bond_alb.c revision 966bc6f434df4a02108d01dda8cd52951fe853da
1/*
2 * Copyright(c) 1999 - 2004 Intel Corporation. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms of the GNU General Public License as published by the
6 * Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful, but
10 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
11 * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * for more details.
13 *
14 * You should have received a copy of the GNU General Public License along
15 * with this program; if not, write to the Free Software Foundation, Inc.,
16 * 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
17 *
18 * The full GNU General Public License is included in this distribution in the
19 * file called LICENSE.
20 *
21 */
22
23//#define BONDING_DEBUG 1
24
25#include <linux/skbuff.h>
26#include <linux/netdevice.h>
27#include <linux/etherdevice.h>
28#include <linux/pkt_sched.h>
29#include <linux/spinlock.h>
30#include <linux/slab.h>
31#include <linux/timer.h>
32#include <linux/ip.h>
33#include <linux/ipv6.h>
34#include <linux/if_arp.h>
35#include <linux/if_ether.h>
36#include <linux/if_bonding.h>
37#include <linux/if_vlan.h>
38#include <linux/in.h>
39#include <net/ipx.h>
40#include <net/arp.h>
41#include <asm/byteorder.h>
42#include "bonding.h"
43#include "bond_alb.h"
44
45
46#define ALB_TIMER_TICKS_PER_SEC	    10	/* should be a divisor of HZ */
47#define BOND_TLB_REBALANCE_INTERVAL 10	/* In seconds, periodic re-balancing.
48					 * Used for division - never set
49					 * to zero !!!
50					 */
51#define BOND_ALB_LP_INTERVAL	    1	/* In seconds, periodic send of
52					 * learning packets to the switch
53					 */
54
55#define BOND_TLB_REBALANCE_TICKS (BOND_TLB_REBALANCE_INTERVAL \
56				  * ALB_TIMER_TICKS_PER_SEC)
57
58#define BOND_ALB_LP_TICKS (BOND_ALB_LP_INTERVAL \
59			   * ALB_TIMER_TICKS_PER_SEC)
60
61#define TLB_HASH_TABLE_SIZE 256	/* The size of the clients hash table.
62				 * Note that this value MUST NOT be smaller
63				 * because the key hash table is BYTE wide !
64				 */
65
66
67#define TLB_NULL_INDEX		0xffffffff
68#define MAX_LP_BURST		3
69
70/* rlb defs */
71#define RLB_HASH_TABLE_SIZE	256
72#define RLB_NULL_INDEX		0xffffffff
73#define RLB_UPDATE_DELAY	2*ALB_TIMER_TICKS_PER_SEC /* 2 seconds */
74#define RLB_ARP_BURST_SIZE	2
75#define RLB_UPDATE_RETRY	3	/* 3-ticks - must be smaller than the rlb
76					 * rebalance interval (5 min).
77					 */
78/* RLB_PROMISC_TIMEOUT = 10 sec equals the time that the current slave is
79 * promiscuous after failover
80 */
81#define RLB_PROMISC_TIMEOUT	10*ALB_TIMER_TICKS_PER_SEC
82
83static const u8 mac_bcast[ETH_ALEN] = {0xff,0xff,0xff,0xff,0xff,0xff};
84static const int alb_delta_in_ticks = HZ / ALB_TIMER_TICKS_PER_SEC;
85
86#pragma pack(1)
87struct learning_pkt {
88	u8 mac_dst[ETH_ALEN];
89	u8 mac_src[ETH_ALEN];
90	__be16 type;
91	u8 padding[ETH_ZLEN - ETH_HLEN];
92};
93
94struct arp_pkt {
95	__be16  hw_addr_space;
96	__be16  prot_addr_space;
97	u8      hw_addr_len;
98	u8      prot_addr_len;
99	__be16  op_code;
100	u8      mac_src[ETH_ALEN];	/* sender hardware address */
101	__be32  ip_src;			/* sender IP address */
102	u8      mac_dst[ETH_ALEN];	/* target hardware address */
103	__be32  ip_dst;			/* target IP address */
104};
105#pragma pack()
106
107static inline struct arp_pkt *arp_pkt(const struct sk_buff *skb)
108{
109	return (struct arp_pkt *)skb_network_header(skb);
110}
111
112/* Forward declaration */
113static void alb_send_learning_packets(struct slave *slave, u8 mac_addr[]);
114
115static inline u8 _simple_hash(const u8 *hash_start, int hash_size)
116{
117	int i;
118	u8 hash = 0;
119
120	for (i = 0; i < hash_size; i++) {
121		hash ^= hash_start[i];
122	}
123
124	return hash;
125}
126
127/*********************** tlb specific functions ***************************/
128
129static inline void _lock_tx_hashtbl(struct bonding *bond)
130{
131	spin_lock_bh(&(BOND_ALB_INFO(bond).tx_hashtbl_lock));
132}
133
134static inline void _unlock_tx_hashtbl(struct bonding *bond)
135{
136	spin_unlock_bh(&(BOND_ALB_INFO(bond).tx_hashtbl_lock));
137}
138
139/* Caller must hold tx_hashtbl lock */
140static inline void tlb_init_table_entry(struct tlb_client_info *entry, int save_load)
141{
142	if (save_load) {
143		entry->load_history = 1 + entry->tx_bytes /
144				      BOND_TLB_REBALANCE_INTERVAL;
145		entry->tx_bytes = 0;
146	}
147
148	entry->tx_slave = NULL;
149	entry->next = TLB_NULL_INDEX;
150	entry->prev = TLB_NULL_INDEX;
151}
152
153static inline void tlb_init_slave(struct slave *slave)
154{
155	SLAVE_TLB_INFO(slave).load = 0;
156	SLAVE_TLB_INFO(slave).head = TLB_NULL_INDEX;
157}
158
159/* Caller must hold bond lock for read */
160static void tlb_clear_slave(struct bonding *bond, struct slave *slave, int save_load)
161{
162	struct tlb_client_info *tx_hash_table;
163	u32 index;
164
165	_lock_tx_hashtbl(bond);
166
167	/* clear slave from tx_hashtbl */
168	tx_hash_table = BOND_ALB_INFO(bond).tx_hashtbl;
169
170	index = SLAVE_TLB_INFO(slave).head;
171	while (index != TLB_NULL_INDEX) {
172		u32 next_index = tx_hash_table[index].next;
173		tlb_init_table_entry(&tx_hash_table[index], save_load);
174		index = next_index;
175	}
176
177	tlb_init_slave(slave);
178
179	_unlock_tx_hashtbl(bond);
180}
181
182/* Must be called before starting the monitor timer */
183static int tlb_initialize(struct bonding *bond)
184{
185	struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
186	int size = TLB_HASH_TABLE_SIZE * sizeof(struct tlb_client_info);
187	struct tlb_client_info *new_hashtbl;
188	int i;
189
190	spin_lock_init(&(bond_info->tx_hashtbl_lock));
191
192	new_hashtbl = kzalloc(size, GFP_KERNEL);
193	if (!new_hashtbl) {
194		printk(KERN_ERR DRV_NAME
195		       ": %s: Error: Failed to allocate TLB hash table\n",
196		       bond->dev->name);
197		return -1;
198	}
199	_lock_tx_hashtbl(bond);
200
201	bond_info->tx_hashtbl = new_hashtbl;
202
203	for (i = 0; i < TLB_HASH_TABLE_SIZE; i++) {
204		tlb_init_table_entry(&bond_info->tx_hashtbl[i], 1);
205	}
206
207	_unlock_tx_hashtbl(bond);
208
209	return 0;
210}
211
212/* Must be called only after all slaves have been released */
213static void tlb_deinitialize(struct bonding *bond)
214{
215	struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
216
217	_lock_tx_hashtbl(bond);
218
219	kfree(bond_info->tx_hashtbl);
220	bond_info->tx_hashtbl = NULL;
221
222	_unlock_tx_hashtbl(bond);
223}
224
225/* Caller must hold bond lock for read */
