bnx2x_main.c revision 127d0a198a310970b31866af8bbb6d4b1068e546
1/* bnx2x_main.c: Broadcom Everest network driver.
2 *
3 * Copyright (c) 2007-2011 Broadcom Corporation
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation.
8 *
9 * Maintained by: Eilon Greenstein <eilong@broadcom.com>
10 * Written by: Eliezer Tamir
11 * Based on code from Michael Chan's bnx2 driver
12 * UDP CSUM errata workaround by Arik Gendelman
13 * Slowpath and fastpath rework by Vladislav Zolotarov
14 * Statistics and Link management by Yitchak Gertner
15 *
16 */
17
18#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19
20#include <linux/module.h>
21#include <linux/moduleparam.h>
22#include <linux/kernel.h>
23#include <linux/device.h>  /* for dev_info() */
24#include <linux/timer.h>
25#include <linux/errno.h>
26#include <linux/ioport.h>
27#include <linux/slab.h>
28#include <linux/interrupt.h>
29#include <linux/pci.h>
30#include <linux/init.h>
31#include <linux/netdevice.h>
32#include <linux/etherdevice.h>
33#include <linux/skbuff.h>
34#include <linux/dma-mapping.h>
35#include <linux/bitops.h>
36#include <linux/irq.h>
37#include <linux/delay.h>
38#include <asm/byteorder.h>
39#include <linux/time.h>
40#include <linux/ethtool.h>
41#include <linux/mii.h>
42#include <linux/if.h>
43#include <linux/if_vlan.h>
44#include <net/ip.h>
45#include <net/ipv6.h>
46#include <net/tcp.h>
47#include <net/checksum.h>
48#include <net/ip6_checksum.h>
49#include <linux/workqueue.h>
50#include <linux/crc32.h>
51#include <linux/crc32c.h>
52#include <linux/prefetch.h>
53#include <linux/zlib.h>
54#include <linux/io.h>
55#include <linux/stringify.h>
56#include <linux/vmalloc.h>
57
58#include "bnx2x.h"
59#include "bnx2x_init.h"
60#include "bnx2x_init_ops.h"
61#include "bnx2x_cmn.h"
62#include "bnx2x_dcb.h"
63#include "bnx2x_sp.h"
64
65#include <linux/firmware.h>
66#include "bnx2x_fw_file_hdr.h"
67/* FW files */
68#define FW_FILE_VERSION					\
69	__stringify(BCM_5710_FW_MAJOR_VERSION) "."	\
70	__stringify(BCM_5710_FW_MINOR_VERSION) "."	\
71	__stringify(BCM_5710_FW_REVISION_VERSION) "."	\
72	__stringify(BCM_5710_FW_ENGINEERING_VERSION)
73#define FW_FILE_NAME_E1		"bnx2x/bnx2x-e1-" FW_FILE_VERSION ".fw"
74#define FW_FILE_NAME_E1H	"bnx2x/bnx2x-e1h-" FW_FILE_VERSION ".fw"
75#define FW_FILE_NAME_E2		"bnx2x/bnx2x-e2-" FW_FILE_VERSION ".fw"
76
77/* Time in jiffies before concluding the transmitter is hung */
78#define TX_TIMEOUT		(5*HZ)
79
80static char version[] __devinitdata =
81	"Broadcom NetXtreme II 5771x/578xx 10/20-Gigabit Ethernet Driver "
82	DRV_MODULE_NAME " " DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
83
84MODULE_AUTHOR("Eliezer Tamir");
85MODULE_DESCRIPTION("Broadcom NetXtreme II "
86		   "BCM57710/57711/57711E/"
87		   "57712/57712_MF/57800/57800_MF/57810/57810_MF/"
88		   "57840/57840_MF Driver");
89MODULE_LICENSE("GPL");
90MODULE_VERSION(DRV_MODULE_VERSION);
91MODULE_FIRMWARE(FW_FILE_NAME_E1);
92MODULE_FIRMWARE(FW_FILE_NAME_E1H);
93MODULE_FIRMWARE(FW_FILE_NAME_E2);
94
95static int multi_mode = 1;
96module_param(multi_mode, int, 0);
97MODULE_PARM_DESC(multi_mode, " Multi queue mode "
98			     "(0 Disable; 1 Enable (default))");
99
100int num_queues;
101module_param(num_queues, int, 0);
102MODULE_PARM_DESC(num_queues, " Number of queues for multi_mode=1"
103				" (default is as a number of CPUs)");
104
105static int disable_tpa;
106module_param(disable_tpa, int, 0);
107MODULE_PARM_DESC(disable_tpa, " Disable the TPA (LRO) feature");
108
109#define INT_MODE_INTx			1
110#define INT_MODE_MSI			2
111static int int_mode;
112module_param(int_mode, int, 0);
113MODULE_PARM_DESC(int_mode, " Force interrupt mode other than MSI-X "
114				"(1 INT#x; 2 MSI)");
115
116static int dropless_fc;
117module_param(dropless_fc, int, 0);
118MODULE_PARM_DESC(dropless_fc, " Pause on exhausted host ring");
119
120static int mrrs = -1;
121module_param(mrrs, int, 0);
122MODULE_PARM_DESC(mrrs, " Force Max Read Req Size (0..3) (for debug)");
123
124static int debug;
125module_param(debug, int, 0);
126MODULE_PARM_DESC(debug, " Default debug msglevel");
127
128
129
130struct workqueue_struct *bnx2x_wq;
131
132enum bnx2x_board_type {
133	BCM57710 = 0,
134	BCM57711,
135	BCM57711E,
136	BCM57712,
137	BCM57712_MF,
138	BCM57800,
139	BCM57800_MF,
140	BCM57810,
141	BCM57810_MF,
142	BCM57840,
143	BCM57840_MF
144};
145
146/* indexed by board_type, above */
147static struct {
148	char *name;
149} board_info[] __devinitdata = {
150	{ "Broadcom NetXtreme II BCM57710 10 Gigabit PCIe [Everest]" },
151	{ "Broadcom NetXtreme II BCM57711 10 Gigabit PCIe" },
152	{ "Broadcom NetXtreme II BCM57711E 10 Gigabit PCIe" },
153	{ "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet" },
154	{ "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet Multi Function" },
155	{ "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet" },
156	{ "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet Multi Function" },
157	{ "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet" },
158	{ "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet Multi Function" },
159	{ "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet" },
160	{ "Broadcom NetXtreme II BCM57840 10/20 Gigabit "
161						"Ethernet Multi Function"}
162};
163
164#ifndef PCI_DEVICE_ID_NX2_57710
165#define PCI_DEVICE_ID_NX2_57710		CHIP_NUM_57710
166#endif
167#ifndef PCI_DEVICE_ID_NX2_57711
168#define PCI_DEVICE_ID_NX2_57711		CHIP_NUM_57711
169#endif
170#ifndef PCI_DEVICE_ID_NX2_57711E
171#define PCI_DEVICE_ID_NX2_57711E	CHIP_NUM_57711E
172#endif
173#ifndef PCI_DEVICE_ID_NX2_57712
174#define PCI_DEVICE_ID_NX2_57712		CHIP_NUM_57712
175#endif
176#ifndef PCI_DEVICE_ID_NX2_57712_MF
177#define PCI_DEVICE_ID_NX2_57712_MF	CHIP_NUM_57712_MF
178#endif
179#ifndef PCI_DEVICE_ID_NX2_57800
180#define PCI_DEVICE_ID_NX2_57800		CHIP_NUM_57800
181#endif
182#ifndef PCI_DEVICE_ID_NX2_57800_MF
183#define PCI_DEVICE_ID_NX2_57800_MF	CHIP_NUM_57800_MF
184#endif
185#ifndef PCI_DEVICE_ID_NX2_57810
186#define PCI_DEVICE_ID_NX2_57810		CHIP_NUM_57810
187#endif
188#ifndef PCI_DEVICE_ID_NX2_57810_MF
189#define PCI_DEVICE_ID_NX2_57810_MF	CHIP_NUM_57810_MF
190#endif
191#ifndef PCI_DEVICE_ID_NX2_57840
192#define PCI_DEVICE_ID_NX2_57840		CHIP_NUM_57840
193#endif
194#ifndef PCI_DEVICE_ID_NX2_57840_MF
195#define PCI_DEVICE_ID_NX2_57840_MF	CHIP_NUM_57840_MF
196#endif
197static DEFINE_PCI_DEVICE_TABLE(bnx2x_pci_tbl) = {
198	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57710), BCM57710 },
199	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711), BCM57711 },
200	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711E), BCM57711E },
201	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712), BCM57712 },
202	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_MF), BCM57712_MF },
203	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800), BCM57800 },
204	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_MF), BCM57800_MF },
205	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810), BCM57810 },
206	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_MF), BCM57810_MF },
207	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840), BCM57840 },
208	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MF), BCM57840_MF },
209	{ 0 }
210};
211
212MODULE_DEVICE_TABLE(pci, bnx2x_pci_tbl);
213
214/****************************************************************************
215* General service functions
216****************************************************************************/
217
218static inline void __storm_memset_dma_mapping(struct bnx2x *bp,
219				       u32 addr, dma_addr_t mapping)
220{
221	REG_WR(bp,  addr, U64_LO(mapping));
222	REG_WR(bp,  addr + 4, U64_HI(mapping));
223}
224
225static inline void storm_memset_spq_addr(struct bnx2x *bp,
226					 dma_addr_t mapping, u16 abs_fid)
227{
228	u32 addr = XSEM_REG_FAST_MEMORY +
229			XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid);
230
231	__storm_memset_dma_mapping(bp, addr, mapping);
232}
233
234static inline void storm_memset_vf_to_pf(struct bnx2x *bp, u16 abs_fid,
235					 u16 pf_id)
236{
237	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid),
238		pf_id);
239	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid),
240		pf_id);
241	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid),
242		pf_id);
243	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid),
244		pf_id);
245}
246
247static inline void storm_memset_func_en(struct bnx2x *bp, u16 abs_fid,
248					u8 enable)
249{
250	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid),
251		enable);
252	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid),
253		enable);
254	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid),
255		enable);
256	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid),
257		enable);
258}
259
260static inline void storm_memset_eq_data(struct bnx2x *bp,
261				struct event_ring_data *eq_data,
262				u16 pfid)
263{
264	size_t size = sizeof(struct event_ring_data);
265
266	u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid);
267
268	__storm_memset_struct(bp, addr, size, (u32 *)eq_data);
269}
270
271static inline void storm_memset_eq_prod(struct bnx2x *bp, u16 eq_prod,
272					u16 pfid)
273{
274	u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_PROD_OFFSET(pfid);
275	REG_WR16(bp, addr, eq_prod);
276}
277
278/* used only at init
279 * locking is done by mcp
280 */
281static void bnx2x_reg_wr_ind(struct bnx2x *bp, u32 addr, u32 val)
282{
283	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
284	pci_write_config_dword(bp->pdev, PCICFG_GRC_DATA, val);
285	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
286			       PCICFG_VENDOR_ID_OFFSET);
287}
288
289static u32 bnx2x_reg_rd_ind(struct bnx2x *bp, u32 addr)
290{
291	u32 val;
292
293	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
294	pci_read_config_dword(bp->pdev, PCICFG_GRC_DATA, &val);
295	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
296			       PCICFG_VENDOR_ID_OFFSET);
297
298	return val;
299}
300
301#define DMAE_DP_SRC_GRC		"grc src_addr [%08x]"
302#define DMAE_DP_SRC_PCI		"pci src_addr [%x:%08x]"
303#define DMAE_DP_DST_GRC		"grc dst_addr [%08x]"
304#define DMAE_DP_DST_PCI		"pci dst_addr [%x:%08x]"
305#define DMAE_DP_DST_NONE	"dst_addr [none]"
306
307static void bnx2x_dp_dmae(struct bnx2x *bp, struct dmae_command *dmae,
308			  int msglvl)
309{
310	u32 src_type = dmae->opcode & DMAE_COMMAND_SRC;
311
312	switch (dmae->opcode & DMAE_COMMAND_DST) {
313	case DMAE_CMD_DST_PCI:
314		if (src_type == DMAE_CMD_SRC_PCI)
315			DP(msglvl, "DMAE: opcode 0x%08x\n"
316			   "src [%x:%08x], len [%d*4], dst [%x:%08x]\n"
317			   "comp_addr [%x:%08x], comp_val 0x%08x\n",
318			   dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
319			   dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
320			   dmae->comp_addr_hi, dmae->comp_addr_lo,
321			   dmae->comp_val);
322		else
323			DP(msglvl, "DMAE: opcode 0x%08x\n"
324			   "src [%08x], len [%d*4], dst [%x:%08x]\n"
325			   "comp_addr [%x:%08x], comp_val 0x%08x\n",
326			   dmae->opcode, dmae->src_addr_lo >> 2,
327			   dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
328			   dmae->comp_addr_hi, dmae->comp_addr_lo,
329			   dmae->comp_val);
330		break;
331	case DMAE_CMD_DST_GRC:
332		if (src_type == DMAE_CMD_SRC_PCI)
333			DP(msglvl, "DMAE: opcode 0x%08x\n"
334			   "src [%x:%08x], len [%d*4], dst_addr [%08x]\n"
335			   "comp_addr [%x:%08x], comp_val 0x%08x\n",
336			   dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
337			   dmae->len, dmae->dst_addr_lo >> 2,
338			   dmae->comp_addr_hi, dmae->comp_addr_lo,
339			   dmae->comp_val);
340		else
341			DP(msglvl, "DMAE: opcode 0x%08x\n"
342			   "src [%08x], len [%d*4], dst [%08x]\n"
343			   "comp_addr [%x:%08x], comp_val 0x%08x\n",
344			   dmae->opcode, dmae->src_addr_lo >> 2,
345			   dmae->len, dmae->dst_addr_lo >> 2,
346			   dmae->comp_addr_hi, dmae->comp_addr_lo,
347			   dmae->comp_val);
348		break;
349	default:
350		if (src_type == DMAE_CMD_SRC_PCI)
351			DP(msglvl, "DMAE: opcode 0x%08x\n"
352			   "src_addr [%x:%08x]  len [%d * 4]  dst_addr [none]\n"
353			   "comp_addr [%x:%08x]  comp_val 0x%08x\n",
354			   dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
355			   dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
356			   dmae->comp_val);
357		else
358			DP(msglvl, "DMAE: opcode 0x%08x\n"
359			   "src_addr [%08x]  len [%d * 4]  dst_addr [none]\n"
360			   "comp_addr [%x:%08x]  comp_val 0x%08x\n",
361			   dmae->opcode, dmae->src_addr_lo >> 2,
362			   dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
363			   dmae->comp_val);
364		break;
365	}
366
367}
368
369/* copy command into DMAE command memory and set DMAE command go */
370void bnx2x_post_dmae(struct bnx2x *bp, struct dmae_command *dmae, int idx)
371{
372	u32 cmd_offset;
373	int i;
374
375	cmd_offset = (DMAE_REG_CMD_MEM + sizeof(struct dmae_command) * idx);
376	for (i = 0; i < (sizeof(struct dmae_command)/4); i++) {
377		REG_WR(bp, cmd_offset + i*4, *(((u32 *)dmae) + i));
378
379		DP(BNX2X_MSG_OFF, "DMAE cmd[%d].%d (0x%08x) : 0x%08x\n",
380		   idx, i, cmd_offset + i*4, *(((u32 *)dmae) + i));
381	}
382	REG_WR(bp, dmae_reg_go_c[idx], 1);
383}
384
385u32 bnx2x_dmae_opcode_add_comp(u32 opcode, u8 comp_type)
386{
387	return opcode | ((comp_type << DMAE_COMMAND_C_DST_SHIFT) |
388			   DMAE_CMD_C_ENABLE);
389}
390
391u32 bnx2x_dmae_opcode_clr_src_reset(u32 opcode)
392{
393	return opcode & ~DMAE_CMD_SRC_RESET;
394}
395
396u32 bnx2x_dmae_opcode(struct bnx2x *bp, u8 src_type, u8 dst_type,
397			     bool with_comp, u8 comp_type)
398{
399	u32 opcode = 0;
400
401	opcode |= ((src_type << DMAE_COMMAND_SRC_SHIFT) |
402		   (dst_type << DMAE_COMMAND_DST_SHIFT));
403
404	opcode |= (DMAE_CMD_SRC_RESET | DMAE_CMD_DST_RESET);
405
406	opcode |= (BP_PORT(bp) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0);
407	opcode |= ((BP_VN(bp) << DMAE_CMD_E1HVN_SHIFT) |
408		   (BP_VN(bp) << DMAE_COMMAND_DST_VN_SHIFT));
409	opcode |= (DMAE_COM_SET_ERR << DMAE_COMMAND_ERR_POLICY_SHIFT);
410
411#ifdef __BIG_ENDIAN
412	opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP;
413#else
414	opcode |= DMAE_CMD_ENDIANITY_DW_SWAP;
415#endif
416	if (with_comp)
417		opcode = bnx2x_dmae_opcode_add_comp(opcode, comp_type);
418	return opcode;
419}
420
421static void bnx2x_prep_dmae_with_comp(struct bnx2x *bp,
422				      struct dmae_command *dmae,
423				      u8 src_type, u8 dst_type)
424{
425	memset(dmae, 0, sizeof(struct dmae_command));
426
427	/* set the opcode */
428	dmae->opcode = bnx2x_dmae_opcode(bp, src_type, dst_type,
429					 true, DMAE_COMP_PCI);
430
431	/* fill in the completion parameters */
432	dmae->comp_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_comp));
433	dmae->comp_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_comp));
434	dmae->comp_val = DMAE_COMP_VAL;
435}
436
437/* issue a dmae command over the init-channel and wailt for completion */
438static int bnx2x_issue_dmae_with_comp(struct bnx2x *bp,
439				      struct dmae_command *dmae)
440{
441	u32 *wb_comp = bnx2x_sp(bp, wb_comp);
442	int cnt = CHIP_REV_IS_SLOW(bp) ? (400000) : 4000;
443	int rc = 0;
444
445	DP(BNX2X_MSG_OFF, "data before [0x%08x 0x%08x 0x%08x 0x%08x]\n",
446	   bp->slowpath->wb_data[0], bp->slowpath->wb_data[1],
447	   bp->slowpath->wb_data[2], bp->slowpath->wb_data[3]);
448
449	/*
450	 * Lock the dmae channel. Disable BHs to prevent a dead-lock
451	 * as long as this code is called both from syscall context and
452	 * from ndo_set_rx_mode() flow that may be called from BH.
453	 */
454	spin_lock_bh(&bp->dmae_lock);
455
456	/* reset completion */
457	*wb_comp = 0;
458
459	/* post the command on the channel used for initializations */
460	bnx2x_post_dmae(bp, dmae, INIT_DMAE_C(bp));
461
462	/* wait for completion */
463	udelay(5);
464	while ((*wb_comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) {
465		DP(BNX2X_MSG_OFF, "wb_comp 0x%08x\n", *wb_comp);
466
467		if (!cnt) {
468			BNX2X_ERR("DMAE timeout!\n");
469			rc = DMAE_TIMEOUT;
470			goto unlock;
471		}
472		cnt--;
473		udelay(50);
474	}
475	if (*wb_comp & DMAE_PCI_ERR_FLAG) {
476		BNX2X_ERR("DMAE PCI error!\n");
477		rc = DMAE_PCI_ERROR;
478	}
479
480	DP(BNX2X_MSG_OFF, "data after [0x%08x 0x%08x 0x%08x 0x%08x]\n",
481	   bp->slowpath->wb_data[0], bp->slowpath->wb_data[1],
482	   bp->slowpath->wb_data[2], bp->slowpath->wb_data[3]);
483
484unlock:
485	spin_unlock_bh(&bp->dmae_lock);
486	return rc;
487}
488
489void bnx2x_write_dmae(struct bnx2x *bp, dma_addr_t dma_addr, u32 dst_addr,
490		      u32 len32)
491{
492	struct dmae_command dmae;
493
494	if (!bp->dmae_ready) {
495		u32 *data = bnx2x_sp(bp, wb_data[0]);
496
497		DP(BNX2X_MSG_OFF, "DMAE is not ready (dst_addr %08x  len32 %d)"
498		   "  using indirect\n", dst_addr, len32);
499		bnx2x_init_ind_wr(bp, dst_addr, data, len32);
500		return;
501	}
502
503	/* set opcode and fixed command fields */
504	bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC);
505
506	/* fill in addresses and len */
507	dmae.src_addr_lo = U64_LO(dma_addr);
508	dmae.src_addr_hi = U64_HI(dma_addr);
509	dmae.dst_addr_lo = dst_addr >> 2;
510	dmae.dst_addr_hi = 0;
511	dmae.len = len32;
512
513	bnx2x_dp_dmae(bp, &dmae, BNX2X_MSG_OFF);
514
515	/* issue the command and wait for completion */
516	bnx2x_issue_dmae_with_comp(bp, &dmae);
517}
518
519void bnx2x_read_dmae(struct bnx2x *bp, u32 src_addr, u32 len32)
520{
521	struct dmae_command dmae;
522
523	if (!bp->dmae_ready) {
524		u32 *data = bnx2x_sp(bp, wb_data[0]);
525		int i;
526
527		DP(BNX2X_MSG_OFF, "DMAE is not ready (src_addr %08x  len32 %d)"
528		   "  using indirect\n", src_addr, len32);
529		for (i = 0; i < len32; i++)
530			data[i] = bnx2x_reg_rd_ind(bp, src_addr + i*4);
531		return;
532	}
533
534	/* set opcode and fixed command fields */
535	bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI);
536
537	/* fill in addresses and len */
538	dmae.src_addr_lo = src_addr >> 2;
539	dmae.src_addr_hi = 0;
540	dmae.dst_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_data));
541	dmae.dst_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_data));
542	dmae.len = len32;
543
544	bnx2x_dp_dmae(bp, &dmae, BNX2X_MSG_OFF);
545
546	/* issue the command and wait for completion */
547	bnx2x_issue_dmae_with_comp(bp, &dmae);
548}
549
550static void bnx2x_write_dmae_phys_len(struct bnx2x *bp, dma_addr_t phys_addr,
551				      u32 addr, u32 len)
552{
553	int dmae_wr_max = DMAE_LEN32_WR_MAX(bp);
554	int offset = 0;
555
556	while (len > dmae_wr_max) {
557		bnx2x_write_dmae(bp, phys_addr + offset,
558				 addr + offset, dmae_wr_max);
559		offset += dmae_wr_max * 4;
560		len -= dmae_wr_max;
561	}
562
563	bnx2x_write_dmae(bp, phys_addr + offset, addr + offset, len);
564}
565
566/* used only for slowpath so not inlined */
567static void bnx2x_wb_wr(struct bnx2x *bp, int reg, u32 val_hi, u32 val_lo)
568{
569	u32 wb_write[2];
570
571	wb_write[0] = val_hi;
572	wb_write[1] = val_lo;
573	REG_WR_DMAE(bp, reg, wb_write, 2);
574}
575
576#ifdef USE_WB_RD
577static u64 bnx2x_wb_rd(struct bnx2x *bp, int reg)
578{
579	u32 wb_data[2];
580
581	REG_RD_DMAE(bp, reg, wb_data, 2);
582
583	return HILO_U64(wb_data[0], wb_data[1]);
584}
585#endif
586
587static int bnx2x_mc_assert(struct bnx2x *bp)
588{
589	char last_idx;
590	int i, rc = 0;
591	u32 row0, row1, row2, row3;
592
593	/* XSTORM */
594	last_idx = REG_RD8(bp, BAR_XSTRORM_INTMEM +
595			   XSTORM_ASSERT_LIST_INDEX_OFFSET);
596	if (last_idx)
597		BNX2X_ERR("XSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
598
599	/* print the asserts */
600	for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
601
602		row0 = REG_RD(bp, BAR_XSTRORM_INTMEM +
603			      XSTORM_ASSERT_LIST_OFFSET(i));
604		row1 = REG_RD(bp, BAR_XSTRORM_INTMEM +
605			      XSTORM_ASSERT_LIST_OFFSET(i) + 4);
606		row2 = REG_RD(bp, BAR_XSTRORM_INTMEM +
607			      XSTORM_ASSERT_LIST_OFFSET(i) + 8);
608		row3 = REG_RD(bp, BAR_XSTRORM_INTMEM +
609			      XSTORM_ASSERT_LIST_OFFSET(i) + 12);
610
611		if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
612			BNX2X_ERR("XSTORM_ASSERT_INDEX 0x%x = 0x%08x"
613				  " 0x%08x 0x%08x 0x%08x\n",
614				  i, row3, row2, row1, row0);
615			rc++;
616		} else {
617			break;
618		}
619	}
620
621	/* TSTORM */
622	last_idx = REG_RD8(bp, BAR_TSTRORM_INTMEM +
623			   TSTORM_ASSERT_LIST_INDEX_OFFSET);
624	if (last_idx)
625		BNX2X_ERR("TSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
626
627	/* print the asserts */
628	for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
629
630		row0 = REG_RD(bp, BAR_TSTRORM_INTMEM +
631			      TSTORM_ASSERT_LIST_OFFSET(i));
632		row1 = REG_RD(bp, BAR_TSTRORM_INTMEM +
633			      TSTORM_ASSERT_LIST_OFFSET(i) + 4);
634		row2 = REG_RD(bp, BAR_TSTRORM_INTMEM +
635			      TSTORM_ASSERT_LIST_OFFSET(i) + 8);
636		row3 = REG_RD(bp, BAR_TSTRORM_INTMEM +
637			      TSTORM_ASSERT_LIST_OFFSET(i) + 12);
638
639		if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
640			BNX2X_ERR("TSTORM_ASSERT_INDEX 0x%x = 0x%08x"
641				  " 0x%08x 0x%08x 0x%08x\n",
642				  i, row3, row2, row1, row0);
643			rc++;
644		} else {
645			break;
646		}
647	}
648
649	/* CSTORM */
650	last_idx = REG_RD8(bp, BAR_CSTRORM_INTMEM +
651			   CSTORM_ASSERT_LIST_INDEX_OFFSET);
652	if (last_idx)
653		BNX2X_ERR("CSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
654
655	/* print the asserts */
656	for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
657
658		row0 = REG_RD(bp, BAR_CSTRORM_INTMEM +
659			      CSTORM_ASSERT_LIST_OFFSET(i));
660		row1 = REG_RD(bp, BAR_CSTRORM_INTMEM +
661			      CSTORM_ASSERT_LIST_OFFSET(i) + 4);
662		row2 = REG_RD(bp, BAR_CSTRORM_INTMEM +
663			      CSTORM_ASSERT_LIST_OFFSET(i) + 8);
664		row3 = REG_RD(bp, BAR_CSTRORM_INTMEM +
665			      CSTORM_ASSERT_LIST_OFFSET(i) + 12);
666
667		if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
668			BNX2X_ERR("CSTORM_ASSERT_INDEX 0x%x = 0x%08x"
669				  " 0x%08x 0x%08x 0x%08x\n",
670				  i, row3, row2, row1, row0);
671			rc++;
672		} else {
673			break;
674		}
675	}
676
677	/* USTORM */
678	last_idx = REG_RD8(bp, BAR_USTRORM_INTMEM +
679			   USTORM_ASSERT_LIST_INDEX_OFFSET);
680	if (last_idx)
681		BNX2X_ERR("USTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
682
683	/* print the asserts */
684	for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
685
686		row0 = REG_RD(bp, BAR_USTRORM_INTMEM +
687			      USTORM_ASSERT_LIST_OFFSET(i));
688		row1 = REG_RD(bp, BAR_USTRORM_INTMEM +
689			      USTORM_ASSERT_LIST_OFFSET(i) + 4);
690		row2 = REG_RD(bp, BAR_USTRORM_INTMEM +
691			      USTORM_ASSERT_LIST_OFFSET(i) + 8);
692		row3 = REG_RD(bp, BAR_USTRORM_INTMEM +
693			      USTORM_ASSERT_LIST_OFFSET(i) + 12);
694
695		if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
696			BNX2X_ERR("USTORM_ASSERT_INDEX 0x%x = 0x%08x"
697				  " 0x%08x 0x%08x 0x%08x\n",
698				  i, row3, row2, row1, row0);
699			rc++;
700		} else {
701			break;
702		}
703	}
704
705	return rc;
706}
707
708void bnx2x_fw_dump_lvl(struct bnx2x *bp, const char *lvl)
709{
710	u32 addr, val;
711	u32 mark, offset;
712	__be32 data[9];
713	int word;
714	u32 trace_shmem_base;
715	if (BP_NOMCP(bp)) {
716		BNX2X_ERR("NO MCP - can not dump\n");
717		return;
718	}
719	netdev_printk(lvl, bp->dev, "bc %d.%d.%d\n",
720		(bp->common.bc_ver & 0xff0000) >> 16,
721		(bp->common.bc_ver & 0xff00) >> 8,
722		(bp->common.bc_ver & 0xff));
723
724	val = REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER);
725	if (val == REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER))
726		printk("%s" "MCP PC at 0x%x\n", lvl, val);
727
728	if (BP_PATH(bp) == 0)
729		trace_shmem_base = bp->common.shmem_base;
730	else
731		trace_shmem_base = SHMEM2_RD(bp, other_shmem_base_addr);
732	addr = trace_shmem_base - 0x0800 + 4;
733	mark = REG_RD(bp, addr);
734	mark = (CHIP_IS_E1x(bp) ? MCP_REG_MCPR_SCRATCH : MCP_A_REG_MCPR_SCRATCH)
735			+ ((mark + 0x3) & ~0x3) - 0x08000000;
736	printk("%s" "begin fw dump (mark 0x%x)\n", lvl, mark);
737
738	printk("%s", lvl);
739	for (offset = mark; offset <= trace_shmem_base; offset += 0x8*4) {
740		for (word = 0; word < 8; word++)
741			data[word] = htonl(REG_RD(bp, offset + 4*word));
742		data[8] = 0x0;
743		pr_cont("%s", (char *)data);
744	}
745	for (offset = addr + 4; offset <= mark; offset += 0x8*4) {
746		for (word = 0; word < 8; word++)
747			data[word] = htonl(REG_RD(bp, offset + 4*word));
748		data[8] = 0x0;
749		pr_cont("%s", (char *)data);
750	}
751	printk("%s" "end of fw dump\n", lvl);
752}
753
754static inline void bnx2x_fw_dump(struct bnx2x *bp)
755{
756	bnx2x_fw_dump_lvl(bp, KERN_ERR);
757}
758
759void bnx2x_panic_dump(struct bnx2x *bp)
760{
761	int i;
762	u16 j;
763	struct hc_sp_status_block_data sp_sb_data;
764	int func = BP_FUNC(bp);
765#ifdef BNX2X_STOP_ON_ERROR
766	u16 start = 0, end = 0;
767	u8 cos;
768#endif
769
770	bp->stats_state = STATS_STATE_DISABLED;
771	DP(BNX2X_MSG_STATS, "stats_state - DISABLED\n");
772
773	BNX2X_ERR("begin crash dump -----------------\n");
774
775	/* Indices */
776	/* Common */
777	BNX2X_ERR("def_idx(0x%x)  def_att_idx(0x%x)  attn_state(0x%x)"
778		  "  spq_prod_idx(0x%x) next_stats_cnt(0x%x)\n",
779		  bp->def_idx, bp->def_att_idx, bp->attn_state,
780		  bp->spq_prod_idx, bp->stats_counter);
781	BNX2X_ERR("DSB: attn bits(0x%x)  ack(0x%x)  id(0x%x)  idx(0x%x)\n",
782		  bp->def_status_blk->atten_status_block.attn_bits,
783		  bp->def_status_blk->atten_status_block.attn_bits_ack,
784		  bp->def_status_blk->atten_status_block.status_block_id,
785		  bp->def_status_blk->atten_status_block.attn_bits_index);
786	BNX2X_ERR("     def (");
787	for (i = 0; i < HC_SP_SB_MAX_INDICES; i++)
788		pr_cont("0x%x%s",
789			bp->def_status_blk->sp_sb.index_values[i],
790			(i == HC_SP_SB_MAX_INDICES - 1) ? ")  " : " ");
791
792	for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++)
793		*((u32 *)&sp_sb_data + i) = REG_RD(bp, BAR_CSTRORM_INTMEM +
794			CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) +
795			i*sizeof(u32));
796
797	pr_cont("igu_sb_id(0x%x)  igu_seg_id(0x%x) pf_id(0x%x)  vnic_id(0x%x)  vf_id(0x%x)  vf_valid (0x%x) state(0x%x)\n",
798	       sp_sb_data.igu_sb_id,
799	       sp_sb_data.igu_seg_id,
800	       sp_sb_data.p_func.pf_id,
801	       sp_sb_data.p_func.vnic_id,
802	       sp_sb_data.p_func.vf_id,
803	       sp_sb_data.p_func.vf_valid,
804	       sp_sb_data.state);
805
806
807	for_each_eth_queue(bp, i) {
808		struct bnx2x_fastpath *fp = &bp->fp[i];
809		int loop;
810		struct hc_status_block_data_e2 sb_data_e2;
811		struct hc_status_block_data_e1x sb_data_e1x;
812		struct hc_status_block_sm  *hc_sm_p =
813			CHIP_IS_E1x(bp) ?
814			sb_data_e1x.common.state_machine :
815			sb_data_e2.common.state_machine;
816		struct hc_index_data *hc_index_p =
817			CHIP_IS_E1x(bp) ?
818			sb_data_e1x.index_data :
819			sb_data_e2.index_data;
820		u8 data_size, cos;
821		u32 *sb_data_p;
822		struct bnx2x_fp_txdata txdata;
823
824		/* Rx */
825		BNX2X_ERR("fp%d: rx_bd_prod(0x%x)  rx_bd_cons(0x%x)"
826			  "  rx_comp_prod(0x%x)"
827			  "  rx_comp_cons(0x%x)  *rx_cons_sb(0x%x)\n",
828			  i, fp->rx_bd_prod, fp->rx_bd_cons,
829			  fp->rx_comp_prod,
830			  fp->rx_comp_cons, le16_to_cpu(*fp->rx_cons_sb));
831		BNX2X_ERR("     rx_sge_prod(0x%x)  last_max_sge(0x%x)"
832			  "  fp_hc_idx(0x%x)\n",
833			  fp->rx_sge_prod, fp->last_max_sge,
834			  le16_to_cpu(fp->fp_hc_idx));
835
836		/* Tx */
837		for_each_cos_in_tx_queue(fp, cos)
838		{
839			txdata = fp->txdata[cos];
840			BNX2X_ERR("fp%d: tx_pkt_prod(0x%x)  tx_pkt_cons(0x%x)"
841				  "  tx_bd_prod(0x%x)  tx_bd_cons(0x%x)"
842				  "  *tx_cons_sb(0x%x)\n",
843				  i, txdata.tx_pkt_prod,
844				  txdata.tx_pkt_cons, txdata.tx_bd_prod,
845				  txdata.tx_bd_cons,
846				  le16_to_cpu(*txdata.tx_cons_sb));
847		}
848
849		loop = CHIP_IS_E1x(bp) ?
850			HC_SB_MAX_INDICES_E1X : HC_SB_MAX_INDICES_E2;
851
852		/* host sb data */
853
854#ifdef BCM_CNIC
855		if (IS_FCOE_FP(fp))
856			continue;
857#endif
858		BNX2X_ERR("     run indexes (");
859		for (j = 0; j < HC_SB_MAX_SM; j++)
860			pr_cont("0x%x%s",
861			       fp->sb_running_index[j],
862			       (j == HC_SB_MAX_SM - 1) ? ")" : " ");
863
864		BNX2X_ERR("     indexes (");
865		for (j = 0; j < loop; j++)
866			pr_cont("0x%x%s",
867			       fp->sb_index_values[j],
868			       (j == loop - 1) ? ")" : " ");
869		/* fw sb data */
870		data_size = CHIP_IS_E1x(bp) ?
871			sizeof(struct hc_status_block_data_e1x) :
872			sizeof(struct hc_status_block_data_e2);
873		data_size /= sizeof(u32);
874		sb_data_p = CHIP_IS_E1x(bp) ?
875			(u32 *)&sb_data_e1x :
876			(u32 *)&sb_data_e2;
877		/* copy sb data in here */
878		for (j = 0; j < data_size; j++)
879			*(sb_data_p + j) = REG_RD(bp, BAR_CSTRORM_INTMEM +
880				CSTORM_STATUS_BLOCK_DATA_OFFSET(fp->fw_sb_id) +
881				j * sizeof(u32));
882
883		if (!CHIP_IS_E1x(bp)) {
884			pr_cont("pf_id(0x%x)  vf_id(0x%x)  vf_valid(0x%x) "
885				"vnic_id(0x%x)  same_igu_sb_1b(0x%x) "
886				"state(0x%x)\n",
887				sb_data_e2.common.p_func.pf_id,
888				sb_data_e2.common.p_func.vf_id,
889				sb_data_e2.common.p_func.vf_valid,
890				sb_data_e2.common.p_func.vnic_id,
891				sb_data_e2.common.same_igu_sb_1b,
892				sb_data_e2.common.state);
893		} else {
894			pr_cont("pf_id(0x%x)  vf_id(0x%x)  vf_valid(0x%x) "
895				"vnic_id(0x%x)  same_igu_sb_1b(0x%x) "
896				"state(0x%x)\n",
897				sb_data_e1x.common.p_func.pf_id,
898				sb_data_e1x.common.p_func.vf_id,
899				sb_data_e1x.common.p_func.vf_valid,
900				sb_data_e1x.common.p_func.vnic_id,
901				sb_data_e1x.common.same_igu_sb_1b,
902				sb_data_e1x.common.state);
903		}
904
905		/* SB_SMs data */
906		for (j = 0; j < HC_SB_MAX_SM; j++) {
907			pr_cont("SM[%d] __flags (0x%x) "
908			       "igu_sb_id (0x%x)  igu_seg_id(0x%x) "
909			       "time_to_expire (0x%x) "
910			       "timer_value(0x%x)\n", j,
911			       hc_sm_p[j].__flags,
912			       hc_sm_p[j].igu_sb_id,
913			       hc_sm_p[j].igu_seg_id,
914			       hc_sm_p[j].time_to_expire,
915			       hc_sm_p[j].timer_value);
916		}
917
918		/* Indecies data */
919		for (j = 0; j < loop; j++) {
920			pr_cont("INDEX[%d] flags (0x%x) "
921					 "timeout (0x%x)\n", j,
922			       hc_index_p[j].flags,
923			       hc_index_p[j].timeout);
924		}
925	}
926
927#ifdef BNX2X_STOP_ON_ERROR
928	/* Rings */
929	/* Rx */
930	for_each_rx_queue(bp, i) {
931		struct bnx2x_fastpath *fp = &bp->fp[i];
932
933		start = RX_BD(le16_to_cpu(*fp->rx_cons_sb) - 10);
934		end = RX_BD(le16_to_cpu(*fp->rx_cons_sb) + 503);
935		for (j = start; j != end; j = RX_BD(j + 1)) {
936			u32 *rx_bd = (u32 *)&fp->rx_desc_ring[j];
937			struct sw_rx_bd *sw_bd = &fp->rx_buf_ring[j];
938
939			BNX2X_ERR("fp%d: rx_bd[%x]=[%x:%x]  sw_bd=[%p]\n",
940				  i, j, rx_bd[1], rx_bd[0], sw_bd->data);
941		}
942
943		start = RX_SGE(fp->rx_sge_prod);
944		end = RX_SGE(fp->last_max_sge);
945		for (j = start; j != end; j = RX_SGE(j + 1)) {
946			u32 *rx_sge = (u32 *)&fp->rx_sge_ring[j];
947			struct sw_rx_page *sw_page = &fp->rx_page_ring[j];
948
949			BNX2X_ERR("fp%d: rx_sge[%x]=[%x:%x]  sw_page=[%p]\n",
950				  i, j, rx_sge[1], rx_sge[0], sw_page->page);
951		}
952
953		start = RCQ_BD(fp->rx_comp_cons - 10);
954		end = RCQ_BD(fp->rx_comp_cons + 503);
955		for (j = start; j != end; j = RCQ_BD(j + 1)) {
956			u32 *cqe = (u32 *)&fp->rx_comp_ring[j];
957
958			BNX2X_ERR("fp%d: cqe[%x]=[%x:%x:%x:%x]\n",
959				  i, j, cqe[0], cqe[1], cqe[2], cqe[3]);
960		}
961	}
962
963	/* Tx */
964	for_each_tx_queue(bp, i) {
965		struct bnx2x_fastpath *fp = &bp->fp[i];
966		for_each_cos_in_tx_queue(fp, cos) {
967			struct bnx2x_fp_txdata *txdata = &fp->txdata[cos];
968
969			start = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) - 10);
970			end = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) + 245);
971			for (j = start; j != end; j = TX_BD(j + 1)) {
972				struct sw_tx_bd *sw_bd =
973					&txdata->tx_buf_ring[j];
974
975				BNX2X_ERR("fp%d: txdata %d, "
976					  "packet[%x]=[%p,%x]\n",
977					  i, cos, j, sw_bd->skb,
978					  sw_bd->first_bd);
979			}
980
981			start = TX_BD(txdata->tx_bd_cons - 10);
982			end = TX_BD(txdata->tx_bd_cons + 254);
983			for (j = start; j != end; j = TX_BD(j + 1)) {
984				u32 *tx_bd = (u32 *)&txdata->tx_desc_ring[j];
985
986				BNX2X_ERR("fp%d: txdata %d, tx_bd[%x]="
987					  "[%x:%x:%x:%x]\n",
988					  i, cos, j, tx_bd[0], tx_bd[1],
989					  tx_bd[2], tx_bd[3]);
990			}
991		}
992	}
993#endif
994	bnx2x_fw_dump(bp);
995	bnx2x_mc_assert(bp);
996	BNX2X_ERR("end crash dump -----------------\n");
997}
998
999/*
1000 * FLR Support for E2
1001 *
1002 * bnx2x_pf_flr_clnup() is called during nic_load in the per function HW
1003 * initialization.
