bond_alb.c revision e730c15519d09ea528b4d2f1103681fa5937c0e6
1/*
2 * Copyright(c) 1999 - 2004 Intel Corporation. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms of the GNU General Public License as published by the
6 * Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful, but
10 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
11 * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * for more details.
13 *
14 * You should have received a copy of the GNU General Public License along
15 * with this program; if not, write to the Free Software Foundation, Inc.,
16 * 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
17 *
18 * The full GNU General Public License is included in this distribution in the
19 * file called LICENSE.
20 *
21 */
22
23//#define BONDING_DEBUG 1
24
25#include <linux/skbuff.h>
26#include <linux/netdevice.h>
27#include <linux/etherdevice.h>
28#include <linux/pkt_sched.h>
29#include <linux/spinlock.h>
30#include <linux/slab.h>
31#include <linux/timer.h>
32#include <linux/ip.h>
33#include <linux/ipv6.h>
34#include <linux/if_arp.h>
35#include <linux/if_ether.h>
36#include <linux/if_bonding.h>
37#include <linux/if_vlan.h>
38#include <linux/in.h>
39#include <net/ipx.h>
40#include <net/arp.h>
41#include <asm/byteorder.h>
42#include "bonding.h"
43#include "bond_alb.h"
44
45
46#define ALB_TIMER_TICKS_PER_SEC	    10	/* should be a divisor of HZ */
47#define BOND_TLB_REBALANCE_INTERVAL 10	/* In seconds, periodic re-balancing.
48					 * Used for division - never set
49					 * to zero !!!
50					 */
51#define BOND_ALB_LP_INTERVAL	    1	/* In seconds, periodic send of
52					 * learning packets to the switch
53					 */
54
55#define BOND_TLB_REBALANCE_TICKS (BOND_TLB_REBALANCE_INTERVAL \
56				  * ALB_TIMER_TICKS_PER_SEC)
57
58#define BOND_ALB_LP_TICKS (BOND_ALB_LP_INTERVAL \
59			   * ALB_TIMER_TICKS_PER_SEC)
60
61#define TLB_HASH_TABLE_SIZE 256	/* The size of the clients hash table.
62				 * Note that this value MUST NOT be smaller
63				 * because the key hash table is BYTE wide !
64				 */
65
66
67#define TLB_NULL_INDEX		0xffffffff
68#define MAX_LP_BURST		3
69
70/* rlb defs */
71#define RLB_HASH_TABLE_SIZE	256
72#define RLB_NULL_INDEX		0xffffffff
73#define RLB_UPDATE_DELAY	2*ALB_TIMER_TICKS_PER_SEC /* 2 seconds */
74#define RLB_ARP_BURST_SIZE	2
75#define RLB_UPDATE_RETRY	3	/* 3-ticks - must be smaller than the rlb
76					 * rebalance interval (5 min).
77					 */
78/* RLB_PROMISC_TIMEOUT = 10 sec equals the time that the current slave is
79 * promiscuous after failover
80 */
81#define RLB_PROMISC_TIMEOUT	10*ALB_TIMER_TICKS_PER_SEC
82
83static const u8 mac_bcast[ETH_ALEN] = {0xff,0xff,0xff,0xff,0xff,0xff};
84static const int alb_delta_in_ticks = HZ / ALB_TIMER_TICKS_PER_SEC;
85
86#pragma pack(1)
87struct learning_pkt {
88	u8 mac_dst[ETH_ALEN];
89	u8 mac_src[ETH_ALEN];
90	u16 type;
91	u8 padding[ETH_ZLEN - ETH_HLEN];
92};
93
94struct arp_pkt {
95	u16     hw_addr_space;
96	u16     prot_addr_space;
97	u8      hw_addr_len;
98	u8      prot_addr_len;
99	u16     op_code;
100	u8      mac_src[ETH_ALEN];	/* sender hardware address */
101	u32     ip_src;			/* sender IP address */
102	u8      mac_dst[ETH_ALEN];	/* target hardware address */
103	u32     ip_dst;			/* target IP address */
104};
105#pragma pack()
106
107static inline struct arp_pkt *arp_pkt(const struct sk_buff *skb)
108{
109	return (struct arp_pkt *)skb_network_header(skb);
110}
111
112/* Forward declaration */
113static void alb_send_learning_packets(struct slave *slave, u8 mac_addr[]);
114
115static inline u8 _simple_hash(const u8 *hash_start, int hash_size)
116{
117	int i;
118	u8 hash = 0;
119
120	for (i = 0; i < hash_size; i++) {
121		hash ^= hash_start[i];
122	}
123
124	return hash;
125}
126
127/*********************** tlb specific functions ***************************/
128
129static inline void _lock_tx_hashtbl(struct bonding *bond)
130{
131	spin_lock(&(BOND_ALB_INFO(bond).tx_hashtbl_lock));
132}
133
134static inline void _unlock_tx_hashtbl(struct bonding *bond)
135{
136	spin_unlock(&(BOND_ALB_INFO(bond).tx_hashtbl_lock));
137}
138
139/* Caller must hold tx_hashtbl lock */
140static inline void tlb_init_table_entry(struct tlb_client_info *entry, int save_load)
141{
142	if (save_load) {
143		entry->load_history = 1 + entry->tx_bytes /
144				      BOND_TLB_REBALANCE_INTERVAL;
145		entry->tx_bytes = 0;
146	}
147
148	entry->tx_slave = NULL;
149	entry->next = TLB_NULL_INDEX;
150	entry->prev = TLB_NULL_INDEX;
151}
152
153static inline void tlb_init_slave(struct slave *slave)
154{
155	SLAVE_TLB_INFO(slave).load = 0;
156	SLAVE_TLB_INFO(slave).head = TLB_NULL_INDEX;
157}
158
159/* Caller must hold bond lock for read */
160static void tlb_clear_slave(struct bonding *bond, struct slave *slave, int save_load)
161{
162	struct tlb_client_info *tx_hash_table;
163	u32 index;
164
165	_lock_tx_hashtbl(bond);
166
167	/* clear slave from tx_hashtbl */
168	tx_hash_table = BOND_ALB_INFO(bond).tx_hashtbl;
169
170	index = SLAVE_TLB_INFO(slave).head;
171	while (index != TLB_NULL_INDEX) {
172		u32 next_index = tx_hash_table[index].next;
173		tlb_init_table_entry(&tx_hash_table[index], save_load);
174		index = next_index;
175	}
176
177	tlb_init_slave(slave);
178
179	_unlock_tx_hashtbl(bond);
180}
181
182/* Must be called before starting the monitor timer */
183static int tlb_initialize(struct bonding *bond)
184{
185	struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
186	int size = TLB_HASH_TABLE_SIZE * sizeof(struct tlb_client_info);
187	struct tlb_client_info *new_hashtbl;
188	int i;
189
190	spin_lock_init(&(bond_info->tx_hashtbl_lock));
191
192	new_hashtbl = kzalloc(size, GFP_KERNEL);
193	if (!new_hashtbl) {
194		printk(KERN_ERR DRV_NAME
195		       ": %s: Error: Failed to allocate TLB hash table\n",
196		       bond->dev->name);
197		return -1;
198	}
199	_lock_tx_hashtbl(bond);
200
201	bond_info->tx_hashtbl = new_hashtbl;
202
203	for (i = 0; i < TLB_HASH_TABLE_SIZE; i++) {
204		tlb_init_table_entry(&bond_info->tx_hashtbl[i], 1);
205	}
206
207	_unlock_tx_hashtbl(bond);
208
209	return 0;
210}
211
212/* Must be called only after all slaves have been released */
213static void tlb_deinitialize(struct bonding *bond)
214{
215	struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
216