226static struct slave *tlb_get_least_loaded_slave(struct bonding *bond)
227{
228	struct slave *slave, *least_loaded;
229	s64 max_gap;
230	int i, found = 0;
231
232	/* Find the first enabled slave */
233	bond_for_each_slave(bond, slave, i) {
234		if (SLAVE_IS_OK(slave)) {
235			found = 1;
236			break;
237		}
238	}
239
240	if (!found) {
241		return NULL;
242	}
243
244	least_loaded = slave;
245	max_gap = (s64)(slave->speed << 20) - /* Convert to Megabit per sec */
246			(s64)(SLAVE_TLB_INFO(slave).load << 3); /* Bytes to bits */
247
248	/* Find the slave with the largest gap */
249	bond_for_each_slave_from(bond, slave, i, least_loaded) {
250		if (SLAVE_IS_OK(slave)) {
251			s64 gap = (s64)(slave->speed << 20) -
252					(s64)(SLAVE_TLB_INFO(slave).load << 3);
253			if (max_gap < gap) {
254				least_loaded = slave;
255				max_gap = gap;
256			}
257		}
258	}
259
260	return least_loaded;
261}
262
263/* Caller must hold bond lock for read */
264static struct slave *tlb_choose_channel(struct bonding *bond, u32 hash_index, u32 skb_len)
265{
266	struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
267	struct tlb_client_info *hash_table;
268	struct slave *assigned_slave;
269
270	_lock_tx_hashtbl(bond);
271
272	hash_table = bond_info->tx_hashtbl;
273	assigned_slave = hash_table[hash_index].tx_slave;
274	if (!assigned_slave) {
275		assigned_slave = tlb_get_least_loaded_slave(bond);
276
277		if (assigned_slave) {
278			struct tlb_slave_info *slave_info =
279				&(SLAVE_TLB_INFO(assigned_slave));
280			u32 next_index = slave_info->head;
281
282			hash_table[hash_index].tx_slave = assigned_slave;
283			hash_table[hash_index].next = next_index;
284			hash_table[hash_index].prev = TLB_NULL_INDEX;
285
286			if (next_index != TLB_NULL_INDEX) {
287				hash_table[next_index].prev = hash_index;
288			}
289
290			slave_info->head = hash_index;
291			slave_info->load +=
292				hash_table[hash_index].load_history;
293		}
294	}
295
296	if (assigned_slave) {
297		hash_table[hash_index].tx_bytes += skb_len;
298	}
299
300	_unlock_tx_hashtbl(bond);
301
302	return assigned_slave;
303}
304
305/*********************** rlb specific functions ***************************/
306static inline void _lock_rx_hashtbl(struct bonding *bond)
307{
308	spin_lock_bh(&(BOND_ALB_INFO(bond).rx_hashtbl_lock));
309}
310
311static inline void _unlock_rx_hashtbl(struct bonding *bond)
312{
313	spin_unlock_bh(&(BOND_ALB_INFO(bond).rx_hashtbl_lock));
314}
315
316/* when an ARP REPLY is received from a client update its info
317 * in the rx_hashtbl
318 */
319static void rlb_update_entry_from_arp(struct bonding *bond, struct arp_pkt *arp)
320{
321	struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
322	struct rlb_client_info *client_info;
323	u32 hash_index;
324
325	_lock_rx_hashtbl(bond);
326
327	hash_index = _simple_hash((u8*)&(arp->ip_src), sizeof(arp->ip_src));
328	client_info = &(bond_info->rx_hashtbl[hash_index]);
329
330	if ((client_info->assigned) &&
331	    (client_info->ip_src == arp->ip_dst) &&
332	    (client_info->ip_dst == arp->ip_src)) {
333		/* update the clients MAC address */
334		memcpy(client_info->mac_dst, arp->mac_src, ETH_ALEN);
335		client_info->ntt = 1;
336		bond_info->rx_ntt = 1;
337	}
338
339	_unlock_rx_hashtbl(bond);
340}
341
342static int rlb_arp_recv(struct sk_buff *skb, struct net_device *bond_dev, struct packet_type *ptype, struct net_device *orig_dev)
343{
344	struct bonding *bond = bond_dev->priv;
345	struct arp_pkt *arp = (struct arp_pkt *)skb->data;
346	int res = NET_RX_DROP;
347
348	if (bond_dev->nd_net != &init_net)
349		goto out;
350
351	if (!(bond_dev->flags & IFF_MASTER))
352		goto out;
353
354	if (!arp) {
355		dprintk("Packet has no ARP data\n");
356		goto out;
357	}
358
359	if (skb->len < sizeof(struct arp_pkt)) {
360		dprintk("Packet is too small to be an ARP\n");
361		goto out;
362	}
363
364	if (arp->op_code == htons(ARPOP_REPLY)) {
365		/* update rx hash table for this ARP */
366		rlb_update_entry_from_arp(bond, arp);
367		dprintk("Server received an ARP Reply from client\n");
368	}
369
370	res = NET_RX_SUCCESS;
371
372out:
373	dev_kfree_skb(skb);
374
375	return res;
376}
377
378/* Caller must hold bond lock for read */
379static struct slave *rlb_next_rx_slave(struct bonding *bond)
380{
381	struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
382	struct slave *rx_slave, *slave, *start_at;
383	int i = 0;
384
385	if (bond_info->next_rx_slave) {
386		start_at = bond_info->next_rx_slave;
387	} else {
388		start_at = bond->first_slave;
389	}
390
391	rx_slave = NULL;
392
393	bond_for_each_slave_from(bond, slave, i, start_at) {
394		if (SLAVE_IS_OK(slave)) {
395			if (!rx_slave) {
396				rx_slave = slave;
397			} else if (slave->speed > rx_slave->speed) {
398				rx_slave = slave;
399			}
400		}
401	}
402
403	if (rx_slave) {
404		bond_info->next_rx_slave = rx_slave->next;
405	}
406
407	return rx_slave;
408}
409
410/* teach the switch the mac of a disabled slave
411 * on the primary for fault tolerance
412 *
413 * Caller must hold bond->curr_slave_lock for write or bond lock for write
414 */
415static void rlb_teach_disabled_mac_on_primary(struct bonding *bond, u8 addr[])
416{
417	if (!bond->curr_active_slave) {
418		return;
419	}
420
421	if (!bond->alb_info.primary_is_promisc) {
422		bond->alb_info.primary_is_promisc = 1;
423		dev_set_promiscuity(bond->curr_active_slave->dev, 1);
424	}
425
426	bond->alb_info.rlb_promisc_timeout_counter = 0;
427
428	alb_send_learning_packets(bond->curr_active_slave, addr);
429}
430
431/* slave being removed should not be active at this point
432 *
433 * Caller must hold bond lock for read
434 */
435static void rlb_clear_slave(struct bonding *bond, struct slave *slave)
436{
437	struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
438	struct rlb_client_info *rx_hash_table;
439	u32 index, next_index;
440
441	/* clear slave from rx_hashtbl */
442	_lock_rx_hashtbl(bond);
443
444	rx_hash_table = bond_info->rx_hashtbl;
445	index = bond_info->rx_hashtbl_head;
446	for (; index != RLB_NULL_INDEX; index = next_index) {
447		next_index = rx_hash_table[index].next;
448		if (rx_hash_table[index].slave == slave) {
449			struct slave *assigned_slave = rlb_next_rx_slave(bond);
450
451			if (assigned_slave) {
452				rx_hash_table[index].slave = assigned_slave;
453				if (memcmp(rx_hash_table[index].mac_dst,
454					   mac_bcast, ETH_ALEN)) {
455					bond_info->rx_hashtbl[index].ntt = 1;
456					bond_info->rx_ntt = 1;
