout)) {
306		interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
307
308		if (interrupt & flags)
309			break;
310
311		if (state != FL_READING)
312			cond_resched();
313	}
314	/* To get correct interrupt status in timeout case */
315	interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
316
317	ctrl = this->read_word(this->base + ONENAND_REG_CTRL_STATUS);
318
319	if (ctrl & ONENAND_CTRL_ERROR) {
320		DEBUG(MTD_DEBUG_LEVEL0, "onenand_wait: controller error = 0x%04x\n", ctrl);
321		if (ctrl & ONENAND_CTRL_LOCK)
322			DEBUG(MTD_DEBUG_LEVEL0, "onenand_wait: it's locked error.\n");
323		return ctrl;
324	}
325
326	if (interrupt & ONENAND_INT_READ) {
327		int ecc = this->read_word(this->base + ONENAND_REG_ECC_STATUS);
328		if (ecc) {
329			DEBUG(MTD_DEBUG_LEVEL0, "onenand_wait: ECC error = 0x%04x\n", ecc);
330			if (ecc & ONENAND_ECC_2BIT_ALL) {
331				mtd->ecc_stats.failed++;
332				return ecc;
333			} else if (ecc & ONENAND_ECC_1BIT_ALL)
334				mtd->ecc_stats.corrected++;
335		}
336	} else if (state == FL_READING) {
337		printk(KERN_ERR "onenand_wait: read timeout! ctrl=0x%04x intr=0x%04x\n", ctrl, interrupt);
338		return -EIO;
339	}
340
341	return 0;
342}
343
344/*
345 * onenand_interrupt - [DEFAULT] onenand interrupt handler
346 * @param irq		onenand interrupt number
347 * @param dev_id	interrupt data
348 *
349 * complete the work
350 */
351static irqreturn_t onenand_interrupt(int irq, void *data)
352{
353	struct onenand_chip *this = (struct onenand_chip *) data;
354
355	/* To handle shared interrupt */
356	if (!this->complete.done)
357		complete(&this->complete);
358
359	return IRQ_HANDLED;
360}
361
362/*
363 * onenand_interrupt_wait - [DEFAULT] wait until the command is done
364 * @param mtd		MTD device structure
365 * @param state		state to select the max. timeout value
366 *
367 * Wait for command done.
368 */
369static int onenand_interrupt_wait(struct mtd_info *mtd, int state)
370{
371	struct onenand_chip *this = mtd->priv;
372
373	wait_for_completion(&this->complete);
374
375	return onenand_wait(mtd, state);
376}
377
378/*
379 * onenand_try_interrupt_wait - [DEFAULT] try interrupt wait
380 * @param mtd		MTD device structure
381 * @param state		state to select the max. timeout value
382 *
383 * Try interrupt based wait (It is used one-time)
384 */
385static int onenand_try_interrupt_wait(struct mtd_info *mtd, int state)
386{
387	struct onenand_chip *this = mtd->priv;
388	unsigned long remain, timeout;
389
390	/* We use interrupt wait first */
391	this->wait = onenand_interrupt_wait;
392
393	timeout = msecs_to_jiffies(100);
394	remain = wait_for_completion_timeout(&this->complete, timeout);
395	if (!remain) {
396		printk(KERN_INFO "OneNAND: There's no interrupt. "
397				"We use the normal wait\n");
398
399		/* Release the irq */
400		free_irq(this->irq, this);
401
402		this->wait = onenand_wait;
403	}
404
405	return onenand_wait(mtd, state);
406}
407
408/*
409 * onenand_setup_wait - [OneNAND Interface] setup onenand wait method
410 * @param mtd		MTD device structure
411 *
412 * There's two method to wait onenand work
413 * 1. polling - read interrupt status register
414 * 2. interrupt - use the kernel interrupt method
415 */
416static void onenand_setup_wait(struct mtd_info *mtd)
417{
418	struct onenand_chip *this = mtd->priv;
419	int syscfg;
420
421	init_completion(&this->complete);
422
423	if (this->irq <= 0) {
424		this->wait = onenand_wait;
425		return;
426	}
427
428	if (request_irq(this->irq, &onenand_interrupt,
429				IRQF_SHARED, "onenand", this)) {
430		/* If we can't get irq, use the normal wait */
431		this->wait = onenand_wait;
432		return;
433	}
434
435	/* Enable interrupt */
436	syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
437	syscfg |= ONENAND_SYS_CFG1_IOBE;
438	this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);
439
440	this->wait = onenand_try_interrupt_wait;
441}
442
443/**
444 * onenand_bufferram_offset - [DEFAULT] BufferRAM offset
445 * @param mtd		MTD data structure
446 * @param area		BufferRAM area
447 * @return		offset given area
448 *
449 * Return BufferRAM offset given area
450 */
451static inline int onenand_bufferram_offset(struct mtd_info *mtd, int area)
452{
453	struct onenand_chip *this = mtd->priv;
454
455	if (ONENAND_CURRENT_BUFFERRAM(this)) {
456		if (area == ONENAND_DATARAM)
457			return mtd->writesize;
458		if (area == ONENAND_SPARERAM)
459			return mtd->oobsize;
460	}
461
462	return 0;
463}
464
465/**
466 * onenand_read_bufferram - [OneNAND Interface] Read the bufferram area
467 * @param mtd		MTD data structure
468 * @param area		BufferRAM area
469 * @param buffer	the databuffer to put/get data
470 * @param offset	offset to read from or write to
471 * @param count		number of bytes to read/write
472 *
473 * Read the BufferRAM area
474 */
475static int onenand_read_bufferram(struct mtd_info *mtd, int area,
476		unsigned char *buffer, int offset, size_t count)
477{
478	struct onenand_chip *this = mtd->priv;
479	void __iomem *bufferram;
480
481	bufferram = this->base + area;
482
483	bufferram += onenand_bufferram_offset(mtd, area);
484
485	if (ONENAND_CHECK_BYTE_ACCESS(count)) {
486		unsigned short word;
487
488		/* Align with word(16-bit) size */
489		count--;
490
491		/* Read word and save byte */
492		word = this->read_word(bufferram + offset + count);
493		buffer[count] = (word & 0xff);
494	}
495
496	memcpy(buffer, bufferram + offset, count);
497
498	return 0;
499}
500
501/**
502 * onenand_sync_read_bufferram - [OneNAND Interface] Read the bufferram area with Sync. Burst mode
503 * @param mtd		MTD data structure
504 * @param area		BufferRAM area
505 * @param buffer	the databuffer to put/get data
506 * @param offset	offset to read from or write to
507 * @param count		number of bytes to read/write
508 *
509 * Read the BufferRAM area with Sync. Burst Mode
510 */
511static int onenand_sync_read_bufferram(struct mtd_info *mtd, int area,
512		unsigned char *buffer, int offset, size_t count)
513{
514	struct onenand_chip *this = mtd->priv;
515	void __iomem *bufferram;
516
517	bufferram = this->base + area;
518
519	bufferram += onenand_bufferram_offset(mtd, area);
520
521	this->mmcontrol(mtd, ONENAND_SYS_CFG1_SYNC_READ);
522
523	if (ONENAND_CHECK_BYTE_ACCESS(count)) {
524		unsigned short word;
525
526		/* Align with word(16-bit) size */
527		count--;
528
529		/* Read word and save byte */
530		word = this->read_word(bufferram + offset + count);
531		buffer[count] = (word & 0xff);