217	_lock_tx_hashtbl(bond);
218
219	kfree(bond_info->tx_hashtbl);
220	bond_info->tx_hashtbl = NULL;
221
222	_unlock_tx_hashtbl(bond);
223}
224
225/* Caller must hold bond lock for read */
226static struct slave *tlb_get_least_loaded_slave(struct bonding *bond)
227{
228	struct slave *slave, *least_loaded;
229	s64 max_gap;
230	int i, found = 0;
231
232	/* Find the first enabled slave */
233	bond_for_each_slave(bond, slave, i) {
234		if (SLAVE_IS_OK(slave)) {
235			found = 1;
236			break;
237		}
238	}
239
240	if (!found) {
241		return NULL;
242	}
243
244	least_loaded = slave;
245	max_gap = (s64)(slave->speed << 20) - /* Convert to Megabit per sec */
246			(s64)(SLAVE_TLB_INFO(slave).load << 3); /* Bytes to bits */
247
248	/* Find the slave with the largest gap */
249	bond_for_each_slave_from(bond, slave, i, least_loaded) {
250		if (SLAVE_IS_OK(slave)) {
251			s64 gap = (s64)(slave->speed << 20) -
252					(s64)(SLAVE_TLB_INFO(slave).load << 3);
253			if (max_gap < gap) {
254				least_loaded = slave;
255				max_gap = gap;
256			}
257		}
258	}
259
260	return least_loaded;
261}
262
263/* Caller must hold bond lock for read */
264static struct slave *tlb_choose_channel(struct bonding *bond, u32 hash_index, u32 skb_len)
265{
266	struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
267	struct tlb_client_info *hash_table;
268	struct slave *assigned_slave;
269
270	_lock_tx_hashtbl(bond);
271
272	hash_table = bond_info->tx_hashtbl;
273	assigned_slave = hash_table[hash_index].tx_slave;
274	if (!assigned_slave) {
275		assigned_slave = tlb_get_least_loaded_slave(bond);
276
277		if (assigned_slave) {
278			struct tlb_slave_info *slave_info =
279				&(SLAVE_TLB_INFO(assigned_slave));
280			u32 next_index = slave_info->head;
281
282			hash_table[hash_index].tx_slave = assigned_slave;
283			hash_table[hash_index].next = next_index;
284			hash_table[hash_index].prev = TLB_NULL_INDEX;
285
286			if (next_index != TLB_NULL_INDEX) {
287				hash_table[next_index].prev = hash_index;
288			}
289
290			slave_info->head = hash_index;
291			slave_info->load +=
292				hash_table[hash_index].load_history;
293		}
294	}
295
296	if (assigned_slave) {
297		hash_table[hash_index].tx_bytes += skb_len;
298	}
299
300	_unlock_tx_hashtbl(bond);
301
302	return assigned_slave;
303}
304
305/*********************** rlb specific functions ***************************/
306static inline void _lock_rx_hashtbl(struct bonding *bond)
307{
308	spin_lock(&(BOND_ALB_INFO(bond).rx_hashtbl_lock));
309}
310
311static inline void _unlock_rx_hashtbl(struct bonding *bond)
312{
313	spin_unlock(&(BOND_ALB_INFO(bond).rx_hashtbl_lock));
314}
315
316/* when an ARP REPLY is received from a client update its info
317 * in the rx_hashtbl
318 */
319static void rlb_update_entry_from_arp(struct bonding *bond, struct arp_pkt *arp)
320{
321	struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
322	struct rlb_client_info *client_info;
323	u32 hash_index;
324
325	_lock_rx_hashtbl(bond);
326
327	hash_index = _simple_hash((u8*)&(arp->ip_src), sizeof(arp->ip_src));
328	client_info = &(bond_info->rx_hashtbl[hash_index]);
329
330	if ((client_info->assigned) &&
331	    (client_info->ip_src == arp->ip_dst) &&
332	    (client_info->ip_dst == arp->ip_src)) {
333		/* update the clients MAC address */
334		memcpy(client_info->mac_dst, arp->mac_src, ETH_ALEN);
335		client_info->ntt = 1;
336		bond_info->rx_ntt = 1;
337	}
338
339	_unlock_rx_hashtbl(bond);
340}
341
342static int rlb_arp_recv(struct sk_buff *skb, struct net_device *bond_dev, struct packet_type *ptype, struct net_device *orig_dev)
343{
344	struct bonding *bond = bond_dev->priv;
345	struct arp_pkt *arp = (struct arp_pkt *)skb->data;
346	int res = NET_RX_DROP;
347
348	if (bond_dev->nd_net != &init_net)
349		goto out;
350
351	if (!(bond_dev->flags & IFF_MASTER))
352		goto out;
353
354	if (!arp) {
355		dprintk("Packet has no ARP data\n");
356		goto out;
357	}
358
359	if (skb->len < sizeof(struct arp_pkt)) {
360		dprintk("Packet is too small to be an ARP\n");
361		goto out;
362	}
363
364	if (arp->op_code == htons(ARPOP_REPLY)) {
365		/* update rx hash table for this ARP */
366		rlb_update_entry_from_arp(bond, arp);
367		dprintk("Server received an ARP Reply from client\n");
368	}
369
370	res = NET_RX_SUCCESS;
371
372out:
373	dev_kfree_skb(skb);
374
375	return res;
376}
377
378/* Caller must hold bond lock for read */
379static struct slave *rlb_next_rx_slave(struct bonding *bond)
380{
381	struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
382	struct slave *rx_slave, *slave, *start_at;
383	int i = 0;
384
385	if (bond_info->next_rx_slave) {
386		start_at = bond_info->next_rx_slave;
387	} else {
388		start_at = bond->first_slave;
389	}
390
391	rx_slave = NULL;
392
393	bond_for_each_slave_from(bond, slave, i, start_at) {
394		if (SLAVE_IS_OK(slave)) {
395			if (!rx_slave) {
396				rx_slave = slave;
397			} else if (slave->speed > rx_slave->speed) {
398				rx_slave = slave;
399			}
400		}
401	}
402
403	if (rx_slave) {
404		bond_info->next_rx_slave = rx_slave->next;
405	}
406
407	return rx_slave;
408}
409
410/* teach the switch the mac of a disabled slave
411 * on the primary for fault tolerance
412 *
413 * Caller must hold bond->curr_slave_lock for write or bond lock for write
414 */
415static void rlb_teach_disabled_mac_on_primary(struct bonding *bond, u8 addr[])
416{
417	if (!bond->curr_active_slave) {
418		return;
419	}
420
421	if (!bond->alb_info.primary_is_promisc) {
422		bond->alb_info.primary_is_promisc = 1;
423		dev_set_promiscuity(bond->curr_active_slave->dev, 1);
424	}
425
426	bond->alb_info.rlb_promisc_timeout_counter = 0;
427
428	alb_send_learning_packets(bond->curr_active_slave, addr);
429}
430
431/* slave being removed should not be active at this point
432 *
433 * Caller must hold bond lock for read
434 */
435static void rlb_clear_slave(struct bonding *bond, struct slave *slave)
436{
437	struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
438	struct rlb_client_info *rx_hash_table;
439	u32 index, next_index;
440
441	/* clear slave from rx_hashtbl */
442	_lock_rx_hashtbl(bond);
443
444	rx_hash_table = bond_info->rx_hashtbl;
445	index = bond_info->rx_hashtbl_head;
446	for (; index != RLB_NULL_INDEX; index = next_index) {
447		next_index = rx_hash_table[index].next;