1004 */
1005#define FLR_WAIT_USEC		10000	/* 10 miliseconds */
1006#define FLR_WAIT_INTERAVAL	50	/* usec */
1007#define	FLR_POLL_CNT		(FLR_WAIT_USEC/FLR_WAIT_INTERAVAL) /* 200 */
1008
1009struct pbf_pN_buf_regs {
1010	int pN;
1011	u32 init_crd;
1012	u32 crd;
1013	u32 crd_freed;
1014};
1015
1016struct pbf_pN_cmd_regs {
1017	int pN;
1018	u32 lines_occup;
1019	u32 lines_freed;
1020};
1021
1022static void bnx2x_pbf_pN_buf_flushed(struct bnx2x *bp,
1023				     struct pbf_pN_buf_regs *regs,
1024				     u32 poll_count)
1025{
1026	u32 init_crd, crd, crd_start, crd_freed, crd_freed_start;
1027	u32 cur_cnt = poll_count;
1028
1029	crd_freed = crd_freed_start = REG_RD(bp, regs->crd_freed);
1030	crd = crd_start = REG_RD(bp, regs->crd);
1031	init_crd = REG_RD(bp, regs->init_crd);
1032
1033	DP(BNX2X_MSG_SP, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd);
1034	DP(BNX2X_MSG_SP, "CREDIT[%d]      : s:%x\n", regs->pN, crd);
1035	DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed);
1036
1037	while ((crd != init_crd) && ((u32)SUB_S32(crd_freed, crd_freed_start) <
1038	       (init_crd - crd_start))) {
1039		if (cur_cnt--) {
1040			udelay(FLR_WAIT_INTERAVAL);
1041			crd = REG_RD(bp, regs->crd);
1042			crd_freed = REG_RD(bp, regs->crd_freed);
1043		} else {
1044			DP(BNX2X_MSG_SP, "PBF tx buffer[%d] timed out\n",
1045			   regs->pN);
1046			DP(BNX2X_MSG_SP, "CREDIT[%d]      : c:%x\n",
1047			   regs->pN, crd);
1048			DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: c:%x\n",
1049			   regs->pN, crd_freed);
1050			break;
1051		}
1052	}
1053	DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF tx buffer[%d]\n",
1054	   poll_count-cur_cnt, FLR_WAIT_INTERAVAL, regs->pN);
1055}
1056
1057static void bnx2x_pbf_pN_cmd_flushed(struct bnx2x *bp,
1058				     struct pbf_pN_cmd_regs *regs,
1059				     u32 poll_count)
1060{
1061	u32 occup, to_free, freed, freed_start;
1062	u32 cur_cnt = poll_count;
1063
1064	occup = to_free = REG_RD(bp, regs->lines_occup);
1065	freed = freed_start = REG_RD(bp, regs->lines_freed);
1066
1067	DP(BNX2X_MSG_SP, "OCCUPANCY[%d]   : s:%x\n", regs->pN, occup);
1068	DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n", regs->pN, freed);
1069
1070	while (occup && ((u32)SUB_S32(freed, freed_start) < to_free)) {
1071		if (cur_cnt--) {
1072			udelay(FLR_WAIT_INTERAVAL);
1073			occup = REG_RD(bp, regs->lines_occup);
1074			freed = REG_RD(bp, regs->lines_freed);
1075		} else {
1076			DP(BNX2X_MSG_SP, "PBF cmd queue[%d] timed out\n",
1077			   regs->pN);
1078			DP(BNX2X_MSG_SP, "OCCUPANCY[%d]   : s:%x\n",
1079			   regs->pN, occup);
1080			DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n",
1081			   regs->pN, freed);
1082			break;
1083		}
1084	}
1085	DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF cmd queue[%d]\n",
1086	   poll_count-cur_cnt, FLR_WAIT_INTERAVAL, regs->pN);
1087}
1088
1089static inline u32 bnx2x_flr_clnup_reg_poll(struct bnx2x *bp, u32 reg,
1090				     u32 expected, u32 poll_count)
1091{
1092	u32 cur_cnt = poll_count;
1093	u32 val;
1094
1095	while ((val = REG_RD(bp, reg)) != expected && cur_cnt--)
1096		udelay(FLR_WAIT_INTERAVAL);
1097
1098	return val;
1099}
1100
1101static inline int bnx2x_flr_clnup_poll_hw_counter(struct bnx2x *bp, u32 reg,
1102						  char *msg, u32 poll_cnt)
1103{
1104	u32 val = bnx2x_flr_clnup_reg_poll(bp, reg, 0, poll_cnt);
1105	if (val != 0) {
1106		BNX2X_ERR("%s usage count=%d\n", msg, val);
1107		return 1;
1108	}
1109	return 0;
1110}
1111
1112static u32 bnx2x_flr_clnup_poll_count(struct bnx2x *bp)
1113{
1114	/* adjust polling timeout */
1115	if (CHIP_REV_IS_EMUL(bp))
1116		return FLR_POLL_CNT * 2000;
1117
1118	if (CHIP_REV_IS_FPGA(bp))
1119		return FLR_POLL_CNT * 120;
1120
1121	return FLR_POLL_CNT;
1122}
1123
1124static void bnx2x_tx_hw_flushed(struct bnx2x *bp, u32 poll_count)
1125{
1126	struct pbf_pN_cmd_regs cmd_regs[] = {
1127		{0, (CHIP_IS_E3B0(bp)) ?
1128			PBF_REG_TQ_OCCUPANCY_Q0 :
1129			PBF_REG_P0_TQ_OCCUPANCY,
1130		    (CHIP_IS_E3B0(bp)) ?
1131			PBF_REG_TQ_LINES_FREED_CNT_Q0 :
1132			PBF_REG_P0_TQ_LINES_FREED_CNT},
1133		{1, (CHIP_IS_E3B0(bp)) ?
1134			PBF_REG_TQ_OCCUPANCY_Q1 :
1135			PBF_REG_P1_TQ_OCCUPANCY,
1136		    (CHIP_IS_E3B0(bp)) ?
1137			PBF_REG_TQ_LINES_FREED_CNT_Q1 :
1138			PBF_REG_P1_TQ_LINES_FREED_CNT},
1139		{4, (CHIP_IS_E3B0(bp)) ?
1140			PBF_REG_TQ_OCCUPANCY_LB_Q :
1141			PBF_REG_P4_TQ_OCCUPANCY,
1142		    (CHIP_IS_E3B0(bp)) ?
1143			PBF_REG_TQ_LINES_FREED_CNT_LB_Q :
1144			PBF_REG_P4_TQ_LINES_FREED_CNT}
1145	};
1146
1147	struct pbf_pN_buf_regs buf_regs[] = {
1148		{0, (CHIP_IS_E3B0(bp)) ?
1149			PBF_REG_INIT_CRD_Q0 :
1150			PBF_REG_P0_INIT_CRD ,
1151		    (CHIP_IS_E3B0(bp)) ?
1152			PBF_REG_CREDIT_Q0 :
1153			PBF_REG_P0_CREDIT,
1154		    (CHIP_IS_E3B0(bp)) ?
1155			PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 :
1156			PBF_REG_P0_INTERNAL_CRD_FREED_CNT},
1157		{1, (CHIP_IS_E3B0(bp)) ?
1158			PBF_REG_INIT_CRD_Q1 :
1159			PBF_REG_P1_INIT_CRD,
1160		    (CHIP_IS_E3B0(bp)) ?
1161			PBF_REG_CREDIT_Q1 :
1162			PBF_REG_P1_CREDIT,
1163		    (CHIP_IS_E3B0(bp)) ?
1164			PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 :
1165			PBF_REG_P1_INTERNAL_CRD_FREED_CNT},
1166		{4, (CHIP_IS_E3B0(bp)) ?
1167			PBF_REG_INIT_CRD_LB_Q :
1168			PBF_REG_P4_INIT_CRD,
1169		    (CHIP_IS_E3B0(bp)) ?
1170			PBF_REG_CREDIT_LB_Q :
1171			PBF_REG_P4_CREDIT,
1172		    (CHIP_IS_E3B0(bp)) ?
1173			PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q :
1174			PBF_REG_P4_INTERNAL_CRD_FREED_CNT},
1175	};
1176
1177	int i;
1178
1179	/* Verify the command queues are flushed P0, P1, P4 */
1180	for (i = 0; i < ARRAY_SIZE(cmd_regs); i++)
1181		bnx2x_pbf_pN_cmd_flushed(bp, &cmd_regs[i], poll_count);
1182
1183
1184	/* Verify the transmission buffers are flushed P0, P1, P4 */
1185	for (i = 0; i < ARRAY_SIZE(buf_regs); i++)
1186		bnx2x_pbf_pN_buf_flushed(bp, &buf_regs[i], poll_count);
1187}
1188
1189#define OP_GEN_PARAM(param) \
1190	(((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM)
1191
1192#define OP_GEN_TYPE(type) \
1193	(((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE)
1194
1195#define OP_GEN_AGG_VECT(index) \
1196	(((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX)
1197
1198
1199static inline int bnx2x_send_final_clnup(struct bnx2x *bp, u8 clnup_func,
1200					 u32 poll_cnt)
1201{
1202	struct sdm_op_gen op_gen = {0};
1203
1204	u32 comp_addr = BAR_CSTRORM_INTMEM +
1205			CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func);
1206	int ret = 0;
1207
1208	if (REG_RD(bp, comp_addr)) {
1209		BNX2X_ERR("Cleanup complete is not 0\n");
1210		return 1;
1211	}
1212
1213	op_gen.command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX);
1214	op_gen.command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE);
1215	op_gen.command |= OP_GEN_AGG_VECT(clnup_func);
1216	op_gen.command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT;
1217
1218	DP(BNX2X_MSG_SP, "FW Final cleanup\n");
1219	REG_WR(bp, XSDM_REG_OPERATION_GEN, op_gen.command);
1220
1221	if (bnx2x_flr_clnup_reg_poll(bp, comp_addr, 1, poll_cnt) != 1) {
1222		BNX2X_ERR("FW final cleanup did not succeed\n");
1223		ret = 1;
1224	}
1225	/* Zero completion for nxt FLR */
1226	REG_WR(bp, comp_addr, 0);
1227
1228	return ret;
1229}
1230
1231static inline u8 bnx2x_is_pcie_pending(struct pci_dev *dev)
1232{
1233	int pos;
1234	u16 status;
1235
1236	pos = pci_pcie_cap(dev);
1237	if (!pos)
1238		return false;
1239
1240	pci_read_config_word(dev, pos + PCI_EXP_DEVSTA, &status);
1241	return status & PCI_EXP_DEVSTA_TRPND;
1242}
1243
1244/* PF FLR specific routines
1245*/
1246static int bnx2x_poll_hw_usage_counters(struct bnx2x *bp, u32 poll_cnt)
1247{
1248
1249	/* wait for CFC PF usage-counter to zero (includes all the VFs) */
1250	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1251			CFC_REG_NUM_LCIDS_INSIDE_PF,
1252			"CFC PF usage counter timed out",
1253			poll_cnt))
1254		return 1;
1255
1256
1257	/* Wait for DQ PF usage-counter to zero (until DQ cleanup) */
1258	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1259			DORQ_REG_PF_USAGE_CNT,
1260			"DQ PF usage counter timed out",
1261			poll_cnt))
1262		return 1;
1263
1264	/* Wait for QM PF usage-counter to zero (until DQ cleanup) */
1265	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1266			QM_REG_PF_USG_CNT_0 + 4*BP_FUNC(bp),
1267			"QM PF usage counter timed out",
1268			poll_cnt))
1269		return 1;
1270
1271	/* Wait for Timer PF usage-counters to zero (until DQ cleanup) */
1272	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1273			TM_REG_LIN0_VNIC_UC + 4*BP_PORT(bp),
1274			"Timers VNIC usage counter timed out",
1275			poll_cnt))
1276		return 1;
1277	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1278			TM_REG_LIN0_NUM_SCANS + 4*BP_PORT(bp),
1279			"Timers NUM_SCANS usage counter timed out",
1280			poll_cnt))
1281		return 1;
1282
1283	/* Wait DMAE PF usage counter to zero */
1284	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1285			dmae_reg_go_c[INIT_DMAE_C(bp)],
1286			"DMAE dommand register timed out",
1287			poll_cnt))
1288		return 1;
1289
1290	return 0;
1291}
1292
1293static void bnx2x_hw_enable_status(struct bnx2x *bp)
1294{
1295	u32 val;
1296
1297	val = REG_RD(bp, CFC_REG_WEAK_ENABLE_PF);
1298	DP(BNX2X_MSG_SP, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val);
1299
1300	val = REG_RD(bp, PBF_REG_DISABLE_PF);
1301	DP(BNX2X_MSG_SP, "PBF_REG_DISABLE_PF is 0x%x\n", val);
1302
1303	val = REG_RD(bp, IGU_REG_PCI_PF_MSI_EN);
1304	DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val);
1305
1306	val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_EN);
1307	DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val);
1308
1309	val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_FUNC_MASK);
1310	DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val);
1311
1312	val = REG_RD(bp, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR);
1313	DP(BNX2X_MSG_SP, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val);
1314
1315	val = REG_RD(bp, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR);
1316	DP(BNX2X_MSG_SP, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val);
1317
1318	val = REG_RD(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
1319	DP(BNX2X_MSG_SP, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n",
1320	   val);
1321}
1322
1323static int bnx2x_pf_flr_clnup(struct bnx2x *bp)
1324{
1325	u32 poll_cnt = bnx2x_flr_clnup_poll_count(bp);
1326
1327	DP(BNX2X_MSG_SP, "Cleanup after FLR PF[%d]\n", BP_ABS_FUNC(bp));
1328
1329	/* Re-enable PF target read access */
1330	REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
1331
1332	/* Poll HW usage counters */
1333	if (bnx2x_poll_hw_usage_counters(bp, poll_cnt))
1334		return -EBUSY;
1335
1336	/* Zero the igu 'trailing edge' and 'leading edge' */
1337
1338	/* Send the FW cleanup command */
1339	if (bnx2x_send_final_clnup(bp, (u8)BP_FUNC(bp), poll_cnt))
1340		return -EBUSY;
1341
1342	/* ATC cleanup */
1343
1344	/* Verify TX hw is flushed */
1345	bnx2x_tx_hw_flushed(bp, poll_cnt);
1346
1347	/* Wait 100ms (not adjusted according to platform) */
1348	msleep(100);
1349
1350	/* Verify no pending pci transactions */
1351	if (bnx2x_is_pcie_pending(bp->pdev))
1352		BNX2X_ERR("PCIE Transactions still pending\n");
1353
1354	/* Debug */
1355	bnx2x_hw_enable_status(bp);
1356
1357	/*
1358	 * Master enable - Due to WB DMAE writes performed before this
1359	 * register is re-initialized as part of the regular function init
1360	 */
1361	REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
1362
1363	return 0;
1364}
1365
1366static void bnx2x_hc_int_enable(struct bnx2x *bp)
1367{
1368	int port = BP_PORT(bp);
1369	u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
1370	u32 val = REG_RD(bp, addr);
1371	int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
1372	int msi = (bp->flags & USING_MSI_FLAG) ? 1 : 0;
1373
1374	if (msix) {
1375		val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1376			 HC_CONFIG_0_REG_INT_LINE_EN_0);
1377		val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1378			HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1379	} else if (msi) {
1380		val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0;
1381		val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1382			HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1383			HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1384	} else {
1385		val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1386			HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1387			HC_CONFIG_0_REG_INT_LINE_EN_0 |
1388			HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1389
1390		if (!CHIP_IS_E1(bp)) {
1391			DP(NETIF_MSG_INTR, "write %x to HC %d (addr 0x%x)\n",
1392			   val, port, addr);
1393
1394			REG_WR(bp, addr, val);
1395
1396			val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0;
1397		}
1398	}
1399
1400	if (CHIP_IS_E1(bp))
1401		REG_WR(bp, HC_REG_INT_MASK + port*4, 0x1FFFF);
1402
1403	DP(NETIF_MSG_INTR, "write %x to HC %d (addr 0x%x)  mode %s\n",
1404	   val, port, addr, (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1405
1406	REG_WR(bp, addr, val);
1407	/*
1408	 * Ensure that HC_CONFIG is written before leading/trailing edge config
1409	 */
1410	mmiowb();
1411	barrier();
1412
1413	if (!CHIP_IS_E1(bp)) {
1414		/* init leading/trailing edge */
1415		if (IS_MF(bp)) {
1416			val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1417			if (bp->port.pmf)
1418				/* enable nig and gpio3 attention */
1419				val |= 0x1100;
1420		} else
1421			val = 0xffff;
1422
1423		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
1424		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
1425	}
1426
1427	/* Make sure that interrupts are indeed enabled from here on */
1428	mmiowb();
1429}
1430
1431static void bnx2x_igu_int_enable(struct bnx2x *bp)
1432{
1433	u32 val;
1434	int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
1435	int msi = (bp->flags & USING_MSI_FLAG) ? 1 : 0;
1436
1437	val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
1438
1439	if (msix) {
1440		val &= ~(IGU_PF_CONF_INT_LINE_EN |
1441			 IGU_PF_CONF_SINGLE_ISR_EN);
1442		val |= (IGU_PF_CONF_FUNC_EN |
1443			IGU_PF_CONF_MSI_MSIX_EN |
1444			IGU_PF_CONF_ATTN_BIT_EN);
1445	} else if (msi) {
1446		val &= ~IGU_PF_CONF_INT_LINE_EN;
1447		val |= (IGU_PF_CONF_FUNC_EN |
1448			IGU_PF_CONF_MSI_MSIX_EN |
1449			IGU_PF_CONF_ATTN_BIT_EN |
1450			IGU_PF_CONF_SINGLE_ISR_EN);
1451	} else {
1452		val &= ~IGU_PF_CONF_MSI_MSIX_EN;
1453		val |= (IGU_PF_CONF_FUNC_EN |
1454			IGU_PF_CONF_INT_LINE_EN |
1455			IGU_PF_CONF_ATTN_BIT_EN |
1456			IGU_PF_CONF_SINGLE_ISR_EN);
1457	}
1458
1459	DP(NETIF_MSG_INTR, "write 0x%x to IGU  mode %s\n",
1460	   val, (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1461
1462	REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1463
1464	barrier();
1465
1466	/* init leading/trailing edge */
1467	if (IS_MF(bp)) {
1468		val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1469		if (bp->port.pmf)
1470			/* enable nig and gpio3 attention */
1471			val |= 0x1100;
1472	} else
1473		val = 0xffff;
1474
1475	REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
1476	REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
1477
1478	/* Make sure that interrupts are indeed enabled from here on */
1479	mmiowb();
1480}
1481
1482void bnx2x_int_enable(struct bnx2x *bp)
1483{
1484	if (bp->common.int_block == INT_BLOCK_HC)
1485		bnx2x_hc_int_enable(bp);
1486	else
1487		bnx2x_igu_int_enable(bp);
1488}
1489
1490static void bnx2x_hc_int_disable(struct bnx2x *bp)
1491{
1492	int port = BP_PORT(bp);
1493	u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
1494	u32 val = REG_RD(bp, addr);
1495
1496	/*
1497	 * in E1 we must use only PCI configuration space to disable
1498	 * MSI/MSIX capablility
1499	 * It's forbitten to disable IGU_PF_CONF_MSI_MSIX_EN in HC block
1500	 */
1501	if (CHIP_IS_E1(bp)) {
1502		/*  Since IGU_PF_CONF_MSI_MSIX_EN still always on
1503		 *  Use mask register to prevent from HC sending interrupts
1504		 *  after we exit the function
1505		 */
1506		REG_WR(bp, HC_REG_INT_MASK + port*4, 0);
1507
1508		val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1509			 HC_CONFIG_0_REG_INT_LINE_EN_0 |
1510			 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1511	} else
1512		val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1513			 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1514			 HC_CONFIG_0_REG_INT_LINE_EN_0 |
1515			 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1516
1517	DP(NETIF_MSG_INTR, "write %x to HC %d (addr 0x%x)\n",
1518	   val, port, addr);
1519
1520	/* flush all outstanding writes */
1521	mmiowb();
1522
1523	REG_WR(bp, addr, val);
1524	if (REG_RD(bp, addr) != val)
1525		BNX2X_ERR("BUG! proper val not read from IGU!\n");
1526}
1527
1528static void bnx2x_igu_int_disable(struct bnx2x *bp)
1529{
1530	u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
1531
1532	val &= ~(IGU_PF_CONF_MSI_MSIX_EN |
1533		 IGU_PF_CONF_INT_LINE_EN |
1534		 IGU_PF_CONF_ATTN_BIT_EN);
1535
1536	DP(NETIF_MSG_INTR, "write %x to IGU\n", val);
1537
1538	/* flush all outstanding writes */
1539	mmiowb();
1540
1541	REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1542	if (REG_RD(bp, IGU_REG_PF_CONFIGURATION) != val)
1543		BNX2X_ERR("BUG! proper val not read from IGU!\n");
1544}
1545
1546void bnx2x_int_disable(struct bnx2x *bp)
1547{
1548	if (bp->common.int_block == INT_BLOCK_HC)
1549		bnx2x_hc_int_disable(bp);
1550	else
1551		bnx2x_igu_int_disable(bp);
1552}
1553
1554void bnx2x_int_disable_sync(struct bnx2x *bp, int disable_hw)
1555{
1556	int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
1557	int i, offset;
1558
1559	if (disable_hw)
1560		/* prevent the HW from sending interrupts */
1561		bnx2x_int_disable(bp);
1562
1563	/* make sure all ISRs are done */
1564	if (msix) {
1565		synchronize_irq(bp->msix_table[0].vector);
1566		offset = 1;
1567#ifdef BCM_CNIC
1568		offset++;
1569#endif
1570		for_each_eth_queue(bp, i)
1571			synchronize_irq(bp->msix_table[offset++].vector);
1572	} else
1573		synchronize_irq(bp->pdev->irq);
1574
1575	/* make sure sp_task is not running */
1576	cancel_delayed_work(&bp->sp_task);
1577	cancel_delayed_work(&bp->period_task);
1578	flush_workqueue(bnx2x_wq);
1579}
1580
1581/* fast path */
1582
1583/*
1584 * General service functions
1585 */
1586
1587/* Return true if succeeded to acquire the lock */
1588static bool bnx2x_trylock_hw_lock(struct bnx2x *bp, u32 resource)
1589{
1590	u32 lock_status;
1591	u32 resource_bit = (1 << resource);
1592	int func = BP_FUNC(bp);
1593	u32 hw_lock_control_reg;
1594
1595	DP(NETIF_MSG_HW, "Trying to take a lock on resource %d\n", resource);
1596
1597	/* Validating that the resource is within range */
1598	if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1599		DP(NETIF_MSG_HW,
1600		   "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1601		   resource, HW_LOCK_MAX_RESOURCE_VALUE);
1602		return false;
1603	}
1604
1605	if (func <= 5)
1606		hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1607	else
1608		hw_lock_control_reg =
1609				(MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1610
1611	/* Try to acquire the lock */
1612	REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
1613	lock_status = REG_RD(bp, hw_lock_control_reg);
1614	if (lock_status & resource_bit)
1615		return true;
1616
1617	DP(NETIF_MSG_HW, "Failed to get a lock on resource %d\n", resource);
1618	return false;
1619}
1620
1621/**
1622 * bnx2x_get_leader_lock_resource - get the recovery leader resource id
1623 *
1624 * @bp:	driver handle
1625 *
1626 * Returns the recovery leader resource id according to the engine this function
1627 * belongs to. Currently only only 2 engines is supported.
1628 */
1629static inline int bnx2x_get_leader_lock_resource(struct bnx2x *bp)
1630{
1631	if (BP_PATH(bp))
1632		return HW_LOCK_RESOURCE_RECOVERY_LEADER_1;
1633	else
1634		return HW_LOCK_RESOURCE_RECOVERY_LEADER_0;
1635}
1636
1637/**
1638 * bnx2x_trylock_leader_lock- try to aquire a leader lock.
1639 *
1640 * @bp: driver handle
1641 *
1642 * Tries to aquire a leader lock for cuurent engine.
1643 */
1644static inline bool bnx2x_trylock_leader_lock(struct bnx2x *bp)
1645{
1646	return bnx2x_trylock_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
1647}
1648
1649#ifdef BCM_CNIC
1650static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err);
1651#endif
1652
1653void bnx2x_sp_event(struct bnx2x_fastpath *fp, union eth_rx_cqe *rr_cqe)
1654{
1655	struct bnx2x *bp = fp->bp;
1656	int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1657	int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1658	enum bnx2x_queue_cmd drv_cmd = BNX2X_Q_CMD_MAX;
1659	struct bnx2x_queue_sp_obj *q_obj = &fp->q_obj;
1660
1661	DP(BNX2X_MSG_SP,
1662	   "fp %d  cid %d  got ramrod #%d  state is %x  type is %d\n",
1663	   fp->index, cid, command, bp->state,
1664	   rr_cqe->ramrod_cqe.ramrod_type);
1665
1666	switch (command) {
1667	case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE):
1668		DP(BNX2X_MSG_SP, "got UPDATE ramrod. CID %d\n", cid);
1669		drv_cmd = BNX2X_Q_CMD_UPDATE;
1670		break;
1671
1672	case (RAMROD_CMD_ID_ETH_CLIENT_SETUP):
1673		DP(BNX2X_MSG_SP, "got MULTI[%d] setup ramrod\n", cid);
1674		drv_cmd = BNX2X_Q_CMD_SETUP;
1675		break;
1676
1677	case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP):
1678		DP(NETIF_MSG_IFUP, "got MULTI[%d] tx-only setup ramrod\n", cid);
1679		drv_cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
1680		break;
1681
1682	case (RAMROD_CMD_ID_ETH_HALT):
1683		DP(BNX2X_MSG_SP, "got MULTI[%d] halt ramrod\n", cid);
1684		drv_cmd = BNX2X_Q_CMD_HALT;
1685		break;
1686
1687	case (RAMROD_CMD_ID_ETH_TERMINATE):
1688		DP(BNX2X_MSG_SP, "got MULTI[%d] teminate ramrod\n", cid);
1689		drv_cmd = BNX2X_Q_CMD_TERMINATE;
1690		break;
1691
1692	case (RAMROD_CMD_ID_ETH_EMPTY):
1693		DP(BNX2X_MSG_SP, "got MULTI[%d] empty ramrod\n", cid);
1694		drv_cmd = BNX2X_Q_CMD_EMPTY;
1695		break;
1696
1697	default:
1698		BNX2X_ERR("unexpected MC reply (%d) on fp[%d]\n",
1699			  command, fp->index);
1700		return;
1701	}
1702
1703	if ((drv_cmd != BNX2X_Q_CMD_MAX) &&
1704	    q_obj->complete_cmd(bp, q_obj, drv_cmd))
1705		/* q_obj->complete_cmd() failure means that this was
1706		 * an unexpected completion.
1707		 *
1708		 * In this case we don't want to increase the bp->spq_left
1709		 * because apparently we haven't sent this command the first
1710		 * place.
1711		 */
1712#ifdef BNX2X_STOP_ON_ERROR
1713		bnx2x_panic();
1714#else
1715		return;
1716#endif
1717
1718	smp_mb__before_atomic_inc();
1719	atomic_inc(&bp->cq_spq_left);
1720	/* push the change in bp->spq_left and towards the memory */
1721	smp_mb__after_atomic_inc();
1722
1723	DP(BNX2X_MSG_SP, "bp->cq_spq_left %x\n", atomic_read(&bp->cq_spq_left));
1724
1725	return;
1726}
1727
1728void bnx2x_update_rx_prod(struct bnx2x *bp, struct bnx2x_fastpath *fp,
1729			u16 bd_prod, u16 rx_comp_prod, u16 rx_sge_prod)
1730{
1731	u32 start = BAR_USTRORM_INTMEM + fp->ustorm_rx_prods_offset;
1732
1733	bnx2x_update_rx_prod_gen(bp, fp, bd_prod, rx_comp_prod, rx_sge_prod,
1734				 start);
1735}
1736
1737irqreturn_t bnx2x_interrupt(int irq, void *dev_instance)
1738{
1739	struct bnx2x *bp = netdev_priv(dev_instance);
1740	u16 status = bnx2x_ack_int(bp);
1741	u16 mask;
1742	int i;
1743	u8 cos;
1744
1745	/* Return here if interrupt is shared and it's not for us */
1746	if (unlikely(status == 0)) {
1747		DP(NETIF_MSG_INTR, "not our interrupt!\n");
1748		return IRQ_NONE;
1749	}
1750	DP(NETIF_MSG_INTR, "got an interrupt  status 0x%x\n", status);
1751
1752#ifdef BNX2X_STOP_ON_ERROR
1753	if (unlikely(bp->panic))
1754		return IRQ_HANDLED;
1755#endif
1756
1757	for_each_eth_queue(bp, i) {
1758		struct bnx2x_fastpath *fp = &bp->fp[i];
1759
1760		mask = 0x2 << (fp->index + CNIC_PRESENT);
1761		if (status & mask) {
1762			/* Handle Rx or Tx according to SB id */
1763			prefetch(fp->rx_cons_sb);
1764			for_each_cos_in_tx_queue(fp, cos)
1765				prefetch(fp->txdata[cos].tx_cons_sb);
1766			prefetch(&fp->sb_running_index[SM_RX_ID]);
1767			napi_schedule(&bnx2x_fp(bp, fp->index, napi));
1768			status &= ~mask;
1769		}
1770	}
1771
1772#ifdef BCM_CNIC
1773	mask = 0x2;
1774	if (status & (mask | 0x1)) {
1775		struct cnic_ops *c_ops = NULL;
1776
1777		if (likely(bp->state == BNX2X_STATE_OPEN)) {
1778			rcu_read_lock();
1779			c_ops = rcu_dereference(bp->cnic_ops);
1780			if (c_ops)
1781				c_ops->cnic_handler(bp->cnic_data, NULL);
1782			rcu_read_unlock();
1783		}
1784
1785		status &= ~mask;
1786	}
1787#endif
1788
1789	if (unlikely(status & 0x1)) {
1790		queue_delayed_work(bnx2x_wq, &bp->sp_task, 0);
1791
1792		status &= ~0x1;
1793		if (!status)
1794			return IRQ_HANDLED;
1795	}
1796
1797	if (unlikely(status))
1798		DP(NETIF_MSG_INTR, "got an unknown interrupt! (status 0x%x)\n",
1799		   status);
1800
1801	return IRQ_HANDLED;
1802}
1803
1804/* Link */
1805
1806/*
1807 * General service functions
1808 */
1809
1810int bnx2x_acquire_hw_lock(struct bnx2x *bp, u32 resource)
1811{
1812	u32 lock_status;
1813	u32 resource_bit = (1 << resource);
1814	int func = BP_FUNC(bp);
1815	u32 hw_lock_control_reg;
1816	int cnt;
1817
1818	/* Validating that the resource is within range */
1819	if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1820		DP(NETIF_MSG_HW,
1821		   "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1822		   resource, HW_LOCK_MAX_RESOURCE_VALUE);
1823		return -EINVAL;
1824	}
1825
1826	if (func <= 5) {
1827		hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1828	} else {
1829		hw_lock_control_reg =
1830				(MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1831	}
1832
1833	/* Validating that the resource is not already taken */
1834	lock_status = REG_RD(bp, hw_lock_control_reg);
1835	if (lock_status & resource_bit) {
1836		DP(NETIF_MSG_HW, "lock_status 0x%x  resource_bit 0x%x\n",
1837		   lock_status, resource_bit);
1838		return -EEXIST;
1839	}
1840
1841	/* Try for 5 second every 5ms */
1842	for (cnt = 0; cnt < 1000; cnt++) {
1843		/* Try to acquire the lock */
1844		REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
1845		lock_status = REG_RD(bp, hw_lock_control_reg);
1846		if (lock_status & resource_bit)
1847			return 0;
1848
1849		msleep(5);
1850	}
1851	DP(NETIF_MSG_HW, "Timeout\n");
1852	return -EAGAIN;
1853}
1854
1855int bnx2x_release_leader_lock(struct bnx2x *bp)
1856{
1857	return bnx2x_release_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
1858}
1859
1860int bnx2x_release_hw_lock(struct bnx2x *bp, u32 resource)
1861{
1862	u32 lock_status;
1863	u32 resource_bit = (1 << resource);
1864	int func = BP_FUNC(bp);
1865	u32 hw_lock_control_reg;
1866
1867	DP(NETIF_MSG_HW, "Releasing a lock on resource %d\n", resource);
1868
1869	/* Validating that the resource is within range */
1870	if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1871		DP(NETIF_MSG_HW,
1872		   "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1873		   resource, HW_LOCK_MAX_RESOURCE_VALUE);
1874		return -EINVAL;
1875	}
1876
1877	if (func <= 5) {
1878		hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1879	} else {
1880		hw_lock_control_reg =
1881				(MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1882	}
1883
1884	/* Validating that the resource is currently taken */
1885	lock_status = REG_RD(bp, hw_lock_control_reg);
1886	if (!(lock_status & resource_bit)) {
1887		DP(NETIF_MSG_HW, "lock_status 0x%x  resource_bit 0x%x\n",
1888		   lock_status, resource_bit);
1889		return -EFAULT;
1890	}
1891
1892	REG_WR(bp, hw_lock_control_reg, resource_bit);
1893	return 0;
1894}
1895
1896
1897int bnx2x_get_gpio(struct bnx2x *bp, int gpio_num, u8 port)
1898{
1899	/* The GPIO should be swapped if swap register is set and active */
1900	int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
1901			 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
1902	int gpio_shift = gpio_num +
1903			(gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
1904	u32 gpio_mask = (1 << gpio_shift);
1905	u32 gpio_reg;
1906	int value;
1907
1908	if (gpio_num > MISC_REGISTERS_GPIO_3) {
1909		BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
1910		return -EINVAL;
1911	}
1912
1913	/* read GPIO value */
1914	gpio_reg = REG_RD(bp, MISC_REG_GPIO);
1915
1916	/* get the requested pin value */
1917	if ((gpio_reg & gpio_mask) == gpio_mask)
1918		value = 1;
1919	else
1920		value = 0;
1921
1922	DP(NETIF_MSG_LINK, "pin %d  value 0x%x\n", gpio_num, value);
1923
1924	return value;
1925}
1926
1927int bnx2x_set_gpio(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
1928{
1929	/* The GPIO should be swapped if swap register is set and active */
1930	int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
1931			 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
1932	int gpio_shift = gpio_num +
1933			(gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
1934	u32 gpio_mask = (1 << gpio_shift);
1935	u32 gpio_reg;
1936
1937	if (gpio_num > MISC_REGISTERS_GPIO_3) {
1938		BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
1939		return -EINVAL;
1940	}
1941
1942	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
1943	/* read GPIO and mask except the float bits */
1944	gpio_reg = (REG_RD(bp, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT);
1945
1946	switch (mode) {
1947	case MISC_REGISTERS_GPIO_OUTPUT_LOW:
1948		DP(NETIF_MSG_LINK, "Set GPIO %d (shift %d) -> output low\n",
1949		   gpio_num, gpio_shift);
1950		/* clear FLOAT and set CLR */
1951		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
1952		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS);
1953		break;
1954
1955	case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
1956		DP(NETIF_MSG_LINK, "Set GPIO %d (shift %d) -> output high\n",
1957		   gpio_num, gpio_shift);
1958		/* clear FLOAT and set SET */
1959		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
1960		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_SET_POS);
1961		break;
1962
1963	case MISC_REGISTERS_GPIO_INPUT_HI_Z:
1964		DP(NETIF_MSG_LINK, "Set GPIO %d (shift %d) -> input\n",
1965		   gpio_num, gpio_shift);
1966		/* set FLOAT */
1967		gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
1968		break;
1969
1970	default:
1971		break;
1972	}
1973
1974	REG_WR(bp, MISC_REG_GPIO, gpio_reg);
1975	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
1976
1977	return 0;
1978}
1979
1980int bnx2x_set_mult_gpio(struct bnx2x *bp, u8 pins, u32 mode)
1981{
1982	u32 gpio_reg = 0;
1983	int rc = 0;
1984
1985	/* Any port swapping should be handled by caller. */
1986
1987	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
1988	/* read GPIO and mask except the float bits */
1989	gpio_reg = REG_RD(bp, MISC_REG_GPIO);
1990	gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS);
1991	gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS);
1992	gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS);
1993
1994	switch (mode) {
1995	case MISC_REGISTERS_GPIO_OUTPUT_LOW:
1996		DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output low\n", pins);
1997		/* set CLR */
1998		gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS);
1999		break;
2000
2001	case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2002		DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output high\n", pins);
2003		/* set SET */
2004		gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS);
2005		break;
2006
2007	case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2008		DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> input\n", pins);
2009		/* set FLOAT */
2010		gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2011		break;
2012
2013	default:
2014		BNX2X_ERR("Invalid GPIO mode assignment %d\n", mode);
2015		rc = -EINVAL;
2016		break;
2017	}
2018
2019	if (rc == 0)
2020		REG_WR(bp, MISC_REG_GPIO, gpio_reg);
2021
2022	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2023
2024	return rc;
2025}
2026
2027int bnx2x_set_gpio_int(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
2028{
2029	/* The GPIO should be swapped if swap register is set and active */
2030	int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2031			 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2032	int gpio_shift = gpio_num +
2033			(gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2034	u32 gpio_mask = (1 << gpio_shift);
2035	u32 gpio_reg;
2036
2037	if (gpio_num > MISC_REGISTERS_GPIO_3) {
2038		BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2039		return -EINVAL;
2040	}
2041
2042	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2043	/* read GPIO int */
2044	gpio_reg = REG_RD(bp, MISC_REG_GPIO_INT);
2045
2046	switch (mode) {
2047	case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR:
2048		DP(NETIF_MSG_LINK, "Clear GPIO INT %d (shift %d) -> "
2049				   "output low\n", gpio_num, gpio_shift);
2050		/* clear SET and set CLR */
2051		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2052		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2053		break;
2054
2055	case MISC_REGISTERS_GPIO_INT_OUTPUT_SET:
2056		DP(NETIF_MSG_LINK, "Set GPIO INT %d (shift %d) -> "
2057				   "output high\n", gpio_num, gpio_shift);
2058		/* clear CLR and set SET */
2059		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2060		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2061		break;
2062
2063	default:
2064		break;
2065	}
2066
2067	REG_WR(bp, MISC_REG_GPIO_INT, gpio_reg);
2068	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2069
2070	return 0;
2071}
2072
2073static int bnx2x_set_spio(struct bnx2x *bp, int spio_num, u32 mode)
2074{
2075	u32 spio_mask = (1 << spio_num);
2076	u32 spio_reg;
2077
2078	if ((spio_num < MISC_REGISTERS_SPIO_4) ||
2079	    (spio_num > MISC_REGISTERS_SPIO_7)) {
2080		BNX2X_ERR("Invalid SPIO %d\n", spio_num);
2081		return -EINVAL;
2082	}
2083
2084	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2085	/* read SPIO and mask except the float bits */
2086	spio_reg = (REG_RD(bp, MISC_REG_SPIO) & MISC_REGISTERS_SPIO_FLOAT);
2087
2088	switch (mode) {
2089	case MISC_REGISTERS_SPIO_OUTPUT_LOW:
2090		DP(NETIF_MSG_LINK, "Set SPIO %d -> output low\n", spio_num);
2091		/* clear FLOAT and set CLR */
2092		spio_reg &= ~(spio_mask << MISC_REGISTERS_SPIO_FLOAT_POS);
2093		spio_reg |=  (spio_mask << MISC_REGISTERS_SPIO_CLR_POS);
2094		break;
2095
2096	case MISC_REGISTERS_SPIO_OUTPUT_HIGH:
2097		DP(NETIF_MSG_LINK, "Set SPIO %d -> output high\n", spio_num);
2098		/* clear FLOAT and set SET */
2099		spio_reg &= ~(spio_mask << MISC_REGISTERS_SPIO_FLOAT_POS);
2100		spio_reg |=  (spio_mask << MISC_REGISTERS_SPIO_SET_POS);
2101		break;
2102
2103	case MISC_REGISTERS_SPIO_INPUT_HI_Z:
2104		DP(NETIF_MSG_LINK, "Set SPIO %d -> input\n", spio_num);
2105		/* set FLOAT */
2106		spio_reg |= (spio_mask << MISC_REGISTERS_SPIO_FLOAT_POS);
2107		break;
2108
2109	default:
2110		break;
2111	}
2112
2113	REG_WR(bp, MISC_REG_SPIO, spio_reg);
2114	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2115
2116	return 0;
2117}
2118
2119void bnx2x_calc_fc_adv(struct bnx2x *bp)
2120{
2121	u8 cfg_idx = bnx2x_get_link_cfg_idx(bp);
2122	switch (bp->link_vars.ieee_fc &
2123		MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) {
2124	case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_NONE:
2125		bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
2126						   ADVERTISED_Pause);
2127		break;
2128
2129	case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH:
2130		bp->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause |
2131						  ADVERTISED_Pause);
2132		break;
2133
2134	case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC:
2135		bp->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause;
2136		break;
2137
2138	default:
2139		bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
2140						   ADVERTISED_Pause);
2141		break;
2142	}
2143}
2144
2145u8 bnx2x_initial_phy_init(struct bnx2x *bp, int load_mode)
2146{
2147	if (!BP_NOMCP(bp)) {
2148		u8 rc;
2149		int cfx_idx = bnx2x_get_link_cfg_idx(bp);
2150		u16 req_line_speed = bp->link_params.req_line_speed[cfx_idx];
2151		/*
2152		 * Initialize link parameters structure variables
2153		 * It is recommended to turn off RX FC for jumbo frames
2154		 * for better performance
2155		 */
2156		if (CHIP_IS_E1x(bp) && (bp->dev->mtu > 5000))
2157			bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_TX;
2158		else
2159			bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_BOTH;
2160
2161		bnx2x_acquire_phy_lock(bp);
2162
2163		if (load_mode == LOAD_DIAG) {
2164			struct link_params *lp = &bp->link_params;
2165			lp->loopback_mode = LOOPBACK_XGXS;
2166			/* do PHY loopback at 10G speed, if possible */
2167			if (lp->req_line_speed[cfx_idx] < SPEED_10000) {
2168				if (lp->speed_cap_mask[cfx_idx] &
2169				    PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)
2170					lp->req_line_speed[cfx_idx] =
2171					SPEED_10000;
2172				else
2173					lp->req_line_speed[cfx_idx] =
2174					SPEED_1000;
2175			}
2176		}
2177
2178		rc = bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2179
2180		bnx2x_release_phy_lock(bp);
2181
2182		bnx2x_calc_fc_adv(bp);
2183
2184		if (CHIP_REV_IS_SLOW(bp) && bp->link_vars.link_up) {
2185			bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2186			bnx2x_link_report(bp);
2187		} else
2188			queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2189		bp->link_params.req_line_speed[cfx_idx] = req_line_speed;
2190		return rc;
2191	}
2192	BNX2X_ERR("Bootcode is missing - can not initialize link\n");
2193	return -EINVAL;
2194}
2195
2196void bnx2x_link_set(struct bnx2x *bp)
2197{
2198	if (!BP_NOMCP(bp)) {
2199		bnx2x_acquire_phy_lock(bp);
2200		bnx2x_link_reset(&bp->link_params, &bp->link_vars, 1);
2201		bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2202		bnx2x_release_phy_lock(bp);
2203
2204		bnx2x_calc_fc_adv(bp);
2205	} else
2206		BNX2X_ERR("Bootcode is missing - can not set link\n");
2207}
2208
2209static void bnx2x__link_reset(struct bnx2x *bp)
2210{
2211	if (!BP_NOMCP(bp)) {
2212		bnx2x_acquire_phy_lock(bp);
2213		bnx2x_link_reset(&bp->link_params, &bp->link_vars, 1);
2214		bnx2x_release_phy_lock(bp);
2215	} else
2216		BNX2X_ERR("Bootcode is missing - can not reset link\n");
2217}
2218
2219u8 bnx2x_link_test(struct bnx2x *bp, u8 is_serdes)
2220{
2221	u8 rc = 0;
2222
2223	if (!BP_NOMCP(bp)) {
2224		bnx2x_acquire_phy_lock(bp);
2225		rc = bnx2x_test_link(&bp->link_params, &bp->link_vars,
2226				     is_serdes);
2227		bnx2x_release_phy_lock(bp);
2228	} else
2229		BNX2X_ERR("Bootcode is missing - can not test link\n");
2230
2231	return rc;
2232}
2233
2234static void bnx2x_init_port_minmax(struct bnx2x *bp)
2235{
2236	u32 r_param = bp->link_vars.line_speed / 8;
2237	u32 fair_periodic_timeout_usec;
2238	u32 t_fair;
2239
2240	memset(&(bp->cmng.rs_vars), 0,
2241	       sizeof(struct rate_shaping_vars_per_port));
2242	memset(&(bp->cmng.fair_vars), 0, sizeof(struct fairness_vars_per_port));
2243
2244	/* 100 usec in SDM ticks = 25 since each tick is 4 usec */
2245	bp->cmng.rs_vars.rs_periodic_timeout = RS_PERIODIC_TIMEOUT_USEC / 4;
2246
2247	/* this is the threshold below which no timer arming will occur
2248	   1.25 coefficient is for the threshold to be a little bigger
2249	   than the real time, to compensate for timer in-accuracy */
2250	bp->cmng.rs_vars.rs_threshold =
2251				(RS_PERIODIC_TIMEOUT_USEC * r_param * 5) / 4;
2252
2253	/* resolution of fairness timer */
2254	fair_periodic_timeout_usec = QM_ARB_BYTES / r_param;
2255	/* for 10G it is 1000usec. for 1G it is 10000usec. */
2256	t_fair = T_FAIR_COEF / bp->link_vars.line_speed;
2257
2258	/* this is the threshold below which we won't arm the timer anymore */
2259	bp->cmng.fair_vars.fair_threshold = QM_ARB_BYTES;
2260
2261	/* we multiply by 1e3/8 to get bytes/msec.