532	}
533
534	memcpy(buffer, bufferram + offset, count);
535
536	this->mmcontrol(mtd, 0);
537
538	return 0;
539}
540
541/**
542 * onenand_write_bufferram - [OneNAND Interface] Write the bufferram area
543 * @param mtd		MTD data structure
544 * @param area		BufferRAM area
545 * @param buffer	the databuffer to put/get data
546 * @param offset	offset to read from or write to
547 * @param count		number of bytes to read/write
548 *
549 * Write the BufferRAM area
550 */
551static int onenand_write_bufferram(struct mtd_info *mtd, int area,
552		const unsigned char *buffer, int offset, size_t count)
553{
554	struct onenand_chip *this = mtd->priv;
555	void __iomem *bufferram;
556
557	bufferram = this->base + area;
558
559	bufferram += onenand_bufferram_offset(mtd, area);
560
561	if (ONENAND_CHECK_BYTE_ACCESS(count)) {
562		unsigned short word;
563		int byte_offset;
564
565		/* Align with word(16-bit) size */
566		count--;
567
568		/* Calculate byte access offset */
569		byte_offset = offset + count;
570
571		/* Read word and save byte */
572		word = this->read_word(bufferram + byte_offset);
573		word = (word & ~0xff) | buffer[count];
574		this->write_word(word, bufferram + byte_offset);
575	}
576
577	memcpy(bufferram + offset, buffer, count);
578
579	return 0;
580}
581
582/**
583 * onenand_check_bufferram - [GENERIC] Check BufferRAM information
584 * @param mtd		MTD data structure
585 * @param addr		address to check
586 * @return		1 if there are valid data, otherwise 0
587 *
588 * Check bufferram if there is data we required
589 */
590static int onenand_check_bufferram(struct mtd_info *mtd, loff_t addr)
591{
592	struct onenand_chip *this = mtd->priv;
593	int block, page;
594	int i;
595
596	block = (int) (addr >> this->erase_shift);
597	page = (int) (addr >> this->page_shift);
598	page &= this->page_mask;
599
600	i = ONENAND_CURRENT_BUFFERRAM(this);
601
602	/* Is there valid data? */
603	if (this->bufferram[i].block == block &&
604	    this->bufferram[i].page == page &&
605	    this->bufferram[i].valid)
606		return 1;
607
608	return 0;
609}
610
611/**
612 * onenand_update_bufferram - [GENERIC] Update BufferRAM information
613 * @param mtd		MTD data structure
614 * @param addr		address to update
615 * @param valid		valid flag
616 *
617 * Update BufferRAM information
618 */
619static int onenand_update_bufferram(struct mtd_info *mtd, loff_t addr,
620		int valid)
621{
622	struct onenand_chip *this = mtd->priv;
623	int block, page;
624	int i;
625
626	block = (int) (addr >> this->erase_shift);
627	page = (int) (addr >> this->page_shift);
628	page &= this->page_mask;
629
630	/* Invalidate BufferRAM */
631	for (i = 0; i < MAX_BUFFERRAM; i++) {
632		if (this->bufferram[i].block == block &&
633		    this->bufferram[i].page == page)
634			this->bufferram[i].valid = 0;
635	}
636
637	/* Update BufferRAM */
638	i = ONENAND_CURRENT_BUFFERRAM(this);
639	this->bufferram[i].block = block;
640	this->bufferram[i].page = page;
641	this->bufferram[i].valid = valid;
642
643	return 0;
644}
645
646/**
647 * onenand_get_device - [GENERIC] Get chip for selected access
648 * @param mtd		MTD device structure
649 * @param new_state	the state which is requested
650 *
651 * Get the device and lock it for exclusive access
652 */
653static int onenand_get_device(struct mtd_info *mtd, int new_state)
654{
655	struct onenand_chip *this = mtd->priv;
656	DECLARE_WAITQUEUE(wait, current);
657
658	/*
659	 * Grab the lock and see if the device is available
660	 */
661	while (1) {
662		spin_lock(&this->chip_lock);
663		if (this->state == FL_READY) {
664			this->state = new_state;
665			spin_unlock(&this->chip_lock);
666			break;
667		}
668		if (new_state == FL_PM_SUSPENDED) {
669			spin_unlock(&this->chip_lock);
670			return (this->state == FL_PM_SUSPENDED) ? 0 : -EAGAIN;
671		}
672		set_current_state(TASK_UNINTERRUPTIBLE);
673		add_wait_queue(&this->wq, &wait);
674		spin_unlock(&this->chip_lock);
675		schedule();
676		remove_wait_queue(&this->wq, &wait);
677	}
678
679	return 0;
680}
681
682/**
683 * onenand_release_device - [GENERIC] release chip
684 * @param mtd		MTD device structure
685 *
686 * Deselect, release chip lock and wake up anyone waiting on the device
687 */
688static void onenand_release_device(struct mtd_info *mtd)
689{
690	struct onenand_chip *this = mtd->priv;
691
692	/* Release the chip */
693	spin_lock(&this->chip_lock);
694	this->state = FL_READY;
695	wake_up(&this->wq);
696	spin_unlock(&this->chip_lock);
697}
698
699/**
700 * onenand_read - [MTD Interface] Read data from flash
701 * @param mtd		MTD device structure
702 * @param from		offset to read from
703 * @param len		number of bytes to read
704 * @param retlen	pointer to variable to store the number of read bytes
705 * @param buf		the databuffer to put data
706 *
707 * Read with ecc
708*/
709static int onenand_read(struct mtd_info *mtd, loff_t from, size_t len,
710	size_t *retlen, u_char *buf)
711{
712	struct onenand_chip *this = mtd->priv;
713	struct mtd_ecc_stats stats;
714	int read = 0, column;
715	int thislen;
716	int ret = 0, boundary = 0;
717
718	DEBUG(MTD_DEBUG_LEVEL3, "onenand_read: from = 0x%08x, len = %i\n", (unsigned int) from, (int) len);
719
720	/* Do not allow reads past end of device */
721	if ((from + len) > mtd->size) {
722		DEBUG(MTD_DEBUG_LEVEL0, "onenand_read: Attempt read beyond end of device\n");
723		*retlen = 0;
724		return -EINVAL;
725	}
726
727	/* Grab the lock and see if the device is available */
728	onenand_get_device(mtd, FL_READING);
729
730	/* TODO handling oob */
731
732	stats = mtd->ecc_stats;
733
734 	/* Read-while-load method */
735
736 	/* Do first load to bufferRAM */
737 	if (read < len) {
738 		if (!onenand_check_bufferram(mtd, from)) {
739 			this->command(mtd, ONENAND_CMD_READ, from, mtd->writesize);
740 			ret = this->wait(mtd, FL_READING);
741 			onenand_update_bufferram(mtd, from, !ret);
742 		}
743 	}
744
745 	thislen = min_t(int, mtd->writesize, len - read);
746 	column = from & (mtd->writesize - 1);
747 	if (column + thislen > mtd->writesize)
748 		thislen = mtd->writesize - column;
749
750 	while (!ret) {
751 		/* If there is more to load then start next load */
752 		from += thislen;
753 		if (read + thislen < len) {
754 			this->command(mtd, ONENAND_CMD_READ, from, mtd->writesize);
755 			/*
756 			 * Chip boundary handling in DDP
757 			 * Now we issued chip 1 read and pointed chip 1
758 			 * bufferam so we have to point chip 0 bufferam.