457					/* A slave has been removed from the
458					 * table because it is either disabled
459					 * or being released. We must retry the
460					 * update to avoid clients from not
461					 * being updated & disconnecting when
462					 * there is stress
463					 */
464					bond_info->rlb_update_retry_counter =
465						RLB_UPDATE_RETRY;
466				}
467			} else {  /* there is no active slave */
468				rx_hash_table[index].slave = NULL;
469			}
470		}
471	}
472
473	_unlock_rx_hashtbl(bond);
474
475	write_lock_bh(&bond->curr_slave_lock);
476
477	if (slave != bond->curr_active_slave) {
478		rlb_teach_disabled_mac_on_primary(bond, slave->dev->dev_addr);
479	}
480
481	write_unlock_bh(&bond->curr_slave_lock);
482}
483
484static void rlb_update_client(struct rlb_client_info *client_info)
485{
486	int i;
487
488	if (!client_info->slave) {
489		return;
490	}
491
492	for (i = 0; i < RLB_ARP_BURST_SIZE; i++) {
493		struct sk_buff *skb;
494
495		skb = arp_create(ARPOP_REPLY, ETH_P_ARP,
496				 client_info->ip_dst,
497				 client_info->slave->dev,
498				 client_info->ip_src,
499				 client_info->mac_dst,
500				 client_info->slave->dev->dev_addr,
501				 client_info->mac_dst);
502		if (!skb) {
503			printk(KERN_ERR DRV_NAME
504			       ": %s: Error: failed to create an ARP packet\n",
505			       client_info->slave->dev->master->name);
506			continue;
507		}
508
509		skb->dev = client_info->slave->dev;
510
511		if (client_info->tag) {
512			skb = vlan_put_tag(skb, client_info->vlan_id);
513			if (!skb) {
514				printk(KERN_ERR DRV_NAME
515				       ": %s: Error: failed to insert VLAN tag\n",
516				       client_info->slave->dev->master->name);
517				continue;
518			}
519		}
520
521		arp_xmit(skb);
522	}
523}
524
525/* sends ARP REPLIES that update the clients that need updating */
526static void rlb_update_rx_clients(struct bonding *bond)
527{
528	struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
529	struct rlb_client_info *client_info;
530	u32 hash_index;
531
532	_lock_rx_hashtbl(bond);
533
534	hash_index = bond_info->rx_hashtbl_head;
535	for (; hash_index != RLB_NULL_INDEX; hash_index = client_info->next) {
536		client_info = &(bond_info->rx_hashtbl[hash_index]);
537		if (client_info->ntt) {
538			rlb_update_client(client_info);
539			if (bond_info->rlb_update_retry_counter == 0) {
540				client_info->ntt = 0;
541			}
542		}
543	}
544
545	/* do not update the entries again untill this counter is zero so that
546	 * not to confuse the clients.
547	 */
548	bond_info->rlb_update_delay_counter = RLB_UPDATE_DELAY;
549
550	_unlock_rx_hashtbl(bond);
551}
552
553/* The slave was assigned a new mac address - update the clients */
554static void rlb_req_update_slave_clients(struct bonding *bond, struct slave *slave)
555{
556	struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
557	struct rlb_client_info *client_info;
558	int ntt = 0;
559	u32 hash_index;
560
561	_lock_rx_hashtbl(bond);
562
563	hash_index = bond_info->rx_hashtbl_head;
564	for (; hash_index != RLB_NULL_INDEX; hash_index = client_info->next) {
565		client_info = &(bond_info->rx_hashtbl[hash_index]);
566
567		if ((client_info->slave == slave) &&
568		    memcmp(client_info->mac_dst, mac_bcast, ETH_ALEN)) {
569			client_info->ntt = 1;
570			ntt = 1;
571		}
572	}
573
574	// update the team's flag only after the whole iteration
575	if (ntt) {
576		bond_info->rx_ntt = 1;
577		//fasten the change
578		bond_info->rlb_update_retry_counter = RLB_UPDATE_RETRY;
579	}
580
581	_unlock_rx_hashtbl(bond);
582}
583
584/* mark all clients using src_ip to be updated */
585static void rlb_req_update_subnet_clients(struct bonding *bond, __be32 src_ip)
586{
587	struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
588	struct rlb_client_info *client_info;
589	u32 hash_index;
590
591	_lock_rx_hashtbl(bond);
592
593	hash_index = bond_info->rx_hashtbl_head;
594	for (; hash_index != RLB_NULL_INDEX; hash_index = client_info->next) {
595		client_info = &(bond_info->rx_hashtbl[hash_index]);
596
597		if (!client_info->slave) {
598			printk(KERN_ERR DRV_NAME
599			       ": %s: Error: found a client with no channel in "
600			       "the client's hash table\n",
601			       bond->dev->name);
602			continue;
603		}
604		/*update all clients using this src_ip, that are not assigned
605		 * to the team's address (curr_active_slave) and have a known
606		 * unicast mac address.
607		 */
608		if ((client_info->ip_src == src_ip) &&
609		    memcmp(client_info->slave->dev->dev_addr,
610			   bond->dev->dev_addr, ETH_ALEN) &&
611		    memcmp(client_info->mac_dst, mac_bcast, ETH_ALEN)) {
612			client_info->ntt = 1;
613			bond_info->rx_ntt = 1;
614		}
615	}
616
617	_unlock_rx_hashtbl(bond);
618}
619
620/* Caller must hold both bond and ptr locks for read */
621static struct slave *rlb_choose_channel(struct sk_buff *skb, struct bonding *bond)
622{
623	struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
624	struct arp_pkt *arp = arp_pkt(skb);
625	struct slave *assigned_slave;
626	struct rlb_client_info *client_info;
627	u32 hash_index = 0;
628
629	_lock_rx_hashtbl(bond);
630
631	hash_index = _simple_hash((u8 *)&arp->ip_dst, sizeof(arp->ip_src));
632	client_info = &(bond_info->rx_hashtbl[hash_index]);
633
634	if (client_info->assigned) {
635		if ((client_info->ip_src == arp->ip_src) &&
636		    (client_info->ip_dst == arp->ip_dst)) {
637			/* the entry is already assigned to this client */
638			if (memcmp(arp->mac_dst, mac_bcast, ETH_ALEN)) {
639				/* update mac address from arp */
640				memcpy(client_info->mac_dst, arp->mac_dst, ETH_ALEN);
641			}
642
643			assigned_slave = client_info->slave;
644			if (assigned_slave) {
645				_unlock_rx_hashtbl(bond);
646				return assigned_slave;
647			}
648		} else {
649			/* the entry is already assigned to some other client,
650			 * move the old client to primary (curr_active_slave) so
651			 * that the new client can be assigned to this entry.
652			 */
653			if (bond->curr_active_slave &&
654			    client_info->slave != bond->curr_active_slave) {
655				client_info->slave = bond->curr_active_slave;
656				rlb_update_client(client_info);
657			}
658		}
659	}
660	/* assign a new slave */
661	assigned_slave = rlb_next_rx_slave(bond);
662
663	if (assigned_slave) {
664		client_info->ip_src = arp->ip_src;
665		client_info->ip_dst = arp->ip_dst;
666		/* arp->mac_dst is broadcast for arp reqeusts.
667		 * will be updated with clients actual unicast mac address
668		 * upon receiving an arp reply.