2262	   We don't want the credits to pass a credit
2263	   of the t_fair*FAIR_MEM (algorithm resolution) */
2264	bp->cmng.fair_vars.upper_bound = r_param * t_fair * FAIR_MEM;
2265	/* since each tick is 4 usec */
2266	bp->cmng.fair_vars.fairness_timeout = fair_periodic_timeout_usec / 4;
2267}
2268
2269/* Calculates the sum of vn_min_rates.
2270   It's needed for further normalizing of the min_rates.
2271   Returns:
2272     sum of vn_min_rates.
2273       or
2274     0 - if all the min_rates are 0.
2275     In the later case fainess algorithm should be deactivated.
2276     If not all min_rates are zero then those that are zeroes will be set to 1.
2277 */
2278static void bnx2x_calc_vn_weight_sum(struct bnx2x *bp)
2279{
2280	int all_zero = 1;
2281	int vn;
2282
2283	bp->vn_weight_sum = 0;
2284	for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2285		u32 vn_cfg = bp->mf_config[vn];
2286		u32 vn_min_rate = ((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
2287				   FUNC_MF_CFG_MIN_BW_SHIFT) * 100;
2288
2289		/* Skip hidden vns */
2290		if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
2291			continue;
2292
2293		/* If min rate is zero - set it to 1 */
2294		if (!vn_min_rate)
2295			vn_min_rate = DEF_MIN_RATE;
2296		else
2297			all_zero = 0;
2298
2299		bp->vn_weight_sum += vn_min_rate;
2300	}
2301
2302	/* if ETS or all min rates are zeros - disable fairness */
2303	if (BNX2X_IS_ETS_ENABLED(bp)) {
2304		bp->cmng.flags.cmng_enables &=
2305					~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2306		DP(NETIF_MSG_IFUP, "Fairness will be disabled due to ETS\n");
2307	} else if (all_zero) {
2308		bp->cmng.flags.cmng_enables &=
2309					~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2310		DP(NETIF_MSG_IFUP, "All MIN values are zeroes"
2311		   "  fairness will be disabled\n");
2312	} else
2313		bp->cmng.flags.cmng_enables |=
2314					CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2315}
2316
2317static void bnx2x_init_vn_minmax(struct bnx2x *bp, int vn)
2318{
2319	struct rate_shaping_vars_per_vn m_rs_vn;
2320	struct fairness_vars_per_vn m_fair_vn;
2321	u32 vn_cfg = bp->mf_config[vn];
2322	int func = func_by_vn(bp, vn);
2323	u16 vn_min_rate, vn_max_rate;
2324	int i;
2325
2326	/* If function is hidden - set min and max to zeroes */
2327	if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) {
2328		vn_min_rate = 0;
2329		vn_max_rate = 0;
2330
2331	} else {
2332		u32 maxCfg = bnx2x_extract_max_cfg(bp, vn_cfg);
2333
2334		vn_min_rate = ((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
2335				FUNC_MF_CFG_MIN_BW_SHIFT) * 100;
2336		/* If fairness is enabled (not all min rates are zeroes) and
2337		   if current min rate is zero - set it to 1.
2338		   This is a requirement of the algorithm. */
2339		if (bp->vn_weight_sum && (vn_min_rate == 0))
2340			vn_min_rate = DEF_MIN_RATE;
2341
2342		if (IS_MF_SI(bp))
2343			/* maxCfg in percents of linkspeed */
2344			vn_max_rate = (bp->link_vars.line_speed * maxCfg) / 100;
2345		else
2346			/* maxCfg is absolute in 100Mb units */
2347			vn_max_rate = maxCfg * 100;
2348	}
2349
2350	DP(NETIF_MSG_IFUP,
2351	   "func %d: vn_min_rate %d  vn_max_rate %d  vn_weight_sum %d\n",
2352	   func, vn_min_rate, vn_max_rate, bp->vn_weight_sum);
2353
2354	memset(&m_rs_vn, 0, sizeof(struct rate_shaping_vars_per_vn));
2355	memset(&m_fair_vn, 0, sizeof(struct fairness_vars_per_vn));
2356
2357	/* global vn counter - maximal Mbps for this vn */
2358	m_rs_vn.vn_counter.rate = vn_max_rate;
2359
2360	/* quota - number of bytes transmitted in this period */
2361	m_rs_vn.vn_counter.quota =
2362				(vn_max_rate * RS_PERIODIC_TIMEOUT_USEC) / 8;
2363
2364	if (bp->vn_weight_sum) {
2365		/* credit for each period of the fairness algorithm:
2366		   number of bytes in T_FAIR (the vn share the port rate).
2367		   vn_weight_sum should not be larger than 10000, thus
2368		   T_FAIR_COEF / (8 * vn_weight_sum) will always be greater
2369		   than zero */
2370		m_fair_vn.vn_credit_delta =
2371			max_t(u32, (vn_min_rate * (T_FAIR_COEF /
2372						   (8 * bp->vn_weight_sum))),
2373			      (bp->cmng.fair_vars.fair_threshold +
2374							MIN_ABOVE_THRESH));
2375		DP(NETIF_MSG_IFUP, "m_fair_vn.vn_credit_delta %d\n",
2376		   m_fair_vn.vn_credit_delta);
2377	}
2378
2379	/* Store it to internal memory */
2380	for (i = 0; i < sizeof(struct rate_shaping_vars_per_vn)/4; i++)
2381		REG_WR(bp, BAR_XSTRORM_INTMEM +
2382		       XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func) + i * 4,
2383		       ((u32 *)(&m_rs_vn))[i]);
2384
2385	for (i = 0; i < sizeof(struct fairness_vars_per_vn)/4; i++)
2386		REG_WR(bp, BAR_XSTRORM_INTMEM +
2387		       XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func) + i * 4,
2388		       ((u32 *)(&m_fair_vn))[i]);
2389}
2390
2391static int bnx2x_get_cmng_fns_mode(struct bnx2x *bp)
2392{
2393	if (CHIP_REV_IS_SLOW(bp))
2394		return CMNG_FNS_NONE;
2395	if (IS_MF(bp))
2396		return CMNG_FNS_MINMAX;
2397
2398	return CMNG_FNS_NONE;
2399}
2400
2401void bnx2x_read_mf_cfg(struct bnx2x *bp)
2402{
2403	int vn, n = (CHIP_MODE_IS_4_PORT(bp) ? 2 : 1);
2404
2405	if (BP_NOMCP(bp))
2406		return; /* what should be the default bvalue in this case */
2407
2408	/* For 2 port configuration the absolute function number formula
2409	 * is:
2410	 *      abs_func = 2 * vn + BP_PORT + BP_PATH
2411	 *
2412	 *      and there are 4 functions per port
2413	 *
2414	 * For 4 port configuration it is
2415	 *      abs_func = 4 * vn + 2 * BP_PORT + BP_PATH
2416	 *
2417	 *      and there are 2 functions per port
2418	 */
2419	for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2420		int /*abs*/func = n * (2 * vn + BP_PORT(bp)) + BP_PATH(bp);
2421
2422		if (func >= E1H_FUNC_MAX)
2423			break;
2424
2425		bp->mf_config[vn] =
2426			MF_CFG_RD(bp, func_mf_config[func].config);
2427	}
2428}
2429
2430static void bnx2x_cmng_fns_init(struct bnx2x *bp, u8 read_cfg, u8 cmng_type)
2431{
2432
2433	if (cmng_type == CMNG_FNS_MINMAX) {
2434		int vn;
2435
2436		/* clear cmng_enables */
2437		bp->cmng.flags.cmng_enables = 0;
2438
2439		/* read mf conf from shmem */
2440		if (read_cfg)
2441			bnx2x_read_mf_cfg(bp);
2442
2443		/* Init rate shaping and fairness contexts */
2444		bnx2x_init_port_minmax(bp);
2445
2446		/* vn_weight_sum and enable fairness if not 0 */
2447		bnx2x_calc_vn_weight_sum(bp);
2448
2449		/* calculate and set min-max rate for each vn */
2450		if (bp->port.pmf)
2451			for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++)
2452				bnx2x_init_vn_minmax(bp, vn);
2453
2454		/* always enable rate shaping and fairness */
2455		bp->cmng.flags.cmng_enables |=
2456					CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN;
2457		if (!bp->vn_weight_sum)
2458			DP(NETIF_MSG_IFUP, "All MIN values are zeroes"
2459				   "  fairness will be disabled\n");
2460		return;
2461	}
2462
2463	/* rate shaping and fairness are disabled */
2464	DP(NETIF_MSG_IFUP,
2465	   "rate shaping and fairness are disabled\n");
2466}
2467
2468/* This function is called upon link interrupt */
2469static void bnx2x_link_attn(struct bnx2x *bp)
2470{
2471	/* Make sure that we are synced with the current statistics */
2472	bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2473
2474	bnx2x_link_update(&bp->link_params, &bp->link_vars);
2475
2476	if (bp->link_vars.link_up) {
2477
2478		/* dropless flow control */
2479		if (!CHIP_IS_E1(bp) && bp->dropless_fc) {
2480			int port = BP_PORT(bp);
2481			u32 pause_enabled = 0;
2482
2483			if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_TX)
2484				pause_enabled = 1;
2485
2486			REG_WR(bp, BAR_USTRORM_INTMEM +
2487			       USTORM_ETH_PAUSE_ENABLED_OFFSET(port),
2488			       pause_enabled);
2489		}
2490
2491		if (bp->link_vars.mac_type != MAC_TYPE_EMAC) {
2492			struct host_port_stats *pstats;
2493
2494			pstats = bnx2x_sp(bp, port_stats);
2495			/* reset old mac stats */
2496			memset(&(pstats->mac_stx[0]), 0,
2497			       sizeof(struct mac_stx));
2498		}
2499		if (bp->state == BNX2X_STATE_OPEN)
2500			bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2501	}
2502
2503	if (bp->link_vars.link_up && bp->link_vars.line_speed) {
2504		int cmng_fns = bnx2x_get_cmng_fns_mode(bp);
2505
2506		if (cmng_fns != CMNG_FNS_NONE) {
2507			bnx2x_cmng_fns_init(bp, false, cmng_fns);
2508			storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
2509		} else
2510			/* rate shaping and fairness are disabled */
2511			DP(NETIF_MSG_IFUP,
2512			   "single function mode without fairness\n");
2513	}
2514
2515	__bnx2x_link_report(bp);
2516
2517	if (IS_MF(bp))
2518		bnx2x_link_sync_notify(bp);
2519}
2520
2521void bnx2x__link_status_update(struct bnx2x *bp)
2522{
2523	if (bp->state != BNX2X_STATE_OPEN)
2524		return;
2525
2526	/* read updated dcb configuration */
2527	bnx2x_dcbx_pmf_update(bp);
2528
2529	bnx2x_link_status_update(&bp->link_params, &bp->link_vars);
2530
2531	if (bp->link_vars.link_up)
2532		bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2533	else
2534		bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2535
2536	/* indicate link status */
2537	bnx2x_link_report(bp);
2538}
2539
2540static void bnx2x_pmf_update(struct bnx2x *bp)
2541{
2542	int port = BP_PORT(bp);
2543	u32 val;
2544
2545	bp->port.pmf = 1;
2546	DP(NETIF_MSG_LINK, "pmf %d\n", bp->port.pmf);
2547
2548	/*
2549	 * We need the mb() to ensure the ordering between the writing to
2550	 * bp->port.pmf here and reading it from the bnx2x_periodic_task().
2551	 */
2552	smp_mb();
2553
2554	/* queue a periodic task */
2555	queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2556
2557	bnx2x_dcbx_pmf_update(bp);
2558
2559	/* enable nig attention */
2560	val = (0xff0f | (1 << (BP_VN(bp) + 4)));
2561	if (bp->common.int_block == INT_BLOCK_HC) {
2562		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
2563		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
2564	} else if (!CHIP_IS_E1x(bp)) {
2565		REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
2566		REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
2567	}
2568
2569	bnx2x_stats_handle(bp, STATS_EVENT_PMF);
2570}
2571
2572/* end of Link */
2573
2574/* slow path */
2575
2576/*
2577 * General service functions
2578 */
2579
2580/* send the MCP a request, block until there is a reply */
2581u32 bnx2x_fw_command(struct bnx2x *bp, u32 command, u32 param)
2582{
2583	int mb_idx = BP_FW_MB_IDX(bp);
2584	u32 seq;
2585	u32 rc = 0;
2586	u32 cnt = 1;
2587	u8 delay = CHIP_REV_IS_SLOW(bp) ? 100 : 10;
2588
2589	mutex_lock(&bp->fw_mb_mutex);
2590	seq = ++bp->fw_seq;
2591	SHMEM_WR(bp, func_mb[mb_idx].drv_mb_param, param);
2592	SHMEM_WR(bp, func_mb[mb_idx].drv_mb_header, (command | seq));
2593
2594	DP(BNX2X_MSG_MCP, "wrote command (%x) to FW MB param 0x%08x\n",
2595			(command | seq), param);
2596
2597	do {
2598		/* let the FW do it's magic ... */
2599		msleep(delay);
2600
2601		rc = SHMEM_RD(bp, func_mb[mb_idx].fw_mb_header);
2602
2603		/* Give the FW up to 5 second (500*10ms) */
2604	} while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500));
2605
2606	DP(BNX2X_MSG_MCP, "[after %d ms] read (%x) seq is (%x) from FW MB\n",
2607	   cnt*delay, rc, seq);
2608
2609	/* is this a reply to our command? */
2610	if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK))
2611		rc &= FW_MSG_CODE_MASK;
2612	else {
2613		/* FW BUG! */
2614		BNX2X_ERR("FW failed to respond!\n");
2615		bnx2x_fw_dump(bp);
2616		rc = 0;
2617	}
2618	mutex_unlock(&bp->fw_mb_mutex);
2619
2620	return rc;
2621}
2622
2623
2624void bnx2x_func_init(struct bnx2x *bp, struct bnx2x_func_init_params *p)
2625{
2626	if (CHIP_IS_E1x(bp)) {
2627		struct tstorm_eth_function_common_config tcfg = {0};
2628
2629		storm_memset_func_cfg(bp, &tcfg, p->func_id);
2630	}
2631
2632	/* Enable the function in the FW */
2633	storm_memset_vf_to_pf(bp, p->func_id, p->pf_id);
2634	storm_memset_func_en(bp, p->func_id, 1);
2635
2636	/* spq */
2637	if (p->func_flgs & FUNC_FLG_SPQ) {
2638		storm_memset_spq_addr(bp, p->spq_map, p->func_id);
2639		REG_WR(bp, XSEM_REG_FAST_MEMORY +
2640		       XSTORM_SPQ_PROD_OFFSET(p->func_id), p->spq_prod);
2641	}
2642}
2643
2644/**
2645 * bnx2x_get_tx_only_flags - Return common flags
2646 *
2647 * @bp		device handle
2648 * @fp		queue handle
2649 * @zero_stats	TRUE if statistics zeroing is needed
2650 *
2651 * Return the flags that are common for the Tx-only and not normal connections.
2652 */
2653static inline unsigned long bnx2x_get_common_flags(struct bnx2x *bp,
2654						   struct bnx2x_fastpath *fp,
2655						   bool zero_stats)
2656{
2657	unsigned long flags = 0;
2658
2659	/* PF driver will always initialize the Queue to an ACTIVE state */
2660	__set_bit(BNX2X_Q_FLG_ACTIVE, &flags);
2661
2662	/* tx only connections collect statistics (on the same index as the
2663	 *  parent connection). The statistics are zeroed when the parent
2664	 *  connection is initialized.
2665	 */
2666
2667	__set_bit(BNX2X_Q_FLG_STATS, &flags);
2668	if (zero_stats)
2669		__set_bit(BNX2X_Q_FLG_ZERO_STATS, &flags);
2670
2671
2672	return flags;
2673}
2674
2675static inline unsigned long bnx2x_get_q_flags(struct bnx2x *bp,
2676					      struct bnx2x_fastpath *fp,
2677					      bool leading)
2678{
2679	unsigned long flags = 0;
2680
2681	/* calculate other queue flags */
2682	if (IS_MF_SD(bp))
2683		__set_bit(BNX2X_Q_FLG_OV, &flags);
2684
2685	if (IS_FCOE_FP(fp))
2686		__set_bit(BNX2X_Q_FLG_FCOE, &flags);
2687
2688	if (!fp->disable_tpa) {
2689		__set_bit(BNX2X_Q_FLG_TPA, &flags);
2690		__set_bit(BNX2X_Q_FLG_TPA_IPV6, &flags);
2691	}
2692
2693	if (leading) {
2694		__set_bit(BNX2X_Q_FLG_LEADING_RSS, &flags);
2695		__set_bit(BNX2X_Q_FLG_MCAST, &flags);
2696	}
2697
2698	/* Always set HW VLAN stripping */
2699	__set_bit(BNX2X_Q_FLG_VLAN, &flags);
2700
2701
2702	return flags | bnx2x_get_common_flags(bp, fp, true);
2703}
2704
2705static void bnx2x_pf_q_prep_general(struct bnx2x *bp,
2706	struct bnx2x_fastpath *fp, struct bnx2x_general_setup_params *gen_init,
2707	u8 cos)
2708{
2709	gen_init->stat_id = bnx2x_stats_id(fp);
2710	gen_init->spcl_id = fp->cl_id;
2711
2712	/* Always use mini-jumbo MTU for FCoE L2 ring */
2713	if (IS_FCOE_FP(fp))
2714		gen_init->mtu = BNX2X_FCOE_MINI_JUMBO_MTU;
2715	else
2716		gen_init->mtu = bp->dev->mtu;
2717
2718	gen_init->cos = cos;
2719}
2720
2721static void bnx2x_pf_rx_q_prep(struct bnx2x *bp,
2722	struct bnx2x_fastpath *fp, struct rxq_pause_params *pause,
2723	struct bnx2x_rxq_setup_params *rxq_init)
2724{
2725	u8 max_sge = 0;
2726	u16 sge_sz = 0;
2727	u16 tpa_agg_size = 0;
2728
2729	if (!fp->disable_tpa) {
2730		pause->sge_th_lo = SGE_TH_LO(bp);
2731		pause->sge_th_hi = SGE_TH_HI(bp);
2732
2733		/* validate SGE ring has enough to cross high threshold */
2734		WARN_ON(bp->dropless_fc &&
2735				pause->sge_th_hi + FW_PREFETCH_CNT >
2736				MAX_RX_SGE_CNT * NUM_RX_SGE_PAGES);
2737
2738		tpa_agg_size = min_t(u32,
2739			(min_t(u32, 8, MAX_SKB_FRAGS) *
2740			SGE_PAGE_SIZE * PAGES_PER_SGE), 0xffff);
2741		max_sge = SGE_PAGE_ALIGN(bp->dev->mtu) >>
2742			SGE_PAGE_SHIFT;
2743		max_sge = ((max_sge + PAGES_PER_SGE - 1) &
2744			  (~(PAGES_PER_SGE-1))) >> PAGES_PER_SGE_SHIFT;
2745		sge_sz = (u16)min_t(u32, SGE_PAGE_SIZE * PAGES_PER_SGE,
2746				    0xffff);
2747	}
2748
2749	/* pause - not for e1 */
2750	if (!CHIP_IS_E1(bp)) {
2751		pause->bd_th_lo = BD_TH_LO(bp);
2752		pause->bd_th_hi = BD_TH_HI(bp);
2753
2754		pause->rcq_th_lo = RCQ_TH_LO(bp);
2755		pause->rcq_th_hi = RCQ_TH_HI(bp);
2756		/*
2757		 * validate that rings have enough entries to cross
2758		 * high thresholds
2759		 */
2760		WARN_ON(bp->dropless_fc &&
2761				pause->bd_th_hi + FW_PREFETCH_CNT >
2762				bp->rx_ring_size);
2763		WARN_ON(bp->dropless_fc &&
2764				pause->rcq_th_hi + FW_PREFETCH_CNT >
2765				NUM_RCQ_RINGS * MAX_RCQ_DESC_CNT);
2766
2767		pause->pri_map = 1;
2768	}
2769
2770	/* rxq setup */
2771	rxq_init->dscr_map = fp->rx_desc_mapping;
2772	rxq_init->sge_map = fp->rx_sge_mapping;
2773	rxq_init->rcq_map = fp->rx_comp_mapping;
2774	rxq_init->rcq_np_map = fp->rx_comp_mapping + BCM_PAGE_SIZE;
2775
2776	/* This should be a maximum number of data bytes that may be
2777	 * placed on the BD (not including paddings).
2778	 */
2779	rxq_init->buf_sz = fp->rx_buf_size - BNX2X_FW_RX_ALIGN_START -
2780		BNX2X_FW_RX_ALIGN_END -	IP_HEADER_ALIGNMENT_PADDING;
2781
2782	rxq_init->cl_qzone_id = fp->cl_qzone_id;
2783	rxq_init->tpa_agg_sz = tpa_agg_size;
2784	rxq_init->sge_buf_sz = sge_sz;
2785	rxq_init->max_sges_pkt = max_sge;
2786	rxq_init->rss_engine_id = BP_FUNC(bp);
2787
2788	/* Maximum number or simultaneous TPA aggregation for this Queue.
2789	 *
2790	 * For PF Clients it should be the maximum avaliable number.
2791	 * VF driver(s) may want to define it to a smaller value.
2792	 */
2793	rxq_init->max_tpa_queues = MAX_AGG_QS(bp);
2794
2795	rxq_init->cache_line_log = BNX2X_RX_ALIGN_SHIFT;
2796	rxq_init->fw_sb_id = fp->fw_sb_id;
2797
2798	if (IS_FCOE_FP(fp))
2799		rxq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS;
2800	else
2801		rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
2802}
2803
2804static void bnx2x_pf_tx_q_prep(struct bnx2x *bp,
2805	struct bnx2x_fastpath *fp, struct bnx2x_txq_setup_params *txq_init,
2806	u8 cos)
2807{
2808	txq_init->dscr_map = fp->txdata[cos].tx_desc_mapping;
2809	txq_init->sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos;
2810	txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW;
2811	txq_init->fw_sb_id = fp->fw_sb_id;
2812
2813	/*
2814	 * set the tss leading client id for TX classfication ==
2815	 * leading RSS client id
2816	 */
2817	txq_init->tss_leading_cl_id = bnx2x_fp(bp, 0, cl_id);
2818
2819	if (IS_FCOE_FP(fp)) {
2820		txq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_TX_CQ_CONS;
2821		txq_init->traffic_type = LLFC_TRAFFIC_TYPE_FCOE;
2822	}
2823}
2824
2825static void bnx2x_pf_init(struct bnx2x *bp)
2826{
2827	struct bnx2x_func_init_params func_init = {0};
2828	struct event_ring_data eq_data = { {0} };
2829	u16 flags;
2830
2831	if (!CHIP_IS_E1x(bp)) {
2832		/* reset IGU PF statistics: MSIX + ATTN */
2833		/* PF */
2834		REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
2835			   BNX2X_IGU_STAS_MSG_VF_CNT*4 +
2836			   (CHIP_MODE_IS_4_PORT(bp) ?
2837				BP_FUNC(bp) : BP_VN(bp))*4, 0);
2838		/* ATTN */
2839		REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
2840			   BNX2X_IGU_STAS_MSG_VF_CNT*4 +
2841			   BNX2X_IGU_STAS_MSG_PF_CNT*4 +
2842			   (CHIP_MODE_IS_4_PORT(bp) ?
2843				BP_FUNC(bp) : BP_VN(bp))*4, 0);
2844	}
2845
2846	/* function setup flags */
2847	flags = (FUNC_FLG_STATS | FUNC_FLG_LEADING | FUNC_FLG_SPQ);
2848
2849	/* This flag is relevant for E1x only.
2850	 * E2 doesn't have a TPA configuration in a function level.
2851	 */
2852	flags |= (bp->flags & TPA_ENABLE_FLAG) ? FUNC_FLG_TPA : 0;
2853
2854	func_init.func_flgs = flags;
2855	func_init.pf_id = BP_FUNC(bp);
2856	func_init.func_id = BP_FUNC(bp);
2857	func_init.spq_map = bp->spq_mapping;
2858	func_init.spq_prod = bp->spq_prod_idx;
2859
2860	bnx2x_func_init(bp, &func_init);
2861
2862	memset(&(bp->cmng), 0, sizeof(struct cmng_struct_per_port));
2863
2864	/*
2865	 * Congestion management values depend on the link rate
2866	 * There is no active link so initial link rate is set to 10 Gbps.
2867	 * When the link comes up The congestion management values are
2868	 * re-calculated according to the actual link rate.
2869	 */
2870	bp->link_vars.line_speed = SPEED_10000;
2871	bnx2x_cmng_fns_init(bp, true, bnx2x_get_cmng_fns_mode(bp));
2872
2873	/* Only the PMF sets the HW */
2874	if (bp->port.pmf)
2875		storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
2876
2877	/* init Event Queue */
2878	eq_data.base_addr.hi = U64_HI(bp->eq_mapping);
2879	eq_data.base_addr.lo = U64_LO(bp->eq_mapping);
2880	eq_data.producer = bp->eq_prod;
2881	eq_data.index_id = HC_SP_INDEX_EQ_CONS;
2882	eq_data.sb_id = DEF_SB_ID;
2883	storm_memset_eq_data(bp, &eq_data, BP_FUNC(bp));
2884}
2885
2886
2887static void bnx2x_e1h_disable(struct bnx2x *bp)
2888{
2889	int port = BP_PORT(bp);
2890
2891	bnx2x_tx_disable(bp);
2892
2893	REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
2894}
2895
2896static void bnx2x_e1h_enable(struct bnx2x *bp)
2897{
2898	int port = BP_PORT(bp);
2899
2900	REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 1);
2901
2902	/* Tx queue should be only reenabled */
2903	netif_tx_wake_all_queues(bp->dev);
2904
2905	/*
2906	 * Should not call netif_carrier_on since it will be called if the link
2907	 * is up when checking for link state
2908	 */
2909}
2910
2911#define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3
2912
2913static void bnx2x_drv_info_ether_stat(struct bnx2x *bp)
2914{
2915	struct eth_stats_info *ether_stat =
2916		&bp->slowpath->drv_info_to_mcp.ether_stat;
2917
2918	/* leave last char as NULL */
2919	memcpy(ether_stat->version, DRV_MODULE_VERSION,
2920	       ETH_STAT_INFO_VERSION_LEN - 1);
2921
2922	bp->fp[0].mac_obj.get_n_elements(bp, &bp->fp[0].mac_obj,
2923					 DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED,
2924					 ether_stat->mac_local);
2925
2926	ether_stat->mtu_size = bp->dev->mtu;
2927
2928	if (bp->dev->features & NETIF_F_RXCSUM)
2929		ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK;
2930	if (bp->dev->features & NETIF_F_TSO)
2931		ether_stat->feature_flags |= FEATURE_ETH_LSO_MASK;
2932	ether_stat->feature_flags |= bp->common.boot_mode;
2933
2934	ether_stat->promiscuous_mode = (bp->dev->flags & IFF_PROMISC) ? 1 : 0;
2935
2936	ether_stat->txq_size = bp->tx_ring_size;
2937	ether_stat->rxq_size = bp->rx_ring_size;
2938}
2939
2940static void bnx2x_drv_info_fcoe_stat(struct bnx2x *bp)
2941{
2942#ifdef BCM_CNIC
2943	struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
2944	struct fcoe_stats_info *fcoe_stat =
2945		&bp->slowpath->drv_info_to_mcp.fcoe_stat;
2946
2947	memcpy(fcoe_stat->mac_local, bp->fip_mac, ETH_ALEN);
2948
2949	fcoe_stat->qos_priority =
2950		app->traffic_type_priority[LLFC_TRAFFIC_TYPE_FCOE];
2951
2952	/* insert FCoE stats from ramrod response */
2953	if (!NO_FCOE(bp)) {
2954		struct tstorm_per_queue_stats *fcoe_q_tstorm_stats =
2955			&bp->fw_stats_data->queue_stats[FCOE_IDX].
2956			tstorm_queue_statistics;
2957
2958		struct xstorm_per_queue_stats *fcoe_q_xstorm_stats =
2959			&bp->fw_stats_data->queue_stats[FCOE_IDX].
2960			xstorm_queue_statistics;
2961
2962		struct fcoe_statistics_params *fw_fcoe_stat =
2963			&bp->fw_stats_data->fcoe;
2964
2965		ADD_64(fcoe_stat->rx_bytes_hi, 0, fcoe_stat->rx_bytes_lo,
2966		       fw_fcoe_stat->rx_stat0.fcoe_rx_byte_cnt);
2967
2968		ADD_64(fcoe_stat->rx_bytes_hi,
2969		       fcoe_q_tstorm_stats->rcv_ucast_bytes.hi,
2970		       fcoe_stat->rx_bytes_lo,
2971		       fcoe_q_tstorm_stats->rcv_ucast_bytes.lo);
2972
2973		ADD_64(fcoe_stat->rx_bytes_hi,
2974		       fcoe_q_tstorm_stats->rcv_bcast_bytes.hi,
2975		       fcoe_stat->rx_bytes_lo,
2976		       fcoe_q_tstorm_stats->rcv_bcast_bytes.lo);
2977
2978		ADD_64(fcoe_stat->rx_bytes_hi,
2979		       fcoe_q_tstorm_stats->rcv_mcast_bytes.hi,
2980		       fcoe_stat->rx_bytes_lo,
2981		       fcoe_q_tstorm_stats->rcv_mcast_bytes.lo);
2982
2983		ADD_64(fcoe_stat->rx_frames_hi, 0, fcoe_stat->rx_frames_lo,
2984		       fw_fcoe_stat->rx_stat0.fcoe_rx_pkt_cnt);
2985
2986		ADD_64(fcoe_stat->rx_frames_hi, 0, fcoe_stat->rx_frames_lo,
2987		       fcoe_q_tstorm_stats->rcv_ucast_pkts);
2988
2989		ADD_64(fcoe_stat->rx_frames_hi, 0, fcoe_stat->rx_frames_lo,
2990		       fcoe_q_tstorm_stats->rcv_bcast_pkts);
2991
2992		ADD_64(fcoe_stat->rx_frames_hi, 0, fcoe_stat->rx_frames_lo,
2993		       fcoe_q_tstorm_stats->rcv_mcast_pkts);
2994
2995		ADD_64(fcoe_stat->tx_bytes_hi, 0, fcoe_stat->tx_bytes_lo,
2996		       fw_fcoe_stat->tx_stat.fcoe_tx_byte_cnt);
2997
2998		ADD_64(fcoe_stat->tx_bytes_hi,
2999		       fcoe_q_xstorm_stats->ucast_bytes_sent.hi,
3000		       fcoe_stat->tx_bytes_lo,
3001		       fcoe_q_xstorm_stats->ucast_bytes_sent.lo);
3002
3003		ADD_64(fcoe_stat->tx_bytes_hi,
3004		       fcoe_q_xstorm_stats->bcast_bytes_sent.hi,
3005		       fcoe_stat->tx_bytes_lo,
3006		       fcoe_q_xstorm_stats->bcast_bytes_sent.lo);
3007
3008		ADD_64(fcoe_stat->tx_bytes_hi,
3009		       fcoe_q_xstorm_stats->mcast_bytes_sent.hi,
3010		       fcoe_stat->tx_bytes_lo,
3011		       fcoe_q_xstorm_stats->mcast_bytes_sent.lo);
3012
3013		ADD_64(fcoe_stat->tx_frames_hi, 0, fcoe_stat->tx_frames_lo,
3014		       fw_fcoe_stat->tx_stat.fcoe_tx_pkt_cnt);
3015
3016		ADD_64(fcoe_stat->tx_frames_hi, 0, fcoe_stat->tx_frames_lo,
3017		       fcoe_q_xstorm_stats->ucast_pkts_sent);
3018
3019		ADD_64(fcoe_stat->tx_frames_hi, 0, fcoe_stat->tx_frames_lo,
3020		       fcoe_q_xstorm_stats->bcast_pkts_sent);
3021
3022		ADD_64(fcoe_stat->tx_frames_hi, 0, fcoe_stat->tx_frames_lo,
3023		       fcoe_q_xstorm_stats->mcast_pkts_sent);
3024	}
3025
3026	/* ask L5 driver to add data to the struct */
3027	bnx2x_cnic_notify(bp, CNIC_CTL_FCOE_STATS_GET_CMD);
3028#endif
3029}
3030
3031static void bnx2x_drv_info_iscsi_stat(struct bnx2x *bp)
3032{
3033#ifdef BCM_CNIC
3034	struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
3035	struct iscsi_stats_info *iscsi_stat =
3036		&bp->slowpath->drv_info_to_mcp.iscsi_stat;
3037
3038	memcpy(iscsi_stat->mac_local, bp->cnic_eth_dev.iscsi_mac, ETH_ALEN);
3039
3040	iscsi_stat->qos_priority =
3041		app->traffic_type_priority[LLFC_TRAFFIC_TYPE_ISCSI];
3042
3043	/* ask L5 driver to add data to the struct */
3044	bnx2x_cnic_notify(bp, CNIC_CTL_ISCSI_STATS_GET_CMD);
3045#endif
3046}
3047
3048/* called due to MCP event (on pmf):
3049 *	reread new bandwidth configuration
3050 *	configure FW
3051 *	notify others function about the change
3052 */
3053static inline void bnx2x_config_mf_bw(struct bnx2x *bp)
3054{
3055	if (bp->link_vars.link_up) {
3056		bnx2x_cmng_fns_init(bp, true, CMNG_FNS_MINMAX);
3057		bnx2x_link_sync_notify(bp);
3058	}
3059	storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
3060}
3061
3062static inline void bnx2x_set_mf_bw(struct bnx2x *bp)
3063{
3064	bnx2x_config_mf_bw(bp);
3065	bnx2x_fw_command(bp, DRV_MSG_CODE_SET_MF_BW_ACK, 0);
3066}
3067
3068static void bnx2x_handle_drv_info_req(struct bnx2x *bp)
3069{
3070	enum drv_info_opcode op_code;
3071	u32 drv_info_ctl = SHMEM2_RD(bp, drv_info_control);
3072
3073	/* if drv_info version supported by MFW doesn't match - send NACK */
3074	if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) {
3075		bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3076		return;
3077	}
3078
3079	op_code = (drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >>
3080		  DRV_INFO_CONTROL_OP_CODE_SHIFT;
3081
3082	memset(&bp->slowpath->drv_info_to_mcp, 0,
3083	       sizeof(union drv_info_to_mcp));
3084
3085	switch (op_code) {
3086	case ETH_STATS_OPCODE:
3087		bnx2x_drv_info_ether_stat(bp);
3088		break;
3089	case FCOE_STATS_OPCODE:
3090		bnx2x_drv_info_fcoe_stat(bp);
3091		break;
3092	case ISCSI_STATS_OPCODE:
3093		bnx2x_drv_info_iscsi_stat(bp);
3094		break;
3095	default:
3096		/* if op code isn't supported - send NACK */
3097		bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3098		return;
3099	}
3100
3101	/* if we got drv_info attn from MFW then these fields are defined in
3102	 * shmem2 for sure
3103	 */
3104	SHMEM2_WR(bp, drv_info_host_addr_lo,
3105		U64_LO(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3106	SHMEM2_WR(bp, drv_info_host_addr_hi,
3107		U64_HI(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3108
3109	bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_ACK, 0);
3110}
3111
3112static void bnx2x_dcc_event(struct bnx2x *bp, u32 dcc_event)
3113{
3114	DP(BNX2X_MSG_MCP, "dcc_event 0x%x\n", dcc_event);
3115
3116	if (dcc_event & DRV_STATUS_DCC_DISABLE_ENABLE_PF) {
3117
3118		/*
3119		 * This is the only place besides the function initialization
3120		 * where the bp->flags can change so it is done without any
3121		 * locks
3122		 */
3123		if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
3124			DP(NETIF_MSG_IFDOWN, "mf_cfg function disabled\n");
3125			bp->flags |= MF_FUNC_DIS;
3126
3127			bnx2x_e1h_disable(bp);
3128		} else {
3129			DP(NETIF_MSG_IFUP, "mf_cfg function enabled\n");
3130			bp->flags &= ~MF_FUNC_DIS;
3131
3132			bnx2x_e1h_enable(bp);
3133		}
3134		dcc_event &= ~DRV_STATUS_DCC_DISABLE_ENABLE_PF;
3135	}
3136	if (dcc_event & DRV_STATUS_DCC_BANDWIDTH_ALLOCATION) {
3137		bnx2x_config_mf_bw(bp);
3138		dcc_event &= ~DRV_STATUS_DCC_BANDWIDTH_ALLOCATION;
3139	}
3140
3141	/* Report results to MCP */
3142	if (dcc_event)
3143		bnx2x_fw_command(bp, DRV_MSG_CODE_DCC_FAILURE, 0);
3144	else
3145		bnx2x_fw_command(bp, DRV_MSG_CODE_DCC_OK, 0);
3146}
3147
3148/* must be called under the spq lock */
3149static inline struct eth_spe *bnx2x_sp_get_next(struct bnx2x *bp)
3150{
3151	struct eth_spe *next_spe = bp->spq_prod_bd;
3152
3153	if (bp->spq_prod_bd == bp->spq_last_bd) {
3154		bp->spq_prod_bd = bp->spq;
3155		bp->spq_prod_idx = 0;
3156		DP(NETIF_MSG_TIMER, "end of spq\n");
3157	} else {
3158		bp->spq_prod_bd++;
3159		bp->spq_prod_idx++;
3160	}
3161	return next_spe;
3162}
3163
3164/* must be called under the spq lock */
3165static inline void bnx2x_sp_prod_update(struct bnx2x *bp)
3166{
3167	int func = BP_FUNC(bp);
3168
3169	/*
3170	 * Make sure that BD data is updated before writing the producer:
3171	 * BD data is written to the memory, the producer is read from the
3172	 * memory, thus we need a full memory barrier to ensure the ordering.