759 			 */
760 			if (this->device_id & ONENAND_DEVICE_IS_DDP &&
761 					unlikely(from == (this->chipsize >> 1))) {
762 				this->write_word(0, this->base + ONENAND_REG_START_ADDRESS2);
763 				boundary = 1;
764 			} else
765 				boundary = 0;
766 			ONENAND_SET_PREV_BUFFERRAM(this);
767 		}
768 		/* While load is going, read from last bufferRAM */
769 		this->read_bufferram(mtd, ONENAND_DATARAM, buf, column, thislen);
770 		/* See if we are done */
771 		read += thislen;
772 		if (read == len)
773 			break;
774 		/* Set up for next read from bufferRAM */
775 		if (unlikely(boundary))
776 			this->write_word(0x8000, this->base + ONENAND_REG_START_ADDRESS2);
777 		ONENAND_SET_NEXT_BUFFERRAM(this);
778 		buf += thislen;
779 		thislen = min_t(int, mtd->writesize, len - read);
780 		column = 0;
781 		cond_resched();
782 		/* Now wait for load */
783 		ret = this->wait(mtd, FL_READING);
784 		onenand_update_bufferram(mtd, from, !ret);
785 	}
786
787	/* Deselect and wake up anyone waiting on the device */
788	onenand_release_device(mtd);
789
790	/*
791	 * Return success, if no ECC failures, else -EBADMSG
792	 * fs driver will take care of that, because
793	 * retlen == desired len and result == -EBADMSG
794	 */
795	*retlen = read;
796
797	if (mtd->ecc_stats.failed - stats.failed)
798		return -EBADMSG;
799
800	if (ret)
801		return ret;
802
803	return mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0;
804}
805
806/**
807 * onenand_do_read_oob - [MTD Interface] OneNAND read out-of-band
808 * @param mtd		MTD device structure
809 * @param from		offset to read from
810 * @param len		number of bytes to read
811 * @param retlen	pointer to variable to store the number of read bytes
812 * @param buf		the databuffer to put data
813 *
814 * OneNAND read out-of-band data from the spare area
815 */
816int onenand_do_read_oob(struct mtd_info *mtd, loff_t from, size_t len,
817			size_t *retlen, u_char *buf)
818{
819	struct onenand_chip *this = mtd->priv;
820	int read = 0, thislen, column;
821	int ret = 0;
822
823	DEBUG(MTD_DEBUG_LEVEL3, "onenand_read_oob: from = 0x%08x, len = %i\n", (unsigned int) from, (int) len);
824
825	/* Initialize return length value */
826	*retlen = 0;
827
828	/* Do not allow reads past end of device */
829	if (unlikely((from + len) > mtd->size)) {
830		DEBUG(MTD_DEBUG_LEVEL0, "onenand_read_oob: Attempt read beyond end of device\n");
831		return -EINVAL;
832	}
833
834	/* Grab the lock and see if the device is available */
835	onenand_get_device(mtd, FL_READING);
836
837	column = from & (mtd->oobsize - 1);
838
839	while (read < len) {
840		cond_resched();
841
842		thislen = mtd->oobsize - column;
843		thislen = min_t(int, thislen, len);
844
845		this->command(mtd, ONENAND_CMD_READOOB, from, mtd->oobsize);
846
847		onenand_update_bufferram(mtd, from, 0);
848
849		ret = this->wait(mtd, FL_READING);
850		/* First copy data and check return value for ECC handling */
851
852		this->read_bufferram(mtd, ONENAND_SPARERAM, buf, column, thislen);
853
854		if (ret) {
855			DEBUG(MTD_DEBUG_LEVEL0, "onenand_read_oob: read failed = 0x%x\n", ret);
856			goto out;
857		}
858
859		read += thislen;
860
861		if (read == len)
862			break;
863
864		buf += thislen;
865
866		/* Read more? */
867		if (read < len) {
868			/* Page size */
869			from += mtd->writesize;
870			column = 0;
871		}
872	}
873
874out:
875	/* Deselect and wake up anyone waiting on the device */
876	onenand_release_device(mtd);
877
878	*retlen = read;
879	return ret;
880}
881
882/**
883 * onenand_read_oob - [MTD Interface] NAND write data and/or out-of-band
884 * @mtd:	MTD device structure
885 * @from:	offset to read from
886 * @ops:	oob operation description structure
887 */
888static int onenand_read_oob(struct mtd_info *mtd, loff_t from,
889			    struct mtd_oob_ops *ops)
890{
891	BUG_ON(ops->mode != MTD_OOB_PLACE);
892
893	return onenand_do_read_oob(mtd, from + ops->ooboffs, ops->ooblen,
894				   &ops->oobretlen, ops->oobbuf);
895}
896
897#ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE
898/**
899 * onenand_verify_oob - [GENERIC] verify the oob contents after a write
900 * @param mtd		MTD device structure
901 * @param buf		the databuffer to verify
902 * @param to		offset to read from
903 * @param len		number of bytes to read and compare
904 *
905 */
906static int onenand_verify_oob(struct mtd_info *mtd, const u_char *buf, loff_t to, int len)
907{
908	struct onenand_chip *this = mtd->priv;
909	char *readp = this->page_buf;
910	int column = to & (mtd->oobsize - 1);
911	int status, i;
912
913	this->command(mtd, ONENAND_CMD_READOOB, to, mtd->oobsize);
914	onenand_update_bufferram(mtd, to, 0);
915	status = this->wait(mtd, FL_READING);
916	if (status)
917		return status;
918
919	this->read_bufferram(mtd, ONENAND_SPARERAM, readp, column, len);
920
921	for(i = 0; i < len; i++)
922		if (buf[i] != 0xFF && buf[i] != readp[i])
923			return -EBADMSG;
924
925	return 0;
926}
927
928/**
929 * onenand_verify_page - [GENERIC] verify the chip contents after a write
930 * @param mtd		MTD device structure
931 * @param buf		the databuffer to verify
932 *
933 * Check DataRAM area directly
934 */
935static int onenand_verify_page(struct mtd_info *mtd, u_char *buf, loff_t addr)
936{
937	struct onenand_chip *this = mtd->priv;
938	void __iomem *dataram0, *dataram1;
939	int ret = 0;
940
941	/* In partial page write, just skip it */
942	if ((addr & (mtd->writesize - 1)) != 0)
943		return 0;
944
945	this->command(mtd, ONENAND_CMD_READ, addr, mtd->writesize);
946
947	ret = this->wait(mtd, FL_READING);
948	if (ret)
949		return ret;
950
951	onenand_update_bufferram(mtd, addr, 1);
952
953	/* Check, if the two dataram areas are same */
954	dataram0 = this->base + ONENAND_DATARAM;
955	dataram1 = dataram0 + mtd->writesize;
956
957	if (memcmp(dataram0, dataram1, mtd->writesize))
958		return -EBADMSG;
959
960	return 0;
961}
962#else
963#define onenand_verify_page(...)	(0)
964#define onenand_verify_oob(...)		(0)
965#endif
966
967#define NOTALIGNED(x)	((x & (this->subpagesize - 1)) != 0)
968
969/**
970 * onenand_write - [MTD Interface] write buffer to FLASH
971 * @param mtd		MTD device structure
972 * @param to		offset to write to
973 * @param len		number of bytes to write
974 * @param retlen	pointer to variable to store the number of written bytes
975 * @param buf		the data to write
976 *
977 * Write with ECC
978 */
979static int onenand_write(struct mtd_info *mtd, loff_t to, size_t len,
980	size_t *retlen, const u_char *buf)
981{
982	struct onenand_chip *this = mtd->priv;
983	int written = 0;
984	int ret = 0;
985	int column, subpage;
986
987	DEBUG(MTD_DEBUG_LEVEL3, "onenand_write: to = 0x%08x, len = %i\n", (unsigned int) to, (int) len);
988
989	/* Initialize retlen, in case of early exit */
990	*retlen = 0;
991
992	/* Do not allow writes past end of device */
993	if (unlikely((to + len) > mtd->size)) {
994		DEBUG(MTD_DEBUG_LEVEL0, "onenand_write: Attempt write to past end of device\n");
995		return -EINVAL;
996	}
997
998	/* Reject writes, which are not page aligned */
999        if (unlikely(NOTALIGNED(to)) || unlikely(NOTALIGNED(len))) {
1000                DEBUG(MTD_DEBUG_LEVEL0, "onenand_write: Attempt to write not page aligned data\n");
1001                return -EINVAL;
1002        }
1003
1004	column = to & (mtd->writesize - 1);
1005	subpage = column || (len & (mtd->writesize - 1));
1006
1007	/* Grab the lock and see if the device is available */
1008	onenand_get_device(mtd, FL_WRITING);
1009
1010	/* Loop until all data write */
1011	while (written < len) {
1012		int bytes = mtd->writesize;
1013		int thislen = min_t(int, bytes, len - written);
1014		u_char *wbuf = (u_char *) buf;
1015
1016		cond_resched();
1017
1018		this->command(mtd, ONENAND_CMD_BUFFERRAM, to, bytes);
1019
1020		/* Partial page write */
1021		if (subpage) {
1022			bytes = min_t(int, bytes - column, (int) len);
1023			memset(this->page_buf, 0xff, mtd->writesize);
1024			memcpy(this->page_buf + column, buf, bytes);
1025			wbuf = this->page_buf;
1026			/* Even though partial write, we need page size */
1027			thislen = mtd->writesize;
1028		}
1029
1030		this->write_bufferram(mtd, ONENAND_DATARAM, wbuf, 0, thislen);
1031		this->write_bufferram(mtd, ONENAND_SPARERAM, ffchars, 0, mtd->oobsize);
1032
1033		this->command(mtd, ONENAND_CMD_PROG, to, mtd->writesize);