448		if (rx_hash_table[index].slave == slave) {
449			struct slave *assigned_slave = rlb_next_rx_slave(bond);
450
451			if (assigned_slave) {
452				rx_hash_table[index].slave = assigned_slave;
453				if (memcmp(rx_hash_table[index].mac_dst,
454					   mac_bcast, ETH_ALEN)) {
455					bond_info->rx_hashtbl[index].ntt = 1;
456					bond_info->rx_ntt = 1;
457					/* A slave has been removed from the
458					 * table because it is either disabled
459					 * or being released. We must retry the
460					 * update to avoid clients from not
461					 * being updated & disconnecting when
462					 * there is stress
463					 */
464					bond_info->rlb_update_retry_counter =
465						RLB_UPDATE_RETRY;
466				}
467			} else {  /* there is no active slave */
468				rx_hash_table[index].slave = NULL;
469			}
470		}
471	}
472
473	_unlock_rx_hashtbl(bond);
474
475	write_lock(&bond->curr_slave_lock);
476
477	if (slave != bond->curr_active_slave) {
478		rlb_teach_disabled_mac_on_primary(bond, slave->dev->dev_addr);
479	}
480
481	write_unlock(&bond->curr_slave_lock);
482}
483
484static void rlb_update_client(struct rlb_client_info *client_info)
485{
486	int i;
487
488	if (!client_info->slave) {
489		return;
490	}
491
492	for (i = 0; i < RLB_ARP_BURST_SIZE; i++) {
493		struct sk_buff *skb;
494
495		skb = arp_create(ARPOP_REPLY, ETH_P_ARP,
496				 client_info->ip_dst,
497				 client_info->slave->dev,
498				 client_info->ip_src,
499				 client_info->mac_dst,
500				 client_info->slave->dev->dev_addr,
501				 client_info->mac_dst);
502		if (!skb) {
503			printk(KERN_ERR DRV_NAME
504			       ": %s: Error: failed to create an ARP packet\n",
505			       client_info->slave->dev->master->name);
506			continue;
507		}
508
509		skb->dev = client_info->slave->dev;
510
511		if (client_info->tag) {
512			skb = vlan_put_tag(skb, client_info->vlan_id);
513			if (!skb) {
514				printk(KERN_ERR DRV_NAME
515				       ": %s: Error: failed to insert VLAN tag\n",
516				       client_info->slave->dev->master->name);
517				continue;
518			}
519		}
520
521		arp_xmit(skb);
522	}
523}
524
525/* sends ARP REPLIES that update the clients that need updating */
526static void rlb_update_rx_clients(struct bonding *bond)
527{
528	struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
529	struct rlb_client_info *client_info;
530	u32 hash_index;
531
532	_lock_rx_hashtbl(bond);
533
534	hash_index = bond_info->rx_hashtbl_head;
535	for (; hash_index != RLB_NULL_INDEX; hash_index = client_info->next) {
536		client_info = &(bond_info->rx_hashtbl[hash_index]);
537		if (client_info->ntt) {
538			rlb_update_client(client_info);
539			if (bond_info->rlb_update_retry_counter == 0) {
540				client_info->ntt = 0;
541			}
542		}
543	}
544
545	/* do not update the entries again untill this counter is zero so that
546	 * not to confuse the clients.
547	 */
548	bond_info->rlb_update_delay_counter = RLB_UPDATE_DELAY;
549
550	_unlock_rx_hashtbl(bond);
551}
552
553/* The slave was assigned a new mac address - update the clients */
554static void rlb_req_update_slave_clients(struct bonding *bond, struct slave *slave)
555{
556	struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
557	struct rlb_client_info *client_info;
558	int ntt = 0;
559	u32 hash_index;
560
561	_lock_rx_hashtbl(bond);
562
563	hash_index = bond_info->rx_hashtbl_head;
564	for (; hash_index != RLB_NULL_INDEX; hash_index = client_info->next) {
565		client_info = &(bond_info->rx_hashtbl[hash_index]);
566
567		if ((client_info->slave == slave) &&
568		    memcmp(client_info->mac_dst, mac_bcast, ETH_ALEN)) {
569			client_info->ntt = 1;
570			ntt = 1;
571		}
572	}
573
574	// update the team's flag only after the whole iteration
575	if (ntt) {
576		bond_info->rx_ntt = 1;
577		//fasten the change
578		bond_info->rlb_update_retry_counter = RLB_UPDATE_RETRY;
579	}
580
581	_unlock_rx_hashtbl(bond);
582}
583
584/* mark all clients using src_ip to be updated */
585static void rlb_req_update_subnet_clients(struct bonding *bond, u32 src_ip)
586{
587	struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
588	struct rlb_client_info *client_info;
589	u32 hash_index;
590
591	_lock_rx_hashtbl(bond);
592
593	hash_index = bond_info->rx_hashtbl_head;
594	for (; hash_index != RLB_NULL_INDEX; hash_index = client_info->next) {
595		client_info = &(bond_info->rx_hashtbl[hash_index]);
596
597		if (!client_info->slave) {
598			printk(KERN_ERR DRV_NAME
599			       ": %s: Error: found a client with no channel in "
600			       "the client's hash table\n",
601			       bond->dev->name);
602			continue;
603		}
604		/*update all clients using this src_ip, that are not assigned
605		 * to the team's address (curr_active_slave) and have a known
606		 * unicast mac address.
607		 */
608		if ((client_info->ip_src == src_ip) &&
609		    memcmp(client_info->slave->dev->dev_addr,
610			   bond->dev->dev_addr, ETH_ALEN) &&
611		    memcmp(client_info->mac_dst, mac_bcast, ETH_ALEN)) {
612			client_info->ntt = 1;
613			bond_info->rx_ntt = 1;
614		}
615	}
616
617	_unlock_rx_hashtbl(bond);
618}
619
620/* Caller must hold both bond and ptr locks for read */
621static struct slave *rlb_choose_channel(struct sk_buff *skb, struct bonding *bond)
622{
623	struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
624	struct arp_pkt *arp = arp_pkt(skb);
625	struct slave *assigned_slave;
626	struct rlb_client_info *client_info;
627	u32 hash_index = 0;
628
629	_lock_rx_hashtbl(bond);
630
631	hash_index = _simple_hash((u8 *)&arp->ip_dst, sizeof(arp->ip_src));
632	client_info = &(bond_info->rx_hashtbl[hash_index]);
633
634	if (client_info->assigned) {
635		if ((client_info->ip_src == arp->ip_src) &&
636		    (client_info->ip_dst == arp->ip_dst)) {
637			/* the entry is already assigned to this client */
638			if (memcmp(arp->mac_dst, mac_bcast, ETH_ALEN)) {
639				/* update mac address from arp */
640				memcpy(client_info->mac_dst, arp->mac_dst, ETH_ALEN);
641			}
642
643			assigned_slave = client_info->slave;
644			if (assigned_slave) {
645				_unlock_rx_hashtbl(bond);
646				return assigned_slave;
647			}
648		} else {
649			/* the entry is already assigned to some other client,
650			 * move the old client to primary (curr_active_slave) so
651			 * that the new client can be assigned to this entry.