3173	 */
3174	mb();
3175
3176	REG_WR16(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func),
3177		 bp->spq_prod_idx);
3178	mmiowb();
3179}
3180
3181/**
3182 * bnx2x_is_contextless_ramrod - check if the current command ends on EQ
3183 *
3184 * @cmd:	command to check
3185 * @cmd_type:	command type
3186 */
3187static inline bool bnx2x_is_contextless_ramrod(int cmd, int cmd_type)
3188{
3189	if ((cmd_type == NONE_CONNECTION_TYPE) ||
3190	    (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) ||
3191	    (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) ||
3192	    (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) ||
3193	    (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) ||
3194	    (cmd == RAMROD_CMD_ID_ETH_SET_MAC) ||
3195	    (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE))
3196		return true;
3197	else
3198		return false;
3199
3200}
3201
3202
3203/**
3204 * bnx2x_sp_post - place a single command on an SP ring
3205 *
3206 * @bp:		driver handle
3207 * @command:	command to place (e.g. SETUP, FILTER_RULES, etc.)
3208 * @cid:	SW CID the command is related to
3209 * @data_hi:	command private data address (high 32 bits)
3210 * @data_lo:	command private data address (low 32 bits)
3211 * @cmd_type:	command type (e.g. NONE, ETH)
3212 *
3213 * SP data is handled as if it's always an address pair, thus data fields are
3214 * not swapped to little endian in upper functions. Instead this function swaps
3215 * data as if it's two u32 fields.
3216 */
3217int bnx2x_sp_post(struct bnx2x *bp, int command, int cid,
3218		  u32 data_hi, u32 data_lo, int cmd_type)
3219{
3220	struct eth_spe *spe;
3221	u16 type;
3222	bool common = bnx2x_is_contextless_ramrod(command, cmd_type);
3223
3224#ifdef BNX2X_STOP_ON_ERROR
3225	if (unlikely(bp->panic))
3226		return -EIO;
3227#endif
3228
3229	spin_lock_bh(&bp->spq_lock);
3230
3231	if (common) {
3232		if (!atomic_read(&bp->eq_spq_left)) {
3233			BNX2X_ERR("BUG! EQ ring full!\n");
3234			spin_unlock_bh(&bp->spq_lock);
3235			bnx2x_panic();
3236			return -EBUSY;
3237		}
3238	} else if (!atomic_read(&bp->cq_spq_left)) {
3239			BNX2X_ERR("BUG! SPQ ring full!\n");
3240			spin_unlock_bh(&bp->spq_lock);
3241			bnx2x_panic();
3242			return -EBUSY;
3243	}
3244
3245	spe = bnx2x_sp_get_next(bp);
3246
3247	/* CID needs port number to be encoded int it */
3248	spe->hdr.conn_and_cmd_data =
3249			cpu_to_le32((command << SPE_HDR_CMD_ID_SHIFT) |
3250				    HW_CID(bp, cid));
3251
3252	type = (cmd_type << SPE_HDR_CONN_TYPE_SHIFT) & SPE_HDR_CONN_TYPE;
3253
3254	type |= ((BP_FUNC(bp) << SPE_HDR_FUNCTION_ID_SHIFT) &
3255		 SPE_HDR_FUNCTION_ID);
3256
3257	spe->hdr.type = cpu_to_le16(type);
3258
3259	spe->data.update_data_addr.hi = cpu_to_le32(data_hi);
3260	spe->data.update_data_addr.lo = cpu_to_le32(data_lo);
3261
3262	/*
3263	 * It's ok if the actual decrement is issued towards the memory
3264	 * somewhere between the spin_lock and spin_unlock. Thus no
3265	 * more explict memory barrier is needed.
3266	 */
3267	if (common)
3268		atomic_dec(&bp->eq_spq_left);
3269	else
3270		atomic_dec(&bp->cq_spq_left);
3271
3272
3273	DP(BNX2X_MSG_SP/*NETIF_MSG_TIMER*/,
3274	   "SPQE[%x] (%x:%x)  (cmd, common?) (%d,%d)  hw_cid %x  data (%x:%x) "
3275	   "type(0x%x) left (CQ, EQ) (%x,%x)\n",
3276	   bp->spq_prod_idx, (u32)U64_HI(bp->spq_mapping),
3277	   (u32)(U64_LO(bp->spq_mapping) +
3278	   (void *)bp->spq_prod_bd - (void *)bp->spq), command, common,
3279	   HW_CID(bp, cid), data_hi, data_lo, type,
3280	   atomic_read(&bp->cq_spq_left), atomic_read(&bp->eq_spq_left));
3281
3282	bnx2x_sp_prod_update(bp);
3283	spin_unlock_bh(&bp->spq_lock);
3284	return 0;
3285}
3286
3287/* acquire split MCP access lock register */
3288static int bnx2x_acquire_alr(struct bnx2x *bp)
3289{
3290	u32 j, val;
3291	int rc = 0;
3292
3293	might_sleep();
3294	for (j = 0; j < 1000; j++) {
3295		val = (1UL << 31);
3296		REG_WR(bp, GRCBASE_MCP + 0x9c, val);
3297		val = REG_RD(bp, GRCBASE_MCP + 0x9c);
3298		if (val & (1L << 31))
3299			break;
3300
3301		msleep(5);
3302	}
3303	if (!(val & (1L << 31))) {
3304		BNX2X_ERR("Cannot acquire MCP access lock register\n");
3305		rc = -EBUSY;
3306	}
3307
3308	return rc;
3309}
3310
3311/* release split MCP access lock register */
3312static void bnx2x_release_alr(struct bnx2x *bp)
3313{
3314	REG_WR(bp, GRCBASE_MCP + 0x9c, 0);
3315}
3316
3317#define BNX2X_DEF_SB_ATT_IDX	0x0001
3318#define BNX2X_DEF_SB_IDX	0x0002
3319
3320static inline u16 bnx2x_update_dsb_idx(struct bnx2x *bp)
3321{
3322	struct host_sp_status_block *def_sb = bp->def_status_blk;
3323	u16 rc = 0;
3324
3325	barrier(); /* status block is written to by the chip */
3326	if (bp->def_att_idx != def_sb->atten_status_block.attn_bits_index) {
3327		bp->def_att_idx = def_sb->atten_status_block.attn_bits_index;
3328		rc |= BNX2X_DEF_SB_ATT_IDX;
3329	}
3330
3331	if (bp->def_idx != def_sb->sp_sb.running_index) {
3332		bp->def_idx = def_sb->sp_sb.running_index;
3333		rc |= BNX2X_DEF_SB_IDX;
3334	}
3335
3336	/* Do not reorder: indecies reading should complete before handling */
3337	barrier();
3338	return rc;
3339}
3340
3341/*
3342 * slow path service functions
3343 */
3344
3345static void bnx2x_attn_int_asserted(struct bnx2x *bp, u32 asserted)
3346{
3347	int port = BP_PORT(bp);
3348	u32 aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
3349			      MISC_REG_AEU_MASK_ATTN_FUNC_0;
3350	u32 nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 :
3351				       NIG_REG_MASK_INTERRUPT_PORT0;
3352	u32 aeu_mask;
3353	u32 nig_mask = 0;
3354	u32 reg_addr;
3355
3356	if (bp->attn_state & asserted)
3357		BNX2X_ERR("IGU ERROR\n");
3358
3359	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
3360	aeu_mask = REG_RD(bp, aeu_addr);
3361
3362	DP(NETIF_MSG_HW, "aeu_mask %x  newly asserted %x\n",
3363	   aeu_mask, asserted);
3364	aeu_mask &= ~(asserted & 0x3ff);
3365	DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
3366
3367	REG_WR(bp, aeu_addr, aeu_mask);
3368	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
3369
3370	DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
3371	bp->attn_state |= asserted;
3372	DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
3373
3374	if (asserted & ATTN_HARD_WIRED_MASK) {
3375		if (asserted & ATTN_NIG_FOR_FUNC) {
3376
3377			bnx2x_acquire_phy_lock(bp);
3378
3379			/* save nig interrupt mask */
3380			nig_mask = REG_RD(bp, nig_int_mask_addr);
3381
3382			/* If nig_mask is not set, no need to call the update
3383			 * function.
3384			 */
3385			if (nig_mask) {
3386				REG_WR(bp, nig_int_mask_addr, 0);
3387
3388				bnx2x_link_attn(bp);
3389			}
3390
3391			/* handle unicore attn? */
3392		}
3393		if (asserted & ATTN_SW_TIMER_4_FUNC)
3394			DP(NETIF_MSG_HW, "ATTN_SW_TIMER_4_FUNC!\n");
3395
3396		if (asserted & GPIO_2_FUNC)
3397			DP(NETIF_MSG_HW, "GPIO_2_FUNC!\n");
3398
3399		if (asserted & GPIO_3_FUNC)
3400			DP(NETIF_MSG_HW, "GPIO_3_FUNC!\n");
3401
3402		if (asserted & GPIO_4_FUNC)
3403			DP(NETIF_MSG_HW, "GPIO_4_FUNC!\n");
3404
3405		if (port == 0) {
3406			if (asserted & ATTN_GENERAL_ATTN_1) {
3407				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_1!\n");
3408				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_1, 0x0);
3409			}
3410			if (asserted & ATTN_GENERAL_ATTN_2) {
3411				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_2!\n");
3412				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_2, 0x0);
3413			}
3414			if (asserted & ATTN_GENERAL_ATTN_3) {
3415				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_3!\n");
3416				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_3, 0x0);
3417			}
3418		} else {
3419			if (asserted & ATTN_GENERAL_ATTN_4) {
3420				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_4!\n");
3421				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_4, 0x0);
3422			}
3423			if (asserted & ATTN_GENERAL_ATTN_5) {
3424				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_5!\n");
3425				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_5, 0x0);
3426			}
3427			if (asserted & ATTN_GENERAL_ATTN_6) {
3428				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_6!\n");
3429				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_6, 0x0);
3430			}
3431		}
3432
3433	} /* if hardwired */
3434
3435	if (bp->common.int_block == INT_BLOCK_HC)
3436		reg_addr = (HC_REG_COMMAND_REG + port*32 +
3437			    COMMAND_REG_ATTN_BITS_SET);
3438	else
3439		reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8);
3440
3441	DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", asserted,
3442	   (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
3443	REG_WR(bp, reg_addr, asserted);
3444
3445	/* now set back the mask */
3446	if (asserted & ATTN_NIG_FOR_FUNC) {
3447		REG_WR(bp, nig_int_mask_addr, nig_mask);
3448		bnx2x_release_phy_lock(bp);
3449	}
3450}
3451
3452static inline void bnx2x_fan_failure(struct bnx2x *bp)
3453{
3454	int port = BP_PORT(bp);
3455	u32 ext_phy_config;
3456	/* mark the failure */
3457	ext_phy_config =
3458		SHMEM_RD(bp,
3459			 dev_info.port_hw_config[port].external_phy_config);
3460
3461	ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK;
3462	ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE;
3463	SHMEM_WR(bp, dev_info.port_hw_config[port].external_phy_config,
3464		 ext_phy_config);
3465
3466	/* log the failure */
3467	netdev_err(bp->dev, "Fan Failure on Network Controller has caused"
3468	       " the driver to shutdown the card to prevent permanent"
3469	       " damage.  Please contact OEM Support for assistance\n");
3470
3471	/*
3472	 * Scheudle device reset (unload)
3473	 * This is due to some boards consuming sufficient power when driver is
3474	 * up to overheat if fan fails.
3475	 */
3476	smp_mb__before_clear_bit();
3477	set_bit(BNX2X_SP_RTNL_FAN_FAILURE, &bp->sp_rtnl_state);
3478	smp_mb__after_clear_bit();
3479	schedule_delayed_work(&bp->sp_rtnl_task, 0);
3480
3481}
3482
3483static inline void bnx2x_attn_int_deasserted0(struct bnx2x *bp, u32 attn)
3484{
3485	int port = BP_PORT(bp);
3486	int reg_offset;
3487	u32 val;
3488
3489	reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
3490			     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
3491
3492	if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) {
3493
3494		val = REG_RD(bp, reg_offset);
3495		val &= ~AEU_INPUTS_ATTN_BITS_SPIO5;
3496		REG_WR(bp, reg_offset, val);
3497
3498		BNX2X_ERR("SPIO5 hw attention\n");
3499
3500		/* Fan failure attention */
3501		bnx2x_hw_reset_phy(&bp->link_params);
3502		bnx2x_fan_failure(bp);
3503	}
3504
3505	if ((attn & bp->link_vars.aeu_int_mask) && bp->port.pmf) {
3506		bnx2x_acquire_phy_lock(bp);
3507		bnx2x_handle_module_detect_int(&bp->link_params);
3508		bnx2x_release_phy_lock(bp);
3509	}
3510
3511	if (attn & HW_INTERRUT_ASSERT_SET_0) {
3512
3513		val = REG_RD(bp, reg_offset);
3514		val &= ~(attn & HW_INTERRUT_ASSERT_SET_0);
3515		REG_WR(bp, reg_offset, val);
3516
3517		BNX2X_ERR("FATAL HW block attention set0 0x%x\n",
3518			  (u32)(attn & HW_INTERRUT_ASSERT_SET_0));
3519		bnx2x_panic();
3520	}
3521}
3522
3523static inline void bnx2x_attn_int_deasserted1(struct bnx2x *bp, u32 attn)
3524{
3525	u32 val;
3526
3527	if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) {
3528
3529		val = REG_RD(bp, DORQ_REG_DORQ_INT_STS_CLR);
3530		BNX2X_ERR("DB hw attention 0x%x\n", val);
3531		/* DORQ discard attention */
3532		if (val & 0x2)
3533			BNX2X_ERR("FATAL error from DORQ\n");
3534	}
3535
3536	if (attn & HW_INTERRUT_ASSERT_SET_1) {
3537
3538		int port = BP_PORT(bp);
3539		int reg_offset;
3540
3541		reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 :
3542				     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1);
3543
3544		val = REG_RD(bp, reg_offset);
3545		val &= ~(attn & HW_INTERRUT_ASSERT_SET_1);
3546		REG_WR(bp, reg_offset, val);
3547
3548		BNX2X_ERR("FATAL HW block attention set1 0x%x\n",
3549			  (u32)(attn & HW_INTERRUT_ASSERT_SET_1));
3550		bnx2x_panic();
3551	}
3552}
3553
3554static inline void bnx2x_attn_int_deasserted2(struct bnx2x *bp, u32 attn)
3555{
3556	u32 val;
3557
3558	if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) {
3559
3560		val = REG_RD(bp, CFC_REG_CFC_INT_STS_CLR);
3561		BNX2X_ERR("CFC hw attention 0x%x\n", val);
3562		/* CFC error attention */
3563		if (val & 0x2)
3564			BNX2X_ERR("FATAL error from CFC\n");
3565	}
3566
3567	if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) {
3568		val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_0);
3569		BNX2X_ERR("PXP hw attention-0 0x%x\n", val);
3570		/* RQ_USDMDP_FIFO_OVERFLOW */
3571		if (val & 0x18000)
3572			BNX2X_ERR("FATAL error from PXP\n");
3573
3574		if (!CHIP_IS_E1x(bp)) {
3575			val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_1);
3576			BNX2X_ERR("PXP hw attention-1 0x%x\n", val);
3577		}
3578	}
3579
3580	if (attn & HW_INTERRUT_ASSERT_SET_2) {
3581
3582		int port = BP_PORT(bp);
3583		int reg_offset;
3584
3585		reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 :
3586				     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2);
3587
3588		val = REG_RD(bp, reg_offset);
3589		val &= ~(attn & HW_INTERRUT_ASSERT_SET_2);
3590		REG_WR(bp, reg_offset, val);
3591
3592		BNX2X_ERR("FATAL HW block attention set2 0x%x\n",
3593			  (u32)(attn & HW_INTERRUT_ASSERT_SET_2));
3594		bnx2x_panic();
3595	}
3596}
3597
3598static inline void bnx2x_attn_int_deasserted3(struct bnx2x *bp, u32 attn)
3599{
3600	u32 val;
3601
3602	if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) {
3603
3604		if (attn & BNX2X_PMF_LINK_ASSERT) {
3605			int func = BP_FUNC(bp);
3606
3607			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
3608			bp->mf_config[BP_VN(bp)] = MF_CFG_RD(bp,
3609					func_mf_config[BP_ABS_FUNC(bp)].config);
3610			val = SHMEM_RD(bp,
3611				       func_mb[BP_FW_MB_IDX(bp)].drv_status);
3612			if (val & DRV_STATUS_DCC_EVENT_MASK)
3613				bnx2x_dcc_event(bp,
3614					    (val & DRV_STATUS_DCC_EVENT_MASK));
3615
3616			if (val & DRV_STATUS_SET_MF_BW)
3617				bnx2x_set_mf_bw(bp);
3618
3619			if (val & DRV_STATUS_DRV_INFO_REQ)
3620				bnx2x_handle_drv_info_req(bp);
3621			if ((bp->port.pmf == 0) && (val & DRV_STATUS_PMF))
3622				bnx2x_pmf_update(bp);
3623
3624			if (bp->port.pmf &&
3625			    (val & DRV_STATUS_DCBX_NEGOTIATION_RESULTS) &&
3626				bp->dcbx_enabled > 0)
3627				/* start dcbx state machine */
3628				bnx2x_dcbx_set_params(bp,
3629					BNX2X_DCBX_STATE_NEG_RECEIVED);
3630			if (bp->link_vars.periodic_flags &
3631			    PERIODIC_FLAGS_LINK_EVENT) {
3632				/*  sync with link */
3633				bnx2x_acquire_phy_lock(bp);
3634				bp->link_vars.periodic_flags &=
3635					~PERIODIC_FLAGS_LINK_EVENT;
3636				bnx2x_release_phy_lock(bp);
3637				if (IS_MF(bp))
3638					bnx2x_link_sync_notify(bp);
3639				bnx2x_link_report(bp);
3640			}
3641			/* Always call it here: bnx2x_link_report() will
3642			 * prevent the link indication duplication.
3643			 */
3644			bnx2x__link_status_update(bp);
3645		} else if (attn & BNX2X_MC_ASSERT_BITS) {
3646
3647			BNX2X_ERR("MC assert!\n");
3648			bnx2x_mc_assert(bp);
3649			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_10, 0);
3650			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_9, 0);
3651			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_8, 0);
3652			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_7, 0);
3653			bnx2x_panic();
3654
3655		} else if (attn & BNX2X_MCP_ASSERT) {
3656
3657			BNX2X_ERR("MCP assert!\n");
3658			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_11, 0);
3659			bnx2x_fw_dump(bp);
3660
3661		} else
3662			BNX2X_ERR("Unknown HW assert! (attn 0x%x)\n", attn);
3663	}
3664
3665	if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) {
3666		BNX2X_ERR("LATCHED attention 0x%08x (masked)\n", attn);
3667		if (attn & BNX2X_GRC_TIMEOUT) {
3668			val = CHIP_IS_E1(bp) ? 0 :
3669					REG_RD(bp, MISC_REG_GRC_TIMEOUT_ATTN);
3670			BNX2X_ERR("GRC time-out 0x%08x\n", val);
3671		}
3672		if (attn & BNX2X_GRC_RSV) {
3673			val = CHIP_IS_E1(bp) ? 0 :
3674					REG_RD(bp, MISC_REG_GRC_RSV_ATTN);
3675			BNX2X_ERR("GRC reserved 0x%08x\n", val);
3676		}
3677		REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff);
3678	}
3679}
3680
3681/*
3682 * Bits map:
3683 * 0-7   - Engine0 load counter.
3684 * 8-15  - Engine1 load counter.
3685 * 16    - Engine0 RESET_IN_PROGRESS bit.
3686 * 17    - Engine1 RESET_IN_PROGRESS bit.
3687 * 18    - Engine0 ONE_IS_LOADED. Set when there is at least one active function
3688 *         on the engine
3689 * 19    - Engine1 ONE_IS_LOADED.
3690 * 20    - Chip reset flow bit. When set none-leader must wait for both engines
3691 *         leader to complete (check for both RESET_IN_PROGRESS bits and not for
3692 *         just the one belonging to its engine).
3693 *
3694 */
3695#define BNX2X_RECOVERY_GLOB_REG		MISC_REG_GENERIC_POR_1
3696
3697#define BNX2X_PATH0_LOAD_CNT_MASK	0x000000ff
3698#define BNX2X_PATH0_LOAD_CNT_SHIFT	0
3699#define BNX2X_PATH1_LOAD_CNT_MASK	0x0000ff00
3700#define BNX2X_PATH1_LOAD_CNT_SHIFT	8
3701#define BNX2X_PATH0_RST_IN_PROG_BIT	0x00010000
3702#define BNX2X_PATH1_RST_IN_PROG_BIT	0x00020000
3703#define BNX2X_GLOBAL_RESET_BIT		0x00040000
3704
3705/*
3706 * Set the GLOBAL_RESET bit.
3707 *
3708 * Should be run under rtnl lock
3709 */
3710void bnx2x_set_reset_global(struct bnx2x *bp)
3711{
3712	u32 val	= REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3713
3714	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val | BNX2X_GLOBAL_RESET_BIT);
3715	barrier();
3716	mmiowb();
3717}
3718
3719/*
3720 * Clear the GLOBAL_RESET bit.
3721 *
3722 * Should be run under rtnl lock
3723 */
3724static inline void bnx2x_clear_reset_global(struct bnx2x *bp)
3725{
3726	u32 val	= REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3727
3728	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val & (~BNX2X_GLOBAL_RESET_BIT));
3729	barrier();
3730	mmiowb();
3731}
3732
3733/*
3734 * Checks the GLOBAL_RESET bit.
3735 *
3736 * should be run under rtnl lock
3737 */
3738static inline bool bnx2x_reset_is_global(struct bnx2x *bp)
3739{
3740	u32 val	= REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3741
3742	DP(NETIF_MSG_HW, "GEN_REG_VAL=0x%08x\n", val);
3743	return (val & BNX2X_GLOBAL_RESET_BIT) ? true : false;
3744}
3745
3746/*
3747 * Clear RESET_IN_PROGRESS bit for the current engine.
3748 *
3749 * Should be run under rtnl lock
3750 */
3751static inline void bnx2x_set_reset_done(struct bnx2x *bp)
3752{
3753	u32 val	= REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3754	u32 bit = BP_PATH(bp) ?
3755		BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
3756
3757	/* Clear the bit */
3758	val &= ~bit;
3759	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
3760	barrier();
3761	mmiowb();
3762}
3763
3764/*
3765 * Set RESET_IN_PROGRESS for the current engine.
3766 *
3767 * should be run under rtnl lock
3768 */
3769void bnx2x_set_reset_in_progress(struct bnx2x *bp)
3770{
3771	u32 val	= REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3772	u32 bit = BP_PATH(bp) ?
3773		BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
3774
3775	/* Set the bit */
3776	val |= bit;
3777	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
3778	barrier();
3779	mmiowb();
3780}
3781
3782/*
3783 * Checks the RESET_IN_PROGRESS bit for the given engine.
3784 * should be run under rtnl lock
3785 */
3786bool bnx2x_reset_is_done(struct bnx2x *bp, int engine)
3787{
3788	u32 val	= REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3789	u32 bit = engine ?
3790		BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
3791
3792	/* return false if bit is set */
3793	return (val & bit) ? false : true;
3794}
3795
3796/*
3797 * Increment the load counter for the current engine.
3798 *
3799 * should be run under rtnl lock
3800 */
3801void bnx2x_inc_load_cnt(struct bnx2x *bp)
3802{
3803	u32 val1, val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3804	u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
3805			     BNX2X_PATH0_LOAD_CNT_MASK;
3806	u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
3807			     BNX2X_PATH0_LOAD_CNT_SHIFT;
3808
3809	DP(NETIF_MSG_HW, "Old GEN_REG_VAL=0x%08x\n", val);
3810
3811	/* get the current counter value */
3812	val1 = (val & mask) >> shift;
3813
3814	/* increment... */
3815	val1++;
3816
3817	/* clear the old value */
3818	val &= ~mask;
3819
3820	/* set the new one */
3821	val |= ((val1 << shift) & mask);
3822
3823	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
3824	barrier();
3825	mmiowb();
3826}
3827
3828/**
3829 * bnx2x_dec_load_cnt - decrement the load counter
3830 *
3831 * @bp:		driver handle
3832 *
3833 * Should be run under rtnl lock.
3834 * Decrements the load counter for the current engine. Returns
3835 * the new counter value.
3836 */
3837u32 bnx2x_dec_load_cnt(struct bnx2x *bp)
3838{
3839	u32 val1, val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3840	u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
3841			     BNX2X_PATH0_LOAD_CNT_MASK;
3842	u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
3843			     BNX2X_PATH0_LOAD_CNT_SHIFT;
3844
3845	DP(NETIF_MSG_HW, "Old GEN_REG_VAL=0x%08x\n", val);
3846
3847	/* get the current counter value */
3848	val1 = (val & mask) >> shift;
3849
3850	/* decrement... */
3851	val1--;
3852
3853	/* clear the old value */
3854	val &= ~mask;
3855
3856	/* set the new one */
3857	val |= ((val1 << shift) & mask);
3858
3859	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
3860	barrier();
3861	mmiowb();
3862
3863	return val1;
3864}
3865
3866/*
3867 * Read the load counter for the current engine.
3868 *
3869 * should be run under rtnl lock
3870 */
3871static inline u32 bnx2x_get_load_cnt(struct bnx2x *bp, int engine)
3872{
3873	u32 mask = (engine ? BNX2X_PATH1_LOAD_CNT_MASK :
3874			     BNX2X_PATH0_LOAD_CNT_MASK);
3875	u32 shift = (engine ? BNX2X_PATH1_LOAD_CNT_SHIFT :
3876			     BNX2X_PATH0_LOAD_CNT_SHIFT);
3877	u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3878
3879	DP(NETIF_MSG_HW, "GLOB_REG=0x%08x\n", val);
3880
3881	val = (val & mask) >> shift;
3882
3883	DP(NETIF_MSG_HW, "load_cnt for engine %d = %d\n", engine, val);
3884
3885	return val;
3886}
3887
3888/*
3889 * Reset the load counter for the current engine.
3890 *
3891 * should be run under rtnl lock
3892 */
3893static inline void bnx2x_clear_load_cnt(struct bnx2x *bp)
3894{
3895	u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3896	u32 mask = (BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
3897			     BNX2X_PATH0_LOAD_CNT_MASK);
3898
3899	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val & (~mask));
3900}
3901
3902static inline void _print_next_block(int idx, const char *blk)
3903{
3904	pr_cont("%s%s", idx ? ", " : "", blk);
3905}
3906
3907static inline int bnx2x_check_blocks_with_parity0(u32 sig, int par_num,
3908						  bool print)
3909{
3910	int i = 0;
3911	u32 cur_bit = 0;
3912	for (i = 0; sig; i++) {
3913		cur_bit = ((u32)0x1 << i);
3914		if (sig & cur_bit) {
3915			switch (cur_bit) {
3916			case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR:
3917				if (print)
3918					_print_next_block(par_num++, "BRB");
3919				break;
3920			case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR:
3921				if (print)
3922					_print_next_block(par_num++, "PARSER");
3923				break;
3924			case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR:
3925				if (print)
3926					_print_next_block(par_num++, "TSDM");
3927				break;
3928			case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR:
3929				if (print)
3930					_print_next_block(par_num++,
3931							  "SEARCHER");
3932				break;
3933			case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR:
3934				if (print)
3935					_print_next_block(par_num++, "TCM");
3936				break;
3937			case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR:
3938				if (print)
3939					_print_next_block(par_num++, "TSEMI");
3940				break;
3941			case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR:
3942				if (print)
3943					_print_next_block(par_num++, "XPB");
3944				break;
3945			}
3946
3947			/* Clear the bit */
3948			sig &= ~cur_bit;
3949		}
3950	}
3951
3952	return par_num;
3953}
3954
3955static inline int bnx2x_check_blocks_with_parity1(u32 sig, int par_num,
3956						  bool *global, bool print)
3957{
3958	int i = 0;
3959	u32 cur_bit = 0;
3960	for (i = 0; sig; i++) {
3961		cur_bit = ((u32)0x1 << i);
3962		if (sig & cur_bit) {
3963			switch (cur_bit) {
3964			case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR:
3965				if (print)
3966					_print_next_block(par_num++, "PBF");
3967				break;
3968			case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR:
3969				if (print)
3970					_print_next_block(par_num++, "QM");
3971				break;
3972			case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR:
3973				if (print)
3974					_print_next_block(par_num++, "TM");
3975				break;
3976			case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR:
3977				if (print)
3978					_print_next_block(par_num++, "XSDM");
3979				break;
3980			case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR:
3981				if (print)
3982					_print_next_block(par_num++, "XCM");
3983				break;
3984			case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR:
3985				if (print)
3986					_print_next_block(par_num++, "XSEMI");
3987				break;
3988			case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR:
3989				if (print)
3990					_print_next_block(par_num++,
3991							  "DOORBELLQ");
3992				break;
3993			case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR:
3994				if (print)
3995					_print_next_block(par_num++, "NIG");
3996				break;
3997			case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR:
3998				if (print)
3999					_print_next_block(par_num++,
4000							  "VAUX PCI CORE");
4001				*global = true;
4002				break;
4003			case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR:
4004				if (print)
4005					_print_next_block(par_num++, "DEBUG");
4006				break;
4007			case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR:
4008				if (print)
4009					_print_next_block(par_num++, "USDM");
4010				break;
4011			case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR:
4012				if (print)
4013					_print_next_block(par_num++, "UCM");
4014				break;
4015			case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR:
4016				if (print)
4017					_print_next_block(par_num++, "USEMI");
4018				break;
4019			case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR:
4020				if (print)
4021					_print_next_block(par_num++, "UPB");
4022				break;
4023			case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR:
4024				if (print)
4025					_print_next_block(par_num++, "CSDM");
4026				break;
4027			case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR:
4028				if (print)
4029					_print_next_block(par_num++, "CCM");
4030				break;
4031			}
4032
4033			/* Clear the bit */
4034			sig &= ~cur_bit;
4035		}
4036	}
4037
4038	return par_num;
4039}
4040
4041static inline int bnx2x_check_blocks_with_parity2(u32 sig, int par_num,
4042						  bool print)
4043{
4044	int i = 0;
4045	u32 cur_bit = 0;
4046	for (i = 0; sig; i++) {
4047		cur_bit = ((u32)0x1 << i);
4048		if (sig & cur_bit) {
4049			switch (cur_bit) {
4050			case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR:
4051				if (print)
4052					_print_next_block(par_num++, "CSEMI");
4053				break;
4054			case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR:
4055				if (print)
4056					_print_next_block(par_num++, "PXP");
4057				break;
4058			case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR:
4059				if (print)
4060					_print_next_block(par_num++,
4061					"PXPPCICLOCKCLIENT");
4062				break;
4063			case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR:
4064				if (print)
4065					_print_next_block(par_num++, "CFC");
4066				break;
4067			case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR:
4068				if (print)
4069					_print_next_block(par_num++, "CDU");
4070				break;
4071			case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR:
4072				if (print)
4073					_print_next_block(par_num++, "DMAE");
4074				break;
4075			case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR:
4076				if (print)
4077					_print_next_block(par_num++, "IGU");
4078				break;
4079			case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR:
4080				if (print)
4081					_print_next_block(par_num++, "MISC");
4082				break;
4083			}
4084
4085			/* Clear the bit */
4086			sig &= ~cur_bit;
4087		}
4088	}
4089
4090	return par_num;
4091}
4092
4093static inline int bnx2x_check_blocks_with_parity3(u32 sig, int par_num,
4094						  bool *global, bool print)
4095{
4096	int i = 0;
4097	u32 cur_bit = 0;
4098	for (i = 0; sig; i++) {
4099		cur_bit = ((u32)0x1 << i);
4100		if (sig & cur_bit) {
4101			switch (cur_bit) {
4102			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY:
4103				if (print)
4104					_print_next_block(par_num++, "MCP ROM");
4105				*global = true;
4106				break;
4107			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY:
4108				if (print)
4109					_print_next_block(par_num++,
4110							  "MCP UMP RX");
4111				*global = true;
4112				break;
4113			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY:
4114				if (print)
4115					_print_next_block(par_num++,
4116							  "MCP UMP TX");
4117				*global = true;
4118				break;
4119			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY:
4120				if (print)
4121					_print_next_block(par_num++,
4122							  "MCP SCPAD");
4123				*global = true;
4124				break;
4125			}
4126
4127			/* Clear the bit */
4128			sig &= ~cur_bit;
4129		}
4130	}
4131
4132	return par_num;
4133}
4134
4135static inline int bnx2x_check_blocks_with_parity4(u32 sig, int par_num,
4136						  bool print)
4137{
4138	int i = 0;
4139	u32 cur_bit = 0;
4140	for (i = 0; sig; i++) {
4141		cur_bit = ((u32)0x1 << i);
4142		if (sig & cur_bit) {
4143			switch (cur_bit) {
4144			case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR:
4145				if (print)
4146					_print_next_block(par_num++, "PGLUE_B");
4147				break;
4148			case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR:
4149				if (print)
4150					_print_next_block(par_num++, "ATC");
4151				break;
4152			}
4153
4154			/* Clear the bit */
4155			sig &= ~cur_bit;
4156		}
4157	}
4158
4159	return par_num;
4160}
4161
4162static inline bool bnx2x_parity_attn(struct bnx2x *bp, bool *global, bool print,
4163				     u32 *sig)
4164{
4165	if ((sig[0] & HW_PRTY_ASSERT_SET_0) ||
4166	    (sig[1] & HW_PRTY_ASSERT_SET_1) ||
4167	    (sig[2] & HW_PRTY_ASSERT_SET_2) ||
4168	    (sig[3] & HW_PRTY_ASSERT_SET_3) ||
4169	    (sig[4] & HW_PRTY_ASSERT_SET_4)) {
4170		int par_num = 0;
4171		DP(NETIF_MSG_HW, "Was parity error: HW block parity attention: "
4172			"[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x "
4173			"[4]:0x%08x\n",
4174			  sig[0] & HW_PRTY_ASSERT_SET_0,
4175			  sig[1] & HW_PRTY_ASSERT_SET_1,
4176			  sig[2] & HW_PRTY_ASSERT_SET_2,
4177			  sig[3] & HW_PRTY_ASSERT_SET_3,
4178			  sig[4] & HW_PRTY_ASSERT_SET_4);
4179		if (print)
4180			netdev_err(bp->dev,
4181				   "Parity errors detected in blocks: ");
4182		par_num = bnx2x_check_blocks_with_parity0(
4183			sig[0] & HW_PRTY_ASSERT_SET_0, par_num, print);
4184		par_num = bnx2x_check_blocks_with_parity1(
4185			sig[1] & HW_PRTY_ASSERT_SET_1, par_num, global, print);
4186		par_num = bnx2x_check_blocks_with_parity2(
4187			sig[2] & HW_PRTY_ASSERT_SET_2, par_num, print);
4188		par_num = bnx2x_check_blocks_with_parity3(
4189			sig[3] & HW_PRTY_ASSERT_SET_3, par_num, global, print);
4190		par_num = bnx2x_check_blocks_with_parity4(
4191			sig[4] & HW_PRTY_ASSERT_SET_4, par_num, print);
4192
4193		if (print)
4194			pr_cont("\n");
4195
4196		return true;
4197	} else
4198		return false;
4199}
4200
4201/**
4202 * bnx2x_chk_parity_attn - checks for parity attentions.
4203 *
4204 * @bp:		driver handle
4205 * @global:	true if there was a global attention
4206 * @print:	show parity attention in syslog
4207 */
4208bool bnx2x_chk_parity_attn(struct bnx2x *bp, bool *global, bool print)
4209{
4210	struct attn_route attn = { {0} };
4211	int port = BP_PORT(bp);
4212
4213	attn.sig[0] = REG_RD(bp,
4214		MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 +
4215			     port*4);
4216	attn.sig[1] = REG_RD(bp,
4217		MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 +
4218			     port*4);
4219	attn.sig[2] = REG_RD(bp,
4220		MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 +
4221			     port*4);
4222	attn.sig[3] = REG_RD(bp,
4223		MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 +
4224			     port*4);
4225
4226	if (!CHIP_IS_E1x(bp))
4227		attn.sig[4] = REG_RD(bp,
4228			MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 +
4229				     port*4);
4230
4231	return bnx2x_parity_attn(bp, global, print, attn.sig);
4232}
4233
4234
4235static inline void bnx2x_attn_int_deasserted4(struct bnx2x *bp, u32 attn)
4236{
4237	u32 val;
4238	if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) {
4239
4240		val = REG_RD(bp, PGLUE_B_REG_PGLUE_B_INT_STS_CLR);
4241		BNX2X_ERR("PGLUE hw attention 0x%x\n", val);
4242		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR)
4243			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
4244				  "ADDRESS_ERROR\n");
4245		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR)
4246			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
4247				  "INCORRECT_RCV_BEHAVIOR\n");
4248		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN)
4249			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
4250				  "WAS_ERROR_ATTN\n");
4251		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN)
4252			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
4253				  "VF_LENGTH_VIOLATION_ATTN\n");
4254		if (val &
4255		    PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN)
4256			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
4257				  "VF_GRC_SPACE_VIOLATION_ATTN\n");
4258		if (val &
4259		    PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN)
4260			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
4261				  "VF_MSIX_BAR_VIOLATION_ATTN\n");
4262		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN)
4263			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
4264				  "TCPL_ERROR_ATTN\n");
4265		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN)
4266			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
4267				  "TCPL_IN_TWO_RCBS_ATTN\n");
4268		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW)
4269			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
4270				  "CSSNOOP_FIFO_OVERFLOW\n");
4271	}
4272	if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) {
4273		val = REG_RD(bp, ATC_REG_ATC_INT_STS_CLR);
4274		BNX2X_ERR("ATC hw attention 0x%x\n", val);
4275		if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR)
4276			BNX2X_ERR("ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n");
4277		if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND)
4278			BNX2X_ERR("ATC_ATC_INT_STS_REG"
4279				  "_ATC_TCPL_TO_NOT_PEND\n");
4280		if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS)
4281			BNX2X_ERR("ATC_ATC_INT_STS_REG_"
4282				  "ATC_GPA_MULTIPLE_HITS\n");
4283		if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT)
4284			BNX2X_ERR("ATC_ATC_INT_STS_REG_"
4285				  "ATC_RCPL_TO_EMPTY_CNT\n");
4286		if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR)
4287			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n");
4288		if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU)
4289			BNX2X_ERR("ATC_ATC_INT_STS_REG_"
4290				  "ATC_IREQ_LESS_THAN_STU\n");
4291	}
4292
4293	if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
4294		    AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) {
4295		BNX2X_ERR("FATAL parity attention set4 0x%x\n",
4296		(u32)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
4297		    AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)));
4298	}
4299
4300}
4301
4302static void bnx2x_attn_int_deasserted(struct bnx2x *bp, u32 deasserted)
4303{
4304	struct attn_route attn, *group_mask;
4305	int port = BP_PORT(bp);
4306	int index;
4307	u32 reg_addr;
4308	u32 val;
4309	u32 aeu_mask;
4310	bool global = false;
4311
4312	/* need to take HW lock because MCP or other port might also
4313	   try to handle this event */
4314	bnx2x_acquire_alr(bp);
4315
4316	if (bnx2x_chk_parity_attn(bp, &global, true)) {
4317#ifndef BNX2X_STOP_ON_ERROR
4318		bp->recovery_state = BNX2X_RECOVERY_INIT;
4319		schedule_delayed_work(&bp->sp_rtnl_task, 0);
4320		/* Disable HW interrupts */
4321		bnx2x_int_disable(bp);
4322		/* In case of parity errors don't handle attentions so that
4323		 * other function would "see" parity errors.