1034
1035		/* In partial page write we don't update bufferram */
1036		onenand_update_bufferram(mtd, to, !subpage);
1037
1038		ret = this->wait(mtd, FL_WRITING);
1039		if (ret) {
1040			DEBUG(MTD_DEBUG_LEVEL0, "onenand_write: write filaed %d\n", ret);
1041			break;
1042		}
1043
1044		/* Only check verify write turn on */
1045		ret = onenand_verify_page(mtd, (u_char *) wbuf, to);
1046		if (ret) {
1047			DEBUG(MTD_DEBUG_LEVEL0, "onenand_write: verify failed %d\n", ret);
1048			break;
1049		}
1050
1051		written += thislen;
1052
1053		if (written == len)
1054			break;
1055
1056		column = 0;
1057		to += thislen;
1058		buf += thislen;
1059	}
1060
1061	/* Deselect and wake up anyone waiting on the device */
1062	onenand_release_device(mtd);
1063
1064	*retlen = written;
1065
1066	return ret;
1067}
1068
1069/**
1070 * onenand_do_write_oob - [Internal] OneNAND write out-of-band
1071 * @param mtd		MTD device structure
1072 * @param to		offset to write to
1073 * @param len		number of bytes to write
1074 * @param retlen	pointer to variable to store the number of written bytes
1075 * @param buf		the data to write
1076 *
1077 * OneNAND write out-of-band
1078 */
1079static int onenand_do_write_oob(struct mtd_info *mtd, loff_t to, size_t len,
1080				size_t *retlen, const u_char *buf)
1081{
1082	struct onenand_chip *this = mtd->priv;
1083	int column, ret = 0;
1084	int written = 0;
1085
1086	DEBUG(MTD_DEBUG_LEVEL3, "onenand_write_oob: to = 0x%08x, len = %i\n", (unsigned int) to, (int) len);
1087
1088	/* Initialize retlen, in case of early exit */
1089	*retlen = 0;
1090
1091	/* Do not allow writes past end of device */
1092	if (unlikely((to + len) > mtd->size)) {
1093		DEBUG(MTD_DEBUG_LEVEL0, "onenand_write_oob: Attempt write to past end of device\n");
1094		return -EINVAL;
1095	}
1096
1097	/* Grab the lock and see if the device is available */
1098	onenand_get_device(mtd, FL_WRITING);
1099
1100	/* Loop until all data write */
1101	while (written < len) {
1102		int thislen = min_t(int, mtd->oobsize, len - written);
1103
1104		cond_resched();
1105
1106		column = to & (mtd->oobsize - 1);
1107
1108		this->command(mtd, ONENAND_CMD_BUFFERRAM, to, mtd->oobsize);
1109
1110		/* We send data to spare ram with oobsize
1111		 * to prevent byte access */
1112		memset(this->page_buf, 0xff, mtd->oobsize);
1113		memcpy(this->page_buf + column, buf, thislen);
1114		this->write_bufferram(mtd, ONENAND_SPARERAM, this->page_buf, 0, mtd->oobsize);
1115
1116		this->command(mtd, ONENAND_CMD_PROGOOB, to, mtd->oobsize);
1117
1118		onenand_update_bufferram(mtd, to, 0);
1119
1120		ret = this->wait(mtd, FL_WRITING);
1121		if (ret) {
1122			DEBUG(MTD_DEBUG_LEVEL0, "onenand_write_oob: write filaed %d\n", ret);
1123			goto out;
1124		}
1125
1126		ret = onenand_verify_oob(mtd, buf, to, thislen);
1127		if (ret) {
1128			DEBUG(MTD_DEBUG_LEVEL0, "onenand_write_oob: verify failed %d\n", ret);
1129			goto out;
1130		}
1131
1132		written += thislen;
1133
1134		if (written == len)
1135			break;
1136
1137		to += thislen;
1138		buf += thislen;
1139	}
1140
1141out:
1142	/* Deselect and wake up anyone waiting on the device */
1143	onenand_release_device(mtd);
1144
1145	*retlen = written;
1146
1147	return ret;
1148}
1149
1150/**
1151 * onenand_write_oob - [MTD Interface] NAND write data and/or out-of-band
1152 * @mtd:	MTD device structure
1153 * @from:	offset to read from
1154 * @ops:	oob operation description structure
1155 */
1156static int onenand_write_oob(struct mtd_info *mtd, loff_t to,
1157			     struct mtd_oob_ops *ops)
1158{
1159	BUG_ON(ops->mode != MTD_OOB_PLACE);
1160
1161	return onenand_do_write_oob(mtd, to + ops->ooboffs, ops->ooblen,
1162				    &ops->oobretlen, ops->oobbuf);
1163}
1164
1165/**
1166 * onenand_block_checkbad - [GENERIC] Check if a block is marked bad
1167 * @param mtd		MTD device structure
1168 * @param ofs		offset from device start
1169 * @param getchip	0, if the chip is already selected
1170 * @param allowbbt	1, if its allowed to access the bbt area
1171 *
1172 * Check, if the block is bad. Either by reading the bad block table or
1173 * calling of the scan function.
1174 */
1175static int onenand_block_checkbad(struct mtd_info *mtd, loff_t ofs, int getchip, int allowbbt)
1176{
1177	struct onenand_chip *this = mtd->priv;
1178	struct bbm_info *bbm = this->bbm;
1179
1180	/* Return info from the table */
1181	return bbm->isbad_bbt(mtd, ofs, allowbbt);
1182}
1183
1184/**
1185 * onenand_erase - [MTD Interface] erase block(s)
1186 * @param mtd		MTD device structure
1187 * @param instr		erase instruction
1188 *
1189 * Erase one ore more blocks
1190 */
1191static int onenand_erase(struct mtd_info *mtd, struct erase_info *instr)
1192{
1193	struct onenand_chip *this = mtd->priv;
1194	unsigned int block_size;
1195	loff_t addr;
1196	int len;
1197	int ret = 0;
1198
1199	DEBUG(MTD_DEBUG_LEVEL3, "onenand_erase: start = 0x%08x, len = %i\n", (unsigned int) instr->addr, (unsigned int) instr->len);
1200
1201	block_size = (1 << this->erase_shift);
1202
1203	/* Start address must align on block boundary */
1204	if (unlikely(instr->addr & (block_size - 1))) {
1205		DEBUG(MTD_DEBUG_LEVEL0, "onenand_erase: Unaligned address\n");
1206		return -EINVAL;
1207	}
1208
1209	/* Length must align on block boundary */
1210	if (unlikely(instr->len & (block_size - 1))) {
1211		DEBUG(MTD_DEBUG_LEVEL0, "onenand_erase: Length not block aligned\n");
1212		return -EINVAL;
1213	}
1214
1215	/* Do not allow erase past end of device */
1216	if (unlikely((instr->len + instr->addr) > mtd->size)) {
1217		DEBUG(MTD_DEBUG_LEVEL0, "onenand_erase: Erase past end of device\n");
1218		return -EINVAL;
1219	}
1220
1221	instr->fail_addr = 0xffffffff;
1222
1223	/* Grab the lock and see if the device is available */
1224	onenand_get_device(mtd, FL_ERASING);
1225
1226	/* Loop throught the pages */
1227	len = instr->len;
1228	addr = instr->addr;
1229
1230	instr->state = MTD_ERASING;
1231
1232	while (len) {
1233		cond_resched();
1234
1235		/* Check if we have a bad block, we do not erase bad blocks */
1236		if (onenand_block_checkbad(mtd, addr, 0, 0)) {
1237			printk (KERN_WARNING "onenand_erase: attempt to erase a bad block at addr 0x%08x\n", (unsigned int) addr);
1238			instr->state = MTD_ERASE_FAILED;
1239			goto erase_exit;
1240		}
1241
1242		this->command(mtd, ONENAND_CMD_ERASE, addr, block_size);
1243
1244		ret = this->wait(mtd, FL_ERASING);
1245		/* Check, if it is write protected */
1246		if (ret) {
1247			DEBUG(MTD_DEBUG_LEVEL0, "onenand_erase: Failed erase, block %d\n", (unsigned) (addr >> this->erase_shift));
1248			instr->state = MTD_ERASE_FAILED;
1249			instr->fail_addr = addr;
1250			goto erase_exit;
1251		}
1252
1253		len -= block_size;
1254		addr += block_size;
1255	}
1256
1257	instr->state = MTD_ERASE_DONE;
1258
1259erase_exit:
1260
1261	ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO;
1262	/* Do call back function */
1263	if (!ret)
1264		mtd_erase_callback(instr);
1265
1266	/* Deselect and wake up anyone waiting on the device */
1267	onenand_release_device(mtd);
1268
1269	return ret;
1270}
1271
1272/**
1273 * onenand_sync - [MTD Interface] sync
1274 * @param mtd		MTD device structure
1275 *
1276 * Sync is actually a wait for chip ready function
1277 */
1278static void onenand_sync(struct mtd_info *mtd)
1279{
1280	DEBUG(MTD_DEBUG_LEVEL3, "onenand_sync: called\n");
1281
1282	/* Grab the lock and see if the device is available */
1283	onenand_get_device(mtd, FL_SYNCING);
1284
1285	/* Release it and go back */
1286	onenand_release_device(mtd);
1287}
1288
1289/**
1290 * onenand_block_isbad - [MTD Interface] Check whether the block at the given offset is bad
1291 * @param mtd		MTD device structure
1292 * @param ofs		offset relative to mtd start
1293 *
1294 * Check whether the block is bad
1295 */
1296static int onenand_block_isbad(struct mtd_info *mtd, loff_t ofs)
1297{
1298	/* Check for invalid offset */
1299	if (ofs > mtd->size)
1300		return -EINVAL;
1301
1302	return onenand_block_checkbad(mtd, ofs, 1, 0);
1303}
1304
1305/**
1306 * onenand_default_block_markbad - [DEFAULT] mark a block bad
1307 * @param mtd		MTD device structure
1308 * @param ofs		offset from device start
1309 *
1310 * This is the default implementation, which can be overridden by
1311 * a hardware specific driver.