652			 */
653			if (bond->curr_active_slave &&
654			    client_info->slave != bond->curr_active_slave) {
655				client_info->slave = bond->curr_active_slave;
656				rlb_update_client(client_info);
657			}
658		}
659	}
660	/* assign a new slave */
661	assigned_slave = rlb_next_rx_slave(bond);
662
663	if (assigned_slave) {
664		client_info->ip_src = arp->ip_src;
665		client_info->ip_dst = arp->ip_dst;
666		/* arp->mac_dst is broadcast for arp reqeusts.
667		 * will be updated with clients actual unicast mac address
668		 * upon receiving an arp reply.
669		 */
670		memcpy(client_info->mac_dst, arp->mac_dst, ETH_ALEN);
671		client_info->slave = assigned_slave;
672
673		if (memcmp(client_info->mac_dst, mac_bcast, ETH_ALEN)) {
674			client_info->ntt = 1;
675			bond->alb_info.rx_ntt = 1;
676		} else {
677			client_info->ntt = 0;
678		}
679
680		if (!list_empty(&bond->vlan_list)) {
681			unsigned short vlan_id;
682			int res = vlan_get_tag(skb, &vlan_id);
683			if (!res) {
684				client_info->tag = 1;
685				client_info->vlan_id = vlan_id;
686			}
687		}
688
689		if (!client_info->assigned) {
690			u32 prev_tbl_head = bond_info->rx_hashtbl_head;
691			bond_info->rx_hashtbl_head = hash_index;
692			client_info->next = prev_tbl_head;
693			if (prev_tbl_head != RLB_NULL_INDEX) {
694				bond_info->rx_hashtbl[prev_tbl_head].prev =
695					hash_index;
696			}
697			client_info->assigned = 1;
698		}
699	}
700
701	_unlock_rx_hashtbl(bond);
702
703	return assigned_slave;
704}
705
706/* chooses (and returns) transmit channel for arp reply
707 * does not choose channel for other arp types since they are
708 * sent on the curr_active_slave
709 */
710static struct slave *rlb_arp_xmit(struct sk_buff *skb, struct bonding *bond)
711{
712	struct arp_pkt *arp = arp_pkt(skb);
713	struct slave *tx_slave = NULL;
714
715	if (arp->op_code == __constant_htons(ARPOP_REPLY)) {
716		/* the arp must be sent on the selected
717		* rx channel
718		*/
719		tx_slave = rlb_choose_channel(skb, bond);
720		if (tx_slave) {
721			memcpy(arp->mac_src,tx_slave->dev->dev_addr, ETH_ALEN);
722		}
723		dprintk("Server sent ARP Reply packet\n");
724	} else if (arp->op_code == __constant_htons(ARPOP_REQUEST)) {
725		/* Create an entry in the rx_hashtbl for this client as a
726		 * place holder.
727		 * When the arp reply is received the entry will be updated
728		 * with the correct unicast address of the client.
729		 */
730		rlb_choose_channel(skb, bond);
731
732		/* The ARP relpy packets must be delayed so that
733		 * they can cancel out the influence of the ARP request.
734		 */
735		bond->alb_info.rlb_update_delay_counter = RLB_UPDATE_DELAY;
736
737		/* arp requests are broadcast and are sent on the primary
738		 * the arp request will collapse all clients on the subnet to
739		 * the primary slave. We must register these clients to be
740		 * updated with their assigned mac.
741		 */
742		rlb_req_update_subnet_clients(bond, arp->ip_src);
743		dprintk("Server sent ARP Request packet\n");
744	}
745
746	return tx_slave;
747}
748
749/* Caller must hold bond lock for read */
750static void rlb_rebalance(struct bonding *bond)
751{
752	struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
753	struct slave *assigned_slave;
754	struct rlb_client_info *client_info;
755	int ntt;
756	u32 hash_index;
757
758	_lock_rx_hashtbl(bond);
759
760	ntt = 0;
761	hash_index = bond_info->rx_hashtbl_head;
762	for (; hash_index != RLB_NULL_INDEX; hash_index = client_info->next) {
763		client_info = &(bond_info->rx_hashtbl[hash_index]);
764		assigned_slave = rlb_next_rx_slave(bond);
765		if (assigned_slave && (client_info->slave != assigned_slave)) {
766			client_info->slave = assigned_slave;
767			client_info->ntt = 1;
768			ntt = 1;
769		}
770	}
771
772	/* update the team's flag only after the whole iteration */
773	if (ntt) {
774		bond_info->rx_ntt = 1;
775	}
776	_unlock_rx_hashtbl(bond);
777}
778
779/* Caller must hold rx_hashtbl lock */
780static void rlb_init_table_entry(struct rlb_client_info *entry)
781{
782	memset(entry, 0, sizeof(struct rlb_client_info));
783	entry->next = RLB_NULL_INDEX;
784	entry->prev = RLB_NULL_INDEX;
785}
786
787static int rlb_initialize(struct bonding *bond)
788{
789	struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
790	struct packet_type *pk_type = &(BOND_ALB_INFO(bond).rlb_pkt_type);
791	struct rlb_client_info	*new_hashtbl;
792	int size = RLB_HASH_TABLE_SIZE * sizeof(struct rlb_client_info);
793	int i;
794
795	spin_lock_init(&(bond_info->rx_hashtbl_lock));
796
797	new_hashtbl = kmalloc(size, GFP_KERNEL);
798	if (!new_hashtbl) {
799		printk(KERN_ERR DRV_NAME
800		       ": %s: Error: Failed to allocate RLB hash table\n",
801		       bond->dev->name);
802		return -1;
803	}
804	_lock_rx_hashtbl(bond);
805
806	bond_info->rx_hashtbl = new_hashtbl;
807
808	bond_info->rx_hashtbl_head = RLB_NULL_INDEX;
809
810	for (i = 0; i < RLB_HASH_TABLE_SIZE; i++) {
811		rlb_init_table_entry(bond_info->rx_hashtbl + i);
812	}
813
814	_unlock_rx_hashtbl(bond);
815
816	/*initialize packet type*/
817	pk_type->type = __constant_htons(ETH_P_ARP);
818	pk_type->dev = bond->dev;
819	pk_type->func = rlb_arp_recv;
820
821	/* register to receive ARPs */
822	dev_add_pack(pk_type);
823
824	return 0;
825}
826
827static void rlb_deinitialize(struct bonding *bond)
828{
829	struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
830
831	dev_remove_pack(&(bond_info->rlb_pkt_type));
832
833	_lock_rx_hashtbl(bond);
834
835	kfree(bond_info->rx_hashtbl);
836	bond_info->rx_hashtbl = NULL;
837	bond_info->rx_hashtbl_head = RLB_NULL_INDEX;
838
839	_unlock_rx_hashtbl(bond);
840}
841
842static void rlb_clear_vlan(struct bonding *bond, unsigned short vlan_id)
843{
844	struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
845	u32 curr_index;
846
847	_lock_rx_hashtbl(bond);
848
849	curr_index = bond_info->rx_hashtbl_head;
850	while (curr_index != RLB_NULL_INDEX) {
851		struct rlb_client_info *curr = &(bond_info->rx_hashtbl[curr_index]);
852		u32 next_index = bond_info->rx_hashtbl[curr_index].next;
853		u32 prev_index = bond_info->rx_hashtbl[curr_index].prev;
