bnx2x_init.h revision adfc5217e9db68d3f0cec8dd847c1a6d3ab549ee
1/* bnx2x_init.h: Broadcom Everest network driver.
2 *               Structures and macroes needed during the initialization.
3 *
4 * Copyright (c) 2007-2011 Broadcom Corporation
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation.
9 *
10 * Maintained by: Eilon Greenstein <eilong@broadcom.com>
11 * Written by: Eliezer Tamir
12 * Modified by: Vladislav Zolotarov <vladz@broadcom.com>
13 */
14
15#ifndef BNX2X_INIT_H
16#define BNX2X_INIT_H
17
18/* Init operation types and structures */
19enum {
20	OP_RD = 0x1,	/* read a single register */
21	OP_WR,		/* write a single register */
22	OP_SW,		/* copy a string to the device */
23	OP_ZR,		/* clear memory */
24	OP_ZP,		/* unzip then copy with DMAE */
25	OP_WR_64,	/* write 64 bit pattern */
26	OP_WB,		/* copy a string using DMAE */
27	OP_WB_ZR,	/* Clear a string using DMAE or indirect-wr */
28	/* Skip the following ops if all of the init modes don't match */
29	OP_IF_MODE_OR,
30	/* Skip the following ops if any of the init modes don't match */
31	OP_IF_MODE_AND,
32	OP_MAX
33};
34
35enum {
36	STAGE_START,
37	STAGE_END,
38};
39
40/* Returns the index of start or end of a specific block stage in ops array*/
41#define BLOCK_OPS_IDX(block, stage, end) \
42	(2*(((block)*NUM_OF_INIT_PHASES) + (stage)) + (end))
43
44
45/* structs for the various opcodes */
46struct raw_op {
47	u32 op:8;
48	u32 offset:24;
49	u32 raw_data;
50};
51
52struct op_read {
53	u32 op:8;
54	u32 offset:24;
55	u32 val;
56};
57
58struct op_write {
59	u32 op:8;
60	u32 offset:24;
61	u32 val;
62};
63
64struct op_arr_write {
65	u32 op:8;
66	u32 offset:24;
67#ifdef __BIG_ENDIAN
68	u16 data_len;
69	u16 data_off;
70#else /* __LITTLE_ENDIAN */
71	u16 data_off;
72	u16 data_len;
73#endif
74};
75
76struct op_zero {
77	u32 op:8;
78	u32 offset:24;
79	u32 len;
80};
81
82struct op_if_mode {
83	u32 op:8;
84	u32 cmd_offset:24;
85	u32 mode_bit_map;
86};
87
88
89union init_op {
90	struct op_read		read;
91	struct op_write		write;
92	struct op_arr_write	arr_wr;
93	struct op_zero		zero;
94	struct raw_op		raw;
95	struct op_if_mode	if_mode;
96};
97
98
99/* Init Phases */
100enum {
101	PHASE_COMMON,
102	PHASE_PORT0,
103	PHASE_PORT1,
104	PHASE_PF0,
105	PHASE_PF1,
106	PHASE_PF2,
107	PHASE_PF3,
108	PHASE_PF4,
109	PHASE_PF5,
110	PHASE_PF6,
111	PHASE_PF7,
112	NUM_OF_INIT_PHASES
113};
114
115/* Init Modes */
116enum {
117	MODE_ASIC                      = 0x00000001,
118	MODE_FPGA                      = 0x00000002,
119	MODE_EMUL                      = 0x00000004,
120	MODE_E2                        = 0x00000008,
121	MODE_E3                        = 0x00000010,
122	MODE_PORT2                     = 0x00000020,
123	MODE_PORT4                     = 0x00000040,
124	MODE_SF                        = 0x00000080,
125	MODE_MF                        = 0x00000100,
126	MODE_MF_SD                     = 0x00000200,
127	MODE_MF_SI                     = 0x00000400,
128	MODE_MF_NIV                    = 0x00000800,
129	MODE_E3_A0                     = 0x00001000,
130	MODE_E3_B0                     = 0x00002000,
131	MODE_COS3                      = 0x00004000,
132	MODE_COS6                      = 0x00008000,
133	MODE_LITTLE_ENDIAN             = 0x00010000,
134	MODE_BIG_ENDIAN                = 0x00020000,