1312 */
1313static int onenand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
1314{
1315	struct onenand_chip *this = mtd->priv;
1316	struct bbm_info *bbm = this->bbm;
1317	u_char buf[2] = {0, 0};
1318	size_t retlen;
1319	int block;
1320
1321	/* Get block number */
1322	block = ((int) ofs) >> bbm->bbt_erase_shift;
1323        if (bbm->bbt)
1324                bbm->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1);
1325
1326        /* We write two bytes, so we dont have to mess with 16 bit access */
1327        ofs += mtd->oobsize + (bbm->badblockpos & ~0x01);
1328        return onenand_do_write_oob(mtd, ofs , 2, &retlen, buf);
1329}
1330
1331/**
1332 * onenand_block_markbad - [MTD Interface] Mark the block at the given offset as bad
1333 * @param mtd		MTD device structure
1334 * @param ofs		offset relative to mtd start
1335 *
1336 * Mark the block as bad
1337 */
1338static int onenand_block_markbad(struct mtd_info *mtd, loff_t ofs)
1339{
1340	struct onenand_chip *this = mtd->priv;
1341	int ret;
1342
1343	ret = onenand_block_isbad(mtd, ofs);
1344	if (ret) {
1345		/* If it was bad already, return success and do nothing */
1346		if (ret > 0)
1347			return 0;
1348		return ret;
1349	}
1350
1351	return this->block_markbad(mtd, ofs);
1352}
1353
1354/**
1355 * onenand_do_lock_cmd - [OneNAND Interface] Lock or unlock block(s)
1356 * @param mtd		MTD device structure
1357 * @param ofs		offset relative to mtd start
1358 * @param len		number of bytes to lock or unlock
1359 *
1360 * Lock or unlock one or more blocks
1361 */
1362static int onenand_do_lock_cmd(struct mtd_info *mtd, loff_t ofs, size_t len, int cmd)
1363{
1364	struct onenand_chip *this = mtd->priv;
1365	int start, end, block, value, status;
1366	int wp_status_mask;
1367
1368	start = ofs >> this->erase_shift;
1369	end = len >> this->erase_shift;
1370
1371	if (cmd == ONENAND_CMD_LOCK)
1372		wp_status_mask = ONENAND_WP_LS;
1373	else
1374		wp_status_mask = ONENAND_WP_US;
1375
1376	/* Continuous lock scheme */
1377	if (this->options & ONENAND_HAS_CONT_LOCK) {
1378		/* Set start block address */
1379		this->write_word(start, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
1380		/* Set end block address */
1381		this->write_word(start + end - 1, this->base + ONENAND_REG_END_BLOCK_ADDRESS);
1382		/* Write lock command */
1383		this->command(mtd, cmd, 0, 0);
1384
1385		/* There's no return value */
1386		this->wait(mtd, FL_LOCKING);
1387
1388		/* Sanity check */
1389		while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
1390		    & ONENAND_CTRL_ONGO)
1391			continue;
1392
1393		/* Check lock status */
1394		status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
1395		if (!(status & wp_status_mask))
1396			printk(KERN_ERR "wp status = 0x%x\n", status);
1397
1398		return 0;
1399	}
1400
1401	/* Block lock scheme */
1402	for (block = start; block < start + end; block++) {
1403		/* Set block address */
1404		value = onenand_block_address(this, block);
1405		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
1406		/* Select DataRAM for DDP */
1407		value = onenand_bufferram_address(this, block);
1408		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
1409		/* Set start block address */
1410		this->write_word(block, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
1411		/* Write lock command */
1412		this->command(mtd, cmd, 0, 0);
1413
1414		/* There's no return value */
1415		this->wait(mtd, FL_LOCKING);
1416
1417		/* Sanity check */
1418		while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
1419		    & ONENAND_CTRL_ONGO)
1420			continue;
1421
1422		/* Check lock status */
1423		status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
1424		if (!(status & wp_status_mask))
1425			printk(KERN_ERR "block = %d, wp status = 0x%x\n", block, status);
1426	}
1427
1428	return 0;
1429}
1430
1431/**
1432 * onenand_lock - [MTD Interface] Lock block(s)
1433 * @param mtd		MTD device structure
1434 * @param ofs		offset relative to mtd start
1435 * @param len		number of bytes to unlock
1436 *
1437 * Lock one or more blocks
1438 */
1439static int onenand_lock(struct mtd_info *mtd, loff_t ofs, size_t len)
1440{
1441	return onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_LOCK);
1442}
1443
1444/**
1445 * onenand_unlock - [MTD Interface] Unlock block(s)
1446 * @param mtd		MTD device structure
1447 * @param ofs		offset relative to mtd start
1448 * @param len		number of bytes to unlock
1449 *
1450 * Unlock one or more blocks
1451 */
1452static int onenand_unlock(struct mtd_info *mtd, loff_t ofs, size_t len)
1453{
1454	return onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_UNLOCK);
1455}
1456
1457/**
1458 * onenand_check_lock_status - [OneNAND Interface] Check lock status
1459 * @param this		onenand chip data structure
1460 *
1461 * Check lock status
1462 */
1463static void onenand_check_lock_status(struct onenand_chip *this)
1464{
1465	unsigned int value, block, status;
1466	unsigned int end;
1467
1468	end = this->chipsize >> this->erase_shift;
1469	for (block = 0; block < end; block++) {
1470		/* Set block address */
1471		value = onenand_block_address(this, block);
1472		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
1473		/* Select DataRAM for DDP */
1474		value = onenand_bufferram_address(this, block);
1475		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
1476		/* Set start block address */
1477		this->write_word(block, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
1478
1479		/* Check lock status */
1480		status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
1481		if (!(status & ONENAND_WP_US))
1482			printk(KERN_ERR "block = %d, wp status = 0x%x\n", block, status);
1483	}
1484}
1485
1486/**
1487 * onenand_unlock_all - [OneNAND Interface] unlock all blocks
1488 * @param mtd		MTD device structure
1489 *
1490 * Unlock all blocks
1491 */
1492static int onenand_unlock_all(struct mtd_info *mtd)
1493{
1494	struct onenand_chip *this = mtd->priv;
1495
1496	if (this->options & ONENAND_HAS_UNLOCK_ALL) {
1497		/* Set start block address */
1498		this->write_word(0, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
1499		/* Write unlock command */
1500		this->command(mtd, ONENAND_CMD_UNLOCK_ALL, 0, 0);
1501
1502		/* There's no return value */
1503		this->wait(mtd, FL_LOCKING);
1504
1505		/* Sanity check */
1506		while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
1507		    & ONENAND_CTRL_ONGO)
1508			continue;
1509
1510		/* Workaround for all block unlock in DDP */
1511		if (this->device_id & ONENAND_DEVICE_IS_DDP) {
1512			/* 1st block on another chip */
1513			loff_t ofs = this->chipsize >> 1;
1514			size_t len = mtd->erasesize;
1515
1516			onenand_unlock(mtd, ofs, len);
1517		}
1518
1519		onenand_check_lock_status(this);
1520
1521		return 0;
1522	}
1523
1524	onenand_unlock(mtd, 0x0, this->chipsize);
1525
1526	return 0;
1527}
1528
1529#ifdef CONFIG_MTD_ONENAND_OTP
1530
1531/* Interal OTP operation */
1532typedef int (*otp_op_t)(struct mtd_info *mtd, loff_t form, size_t len,
1533		size_t *retlen, u_char *buf);
1534
1535/**
1536 * do_otp_read - [DEFAULT] Read OTP block area
1537 * @param mtd		MTD device structure
1538 * @param from		The offset to read
1539 * @param len		number of bytes to read
1540 * @param retlen	pointer to variable to store the number of readbytes
1541 * @param buf		the databuffer to put/get data
1542 *
1543 * Read OTP block area.