854
855		if (curr->tag && (curr->vlan_id == vlan_id)) {
856			if (curr_index == bond_info->rx_hashtbl_head) {
857				bond_info->rx_hashtbl_head = next_index;
858			}
859			if (prev_index != RLB_NULL_INDEX) {
860				bond_info->rx_hashtbl[prev_index].next = next_index;
861			}
862			if (next_index != RLB_NULL_INDEX) {
863				bond_info->rx_hashtbl[next_index].prev = prev_index;
864			}
865
866			rlb_init_table_entry(curr);
867		}
868
869		curr_index = next_index;
870	}
871
872	_unlock_rx_hashtbl(bond);
873}
874
875/*********************** tlb/rlb shared functions *********************/
876
877static void alb_send_learning_packets(struct slave *slave, u8 mac_addr[])
878{
879	struct bonding *bond = bond_get_bond_by_slave(slave);
880	struct learning_pkt pkt;
881	int size = sizeof(struct learning_pkt);
882	int i;
883
884	memset(&pkt, 0, size);
885	memcpy(pkt.mac_dst, mac_addr, ETH_ALEN);
886	memcpy(pkt.mac_src, mac_addr, ETH_ALEN);
887	pkt.type = __constant_htons(ETH_P_LOOP);
888
889	for (i = 0; i < MAX_LP_BURST; i++) {
890		struct sk_buff *skb;
891		char *data;
892
893		skb = dev_alloc_skb(size);
894		if (!skb) {
895			return;
896		}
897
898		data = skb_put(skb, size);
899		memcpy(data, &pkt, size);
900
901		skb_reset_mac_header(skb);
902		skb->network_header = skb->mac_header + ETH_HLEN;
903		skb->protocol = pkt.type;
904		skb->priority = TC_PRIO_CONTROL;
905		skb->dev = slave->dev;
906
907		if (!list_empty(&bond->vlan_list)) {
908			struct vlan_entry *vlan;
909
910			vlan = bond_next_vlan(bond,
911					      bond->alb_info.current_alb_vlan);
912
913			bond->alb_info.current_alb_vlan = vlan;
914			if (!vlan) {
915				kfree_skb(skb);
916				continue;
917			}
918
919			skb = vlan_put_tag(skb, vlan->vlan_id);
920			if (!skb) {
921				printk(KERN_ERR DRV_NAME
922				       ": %s: Error: failed to insert VLAN tag\n",
923				       bond->dev->name);
924				continue;
925			}
926		}
927
928		dev_queue_xmit(skb);
929	}
930}
931
932/* hw is a boolean parameter that determines whether we should try and
933 * set the hw address of the device as well as the hw address of the
934 * net_device
935 */
936static int alb_set_slave_mac_addr(struct slave *slave, u8 addr[], int hw)
937{
938	struct net_device *dev = slave->dev;
939	struct sockaddr s_addr;
940
941	if (!hw) {
942		memcpy(dev->dev_addr, addr, dev->addr_len);
943		return 0;
944	}
945
946	/* for rlb each slave must have a unique hw mac addresses so that */
947	/* each slave will receive packets destined to a different mac */
948	memcpy(s_addr.sa_data, addr, dev->addr_len);
949	s_addr.sa_family = dev->type;
950	if (dev_set_mac_address(dev, &s_addr)) {
951		printk(KERN_ERR DRV_NAME
952		       ": %s: Error: dev_set_mac_address of dev %s failed! ALB "
953		       "mode requires that the base driver support setting "
954		       "the hw address also when the network device's "
955		       "interface is open\n",
956		       dev->master->name, dev->name);
957		return -EOPNOTSUPP;
958	}
959	return 0;
960}
961
962/* Caller must hold bond lock for write or curr_slave_lock for write*/
963static void alb_swap_mac_addr(struct bonding *bond, struct slave *slave1, struct slave *slave2)
964{
965	struct slave *disabled_slave = NULL;
966	u8 tmp_mac_addr[ETH_ALEN];
967	int slaves_state_differ;
968
969	slaves_state_differ = (SLAVE_IS_OK(slave1) != SLAVE_IS_OK(slave2));
970
971	memcpy(tmp_mac_addr, slave1->dev->dev_addr, ETH_ALEN);
972	alb_set_slave_mac_addr(slave1, slave2->dev->dev_addr, bond->alb_info.rlb_enabled);
973	alb_set_slave_mac_addr(slave2, tmp_mac_addr, bond->alb_info.rlb_enabled);
974
975	/* fasten the change in the switch */
976	if (SLAVE_IS_OK(slave1)) {
977		alb_send_learning_packets(slave1, slave1->dev->dev_addr);
978		if (bond->alb_info.rlb_enabled) {
979			/* inform the clients that the mac address
980			 * has changed
981			 */
982			rlb_req_update_slave_clients(bond, slave1);
983		}
984	} else {
985		disabled_slave = slave1;
986	}
987
988	if (SLAVE_IS_OK(slave2)) {
989		alb_send_learning_packets(slave2, slave2->dev->dev_addr);
990		if (bond->alb_info.rlb_enabled) {
991			/* inform the clients that the mac address
992			 * has changed
993			 */
994			rlb_req_update_slave_clients(bond, slave2);
995		}
996	} else {
997		disabled_slave = slave2;
998	}
999
1000	if (bond->alb_info.rlb_enabled && slaves_state_differ) {
1001		/* A disabled slave was assigned an active mac addr */
1002		rlb_teach_disabled_mac_on_primary(bond,
1003						  disabled_slave->dev->dev_addr);
1004	}
1005}
1006
1007/**
1008 * alb_change_hw_addr_on_detach
1009 * @bond: bonding we're working on
1010 * @slave: the slave that was just detached
1011 *
1012 * We assume that @slave was already detached from the slave list.
1013 *
1014 * If @slave's permanent hw address is different both from its current
1015 * address and from @bond's address, then somewhere in the bond there's
1016 * a slave that has @slave's permanet address as its current address.
1017 * We'll make sure that that slave no longer uses @slave's permanent address.
1018 *
1019 * Caller must hold bond lock
1020 */
1021static void alb_change_hw_addr_on_detach(struct bonding *bond, struct slave *slave)
1022{
1023	int perm_curr_diff;
1024	int perm_bond_diff;
1025
1026	perm_curr_diff = memcmp(slave->perm_hwaddr,
1027				slave->dev->dev_addr,
1028				ETH_ALEN);
1029	perm_bond_diff = memcmp(slave->perm_hwaddr,
1030				bond->dev->dev_addr,
1031				ETH_ALEN);
1032
1033	if (perm_curr_diff && perm_bond_diff) {
1034		struct slave *tmp_slave;
1035		int i, found = 0;
1036
1037		bond_for_each_slave(bond, tmp_slave, i) {
1038			if (!memcmp(slave->perm_hwaddr,
1039				    tmp_slave->dev->dev_addr,
1040				    ETH_ALEN)) {
1041				found = 1;
1042				break;
1043			}
1044		}
1045
1046		if (found) {
1047			alb_swap_mac_addr(bond, slave, tmp_slave);
1048		}
1049	}
1050}
1051
1052/**
1053 * alb_handle_addr_collision_on_attach
1054 * @bond: bonding we're working on
1055 * @slave: the slave that was just attached
1056 *
1057 * checks uniqueness of slave's mac address and handles the case the
1058 * new slave uses the bonds mac address.