669		 */
670		memcpy(client_info->mac_dst, arp->mac_dst, ETH_ALEN);
671		client_info->slave = assigned_slave;
672
673		if (memcmp(client_info->mac_dst, mac_bcast, ETH_ALEN)) {
674			client_info->ntt = 1;
675			bond->alb_info.rx_ntt = 1;
676		} else {
677			client_info->ntt = 0;
678		}
679
680		if (!list_empty(&bond->vlan_list)) {
681			if (!vlan_get_tag(skb, &client_info->vlan_id))
682				client_info->tag = 1;
683		}
684
685		if (!client_info->assigned) {
686			u32 prev_tbl_head = bond_info->rx_hashtbl_head;
687			bond_info->rx_hashtbl_head = hash_index;
688			client_info->next = prev_tbl_head;
689			if (prev_tbl_head != RLB_NULL_INDEX) {
690				bond_info->rx_hashtbl[prev_tbl_head].prev =
691					hash_index;
692			}
693			client_info->assigned = 1;
694		}
695	}
696
697	_unlock_rx_hashtbl(bond);
698
699	return assigned_slave;
700}
701
702/* chooses (and returns) transmit channel for arp reply
703 * does not choose channel for other arp types since they are
704 * sent on the curr_active_slave
705 */
706static struct slave *rlb_arp_xmit(struct sk_buff *skb, struct bonding *bond)
707{
708	struct arp_pkt *arp = arp_pkt(skb);
709	struct slave *tx_slave = NULL;
710
711	if (arp->op_code == __constant_htons(ARPOP_REPLY)) {
712		/* the arp must be sent on the selected
713		* rx channel
714		*/
715		tx_slave = rlb_choose_channel(skb, bond);
716		if (tx_slave) {
717			memcpy(arp->mac_src,tx_slave->dev->dev_addr, ETH_ALEN);
718		}
719		dprintk("Server sent ARP Reply packet\n");
720	} else if (arp->op_code == __constant_htons(ARPOP_REQUEST)) {
721		/* Create an entry in the rx_hashtbl for this client as a
722		 * place holder.
723		 * When the arp reply is received the entry will be updated
724		 * with the correct unicast address of the client.
725		 */
726		rlb_choose_channel(skb, bond);
727
728		/* The ARP relpy packets must be delayed so that
729		 * they can cancel out the influence of the ARP request.
730		 */
731		bond->alb_info.rlb_update_delay_counter = RLB_UPDATE_DELAY;
732
733		/* arp requests are broadcast and are sent on the primary
734		 * the arp request will collapse all clients on the subnet to
735		 * the primary slave. We must register these clients to be
736		 * updated with their assigned mac.
737		 */
738		rlb_req_update_subnet_clients(bond, arp->ip_src);
739		dprintk("Server sent ARP Request packet\n");
740	}
741
742	return tx_slave;
743}
744
745/* Caller must hold bond lock for read */
746static void rlb_rebalance(struct bonding *bond)
747{
748	struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
749	struct slave *assigned_slave;
750	struct rlb_client_info *client_info;
751	int ntt;
752	u32 hash_index;
753
754	_lock_rx_hashtbl(bond);
755
756	ntt = 0;
757	hash_index = bond_info->rx_hashtbl_head;
758	for (; hash_index != RLB_NULL_INDEX; hash_index = client_info->next) {
759		client_info = &(bond_info->rx_hashtbl[hash_index]);
760		assigned_slave = rlb_next_rx_slave(bond);
761		if (assigned_slave && (client_info->slave != assigned_slave)) {
762			client_info->slave = assigned_slave;
763			client_info->ntt = 1;
764			ntt = 1;
765		}
766	}
767
768	/* update the team's flag only after the whole iteration */
769	if (ntt) {
770		bond_info->rx_ntt = 1;
771	}
772	_unlock_rx_hashtbl(bond);
773}
774
775/* Caller must hold rx_hashtbl lock */
776static void rlb_init_table_entry(struct rlb_client_info *entry)
777{
778	memset(entry, 0, sizeof(struct rlb_client_info));
779	entry->next = RLB_NULL_INDEX;
780	entry->prev = RLB_NULL_INDEX;
781}
782
783static int rlb_initialize(struct bonding *bond)
784{
785	struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
786	struct packet_type *pk_type = &(BOND_ALB_INFO(bond).rlb_pkt_type);
787	struct rlb_client_info	*new_hashtbl;
788	int size = RLB_HASH_TABLE_SIZE * sizeof(struct rlb_client_info);
789	int i;
790
791	spin_lock_init(&(bond_info->rx_hashtbl_lock));
792
793	new_hashtbl = kmalloc(size, GFP_KERNEL);
794	if (!new_hashtbl) {
795		printk(KERN_ERR DRV_NAME
796		       ": %s: Error: Failed to allocate RLB hash table\n",
797		       bond->dev->name);
798		return -1;
799	}
800	_lock_rx_hashtbl(bond);
801
802	bond_info->rx_hashtbl = new_hashtbl;
803
804	bond_info->rx_hashtbl_head = RLB_NULL_INDEX;
805
806	for (i = 0; i < RLB_HASH_TABLE_SIZE; i++) {
807		rlb_init_table_entry(bond_info->rx_hashtbl + i);
808	}
809
810	_unlock_rx_hashtbl(bond);
811
812	/*initialize packet type*/
813	pk_type->type = __constant_htons(ETH_P_ARP);
814	pk_type->dev = bond->dev;
815	pk_type->func = rlb_arp_recv;
816
817	/* register to receive ARPs */
818	dev_add_pack(pk_type);
819
820	return 0;
821}
822
823static void rlb_deinitialize(struct bonding *bond)
824{
825	struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
826
827	dev_remove_pack(&(bond_info->rlb_pkt_type));
828
829	_lock_rx_hashtbl(bond);
830
831	kfree(bond_info->rx_hashtbl);
832	bond_info->rx_hashtbl = NULL;
833	bond_info->rx_hashtbl_head = RLB_NULL_INDEX;
834
835	_unlock_rx_hashtbl(bond);
836}
837
838static void rlb_clear_vlan(struct bonding *bond, unsigned short vlan_id)
839{
840	struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
841	u32 curr_index;
842
843	_lock_rx_hashtbl(bond);
844
845	curr_index = bond_info->rx_hashtbl_head;
846	while (curr_index != RLB_NULL_INDEX) {
847		struct rlb_client_info *curr = &(bond_info->rx_hashtbl[curr_index]);
848		u32 next_index = bond_info->rx_hashtbl[curr_index].next;
849		u32 prev_index = bond_info->rx_hashtbl[curr_index].prev;
850
851		if (curr->tag && (curr->vlan_id == vlan_id)) {
852			if (curr_index == bond_info->rx_hashtbl_head) {
853				bond_info->rx_hashtbl_head = next_index;
854			}
855			if (prev_index != RLB_NULL_INDEX) {
856				bond_info->rx_hashtbl[prev_index].next = next_index;
857			}
858			if (next_index != RLB_NULL_INDEX) {
859				bond_info->rx_hashtbl[next_index].prev = prev_index;
860			}
861
862			rlb_init_table_entry(curr);
863		}
864
865		curr_index = next_index;
866	}
867
868	_unlock_rx_hashtbl(bond);
869}
870
871/*********************** tlb/rlb shared functions *********************/
872
873static void alb_send_learning_packets(struct slave *slave, u8 mac_addr[])
874{
875	struct bonding *bond = bond_get_bond_by_slave(slave);
876	struct learning_pkt pkt;
877	int size = sizeof(struct learning_pkt);
878	int i;
879
880	memset(&pkt, 0, size);
881	memcpy(pkt.mac_dst, mac_addr, ETH_ALEN);
882	memcpy(pkt.mac_src, mac_addr, ETH_ALEN);