4324		 */
4325#else
4326		bnx2x_panic();
4327#endif
4328		bnx2x_release_alr(bp);
4329		return;
4330	}
4331
4332	attn.sig[0] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4);
4333	attn.sig[1] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4);
4334	attn.sig[2] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4);
4335	attn.sig[3] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4);
4336	if (!CHIP_IS_E1x(bp))
4337		attn.sig[4] =
4338		      REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4);
4339	else
4340		attn.sig[4] = 0;
4341
4342	DP(NETIF_MSG_HW, "attn: %08x %08x %08x %08x %08x\n",
4343	   attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]);
4344
4345	for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
4346		if (deasserted & (1 << index)) {
4347			group_mask = &bp->attn_group[index];
4348
4349			DP(NETIF_MSG_HW, "group[%d]: %08x %08x "
4350					 "%08x %08x %08x\n",
4351			   index,
4352			   group_mask->sig[0], group_mask->sig[1],
4353			   group_mask->sig[2], group_mask->sig[3],
4354			   group_mask->sig[4]);
4355
4356			bnx2x_attn_int_deasserted4(bp,
4357					attn.sig[4] & group_mask->sig[4]);
4358			bnx2x_attn_int_deasserted3(bp,
4359					attn.sig[3] & group_mask->sig[3]);
4360			bnx2x_attn_int_deasserted1(bp,
4361					attn.sig[1] & group_mask->sig[1]);
4362			bnx2x_attn_int_deasserted2(bp,
4363					attn.sig[2] & group_mask->sig[2]);
4364			bnx2x_attn_int_deasserted0(bp,
4365					attn.sig[0] & group_mask->sig[0]);
4366		}
4367	}
4368
4369	bnx2x_release_alr(bp);
4370
4371	if (bp->common.int_block == INT_BLOCK_HC)
4372		reg_addr = (HC_REG_COMMAND_REG + port*32 +
4373			    COMMAND_REG_ATTN_BITS_CLR);
4374	else
4375		reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8);
4376
4377	val = ~deasserted;
4378	DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", val,
4379	   (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
4380	REG_WR(bp, reg_addr, val);
4381
4382	if (~bp->attn_state & deasserted)
4383		BNX2X_ERR("IGU ERROR\n");
4384
4385	reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
4386			  MISC_REG_AEU_MASK_ATTN_FUNC_0;
4387
4388	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4389	aeu_mask = REG_RD(bp, reg_addr);
4390
4391	DP(NETIF_MSG_HW, "aeu_mask %x  newly deasserted %x\n",
4392	   aeu_mask, deasserted);
4393	aeu_mask |= (deasserted & 0x3ff);
4394	DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
4395
4396	REG_WR(bp, reg_addr, aeu_mask);
4397	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4398
4399	DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
4400	bp->attn_state &= ~deasserted;
4401	DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
4402}
4403
4404static void bnx2x_attn_int(struct bnx2x *bp)
4405{
4406	/* read local copy of bits */
4407	u32 attn_bits = le32_to_cpu(bp->def_status_blk->atten_status_block.
4408								attn_bits);
4409	u32 attn_ack = le32_to_cpu(bp->def_status_blk->atten_status_block.
4410								attn_bits_ack);
4411	u32 attn_state = bp->attn_state;
4412
4413	/* look for changed bits */
4414	u32 asserted   =  attn_bits & ~attn_ack & ~attn_state;
4415	u32 deasserted = ~attn_bits &  attn_ack &  attn_state;
4416
4417	DP(NETIF_MSG_HW,
4418	   "attn_bits %x  attn_ack %x  asserted %x  deasserted %x\n",
4419	   attn_bits, attn_ack, asserted, deasserted);
4420
4421	if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state))
4422		BNX2X_ERR("BAD attention state\n");
4423
4424	/* handle bits that were raised */
4425	if (asserted)
4426		bnx2x_attn_int_asserted(bp, asserted);
4427
4428	if (deasserted)
4429		bnx2x_attn_int_deasserted(bp, deasserted);
4430}
4431
4432void bnx2x_igu_ack_sb(struct bnx2x *bp, u8 igu_sb_id, u8 segment,
4433		      u16 index, u8 op, u8 update)
4434{
4435	u32 igu_addr = BAR_IGU_INTMEM + (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8;
4436
4437	bnx2x_igu_ack_sb_gen(bp, igu_sb_id, segment, index, op, update,
4438			     igu_addr);
4439}
4440
4441static inline void bnx2x_update_eq_prod(struct bnx2x *bp, u16 prod)
4442{
4443	/* No memory barriers */
4444	storm_memset_eq_prod(bp, prod, BP_FUNC(bp));
4445	mmiowb(); /* keep prod updates ordered */
4446}
4447
4448#ifdef BCM_CNIC
4449static int  bnx2x_cnic_handle_cfc_del(struct bnx2x *bp, u32 cid,
4450				      union event_ring_elem *elem)
4451{
4452	u8 err = elem->message.error;
4453
4454	if (!bp->cnic_eth_dev.starting_cid  ||
4455	    (cid < bp->cnic_eth_dev.starting_cid &&
4456	    cid != bp->cnic_eth_dev.iscsi_l2_cid))
4457		return 1;
4458
4459	DP(BNX2X_MSG_SP, "got delete ramrod for CNIC CID %d\n", cid);
4460
4461	if (unlikely(err)) {
4462
4463		BNX2X_ERR("got delete ramrod for CNIC CID %d with error!\n",
4464			  cid);
4465		bnx2x_panic_dump(bp);
4466	}
4467	bnx2x_cnic_cfc_comp(bp, cid, err);
4468	return 0;
4469}
4470#endif
4471
4472static inline void bnx2x_handle_mcast_eqe(struct bnx2x *bp)
4473{
4474	struct bnx2x_mcast_ramrod_params rparam;
4475	int rc;
4476
4477	memset(&rparam, 0, sizeof(rparam));
4478
4479	rparam.mcast_obj = &bp->mcast_obj;
4480
4481	netif_addr_lock_bh(bp->dev);
4482
4483	/* Clear pending state for the last command */
4484	bp->mcast_obj.raw.clear_pending(&bp->mcast_obj.raw);
4485
4486	/* If there are pending mcast commands - send them */
4487	if (bp->mcast_obj.check_pending(&bp->mcast_obj)) {
4488		rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
4489		if (rc < 0)
4490			BNX2X_ERR("Failed to send pending mcast commands: %d\n",
4491				  rc);
4492	}
4493
4494	netif_addr_unlock_bh(bp->dev);
4495}
4496
4497static inline void bnx2x_handle_classification_eqe(struct bnx2x *bp,
4498						   union event_ring_elem *elem)
4499{
4500	unsigned long ramrod_flags = 0;
4501	int rc = 0;
4502	u32 cid = elem->message.data.eth_event.echo & BNX2X_SWCID_MASK;
4503	struct bnx2x_vlan_mac_obj *vlan_mac_obj;
4504
4505	/* Always push next commands out, don't wait here */
4506	__set_bit(RAMROD_CONT, &ramrod_flags);
4507
4508	switch (elem->message.data.eth_event.echo >> BNX2X_SWCID_SHIFT) {
4509	case BNX2X_FILTER_MAC_PENDING:
4510#ifdef BCM_CNIC
4511		if (cid == BNX2X_ISCSI_ETH_CID)
4512			vlan_mac_obj = &bp->iscsi_l2_mac_obj;
4513		else
4514#endif
4515			vlan_mac_obj = &bp->fp[cid].mac_obj;
4516
4517		break;
4518	case BNX2X_FILTER_MCAST_PENDING:
4519		/* This is only relevant for 57710 where multicast MACs are
4520		 * configured as unicast MACs using the same ramrod.
4521		 */
4522		bnx2x_handle_mcast_eqe(bp);
4523		return;
4524	default:
4525		BNX2X_ERR("Unsupported classification command: %d\n",
4526			  elem->message.data.eth_event.echo);
4527		return;
4528	}
4529
4530	rc = vlan_mac_obj->complete(bp, vlan_mac_obj, elem, &ramrod_flags);
4531
4532	if (rc < 0)
4533		BNX2X_ERR("Failed to schedule new commands: %d\n", rc);
4534	else if (rc > 0)
4535		DP(BNX2X_MSG_SP, "Scheduled next pending commands...\n");
4536
4537}
4538
4539#ifdef BCM_CNIC
4540static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start);
4541#endif
4542
4543static inline void bnx2x_handle_rx_mode_eqe(struct bnx2x *bp)
4544{
4545	netif_addr_lock_bh(bp->dev);
4546
4547	clear_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
4548
4549	/* Send rx_mode command again if was requested */
4550	if (test_and_clear_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state))
4551		bnx2x_set_storm_rx_mode(bp);
4552#ifdef BCM_CNIC
4553	else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED,
4554				    &bp->sp_state))
4555		bnx2x_set_iscsi_eth_rx_mode(bp, true);
4556	else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED,
4557				    &bp->sp_state))
4558		bnx2x_set_iscsi_eth_rx_mode(bp, false);
4559#endif
4560
4561	netif_addr_unlock_bh(bp->dev);
4562}
4563
4564static inline struct bnx2x_queue_sp_obj *bnx2x_cid_to_q_obj(
4565	struct bnx2x *bp, u32 cid)
4566{
4567	DP(BNX2X_MSG_SP, "retrieving fp from cid %d\n", cid);
4568#ifdef BCM_CNIC
4569	if (cid == BNX2X_FCOE_ETH_CID)
4570		return &bnx2x_fcoe(bp, q_obj);
4571	else
4572#endif
4573		return &bnx2x_fp(bp, CID_TO_FP(cid), q_obj);
4574}
4575
4576static void bnx2x_eq_int(struct bnx2x *bp)
4577{
4578	u16 hw_cons, sw_cons, sw_prod;
4579	union event_ring_elem *elem;
4580	u32 cid;
4581	u8 opcode;
4582	int spqe_cnt = 0;
4583	struct bnx2x_queue_sp_obj *q_obj;
4584	struct bnx2x_func_sp_obj *f_obj = &bp->func_obj;
4585	struct bnx2x_raw_obj *rss_raw = &bp->rss_conf_obj.raw;
4586
4587	hw_cons = le16_to_cpu(*bp->eq_cons_sb);
4588
4589	/* The hw_cos range is 1-255, 257 - the sw_cons range is 0-254, 256.
4590	 * when we get the the next-page we nned to adjust so the loop
4591	 * condition below will be met. The next element is the size of a
4592	 * regular element and hence incrementing by 1
4593	 */
4594	if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE)
4595		hw_cons++;
4596
4597	/* This function may never run in parallel with itself for a
4598	 * specific bp, thus there is no need in "paired" read memory
4599	 * barrier here.
4600	 */
4601	sw_cons = bp->eq_cons;
4602	sw_prod = bp->eq_prod;
4603
4604	DP(BNX2X_MSG_SP, "EQ:  hw_cons %u  sw_cons %u bp->eq_spq_left %x\n",
4605			hw_cons, sw_cons, atomic_read(&bp->eq_spq_left));
4606
4607	for (; sw_cons != hw_cons;
4608	      sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) {
4609
4610
4611		elem = &bp->eq_ring[EQ_DESC(sw_cons)];
4612
4613		cid = SW_CID(elem->message.data.cfc_del_event.cid);
4614		opcode = elem->message.opcode;
4615
4616
4617		/* handle eq element */
4618		switch (opcode) {
4619		case EVENT_RING_OPCODE_STAT_QUERY:
4620			DP(NETIF_MSG_TIMER, "got statistics comp event %d\n",
4621			   bp->stats_comp++);
4622			/* nothing to do with stats comp */
4623			goto next_spqe;
4624
4625		case EVENT_RING_OPCODE_CFC_DEL:
4626			/* handle according to cid range */
4627			/*
4628			 * we may want to verify here that the bp state is
4629			 * HALTING
4630			 */
4631			DP(BNX2X_MSG_SP,
4632			   "got delete ramrod for MULTI[%d]\n", cid);
4633#ifdef BCM_CNIC
4634			if (!bnx2x_cnic_handle_cfc_del(bp, cid, elem))
4635				goto next_spqe;
4636#endif
4637			q_obj = bnx2x_cid_to_q_obj(bp, cid);
4638
4639			if (q_obj->complete_cmd(bp, q_obj, BNX2X_Q_CMD_CFC_DEL))
4640				break;
4641
4642
4643
4644			goto next_spqe;
4645
4646		case EVENT_RING_OPCODE_STOP_TRAFFIC:
4647			DP(BNX2X_MSG_SP, "got STOP TRAFFIC\n");
4648			if (f_obj->complete_cmd(bp, f_obj,
4649						BNX2X_F_CMD_TX_STOP))
4650				break;
4651			bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_PAUSED);
4652			goto next_spqe;
4653
4654		case EVENT_RING_OPCODE_START_TRAFFIC:
4655			DP(BNX2X_MSG_SP, "got START TRAFFIC\n");
4656			if (f_obj->complete_cmd(bp, f_obj,
4657						BNX2X_F_CMD_TX_START))
4658				break;
4659			bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_RELEASED);
4660			goto next_spqe;
4661		case EVENT_RING_OPCODE_FUNCTION_START:
4662			DP(BNX2X_MSG_SP, "got FUNC_START ramrod\n");
4663			if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_START))
4664				break;
4665
4666			goto next_spqe;
4667
4668		case EVENT_RING_OPCODE_FUNCTION_STOP:
4669			DP(BNX2X_MSG_SP, "got FUNC_STOP ramrod\n");
4670			if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_STOP))
4671				break;
4672
4673			goto next_spqe;
4674		}
4675
4676		switch (opcode | bp->state) {
4677		case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
4678		      BNX2X_STATE_OPEN):
4679		case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
4680		      BNX2X_STATE_OPENING_WAIT4_PORT):
4681			cid = elem->message.data.eth_event.echo &
4682				BNX2X_SWCID_MASK;
4683			DP(BNX2X_MSG_SP, "got RSS_UPDATE ramrod. CID %d\n",
4684			   cid);
4685			rss_raw->clear_pending(rss_raw);
4686			break;
4687
4688		case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_OPEN):
4689		case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_DIAG):
4690		case (EVENT_RING_OPCODE_SET_MAC |
4691		      BNX2X_STATE_CLOSING_WAIT4_HALT):
4692		case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
4693		      BNX2X_STATE_OPEN):
4694		case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
4695		      BNX2X_STATE_DIAG):
4696		case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
4697		      BNX2X_STATE_CLOSING_WAIT4_HALT):
4698			DP(BNX2X_MSG_SP, "got (un)set mac ramrod\n");
4699			bnx2x_handle_classification_eqe(bp, elem);
4700			break;
4701
4702		case (EVENT_RING_OPCODE_MULTICAST_RULES |
4703		      BNX2X_STATE_OPEN):
4704		case (EVENT_RING_OPCODE_MULTICAST_RULES |
4705		      BNX2X_STATE_DIAG):
4706		case (EVENT_RING_OPCODE_MULTICAST_RULES |
4707		      BNX2X_STATE_CLOSING_WAIT4_HALT):
4708			DP(BNX2X_MSG_SP, "got mcast ramrod\n");
4709			bnx2x_handle_mcast_eqe(bp);
4710			break;
4711
4712		case (EVENT_RING_OPCODE_FILTERS_RULES |
4713		      BNX2X_STATE_OPEN):
4714		case (EVENT_RING_OPCODE_FILTERS_RULES |
4715		      BNX2X_STATE_DIAG):
4716		case (EVENT_RING_OPCODE_FILTERS_RULES |
4717		      BNX2X_STATE_CLOSING_WAIT4_HALT):
4718			DP(BNX2X_MSG_SP, "got rx_mode ramrod\n");
4719			bnx2x_handle_rx_mode_eqe(bp);
4720			break;
4721		default:
4722			/* unknown event log error and continue */
4723			BNX2X_ERR("Unknown EQ event %d, bp->state 0x%x\n",
4724				  elem->message.opcode, bp->state);
4725		}
4726next_spqe:
4727		spqe_cnt++;
4728	} /* for */
4729
4730	smp_mb__before_atomic_inc();
4731	atomic_add(spqe_cnt, &bp->eq_spq_left);
4732
4733	bp->eq_cons = sw_cons;
4734	bp->eq_prod = sw_prod;
4735	/* Make sure that above mem writes were issued towards the memory */
4736	smp_wmb();
4737
4738	/* update producer */
4739	bnx2x_update_eq_prod(bp, bp->eq_prod);
4740}
4741
4742static void bnx2x_sp_task(struct work_struct *work)
4743{
4744	struct bnx2x *bp = container_of(work, struct bnx2x, sp_task.work);
4745	u16 status;
4746
4747	status = bnx2x_update_dsb_idx(bp);
4748/*	if (status == 0)				     */
4749/*		BNX2X_ERR("spurious slowpath interrupt!\n"); */
4750
4751	DP(NETIF_MSG_INTR, "got a slowpath interrupt (status 0x%x)\n", status);
4752
4753	/* HW attentions */
4754	if (status & BNX2X_DEF_SB_ATT_IDX) {
4755		bnx2x_attn_int(bp);
4756		status &= ~BNX2X_DEF_SB_ATT_IDX;
4757	}
4758
4759	/* SP events: STAT_QUERY and others */
4760	if (status & BNX2X_DEF_SB_IDX) {
4761#ifdef BCM_CNIC
4762		struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp);
4763
4764		if ((!NO_FCOE(bp)) &&
4765			(bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) {
4766			/*
4767			 * Prevent local bottom-halves from running as
4768			 * we are going to change the local NAPI list.
4769			 */
4770			local_bh_disable();
4771			napi_schedule(&bnx2x_fcoe(bp, napi));
4772			local_bh_enable();
4773		}
4774#endif
4775		/* Handle EQ completions */
4776		bnx2x_eq_int(bp);
4777
4778		bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID,
4779			le16_to_cpu(bp->def_idx), IGU_INT_NOP, 1);
4780
4781		status &= ~BNX2X_DEF_SB_IDX;
4782	}
4783
4784	if (unlikely(status))
4785		DP(NETIF_MSG_INTR, "got an unknown interrupt! (status 0x%x)\n",
4786		   status);
4787
4788	bnx2x_ack_sb(bp, bp->igu_dsb_id, ATTENTION_ID,
4789	     le16_to_cpu(bp->def_att_idx), IGU_INT_ENABLE, 1);
4790}
4791
4792irqreturn_t bnx2x_msix_sp_int(int irq, void *dev_instance)
4793{
4794	struct net_device *dev = dev_instance;
4795	struct bnx2x *bp = netdev_priv(dev);
4796
4797	bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0,
4798		     IGU_INT_DISABLE, 0);
4799
4800#ifdef BNX2X_STOP_ON_ERROR
4801	if (unlikely(bp->panic))
4802		return IRQ_HANDLED;
4803#endif
4804
4805#ifdef BCM_CNIC
4806	{
4807		struct cnic_ops *c_ops;
4808
4809		rcu_read_lock();
4810		c_ops = rcu_dereference(bp->cnic_ops);
4811		if (c_ops)
4812			c_ops->cnic_handler(bp->cnic_data, NULL);
4813		rcu_read_unlock();
4814	}
4815#endif
4816	queue_delayed_work(bnx2x_wq, &bp->sp_task, 0);
4817
4818	return IRQ_HANDLED;
4819}
4820
4821/* end of slow path */
4822
4823
4824void bnx2x_drv_pulse(struct bnx2x *bp)
4825{
4826	SHMEM_WR(bp, func_mb[BP_FW_MB_IDX(bp)].drv_pulse_mb,
4827		 bp->fw_drv_pulse_wr_seq);
4828}
4829
4830
4831static void bnx2x_timer(unsigned long data)
4832{
4833	struct bnx2x *bp = (struct bnx2x *) data;
4834
4835	if (!netif_running(bp->dev))
4836		return;
4837
4838	if (!BP_NOMCP(bp)) {
4839		int mb_idx = BP_FW_MB_IDX(bp);
4840		u32 drv_pulse;
4841		u32 mcp_pulse;
4842
4843		++bp->fw_drv_pulse_wr_seq;
4844		bp->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK;
4845		/* TBD - add SYSTEM_TIME */
4846		drv_pulse = bp->fw_drv_pulse_wr_seq;
4847		bnx2x_drv_pulse(bp);
4848
4849		mcp_pulse = (SHMEM_RD(bp, func_mb[mb_idx].mcp_pulse_mb) &
4850			     MCP_PULSE_SEQ_MASK);
4851		/* The delta between driver pulse and mcp response
4852		 * should be 1 (before mcp response) or 0 (after mcp response)
4853		 */
4854		if ((drv_pulse != mcp_pulse) &&
4855		    (drv_pulse != ((mcp_pulse + 1) & MCP_PULSE_SEQ_MASK))) {
4856			/* someone lost a heartbeat... */
4857			BNX2X_ERR("drv_pulse (0x%x) != mcp_pulse (0x%x)\n",
4858				  drv_pulse, mcp_pulse);
4859		}
4860	}
4861
4862	if (bp->state == BNX2X_STATE_OPEN)
4863		bnx2x_stats_handle(bp, STATS_EVENT_UPDATE);
4864
4865	mod_timer(&bp->timer, jiffies + bp->current_interval);
4866}
4867
4868/* end of Statistics */
4869
4870/* nic init */
4871
4872/*
4873 * nic init service functions
4874 */
4875
4876static inline void bnx2x_fill(struct bnx2x *bp, u32 addr, int fill, u32 len)
4877{
4878	u32 i;
4879	if (!(len%4) && !(addr%4))
4880		for (i = 0; i < len; i += 4)
4881			REG_WR(bp, addr + i, fill);
4882	else
4883		for (i = 0; i < len; i++)
4884			REG_WR8(bp, addr + i, fill);
4885
4886}
4887
4888/* helper: writes FP SP data to FW - data_size in dwords */
4889static inline void bnx2x_wr_fp_sb_data(struct bnx2x *bp,
4890				       int fw_sb_id,
4891				       u32 *sb_data_p,
4892				       u32 data_size)
4893{
4894	int index;
4895	for (index = 0; index < data_size; index++)
4896		REG_WR(bp, BAR_CSTRORM_INTMEM +
4897			CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) +
4898			sizeof(u32)*index,
4899			*(sb_data_p + index));
4900}
4901
4902static inline void bnx2x_zero_fp_sb(struct bnx2x *bp, int fw_sb_id)
4903{
4904	u32 *sb_data_p;
4905	u32 data_size = 0;
4906	struct hc_status_block_data_e2 sb_data_e2;
4907	struct hc_status_block_data_e1x sb_data_e1x;
4908
4909	/* disable the function first */
4910	if (!CHIP_IS_E1x(bp)) {
4911		memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
4912		sb_data_e2.common.state = SB_DISABLED;
4913		sb_data_e2.common.p_func.vf_valid = false;
4914		sb_data_p = (u32 *)&sb_data_e2;
4915		data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
4916	} else {
4917		memset(&sb_data_e1x, 0,
4918		       sizeof(struct hc_status_block_data_e1x));
4919		sb_data_e1x.common.state = SB_DISABLED;
4920		sb_data_e1x.common.p_func.vf_valid = false;
4921		sb_data_p = (u32 *)&sb_data_e1x;
4922		data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
4923	}
4924	bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
4925
4926	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
4927			CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id), 0,
4928			CSTORM_STATUS_BLOCK_SIZE);
4929	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
4930			CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id), 0,
4931			CSTORM_SYNC_BLOCK_SIZE);
4932}
4933
4934/* helper:  writes SP SB data to FW */
4935static inline void bnx2x_wr_sp_sb_data(struct bnx2x *bp,
4936		struct hc_sp_status_block_data *sp_sb_data)
4937{
4938	int func = BP_FUNC(bp);
4939	int i;
4940	for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++)
4941		REG_WR(bp, BAR_CSTRORM_INTMEM +
4942			CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) +
4943			i*sizeof(u32),
4944			*((u32 *)sp_sb_data + i));
4945}
4946
4947static inline void bnx2x_zero_sp_sb(struct bnx2x *bp)
4948{
4949	int func = BP_FUNC(bp);
4950	struct hc_sp_status_block_data sp_sb_data;
4951	memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
4952
4953	sp_sb_data.state = SB_DISABLED;
4954	sp_sb_data.p_func.vf_valid = false;
4955
4956	bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
4957
4958	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
4959			CSTORM_SP_STATUS_BLOCK_OFFSET(func), 0,
4960			CSTORM_SP_STATUS_BLOCK_SIZE);
4961	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
4962			CSTORM_SP_SYNC_BLOCK_OFFSET(func), 0,
4963			CSTORM_SP_SYNC_BLOCK_SIZE);
4964
4965}
4966
4967
4968static inline
4969void bnx2x_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm,
4970					   int igu_sb_id, int igu_seg_id)
4971{
4972	hc_sm->igu_sb_id = igu_sb_id;
4973	hc_sm->igu_seg_id = igu_seg_id;
4974	hc_sm->timer_value = 0xFF;
4975	hc_sm->time_to_expire = 0xFFFFFFFF;
4976}
4977
4978
4979/* allocates state machine ids. */
4980static inline
4981void bnx2x_map_sb_state_machines(struct hc_index_data *index_data)
4982{
4983	/* zero out state machine indices */
4984	/* rx indices */
4985	index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
4986
4987	/* tx indices */
4988	index_data[HC_INDEX_OOO_TX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
4989	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID;
4990	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID;
4991	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID;
4992
4993	/* map indices */
4994	/* rx indices */
4995	index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |=
4996		SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
4997
4998	/* tx indices */
4999	index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |=
5000		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5001	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |=
5002		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5003	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |=
5004		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5005	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |=
5006		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5007}
5008
5009static void bnx2x_init_sb(struct bnx2x *bp, dma_addr_t mapping, int vfid,
5010			  u8 vf_valid, int fw_sb_id, int igu_sb_id)
5011{
5012	int igu_seg_id;
5013
5014	struct hc_status_block_data_e2 sb_data_e2;
5015	struct hc_status_block_data_e1x sb_data_e1x;
5016	struct hc_status_block_sm  *hc_sm_p;
5017	int data_size;
5018	u32 *sb_data_p;
5019
5020	if (CHIP_INT_MODE_IS_BC(bp))
5021		igu_seg_id = HC_SEG_ACCESS_NORM;
5022	else
5023		igu_seg_id = IGU_SEG_ACCESS_NORM;
5024
5025	bnx2x_zero_fp_sb(bp, fw_sb_id);
5026
5027	if (!CHIP_IS_E1x(bp)) {
5028		memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
5029		sb_data_e2.common.state = SB_ENABLED;
5030		sb_data_e2.common.p_func.pf_id = BP_FUNC(bp);
5031		sb_data_e2.common.p_func.vf_id = vfid;
5032		sb_data_e2.common.p_func.vf_valid = vf_valid;
5033		sb_data_e2.common.p_func.vnic_id = BP_VN(bp);
5034		sb_data_e2.common.same_igu_sb_1b = true;
5035		sb_data_e2.common.host_sb_addr.hi = U64_HI(mapping);
5036		sb_data_e2.common.host_sb_addr.lo = U64_LO(mapping);
5037		hc_sm_p = sb_data_e2.common.state_machine;
5038		sb_data_p = (u32 *)&sb_data_e2;
5039		data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
5040		bnx2x_map_sb_state_machines(sb_data_e2.index_data);
5041	} else {
5042		memset(&sb_data_e1x, 0,
5043		       sizeof(struct hc_status_block_data_e1x));
5044		sb_data_e1x.common.state = SB_ENABLED;
5045		sb_data_e1x.common.p_func.pf_id = BP_FUNC(bp);
5046		sb_data_e1x.common.p_func.vf_id = 0xff;
5047		sb_data_e1x.common.p_func.vf_valid = false;
5048		sb_data_e1x.common.p_func.vnic_id = BP_VN(bp);
5049		sb_data_e1x.common.same_igu_sb_1b = true;
5050		sb_data_e1x.common.host_sb_addr.hi = U64_HI(mapping);
5051		sb_data_e1x.common.host_sb_addr.lo = U64_LO(mapping);
5052		hc_sm_p = sb_data_e1x.common.state_machine;
5053		sb_data_p = (u32 *)&sb_data_e1x;
5054		data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
5055		bnx2x_map_sb_state_machines(sb_data_e1x.index_data);
5056	}
5057
5058	bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID],
5059				       igu_sb_id, igu_seg_id);
5060	bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID],
5061				       igu_sb_id, igu_seg_id);
5062
5063	DP(NETIF_MSG_HW, "Init FW SB %d\n", fw_sb_id);
5064
5065	/* write indecies to HW */
5066	bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
5067}
5068
5069static void bnx2x_update_coalesce_sb(struct bnx2x *bp, u8 fw_sb_id,
5070				     u16 tx_usec, u16 rx_usec)
5071{
5072	bnx2x_update_coalesce_sb_index(bp, fw_sb_id, HC_INDEX_ETH_RX_CQ_CONS,
5073				    false, rx_usec);
5074	bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
5075				       HC_INDEX_ETH_TX_CQ_CONS_COS0, false,
5076				       tx_usec);
5077	bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
5078				       HC_INDEX_ETH_TX_CQ_CONS_COS1, false,
5079				       tx_usec);
5080	bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
5081				       HC_INDEX_ETH_TX_CQ_CONS_COS2, false,
5082				       tx_usec);
5083}
5084
5085static void bnx2x_init_def_sb(struct bnx2x *bp)
5086{
5087	struct host_sp_status_block *def_sb = bp->def_status_blk;
5088	dma_addr_t mapping = bp->def_status_blk_mapping;
5089	int igu_sp_sb_index;
5090	int igu_seg_id;
5091	int port = BP_PORT(bp);
5092	int func = BP_FUNC(bp);
5093	int reg_offset, reg_offset_en5;
5094	u64 section;
5095	int index;
5096	struct hc_sp_status_block_data sp_sb_data;
5097	memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
5098
5099	if (CHIP_INT_MODE_IS_BC(bp)) {
5100		igu_sp_sb_index = DEF_SB_IGU_ID;
5101		igu_seg_id = HC_SEG_ACCESS_DEF;
5102	} else {
5103		igu_sp_sb_index = bp->igu_dsb_id;
5104		igu_seg_id = IGU_SEG_ACCESS_DEF;
5105	}
5106
5107	/* ATTN */
5108	section = ((u64)mapping) + offsetof(struct host_sp_status_block,
5109					    atten_status_block);
5110	def_sb->atten_status_block.status_block_id = igu_sp_sb_index;
5111
5112	bp->attn_state = 0;
5113
5114	reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
5115			     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
5116	reg_offset_en5 = (port ? MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 :
5117				 MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0);
5118	for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
5119		int sindex;
5120		/* take care of sig[0]..sig[4] */
5121		for (sindex = 0; sindex < 4; sindex++)
5122			bp->attn_group[index].sig[sindex] =
5123			   REG_RD(bp, reg_offset + sindex*0x4 + 0x10*index);
5124
5125		if (!CHIP_IS_E1x(bp))
5126			/*
5127			 * enable5 is separate from the rest of the registers,
5128			 * and therefore the address skip is 4
5129			 * and not 16 between the different groups
5130			 */
5131			bp->attn_group[index].sig[4] = REG_RD(bp,
5132					reg_offset_en5 + 0x4*index);
5133		else
5134			bp->attn_group[index].sig[4] = 0;
5135	}
5136
5137	if (bp->common.int_block == INT_BLOCK_HC) {
5138		reg_offset = (port ? HC_REG_ATTN_MSG1_ADDR_L :
5139				     HC_REG_ATTN_MSG0_ADDR_L);
5140
5141		REG_WR(bp, reg_offset, U64_LO(section));
5142		REG_WR(bp, reg_offset + 4, U64_HI(section));
5143	} else if (!CHIP_IS_E1x(bp)) {
5144		REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section));
5145		REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section));
5146	}
5147
5148	section = ((u64)mapping) + offsetof(struct host_sp_status_block,
5149					    sp_sb);
5150
5151	bnx2x_zero_sp_sb(bp);
5152
5153	sp_sb_data.state		= SB_ENABLED;
5154	sp_sb_data.host_sb_addr.lo	= U64_LO(section);
5155	sp_sb_data.host_sb_addr.hi	= U64_HI(section);
5156	sp_sb_data.igu_sb_id		= igu_sp_sb_index;
5157	sp_sb_data.igu_seg_id		= igu_seg_id;
5158	sp_sb_data.p_func.pf_id		= func;
5159	sp_sb_data.p_func.vnic_id	= BP_VN(bp);
5160	sp_sb_data.p_func.vf_id		= 0xff;
5161
5162	bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
5163
5164	bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
5165}
5166
5167void bnx2x_update_coalesce(struct bnx2x *bp)
5168{
5169	int i;
5170
5171	for_each_eth_queue(bp, i)
5172		bnx2x_update_coalesce_sb(bp, bp->fp[i].fw_sb_id,
5173					 bp->tx_ticks, bp->rx_ticks);
5174}
5175
5176static void bnx2x_init_sp_ring(struct bnx2x *bp)
5177{
5178	spin_lock_init(&bp->spq_lock);
5179	atomic_set(&bp->cq_spq_left, MAX_SPQ_PENDING);
5180
5181	bp->spq_prod_idx = 0;
5182	bp->dsb_sp_prod = BNX2X_SP_DSB_INDEX;
5183	bp->spq_prod_bd = bp->spq;
5184	bp->spq_last_bd = bp->spq_prod_bd + MAX_SP_DESC_CNT;
5185}
5186
5187static void bnx2x_init_eq_ring(struct bnx2x *bp)
5188{
5189	int i;
5190	for (i = 1; i <= NUM_EQ_PAGES; i++) {
5191		union event_ring_elem *elem =
5192			&bp->eq_ring[EQ_DESC_CNT_PAGE * i - 1];
5193
5194		elem->next_page.addr.hi =
5195			cpu_to_le32(U64_HI(bp->eq_mapping +
5196				   BCM_PAGE_SIZE * (i % NUM_EQ_PAGES)));
5197		elem->next_page.addr.lo =
5198			cpu_to_le32(U64_LO(bp->eq_mapping +
5199				   BCM_PAGE_SIZE*(i % NUM_EQ_PAGES)));
5200	}
5201	bp->eq_cons = 0;
5202	bp->eq_prod = NUM_EQ_DESC;
5203	bp->eq_cons_sb = BNX2X_EQ_INDEX;
5204	/* we want a warning message before it gets rought... */
5205	atomic_set(&bp->eq_spq_left,
5206		min_t(int, MAX_SP_DESC_CNT - MAX_SPQ_PENDING, NUM_EQ_DESC) - 1);
5207}
5208
5209
5210/* called with netif_addr_lock_bh() */
5211void bnx2x_set_q_rx_mode(struct bnx2x *bp, u8 cl_id,
5212			 unsigned long rx_mode_flags,
5213			 unsigned long rx_accept_flags,
5214			 unsigned long tx_accept_flags,
5215			 unsigned long ramrod_flags)
5216{
5217	struct bnx2x_rx_mode_ramrod_params ramrod_param;
5218	int rc;
5219
5220	memset(&ramrod_param, 0, sizeof(ramrod_param));
5221
5222	/* Prepare ramrod parameters */
5223	ramrod_param.cid = 0;
5224	ramrod_param.cl_id = cl_id;
5225	ramrod_param.rx_mode_obj = &bp->rx_mode_obj;
5226	ramrod_param.func_id = BP_FUNC(bp);
5227
5228	ramrod_param.pstate = &bp->sp_state;
5229	ramrod_param.state = BNX2X_FILTER_RX_MODE_PENDING;
5230
5231	ramrod_param.rdata = bnx2x_sp(bp, rx_mode_rdata);
5232	ramrod_param.rdata_mapping = bnx2x_sp_mapping(bp, rx_mode_rdata);
5233
5234	set_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
5235
5236	ramrod_param.ramrod_flags = ramrod_flags;
5237	ramrod_param.rx_mode_flags = rx_mode_flags;
5238
5239	ramrod_param.rx_accept_flags = rx_accept_flags;
5240	ramrod_param.tx_accept_flags = tx_accept_flags;
5241
5242	rc = bnx2x_config_rx_mode(bp, &ramrod_param);
5243	if (rc < 0) {
5244		BNX2X_ERR("Set rx_mode %d failed\n", bp->rx_mode);
5245		return;
5246	}
5247}
5248
5249/* called with netif_addr_lock_bh() */
5250void bnx2x_set_storm_rx_mode(struct bnx2x *bp)
5251{
5252	unsigned long rx_mode_flags = 0, ramrod_flags = 0;
5253	unsigned long rx_accept_flags = 0, tx_accept_flags = 0;
5254
5255#ifdef BCM_CNIC
5256	if (!NO_FCOE(bp))
5257
5258		/* Configure rx_mode of FCoE Queue */
5259		__set_bit(BNX2X_RX_MODE_FCOE_ETH, &rx_mode_flags);
5260#endif
5261
5262	switch (bp->rx_mode) {
5263	case BNX2X_RX_MODE_NONE:
5264		/*
5265		 * 'drop all' supersedes any accept flags that may have been
5266		 * passed to the function.
5267		 */
5268		break;
5269	case BNX2X_RX_MODE_NORMAL:
5270		__set_bit(BNX2X_ACCEPT_UNICAST, &rx_accept_flags);
5271		__set_bit(BNX2X_ACCEPT_MULTICAST, &rx_accept_flags);
5272		__set_bit(BNX2X_ACCEPT_BROADCAST, &rx_accept_flags);
5273
5274		/* internal switching mode */
5275		__set_bit(BNX2X_ACCEPT_UNICAST, &tx_accept_flags);
5276		__set_bit(BNX2X_ACCEPT_MULTICAST, &tx_accept_flags);
5277		__set_bit(BNX2X_ACCEPT_BROADCAST, &tx_accept_flags);
5278
5279		break;
5280	case BNX2X_RX_MODE_ALLMULTI:
5281		__set_bit(BNX2X_ACCEPT_UNICAST, &rx_accept_flags);
5282		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &rx_accept_flags);
5283		__set_bit(BNX2X_ACCEPT_BROADCAST, &rx_accept_flags);
5284
5285		/* internal switching mode */
5286		__set_bit(BNX2X_ACCEPT_UNICAST, &tx_accept_flags);
5287		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &tx_accept_flags);
5288		__set_bit(BNX2X_ACCEPT_BROADCAST, &tx_accept_flags);
5289
5290		break;
5291	case BNX2X_RX_MODE_PROMISC:
5292		/* According to deffinition of SI mode, iface in promisc mode
5293		 * should receive matched and unmatched (in resolution of port)
5294		 * unicast packets.