135};
136
137/* Init Blocks */
138enum {
139	BLOCK_ATC,
140	BLOCK_BRB1,
141	BLOCK_CCM,
142	BLOCK_CDU,
143	BLOCK_CFC,
144	BLOCK_CSDM,
145	BLOCK_CSEM,
146	BLOCK_DBG,
147	BLOCK_DMAE,
148	BLOCK_DORQ,
149	BLOCK_HC,
150	BLOCK_IGU,
151	BLOCK_MISC,
152	BLOCK_NIG,
153	BLOCK_PBF,
154	BLOCK_PGLUE_B,
155	BLOCK_PRS,
156	BLOCK_PXP2,
157	BLOCK_PXP,
158	BLOCK_QM,
159	BLOCK_SRC,
160	BLOCK_TCM,
161	BLOCK_TM,
162	BLOCK_TSDM,
163	BLOCK_TSEM,
164	BLOCK_UCM,
165	BLOCK_UPB,
166	BLOCK_USDM,
167	BLOCK_USEM,
168	BLOCK_XCM,
169	BLOCK_XPB,
170	BLOCK_XSDM,
171	BLOCK_XSEM,
172	BLOCK_MISC_AEU,
173	NUM_OF_INIT_BLOCKS
174};
175
176/* QM queue numbers */
177#define BNX2X_ETH_Q		0
178#define BNX2X_TOE_Q		3
179#define BNX2X_TOE_ACK_Q		6
180#define BNX2X_ISCSI_Q		9
181#define BNX2X_ISCSI_ACK_Q	11
182#define BNX2X_FCOE_Q		10
183
184/* Vnics per mode */
185#define BNX2X_PORT2_MODE_NUM_VNICS 4
186#define BNX2X_PORT4_MODE_NUM_VNICS 2
187
188/* COS offset for port1 in E3 B0 4port mode */
189#define BNX2X_E3B0_PORT1_COS_OFFSET 3
190
191/* QM Register addresses */
192#define BNX2X_Q_VOQ_REG_ADDR(pf_q_num)\
193	(QM_REG_QVOQIDX_0 + 4 * (pf_q_num))
194#define BNX2X_VOQ_Q_REG_ADDR(cos, pf_q_num)\
195	(QM_REG_VOQQMASK_0_LSB + 4 * ((cos) * 2 + ((pf_q_num) >> 5)))
196#define BNX2X_Q_CMDQ_REG_ADDR(pf_q_num)\
197	(QM_REG_BYTECRDCMDQ_0 + 4 * ((pf_q_num) >> 4))
198
199/* extracts the QM queue number for the specified port and vnic */
200#define BNX2X_PF_Q_NUM(q_num, port, vnic)\
201	((((port) << 1) | (vnic)) * 16 + (q_num))
202
203
204/* Maps the specified queue to the specified COS */
205static inline void bnx2x_map_q_cos(struct bnx2x *bp, u32 q_num, u32 new_cos)
206{
207	/* find current COS mapping */
208	u32 curr_cos = REG_RD(bp, QM_REG_QVOQIDX_0 + q_num * 4);
209
210	/* check if queue->COS mapping has changed */
211	if (curr_cos != new_cos) {
212		u32 num_vnics = BNX2X_PORT2_MODE_NUM_VNICS;
213		u32 reg_addr, reg_bit_map, vnic;
214
215		/* update parameters for 4port mode */
216		if (INIT_MODE_FLAGS(bp) & MODE_PORT4) {
217			num_vnics = BNX2X_PORT4_MODE_NUM_VNICS;
218			if (BP_PORT(bp)) {
219				curr_cos += BNX2X_E3B0_PORT1_COS_OFFSET;
220				new_cos += BNX2X_E3B0_PORT1_COS_OFFSET;
221			}
222		}
223
224		/* change queue mapping for each VNIC */
225		for (vnic = 0; vnic < num_vnics; vnic++) {
226			u32 pf_q_num =
227				BNX2X_PF_Q_NUM(q_num, BP_PORT(bp), vnic);
228			u32 q_bit_map = 1 << (pf_q_num & 0x1f);
229
230			/* overwrite queue->VOQ mapping */
231			REG_WR(bp, BNX2X_Q_VOQ_REG_ADDR(pf_q_num), new_cos);
232
233			/* clear queue bit from current COS bit map */
234			reg_addr = BNX2X_VOQ_Q_REG_ADDR(curr_cos, pf_q_num);
235			reg_bit_map = REG_RD(bp, reg_addr);
236			REG_WR(bp, reg_addr, reg_bit_map & (~q_bit_map));
237
238			/* set queue bit in new COS bit map */
239			reg_addr = BNX2X_VOQ_Q_REG_ADDR(new_cos, pf_q_num);
240			reg_bit_map = REG_RD(bp, reg_addr);
241			REG_WR(bp, reg_addr, reg_bit_map | q_bit_map);
242
243			/* set/clear queue bit in command-queue bit map
244			(E2/E3A0 only, valid COS values are 0/1) */
245			if (!(INIT_MODE_FLAGS(bp) & MODE_E3_B0)) {
246				reg_addr = BNX2X_Q_CMDQ_REG_ADDR(pf_q_num);
247				reg_bit_map = REG_RD(bp, reg_addr);
248				q_bit_map = 1 << (2 * (pf_q_num & 0xf));
249				reg_bit_map = new_cos ?