883	pkt.type = __constant_htons(ETH_P_LOOP);
884
885	for (i = 0; i < MAX_LP_BURST; i++) {
886		struct sk_buff *skb;
887		char *data;
888
889		skb = dev_alloc_skb(size);
890		if (!skb) {
891			return;
892		}
893
894		data = skb_put(skb, size);
895		memcpy(data, &pkt, size);
896
897		skb_reset_mac_header(skb);
898		skb->network_header = skb->mac_header + ETH_HLEN;
899		skb->protocol = pkt.type;
900		skb->priority = TC_PRIO_CONTROL;
901		skb->dev = slave->dev;
902
903		if (!list_empty(&bond->vlan_list)) {
904			struct vlan_entry *vlan;
905
906			vlan = bond_next_vlan(bond,
907					      bond->alb_info.current_alb_vlan);
908
909			bond->alb_info.current_alb_vlan = vlan;
910			if (!vlan) {
911				kfree_skb(skb);
912				continue;
913			}
914
915			skb = vlan_put_tag(skb, vlan->vlan_id);
916			if (!skb) {
917				printk(KERN_ERR DRV_NAME
918				       ": %s: Error: failed to insert VLAN tag\n",
919				       bond->dev->name);
920				continue;
921			}
922		}
923
924		dev_queue_xmit(skb);
925	}
926}
927
928/* hw is a boolean parameter that determines whether we should try and
929 * set the hw address of the device as well as the hw address of the
930 * net_device
931 */
932static int alb_set_slave_mac_addr(struct slave *slave, u8 addr[], int hw)
933{
934	struct net_device *dev = slave->dev;
935	struct sockaddr s_addr;
936
937	if (!hw) {
938		memcpy(dev->dev_addr, addr, dev->addr_len);
939		return 0;
940	}
941
942	/* for rlb each slave must have a unique hw mac addresses so that */
943	/* each slave will receive packets destined to a different mac */
944	memcpy(s_addr.sa_data, addr, dev->addr_len);
945	s_addr.sa_family = dev->type;
946	if (dev_set_mac_address(dev, &s_addr)) {
947		printk(KERN_ERR DRV_NAME
948		       ": %s: Error: dev_set_mac_address of dev %s failed! ALB "
949		       "mode requires that the base driver support setting "
950		       "the hw address also when the network device's "
951		       "interface is open\n",
952		       dev->master->name, dev->name);
953		return -EOPNOTSUPP;
954	}
955	return 0;
956}
957
958/*
959 * Swap MAC addresses between two slaves.
960 *
961 * Called with RTNL held, and no other locks.
962 *
963 */
964
965static void alb_swap_mac_addr(struct bonding *bond, struct slave *slave1, struct slave *slave2)
966{
967	u8 tmp_mac_addr[ETH_ALEN];
968
969	memcpy(tmp_mac_addr, slave1->dev->dev_addr, ETH_ALEN);
970	alb_set_slave_mac_addr(slave1, slave2->dev->dev_addr, bond->alb_info.rlb_enabled);
971	alb_set_slave_mac_addr(slave2, tmp_mac_addr, bond->alb_info.rlb_enabled);
972
973}
974
975/*
976 * Send learning packets after MAC address swap.
977 *
978 * Called with RTNL and no other locks
979 */
980static void alb_fasten_mac_swap(struct bonding *bond, struct slave *slave1,
981				struct slave *slave2)
982{
983	int slaves_state_differ = (SLAVE_IS_OK(slave1) != SLAVE_IS_OK(slave2));
984	struct slave *disabled_slave = NULL;
985
986	ASSERT_RTNL();
987
988	/* fasten the change in the switch */
989	if (SLAVE_IS_OK(slave1)) {
990		alb_send_learning_packets(slave1, slave1->dev->dev_addr);
991		if (bond->alb_info.rlb_enabled) {
992			/* inform the clients that the mac address
993			 * has changed
994			 */
995			rlb_req_update_slave_clients(bond, slave1);
996		}
997	} else {
998		disabled_slave = slave1;
999	}
1000
1001	if (SLAVE_IS_OK(slave2)) {
1002		alb_send_learning_packets(slave2, slave2->dev->dev_addr);
1003		if (bond->alb_info.rlb_enabled) {
1004			/* inform the clients that the mac address
1005			 * has changed
1006			 */
1007			rlb_req_update_slave_clients(bond, slave2);
1008		}
1009	} else {
1010		disabled_slave = slave2;
1011	}
1012
1013	if (bond->alb_info.rlb_enabled && slaves_state_differ) {
1014		/* A disabled slave was assigned an active mac addr */
1015		rlb_teach_disabled_mac_on_primary(bond,
1016						  disabled_slave->dev->dev_addr);
1017	}
1018}
1019
1020/**
1021 * alb_change_hw_addr_on_detach
1022 * @bond: bonding we're working on
1023 * @slave: the slave that was just detached
1024 *
1025 * We assume that @slave was already detached from the slave list.
1026 *
1027 * If @slave's permanent hw address is different both from its current
1028 * address and from @bond's address, then somewhere in the bond there's
1029 * a slave that has @slave's permanet address as its current address.
1030 * We'll make sure that that slave no longer uses @slave's permanent address.
1031 *
1032 * Caller must hold RTNL and no other locks
1033 */
1034static void alb_change_hw_addr_on_detach(struct bonding *bond, struct slave *slave)
1035{
1036	int perm_curr_diff;
1037	int perm_bond_diff;
1038
1039	perm_curr_diff = memcmp(slave->perm_hwaddr,
1040				slave->dev->dev_addr,
1041				ETH_ALEN);
1042	perm_bond_diff = memcmp(slave->perm_hwaddr,
1043				bond->dev->dev_addr,
1044				ETH_ALEN);
1045
1046	if (perm_curr_diff && perm_bond_diff) {
1047		struct slave *tmp_slave;
1048		int i, found = 0;
1049
1050		bond_for_each_slave(bond, tmp_slave, i) {
1051			if (!memcmp(slave->perm_hwaddr,
1052				    tmp_slave->dev->dev_addr,
1053				    ETH_ALEN)) {
1054				found = 1;
1055				break;
1056			}
1057		}
1058
1059		if (found) {
1060			/* locking: needs RTNL and nothing else */
1061			alb_swap_mac_addr(bond, slave, tmp_slave);
1062			alb_fasten_mac_swap(bond, slave, tmp_slave);
1063		}
1064	}
1065}
1066
1067/**
1068 * alb_handle_addr_collision_on_attach
1069 * @bond: bonding we're working on
1070 * @slave: the slave that was just attached
1071 *
1072 * checks uniqueness of slave's mac address and handles the case the
1073 * new slave uses the bonds mac address.
1074 *
1075 * If the permanent hw address of @slave is @bond's hw address, we need to
1076 * find a different hw address to give @slave, that isn't in use by any other
1077 * slave in the bond. This address must be, of course, one of the premanent
1078 * addresses of the other slaves.
1079 *
1080 * We go over the slave list, and for each slave there we compare its
1081 * permanent hw address with the current address of all the other slaves.
1082 * If no match was found, then we've found a slave with a permanent address
1083 * that isn't used by any other slave in the bond, so we can assign it to
1084 * @slave.
1085 *
1086 * assumption: this function is called before @slave is attached to the
1087 * 	       bond slave list.
1088 *
1089 * caller must hold the bond lock for write since the mac addresses are compared
1090 * and may be swapped.