1059 *
1060 * If the permanent hw address of @slave is @bond's hw address, we need to
1061 * find a different hw address to give @slave, that isn't in use by any other
1062 * slave in the bond. This address must be, of course, one of the premanent
1063 * addresses of the other slaves.
1064 *
1065 * We go over the slave list, and for each slave there we compare its
1066 * permanent hw address with the current address of all the other slaves.
1067 * If no match was found, then we've found a slave with a permanent address
1068 * that isn't used by any other slave in the bond, so we can assign it to
1069 * @slave.
1070 *
1071 * assumption: this function is called before @slave is attached to the
1072 * 	       bond slave list.
1073 *
1074 * caller must hold the bond lock for write since the mac addresses are compared
1075 * and may be swapped.
1076 */
1077static int alb_handle_addr_collision_on_attach(struct bonding *bond, struct slave *slave)
1078{
1079	struct slave *tmp_slave1, *tmp_slave2, *free_mac_slave;
1080	struct slave *has_bond_addr = bond->curr_active_slave;
1081	int i, j, found = 0;
1082
1083	if (bond->slave_cnt == 0) {
1084		/* this is the first slave */
1085		return 0;
1086	}
1087
1088	/* if slave's mac address differs from bond's mac address
1089	 * check uniqueness of slave's mac address against the other
1090	 * slaves in the bond.
1091	 */
1092	if (memcmp(slave->perm_hwaddr, bond->dev->dev_addr, ETH_ALEN)) {
1093		bond_for_each_slave(bond, tmp_slave1, i) {
1094			if (!memcmp(tmp_slave1->dev->dev_addr, slave->dev->dev_addr,
1095				    ETH_ALEN)) {
1096				found = 1;
1097				break;
1098			}
1099		}
1100
1101		if (!found)
1102			return 0;
1103
1104		/* Try setting slave mac to bond address and fall-through
1105		   to code handling that situation below... */
1106		alb_set_slave_mac_addr(slave, bond->dev->dev_addr,
1107				       bond->alb_info.rlb_enabled);
1108	}
1109
1110	/* The slave's address is equal to the address of the bond.
1111	 * Search for a spare address in the bond for this slave.
1112	 */
1113	free_mac_slave = NULL;
1114
1115	bond_for_each_slave(bond, tmp_slave1, i) {
1116		found = 0;
1117		bond_for_each_slave(bond, tmp_slave2, j) {
1118			if (!memcmp(tmp_slave1->perm_hwaddr,
1119				    tmp_slave2->dev->dev_addr,
1120				    ETH_ALEN)) {
1121				found = 1;
1122				break;
1123			}
1124		}
1125
1126		if (!found) {
1127			/* no slave has tmp_slave1's perm addr
1128			 * as its curr addr
1129			 */
1130			free_mac_slave = tmp_slave1;
1131			break;
1132		}
1133
1134		if (!has_bond_addr) {
1135			if (!memcmp(tmp_slave1->dev->dev_addr,
1136				    bond->dev->dev_addr,
1137				    ETH_ALEN)) {
1138
1139				has_bond_addr = tmp_slave1;
1140			}
1141		}
1142	}
1143
1144	if (free_mac_slave) {
1145		alb_set_slave_mac_addr(slave, free_mac_slave->perm_hwaddr,
1146				       bond->alb_info.rlb_enabled);
1147
1148		printk(KERN_WARNING DRV_NAME
1149		       ": %s: Warning: the hw address of slave %s is in use by "
1150		       "the bond; giving it the hw address of %s\n",
1151		       bond->dev->name, slave->dev->name, free_mac_slave->dev->name);
1152
1153	} else if (has_bond_addr) {
1154		printk(KERN_ERR DRV_NAME
1155		       ": %s: Error: the hw address of slave %s is in use by the "
1156		       "bond; couldn't find a slave with a free hw address to "
1157		       "give it (this should not have happened)\n",
1158		       bond->dev->name, slave->dev->name);
1159		return -EFAULT;
1160	}
1161
1162	return 0;
1163}
1164
1165/**
1166 * alb_set_mac_address
1167 * @bond:
1168 * @addr:
1169 *
1170 * In TLB mode all slaves are configured to the bond's hw address, but set
1171 * their dev_addr field to different addresses (based on their permanent hw
1172 * addresses).
1173 *
1174 * For each slave, this function sets the interface to the new address and then
1175 * changes its dev_addr field to its previous value.
1176 *
1177 * Unwinding assumes bond's mac address has not yet changed.
1178 */
1179static int alb_set_mac_address(struct bonding *bond, void *addr)
1180{
1181	struct sockaddr sa;
1182	struct slave *slave, *stop_at;
1183	char tmp_addr[ETH_ALEN];
1184	int res;
1185	int i;
1186
1187	if (bond->alb_info.rlb_enabled) {
1188		return 0;
1189	}
1190
1191	bond_for_each_slave(bond, slave, i) {
1192		if (slave->dev->set_mac_address == NULL) {
1193			res = -EOPNOTSUPP;
1194			goto unwind;
1195		}
1196
1197		/* save net_device's current hw address */
1198		memcpy(tmp_addr, slave->dev->dev_addr, ETH_ALEN);
1199
1200		res = dev_set_mac_address(slave->dev, addr);
1201
1202		/* restore net_device's hw address */
1203		memcpy(slave->dev->dev_addr, tmp_addr, ETH_ALEN);
1204
1205		if (res) {
1206			goto unwind;
1207		}
1208	}
1209
1210	return 0;
1211
1212unwind:
1213	memcpy(sa.sa_data, bond->dev->dev_addr, bond->dev->addr_len);
1214	sa.sa_family = bond->dev->type;
1215
1216	/* unwind from head to the slave that failed */
1217	stop_at = slave;
1218	bond_for_each_slave_from_to(bond, slave, i, bond->first_slave, stop_at) {
1219		memcpy(tmp_addr, slave->dev->dev_addr, ETH_ALEN);
1220		dev_set_mac_address(slave->dev, &sa);
1221		memcpy(slave->dev->dev_addr, tmp_addr, ETH_ALEN);
1222	}
1223
1224	return res;
1225}
1226
1227/************************ exported alb funcions ************************/
1228
1229int bond_alb_initialize(struct bonding *bond, int rlb_enabled)
1230{
1231	int res;
1232
1233	res = tlb_initialize(bond);
1234	if (res) {
1235		return res;
1236	}
1237
1238	if (rlb_enabled) {
1239		bond->alb_info.rlb_enabled = 1;
1240		/* initialize rlb */
1241		res = rlb_initialize(bond);
1242		if (res) {
1243			tlb_deinitialize(bond);
1244			return res;
1245		}
1246	} else {
1247		bond->alb_info.rlb_enabled = 0;
1248	}
1249
1250	return 0;
1251}
1252
1253void bond_alb_deinitialize(struct bonding *bond)
1254{
1255	struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
1256
1257	tlb_deinitialize(bond);
1258
1259	if (bond_info->rlb_enabled) {
1260		rlb_deinitialize(bond);
1261	}
1262}
1263
1264int bond_alb_xmit(struct sk_buff *skb, struct net_device *bond_dev)
1265{
1266	struct bonding *bond = bond_dev->priv;
1267	struct ethhdr *eth_data;
1268	struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
1269	struct slave *tx_slave = NULL;
1270	static const u32 ip_bcast = 0xffffffff;
1271	int hash_size = 0;