250					      (reg_bit_map | q_bit_map) :
251					      (reg_bit_map & (~q_bit_map));
252				REG_WR(bp, reg_addr, reg_bit_map);
253			}
254		}
255	}
256}
257
258/* Configures the QM according to the specified per-traffic-type COSes */
259static inline void bnx2x_dcb_config_qm(struct bnx2x *bp, enum cos_mode mode,
260				       struct priority_cos *traffic_cos)
261{
262	bnx2x_map_q_cos(bp, BNX2X_FCOE_Q,
263			traffic_cos[LLFC_TRAFFIC_TYPE_FCOE].cos);
264	bnx2x_map_q_cos(bp, BNX2X_ISCSI_Q,
265			traffic_cos[LLFC_TRAFFIC_TYPE_ISCSI].cos);
266	bnx2x_map_q_cos(bp, BNX2X_ISCSI_ACK_Q,
267		traffic_cos[LLFC_TRAFFIC_TYPE_ISCSI].cos);
268	if (mode != STATIC_COS) {
269		/* required only in backward compatible COS mode */
270		bnx2x_map_q_cos(bp, BNX2X_ETH_Q,
271				traffic_cos[LLFC_TRAFFIC_TYPE_NW].cos);
272		bnx2x_map_q_cos(bp, BNX2X_TOE_Q,
273				traffic_cos[LLFC_TRAFFIC_TYPE_NW].cos);
274		bnx2x_map_q_cos(bp, BNX2X_TOE_ACK_Q,
275				traffic_cos[LLFC_TRAFFIC_TYPE_NW].cos);
276	}
277}
278
279
280/* Returns the index of start or end of a specific block stage in ops array*/
281#define BLOCK_OPS_IDX(block, stage, end) \
282			(2*(((block)*NUM_OF_INIT_PHASES) + (stage)) + (end))
283
284
285#define INITOP_SET		0	/* set the HW directly */
286#define INITOP_CLEAR		1	/* clear the HW directly */
287#define INITOP_INIT		2	/* set the init-value array */
288
289/****************************************************************************
290* ILT management
291****************************************************************************/
292struct ilt_line {
293	dma_addr_t page_mapping;
294	void *page;
295	u32 size;
296};
297
298struct ilt_client_info {
299	u32 page_size;
300	u16 start;
301	u16 end;
302	u16 client_num;
303	u16 flags;
304#define ILT_CLIENT_SKIP_INIT	0x1
305#define ILT_CLIENT_SKIP_MEM	0x2
306};
307
308struct bnx2x_ilt {
309	u32 start_line;
310	struct ilt_line		*lines;
311	struct ilt_client_info	clients[4];
312#define ILT_CLIENT_CDU	0
313#define ILT_CLIENT_QM	1
314#define ILT_CLIENT_SRC	2
315#define ILT_CLIENT_TM	3
316};
317
318/****************************************************************************
319* SRC configuration
320****************************************************************************/
321struct src_ent {
322	u8 opaque[56];
323	u64 next;
324};
325
326/****************************************************************************
327* Parity configuration