1544 */
1545static int do_otp_read(struct mtd_info *mtd, loff_t from, size_t len,
1546		size_t *retlen, u_char *buf)
1547{
1548	struct onenand_chip *this = mtd->priv;
1549	int ret;
1550
1551	/* Enter OTP access mode */
1552	this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
1553	this->wait(mtd, FL_OTPING);
1554
1555	ret = mtd->read(mtd, from, len, retlen, buf);
1556
1557	/* Exit OTP access mode */
1558	this->command(mtd, ONENAND_CMD_RESET, 0, 0);
1559	this->wait(mtd, FL_RESETING);
1560
1561	return ret;
1562}
1563
1564/**
1565 * do_otp_write - [DEFAULT] Write OTP block area
1566 * @param mtd		MTD device structure
1567 * @param from		The offset to write
1568 * @param len		number of bytes to write
1569 * @param retlen	pointer to variable to store the number of write bytes
1570 * @param buf		the databuffer to put/get data
1571 *
1572 * Write OTP block area.
1573 */
1574static int do_otp_write(struct mtd_info *mtd, loff_t from, size_t len,
1575		size_t *retlen, u_char *buf)
1576{
1577	struct onenand_chip *this = mtd->priv;
1578	unsigned char *pbuf = buf;
1579	int ret;
1580
1581	/* Force buffer page aligned */
1582	if (len < mtd->writesize) {
1583		memcpy(this->page_buf, buf, len);
1584		memset(this->page_buf + len, 0xff, mtd->writesize - len);
1585		pbuf = this->page_buf;
1586		len = mtd->writesize;
1587	}
1588
1589	/* Enter OTP access mode */
1590	this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
1591	this->wait(mtd, FL_OTPING);
1592
1593	ret = mtd->write(mtd, from, len, retlen, pbuf);
1594
1595	/* Exit OTP access mode */
1596	this->command(mtd, ONENAND_CMD_RESET, 0, 0);
1597	this->wait(mtd, FL_RESETING);
1598
1599	return ret;
1600}
1601
1602/**
1603 * do_otp_lock - [DEFAULT] Lock OTP block area
1604 * @param mtd		MTD device structure
1605 * @param from		The offset to lock
1606 * @param len		number of bytes to lock
1607 * @param retlen	pointer to variable to store the number of lock bytes
1608 * @param buf		the databuffer to put/get data
1609 *
1610 * Lock OTP block area.
1611 */
1612static int do_otp_lock(struct mtd_info *mtd, loff_t from, size_t len,
1613		size_t *retlen, u_char *buf)
1614{
1615	struct onenand_chip *this = mtd->priv;
1616	int ret;
1617
1618	/* Enter OTP access mode */
1619	this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
1620	this->wait(mtd, FL_OTPING);
1621
1622	ret = onenand_do_write_oob(mtd, from, len, retlen, buf);
1623
1624	/* Exit OTP access mode */
1625	this->command(mtd, ONENAND_CMD_RESET, 0, 0);
1626	this->wait(mtd, FL_RESETING);
1627
1628	return ret;
1629}
1630
1631/**
1632 * onenand_otp_walk - [DEFAULT] Handle OTP operation
1633 * @param mtd		MTD device structure
1634 * @param from		The offset to read/write
1635 * @param len		number of bytes to read/write
1636 * @param retlen	pointer to variable to store the number of read bytes
1637 * @param buf		the databuffer to put/get data
1638 * @param action	do given action
1639 * @param mode		specify user and factory
1640 *
1641 * Handle OTP operation.
1642 */
1643static int onenand_otp_walk(struct mtd_info *mtd, loff_t from, size_t len,
1644			size_t *retlen, u_char *buf,
1645			otp_op_t action, int mode)
1646{
1647	struct onenand_chip *this = mtd->priv;
1648	int otp_pages;
1649	int density;
1650	int ret = 0;
1651
1652	*retlen = 0;
1653
1654	density = this->device_id >> ONENAND_DEVICE_DENSITY_SHIFT;
1655	if (density < ONENAND_DEVICE_DENSITY_512Mb)
1656		otp_pages = 20;
1657	else
1658		otp_pages = 10;
1659
1660	if (mode == MTD_OTP_FACTORY) {
1661		from += mtd->writesize * otp_pages;
1662		otp_pages = 64 - otp_pages;
1663	}
1664
1665	/* Check User/Factory boundary */
1666	if (((mtd->writesize * otp_pages) - (from + len)) < 0)
1667		return 0;
1668
1669	while (len > 0 && otp_pages > 0) {
1670		if (!action) {	/* OTP Info functions */
1671			struct otp_info *otpinfo;
1672
1673			len -= sizeof(struct otp_info);
1674			if (len <= 0)
1675				return -ENOSPC;
1676
1677			otpinfo = (struct otp_info *) buf;
1678			otpinfo->start = from;
1679			otpinfo->length = mtd->writesize;
1680			otpinfo->locked = 0;
1681
1682			from += mtd->writesize;
1683			buf += sizeof(struct otp_info);
1684			*retlen += sizeof(struct otp_info);
1685		} else {
1686			size_t tmp_retlen;
1687			int size = len;
1688
1689			ret = action(mtd, from, len, &tmp_retlen, buf);
1690
1691			buf += size;
1692			len -= size;
1693			*retlen += size;
1694
1695			if (ret < 0)
1696				return ret;
1697		}
1698		otp_pages--;
1699	}
1700
1701	return 0;
1702}
1703
1704/**
1705 * onenand_get_fact_prot_info - [MTD Interface] Read factory OTP info
1706 * @param mtd		MTD device structure
1707 * @param buf		the databuffer to put/get data
1708 * @param len		number of bytes to read
1709 *
1710 * Read factory OTP info.
1711 */
1712static int onenand_get_fact_prot_info(struct mtd_info *mtd,
1713			struct otp_info *buf, size_t len)
1714{
1715	size_t retlen;
1716	int ret;
1717
1718	ret = onenand_otp_walk(mtd, 0, len, &retlen, (u_char *) buf, NULL, MTD_OTP_FACTORY);
1719
1720	return ret ? : retlen;
1721}
1722
1723/**
1724 * onenand_read_fact_prot_reg - [MTD Interface] Read factory OTP area
1725 * @param mtd		MTD device structure
1726 * @param from		The offset to read
1727 * @param len		number of bytes to read
1728 * @param retlen	pointer to variable to store the number of read bytes
1729 * @param buf		the databuffer to put/get data
1730 *
1731 * Read factory OTP area.
1732 */
1733static int onenand_read_fact_prot_reg(struct mtd_info *mtd, loff_t from,
1734			size_t len, size_t *retlen, u_char *buf)
1735{
1736	return onenand_otp_walk(mtd, from, len, retlen, buf, do_otp_read, MTD_OTP_FACTORY);
1737}
1738
1739/**
1740 * onenand_get_user_prot_info - [MTD Interface] Read user OTP info
1741 * @param mtd		MTD device structure
1742 * @param buf		the databuffer to put/get data
1743 * @param len		number of bytes to read
1744 *
1745 * Read user OTP info.