1272	int do_tx_balance = 1;
1273	u32 hash_index = 0;
1274	const u8 *hash_start = NULL;
1275	int res = 1;
1276
1277	skb_reset_mac_header(skb);
1278	eth_data = eth_hdr(skb);
1279
1280	/* make sure that the curr_active_slave and the slaves list do
1281	 * not change during tx
1282	 */
1283	read_lock(&bond->lock);
1284	read_lock(&bond->curr_slave_lock);
1285
1286	if (!BOND_IS_OK(bond)) {
1287		goto out;
1288	}
1289
1290	switch (ntohs(skb->protocol)) {
1291	case ETH_P_IP: {
1292		const struct iphdr *iph = ip_hdr(skb);
1293
1294		if ((memcmp(eth_data->h_dest, mac_bcast, ETH_ALEN) == 0) ||
1295		    (iph->daddr == ip_bcast) ||
1296		    (iph->protocol == IPPROTO_IGMP)) {
1297			do_tx_balance = 0;
1298			break;
1299		}
1300		hash_start = (char *)&(iph->daddr);
1301		hash_size = sizeof(iph->daddr);
1302	}
1303		break;
1304	case ETH_P_IPV6:
1305		if (memcmp(eth_data->h_dest, mac_bcast, ETH_ALEN) == 0) {
1306			do_tx_balance = 0;
1307			break;
1308		}
1309
1310		hash_start = (char *)&(ipv6_hdr(skb)->daddr);
1311		hash_size = sizeof(ipv6_hdr(skb)->daddr);
1312		break;
1313	case ETH_P_IPX:
1314		if (ipx_hdr(skb)->ipx_checksum !=
1315		    __constant_htons(IPX_NO_CHECKSUM)) {
1316			/* something is wrong with this packet */
1317			do_tx_balance = 0;
1318			break;
1319		}
1320
1321		if (ipx_hdr(skb)->ipx_type != IPX_TYPE_NCP) {
1322			/* The only protocol worth balancing in
1323			 * this family since it has an "ARP" like
1324			 * mechanism
1325			 */
1326			do_tx_balance = 0;
1327			break;
1328		}
1329
1330		hash_start = (char*)eth_data->h_dest;
1331		hash_size = ETH_ALEN;
1332		break;
1333	case ETH_P_ARP:
1334		do_tx_balance = 0;
1335		if (bond_info->rlb_enabled) {
1336			tx_slave = rlb_arp_xmit(skb, bond);
1337		}
1338		break;
1339	default:
1340		do_tx_balance = 0;
1341		break;
1342	}
1343
1344	if (do_tx_balance) {
1345		hash_index = _simple_hash(hash_start, hash_size);
1346		tx_slave = tlb_choose_channel(bond, hash_index, skb->len);
1347	}
1348
1349	if (!tx_slave) {
1350		/* unbalanced or unassigned, send through primary */
1351		tx_slave = bond->curr_active_slave;
1352		bond_info->unbalanced_load += skb->len;
1353	}
1354
1355	if (tx_slave && SLAVE_IS_OK(tx_slave)) {
1356		if (tx_slave != bond->curr_active_slave) {
1357			memcpy(eth_data->h_source,
1358			       tx_slave->dev->dev_addr,
1359			       ETH_ALEN);
1360		}
1361
1362		res = bond_dev_queue_xmit(bond, skb, tx_slave->dev);
1363	} else {
1364		if (tx_slave) {
1365			tlb_clear_slave(bond, tx_slave, 0);
1366		}
1367	}
1368
1369out:
1370	if (res) {
1371		/* no suitable interface, frame not sent */
1372		dev_kfree_skb(skb);
1373	}
1374	read_unlock(&bond->curr_slave_lock);
1375	read_unlock(&bond->lock);
1376	return 0;
1377}
1378
1379void bond_alb_monitor(struct bonding *bond)
1380{
1381	struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
1382	struct slave *slave;
1383	int i;
1384
1385	read_lock(&bond->lock);
1386
1387	if (bond->kill_timers) {
1388		goto out;
1389	}
1390
1391	if (bond->slave_cnt == 0) {
1392		bond_info->tx_rebalance_counter = 0;
1393		bond_info->lp_counter = 0;
1394		goto re_arm;
1395	}
1396
1397	bond_info->tx_rebalance_counter++;
1398	bond_info->lp_counter++;
1399
1400	/* send learning packets */
1401	if (bond_info->lp_counter >= BOND_ALB_LP_TICKS) {
1402		/* change of curr_active_slave involves swapping of mac addresses.
1403		 * in order to avoid this swapping from happening while
1404		 * sending the learning packets, the curr_slave_lock must be held for
1405		 * read.
1406		 */
1407		read_lock(&bond->curr_slave_lock);
1408
1409		bond_for_each_slave(bond, slave, i) {
1410			alb_send_learning_packets(slave, slave->dev->dev_addr);
1411		}
1412
1413		read_unlock(&bond->curr_slave_lock);
1414
1415		bond_info->lp_counter = 0;
1416	}
1417
1418	/* rebalance tx traffic */
1419	if (bond_info->tx_rebalance_counter >= BOND_TLB_REBALANCE_TICKS) {
1420
1421		read_lock(&bond->curr_slave_lock);
1422
1423		bond_for_each_slave(bond, slave, i) {
1424			tlb_clear_slave(bond, slave, 1);
1425			if (slave == bond->curr_active_slave) {
1426				SLAVE_TLB_INFO(slave).load =
1427					bond_info->unbalanced_load /
1428						BOND_TLB_REBALANCE_INTERVAL;
1429				bond_info->unbalanced_load = 0;
1430			}
1431		}
1432
1433		read_unlock(&bond->curr_slave_lock);
1434
1435		bond_info->tx_rebalance_counter = 0;
1436	}
1437
1438	/* handle rlb stuff */
1439	if (bond_info->rlb_enabled) {
1440		/* the following code changes the promiscuity of the
1441		 * the curr_active_slave. It needs to be locked with a
1442		 * write lock to protect from other code that also
1443		 * sets the promiscuity.
1444		 */
1445		write_lock_bh(&bond->curr_slave_lock);
1446
1447		if (bond_info->primary_is_promisc &&
1448		    (++bond_info->rlb_promisc_timeout_counter >= RLB_PROMISC_TIMEOUT)) {
1449
1450			bond_info->rlb_promisc_timeout_counter = 0;
1451
1452			/* If the primary was set to promiscuous mode
1453			 * because a slave was disabled then
1454			 * it can now leave promiscuous mode.
1455			 */
1456			dev_set_promiscuity(bond->curr_active_slave->dev, -1);
1457			bond_info->primary_is_promisc = 0;
1458		}
1459
1460		write_unlock_bh(&bond->curr_slave_lock);
1461
1462		if (bond_info->rlb_rebalance) {
1463			bond_info->rlb_rebalance = 0;
1464			rlb_rebalance(bond);
1465		}
1466
1467		/* check if clients need updating */
1468		if (bond_info->rx_ntt) {
1469			if (bond_info->rlb_update_delay_counter) {
1470				--bond_info->rlb_update_delay_counter;
1471			} else {
1472				rlb_update_rx_clients(bond);
1473				if (bond_info->rlb_update_retry_counter) {
1474					--bond_info->rlb_update_retry_counter;
1475				} else {
1476					bond_info->rx_ntt = 0;
1477				}
1478			}
1479		}
1480	}
1481
1482re_arm:
1483	mod_timer(&(bond_info->alb_timer), jiffies + alb_delta_in_ticks);
1484out:
1485	read_unlock(&bond->lock);
1486}
1487
1488/* assumption: called before the slave is attached to the bond
1489 * and not locked by the bond lock
1490 */
1491int bond_alb_init_slave(struct bonding *bond, struct slave *slave)
1492{
1493	int res;
1494
1495	res = alb_set_slave_mac_addr(slave, slave->perm_hwaddr,
1496				     bond->alb_info.rlb_enabled);
1497	if (res) {
1498		return res;
1499	}
1500
1501	/* caller must hold the bond lock for write since the mac addresses
1502	 * are compared and may be swapped.