328****************************************************************************/
329#define BLOCK_PRTY_INFO(block, en_mask, m1, m1h, m2, m3) \
330{ \
331	block##_REG_##block##_PRTY_MASK, \
332	block##_REG_##block##_PRTY_STS_CLR, \
333	en_mask, {m1, m1h, m2, m3}, #block \
334}
335
336#define BLOCK_PRTY_INFO_0(block, en_mask, m1, m1h, m2, m3) \
337{ \
338	block##_REG_##block##_PRTY_MASK_0, \
339	block##_REG_##block##_PRTY_STS_CLR_0, \
340	en_mask, {m1, m1h, m2, m3}, #block"_0" \
341}
342
343#define BLOCK_PRTY_INFO_1(block, en_mask, m1, m1h, m2, m3) \
344{ \
345	block##_REG_##block##_PRTY_MASK_1, \
346	block##_REG_##block##_PRTY_STS_CLR_1, \
347	en_mask, {m1, m1h, m2, m3}, #block"_1" \
348}
349
350static const struct {
351	u32 mask_addr;
352	u32 sts_clr_addr;
353	u32 en_mask;		/* Mask to enable parity attentions */
354	struct {
355		u32 e1;		/* 57710 */
356		u32 e1h;	/* 57711 */
357		u32 e2;		/* 57712 */
358		u32 e3;		/* 578xx */
359	} reg_mask;		/* Register mask (all valid bits) */
360	char name[7];		/* Block's longest name is 6 characters long
361				 * (name + suffix)
362				 */
363} bnx2x_blocks_parity_data[] = {
364	/* bit 19 masked */
365	/* REG_WR(bp, PXP_REG_PXP_PRTY_MASK, 0x80000); */
366	/* bit 5,18,20-31 */
367	/* REG_WR(bp, PXP2_REG_PXP2_PRTY_MASK_0, 0xfff40020); */
368	/* bit 5 */
369	/* REG_WR(bp, PXP2_REG_PXP2_PRTY_MASK_1, 0x20);	*/
370	/* REG_WR(bp, HC_REG_HC_PRTY_MASK, 0x0); */
371	/* REG_WR(bp, MISC_REG_MISC_PRTY_MASK, 0x0); */
372
373	/* Block IGU, MISC, PXP and PXP2 parity errors as long as we don't
374	 * want to handle "system kill" flow at the moment.
375	 */
376	BLOCK_PRTY_INFO(PXP, 0x7ffffff, 0x3ffffff, 0x3ffffff, 0x7ffffff,
377			0x7ffffff),
378	BLOCK_PRTY_INFO_0(PXP2,	0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff,
379			  0xffffffff),
380	BLOCK_PRTY_INFO_1(PXP2,	0x1ffffff, 0x7f, 0x7f, 0x7ff, 0x1ffffff),
381	BLOCK_PRTY_INFO(HC, 0x7, 0x7, 0x7, 0, 0),
382	BLOCK_PRTY_INFO(NIG, 0xffffffff, 0x3fffffff, 0xffffffff, 0, 0),
383	BLOCK_PRTY_INFO_0(NIG,	0xffffffff, 0, 0, 0xffffffff, 0xffffffff),
384	BLOCK_PRTY_INFO_1(NIG,	0xffff, 0, 0, 0xff, 0xffff),
385	BLOCK_PRTY_INFO(IGU, 0x7ff, 0, 0, 0x7ff, 0x7ff),
386	BLOCK_PRTY_INFO(MISC, 0x1, 0x1, 0x1, 0x1, 0x1),
387	BLOCK_PRTY_INFO(QM, 0, 0x1ff, 0xfff, 0xfff, 0xfff),
388	BLOCK_PRTY_INFO(ATC, 0x1f, 0, 0, 0x1f, 0x1f),
389	BLOCK_PRTY_INFO(PGLUE_B, 0x3, 0, 0, 0x3, 0x3),
390	BLOCK_PRTY_INFO(DORQ, 0, 0x3, 0x3, 0x3, 0x3),