1091 */
1092static int alb_handle_addr_collision_on_attach(struct bonding *bond, struct slave *slave)
1093{
1094	struct slave *tmp_slave1, *tmp_slave2, *free_mac_slave;
1095	struct slave *has_bond_addr = bond->curr_active_slave;
1096	int i, j, found = 0;
1097
1098	if (bond->slave_cnt == 0) {
1099		/* this is the first slave */
1100		return 0;
1101	}
1102
1103	/* if slave's mac address differs from bond's mac address
1104	 * check uniqueness of slave's mac address against the other
1105	 * slaves in the bond.
1106	 */
1107	if (memcmp(slave->perm_hwaddr, bond->dev->dev_addr, ETH_ALEN)) {
1108		bond_for_each_slave(bond, tmp_slave1, i) {
1109			if (!memcmp(tmp_slave1->dev->dev_addr, slave->dev->dev_addr,
1110				    ETH_ALEN)) {
1111				found = 1;
1112				break;
1113			}
1114		}
1115
1116		if (!found)
1117			return 0;
1118
1119		/* Try setting slave mac to bond address and fall-through
1120		   to code handling that situation below... */
1121		alb_set_slave_mac_addr(slave, bond->dev->dev_addr,
1122				       bond->alb_info.rlb_enabled);
1123	}
1124
1125	/* The slave's address is equal to the address of the bond.
1126	 * Search for a spare address in the bond for this slave.
1127	 */
1128	free_mac_slave = NULL;
1129
1130	bond_for_each_slave(bond, tmp_slave1, i) {
1131		found = 0;
1132		bond_for_each_slave(bond, tmp_slave2, j) {
1133			if (!memcmp(tmp_slave1->perm_hwaddr,
1134				    tmp_slave2->dev->dev_addr,
1135				    ETH_ALEN)) {
1136				found = 1;
1137				break;
1138			}
1139		}
1140
1141		if (!found) {
1142			/* no slave has tmp_slave1's perm addr
1143			 * as its curr addr
1144			 */
1145			free_mac_slave = tmp_slave1;
1146			break;
1147		}
1148
1149		if (!has_bond_addr) {
1150			if (!memcmp(tmp_slave1->dev->dev_addr,
1151				    bond->dev->dev_addr,
1152				    ETH_ALEN)) {
1153
1154				has_bond_addr = tmp_slave1;
1155			}
1156		}
1157	}
1158
1159	if (free_mac_slave) {
1160		alb_set_slave_mac_addr(slave, free_mac_slave->perm_hwaddr,
1161				       bond->alb_info.rlb_enabled);
1162
1163		printk(KERN_WARNING DRV_NAME
1164		       ": %s: Warning: the hw address of slave %s is in use by "
1165		       "the bond; giving it the hw address of %s\n",
1166		       bond->dev->name, slave->dev->name, free_mac_slave->dev->name);
1167
1168	} else if (has_bond_addr) {
1169		printk(KERN_ERR DRV_NAME
1170		       ": %s: Error: the hw address of slave %s is in use by the "
1171		       "bond; couldn't find a slave with a free hw address to "
1172		       "give it (this should not have happened)\n",
1173		       bond->dev->name, slave->dev->name);
1174		return -EFAULT;
1175	}
1176
1177	return 0;
1178}
1179
1180/**
1181 * alb_set_mac_address
1182 * @bond:
1183 * @addr:
1184 *
1185 * In TLB mode all slaves are configured to the bond's hw address, but set
1186 * their dev_addr field to different addresses (based on their permanent hw
1187 * addresses).
1188 *
1189 * For each slave, this function sets the interface to the new address and then
1190 * changes its dev_addr field to its previous value.
1191 *
1192 * Unwinding assumes bond's mac address has not yet changed.
1193 */
1194static int alb_set_mac_address(struct bonding *bond, void *addr)
1195{
1196	struct sockaddr sa;
1197	struct slave *slave, *stop_at;
1198	char tmp_addr[ETH_ALEN];
1199	int res;
1200	int i;
1201
1202	if (bond->alb_info.rlb_enabled) {
1203		return 0;
1204	}
1205
1206	bond_for_each_slave(bond, slave, i) {
1207		if (slave->dev->set_mac_address == NULL) {
1208			res = -EOPNOTSUPP;
1209			goto unwind;
1210		}
1211
1212		/* save net_device's current hw address */
1213		memcpy(tmp_addr, slave->dev->dev_addr, ETH_ALEN);
1214
1215		res = dev_set_mac_address(slave->dev, addr);
1216
1217		/* restore net_device's hw address */
1218		memcpy(slave->dev->dev_addr, tmp_addr, ETH_ALEN);
1219
1220		if (res) {
1221			goto unwind;
1222		}
1223	}
1224
1225	return 0;
1226
1227unwind:
1228	memcpy(sa.sa_data, bond->dev->dev_addr, bond->dev->addr_len);
1229	sa.sa_family = bond->dev->type;
1230
1231	/* unwind from head to the slave that failed */
1232	stop_at = slave;
1233	bond_for_each_slave_from_to(bond, slave, i, bond->first_slave, stop_at) {
1234		memcpy(tmp_addr, slave->dev->dev_addr, ETH_ALEN);
1235		dev_set_mac_address(slave->dev, &sa);
1236		memcpy(slave->dev->dev_addr, tmp_addr, ETH_ALEN);
1237	}
1238
1239	return res;
1240}
1241
1242/************************ exported alb funcions ************************/
1243
1244int bond_alb_initialize(struct bonding *bond, int rlb_enabled)
1245{
1246	int res;
1247
1248	res = tlb_initialize(bond);
1249	if (res) {
1250		return res;
1251	}
1252
1253	if (rlb_enabled) {
1254		bond->alb_info.rlb_enabled = 1;
1255		/* initialize rlb */
1256		res = rlb_initialize(bond);
1257		if (res) {
1258			tlb_deinitialize(bond);
1259			return res;
1260		}
1261	} else {
1262		bond->alb_info.rlb_enabled = 0;
1263	}
1264
1265	return 0;
1266}
1267
1268void bond_alb_deinitialize(struct bonding *bond)
1269{
1270	struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
1271
1272	tlb_deinitialize(bond);
1273
1274	if (bond_info->rlb_enabled) {
1275		rlb_deinitialize(bond);
1276	}
1277}
1278
1279int bond_alb_xmit(struct sk_buff *skb, struct net_device *bond_dev)
1280{
1281	struct bonding *bond = bond_dev->priv;
1282	struct ethhdr *eth_data;
1283	struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
1284	struct slave *tx_slave = NULL;
1285	static const __be32 ip_bcast = htonl(0xffffffff);
1286	int hash_size = 0;
1287	int do_tx_balance = 1;
1288	u32 hash_index = 0;
1289	const u8 *hash_start = NULL;
1290	int res = 1;
1291
1292	skb_reset_mac_header(skb);
1293	eth_data = eth_hdr(skb);
1294
1295	/* make sure that the curr_active_slave and the slaves list do
1296	 * not change during tx
1297	 */
1298	read_lock(&bond->lock);
1299	read_lock(&bond->curr_slave_lock);
1300
1301	if (!BOND_IS_OK(bond)) {
1302		goto out;
1303	}
1304
1305	switch (ntohs(skb->protocol)) {
1306	case ETH_P_IP: {
1307		const struct iphdr *iph = ip_hdr(skb);
1308
1309		if ((memcmp(eth_data->h_dest, mac_bcast, ETH_ALEN) == 0) ||
1310		    (iph->daddr == ip_bcast) ||
1311		    (iph->protocol == IPPROTO_IGMP)) {