1503	 */
1504	write_lock_bh(&bond->lock);
1505
1506	res = alb_handle_addr_collision_on_attach(bond, slave);
1507
1508	write_unlock_bh(&bond->lock);
1509
1510	if (res) {
1511		return res;
1512	}
1513
1514	tlb_init_slave(slave);
1515
1516	/* order a rebalance ASAP */
1517	bond->alb_info.tx_rebalance_counter = BOND_TLB_REBALANCE_TICKS;
1518
1519	if (bond->alb_info.rlb_enabled) {
1520		bond->alb_info.rlb_rebalance = 1;
1521	}
1522
1523	return 0;
1524}
1525
1526/* Caller must hold bond lock for write */
1527void bond_alb_deinit_slave(struct bonding *bond, struct slave *slave)
1528{
1529	if (bond->slave_cnt > 1) {
1530		alb_change_hw_addr_on_detach(bond, slave);
1531	}
1532
1533	tlb_clear_slave(bond, slave, 0);
1534
1535	if (bond->alb_info.rlb_enabled) {
1536		bond->alb_info.next_rx_slave = NULL;
1537		rlb_clear_slave(bond, slave);
1538	}
1539}
1540
1541/* Caller must hold bond lock for read */
1542void bond_alb_handle_link_change(struct bonding *bond, struct slave *slave, char link)
1543{
1544	struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
1545
1546	if (link == BOND_LINK_DOWN) {
1547		tlb_clear_slave(bond, slave, 0);
1548		if (bond->alb_info.rlb_enabled) {
1549			rlb_clear_slave(bond, slave);
1550		}
1551	} else if (link == BOND_LINK_UP) {
1552		/* order a rebalance ASAP */
1553		bond_info->tx_rebalance_counter = BOND_TLB_REBALANCE_TICKS;
1554		if (bond->alb_info.rlb_enabled) {
1555			bond->alb_info.rlb_rebalance = 1;
1556			/* If the updelay module parameter is smaller than the
1557			 * forwarding delay of the switch the rebalance will
1558			 * not work because the rebalance arp replies will
1559			 * not be forwarded to the clients..
1560			 */
1561		}
1562	}
1563}
1564
1565/**
1566 * bond_alb_handle_active_change - assign new curr_active_slave
1567 * @bond: our bonding struct
1568 * @new_slave: new slave to assign
1569 *
1570 * Set the bond->curr_active_slave to @new_slave and handle
1571 * mac address swapping and promiscuity changes as needed.
1572 *
1573 * Caller must hold bond curr_slave_lock for write (or bond lock for write)
1574 */
1575void bond_alb_handle_active_change(struct bonding *bond, struct slave *new_slave)
1576{
1577	struct slave *swap_slave;
1578	int i;
1579
1580	if (bond->curr_active_slave == new_slave) {
1581		return;
1582	}
1583
1584	if (bond->curr_active_slave && bond->alb_info.primary_is_promisc) {
1585		dev_set_promiscuity(bond->curr_active_slave->dev, -1);
1586		bond->alb_info.primary_is_promisc = 0;
1587		bond->alb_info.rlb_promisc_timeout_counter = 0;
1588	}
1589
1590	swap_slave = bond->curr_active_slave;
1591	bond->curr_active_slave = new_slave;
1592
1593	if (!new_slave || (bond->slave_cnt == 0)) {
1594		return;
1595	}
1596
1597	/* set the new curr_active_slave to the bonds mac address
1598	 * i.e. swap mac addresses of old curr_active_slave and new curr_active_slave
1599	 */
1600	if (!swap_slave) {
1601		struct slave *tmp_slave;
1602		/* find slave that is holding the bond's mac address */
1603		bond_for_each_slave(bond, tmp_slave, i) {
1604			if (!memcmp(tmp_slave->dev->dev_addr,
1605				    bond->dev->dev_addr, ETH_ALEN)) {
1606				swap_slave = tmp_slave;
1607				break;
1608			}
1609		}
1610	}
1611
1612	/* curr_active_slave must be set before calling alb_swap_mac_addr */
1613	if (swap_slave) {
1614		/* swap mac address */
1615		alb_swap_mac_addr(bond, swap_slave, new_slave);
1616	} else {
1617		/* set the new_slave to the bond mac address */
1618		alb_set_slave_mac_addr(new_slave, bond->dev->dev_addr,
1619				       bond->alb_info.rlb_enabled);
1620		/* fasten bond mac on new current slave */
1621		alb_send_learning_packets(new_slave, bond->dev->dev_addr);
1622	}
1623}
1624
1625int bond_alb_set_mac_address(struct net_device *bond_dev, void *addr)
1626{
1627	struct bonding *bond = bond_dev->priv;
1628	struct sockaddr *sa = addr;
1629	struct slave *slave, *swap_slave;
1630	int res;
1631	int i;
1632
1633	if (!is_valid_ether_addr(sa->sa_data)) {
1634		return -EADDRNOTAVAIL;
1635	}
1636
1637	res = alb_set_mac_address(bond, addr);
1638	if (res) {
1639		return res;
1640	}
1641
1642	memcpy(bond_dev->dev_addr, sa->sa_data, bond_dev->addr_len);
1643
1644	/* If there is no curr_active_slave there is nothing else to do.
1645	 * Otherwise we'll need to pass the new address to it and handle
1646	 * duplications.
1647	 */
1648	if (!bond->curr_active_slave) {
1649		return 0;
1650	}
1651
1652	swap_slave = NULL;
1653
1654	bond_for_each_slave(bond, slave, i) {
1655		if (!memcmp(slave->dev->dev_addr, bond_dev->dev_addr, ETH_ALEN)) {
1656			swap_slave = slave;
1657			break;
1658		}
1659	}
1660
1661	if (swap_slave) {
1662		alb_swap_mac_addr(bond, swap_slave, bond->curr_active_slave);
1663	} else {
1664		alb_set_slave_mac_addr(bond->curr_active_slave, bond_dev->dev_addr,
1665				       bond->alb_info.rlb_enabled);
1666
1667		alb_send_learning_packets(bond->curr_active_slave, bond_dev->dev_addr);
1668		if (bond->alb_info.rlb_enabled) {
1669			/* inform clients mac address has changed */
1670			rlb_req_update_slave_clients(bond, bond->curr_active_slave);
1671		}
1672	}
1673
1674	return 0;
1675}
1676
1677void bond_alb_clear_vlan(struct bonding *bond, unsigned short vlan_id)
1678{
1679	if (bond->alb_info.current_alb_vlan &&
1680	    (bond->alb_info.current_alb_vlan->vlan_id == vlan_id)) {
1681		bond->alb_info.current_alb_vlan = NULL;
1682	}
1683
1684	if (bond->alb_info.rlb_enabled) {
1685		rlb_clear_vlan(bond, vlan_id);
1686	}
1687}
1688
1689