391	{GRCBASE_UPB + PB_REG_PB_PRTY_MASK,
392		GRCBASE_UPB + PB_REG_PB_PRTY_STS_CLR, 0xf,
393		{0xf, 0xf, 0xf, 0xf}, "UPB"},
394	{GRCBASE_XPB + PB_REG_PB_PRTY_MASK,
395		GRCBASE_XPB + PB_REG_PB_PRTY_STS_CLR, 0,
396		{0xf, 0xf, 0xf, 0xf}, "XPB"},
397	BLOCK_PRTY_INFO(SRC, 0x4, 0x7, 0x7, 0x7, 0x7),
398	BLOCK_PRTY_INFO(CDU, 0, 0x1f, 0x1f, 0x1f, 0x1f),
399	BLOCK_PRTY_INFO(CFC, 0, 0xf, 0xf, 0xf, 0x3f),
400	BLOCK_PRTY_INFO(DBG, 0, 0x1, 0x1, 0x1, 0x1),
401	BLOCK_PRTY_INFO(DMAE, 0, 0xf, 0xf, 0xf, 0xf),
402	BLOCK_PRTY_INFO(BRB1, 0, 0xf, 0xf, 0xf, 0xf),
403	BLOCK_PRTY_INFO(PRS, (1<<6), 0xff, 0xff, 0xff, 0xff),
404	BLOCK_PRTY_INFO(PBF, 0, 0, 0x3ffff, 0xfffff, 0xfffffff),
405	BLOCK_PRTY_INFO(TM, 0, 0, 0x7f, 0x7f, 0x7f),
406	BLOCK_PRTY_INFO(TSDM, 0x18, 0x7ff, 0x7ff, 0x7ff, 0x7ff),
407	BLOCK_PRTY_INFO(CSDM, 0x8, 0x7ff, 0x7ff, 0x7ff, 0x7ff),
408	BLOCK_PRTY_INFO(USDM, 0x38, 0x7ff, 0x7ff, 0x7ff, 0x7ff),
409	BLOCK_PRTY_INFO(XSDM, 0x8, 0x7ff, 0x7ff, 0x7ff, 0x7ff),
410	BLOCK_PRTY_INFO(TCM, 0, 0, 0x7ffffff, 0x7ffffff, 0x7ffffff),
411	BLOCK_PRTY_INFO(CCM, 0, 0, 0x7ffffff, 0x7ffffff, 0x7ffffff),
412	BLOCK_PRTY_INFO(UCM, 0, 0, 0x7ffffff, 0x7ffffff, 0x7ffffff),
413	BLOCK_PRTY_INFO(XCM, 0, 0, 0x3fffffff, 0x3fffffff, 0x3fffffff),
414	BLOCK_PRTY_INFO_0(TSEM, 0, 0xffffffff, 0xffffffff, 0xffffffff,
415			  0xffffffff),
416	BLOCK_PRTY_INFO_1(TSEM, 0, 0x3, 0x1f, 0x3f, 0x3f),
417	BLOCK_PRTY_INFO_0(USEM, 0, 0xffffffff, 0xffffffff, 0xffffffff,
418			  0xffffffff),
419	BLOCK_PRTY_INFO_1(USEM, 0, 0x3, 0x1f, 0x1f, 0x1f),
420	BLOCK_PRTY_INFO_0(CSEM, 0, 0xffffffff, 0xffffffff, 0xffffffff,
421			  0xffffffff),
422	BLOCK_PRTY_INFO_1(CSEM, 0, 0x3, 0x1f, 0x1f, 0x1f),
423	BLOCK_PRTY_INFO_0(XSEM, 0, 0xffffffff, 0xffffffff, 0xffffffff,
424			  0xffffffff),
425	BLOCK_PRTY_INFO_1(XSEM, 0, 0x3, 0x1f, 0x3f, 0x3f),
426};
427
428
429/* [28] MCP Latched rom_parity
430 * [29] MCP Latched ump_rx_parity
431 * [30] MCP Latched ump_tx_parity
432 * [31] MCP Latched scpad_parity
433 */
434#define MISC_AEU_ENABLE_MCP_PRTY_BITS	\
435	(AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY | \
436	 AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY | \
437	 AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY | \
438	 AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY)
439
440/* Below registers control the MCP parity attention output. When
441 * MISC_AEU_ENABLE_MCP_PRTY_BITS are set - attentions are
442 * enabled, when cleared - disabled.