5295		 */
5296		__set_bit(BNX2X_ACCEPT_UNMATCHED, &rx_accept_flags);
5297		__set_bit(BNX2X_ACCEPT_UNICAST, &rx_accept_flags);
5298		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &rx_accept_flags);
5299		__set_bit(BNX2X_ACCEPT_BROADCAST, &rx_accept_flags);
5300
5301		/* internal switching mode */
5302		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &tx_accept_flags);
5303		__set_bit(BNX2X_ACCEPT_BROADCAST, &tx_accept_flags);
5304
5305		if (IS_MF_SI(bp))
5306			__set_bit(BNX2X_ACCEPT_ALL_UNICAST, &tx_accept_flags);
5307		else
5308			__set_bit(BNX2X_ACCEPT_UNICAST, &tx_accept_flags);
5309
5310		break;
5311	default:
5312		BNX2X_ERR("Unknown rx_mode: %d\n", bp->rx_mode);
5313		return;
5314	}
5315
5316	if (bp->rx_mode != BNX2X_RX_MODE_NONE) {
5317		__set_bit(BNX2X_ACCEPT_ANY_VLAN, &rx_accept_flags);
5318		__set_bit(BNX2X_ACCEPT_ANY_VLAN, &tx_accept_flags);
5319	}
5320
5321	__set_bit(RAMROD_RX, &ramrod_flags);
5322	__set_bit(RAMROD_TX, &ramrod_flags);
5323
5324	bnx2x_set_q_rx_mode(bp, bp->fp->cl_id, rx_mode_flags, rx_accept_flags,
5325			    tx_accept_flags, ramrod_flags);
5326}
5327
5328static void bnx2x_init_internal_common(struct bnx2x *bp)
5329{
5330	int i;
5331
5332	if (IS_MF_SI(bp))
5333		/*
5334		 * In switch independent mode, the TSTORM needs to accept
5335		 * packets that failed classification, since approximate match
5336		 * mac addresses aren't written to NIG LLH
5337		 */
5338		REG_WR8(bp, BAR_TSTRORM_INTMEM +
5339			    TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET, 2);
5340	else if (!CHIP_IS_E1(bp)) /* 57710 doesn't support MF */
5341		REG_WR8(bp, BAR_TSTRORM_INTMEM +
5342			    TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET, 0);
5343
5344	/* Zero this manually as its initialization is
5345	   currently missing in the initTool */
5346	for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++)
5347		REG_WR(bp, BAR_USTRORM_INTMEM +
5348		       USTORM_AGG_DATA_OFFSET + i * 4, 0);
5349	if (!CHIP_IS_E1x(bp)) {
5350		REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET,
5351			CHIP_INT_MODE_IS_BC(bp) ?
5352			HC_IGU_BC_MODE : HC_IGU_NBC_MODE);
5353	}
5354}
5355
5356static void bnx2x_init_internal(struct bnx2x *bp, u32 load_code)
5357{
5358	switch (load_code) {
5359	case FW_MSG_CODE_DRV_LOAD_COMMON:
5360	case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP:
5361		bnx2x_init_internal_common(bp);
5362		/* no break */
5363
5364	case FW_MSG_CODE_DRV_LOAD_PORT:
5365		/* nothing to do */
5366		/* no break */
5367
5368	case FW_MSG_CODE_DRV_LOAD_FUNCTION:
5369		/* internal memory per function is
5370		   initialized inside bnx2x_pf_init */
5371		break;
5372
5373	default:
5374		BNX2X_ERR("Unknown load_code (0x%x) from MCP\n", load_code);
5375		break;
5376	}
5377}
5378
5379static inline u8 bnx2x_fp_igu_sb_id(struct bnx2x_fastpath *fp)
5380{
5381	return fp->bp->igu_base_sb + fp->index + CNIC_PRESENT;
5382}
5383
5384static inline u8 bnx2x_fp_fw_sb_id(struct bnx2x_fastpath *fp)
5385{
5386	return fp->bp->base_fw_ndsb + fp->index + CNIC_PRESENT;
5387}
5388
5389static inline u8 bnx2x_fp_cl_id(struct bnx2x_fastpath *fp)
5390{
5391	if (CHIP_IS_E1x(fp->bp))
5392		return BP_L_ID(fp->bp) + fp->index;
5393	else	/* We want Client ID to be the same as IGU SB ID for 57712 */
5394		return bnx2x_fp_igu_sb_id(fp);
5395}
5396
5397static void bnx2x_init_eth_fp(struct bnx2x *bp, int fp_idx)
5398{
5399	struct bnx2x_fastpath *fp = &bp->fp[fp_idx];
5400	u8 cos;
5401	unsigned long q_type = 0;
5402	u32 cids[BNX2X_MULTI_TX_COS] = { 0 };
5403	fp->rx_queue = fp_idx;
5404	fp->cid = fp_idx;
5405	fp->cl_id = bnx2x_fp_cl_id(fp);
5406	fp->fw_sb_id = bnx2x_fp_fw_sb_id(fp);
5407	fp->igu_sb_id = bnx2x_fp_igu_sb_id(fp);
5408	/* qZone id equals to FW (per path) client id */
5409	fp->cl_qzone_id  = bnx2x_fp_qzone_id(fp);
5410
5411	/* init shortcut */
5412	fp->ustorm_rx_prods_offset = bnx2x_rx_ustorm_prods_offset(fp);
5413	/* Setup SB indicies */
5414	fp->rx_cons_sb = BNX2X_RX_SB_INDEX;
5415
5416	/* Configure Queue State object */
5417	__set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
5418	__set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
5419
5420	BUG_ON(fp->max_cos > BNX2X_MULTI_TX_COS);
5421
5422	/* init tx data */
5423	for_each_cos_in_tx_queue(fp, cos) {
5424		bnx2x_init_txdata(bp, &fp->txdata[cos],
5425				  CID_COS_TO_TX_ONLY_CID(fp->cid, cos),
5426				  FP_COS_TO_TXQ(fp, cos),
5427				  BNX2X_TX_SB_INDEX_BASE + cos);
5428		cids[cos] = fp->txdata[cos].cid;
5429	}
5430
5431	bnx2x_init_queue_obj(bp, &fp->q_obj, fp->cl_id, cids, fp->max_cos,
5432			     BP_FUNC(bp), bnx2x_sp(bp, q_rdata),
5433			     bnx2x_sp_mapping(bp, q_rdata), q_type);
5434
5435	/**
5436	 * Configure classification DBs: Always enable Tx switching
5437	 */
5438	bnx2x_init_vlan_mac_fp_objs(fp, BNX2X_OBJ_TYPE_RX_TX);
5439
5440	DP(NETIF_MSG_IFUP, "queue[%d]:  bnx2x_init_sb(%p,%p)  "
5441				   "cl_id %d  fw_sb %d  igu_sb %d\n",
5442		   fp_idx, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id,
5443		   fp->igu_sb_id);
5444	bnx2x_init_sb(bp, fp->status_blk_mapping, BNX2X_VF_ID_INVALID, false,
5445		      fp->fw_sb_id, fp->igu_sb_id);
5446
5447	bnx2x_update_fpsb_idx(fp);
5448}
5449
5450void bnx2x_nic_init(struct bnx2x *bp, u32 load_code)
5451{
5452	int i;
5453
5454	for_each_eth_queue(bp, i)
5455		bnx2x_init_eth_fp(bp, i);
5456#ifdef BCM_CNIC
5457	if (!NO_FCOE(bp))
5458		bnx2x_init_fcoe_fp(bp);
5459
5460	bnx2x_init_sb(bp, bp->cnic_sb_mapping,
5461		      BNX2X_VF_ID_INVALID, false,
5462		      bnx2x_cnic_fw_sb_id(bp), bnx2x_cnic_igu_sb_id(bp));
5463
5464#endif
5465
5466	/* Initialize MOD_ABS interrupts */
5467	bnx2x_init_mod_abs_int(bp, &bp->link_vars, bp->common.chip_id,
5468			       bp->common.shmem_base, bp->common.shmem2_base,
5469			       BP_PORT(bp));
5470	/* ensure status block indices were read */
5471	rmb();
5472
5473	bnx2x_init_def_sb(bp);
5474	bnx2x_update_dsb_idx(bp);
5475	bnx2x_init_rx_rings(bp);
5476	bnx2x_init_tx_rings(bp);
5477	bnx2x_init_sp_ring(bp);
5478	bnx2x_init_eq_ring(bp);
5479	bnx2x_init_internal(bp, load_code);
5480	bnx2x_pf_init(bp);
5481	bnx2x_stats_init(bp);
5482
5483	/* flush all before enabling interrupts */
5484	mb();
5485	mmiowb();
5486
5487	bnx2x_int_enable(bp);
5488
5489	/* Check for SPIO5 */
5490	bnx2x_attn_int_deasserted0(bp,
5491		REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + BP_PORT(bp)*4) &
5492				   AEU_INPUTS_ATTN_BITS_SPIO5);
5493}
5494
5495/* end of nic init */
5496
5497/*
5498 * gzip service functions
5499 */
5500
5501static int bnx2x_gunzip_init(struct bnx2x *bp)
5502{
5503	bp->gunzip_buf = dma_alloc_coherent(&bp->pdev->dev, FW_BUF_SIZE,
5504					    &bp->gunzip_mapping, GFP_KERNEL);
5505	if (bp->gunzip_buf  == NULL)
5506		goto gunzip_nomem1;
5507
5508	bp->strm = kmalloc(sizeof(*bp->strm), GFP_KERNEL);
5509	if (bp->strm  == NULL)
5510		goto gunzip_nomem2;
5511
5512	bp->strm->workspace = vmalloc(zlib_inflate_workspacesize());
5513	if (bp->strm->workspace == NULL)
5514		goto gunzip_nomem3;
5515
5516	return 0;
5517
5518gunzip_nomem3:
5519	kfree(bp->strm);
5520	bp->strm = NULL;
5521
5522gunzip_nomem2:
5523	dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
5524			  bp->gunzip_mapping);
5525	bp->gunzip_buf = NULL;
5526
5527gunzip_nomem1:
5528	netdev_err(bp->dev, "Cannot allocate firmware buffer for"
5529	       " un-compression\n");
5530	return -ENOMEM;
5531}
5532
5533static void bnx2x_gunzip_end(struct bnx2x *bp)
5534{
5535	if (bp->strm) {
5536		vfree(bp->strm->workspace);
5537		kfree(bp->strm);
5538		bp->strm = NULL;
5539	}
5540
5541	if (bp->gunzip_buf) {
5542		dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
5543				  bp->gunzip_mapping);
5544		bp->gunzip_buf = NULL;
5545	}
5546}
5547
5548static int bnx2x_gunzip(struct bnx2x *bp, const u8 *zbuf, int len)
5549{
5550	int n, rc;
5551
5552	/* check gzip header */
5553	if ((zbuf[0] != 0x1f) || (zbuf[1] != 0x8b) || (zbuf[2] != Z_DEFLATED)) {
5554		BNX2X_ERR("Bad gzip header\n");
5555		return -EINVAL;
5556	}
5557
5558	n = 10;
5559
5560#define FNAME				0x8
5561
5562	if (zbuf[3] & FNAME)
5563		while ((zbuf[n++] != 0) && (n < len));
5564
5565	bp->strm->next_in = (typeof(bp->strm->next_in))zbuf + n;
5566	bp->strm->avail_in = len - n;
5567	bp->strm->next_out = bp->gunzip_buf;
5568	bp->strm->avail_out = FW_BUF_SIZE;
5569
5570	rc = zlib_inflateInit2(bp->strm, -MAX_WBITS);
5571	if (rc != Z_OK)
5572		return rc;
5573
5574	rc = zlib_inflate(bp->strm, Z_FINISH);
5575	if ((rc != Z_OK) && (rc != Z_STREAM_END))
5576		netdev_err(bp->dev, "Firmware decompression error: %s\n",
5577			   bp->strm->msg);
5578
5579	bp->gunzip_outlen = (FW_BUF_SIZE - bp->strm->avail_out);
5580	if (bp->gunzip_outlen & 0x3)
5581		netdev_err(bp->dev, "Firmware decompression error:"
5582				    " gunzip_outlen (%d) not aligned\n",
5583				bp->gunzip_outlen);
5584	bp->gunzip_outlen >>= 2;
5585
5586	zlib_inflateEnd(bp->strm);
5587
5588	if (rc == Z_STREAM_END)
5589		return 0;
5590
5591	return rc;
5592}
5593
5594/* nic load/unload */
5595
5596/*
5597 * General service functions
5598 */
5599
5600/* send a NIG loopback debug packet */
5601static void bnx2x_lb_pckt(struct bnx2x *bp)
5602{
5603	u32 wb_write[3];
5604
5605	/* Ethernet source and destination addresses */
5606	wb_write[0] = 0x55555555;
5607	wb_write[1] = 0x55555555;
5608	wb_write[2] = 0x20;		/* SOP */
5609	REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
5610
5611	/* NON-IP protocol */
5612	wb_write[0] = 0x09000000;
5613	wb_write[1] = 0x55555555;
5614	wb_write[2] = 0x10;		/* EOP, eop_bvalid = 0 */
5615	REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
5616}
5617
5618/* some of the internal memories
5619 * are not directly readable from the driver
5620 * to test them we send debug packets
5621 */
5622static int bnx2x_int_mem_test(struct bnx2x *bp)
5623{
5624	int factor;
5625	int count, i;
5626	u32 val = 0;
5627
5628	if (CHIP_REV_IS_FPGA(bp))
5629		factor = 120;
5630	else if (CHIP_REV_IS_EMUL(bp))
5631		factor = 200;
5632	else
5633		factor = 1;
5634
5635	/* Disable inputs of parser neighbor blocks */
5636	REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
5637	REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
5638	REG_WR(bp, CFC_REG_DEBUG0, 0x1);
5639	REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
5640
5641	/*  Write 0 to parser credits for CFC search request */
5642	REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
5643
5644	/* send Ethernet packet */
5645	bnx2x_lb_pckt(bp);
5646
5647	/* TODO do i reset NIG statistic? */
5648	/* Wait until NIG register shows 1 packet of size 0x10 */
5649	count = 1000 * factor;
5650	while (count) {
5651
5652		bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
5653		val = *bnx2x_sp(bp, wb_data[0]);
5654		if (val == 0x10)
5655			break;
5656
5657		msleep(10);
5658		count--;
5659	}
5660	if (val != 0x10) {
5661		BNX2X_ERR("NIG timeout  val = 0x%x\n", val);
5662		return -1;
5663	}
5664
5665	/* Wait until PRS register shows 1 packet */
5666	count = 1000 * factor;
5667	while (count) {
5668		val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
5669		if (val == 1)
5670			break;
5671
5672		msleep(10);
5673		count--;
5674	}
5675	if (val != 0x1) {
5676		BNX2X_ERR("PRS timeout val = 0x%x\n", val);
5677		return -2;
5678	}
5679
5680	/* Reset and init BRB, PRS */
5681	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
5682	msleep(50);
5683	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
5684	msleep(50);
5685	bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
5686	bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
5687
5688	DP(NETIF_MSG_HW, "part2\n");
5689
5690	/* Disable inputs of parser neighbor blocks */
5691	REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
5692	REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
5693	REG_WR(bp, CFC_REG_DEBUG0, 0x1);
5694	REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
5695
5696	/* Write 0 to parser credits for CFC search request */
5697	REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
5698
5699	/* send 10 Ethernet packets */
5700	for (i = 0; i < 10; i++)
5701		bnx2x_lb_pckt(bp);
5702
5703	/* Wait until NIG register shows 10 + 1
5704	   packets of size 11*0x10 = 0xb0 */
5705	count = 1000 * factor;
5706	while (count) {
5707
5708		bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
5709		val = *bnx2x_sp(bp, wb_data[0]);
5710		if (val == 0xb0)
5711			break;
5712
5713		msleep(10);
5714		count--;
5715	}
5716	if (val != 0xb0) {
5717		BNX2X_ERR("NIG timeout  val = 0x%x\n", val);
5718		return -3;
5719	}
5720
5721	/* Wait until PRS register shows 2 packets */
5722	val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
5723	if (val != 2)
5724		BNX2X_ERR("PRS timeout  val = 0x%x\n", val);
5725
5726	/* Write 1 to parser credits for CFC search request */
5727	REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1);
5728
5729	/* Wait until PRS register shows 3 packets */
5730	msleep(10 * factor);
5731	/* Wait until NIG register shows 1 packet of size 0x10 */
5732	val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
5733	if (val != 3)
5734		BNX2X_ERR("PRS timeout  val = 0x%x\n", val);
5735
5736	/* clear NIG EOP FIFO */
5737	for (i = 0; i < 11; i++)
5738		REG_RD(bp, NIG_REG_INGRESS_EOP_LB_FIFO);
5739	val = REG_RD(bp, NIG_REG_INGRESS_EOP_LB_EMPTY);
5740	if (val != 1) {
5741		BNX2X_ERR("clear of NIG failed\n");
5742		return -4;
5743	}
5744
5745	/* Reset and init BRB, PRS, NIG */
5746	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
5747	msleep(50);
5748	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
5749	msleep(50);
5750	bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
5751	bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
5752#ifndef BCM_CNIC
5753	/* set NIC mode */
5754	REG_WR(bp, PRS_REG_NIC_MODE, 1);
5755#endif
5756
5757	/* Enable inputs of parser neighbor blocks */
5758	REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x7fffffff);
5759	REG_WR(bp, TCM_REG_PRS_IFEN, 0x1);
5760	REG_WR(bp, CFC_REG_DEBUG0, 0x0);
5761	REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x1);
5762
5763	DP(NETIF_MSG_HW, "done\n");
5764
5765	return 0; /* OK */
5766}
5767
5768static void bnx2x_enable_blocks_attention(struct bnx2x *bp)
5769{
5770	REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
5771	if (!CHIP_IS_E1x(bp))
5772		REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0x40);
5773	else
5774		REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0);
5775	REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
5776	REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
5777	/*
5778	 * mask read length error interrupts in brb for parser
5779	 * (parsing unit and 'checksum and crc' unit)
5780	 * these errors are legal (PU reads fixed length and CAC can cause
5781	 * read length error on truncated packets)
5782	 */
5783	REG_WR(bp, BRB1_REG_BRB1_INT_MASK, 0xFC00);
5784	REG_WR(bp, QM_REG_QM_INT_MASK, 0);
5785	REG_WR(bp, TM_REG_TM_INT_MASK, 0);
5786	REG_WR(bp, XSDM_REG_XSDM_INT_MASK_0, 0);
5787	REG_WR(bp, XSDM_REG_XSDM_INT_MASK_1, 0);
5788	REG_WR(bp, XCM_REG_XCM_INT_MASK, 0);
5789/*	REG_WR(bp, XSEM_REG_XSEM_INT_MASK_0, 0); */
5790/*	REG_WR(bp, XSEM_REG_XSEM_INT_MASK_1, 0); */
5791	REG_WR(bp, USDM_REG_USDM_INT_MASK_0, 0);
5792	REG_WR(bp, USDM_REG_USDM_INT_MASK_1, 0);
5793	REG_WR(bp, UCM_REG_UCM_INT_MASK, 0);
5794/*	REG_WR(bp, USEM_REG_USEM_INT_MASK_0, 0); */
5795/*	REG_WR(bp, USEM_REG_USEM_INT_MASK_1, 0); */
5796	REG_WR(bp, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0);
5797	REG_WR(bp, CSDM_REG_CSDM_INT_MASK_0, 0);
5798	REG_WR(bp, CSDM_REG_CSDM_INT_MASK_1, 0);
5799	REG_WR(bp, CCM_REG_CCM_INT_MASK, 0);
5800/*	REG_WR(bp, CSEM_REG_CSEM_INT_MASK_0, 0); */
5801/*	REG_WR(bp, CSEM_REG_CSEM_INT_MASK_1, 0); */
5802
5803	if (CHIP_REV_IS_FPGA(bp))
5804		REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0, 0x580000);
5805	else if (!CHIP_IS_E1x(bp))
5806		REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0,
5807			   (PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF
5808				| PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT
5809				| PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN
5810				| PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED
5811				| PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED));
5812	else
5813		REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0, 0x480000);
5814	REG_WR(bp, TSDM_REG_TSDM_INT_MASK_0, 0);
5815	REG_WR(bp, TSDM_REG_TSDM_INT_MASK_1, 0);
5816	REG_WR(bp, TCM_REG_TCM_INT_MASK, 0);
5817/*	REG_WR(bp, TSEM_REG_TSEM_INT_MASK_0, 0); */
5818
5819	if (!CHIP_IS_E1x(bp))
5820		/* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */
5821		REG_WR(bp, TSEM_REG_TSEM_INT_MASK_1, 0x07ff);
5822
5823	REG_WR(bp, CDU_REG_CDU_INT_MASK, 0);
5824	REG_WR(bp, DMAE_REG_DMAE_INT_MASK, 0);
5825/*	REG_WR(bp, MISC_REG_MISC_INT_MASK, 0); */
5826	REG_WR(bp, PBF_REG_PBF_INT_MASK, 0x18);		/* bit 3,4 masked */
5827}
5828
5829static void bnx2x_reset_common(struct bnx2x *bp)
5830{
5831	u32 val = 0x1400;
5832
5833	/* reset_common */
5834	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
5835	       0xd3ffff7f);
5836
5837	if (CHIP_IS_E3(bp)) {
5838		val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
5839		val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
5840	}
5841
5842	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR, val);
5843}
5844
5845static void bnx2x_setup_dmae(struct bnx2x *bp)
5846{
5847	bp->dmae_ready = 0;
5848	spin_lock_init(&bp->dmae_lock);
5849}
5850
5851static void bnx2x_init_pxp(struct bnx2x *bp)
5852{
5853	u16 devctl;
5854	int r_order, w_order;
5855
5856	pci_read_config_word(bp->pdev,
5857			     pci_pcie_cap(bp->pdev) + PCI_EXP_DEVCTL, &devctl);
5858	DP(NETIF_MSG_HW, "read 0x%x from devctl\n", devctl);
5859	w_order = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
5860	if (bp->mrrs == -1)
5861		r_order = ((devctl & PCI_EXP_DEVCTL_READRQ) >> 12);
5862	else {
5863		DP(NETIF_MSG_HW, "force read order to %d\n", bp->mrrs);
5864		r_order = bp->mrrs;
5865	}
5866
5867	bnx2x_init_pxp_arb(bp, r_order, w_order);
5868}
5869
5870static void bnx2x_setup_fan_failure_detection(struct bnx2x *bp)
5871{
5872	int is_required;
5873	u32 val;
5874	int port;
5875
5876	if (BP_NOMCP(bp))
5877		return;
5878
5879	is_required = 0;
5880	val = SHMEM_RD(bp, dev_info.shared_hw_config.config2) &
5881	      SHARED_HW_CFG_FAN_FAILURE_MASK;
5882
5883	if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED)
5884		is_required = 1;
5885
5886	/*
5887	 * The fan failure mechanism is usually related to the PHY type since
5888	 * the power consumption of the board is affected by the PHY. Currently,
5889	 * fan is required for most designs with SFX7101, BCM8727 and BCM8481.
5890	 */
5891	else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE)
5892		for (port = PORT_0; port < PORT_MAX; port++) {
5893			is_required |=
5894				bnx2x_fan_failure_det_req(
5895					bp,
5896					bp->common.shmem_base,
5897					bp->common.shmem2_base,
5898					port);
5899		}
5900
5901	DP(NETIF_MSG_HW, "fan detection setting: %d\n", is_required);
5902
5903	if (is_required == 0)
5904		return;
5905
5906	/* Fan failure is indicated by SPIO 5 */
5907	bnx2x_set_spio(bp, MISC_REGISTERS_SPIO_5,
5908		       MISC_REGISTERS_SPIO_INPUT_HI_Z);
5909
5910	/* set to active low mode */
5911	val = REG_RD(bp, MISC_REG_SPIO_INT);
5912	val |= ((1 << MISC_REGISTERS_SPIO_5) <<
5913					MISC_REGISTERS_SPIO_INT_OLD_SET_POS);
5914	REG_WR(bp, MISC_REG_SPIO_INT, val);
5915
5916	/* enable interrupt to signal the IGU */
5917	val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
5918	val |= (1 << MISC_REGISTERS_SPIO_5);
5919	REG_WR(bp, MISC_REG_SPIO_EVENT_EN, val);
5920}
5921
5922static void bnx2x_pretend_func(struct bnx2x *bp, u8 pretend_func_num)
5923{
5924	u32 offset = 0;
5925
5926	if (CHIP_IS_E1(bp))
5927		return;
5928	if (CHIP_IS_E1H(bp) && (pretend_func_num >= E1H_FUNC_MAX))
5929		return;
5930
5931	switch (BP_ABS_FUNC(bp)) {
5932	case 0:
5933		offset = PXP2_REG_PGL_PRETEND_FUNC_F0;
5934		break;
5935	case 1:
5936		offset = PXP2_REG_PGL_PRETEND_FUNC_F1;
5937		break;
5938	case 2:
5939		offset = PXP2_REG_PGL_PRETEND_FUNC_F2;
5940		break;
5941	case 3:
5942		offset = PXP2_REG_PGL_PRETEND_FUNC_F3;
5943		break;
5944	case 4:
5945		offset = PXP2_REG_PGL_PRETEND_FUNC_F4;
5946		break;
5947	case 5:
5948		offset = PXP2_REG_PGL_PRETEND_FUNC_F5;
5949		break;
5950	case 6:
5951		offset = PXP2_REG_PGL_PRETEND_FUNC_F6;
5952		break;
5953	case 7:
5954		offset = PXP2_REG_PGL_PRETEND_FUNC_F7;
5955		break;
5956	default:
5957		return;
5958	}
5959
5960	REG_WR(bp, offset, pretend_func_num);
5961	REG_RD(bp, offset);
5962	DP(NETIF_MSG_HW, "Pretending to func %d\n", pretend_func_num);
5963}
5964
5965void bnx2x_pf_disable(struct bnx2x *bp)
5966{
5967	u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
5968	val &= ~IGU_PF_CONF_FUNC_EN;
5969
5970	REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
5971	REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
5972	REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 0);
5973}
5974
5975static inline void bnx2x__common_init_phy(struct bnx2x *bp)
5976{
5977	u32 shmem_base[2], shmem2_base[2];
5978	shmem_base[0] =  bp->common.shmem_base;
5979	shmem2_base[0] = bp->common.shmem2_base;
5980	if (!CHIP_IS_E1x(bp)) {
5981		shmem_base[1] =
5982			SHMEM2_RD(bp, other_shmem_base_addr);
5983		shmem2_base[1] =
5984			SHMEM2_RD(bp, other_shmem2_base_addr);
5985	}
5986	bnx2x_acquire_phy_lock(bp);
5987	bnx2x_common_init_phy(bp, shmem_base, shmem2_base,
5988			      bp->common.chip_id);
5989	bnx2x_release_phy_lock(bp);
5990}
5991
5992/**
5993 * bnx2x_init_hw_common - initialize the HW at the COMMON phase.
5994 *
5995 * @bp:		driver handle
5996 */
5997static int bnx2x_init_hw_common(struct bnx2x *bp)
5998{
5999	u32 val;
6000
6001	DP(BNX2X_MSG_MCP, "starting common init  func %d\n", BP_ABS_FUNC(bp));
6002
6003	/*
6004	 * take the UNDI lock to protect undi_unload flow from accessing
6005	 * registers while we're resetting the chip
6006	 */
6007	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
6008
6009	bnx2x_reset_common(bp);
6010	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0xffffffff);
6011
6012	val = 0xfffc;
6013	if (CHIP_IS_E3(bp)) {
6014		val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
6015		val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
6016	}
6017	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET, val);
6018
6019	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
6020
6021	bnx2x_init_block(bp, BLOCK_MISC, PHASE_COMMON);
6022
6023	if (!CHIP_IS_E1x(bp)) {
6024		u8 abs_func_id;
6025
6026		/**
6027		 * 4-port mode or 2-port mode we need to turn of master-enable
6028		 * for everyone, after that, turn it back on for self.
6029		 * so, we disregard multi-function or not, and always disable
6030		 * for all functions on the given path, this means 0,2,4,6 for
6031		 * path 0 and 1,3,5,7 for path 1
6032		 */
6033		for (abs_func_id = BP_PATH(bp);
6034		     abs_func_id < E2_FUNC_MAX*2; abs_func_id += 2) {
6035			if (abs_func_id == BP_ABS_FUNC(bp)) {
6036				REG_WR(bp,
6037				    PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER,
6038				    1);
6039				continue;
6040			}
6041
6042			bnx2x_pretend_func(bp, abs_func_id);
6043			/* clear pf enable */
6044			bnx2x_pf_disable(bp);
6045			bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
6046		}
6047	}
6048
6049	bnx2x_init_block(bp, BLOCK_PXP, PHASE_COMMON);
6050	if (CHIP_IS_E1(bp)) {
6051		/* enable HW interrupt from PXP on USDM overflow
6052		   bit 16 on INT_MASK_0 */
6053		REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
6054	}
6055
6056	bnx2x_init_block(bp, BLOCK_PXP2, PHASE_COMMON);
6057	bnx2x_init_pxp(bp);
6058
6059#ifdef __BIG_ENDIAN
6060	REG_WR(bp, PXP2_REG_RQ_QM_ENDIAN_M, 1);
6061	REG_WR(bp, PXP2_REG_RQ_TM_ENDIAN_M, 1);
6062	REG_WR(bp, PXP2_REG_RQ_SRC_ENDIAN_M, 1);
6063	REG_WR(bp, PXP2_REG_RQ_CDU_ENDIAN_M, 1);
6064	REG_WR(bp, PXP2_REG_RQ_DBG_ENDIAN_M, 1);
6065	/* make sure this value is 0 */
6066	REG_WR(bp, PXP2_REG_RQ_HC_ENDIAN_M, 0);
6067
6068/*	REG_WR(bp, PXP2_REG_RD_PBF_SWAP_MODE, 1); */
6069	REG_WR(bp, PXP2_REG_RD_QM_SWAP_MODE, 1);
6070	REG_WR(bp, PXP2_REG_RD_TM_SWAP_MODE, 1);
6071	REG_WR(bp, PXP2_REG_RD_SRC_SWAP_MODE, 1);
6072	REG_WR(bp, PXP2_REG_RD_CDURD_SWAP_MODE, 1);
6073#endif
6074
6075	bnx2x_ilt_init_page_size(bp, INITOP_SET);
6076
6077	if (CHIP_REV_IS_FPGA(bp) && CHIP_IS_E1H(bp))
6078		REG_WR(bp, PXP2_REG_PGL_TAGS_LIMIT, 0x1);
6079
6080	/* let the HW do it's magic ... */
6081	msleep(100);
6082	/* finish PXP init */
6083	val = REG_RD(bp, PXP2_REG_RQ_CFG_DONE);
6084	if (val != 1) {
6085		BNX2X_ERR("PXP2 CFG failed\n");
6086		return -EBUSY;
6087	}
6088	val = REG_RD(bp, PXP2_REG_RD_INIT_DONE);
6089	if (val != 1) {
6090		BNX2X_ERR("PXP2 RD_INIT failed\n");
6091		return -EBUSY;
6092	}
6093
6094	/* Timers bug workaround E2 only. We need to set the entire ILT to
6095	 * have entries with value "0" and valid bit on.
6096	 * This needs to be done by the first PF that is loaded in a path
6097	 * (i.e. common phase)
6098	 */
6099	if (!CHIP_IS_E1x(bp)) {
6100/* In E2 there is a bug in the timers block that can cause function 6 / 7
6101 * (i.e. vnic3) to start even if it is marked as "scan-off".
6102 * This occurs when a different function (func2,3) is being marked
6103 * as "scan-off". Real-life scenario for example: if a driver is being
6104 * load-unloaded while func6,7 are down. This will cause the timer to access
6105 * the ilt, translate to a logical address and send a request to read/write.
6106 * Since the ilt for the function that is down is not valid, this will cause
6107 * a translation error which is unrecoverable.
6108 * The Workaround is intended to make sure that when this happens nothing fatal
6109 * will occur. The workaround:
6110 *	1.  First PF driver which loads on a path will:
6111 *		a.  After taking the chip out of reset, by using pretend,
6112 *		    it will write "0" to the following registers of
6113 *		    the other vnics.
6114 *		    REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
6115 *		    REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0);
6116 *		    REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0);
6117 *		    And for itself it will write '1' to
6118 *		    PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable
6119 *		    dmae-operations (writing to pram for example.)
6120 *		    note: can be done for only function 6,7 but cleaner this
6121 *			  way.
6122 *		b.  Write zero+valid to the entire ILT.
6123 *		c.  Init the first_timers_ilt_entry, last_timers_ilt_entry of
6124 *		    VNIC3 (of that port). The range allocated will be the
6125 *		    entire ILT. This is needed to prevent  ILT range error.
6126 *	2.  Any PF driver load flow:
6127 *		a.  ILT update with the physical addresses of the allocated
6128 *		    logical pages.
6129 *		b.  Wait 20msec. - note that this timeout is needed to make
6130 *		    sure there are no requests in one of the PXP internal
6131 *		    queues with "old" ILT addresses.
6132 *		c.  PF enable in the PGLC.
6133 *		d.  Clear the was_error of the PF in the PGLC. (could have
6134 *		    occured while driver was down)
6135 *		e.  PF enable in the CFC (WEAK + STRONG)
6136 *		f.  Timers scan enable
6137 *	3.  PF driver unload flow:
6138 *		a.  Clear the Timers scan_en.
6139 *		b.  Polling for scan_on=0 for that PF.
6140 *		c.  Clear the PF enable bit in the PXP.
6141 *		d.  Clear the PF enable in the CFC (WEAK + STRONG)
6142 *		e.  Write zero+valid to all ILT entries (The valid bit must
6143 *		    stay set)
6144 *		f.  If this is VNIC 3 of a port then also init
6145 *		    first_timers_ilt_entry to zero and last_timers_ilt_entry
6146 *		    to the last enrty in the ILT.
6147 *
6148 *	Notes:
6149 *	Currently the PF error in the PGLC is non recoverable.
6150 *	In the future the there will be a recovery routine for this error.
6151 *	Currently attention is masked.
6152 *	Having an MCP lock on the load/unload process does not guarantee that
6153 *	there is no Timer disable during Func6/7 enable. This is because the
6154 *	Timers scan is currently being cleared by the MCP on FLR.
6155 *	Step 2.d can be done only for PF6/7 and the driver can also check if
6156 *	there is error before clearing it. But the flow above is simpler and
6157 *	more general.
6158 *	All ILT entries are written by zero+valid and not just PF6/7
6159 *	ILT entries since in the future the ILT entries allocation for
6160 *	PF-s might be dynamic.
6161 */
6162		struct ilt_client_info ilt_cli;
6163		struct bnx2x_ilt ilt;
6164		memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
6165		memset(&ilt, 0, sizeof(struct bnx2x_ilt));
6166
6167		/* initialize dummy TM client */
6168		ilt_cli.start = 0;
6169		ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
6170		ilt_cli.client_num = ILT_CLIENT_TM;
6171
6172		/* Step 1: set zeroes to all ilt page entries with valid bit on
6173		 * Step 2: set the timers first/last ilt entry to point
6174		 * to the entire range to prevent ILT range error for 3rd/4th
6175		 * vnic	(this code assumes existance of the vnic)
6176		 *
6177		 * both steps performed by call to bnx2x_ilt_client_init_op()
6178		 * with dummy TM client
6179		 *
6180		 * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT
6181		 * and his brother are split registers
6182		 */
6183		bnx2x_pretend_func(bp, (BP_PATH(bp) + 6));
6184		bnx2x_ilt_client_init_op_ilt(bp, &ilt, &ilt_cli, INITOP_CLEAR);
6185		bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
6186
6187		REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN, BNX2X_PXP_DRAM_ALIGN);
6188		REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_RD, BNX2X_PXP_DRAM_ALIGN);
6189		REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1);
6190	}
6191
6192
6193	REG_WR(bp, PXP2_REG_RQ_DISABLE_INPUTS, 0);
6194	REG_WR(bp, PXP2_REG_RD_DISABLE_INPUTS, 0);
6195
6196	if (!CHIP_IS_E1x(bp)) {
6197		int factor = CHIP_REV_IS_EMUL(bp) ? 1000 :
6198				(CHIP_REV_IS_FPGA(bp) ? 400 : 0);
6199		bnx2x_init_block(bp, BLOCK_PGLUE_B, PHASE_COMMON);
6200
6201		bnx2x_init_block(bp, BLOCK_ATC, PHASE_COMMON);
6202
6203		/* let the HW do it's magic ... */
6204		do {
6205			msleep(200);
6206			val = REG_RD(bp, ATC_REG_ATC_INIT_DONE);
6207		} while (factor-- && (val != 1));
6208
6209		if (val != 1) {
6210			BNX2X_ERR("ATC_INIT failed\n");
6211			return -EBUSY;
6212		}
6213	}
6214
6215	bnx2x_init_block(bp, BLOCK_DMAE, PHASE_COMMON);
6216
6217	/* clean the DMAE memory */
6218	bp->dmae_ready = 1;
6219	bnx2x_init_fill(bp, TSEM_REG_PRAM, 0, 8, 1);
6220
6221	bnx2x_init_block(bp, BLOCK_TCM, PHASE_COMMON);
6222
6223	bnx2x_init_block(bp, BLOCK_UCM, PHASE_COMMON);
6224
6225	bnx2x_init_block(bp, BLOCK_CCM, PHASE_COMMON);
6226
6227	bnx2x_init_block(bp, BLOCK_XCM, PHASE_COMMON);
6228
6229	bnx2x_read_dmae(bp, XSEM_REG_PASSIVE_BUFFER, 3);
6230	bnx2x_read_dmae(bp, CSEM_REG_PASSIVE_BUFFER, 3);
6231	bnx2x_read_dmae(bp, TSEM_REG_PASSIVE_BUFFER, 3);
6232	bnx2x_read_dmae(bp, USEM_REG_PASSIVE_BUFFER, 3);
6233
6234	bnx2x_init_block(bp, BLOCK_QM, PHASE_COMMON);
6235
6236
6237	/* QM queues pointers table */
6238	bnx2x_qm_init_ptr_table(bp, bp->qm_cid_count, INITOP_SET);
6239
6240	/* soft reset pulse */
6241	REG_WR(bp, QM_REG_SOFT_RESET, 1);
6242	REG_WR(bp, QM_REG_SOFT_RESET, 0);
6243
6244#ifdef BCM_CNIC
6245	bnx2x_init_block(bp, BLOCK_TM, PHASE_COMMON);
6246#endif
6247
6248	bnx2x_init_block(bp, BLOCK_DORQ, PHASE_COMMON);
6249	REG_WR(bp, DORQ_REG_DPM_CID_OFST, BNX2X_DB_SHIFT);
6250	if (!CHIP_REV_IS_SLOW(bp))
6251		/* enable hw interrupt from doorbell Q */
6252		REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
6253
6254	bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6255
6256	bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6257	REG_WR(bp, PRS_REG_A_PRSU_20, 0xf);
6258
6259	if (!CHIP_IS_E1(bp))
6260		REG_WR(bp, PRS_REG_E1HOV_MODE, bp->path_has_ovlan);
6261
6262	if (!CHIP_IS_E1x(bp) && !CHIP_IS_E3B0(bp))
6263		/* Bit-map indicating which L2 hdrs may appear
6264		 * after the basic Ethernet header
6265		 */
6266		REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC,
6267		       bp->path_has_ovlan ? 7 : 6);
6268
6269	bnx2x_init_block(bp, BLOCK_TSDM, PHASE_COMMON);
6270	bnx2x_init_block(bp, BLOCK_CSDM, PHASE_COMMON);
6271	bnx2x_init_block(bp, BLOCK_USDM, PHASE_COMMON);
6272	bnx2x_init_block(bp, BLOCK_XSDM, PHASE_COMMON);
6273
6274	if (!CHIP_IS_E1x(bp)) {
6275		/* reset VFC memories */
6276		REG_WR(bp, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
6277			   VFC_MEMORIES_RST_REG_CAM_RST |
6278			   VFC_MEMORIES_RST_REG_RAM_RST);
6279		REG_WR(bp, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
6280			   VFC_MEMORIES_RST_REG_CAM_RST |
6281			   VFC_MEMORIES_RST_REG_RAM_RST);
6282
6283		msleep(20);
6284	}
6285
6286	bnx2x_init_block(bp, BLOCK_TSEM, PHASE_COMMON);
6287	bnx2x_init_block(bp, BLOCK_USEM, PHASE_COMMON);
6288	bnx2x_init_block(bp, BLOCK_CSEM, PHASE_COMMON);
6289	bnx2x_init_block(bp, BLOCK_XSEM, PHASE_COMMON);
6290
6291	/* sync semi rtc */
6292	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
6293	       0x80000000);
6294	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET,
6295	       0x80000000);
6296
6297	bnx2x_init_block(bp, BLOCK_UPB, PHASE_COMMON);
6298	bnx2x_init_block(bp, BLOCK_XPB, PHASE_COMMON);
6299	bnx2x_init_block(bp, BLOCK_PBF, PHASE_COMMON);
6300
6301	if (!CHIP_IS_E1x(bp))
6302		REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC,
6303		       bp->path_has_ovlan ? 7 : 6);
6304
6305	REG_WR(bp, SRC_REG_SOFT_RST, 1);
6306
6307	bnx2x_init_block(bp, BLOCK_SRC, PHASE_COMMON);
6308
6309#ifdef BCM_CNIC
6310	REG_WR(bp, SRC_REG_KEYSEARCH_0, 0x63285672);
6311	REG_WR(bp, SRC_REG_KEYSEARCH_1, 0x24b8f2cc);
6312	REG_WR(bp, SRC_REG_KEYSEARCH_2, 0x223aef9b);
6313	REG_WR(bp, SRC_REG_KEYSEARCH_3, 0x26001e3a);
6314	REG_WR(bp, SRC_REG_KEYSEARCH_4, 0x7ae91116);
6315	REG_WR(bp, SRC_REG_KEYSEARCH_5, 0x5ce5230b);
6316	REG_WR(bp, SRC_REG_KEYSEARCH_6, 0x298d8adf);
6317	REG_WR(bp, SRC_REG_KEYSEARCH_7, 0x6eb0ff09);
6318	REG_WR(bp, SRC_REG_KEYSEARCH_8, 0x1830f82f);
6319	REG_WR(bp, SRC_REG_KEYSEARCH_9, 0x01e46be7);
6320#endif
6321	REG_WR(bp, SRC_REG_SOFT_RST, 0);
6322
6323	if (sizeof(union cdu_context) != 1024)
6324		/* we currently assume that a context is 1024 bytes */
6325		dev_alert(&bp->pdev->dev, "please adjust the size "
6326					  "of cdu_context(%ld)\n",
6327			 (long)sizeof(union cdu_context));
6328
6329	bnx2x_init_block(bp, BLOCK_CDU, PHASE_COMMON);
6330	val = (4 << 24) + (0 << 12) + 1024;
6331	REG_WR(bp, CDU_REG_CDU_GLOBAL_PARAMS, val);
6332
6333	bnx2x_init_block(bp, BLOCK_CFC, PHASE_COMMON);
6334	REG_WR(bp, CFC_REG_INIT_REG, 0x7FF);
6335	/* enable context validation interrupt from CFC */
6336	REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
6337
6338	/* set the thresholds to prevent CFC/CDU race */
6339	REG_WR(bp, CFC_REG_DEBUG0, 0x20020000);
6340
6341	bnx2x_init_block(bp, BLOCK_HC, PHASE_COMMON);
6342
6343	if (!CHIP_IS_E1x(bp) && BP_NOMCP(bp))
6344		REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x36);
6345
6346	bnx2x_init_block(bp, BLOCK_IGU, PHASE_COMMON);
6347	bnx2x_init_block(bp, BLOCK_MISC_AEU, PHASE_COMMON);
6348
6349	/* Reset PCIE errors for debug */
6350	REG_WR(bp, 0x2814, 0xffffffff);
6351	REG_WR(bp, 0x3820, 0xffffffff);
6352
6353	if (!CHIP_IS_E1x(bp)) {
6354		REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_CONTROL_5,
6355			   (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 |
6356				PXPCS_TL_CONTROL_5_ERR_UNSPPORT));
6357		REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT,
6358			   (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 |
6359				PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 |
6360				PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2));
6361		REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT,
6362			   (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 |
6363				PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 |
6364				PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5));
6365	}
6366
6367	bnx2x_init_block(bp, BLOCK_NIG, PHASE_COMMON);
6368	if (!CHIP_IS_E1(bp)) {
6369		/* in E3 this done in per-port section */
6370		if (!CHIP_IS_E3(bp))
6371			REG_WR(bp, NIG_REG_LLH_MF_MODE, IS_MF(bp));
6372	}
6373	if (CHIP_IS_E1H(bp))
6374		/* not applicable for E2 (and above ...) */
6375		REG_WR(bp, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(bp));
6376
6377	if (CHIP_REV_IS_SLOW(bp))
6378		msleep(200);
6379
6380	/* finish CFC init */
6381	val = reg_poll(bp, CFC_REG_LL_INIT_DONE, 1, 100, 10);
6382	if (val != 1) {
6383		BNX2X_ERR("CFC LL_INIT failed\n");
6384		return -EBUSY;
6385	}
6386	val = reg_poll(bp, CFC_REG_AC_INIT_DONE, 1, 100, 10);
6387	if (val != 1) {
6388		BNX2X_ERR("CFC AC_INIT failed\n");
6389		return -EBUSY;
6390	}
6391	val = reg_poll(bp, CFC_REG_CAM_INIT_DONE, 1, 100, 10);
6392	if (val != 1) {
6393		BNX2X_ERR("CFC CAM_INIT failed\n");
6394		return -EBUSY;
6395	}
6396	REG_WR(bp, CFC_REG_DEBUG0, 0);
6397
6398	if (CHIP_IS_E1(bp)) {
6399		/* read NIG statistic
6400		   to see if this is our first up since powerup */
6401		bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
6402		val = *bnx2x_sp(bp, wb_data[0]);
6403
6404		/* do internal memory self test */
6405		if ((val == 0) && bnx2x_int_mem_test(bp)) {
6406			BNX2X_ERR("internal mem self test failed\n");
6407			return -EBUSY;
6408		}
6409	}
6410
6411	bnx2x_setup_fan_failure_detection(bp);
6412
6413	/* clear PXP2 attentions */
6414	REG_RD(bp, PXP2_REG_PXP2_INT_STS_CLR_0);
6415
6416	bnx2x_enable_blocks_attention(bp);
6417	bnx2x_enable_blocks_parity(bp);
6418
6419	if (!BP_NOMCP(bp)) {
6420		if (CHIP_IS_E1x(bp))
6421			bnx2x__common_init_phy(bp);
6422	} else
6423		BNX2X_ERR("Bootcode is missing - can not initialize link\n");
6424
6425	return 0;
6426}
6427
6428/**
6429 * bnx2x_init_hw_common_chip - init HW at the COMMON_CHIP phase.