1746 */
1747static int onenand_get_user_prot_info(struct mtd_info *mtd,
1748			struct otp_info *buf, size_t len)
1749{
1750	size_t retlen;
1751	int ret;
1752
1753	ret = onenand_otp_walk(mtd, 0, len, &retlen, (u_char *) buf, NULL, MTD_OTP_USER);
1754
1755	return ret ? : retlen;
1756}
1757
1758/**
1759 * onenand_read_user_prot_reg - [MTD Interface] Read user OTP area
1760 * @param mtd		MTD device structure
1761 * @param from		The offset to read
1762 * @param len		number of bytes to read
1763 * @param retlen	pointer to variable to store the number of read bytes
1764 * @param buf		the databuffer to put/get data
1765 *
1766 * Read user OTP area.
1767 */
1768static int onenand_read_user_prot_reg(struct mtd_info *mtd, loff_t from,
1769			size_t len, size_t *retlen, u_char *buf)
1770{
1771	return onenand_otp_walk(mtd, from, len, retlen, buf, do_otp_read, MTD_OTP_USER);
1772}
1773
1774/**
1775 * onenand_write_user_prot_reg - [MTD Interface] Write user OTP area
1776 * @param mtd		MTD device structure
1777 * @param from		The offset to write
1778 * @param len		number of bytes to write
1779 * @param retlen	pointer to variable to store the number of write bytes
1780 * @param buf		the databuffer to put/get data
1781 *
1782 * Write user OTP area.
1783 */
1784static int onenand_write_user_prot_reg(struct mtd_info *mtd, loff_t from,
1785			size_t len, size_t *retlen, u_char *buf)
1786{
1787	return onenand_otp_walk(mtd, from, len, retlen, buf, do_otp_write, MTD_OTP_USER);
1788}
1789
1790/**
1791 * onenand_lock_user_prot_reg - [MTD Interface] Lock user OTP area
1792 * @param mtd		MTD device structure
1793 * @param from		The offset to lock
1794 * @param len		number of bytes to unlock
1795 *
1796 * Write lock mark on spare area in page 0 in OTP block
1797 */
1798static int onenand_lock_user_prot_reg(struct mtd_info *mtd, loff_t from,
1799			size_t len)
1800{
1801	unsigned char oob_buf[64];
1802	size_t retlen;
1803	int ret;
1804
1805	memset(oob_buf, 0xff, mtd->oobsize);
1806	/*
1807	 * Note: OTP lock operation
1808	 *       OTP block : 0xXXFC
1809	 *       1st block : 0xXXF3 (If chip support)
1810	 *       Both      : 0xXXF0 (If chip support)
1811	 */
1812	oob_buf[ONENAND_OTP_LOCK_OFFSET] = 0xFC;
1813
1814	/*
1815	 * Write lock mark to 8th word of sector0 of page0 of the spare0.
1816	 * We write 16 bytes spare area instead of 2 bytes.
1817	 */
1818	from = 0;
1819	len = 16;
1820
1821	ret = onenand_otp_walk(mtd, from, len, &retlen, oob_buf, do_otp_lock, MTD_OTP_USER);
1822
1823	return ret ? : retlen;
1824}
1825#endif	/* CONFIG_MTD_ONENAND_OTP */
1826
1827/**
1828 * onenand_lock_scheme - Check and set OneNAND lock scheme
1829 * @param mtd		MTD data structure
1830 *
1831 * Check and set OneNAND lock scheme
1832 */
1833static void onenand_lock_scheme(struct mtd_info *mtd)
1834{
1835	struct onenand_chip *this = mtd->priv;
1836	unsigned int density, process;
1837
1838	/* Lock scheme depends on density and process */
1839	density = this->device_id >> ONENAND_DEVICE_DENSITY_SHIFT;
1840	process = this->version_id >> ONENAND_VERSION_PROCESS_SHIFT;
1841
1842	/* Lock scheme */
1843	if (density >= ONENAND_DEVICE_DENSITY_1Gb) {
1844		/* A-Die has all block unlock */
1845		if (process) {
1846			printk(KERN_DEBUG "Chip support all block unlock\n");
1847			this->options |= ONENAND_HAS_UNLOCK_ALL;
1848		}
1849	} else {
1850		/* Some OneNAND has continues lock scheme */
1851		if (!process) {
1852			printk(KERN_DEBUG "Lock scheme is Continues Lock\n");
1853			this->options |= ONENAND_HAS_CONT_LOCK;
1854		}
1855	}
1856}
1857
1858/**
1859 * onenand_print_device_info - Print device ID
1860 * @param device        device ID
1861 *
1862 * Print device ID
1863 */
1864static void onenand_print_device_info(int device, int version)
1865{
1866        int vcc, demuxed, ddp, density;
1867
1868        vcc = device & ONENAND_DEVICE_VCC_MASK;
1869        demuxed = device & ONENAND_DEVICE_IS_DEMUX;
1870        ddp = device & ONENAND_DEVICE_IS_DDP;
1871        density = device >> ONENAND_DEVICE_DENSITY_SHIFT;
1872        printk(KERN_INFO "%sOneNAND%s %dMB %sV 16-bit (0x%02x)\n",
1873                demuxed ? "" : "Muxed ",
1874                ddp ? "(DDP)" : "",
1875                (16 << density),
1876                vcc ? "2.65/3.3" : "1.8",
1877                device);
1878	printk(KERN_DEBUG "OneNAND version = 0x%04x\n", version);
1879}
1880
1881static const struct onenand_manufacturers onenand_manuf_ids[] = {
1882        {ONENAND_MFR_SAMSUNG, "Samsung"},
1883};
1884
1885/**
1886 * onenand_check_maf - Check manufacturer ID
1887 * @param manuf         manufacturer ID
1888 *
1889 * Check manufacturer ID
1890 */
1891static int onenand_check_maf(int manuf)
1892{
1893	int size = ARRAY_SIZE(onenand_manuf_ids);
1894	char *name;
1895        int i;
1896
1897	for (i = 0; i < size; i++)
1898                if (manuf == onenand_manuf_ids[i].id)
1899                        break;
1900
1901	if (i < size)
1902		name = onenand_manuf_ids[i].name;
1903	else
1904		name = "Unknown";
1905
1906	printk(KERN_DEBUG "OneNAND Manufacturer: %s (0x%0x)\n", name, manuf);
1907
1908	return (i == size);
1909}
1910
1911/**
1912 * onenand_probe - [OneNAND Interface] Probe the OneNAND device
1913 * @param mtd		MTD device structure
1914 *
1915 * OneNAND detection method:
1916 *   Compare the the values from command with ones from register
1917 */
1918static int onenand_probe(struct mtd_info *mtd)
1919{
1920	struct onenand_chip *this = mtd->priv;
1921	int bram_maf_id, bram_dev_id, maf_id, dev_id, ver_id;
1922	int density;
1923	int syscfg;
1924
1925	/* Save system configuration 1 */
1926	syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
1927	/* Clear Sync. Burst Read mode to read BootRAM */
1928	this->write_word((syscfg & ~ONENAND_SYS_CFG1_SYNC_READ), this->base + ONENAND_REG_SYS_CFG1);
1929
1930	/* Send the command for reading device ID from BootRAM */
1931	this->write_word(ONENAND_CMD_READID, this->base + ONENAND_BOOTRAM);
1932
1933	/* Read manufacturer and device IDs from BootRAM */
1934	bram_maf_id = this->read_word(this->base + ONENAND_BOOTRAM + 0x0);
1935	bram_dev_id = this->read_word(this->base + ONENAND_BOOTRAM + 0x2);
1936
1937	/* Reset OneNAND to read default register values */
1938	this->write_word(ONENAND_CMD_RESET, this->base + ONENAND_BOOTRAM);
1939	/* Wait reset */
1940	this->wait(mtd, FL_RESETING);
1941
1942	/* Restore system configuration 1 */
1943	this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);
1944
1945	/* Check manufacturer ID */
1946	if (onenand_check_maf(bram_maf_id))
1947		return -ENXIO;
1948
1949	/* Read manufacturer and device IDs from Register */