1312			do_tx_balance = 0;
1313			break;
1314		}
1315		hash_start = (char *)&(iph->daddr);
1316		hash_size = sizeof(iph->daddr);
1317	}
1318		break;
1319	case ETH_P_IPV6:
1320		if (memcmp(eth_data->h_dest, mac_bcast, ETH_ALEN) == 0) {
1321			do_tx_balance = 0;
1322			break;
1323		}
1324
1325		hash_start = (char *)&(ipv6_hdr(skb)->daddr);
1326		hash_size = sizeof(ipv6_hdr(skb)->daddr);
1327		break;
1328	case ETH_P_IPX:
1329		if (ipx_hdr(skb)->ipx_checksum != IPX_NO_CHECKSUM) {
1330			/* something is wrong with this packet */
1331			do_tx_balance = 0;
1332			break;
1333		}
1334
1335		if (ipx_hdr(skb)->ipx_type != IPX_TYPE_NCP) {
1336			/* The only protocol worth balancing in
1337			 * this family since it has an "ARP" like
1338			 * mechanism
1339			 */
1340			do_tx_balance = 0;
1341			break;
1342		}
1343
1344		hash_start = (char*)eth_data->h_dest;
1345		hash_size = ETH_ALEN;
1346		break;
1347	case ETH_P_ARP:
1348		do_tx_balance = 0;
1349		if (bond_info->rlb_enabled) {
1350			tx_slave = rlb_arp_xmit(skb, bond);
1351		}
1352		break;
1353	default:
1354		do_tx_balance = 0;
1355		break;
1356	}
1357
1358	if (do_tx_balance) {
1359		hash_index = _simple_hash(hash_start, hash_size);
1360		tx_slave = tlb_choose_channel(bond, hash_index, skb->len);
1361	}
1362
1363	if (!tx_slave) {
1364		/* unbalanced or unassigned, send through primary */
1365		tx_slave = bond->curr_active_slave;
1366		bond_info->unbalanced_load += skb->len;
1367	}
1368
1369	if (tx_slave && SLAVE_IS_OK(tx_slave)) {
1370		if (tx_slave != bond->curr_active_slave) {
1371			memcpy(eth_data->h_source,
1372			       tx_slave->dev->dev_addr,
1373			       ETH_ALEN);
1374		}
1375
1376		res = bond_dev_queue_xmit(bond, skb, tx_slave->dev);
1377	} else {
1378		if (tx_slave) {
1379			tlb_clear_slave(bond, tx_slave, 0);
1380		}
1381	}
1382
1383out:
1384	if (res) {
1385		/* no suitable interface, frame not sent */
1386		dev_kfree_skb(skb);
1387	}
1388	read_unlock(&bond->curr_slave_lock);
1389	read_unlock(&bond->lock);
1390	return 0;
1391}
1392
1393void bond_alb_monitor(struct work_struct *work)
1394{
1395	struct bonding *bond = container_of(work, struct bonding,
1396					    alb_work.work);
1397	struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
1398	struct slave *slave;
1399	int i;
1400
1401	read_lock(&bond->lock);
1402
1403	if (bond->kill_timers) {
1404		goto out;
1405	}
1406
1407	if (bond->slave_cnt == 0) {
1408		bond_info->tx_rebalance_counter = 0;
1409		bond_info->lp_counter = 0;
1410		goto re_arm;
1411	}
1412
1413	bond_info->tx_rebalance_counter++;
1414	bond_info->lp_counter++;
1415
1416	/* send learning packets */
1417	if (bond_info->lp_counter >= BOND_ALB_LP_TICKS) {
1418		/* change of curr_active_slave involves swapping of mac addresses.
1419		 * in order to avoid this swapping from happening while
1420		 * sending the learning packets, the curr_slave_lock must be held for
1421		 * read.
1422		 */
1423		read_lock(&bond->curr_slave_lock);
1424
1425		bond_for_each_slave(bond, slave, i) {
1426			alb_send_learning_packets(slave, slave->dev->dev_addr);
1427		}
1428
1429		read_unlock(&bond->curr_slave_lock);
1430
1431		bond_info->lp_counter = 0;
1432	}
1433
1434	/* rebalance tx traffic */
1435	if (bond_info->tx_rebalance_counter >= BOND_TLB_REBALANCE_TICKS) {
1436
1437		read_lock(&bond->curr_slave_lock);
1438
1439		bond_for_each_slave(bond, slave, i) {
1440			tlb_clear_slave(bond, slave, 1);
1441			if (slave == bond->curr_active_slave) {
1442				SLAVE_TLB_INFO(slave).load =
1443					bond_info->unbalanced_load /
1444						BOND_TLB_REBALANCE_INTERVAL;
1445				bond_info->unbalanced_load = 0;
1446			}
1447		}
1448
1449		read_unlock(&bond->curr_slave_lock);
1450
1451		bond_info->tx_rebalance_counter = 0;
1452	}
1453
1454	/* handle rlb stuff */
1455	if (bond_info->rlb_enabled) {
1456		if (bond_info->primary_is_promisc &&
1457		    (++bond_info->rlb_promisc_timeout_counter >= RLB_PROMISC_TIMEOUT)) {
1458
1459			/*
1460			 * dev_set_promiscuity requires rtnl and
1461			 * nothing else.
1462			 */
1463			read_unlock(&bond->lock);
1464			rtnl_lock();
1465
1466			bond_info->rlb_promisc_timeout_counter = 0;
1467
1468			/* If the primary was set to promiscuous mode
1469			 * because a slave was disabled then
1470			 * it can now leave promiscuous mode.
1471			 */
1472			dev_set_promiscuity(bond->curr_active_slave->dev, -1);
1473			bond_info->primary_is_promisc = 0;
1474
1475			rtnl_unlock();
1476			read_lock(&bond->lock);
1477		}
1478
1479		if (bond_info->rlb_rebalance) {
1480			bond_info->rlb_rebalance = 0;
1481			rlb_rebalance(bond);
1482		}
1483
1484		/* check if clients need updating */
1485		if (bond_info->rx_ntt) {
1486			if (bond_info->rlb_update_delay_counter) {
1487				--bond_info->rlb_update_delay_counter;
1488			} else {
1489				rlb_update_rx_clients(bond);
1490				if (bond_info->rlb_update_retry_counter) {
1491					--bond_info->rlb_update_retry_counter;
1492				} else {
1493					bond_info->rx_ntt = 0;
1494				}
1495			}
1496		}
1497	}
1498
1499re_arm:
1500	queue_delayed_work(bond->wq, &bond->alb_work, alb_delta_in_ticks);
1501out:
1502	read_unlock(&bond->lock);
1503}
1504
1505/* assumption: called before the slave is attached to the bond
1506 * and not locked by the bond lock
1507 */
1508int bond_alb_init_slave(struct bonding *bond, struct slave *slave)
1509{
1510	int res;
1511
1512	res = alb_set_slave_mac_addr(slave, slave->perm_hwaddr,
1513				     bond->alb_info.rlb_enabled);
1514	if (res) {
1515		return res;
1516	}
1517
1518	/* caller must hold the bond lock for write since the mac addresses
1519	 * are compared and may be swapped.
1520	 */
1521	read_lock(&bond->lock);
1522
1523	res = alb_handle_addr_collision_on_attach(bond, slave);
1524
1525	read_unlock(&bond->lock);
1526
1527	if (res) {
1528		return res;
1529	}
1530
1531	tlb_init_slave(slave);
1532
1533	/* order a rebalance ASAP */
1534	bond->alb_info.tx_rebalance_counter = BOND_TLB_REBALANCE_TICKS;
1535
1536	if (bond->alb_info.rlb_enabled) {
1537		bond->alb_info.rlb_rebalance = 1;
1538	}
1539
1540	return 0;
1541}
1542
1543/*
1544 * Remove slave from tlb and rlb hash tables, and fix up MAC addresses
1545 * if necessary.