443 */
444static const u32 mcp_attn_ctl_regs[] = {
445	MISC_REG_AEU_ENABLE4_FUNC_0_OUT_0,
446	MISC_REG_AEU_ENABLE4_NIG_0,
447	MISC_REG_AEU_ENABLE4_PXP_0,
448	MISC_REG_AEU_ENABLE4_FUNC_1_OUT_0,
449	MISC_REG_AEU_ENABLE4_NIG_1,
450	MISC_REG_AEU_ENABLE4_PXP_1
451};
452
453static inline void bnx2x_set_mcp_parity(struct bnx2x *bp, u8 enable)
454{
455	int i;
456	u32 reg_val;
457
458	for (i = 0; i < ARRAY_SIZE(mcp_attn_ctl_regs); i++) {
459		reg_val = REG_RD(bp, mcp_attn_ctl_regs[i]);
460
461		if (enable)
462			reg_val |= MISC_AEU_ENABLE_MCP_PRTY_BITS;
463		else
464			reg_val &= ~MISC_AEU_ENABLE_MCP_PRTY_BITS;
465
466		REG_WR(bp, mcp_attn_ctl_regs[i], reg_val);
467	}
468}
469
470static inline u32 bnx2x_parity_reg_mask(struct bnx2x *bp, int idx)
471{
472	if (CHIP_IS_E1(bp))
473		return bnx2x_blocks_parity_data[idx].reg_mask.e1;
474	else if (CHIP_IS_E1H(bp))
475		return bnx2x_blocks_parity_data[idx].reg_mask.e1h;
476	else if (CHIP_IS_E2(bp))
477		return bnx2x_blocks_parity_data[idx].reg_mask.e2;
478	else /* CHIP_IS_E3 */
479		return bnx2x_blocks_parity_data[idx].reg_mask.e3;
480}
481
482static inline void bnx2x_disable_blocks_parity(struct bnx2x *bp)
483{
484	int i;
485
486	for (i = 0; i < ARRAY_SIZE(bnx2x_blocks_parity_data); i++) {
487		u32 dis_mask = bnx2x_parity_reg_mask(bp, i);
488
489		if (dis_mask) {
490			REG_WR(bp, bnx2x_blocks_parity_data[i].mask_addr,
491			       dis_mask);
492			DP(NETIF_MSG_HW, "Setting parity mask "
493						 "for %s to\t\t0x%x\n",
494				    bnx2x_blocks_parity_data[i].name, dis_mask);
495		}
496	}
497
498	/* Disable MCP parity attentions */
499	bnx2x_set_mcp_parity(bp, false);
500}
501
502/**
503 * Clear the parity error status registers.
504 */
505static inline void bnx2x_clear_blocks_parity(struct bnx2x *bp)
506{
507	int i;
508	u32 reg_val, mcp_aeu_bits =
509		AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY |
510		AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY |
511		AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY |
512		AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY;
513
514	/* Clear SEM_FAST parities */
515	REG_WR(bp, XSEM_REG_FAST_MEMORY + SEM_FAST_REG_PARITY_RST, 0x1);
516	REG_WR(bp, TSEM_REG_FAST_MEMORY + SEM_FAST_REG_PARITY_RST, 0x1);
517	REG_WR(bp, USEM_REG_FAST_MEMORY + SEM_FAST_REG_PARITY_RST, 0x1);
518	REG_WR(bp, CSEM_REG_FAST_MEMORY + SEM_FAST_REG_PARITY_RST, 0x1);
519
520	for (i = 0; i < ARRAY_SIZE(bnx2x_blocks_parity_data); i++) {
521		u32 reg_mask = bnx2x_parity_reg_mask(bp, i);
522
523		if (reg_mask) {
524			reg_val = REG_RD(bp, bnx2x_blocks_parity_data[i].
525					 sts_clr_addr);
526			if (reg_val & reg_mask)
527				DP(NETIF_MSG_HW,
528					    "Parity errors in %s: 0x%x\n",
529					    bnx2x_blocks_parity_data[i].name,
530					    reg_val & reg_mask);
531		}
532	}
533
534	/* Check if there were parity attentions in MCP */
535	reg_val = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_4_MCP);
536	if (reg_val & mcp_aeu_bits)
537		DP(NETIF_MSG_HW, "Parity error in MCP: 0x%x\n",
538		   reg_val & mcp_aeu_bits);
539
540	/* Clear parity attentions in MCP:
541	 * [7]  clears Latched rom_parity
542	 * [8]  clears Latched ump_rx_parity
543	 * [9]  clears Latched ump_tx_parity
544	 * [10] clears Latched scpad_parity (both ports)
545	 */
546	REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x780);
547}
548
549static inline void bnx2x_enable_blocks_parity(struct bnx2x *bp)
550{
551	int i;
552
553	for (i = 0; i < ARRAY_SIZE(bnx2x_blocks_parity_data); i++) {
554		u32 reg_mask = bnx2x_parity_reg_mask(bp, i);
555
556		if (reg_mask)
557			REG_WR(bp, bnx2x_blocks_parity_data[i].mask_addr,
558				bnx2x_blocks_parity_data[i].en_mask & reg_mask);
559	}
560
561	/* Enable MCP parity attentions */
562	bnx2x_set_mcp_parity(bp, true);
563}
564
565
566#endif /* BNX2X_INIT_H */
567
568