6430 *
6431 * @bp:		driver handle
6432 */
6433static int bnx2x_init_hw_common_chip(struct bnx2x *bp)
6434{
6435	int rc = bnx2x_init_hw_common(bp);
6436
6437	if (rc)
6438		return rc;
6439
6440	/* In E2 2-PORT mode, same ext phy is used for the two paths */
6441	if (!BP_NOMCP(bp))
6442		bnx2x__common_init_phy(bp);
6443
6444	return 0;
6445}
6446
6447static int bnx2x_init_hw_port(struct bnx2x *bp)
6448{
6449	int port = BP_PORT(bp);
6450	int init_phase = port ? PHASE_PORT1 : PHASE_PORT0;
6451	u32 low, high;
6452	u32 val;
6453
6454	bnx2x__link_reset(bp);
6455
6456	DP(BNX2X_MSG_MCP, "starting port init  port %d\n", port);
6457
6458	REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
6459
6460	bnx2x_init_block(bp, BLOCK_MISC, init_phase);
6461	bnx2x_init_block(bp, BLOCK_PXP, init_phase);
6462	bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
6463
6464	/* Timers bug workaround: disables the pf_master bit in pglue at
6465	 * common phase, we need to enable it here before any dmae access are
6466	 * attempted. Therefore we manually added the enable-master to the
6467	 * port phase (it also happens in the function phase)
6468	 */
6469	if (!CHIP_IS_E1x(bp))
6470		REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
6471
6472	bnx2x_init_block(bp, BLOCK_ATC, init_phase);
6473	bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
6474	bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
6475	bnx2x_init_block(bp, BLOCK_QM, init_phase);
6476
6477	bnx2x_init_block(bp, BLOCK_TCM, init_phase);
6478	bnx2x_init_block(bp, BLOCK_UCM, init_phase);
6479	bnx2x_init_block(bp, BLOCK_CCM, init_phase);
6480	bnx2x_init_block(bp, BLOCK_XCM, init_phase);
6481
6482	/* QM cid (connection) count */
6483	bnx2x_qm_init_cid_count(bp, bp->qm_cid_count, INITOP_SET);
6484
6485#ifdef BCM_CNIC
6486	bnx2x_init_block(bp, BLOCK_TM, init_phase);
6487	REG_WR(bp, TM_REG_LIN0_SCAN_TIME + port*4, 20);
6488	REG_WR(bp, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31);
6489#endif
6490
6491	bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
6492
6493	if (CHIP_IS_E1(bp) || CHIP_IS_E1H(bp)) {
6494		bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
6495
6496		if (IS_MF(bp))
6497			low = ((bp->flags & ONE_PORT_FLAG) ? 160 : 246);
6498		else if (bp->dev->mtu > 4096) {
6499			if (bp->flags & ONE_PORT_FLAG)
6500				low = 160;
6501			else {
6502				val = bp->dev->mtu;
6503				/* (24*1024 + val*4)/256 */
6504				low = 96 + (val/64) +
6505						((val % 64) ? 1 : 0);
6506			}
6507		} else
6508			low = ((bp->flags & ONE_PORT_FLAG) ? 80 : 160);
6509		high = low + 56;	/* 14*1024/256 */
6510		REG_WR(bp, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low);
6511		REG_WR(bp, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high);
6512	}
6513
6514	if (CHIP_MODE_IS_4_PORT(bp))
6515		REG_WR(bp, (BP_PORT(bp) ?
6516			    BRB1_REG_MAC_GUARANTIED_1 :
6517			    BRB1_REG_MAC_GUARANTIED_0), 40);
6518
6519
6520	bnx2x_init_block(bp, BLOCK_PRS, init_phase);
6521	if (CHIP_IS_E3B0(bp))
6522		/* Ovlan exists only if we are in multi-function +
6523		 * switch-dependent mode, in switch-independent there
6524		 * is no ovlan headers
6525		 */
6526		REG_WR(bp, BP_PORT(bp) ?
6527		       PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
6528		       PRS_REG_HDRS_AFTER_BASIC_PORT_0,
6529		       (bp->path_has_ovlan ? 7 : 6));
6530
6531	bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
6532	bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
6533	bnx2x_init_block(bp, BLOCK_USDM, init_phase);
6534	bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
6535
6536	bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
6537	bnx2x_init_block(bp, BLOCK_USEM, init_phase);
6538	bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
6539	bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
6540
6541	bnx2x_init_block(bp, BLOCK_UPB, init_phase);
6542	bnx2x_init_block(bp, BLOCK_XPB, init_phase);
6543
6544	bnx2x_init_block(bp, BLOCK_PBF, init_phase);
6545
6546	if (CHIP_IS_E1x(bp)) {
6547		/* configure PBF to work without PAUSE mtu 9000 */
6548		REG_WR(bp, PBF_REG_P0_PAUSE_ENABLE + port*4, 0);
6549
6550		/* update threshold */
6551		REG_WR(bp, PBF_REG_P0_ARB_THRSH + port*4, (9040/16));
6552		/* update init credit */
6553		REG_WR(bp, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22);
6554
6555		/* probe changes */
6556		REG_WR(bp, PBF_REG_INIT_P0 + port*4, 1);
6557		udelay(50);
6558		REG_WR(bp, PBF_REG_INIT_P0 + port*4, 0);
6559	}
6560
6561#ifdef BCM_CNIC
6562	bnx2x_init_block(bp, BLOCK_SRC, init_phase);
6563#endif
6564	bnx2x_init_block(bp, BLOCK_CDU, init_phase);
6565	bnx2x_init_block(bp, BLOCK_CFC, init_phase);
6566
6567	if (CHIP_IS_E1(bp)) {
6568		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
6569		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
6570	}
6571	bnx2x_init_block(bp, BLOCK_HC, init_phase);
6572
6573	bnx2x_init_block(bp, BLOCK_IGU, init_phase);
6574
6575	bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
6576	/* init aeu_mask_attn_func_0/1:
6577	 *  - SF mode: bits 3-7 are masked. only bits 0-2 are in use
6578	 *  - MF mode: bit 3 is masked. bits 0-2 are in use as in SF
6579	 *             bits 4-7 are used for "per vn group attention" */
6580	val = IS_MF(bp) ? 0xF7 : 0x7;
6581	/* Enable DCBX attention for all but E1 */
6582	val |= CHIP_IS_E1(bp) ? 0 : 0x10;
6583	REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val);
6584
6585	bnx2x_init_block(bp, BLOCK_NIG, init_phase);
6586
6587	if (!CHIP_IS_E1x(bp)) {
6588		/* Bit-map indicating which L2 hdrs may appear after the
6589		 * basic Ethernet header
6590		 */
6591		REG_WR(bp, BP_PORT(bp) ?
6592			   NIG_REG_P1_HDRS_AFTER_BASIC :
6593			   NIG_REG_P0_HDRS_AFTER_BASIC,
6594			   IS_MF_SD(bp) ? 7 : 6);
6595
6596		if (CHIP_IS_E3(bp))
6597			REG_WR(bp, BP_PORT(bp) ?
6598				   NIG_REG_LLH1_MF_MODE :
6599				   NIG_REG_LLH_MF_MODE, IS_MF(bp));
6600	}
6601	if (!CHIP_IS_E3(bp))
6602		REG_WR(bp, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1);
6603
6604	if (!CHIP_IS_E1(bp)) {
6605		/* 0x2 disable mf_ov, 0x1 enable */
6606		REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4,
6607		       (IS_MF_SD(bp) ? 0x1 : 0x2));
6608
6609		if (!CHIP_IS_E1x(bp)) {
6610			val = 0;
6611			switch (bp->mf_mode) {
6612			case MULTI_FUNCTION_SD:
6613				val = 1;
6614				break;
6615			case MULTI_FUNCTION_SI:
6616				val = 2;
6617				break;
6618			}
6619
6620			REG_WR(bp, (BP_PORT(bp) ? NIG_REG_LLH1_CLS_TYPE :
6621						  NIG_REG_LLH0_CLS_TYPE), val);
6622		}
6623		{
6624			REG_WR(bp, NIG_REG_LLFC_ENABLE_0 + port*4, 0);
6625			REG_WR(bp, NIG_REG_LLFC_OUT_EN_0 + port*4, 0);
6626			REG_WR(bp, NIG_REG_PAUSE_ENABLE_0 + port*4, 1);
6627		}
6628	}
6629
6630
6631	/* If SPIO5 is set to generate interrupts, enable it for this port */
6632	val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
6633	if (val & (1 << MISC_REGISTERS_SPIO_5)) {
6634		u32 reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
6635				       MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
6636		val = REG_RD(bp, reg_addr);
6637		val |= AEU_INPUTS_ATTN_BITS_SPIO5;
6638		REG_WR(bp, reg_addr, val);
6639	}
6640
6641	return 0;
6642}
6643
6644static void bnx2x_ilt_wr(struct bnx2x *bp, u32 index, dma_addr_t addr)
6645{
6646	int reg;
6647
6648	if (CHIP_IS_E1(bp))
6649		reg = PXP2_REG_RQ_ONCHIP_AT + index*8;
6650	else
6651		reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8;
6652
6653	bnx2x_wb_wr(bp, reg, ONCHIP_ADDR1(addr), ONCHIP_ADDR2(addr));
6654}
6655
6656static inline void bnx2x_igu_clear_sb(struct bnx2x *bp, u8 idu_sb_id)
6657{
6658	bnx2x_igu_clear_sb_gen(bp, BP_FUNC(bp), idu_sb_id, true /*PF*/);
6659}
6660
6661static inline void bnx2x_clear_func_ilt(struct bnx2x *bp, u32 func)
6662{
6663	u32 i, base = FUNC_ILT_BASE(func);
6664	for (i = base; i < base + ILT_PER_FUNC; i++)
6665		bnx2x_ilt_wr(bp, i, 0);
6666}
6667
6668static int bnx2x_init_hw_func(struct bnx2x *bp)
6669{
6670	int port = BP_PORT(bp);
6671	int func = BP_FUNC(bp);
6672	int init_phase = PHASE_PF0 + func;
6673	struct bnx2x_ilt *ilt = BP_ILT(bp);
6674	u16 cdu_ilt_start;
6675	u32 addr, val;
6676	u32 main_mem_base, main_mem_size, main_mem_prty_clr;
6677	int i, main_mem_width;
6678
6679	DP(BNX2X_MSG_MCP, "starting func init  func %d\n", func);
6680
6681	/* FLR cleanup - hmmm */
6682	if (!CHIP_IS_E1x(bp))
6683		bnx2x_pf_flr_clnup(bp);
6684
6685	/* set MSI reconfigure capability */
6686	if (bp->common.int_block == INT_BLOCK_HC) {
6687		addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0);
6688		val = REG_RD(bp, addr);
6689		val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0;
6690		REG_WR(bp, addr, val);
6691	}
6692
6693	bnx2x_init_block(bp, BLOCK_PXP, init_phase);
6694	bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
6695
6696	ilt = BP_ILT(bp);
6697	cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
6698
6699	for (i = 0; i < L2_ILT_LINES(bp); i++) {
6700		ilt->lines[cdu_ilt_start + i].page =
6701			bp->context.vcxt + (ILT_PAGE_CIDS * i);
6702		ilt->lines[cdu_ilt_start + i].page_mapping =
6703			bp->context.cxt_mapping + (CDU_ILT_PAGE_SZ * i);
6704		/* cdu ilt pages are allocated manually so there's no need to
6705		set the size */
6706	}
6707	bnx2x_ilt_init_op(bp, INITOP_SET);
6708
6709#ifdef BCM_CNIC
6710	bnx2x_src_init_t2(bp, bp->t2, bp->t2_mapping, SRC_CONN_NUM);
6711
6712	/* T1 hash bits value determines the T1 number of entries */
6713	REG_WR(bp, SRC_REG_NUMBER_HASH_BITS0 + port*4, SRC_HASH_BITS);
6714#endif
6715
6716#ifndef BCM_CNIC
6717	/* set NIC mode */
6718	REG_WR(bp, PRS_REG_NIC_MODE, 1);
6719#endif  /* BCM_CNIC */
6720
6721	if (!CHIP_IS_E1x(bp)) {
6722		u32 pf_conf = IGU_PF_CONF_FUNC_EN;
6723
6724		/* Turn on a single ISR mode in IGU if driver is going to use
6725		 * INT#x or MSI
6726		 */
6727		if (!(bp->flags & USING_MSIX_FLAG))
6728			pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
6729		/*
6730		 * Timers workaround bug: function init part.
6731		 * Need to wait 20msec after initializing ILT,
6732		 * needed to make sure there are no requests in
6733		 * one of the PXP internal queues with "old" ILT addresses
6734		 */
6735		msleep(20);
6736		/*
6737		 * Master enable - Due to WB DMAE writes performed before this
6738		 * register is re-initialized as part of the regular function
6739		 * init
6740		 */
6741		REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
6742		/* Enable the function in IGU */
6743		REG_WR(bp, IGU_REG_PF_CONFIGURATION, pf_conf);
6744	}
6745
6746	bp->dmae_ready = 1;
6747
6748	bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
6749
6750	if (!CHIP_IS_E1x(bp))
6751		REG_WR(bp, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, func);
6752
6753	bnx2x_init_block(bp, BLOCK_ATC, init_phase);
6754	bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
6755	bnx2x_init_block(bp, BLOCK_NIG, init_phase);
6756	bnx2x_init_block(bp, BLOCK_SRC, init_phase);
6757	bnx2x_init_block(bp, BLOCK_MISC, init_phase);
6758	bnx2x_init_block(bp, BLOCK_TCM, init_phase);
6759	bnx2x_init_block(bp, BLOCK_UCM, init_phase);
6760	bnx2x_init_block(bp, BLOCK_CCM, init_phase);
6761	bnx2x_init_block(bp, BLOCK_XCM, init_phase);
6762	bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
6763	bnx2x_init_block(bp, BLOCK_USEM, init_phase);
6764	bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
6765	bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
6766
6767	if (!CHIP_IS_E1x(bp))
6768		REG_WR(bp, QM_REG_PF_EN, 1);
6769
6770	if (!CHIP_IS_E1x(bp)) {
6771		REG_WR(bp, TSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
6772		REG_WR(bp, USEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
6773		REG_WR(bp, CSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
6774		REG_WR(bp, XSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
6775	}
6776	bnx2x_init_block(bp, BLOCK_QM, init_phase);
6777
6778	bnx2x_init_block(bp, BLOCK_TM, init_phase);
6779	bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
6780	bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
6781	bnx2x_init_block(bp, BLOCK_PRS, init_phase);
6782	bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
6783	bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
6784	bnx2x_init_block(bp, BLOCK_USDM, init_phase);
6785	bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
6786	bnx2x_init_block(bp, BLOCK_UPB, init_phase);
6787	bnx2x_init_block(bp, BLOCK_XPB, init_phase);
6788	bnx2x_init_block(bp, BLOCK_PBF, init_phase);
6789	if (!CHIP_IS_E1x(bp))
6790		REG_WR(bp, PBF_REG_DISABLE_PF, 0);
6791
6792	bnx2x_init_block(bp, BLOCK_CDU, init_phase);
6793
6794	bnx2x_init_block(bp, BLOCK_CFC, init_phase);
6795
6796	if (!CHIP_IS_E1x(bp))
6797		REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 1);
6798
6799	if (IS_MF(bp)) {
6800		REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 1);
6801		REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + port*8, bp->mf_ov);
6802	}
6803
6804	bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
6805
6806	/* HC init per function */
6807	if (bp->common.int_block == INT_BLOCK_HC) {
6808		if (CHIP_IS_E1H(bp)) {
6809			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
6810
6811			REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
6812			REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
6813		}
6814		bnx2x_init_block(bp, BLOCK_HC, init_phase);
6815
6816	} else {
6817		int num_segs, sb_idx, prod_offset;
6818
6819		REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
6820
6821		if (!CHIP_IS_E1x(bp)) {
6822			REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
6823			REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
6824		}
6825
6826		bnx2x_init_block(bp, BLOCK_IGU, init_phase);
6827
6828		if (!CHIP_IS_E1x(bp)) {
6829			int dsb_idx = 0;
6830			/**
6831			 * Producer memory:
6832			 * E2 mode: address 0-135 match to the mapping memory;
6833			 * 136 - PF0 default prod; 137 - PF1 default prod;
6834			 * 138 - PF2 default prod; 139 - PF3 default prod;
6835			 * 140 - PF0 attn prod;    141 - PF1 attn prod;
6836			 * 142 - PF2 attn prod;    143 - PF3 attn prod;
6837			 * 144-147 reserved.
6838			 *
6839			 * E1.5 mode - In backward compatible mode;
6840			 * for non default SB; each even line in the memory
6841			 * holds the U producer and each odd line hold
6842			 * the C producer. The first 128 producers are for
6843			 * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20
6844			 * producers are for the DSB for each PF.
6845			 * Each PF has five segments: (the order inside each
6846			 * segment is PF0; PF1; PF2; PF3) - 128-131 U prods;
6847			 * 132-135 C prods; 136-139 X prods; 140-143 T prods;
6848			 * 144-147 attn prods;
6849			 */
6850			/* non-default-status-blocks */
6851			num_segs = CHIP_INT_MODE_IS_BC(bp) ?
6852				IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS;
6853			for (sb_idx = 0; sb_idx < bp->igu_sb_cnt; sb_idx++) {
6854				prod_offset = (bp->igu_base_sb + sb_idx) *
6855					num_segs;
6856
6857				for (i = 0; i < num_segs; i++) {
6858					addr = IGU_REG_PROD_CONS_MEMORY +
6859							(prod_offset + i) * 4;
6860					REG_WR(bp, addr, 0);
6861				}
6862				/* send consumer update with value 0 */
6863				bnx2x_ack_sb(bp, bp->igu_base_sb + sb_idx,
6864					     USTORM_ID, 0, IGU_INT_NOP, 1);
6865				bnx2x_igu_clear_sb(bp,
6866						   bp->igu_base_sb + sb_idx);
6867			}
6868
6869			/* default-status-blocks */
6870			num_segs = CHIP_INT_MODE_IS_BC(bp) ?
6871				IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS;
6872
6873			if (CHIP_MODE_IS_4_PORT(bp))
6874				dsb_idx = BP_FUNC(bp);
6875			else
6876				dsb_idx = BP_VN(bp);
6877
6878			prod_offset = (CHIP_INT_MODE_IS_BC(bp) ?
6879				       IGU_BC_BASE_DSB_PROD + dsb_idx :
6880				       IGU_NORM_BASE_DSB_PROD + dsb_idx);
6881
6882			/*
6883			 * igu prods come in chunks of E1HVN_MAX (4) -
6884			 * does not matters what is the current chip mode
6885			 */
6886			for (i = 0; i < (num_segs * E1HVN_MAX);
6887			     i += E1HVN_MAX) {
6888				addr = IGU_REG_PROD_CONS_MEMORY +
6889							(prod_offset + i)*4;
6890				REG_WR(bp, addr, 0);
6891			}
6892			/* send consumer update with 0 */
6893			if (CHIP_INT_MODE_IS_BC(bp)) {
6894				bnx2x_ack_sb(bp, bp->igu_dsb_id,
6895					     USTORM_ID, 0, IGU_INT_NOP, 1);
6896				bnx2x_ack_sb(bp, bp->igu_dsb_id,
6897					     CSTORM_ID, 0, IGU_INT_NOP, 1);
6898				bnx2x_ack_sb(bp, bp->igu_dsb_id,
6899					     XSTORM_ID, 0, IGU_INT_NOP, 1);
6900				bnx2x_ack_sb(bp, bp->igu_dsb_id,
6901					     TSTORM_ID, 0, IGU_INT_NOP, 1);
6902				bnx2x_ack_sb(bp, bp->igu_dsb_id,
6903					     ATTENTION_ID, 0, IGU_INT_NOP, 1);
6904			} else {
6905				bnx2x_ack_sb(bp, bp->igu_dsb_id,
6906					     USTORM_ID, 0, IGU_INT_NOP, 1);
6907				bnx2x_ack_sb(bp, bp->igu_dsb_id,
6908					     ATTENTION_ID, 0, IGU_INT_NOP, 1);
6909			}
6910			bnx2x_igu_clear_sb(bp, bp->igu_dsb_id);
6911
6912			/* !!! these should become driver const once
6913			   rf-tool supports split-68 const */
6914			REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
6915			REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
6916			REG_WR(bp, IGU_REG_SB_MASK_LSB, 0);
6917			REG_WR(bp, IGU_REG_SB_MASK_MSB, 0);
6918			REG_WR(bp, IGU_REG_PBA_STATUS_LSB, 0);
6919			REG_WR(bp, IGU_REG_PBA_STATUS_MSB, 0);
6920		}
6921	}
6922
6923	/* Reset PCIE errors for debug */
6924	REG_WR(bp, 0x2114, 0xffffffff);
6925	REG_WR(bp, 0x2120, 0xffffffff);
6926
6927	if (CHIP_IS_E1x(bp)) {
6928		main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/
6929		main_mem_base = HC_REG_MAIN_MEMORY +
6930				BP_PORT(bp) * (main_mem_size * 4);
6931		main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR;
6932		main_mem_width = 8;
6933
6934		val = REG_RD(bp, main_mem_prty_clr);
6935		if (val)
6936			DP(BNX2X_MSG_MCP, "Hmmm... Parity errors in HC "
6937					  "block during "
6938					  "function init (0x%x)!\n", val);
6939
6940		/* Clear "false" parity errors in MSI-X table */
6941		for (i = main_mem_base;
6942		     i < main_mem_base + main_mem_size * 4;
6943		     i += main_mem_width) {
6944			bnx2x_read_dmae(bp, i, main_mem_width / 4);
6945			bnx2x_write_dmae(bp, bnx2x_sp_mapping(bp, wb_data),
6946					 i, main_mem_width / 4);
6947		}
6948		/* Clear HC parity attention */
6949		REG_RD(bp, main_mem_prty_clr);
6950	}
6951
6952#ifdef BNX2X_STOP_ON_ERROR
6953	/* Enable STORMs SP logging */
6954	REG_WR8(bp, BAR_USTRORM_INTMEM +
6955	       USTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
6956	REG_WR8(bp, BAR_TSTRORM_INTMEM +
6957	       TSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
6958	REG_WR8(bp, BAR_CSTRORM_INTMEM +
6959	       CSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
6960	REG_WR8(bp, BAR_XSTRORM_INTMEM +
6961	       XSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
6962#endif
6963
6964	bnx2x_phy_probe(&bp->link_params);
6965
6966	return 0;
6967}
6968
6969
6970void bnx2x_free_mem(struct bnx2x *bp)
6971{
6972	/* fastpath */
6973	bnx2x_free_fp_mem(bp);
6974	/* end of fastpath */
6975
6976	BNX2X_PCI_FREE(bp->def_status_blk, bp->def_status_blk_mapping,
6977		       sizeof(struct host_sp_status_block));
6978
6979	BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping,
6980		       bp->fw_stats_data_sz + bp->fw_stats_req_sz);
6981
6982	BNX2X_PCI_FREE(bp->slowpath, bp->slowpath_mapping,
6983		       sizeof(struct bnx2x_slowpath));
6984
6985	BNX2X_PCI_FREE(bp->context.vcxt, bp->context.cxt_mapping,
6986		       bp->context.size);
6987
6988	bnx2x_ilt_mem_op(bp, ILT_MEMOP_FREE);
6989
6990	BNX2X_FREE(bp->ilt->lines);
6991
6992#ifdef BCM_CNIC
6993	if (!CHIP_IS_E1x(bp))
6994		BNX2X_PCI_FREE(bp->cnic_sb.e2_sb, bp->cnic_sb_mapping,
6995			       sizeof(struct host_hc_status_block_e2));
6996	else
6997		BNX2X_PCI_FREE(bp->cnic_sb.e1x_sb, bp->cnic_sb_mapping,
6998			       sizeof(struct host_hc_status_block_e1x));
6999
7000	BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ);
7001#endif
7002
7003	BNX2X_PCI_FREE(bp->spq, bp->spq_mapping, BCM_PAGE_SIZE);
7004
7005	BNX2X_PCI_FREE(bp->eq_ring, bp->eq_mapping,
7006		       BCM_PAGE_SIZE * NUM_EQ_PAGES);
7007}
7008
7009static inline int bnx2x_alloc_fw_stats_mem(struct bnx2x *bp)
7010{
7011	int num_groups;
7012	int is_fcoe_stats = NO_FCOE(bp) ? 0 : 1;
7013
7014	/* number of queues for statistics is number of eth queues + FCoE */
7015	u8 num_queue_stats = BNX2X_NUM_ETH_QUEUES(bp) + is_fcoe_stats;
7016
7017	/* Total number of FW statistics requests =
7018	 * 1 for port stats + 1 for PF stats + potential 1 for FCoE stats +
7019	 * num of queues
7020	 */
7021	bp->fw_stats_num = 2 + is_fcoe_stats + num_queue_stats;
7022
7023
7024	/* Request is built from stats_query_header and an array of
7025	 * stats_query_cmd_group each of which contains
7026	 * STATS_QUERY_CMD_COUNT rules. The real number or requests is
7027	 * configured in the stats_query_header.
7028	 */
7029	num_groups = ((bp->fw_stats_num) / STATS_QUERY_CMD_COUNT) +
7030		     (((bp->fw_stats_num) % STATS_QUERY_CMD_COUNT) ? 1 : 0);
7031
7032	bp->fw_stats_req_sz = sizeof(struct stats_query_header) +
7033			num_groups * sizeof(struct stats_query_cmd_group);
7034
7035	/* Data for statistics requests + stats_conter
7036	 *
7037	 * stats_counter holds per-STORM counters that are incremented
7038	 * when STORM has finished with the current request.
7039	 *
7040	 * memory for FCoE offloaded statistics are counted anyway,
7041	 * even if they will not be sent.
7042	 */
7043	bp->fw_stats_data_sz = sizeof(struct per_port_stats) +
7044		sizeof(struct per_pf_stats) +
7045		sizeof(struct fcoe_statistics_params) +
7046		sizeof(struct per_queue_stats) * num_queue_stats +
7047		sizeof(struct stats_counter);
7048
7049	BNX2X_PCI_ALLOC(bp->fw_stats, &bp->fw_stats_mapping,
7050			bp->fw_stats_data_sz + bp->fw_stats_req_sz);
7051
7052	/* Set shortcuts */
7053	bp->fw_stats_req = (struct bnx2x_fw_stats_req *)bp->fw_stats;
7054	bp->fw_stats_req_mapping = bp->fw_stats_mapping;
7055
7056	bp->fw_stats_data = (struct bnx2x_fw_stats_data *)
7057		((u8 *)bp->fw_stats + bp->fw_stats_req_sz);
7058
7059	bp->fw_stats_data_mapping = bp->fw_stats_mapping +
7060				   bp->fw_stats_req_sz;
7061	return 0;
7062
7063alloc_mem_err:
7064	BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping,
7065		       bp->fw_stats_data_sz + bp->fw_stats_req_sz);
7066	return -ENOMEM;
7067}
7068
7069
7070int bnx2x_alloc_mem(struct bnx2x *bp)
7071{
7072#ifdef BCM_CNIC
7073	if (!CHIP_IS_E1x(bp))
7074		/* size = the status block + ramrod buffers */
7075		BNX2X_PCI_ALLOC(bp->cnic_sb.e2_sb, &bp->cnic_sb_mapping,
7076				sizeof(struct host_hc_status_block_e2));
7077	else
7078		BNX2X_PCI_ALLOC(bp->cnic_sb.e1x_sb, &bp->cnic_sb_mapping,
7079				sizeof(struct host_hc_status_block_e1x));
7080
7081	/* allocate searcher T2 table */
7082	BNX2X_PCI_ALLOC(bp->t2, &bp->t2_mapping, SRC_T2_SZ);
7083#endif
7084
7085
7086	BNX2X_PCI_ALLOC(bp->def_status_blk, &bp->def_status_blk_mapping,
7087			sizeof(struct host_sp_status_block));
7088
7089	BNX2X_PCI_ALLOC(bp->slowpath, &bp->slowpath_mapping,
7090			sizeof(struct bnx2x_slowpath));
7091
7092	/* Allocated memory for FW statistics  */
7093	if (bnx2x_alloc_fw_stats_mem(bp))
7094		goto alloc_mem_err;
7095
7096	bp->context.size = sizeof(union cdu_context) * BNX2X_L2_CID_COUNT(bp);
7097
7098	BNX2X_PCI_ALLOC(bp->context.vcxt, &bp->context.cxt_mapping,
7099			bp->context.size);
7100
7101	BNX2X_ALLOC(bp->ilt->lines, sizeof(struct ilt_line) * ILT_MAX_LINES);
7102
7103	if (bnx2x_ilt_mem_op(bp, ILT_MEMOP_ALLOC))
7104		goto alloc_mem_err;
7105
7106	/* Slow path ring */
7107	BNX2X_PCI_ALLOC(bp->spq, &bp->spq_mapping, BCM_PAGE_SIZE);
7108
7109	/* EQ */
7110	BNX2X_PCI_ALLOC(bp->eq_ring, &bp->eq_mapping,
7111			BCM_PAGE_SIZE * NUM_EQ_PAGES);
7112
7113
7114	/* fastpath */
7115	/* need to be done at the end, since it's self adjusting to amount
7116	 * of memory available for RSS queues
7117	 */
7118	if (bnx2x_alloc_fp_mem(bp))
7119		goto alloc_mem_err;
7120	return 0;
7121
7122alloc_mem_err:
7123	bnx2x_free_mem(bp);
7124	return -ENOMEM;
7125}
7126
7127/*
7128 * Init service functions
7129 */
7130
7131int bnx2x_set_mac_one(struct bnx2x *bp, u8 *mac,
7132		      struct bnx2x_vlan_mac_obj *obj, bool set,
7133		      int mac_type, unsigned long *ramrod_flags)
7134{
7135	int rc;
7136	struct bnx2x_vlan_mac_ramrod_params ramrod_param;
7137
7138	memset(&ramrod_param, 0, sizeof(ramrod_param));
7139
7140	/* Fill general parameters */
7141	ramrod_param.vlan_mac_obj = obj;
7142	ramrod_param.ramrod_flags = *ramrod_flags;
7143
7144	/* Fill a user request section if needed */
7145	if (!test_bit(RAMROD_CONT, ramrod_flags)) {
7146		memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN);
7147
7148		__set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags);
7149
7150		/* Set the command: ADD or DEL */
7151		if (set)
7152			ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_ADD;
7153		else
7154			ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_DEL;
7155	}
7156
7157	rc = bnx2x_config_vlan_mac(bp, &ramrod_param);
7158	if (rc < 0)
7159		BNX2X_ERR("%s MAC failed\n", (set ? "Set" : "Del"));
7160	return rc;
7161}
7162
7163int bnx2x_del_all_macs(struct bnx2x *bp,
7164		       struct bnx2x_vlan_mac_obj *mac_obj,
7165		       int mac_type, bool wait_for_comp)
7166{
7167	int rc;
7168	unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
7169
7170	/* Wait for completion of requested */
7171	if (wait_for_comp)
7172		__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
7173
7174	/* Set the mac type of addresses we want to clear */
7175	__set_bit(mac_type, &vlan_mac_flags);
7176
7177	rc = mac_obj->delete_all(bp, mac_obj, &vlan_mac_flags, &ramrod_flags);
7178	if (rc < 0)
7179		BNX2X_ERR("Failed to delete MACs: %d\n", rc);
7180
7181	return rc;
7182}
7183
7184int bnx2x_set_eth_mac(struct bnx2x *bp, bool set)
7185{
7186	unsigned long ramrod_flags = 0;
7187
7188#ifdef BCM_CNIC
7189	if (is_zero_ether_addr(bp->dev->dev_addr) && IS_MF_ISCSI_SD(bp)) {
7190		DP(NETIF_MSG_IFUP, "Ignoring Zero MAC for iSCSI SD mode\n");
7191		return 0;
7192	}
7193#endif
7194
7195	DP(NETIF_MSG_IFUP, "Adding Eth MAC\n");
7196
7197	__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
7198	/* Eth MAC is set on RSS leading client (fp[0]) */
7199	return bnx2x_set_mac_one(bp, bp->dev->dev_addr, &bp->fp->mac_obj, set,
7200				 BNX2X_ETH_MAC, &ramrod_flags);
7201}
7202
7203int bnx2x_setup_leading(struct bnx2x *bp)
7204{
7205	return bnx2x_setup_queue(bp, &bp->fp[0], 1);
7206}
7207
7208/**
7209 * bnx2x_set_int_mode - configure interrupt mode
7210 *
7211 * @bp:		driver handle
7212 *
7213 * In case of MSI-X it will also try to enable MSI-X.