1546 *
1547 * Caller must hold RTNL and no other locks
1548 */
1549void bond_alb_deinit_slave(struct bonding *bond, struct slave *slave)
1550{
1551	if (bond->slave_cnt > 1) {
1552		alb_change_hw_addr_on_detach(bond, slave);
1553	}
1554
1555	tlb_clear_slave(bond, slave, 0);
1556
1557	if (bond->alb_info.rlb_enabled) {
1558		bond->alb_info.next_rx_slave = NULL;
1559		rlb_clear_slave(bond, slave);
1560	}
1561}
1562
1563/* Caller must hold bond lock for read */
1564void bond_alb_handle_link_change(struct bonding *bond, struct slave *slave, char link)
1565{
1566	struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
1567
1568	if (link == BOND_LINK_DOWN) {
1569		tlb_clear_slave(bond, slave, 0);
1570		if (bond->alb_info.rlb_enabled) {
1571			rlb_clear_slave(bond, slave);
1572		}
1573	} else if (link == BOND_LINK_UP) {
1574		/* order a rebalance ASAP */
1575		bond_info->tx_rebalance_counter = BOND_TLB_REBALANCE_TICKS;
1576		if (bond->alb_info.rlb_enabled) {
1577			bond->alb_info.rlb_rebalance = 1;
1578			/* If the updelay module parameter is smaller than the
1579			 * forwarding delay of the switch the rebalance will
1580			 * not work because the rebalance arp replies will
1581			 * not be forwarded to the clients..
1582			 */
1583		}
1584	}
1585}
1586
1587/**
1588 * bond_alb_handle_active_change - assign new curr_active_slave
1589 * @bond: our bonding struct
1590 * @new_slave: new slave to assign
1591 *
1592 * Set the bond->curr_active_slave to @new_slave and handle
1593 * mac address swapping and promiscuity changes as needed.
1594 *
1595 * If new_slave is NULL, caller must hold curr_slave_lock or
1596 * bond->lock for write.
1597 *
1598 * If new_slave is not NULL, caller must hold RTNL, bond->lock for
1599 * read and curr_slave_lock for write.  Processing here may sleep, so
1600 * no other locks may be held.
1601 */
1602void bond_alb_handle_active_change(struct bonding *bond, struct slave *new_slave)
1603{
1604	struct slave *swap_slave;
1605	int i;
1606
1607	if (bond->curr_active_slave == new_slave) {
1608		return;
1609	}
1610
1611	if (bond->curr_active_slave && bond->alb_info.primary_is_promisc) {
1612		dev_set_promiscuity(bond->curr_active_slave->dev, -1);
1613		bond->alb_info.primary_is_promisc = 0;
1614		bond->alb_info.rlb_promisc_timeout_counter = 0;
1615	}
1616
1617	swap_slave = bond->curr_active_slave;
1618	bond->curr_active_slave = new_slave;
1619
1620	if (!new_slave || (bond->slave_cnt == 0)) {
1621		return;
1622	}
1623
1624	/* set the new curr_active_slave to the bonds mac address
1625	 * i.e. swap mac addresses of old curr_active_slave and new curr_active_slave
1626	 */
1627	if (!swap_slave) {
1628		struct slave *tmp_slave;
1629		/* find slave that is holding the bond's mac address */
1630		bond_for_each_slave(bond, tmp_slave, i) {
1631			if (!memcmp(tmp_slave->dev->dev_addr,
1632				    bond->dev->dev_addr, ETH_ALEN)) {
1633				swap_slave = tmp_slave;
1634				break;
1635			}
1636		}
1637	}
1638
1639	/*
1640	 * Arrange for swap_slave and new_slave to temporarily be
1641	 * ignored so we can mess with their MAC addresses without
1642	 * fear of interference from transmit activity.
1643	 */
1644	if (swap_slave) {
1645		tlb_clear_slave(bond, swap_slave, 1);
1646	}
1647	tlb_clear_slave(bond, new_slave, 1);
1648
1649	write_unlock_bh(&bond->curr_slave_lock);
1650	read_unlock(&bond->lock);
1651
1652	ASSERT_RTNL();
1653
1654	/* curr_active_slave must be set before calling alb_swap_mac_addr */
1655	if (swap_slave) {
1656		/* swap mac address */
1657		alb_swap_mac_addr(bond, swap_slave, new_slave);
1658	} else {
1659		/* set the new_slave to the bond mac address */
1660		alb_set_slave_mac_addr(new_slave, bond->dev->dev_addr,
1661				       bond->alb_info.rlb_enabled);
1662	}
1663
1664	if (swap_slave) {
1665		alb_fasten_mac_swap(bond, swap_slave, new_slave);
1666		read_lock(&bond->lock);
1667	} else {
1668		read_lock(&bond->lock);
1669		alb_send_learning_packets(new_slave, bond->dev->dev_addr);
1670	}
1671
1672	write_lock_bh(&bond->curr_slave_lock);
1673}
1674
1675/*
1676 * Called with RTNL
1677 */
1678int bond_alb_set_mac_address(struct net_device *bond_dev, void *addr)
1679{
1680	struct bonding *bond = bond_dev->priv;
1681	struct sockaddr *sa = addr;
1682	struct slave *slave, *swap_slave;
1683	int res;
1684	int i;
1685
1686	if (!is_valid_ether_addr(sa->sa_data)) {
1687		return -EADDRNOTAVAIL;
1688	}
1689
1690	res = alb_set_mac_address(bond, addr);
1691	if (res) {
1692		return res;
1693	}
1694
1695	memcpy(bond_dev->dev_addr, sa->sa_data, bond_dev->addr_len);
1696
1697	/* If there is no curr_active_slave there is nothing else to do.
1698	 * Otherwise we'll need to pass the new address to it and handle
1699	 * duplications.
1700	 */
1701	if (!bond->curr_active_slave) {
1702		return 0;
1703	}
1704
1705	swap_slave = NULL;
1706
1707	bond_for_each_slave(bond, slave, i) {
1708		if (!memcmp(slave->dev->dev_addr, bond_dev->dev_addr, ETH_ALEN)) {
1709			swap_slave = slave;
1710			break;
1711		}
1712	}
1713
1714	write_unlock_bh(&bond->curr_slave_lock);
1715	read_unlock(&bond->lock);
1716
1717	if (swap_slave) {
1718		alb_swap_mac_addr(bond, swap_slave, bond->curr_active_slave);
1719		alb_fasten_mac_swap(bond, swap_slave, bond->curr_active_slave);
1720	} else {
1721		alb_set_slave_mac_addr(bond->curr_active_slave, bond_dev->dev_addr,
1722				       bond->alb_info.rlb_enabled);
1723
1724		alb_send_learning_packets(bond->curr_active_slave, bond_dev->dev_addr);
1725		if (bond->alb_info.rlb_enabled) {
1726			/* inform clients mac address has changed */
1727			rlb_req_update_slave_clients(bond, bond->curr_active_slave);
1728		}
1729	}
1730
1731	read_lock(&bond->lock);
1732	write_lock_bh(&bond->curr_slave_lock);
1733
1734	return 0;
1735}
1736
1737void bond_alb_clear_vlan(struct bonding *bond, unsigned short vlan_id)
1738{
1739	if (bond->alb_info.current_alb_vlan &&
1740	    (bond->alb_info.current_alb_vlan->vlan_id == vlan_id)) {
1741		bond->alb_info.current_alb_vlan = NULL;
1742	}
1743
1744	if (bond->alb_info.rlb_enabled) {
1745		rlb_clear_vlan(bond, vlan_id);
1746	}
1747}
1748
1749