1950	maf_id = this->read_word(this->base + ONENAND_REG_MANUFACTURER_ID);
1951	dev_id = this->read_word(this->base + ONENAND_REG_DEVICE_ID);
1952	ver_id = this->read_word(this->base + ONENAND_REG_VERSION_ID);
1953
1954	/* Check OneNAND device */
1955	if (maf_id != bram_maf_id || dev_id != bram_dev_id)
1956		return -ENXIO;
1957
1958	/* Flash device information */
1959	onenand_print_device_info(dev_id, ver_id);
1960	this->device_id = dev_id;
1961	this->version_id = ver_id;
1962
1963	density = dev_id >> ONENAND_DEVICE_DENSITY_SHIFT;
1964	this->chipsize = (16 << density) << 20;
1965	/* Set density mask. it is used for DDP */
1966	this->density_mask = (1 << (density + 6));
1967
1968	/* OneNAND page size & block size */
1969	/* The data buffer size is equal to page size */
1970	mtd->writesize = this->read_word(this->base + ONENAND_REG_DATA_BUFFER_SIZE);
1971	mtd->oobsize = mtd->writesize >> 5;
1972	/* Pagers per block is always 64 in OneNAND */
1973	mtd->erasesize = mtd->writesize << 6;
1974
1975	this->erase_shift = ffs(mtd->erasesize) - 1;
1976	this->page_shift = ffs(mtd->writesize) - 1;
1977	this->ppb_shift = (this->erase_shift - this->page_shift);
1978	this->page_mask = (mtd->erasesize / mtd->writesize) - 1;
1979
1980	/* REVIST: Multichip handling */
1981
1982	mtd->size = this->chipsize;
1983
1984	/* Check OneNAND lock scheme */
1985	onenand_lock_scheme(mtd);
1986
1987	return 0;
1988}
1989
1990/**
1991 * onenand_suspend - [MTD Interface] Suspend the OneNAND flash
1992 * @param mtd		MTD device structure
1993 */
1994static int onenand_suspend(struct mtd_info *mtd)
1995{
1996	return onenand_get_device(mtd, FL_PM_SUSPENDED);
1997}
1998
1999/**
2000 * onenand_resume - [MTD Interface] Resume the OneNAND flash
2001 * @param mtd		MTD device structure
2002 */
2003static void onenand_resume(struct mtd_info *mtd)
2004{
2005	struct onenand_chip *this = mtd->priv;
2006
2007	if (this->state == FL_PM_SUSPENDED)
2008		onenand_release_device(mtd);
2009	else
2010		printk(KERN_ERR "resume() called for the chip which is not"
2011				"in suspended state\n");
2012}
2013
2014/**
2015 * onenand_scan - [OneNAND Interface] Scan for the OneNAND device
2016 * @param mtd		MTD device structure
2017 * @param maxchips	Number of chips to scan for
2018 *
2019 * This fills out all the not initialized function pointers
2020 * with the defaults.
2021 * The flash ID is read and the mtd/chip structures are
2022 * filled with the appropriate values.
2023 */
2024int onenand_scan(struct mtd_info *mtd, int maxchips)
2025{
2026	struct onenand_chip *this = mtd->priv;
2027
2028	if (!this->read_word)
2029		this->read_word = onenand_readw;
2030	if (!this->write_word)
2031		this->write_word = onenand_writew;
2032
2033	if (!this->command)
2034		this->command = onenand_command;
2035	if (!this->wait)
2036		onenand_setup_wait(mtd);
2037
2038	if (!this->read_bufferram)
2039		this->read_bufferram = onenand_read_bufferram;
2040	if (!this->write_bufferram)
2041		this->write_bufferram = onenand_write_bufferram;
2042
2043	if (!this->block_markbad)
2044		this->block_markbad = onenand_default_block_markbad;
2045	if (!this->scan_bbt)
2046		this->scan_bbt = onenand_default_bbt;
2047
2048	if (onenand_probe(mtd))
2049		return -ENXIO;
2050
2051	/* Set Sync. Burst Read after probing */
2052	if (this->mmcontrol) {
2053		printk(KERN_INFO "OneNAND Sync. Burst Read support\n");
2054		this->read_bufferram = onenand_sync_read_bufferram;
2055	}
2056
2057	/* Allocate buffers, if necessary */
2058	if (!this->page_buf) {
2059		size_t len;
2060		len = mtd->writesize + mtd->oobsize;
2061		this->page_buf = kmalloc(len, GFP_KERNEL);
2062		if (!this->page_buf) {
2063			printk(KERN_ERR "onenand_scan(): Can't allocate page_buf\n");
2064			return -ENOMEM;
2065		}
2066		this->options |= ONENAND_PAGEBUF_ALLOC;
2067	}
2068
2069	this->state = FL_READY;
2070	init_waitqueue_head(&this->wq);
2071	spin_lock_init(&this->chip_lock);
2072
2073	/*
2074	 * Allow subpage writes up to oobsize.
2075	 */
2076	switch (mtd->oobsize) {
2077	case 64:
2078		this->ecclayout = &onenand_oob_64;
2079		mtd->subpage_sft = 2;
2080		break;
2081
2082	case 32:
2083		this->ecclayout = &onenand_oob_32;
2084		mtd->subpage_sft = 1;
2085		break;
2086
2087	default:
2088		printk(KERN_WARNING "No OOB scheme defined for oobsize %d\n",
2089			mtd->oobsize);
2090		mtd->subpage_sft = 0;
2091		/* To prevent kernel oops */
2092		this->ecclayout = &onenand_oob_32;
2093		break;
2094	}
2095
2096	this->subpagesize = mtd->writesize >> mtd->subpage_sft;
2097	mtd->ecclayout = this->ecclayout;
2098
2099	/* Fill in remaining MTD driver data */
2100	mtd->type = MTD_NANDFLASH;
2101	mtd->flags = MTD_CAP_NANDFLASH;
2102	mtd->ecctype = MTD_ECC_SW;
2103	mtd->erase = onenand_erase;
2104	mtd->point = NULL;
2105	mtd->unpoint = NULL;
2106	mtd->read = onenand_read;
2107	mtd->write = onenand_write;
2108	mtd->read_oob = onenand_read_oob;
2109	mtd->write_oob = onenand_write_oob;
2110#ifdef CONFIG_MTD_ONENAND_OTP
2111	mtd->get_fact_prot_info = onenand_get_fact_prot_info;
2112	mtd->read_fact_prot_reg = onenand_read_fact_prot_reg;
2113	mtd->get_user_prot_info = onenand_get_user_prot_info;
2114	mtd->read_user_prot_reg = onenand_read_user_prot_reg;
2115	mtd->write_user_prot_reg = onenand_write_user_prot_reg;
2116	mtd->lock_user_prot_reg = onenand_lock_user_prot_reg;
2117#endif
2118	mtd->sync = onenand_sync;
2119	mtd->lock = onenand_lock;
2120	mtd->unlock = onenand_unlock;
2121	mtd->suspend = onenand_suspend;
2122	mtd->resume = onenand_resume;
2123	mtd->block_isbad = onenand_block_isbad;
2124	mtd->block_markbad = onenand_block_markbad;
2125	mtd->owner = THIS_MODULE;
2126
2127	/* Unlock whole block */
2128	onenand_unlock_all(mtd);
2129
2130	return this->scan_bbt(mtd);
2131}
2132
2133/**
2134 * onenand_release - [OneNAND Interface] Free resources held by the OneNAND device
2135 * @param mtd		MTD device structure
2136 */
2137void onenand_release(struct mtd_info *mtd)
2138{
2139	struct onenand_chip *this = mtd->priv;
2140
2141#ifdef CONFIG_MTD_PARTITIONS
2142	/* Deregister partitions */
2143	del_mtd_partitions (mtd);
2144#endif
2145	/* Deregister the device */
2146	del_mtd_device (mtd);
2147
2148	/* Free bad block table memory, if allocated */
2149	if (this->bbm)
2150		kfree(this->bbm);
2151	/* Buffer allocated by onenand_scan */
2152	if (this->options & ONENAND_PAGEBUF_ALLOC)
2153		kfree(this->page_buf);
2154}
2155
2156EXPORT_SYMBOL_GPL(onenand_scan);
2157EXPORT_SYMBOL_GPL(onenand_release);
2158
2159MODULE_LICENSE("GPL");
2160MODULE_AUTHOR("Kyungmin Park <kyungmin.park@samsung.com>");
2161MODULE_DESCRIPTION("Generic OneNAND flash driver code");
2162