7214 */
7215static void __devinit bnx2x_set_int_mode(struct bnx2x *bp)
7216{
7217	switch (int_mode) {
7218	case INT_MODE_MSI:
7219		bnx2x_enable_msi(bp);
7220		/* falling through... */
7221	case INT_MODE_INTx:
7222		bp->num_queues = 1 + NON_ETH_CONTEXT_USE;
7223		DP(NETIF_MSG_IFUP, "set number of queues to 1\n");
7224		break;
7225	default:
7226		/* Set number of queues according to bp->multi_mode value */
7227		bnx2x_set_num_queues(bp);
7228
7229		DP(NETIF_MSG_IFUP, "set number of queues to %d\n",
7230		   bp->num_queues);
7231
7232		/* if we can't use MSI-X we only need one fp,
7233		 * so try to enable MSI-X with the requested number of fp's
7234		 * and fallback to MSI or legacy INTx with one fp
7235		 */
7236		if (bnx2x_enable_msix(bp)) {
7237			/* failed to enable MSI-X */
7238			if (bp->multi_mode)
7239				DP(NETIF_MSG_IFUP,
7240					  "Multi requested but failed to "
7241					  "enable MSI-X (%d), "
7242					  "set number of queues to %d\n",
7243				   bp->num_queues,
7244				   1 + NON_ETH_CONTEXT_USE);
7245			bp->num_queues = 1 + NON_ETH_CONTEXT_USE;
7246
7247			/* Try to enable MSI */
7248			if (!(bp->flags & DISABLE_MSI_FLAG))
7249				bnx2x_enable_msi(bp);
7250		}
7251		break;
7252	}
7253}
7254
7255/* must be called prioir to any HW initializations */
7256static inline u16 bnx2x_cid_ilt_lines(struct bnx2x *bp)
7257{
7258	return L2_ILT_LINES(bp);
7259}
7260
7261void bnx2x_ilt_set_info(struct bnx2x *bp)
7262{
7263	struct ilt_client_info *ilt_client;
7264	struct bnx2x_ilt *ilt = BP_ILT(bp);
7265	u16 line = 0;
7266
7267	ilt->start_line = FUNC_ILT_BASE(BP_FUNC(bp));
7268	DP(BNX2X_MSG_SP, "ilt starts at line %d\n", ilt->start_line);
7269
7270	/* CDU */
7271	ilt_client = &ilt->clients[ILT_CLIENT_CDU];
7272	ilt_client->client_num = ILT_CLIENT_CDU;
7273	ilt_client->page_size = CDU_ILT_PAGE_SZ;
7274	ilt_client->flags = ILT_CLIENT_SKIP_MEM;
7275	ilt_client->start = line;
7276	line += bnx2x_cid_ilt_lines(bp);
7277#ifdef BCM_CNIC
7278	line += CNIC_ILT_LINES;
7279#endif
7280	ilt_client->end = line - 1;
7281
7282	DP(BNX2X_MSG_SP, "ilt client[CDU]: start %d, end %d, psz 0x%x, "
7283					 "flags 0x%x, hw psz %d\n",
7284	   ilt_client->start,
7285	   ilt_client->end,
7286	   ilt_client->page_size,
7287	   ilt_client->flags,
7288	   ilog2(ilt_client->page_size >> 12));
7289
7290	/* QM */
7291	if (QM_INIT(bp->qm_cid_count)) {
7292		ilt_client = &ilt->clients[ILT_CLIENT_QM];
7293		ilt_client->client_num = ILT_CLIENT_QM;
7294		ilt_client->page_size = QM_ILT_PAGE_SZ;
7295		ilt_client->flags = 0;
7296		ilt_client->start = line;
7297
7298		/* 4 bytes for each cid */
7299		line += DIV_ROUND_UP(bp->qm_cid_count * QM_QUEUES_PER_FUNC * 4,
7300							 QM_ILT_PAGE_SZ);
7301
7302		ilt_client->end = line - 1;
7303
7304		DP(BNX2X_MSG_SP, "ilt client[QM]: start %d, end %d, psz 0x%x, "
7305						 "flags 0x%x, hw psz %d\n",
7306		   ilt_client->start,
7307		   ilt_client->end,
7308		   ilt_client->page_size,
7309		   ilt_client->flags,
7310		   ilog2(ilt_client->page_size >> 12));
7311
7312	}
7313	/* SRC */
7314	ilt_client = &ilt->clients[ILT_CLIENT_SRC];
7315#ifdef BCM_CNIC
7316	ilt_client->client_num = ILT_CLIENT_SRC;
7317	ilt_client->page_size = SRC_ILT_PAGE_SZ;
7318	ilt_client->flags = 0;
7319	ilt_client->start = line;
7320	line += SRC_ILT_LINES;
7321	ilt_client->end = line - 1;
7322
7323	DP(BNX2X_MSG_SP, "ilt client[SRC]: start %d, end %d, psz 0x%x, "
7324					 "flags 0x%x, hw psz %d\n",
7325	   ilt_client->start,
7326	   ilt_client->end,
7327	   ilt_client->page_size,
7328	   ilt_client->flags,
7329	   ilog2(ilt_client->page_size >> 12));
7330
7331#else
7332	ilt_client->flags = (ILT_CLIENT_SKIP_INIT | ILT_CLIENT_SKIP_MEM);
7333#endif
7334
7335	/* TM */
7336	ilt_client = &ilt->clients[ILT_CLIENT_TM];
7337#ifdef BCM_CNIC
7338	ilt_client->client_num = ILT_CLIENT_TM;
7339	ilt_client->page_size = TM_ILT_PAGE_SZ;
7340	ilt_client->flags = 0;
7341	ilt_client->start = line;
7342	line += TM_ILT_LINES;
7343	ilt_client->end = line - 1;
7344
7345	DP(BNX2X_MSG_SP, "ilt client[TM]: start %d, end %d, psz 0x%x, "
7346					 "flags 0x%x, hw psz %d\n",
7347	   ilt_client->start,
7348	   ilt_client->end,
7349	   ilt_client->page_size,
7350	   ilt_client->flags,
7351	   ilog2(ilt_client->page_size >> 12));
7352
7353#else
7354	ilt_client->flags = (ILT_CLIENT_SKIP_INIT | ILT_CLIENT_SKIP_MEM);
7355#endif
7356	BUG_ON(line > ILT_MAX_LINES);
7357}
7358
7359/**
7360 * bnx2x_pf_q_prep_init - prepare INIT transition parameters
7361 *
7362 * @bp:			driver handle
7363 * @fp:			pointer to fastpath
7364 * @init_params:	pointer to parameters structure
7365 *
7366 * parameters configured:
7367 *      - HC configuration
7368 *      - Queue's CDU context
7369 */
7370static inline void bnx2x_pf_q_prep_init(struct bnx2x *bp,
7371	struct bnx2x_fastpath *fp, struct bnx2x_queue_init_params *init_params)
7372{
7373
7374	u8 cos;
7375	/* FCoE Queue uses Default SB, thus has no HC capabilities */
7376	if (!IS_FCOE_FP(fp)) {
7377		__set_bit(BNX2X_Q_FLG_HC, &init_params->rx.flags);
7378		__set_bit(BNX2X_Q_FLG_HC, &init_params->tx.flags);
7379
7380		/* If HC is supporterd, enable host coalescing in the transition
7381		 * to INIT state.
7382		 */
7383		__set_bit(BNX2X_Q_FLG_HC_EN, &init_params->rx.flags);
7384		__set_bit(BNX2X_Q_FLG_HC_EN, &init_params->tx.flags);
7385
7386		/* HC rate */
7387		init_params->rx.hc_rate = bp->rx_ticks ?
7388			(1000000 / bp->rx_ticks) : 0;
7389		init_params->tx.hc_rate = bp->tx_ticks ?
7390			(1000000 / bp->tx_ticks) : 0;
7391
7392		/* FW SB ID */
7393		init_params->rx.fw_sb_id = init_params->tx.fw_sb_id =
7394			fp->fw_sb_id;
7395
7396		/*
7397		 * CQ index among the SB indices: FCoE clients uses the default
7398		 * SB, therefore it's different.
7399		 */
7400		init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
7401		init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS;
7402	}
7403
7404	/* set maximum number of COSs supported by this queue */
7405	init_params->max_cos = fp->max_cos;
7406
7407	DP(BNX2X_MSG_SP, "fp: %d setting queue params max cos to: %d\n",
7408	    fp->index, init_params->max_cos);
7409
7410	/* set the context pointers queue object */
7411	for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++)
7412		init_params->cxts[cos] =
7413			&bp->context.vcxt[fp->txdata[cos].cid].eth;
7414}
7415
7416int bnx2x_setup_tx_only(struct bnx2x *bp, struct bnx2x_fastpath *fp,
7417			struct bnx2x_queue_state_params *q_params,
7418			struct bnx2x_queue_setup_tx_only_params *tx_only_params,
7419			int tx_index, bool leading)
7420{
7421	memset(tx_only_params, 0, sizeof(*tx_only_params));
7422
7423	/* Set the command */
7424	q_params->cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
7425
7426	/* Set tx-only QUEUE flags: don't zero statistics */
7427	tx_only_params->flags = bnx2x_get_common_flags(bp, fp, false);
7428
7429	/* choose the index of the cid to send the slow path on */
7430	tx_only_params->cid_index = tx_index;
7431
7432	/* Set general TX_ONLY_SETUP parameters */
7433	bnx2x_pf_q_prep_general(bp, fp, &tx_only_params->gen_params, tx_index);
7434
7435	/* Set Tx TX_ONLY_SETUP parameters */
7436	bnx2x_pf_tx_q_prep(bp, fp, &tx_only_params->txq_params, tx_index);
7437
7438	DP(BNX2X_MSG_SP, "preparing to send tx-only ramrod for connection:"
7439			 "cos %d, primary cid %d, cid %d, "
7440			 "client id %d, sp-client id %d, flags %lx\n",
7441	   tx_index, q_params->q_obj->cids[FIRST_TX_COS_INDEX],
7442	   q_params->q_obj->cids[tx_index], q_params->q_obj->cl_id,
7443	   tx_only_params->gen_params.spcl_id, tx_only_params->flags);
7444
7445	/* send the ramrod */
7446	return bnx2x_queue_state_change(bp, q_params);
7447}
7448
7449
7450/**
7451 * bnx2x_setup_queue - setup queue
7452 *
7453 * @bp:		driver handle
7454 * @fp:		pointer to fastpath
7455 * @leading:	is leading
7456 *
7457 * This function performs 2 steps in a Queue state machine
7458 *      actually: 1) RESET->INIT 2) INIT->SETUP
7459 */
7460
7461int bnx2x_setup_queue(struct bnx2x *bp, struct bnx2x_fastpath *fp,
7462		       bool leading)
7463{
7464	struct bnx2x_queue_state_params q_params = {0};
7465	struct bnx2x_queue_setup_params *setup_params =
7466						&q_params.params.setup;
7467	struct bnx2x_queue_setup_tx_only_params *tx_only_params =
7468						&q_params.params.tx_only;
7469	int rc;
7470	u8 tx_index;
7471
7472	DP(BNX2X_MSG_SP, "setting up queue %d\n", fp->index);
7473
7474	/* reset IGU state skip FCoE L2 queue */
7475	if (!IS_FCOE_FP(fp))
7476		bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, 0,
7477			     IGU_INT_ENABLE, 0);
7478
7479	q_params.q_obj = &fp->q_obj;
7480	/* We want to wait for completion in this context */
7481	__set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
7482
7483	/* Prepare the INIT parameters */
7484	bnx2x_pf_q_prep_init(bp, fp, &q_params.params.init);
7485
7486	/* Set the command */
7487	q_params.cmd = BNX2X_Q_CMD_INIT;
7488
7489	/* Change the state to INIT */
7490	rc = bnx2x_queue_state_change(bp, &q_params);
7491	if (rc) {
7492		BNX2X_ERR("Queue(%d) INIT failed\n", fp->index);
7493		return rc;
7494	}
7495
7496	DP(BNX2X_MSG_SP, "init complete\n");
7497
7498
7499	/* Now move the Queue to the SETUP state... */
7500	memset(setup_params, 0, sizeof(*setup_params));
7501
7502	/* Set QUEUE flags */
7503	setup_params->flags = bnx2x_get_q_flags(bp, fp, leading);
7504
7505	/* Set general SETUP parameters */
7506	bnx2x_pf_q_prep_general(bp, fp, &setup_params->gen_params,
7507				FIRST_TX_COS_INDEX);
7508
7509	bnx2x_pf_rx_q_prep(bp, fp, &setup_params->pause_params,
7510			    &setup_params->rxq_params);
7511
7512	bnx2x_pf_tx_q_prep(bp, fp, &setup_params->txq_params,
7513			   FIRST_TX_COS_INDEX);
7514
7515	/* Set the command */
7516	q_params.cmd = BNX2X_Q_CMD_SETUP;
7517
7518	/* Change the state to SETUP */
7519	rc = bnx2x_queue_state_change(bp, &q_params);
7520	if (rc) {
7521		BNX2X_ERR("Queue(%d) SETUP failed\n", fp->index);
7522		return rc;
7523	}
7524
7525	/* loop through the relevant tx-only indices */
7526	for (tx_index = FIRST_TX_ONLY_COS_INDEX;
7527	      tx_index < fp->max_cos;
7528	      tx_index++) {
7529
7530		/* prepare and send tx-only ramrod*/
7531		rc = bnx2x_setup_tx_only(bp, fp, &q_params,
7532					  tx_only_params, tx_index, leading);
7533		if (rc) {
7534			BNX2X_ERR("Queue(%d.%d) TX_ONLY_SETUP failed\n",
7535				  fp->index, tx_index);
7536			return rc;
7537		}
7538	}
7539
7540	return rc;
7541}
7542
7543static int bnx2x_stop_queue(struct bnx2x *bp, int index)
7544{
7545	struct bnx2x_fastpath *fp = &bp->fp[index];
7546	struct bnx2x_fp_txdata *txdata;
7547	struct bnx2x_queue_state_params q_params = {0};
7548	int rc, tx_index;
7549
7550	DP(BNX2X_MSG_SP, "stopping queue %d cid %d\n", index, fp->cid);
7551
7552	q_params.q_obj = &fp->q_obj;
7553	/* We want to wait for completion in this context */
7554	__set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
7555
7556
7557	/* close tx-only connections */
7558	for (tx_index = FIRST_TX_ONLY_COS_INDEX;
7559	     tx_index < fp->max_cos;
7560	     tx_index++){
7561
7562		/* ascertain this is a normal queue*/
7563		txdata = &fp->txdata[tx_index];
7564
7565		DP(BNX2X_MSG_SP, "stopping tx-only queue %d\n",
7566							txdata->txq_index);
7567
7568		/* send halt terminate on tx-only connection */
7569		q_params.cmd = BNX2X_Q_CMD_TERMINATE;
7570		memset(&q_params.params.terminate, 0,
7571		       sizeof(q_params.params.terminate));
7572		q_params.params.terminate.cid_index = tx_index;
7573
7574		rc = bnx2x_queue_state_change(bp, &q_params);
7575		if (rc)
7576			return rc;
7577
7578		/* send halt terminate on tx-only connection */
7579		q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
7580		memset(&q_params.params.cfc_del, 0,
7581		       sizeof(q_params.params.cfc_del));
7582		q_params.params.cfc_del.cid_index = tx_index;
7583		rc = bnx2x_queue_state_change(bp, &q_params);
7584		if (rc)
7585			return rc;
7586	}
7587	/* Stop the primary connection: */
7588	/* ...halt the connection */
7589	q_params.cmd = BNX2X_Q_CMD_HALT;
7590	rc = bnx2x_queue_state_change(bp, &q_params);
7591	if (rc)
7592		return rc;
7593
7594	/* ...terminate the connection */
7595	q_params.cmd = BNX2X_Q_CMD_TERMINATE;
7596	memset(&q_params.params.terminate, 0,
7597	       sizeof(q_params.params.terminate));
7598	q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX;
7599	rc = bnx2x_queue_state_change(bp, &q_params);
7600	if (rc)
7601		return rc;
7602	/* ...delete cfc entry */
7603	q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
7604	memset(&q_params.params.cfc_del, 0,
7605	       sizeof(q_params.params.cfc_del));
7606	q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX;
7607	return bnx2x_queue_state_change(bp, &q_params);
7608}
7609
7610
7611static void bnx2x_reset_func(struct bnx2x *bp)
7612{
7613	int port = BP_PORT(bp);
7614	int func = BP_FUNC(bp);
7615	int i;
7616
7617	/* Disable the function in the FW */
7618	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0);
7619	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0);
7620	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0);
7621	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0);
7622
7623	/* FP SBs */
7624	for_each_eth_queue(bp, i) {
7625		struct bnx2x_fastpath *fp = &bp->fp[i];
7626		REG_WR8(bp, BAR_CSTRORM_INTMEM +
7627			   CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id),
7628			   SB_DISABLED);
7629	}
7630
7631#ifdef BCM_CNIC
7632	/* CNIC SB */
7633	REG_WR8(bp, BAR_CSTRORM_INTMEM +
7634		CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(bnx2x_cnic_fw_sb_id(bp)),
7635		SB_DISABLED);
7636#endif
7637	/* SP SB */
7638	REG_WR8(bp, BAR_CSTRORM_INTMEM +
7639		   CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func),
7640		   SB_DISABLED);
7641
7642	for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++)
7643		REG_WR(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func),
7644		       0);
7645
7646	/* Configure IGU */
7647	if (bp->common.int_block == INT_BLOCK_HC) {
7648		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
7649		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
7650	} else {
7651		REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
7652		REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
7653	}
7654
7655#ifdef BCM_CNIC
7656	/* Disable Timer scan */
7657	REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 0);
7658	/*
7659	 * Wait for at least 10ms and up to 2 second for the timers scan to
7660	 * complete
7661	 */
7662	for (i = 0; i < 200; i++) {
7663		msleep(10);
7664		if (!REG_RD(bp, TM_REG_LIN0_SCAN_ON + port*4))
7665			break;
7666	}
7667#endif
7668	/* Clear ILT */
7669	bnx2x_clear_func_ilt(bp, func);
7670
7671	/* Timers workaround bug for E2: if this is vnic-3,
7672	 * we need to set the entire ilt range for this timers.
7673	 */
7674	if (!CHIP_IS_E1x(bp) && BP_VN(bp) == 3) {
7675		struct ilt_client_info ilt_cli;
7676		/* use dummy TM client */
7677		memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
7678		ilt_cli.start = 0;
7679		ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
7680		ilt_cli.client_num = ILT_CLIENT_TM;
7681
7682		bnx2x_ilt_boundry_init_op(bp, &ilt_cli, 0, INITOP_CLEAR);
7683	}
7684
7685	/* this assumes that reset_port() called before reset_func()*/
7686	if (!CHIP_IS_E1x(bp))
7687		bnx2x_pf_disable(bp);
7688
7689	bp->dmae_ready = 0;
7690}
7691
7692static void bnx2x_reset_port(struct bnx2x *bp)
7693{
7694	int port = BP_PORT(bp);
7695	u32 val;
7696
7697	/* Reset physical Link */
7698	bnx2x__link_reset(bp);
7699
7700	REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
7701
7702	/* Do not rcv packets to BRB */
7703	REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0);
7704	/* Do not direct rcv packets that are not for MCP to the BRB */
7705	REG_WR(bp, (port ? NIG_REG_LLH1_BRB1_NOT_MCP :
7706			   NIG_REG_LLH0_BRB1_NOT_MCP), 0x0);
7707
7708	/* Configure AEU */
7709	REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0);
7710
7711	msleep(100);
7712	/* Check for BRB port occupancy */
7713	val = REG_RD(bp, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4);
7714	if (val)
7715		DP(NETIF_MSG_IFDOWN,
7716		   "BRB1 is not empty  %d blocks are occupied\n", val);
7717
7718	/* TODO: Close Doorbell port? */
7719}
7720
7721static inline int bnx2x_reset_hw(struct bnx2x *bp, u32 load_code)
7722{
7723	struct bnx2x_func_state_params func_params = {0};
7724
7725	/* Prepare parameters for function state transitions */
7726	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
7727
7728	func_params.f_obj = &bp->func_obj;
7729	func_params.cmd = BNX2X_F_CMD_HW_RESET;
7730
7731	func_params.params.hw_init.load_phase = load_code;
7732
7733	return bnx2x_func_state_change(bp, &func_params);
7734}
7735
7736static inline int bnx2x_func_stop(struct bnx2x *bp)
7737{
7738	struct bnx2x_func_state_params func_params = {0};
7739	int rc;
7740
7741	/* Prepare parameters for function state transitions */
7742	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
7743	func_params.f_obj = &bp->func_obj;
7744	func_params.cmd = BNX2X_F_CMD_STOP;
7745
7746	/*
7747	 * Try to stop the function the 'good way'. If fails (in case
7748	 * of a parity error during bnx2x_chip_cleanup()) and we are
7749	 * not in a debug mode, perform a state transaction in order to
7750	 * enable further HW_RESET transaction.
7751	 */
7752	rc = bnx2x_func_state_change(bp, &func_params);
7753	if (rc) {
7754#ifdef BNX2X_STOP_ON_ERROR
7755		return rc;
7756#else
7757		BNX2X_ERR("FUNC_STOP ramrod failed. Running a dry "
7758			  "transaction\n");
7759		__set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
7760		return bnx2x_func_state_change(bp, &func_params);
7761#endif
7762	}
7763
7764	return 0;
7765}
7766
7767/**
7768 * bnx2x_send_unload_req - request unload mode from the MCP.
7769 *
7770 * @bp:			driver handle
7771 * @unload_mode:	requested function's unload mode
7772 *
7773 * Return unload mode returned by the MCP: COMMON, PORT or FUNC.
7774 */
7775u32 bnx2x_send_unload_req(struct bnx2x *bp, int unload_mode)
7776{
7777	u32 reset_code = 0;
7778	int port = BP_PORT(bp);
7779
7780	/* Select the UNLOAD request mode */
7781	if (unload_mode == UNLOAD_NORMAL)
7782		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
7783
7784	else if (bp->flags & NO_WOL_FLAG)
7785		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP;
7786
7787	else if (bp->wol) {
7788		u32 emac_base = port ? GRCBASE_EMAC1 : GRCBASE_EMAC0;
7789		u8 *mac_addr = bp->dev->dev_addr;
7790		u32 val;
7791		u16 pmc;
7792
7793		/* The mac address is written to entries 1-4 to
7794		 * preserve entry 0 which is used by the PMF
7795		 */
7796		u8 entry = (BP_VN(bp) + 1)*8;
7797
7798		val = (mac_addr[0] << 8) | mac_addr[1];
7799		EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry, val);
7800
7801		val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
7802		      (mac_addr[4] << 8) | mac_addr[5];
7803		EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry + 4, val);
7804
7805		/* Enable the PME and clear the status */
7806		pci_read_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, &pmc);
7807		pmc |= PCI_PM_CTRL_PME_ENABLE | PCI_PM_CTRL_PME_STATUS;
7808		pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, pmc);
7809
7810		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_EN;
7811
7812	} else
7813		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
7814
7815	/* Send the request to the MCP */
7816	if (!BP_NOMCP(bp))
7817		reset_code = bnx2x_fw_command(bp, reset_code, 0);
7818	else {
7819		int path = BP_PATH(bp);
7820
7821		DP(NETIF_MSG_IFDOWN, "NO MCP - load counts[%d]      "
7822				     "%d, %d, %d\n",
7823		   path, load_count[path][0], load_count[path][1],
7824		   load_count[path][2]);
7825		load_count[path][0]--;
7826		load_count[path][1 + port]--;
7827		DP(NETIF_MSG_IFDOWN, "NO MCP - new load counts[%d]  "
7828				     "%d, %d, %d\n",
7829		   path, load_count[path][0], load_count[path][1],
7830		   load_count[path][2]);
7831		if (load_count[path][0] == 0)
7832			reset_code = FW_MSG_CODE_DRV_UNLOAD_COMMON;
7833		else if (load_count[path][1 + port] == 0)
7834			reset_code = FW_MSG_CODE_DRV_UNLOAD_PORT;
7835		else
7836			reset_code = FW_MSG_CODE_DRV_UNLOAD_FUNCTION;
7837	}
7838
7839	return reset_code;
7840}
7841
7842/**
7843 * bnx2x_send_unload_done - send UNLOAD_DONE command to the MCP.
7844 *
7845 * @bp:		driver handle
7846 */
7847void bnx2x_send_unload_done(struct bnx2x *bp)
7848{
7849	/* Report UNLOAD_DONE to MCP */
7850	if (!BP_NOMCP(bp))
7851		bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0);
7852}
7853
7854static inline int bnx2x_func_wait_started(struct bnx2x *bp)
7855{
7856	int tout = 50;
7857	int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
7858
7859	if (!bp->port.pmf)
7860		return 0;
7861
7862	/*
7863	 * (assumption: No Attention from MCP at this stage)
7864	 * PMF probably in the middle of TXdisable/enable transaction
7865	 * 1. Sync IRS for default SB
7866	 * 2. Sync SP queue - this guarantes us that attention handling started
7867	 * 3. Wait, that TXdisable/enable transaction completes
7868	 *
7869	 * 1+2 guranty that if DCBx attention was scheduled it already changed
7870	 * pending bit of transaction from STARTED-->TX_STOPPED, if we alredy
7871	 * received complettion for the transaction the state is TX_STOPPED.
7872	 * State will return to STARTED after completion of TX_STOPPED-->STARTED
7873	 * transaction.
7874	 */
7875
7876	/* make sure default SB ISR is done */
7877	if (msix)
7878		synchronize_irq(bp->msix_table[0].vector);
7879	else
7880		synchronize_irq(bp->pdev->irq);
7881
7882	flush_workqueue(bnx2x_wq);
7883
7884	while (bnx2x_func_get_state(bp, &bp->func_obj) !=
7885				BNX2X_F_STATE_STARTED && tout--)
7886		msleep(20);
7887
7888	if (bnx2x_func_get_state(bp, &bp->func_obj) !=
7889						BNX2X_F_STATE_STARTED) {
7890#ifdef BNX2X_STOP_ON_ERROR
7891		return -EBUSY;
7892#else
7893		/*
7894		 * Failed to complete the transaction in a "good way"
7895		 * Force both transactions with CLR bit
7896		 */
7897		struct bnx2x_func_state_params func_params = {0};
7898
7899		DP(BNX2X_MSG_SP, "Hmmm... unexpected function state! "
7900			  "Forcing STARTED-->TX_ST0PPED-->STARTED\n");
7901
7902		func_params.f_obj = &bp->func_obj;
7903		__set_bit(RAMROD_DRV_CLR_ONLY,
7904					&func_params.ramrod_flags);
7905
7906		/* STARTED-->TX_ST0PPED */
7907		func_params.cmd = BNX2X_F_CMD_TX_STOP;
7908		bnx2x_func_state_change(bp, &func_params);
7909
7910		/* TX_ST0PPED-->STARTED */
7911		func_params.cmd = BNX2X_F_CMD_TX_START;
7912		return bnx2x_func_state_change(bp, &func_params);
7913#endif
7914	}
7915
7916	return 0;
7917}
7918
7919void bnx2x_chip_cleanup(struct bnx2x *bp, int unload_mode)
7920{
7921	int port = BP_PORT(bp);
7922	int i, rc = 0;
7923	u8 cos;
7924	struct bnx2x_mcast_ramrod_params rparam = {0};
7925	u32 reset_code;
7926
7927	/* Wait until tx fastpath tasks complete */
7928	for_each_tx_queue(bp, i) {
7929		struct bnx2x_fastpath *fp = &bp->fp[i];
7930
7931		for_each_cos_in_tx_queue(fp, cos)
7932			rc = bnx2x_clean_tx_queue(bp, &fp->txdata[cos]);
7933#ifdef BNX2X_STOP_ON_ERROR
7934		if (rc)
7935			return;
7936#endif
7937	}
7938
7939	/* Give HW time to discard old tx messages */
7940	usleep_range(1000, 1000);
7941
7942	/* Clean all ETH MACs */
7943	rc = bnx2x_del_all_macs(bp, &bp->fp[0].mac_obj, BNX2X_ETH_MAC, false);
7944	if (rc < 0)
7945		BNX2X_ERR("Failed to delete all ETH macs: %d\n", rc);
7946
7947	/* Clean up UC list  */
7948	rc = bnx2x_del_all_macs(bp, &bp->fp[0].mac_obj, BNX2X_UC_LIST_MAC,
7949				true);
7950	if (rc < 0)
7951		BNX2X_ERR("Failed to schedule DEL commands for UC MACs list: "
7952			  "%d\n", rc);
7953
7954	/* Disable LLH */
7955	if (!CHIP_IS_E1(bp))
7956		REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
7957
7958	/* Set "drop all" (stop Rx).
7959	 * We need to take a netif_addr_lock() here in order to prevent
7960	 * a race between the completion code and this code.
7961	 */
7962	netif_addr_lock_bh(bp->dev);
7963	/* Schedule the rx_mode command */
7964	if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
7965		set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
7966	else
7967		bnx2x_set_storm_rx_mode(bp);
7968
7969	/* Cleanup multicast configuration */
7970	rparam.mcast_obj = &bp->mcast_obj;
7971	rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
7972	if (rc < 0)
7973		BNX2X_ERR("Failed to send DEL multicast command: %d\n", rc);
7974
7975	netif_addr_unlock_bh(bp->dev);
7976
7977
7978
7979	/*
7980	 * Send the UNLOAD_REQUEST to the MCP. This will return if
7981	 * this function should perform FUNC, PORT or COMMON HW
7982	 * reset.
7983	 */
7984	reset_code = bnx2x_send_unload_req(bp, unload_mode);
7985
7986	/*
7987	 * (assumption: No Attention from MCP at this stage)
7988	 * PMF probably in the middle of TXdisable/enable transaction
7989	 */
7990	rc = bnx2x_func_wait_started(bp);
7991	if (rc) {
7992		BNX2X_ERR("bnx2x_func_wait_started failed\n");
7993#ifdef BNX2X_STOP_ON_ERROR
7994		return;
7995#endif
7996	}
7997
7998	/* Close multi and leading connections
7999	 * Completions for ramrods are collected in a synchronous way
8000	 */
8001	for_each_queue(bp, i)
8002		if (bnx2x_stop_queue(bp, i))
8003#ifdef BNX2X_STOP_ON_ERROR
8004			return;
8005#else
8006			goto unload_error;
8007#endif
8008	/* If SP settings didn't get completed so far - something
8009	 * very wrong has happen.
8010	 */
8011	if (!bnx2x_wait_sp_comp(bp, ~0x0UL))
8012		BNX2X_ERR("Hmmm... Common slow path ramrods got stuck!\n");
8013
8014#ifndef BNX2X_STOP_ON_ERROR
8015unload_error:
8016#endif
8017	rc = bnx2x_func_stop(bp);
8018	if (rc) {
8019		BNX2X_ERR("Function stop failed!\n");
8020#ifdef BNX2X_STOP_ON_ERROR
8021		return;
8022#endif
8023	}
8024
8025	/* Disable HW interrupts, NAPI */
8026	bnx2x_netif_stop(bp, 1);
8027
8028	/* Release IRQs */
8029	bnx2x_free_irq(bp);
8030
8031	/* Reset the chip */
8032	rc = bnx2x_reset_hw(bp, reset_code);
8033	if (rc)
8034		BNX2X_ERR("HW_RESET failed\n");
8035
8036
8037	/* Report UNLOAD_DONE to MCP */
8038	bnx2x_send_unload_done(bp);
8039}
8040
8041void bnx2x_disable_close_the_gate(struct bnx2x *bp)
8042{
8043	u32 val;
8044
8045	DP(NETIF_MSG_HW, "Disabling \"close the gates\"\n");
8046
8047	if (CHIP_IS_E1(bp)) {
8048		int port = BP_PORT(bp);
8049		u32 addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
8050			MISC_REG_AEU_MASK_ATTN_FUNC_0;
8051
8052		val = REG_RD(bp, addr);
8053		val &= ~(0x300);
8054		REG_WR(bp, addr, val);
8055	} else {
8056		val = REG_RD(bp, MISC_REG_AEU_GENERAL_MASK);
8057		val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK |
8058			 MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK);
8059		REG_WR(bp, MISC_REG_AEU_GENERAL_MASK, val);
8060	}
8061}
8062
8063/* Close gates #2, #3 and #4: */
8064static void bnx2x_set_234_gates(struct bnx2x *bp, bool close)
8065{
8066	u32 val;
8067
8068	/* Gates #2 and #4a are closed/opened for "not E1" only */
8069	if (!CHIP_IS_E1(bp)) {
8070		/* #4 */
8071		REG_WR(bp, PXP_REG_HST_DISCARD_DOORBELLS, !!close);
8072		/* #2 */
8073		REG_WR(bp, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close);
8074	}
8075
8076	/* #3 */
8077	if (CHIP_IS_E1x(bp)) {
8078		/* Prevent interrupts from HC on both ports */
8079		val = REG_RD(bp, HC_REG_CONFIG_1);
8080		REG_WR(bp, HC_REG_CONFIG_1,
8081		       (!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) :
8082		       (val & ~(u32)HC_CONFIG_1_REG_BLOCK_DISABLE_1));
8083
8084		val = REG_RD(bp, HC_REG_CONFIG_0);
8085		REG_WR(bp, HC_REG_CONFIG_0,
8086		       (!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) :
8087		       (val & ~(u32)HC_CONFIG_0_REG_BLOCK_DISABLE_0));
8088	} else {
8089		/* Prevent incomming interrupts in IGU */
8090		val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
8091
8092		REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION,
8093		       (!close) ?
8094		       (val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) :
8095		       (val & ~(u32)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE));
8096	}
8097
8098	DP(NETIF_MSG_HW, "%s gates #2, #3 and #4\n",
8099		close ? "closing" : "opening");
8100	mmiowb();
8101}
8102
8103#define SHARED_MF_CLP_MAGIC  0x80000000 /* `magic' bit */
8104
8105static void bnx2x_clp_reset_prep(struct bnx2x *bp, u32 *magic_val)
8106{
8107	/* Do some magic... */
8108	u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
8109	*magic_val = val & SHARED_MF_CLP_MAGIC;
8110	MF_CFG_WR(bp, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC);
8111}
8112
8113/**
8114 * bnx2x_clp_reset_done - restore the value of the `magic' bit.
8115 *
8116 * @bp:		driver handle
8117 * @magic_val:	old value of the `magic' bit.
8118 */
8119static void bnx2x_clp_reset_done(struct bnx2x *bp, u32 magic_val)
8120{
8121	/* Restore the `magic' bit value... */
8122	u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
8123	MF_CFG_WR(bp, shared_mf_config.clp_mb,
8124		(val & (~SHARED_MF_CLP_MAGIC)) | magic_val);
8125}
8126
8127/**
8128 * bnx2x_reset_mcp_prep - prepare for MCP reset.
8129 *
8130 * @bp:		driver handle
8131 * @magic_val:	old value of 'magic' bit.
8132 *
8133 * Takes care of CLP configurations.
8134 */
8135static void bnx2x_reset_mcp_prep(struct bnx2x *bp, u32 *magic_val)
8136{
8137	u32 shmem;
8138	u32 validity_offset;
8139
8140	DP(NETIF_MSG_HW, "Starting\n");
8141
8142	/* Set `magic' bit in order to save MF config */
8143	if (!CHIP_IS_E1(bp))
8144		bnx2x_clp_reset_prep(bp, magic_val);
8145
8146	/* Get shmem offset */
8147	shmem = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
8148	validity_offset = offsetof(struct shmem_region, validity_map[0]);
8149
8150	/* Clear validity map flags */
8151	if (shmem > 0)
8152		REG_WR(bp, shmem + validity_offset, 0);
8153}
8154
8155#define MCP_TIMEOUT      5000   /* 5 seconds (in ms) */
8156#define MCP_ONE_TIMEOUT  100    /* 100 ms */
8157
8158/**
8159 * bnx2x_mcp_wait_one - wait for MCP_ONE_TIMEOUT
8160 *
8161 * @bp:	driver handle
8162 */
8163static inline void bnx2x_mcp_wait_one(struct bnx2x *bp)
8164{
8165	/* special handling for emulation and FPGA,
8166	   wait 10 times longer */
8167	if (CHIP_REV_IS_SLOW(bp))
8168		msleep(MCP_ONE_TIMEOUT*10);
8169	else
8170		msleep(MCP_ONE_TIMEOUT);
8171}
8172
8173/*
8174 * initializes bp->common.shmem_base and waits for validity signature to appear
8175 */
8176static int bnx2x_init_shmem(struct bnx2x *bp)
8177{
8178	int cnt = 0;
8179	u32 val = 0;
8180
8181	do {
8182		bp->common.shmem_base = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
8183		if (bp->common.shmem_base) {
8184			val = SHMEM_RD(bp, validity_map[BP_PORT(bp)]);
8185			if (val & SHR_MEM_VALIDITY_MB)
8186				return 0;
8187		}
8188
8189		bnx2x_mcp_wait_one(bp);
8190
8191	} while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT));
8192
8193	BNX2X_ERR("BAD MCP validity signature\n");
8194
8195	return -ENODEV;
8196}
8197
8198static int bnx2x_reset_mcp_comp(struct bnx2x *bp, u32 magic_val)
8199{
8200	int rc = bnx2x_init_shmem(bp);
8201
8202	/* Restore the `magic' bit value */
8203	if (!CHIP_IS_E1(bp))
8204		bnx2x_clp_reset_done(bp, magic_val);
8205
8206	return rc;
8207}
8208
8209static void bnx2x_pxp_prep(struct bnx2x *bp)
8210{
8211	if (!CHIP_IS_E1(bp)) {
8212		REG_WR(bp, PXP2_REG_RD_START_INIT, 0);
8213		REG_WR(bp, PXP2_REG_RQ_RBC_DONE, 0);
8214		mmiowb();
8215	}
8216}
8217
8218/*
8219 * Reset the whole chip except for:
8220 *      - PCIE core
8221 *      - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by
8222 *              one reset bit)
8223 *      - IGU
8224 *      - MISC (including AEU)
8225 *      - GRC
8226 *      - RBCN, RBCP
8227 */
8228static void bnx2x_process_kill_chip_reset(struct bnx2x *bp, bool global)
8229{
8230	u32 not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2;
8231	u32 global_bits2, stay_reset2;
8232
8233	/*
8234	 * Bits that have to be set in reset_mask2 if we want to reset 'global'
8235	 * (per chip) blocks.
8236	 */
8237	global_bits2 =
8238		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU |
8239		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE;
8240
8241	/* Don't reset the following blocks */
8242	not_reset_mask1 =
8243		MISC_REGISTERS_RESET_REG_1_RST_HC |
8244		MISC_REGISTERS_RESET_REG_1_RST_PXPV |
8245		MISC_REGISTERS_RESET_REG_1_RST_PXP;
8246
8247	not_reset_mask2 =
8248		MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO |
8249		MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE |
8250		MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE |
8251		MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE |
8252		MISC_REGISTERS_RESET_REG_2_RST_RBCN |
8253		MISC_REGISTERS_RESET_REG_2_RST_GRC  |
8254		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE |
8255		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B |
8256		MISC_REGISTERS_RESET_REG_2_RST_ATC |
8257		MISC_REGISTERS_RESET_REG_2_PGLC;
8258
8259	/*
8260	 * Keep the following blocks in reset:
8261	 *  - all xxMACs are handled by the bnx2x_link code.
8262	 */
8263	stay_reset2 =
8264		MISC_REGISTERS_RESET_REG_2_RST_BMAC0 |
8265		MISC_REGISTERS_RESET_REG_2_RST_BMAC1 |
8266		MISC_REGISTERS_RESET_REG_2_RST_EMAC0 |
8267		MISC_REGISTERS_RESET_REG_2_RST_EMAC1 |
8268		MISC_REGISTERS_RESET_REG_2_UMAC0 |
8269		MISC_REGISTERS_RESET_REG_2_UMAC1 |
8270		MISC_REGISTERS_RESET_REG_2_XMAC |
8271		MISC_REGISTERS_RESET_REG_2_XMAC_SOFT;
8272
8273	/* Full reset masks according to the chip */
8274	reset_mask1 = 0xffffffff;
8275
8276	if (CHIP_IS_E1(bp))
8277		reset_mask2 = 0xffff;
8278	else if (CHIP_IS_E1H(bp))
8279		reset_mask2 = 0x1ffff;
8280	else if (CHIP_IS_E2(bp))
8281		reset_mask2 = 0xfffff;
8282	else /* CHIP_IS_E3 */
8283		reset_mask2 = 0x3ffffff;
8284
8285	/* Don't reset global blocks unless we need to */
8286	if (!global)
8287		reset_mask2 &= ~global_bits2;
8288
8289	/*
8290	 * In case of attention in the QM, we need to reset PXP
8291	 * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM
8292	 * because otherwise QM reset would release 'close the gates' shortly
8293	 * before resetting the PXP, then the PSWRQ would send a write
8294	 * request to PGLUE. Then when PXP is reset, PGLUE would try to
8295	 * read the payload data from PSWWR, but PSWWR would not
8296	 * respond. The write queue in PGLUE would stuck, dmae commands
8297	 * would not return. Therefore it's important to reset the second
8298	 * reset register (containing the
8299	 * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the
8300	 * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM
8301	 * bit).
8302	 */
8303	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
8304	       reset_mask2 & (~not_reset_mask2));
8305
8306	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
8307	       reset_mask1 & (~not_reset_mask1));
8308
8309	barrier();
8310	mmiowb();
8311
8312	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET,
8313	       reset_mask2 & (~stay_reset2));
8314
8315	barrier();
8316	mmiowb();
8317
8318	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1);
8319	mmiowb();
8320}
8321
8322/**
8323 * bnx2x_er_poll_igu_vq - poll for pending writes bit.
8324 * It should get cleared in no more than 1s.
8325 *
8326 * @bp:	driver handle
8327 *
8328 * It should get cleared in no more than 1s. Returns 0 if
8329 * pending writes bit gets cleared.
8330 */
8331static int bnx2x_er_poll_igu_vq(struct bnx2x *bp)
8332{
8333	u32 cnt = 1000;
8334	u32 pend_bits = 0;
8335
8336	do {
8337		pend_bits  = REG_RD(bp, IGU_REG_PENDING_BITS_STATUS);
8338
8339		if (pend_bits == 0)
8340			break;
8341
8342		usleep_range(1000, 1000);
8343	} while (cnt-- > 0);
8344
8345	if (cnt <= 0) {
8346		BNX2X_ERR("Still pending IGU requests pend_bits=%x!\n",
8347			  pend_bits);
8348		return -EBUSY;
8349	}
8350
8351	return 0;
8352}
8353
8354static int bnx2x_process_kill(struct bnx2x *bp, bool global)
8355{
8356	int cnt = 1000;
8357	u32 val = 0;
8358	u32 sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2;
8359
8360
8361	/* Empty the Tetris buffer, wait for 1s */
8362	do {
8363		sr_cnt  = REG_RD(bp, PXP2_REG_RD_SR_CNT);
8364		blk_cnt = REG_RD(bp, PXP2_REG_RD_BLK_CNT);
8365		port_is_idle_0 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_0);
8366		port_is_idle_1 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_1);
8367		pgl_exp_rom2 = REG_RD(bp, PXP2_REG_PGL_EXP_ROM2);
8368		if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) &&
8369		    ((port_is_idle_0 & 0x1) == 0x1) &&
8370		    ((port_is_idle_1 & 0x1) == 0x1) &&
8371		    (pgl_exp_rom2 == 0xffffffff))
8372			break;
8373		usleep_range(1000, 1000);
8374	} while (cnt-- > 0);
8375
8376	if (cnt <= 0) {
8377		DP(NETIF_MSG_HW, "Tetris buffer didn't get empty or there"
8378			  " are still"
8379			  " outstanding read requests after 1s!\n");
8380		DP(NETIF_MSG_HW, "sr_cnt=0x%08x, blk_cnt=0x%08x,"
8381			  " port_is_idle_0=0x%08x,"
8382			  " port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n",
8383			  sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1,
8384			  pgl_exp_rom2);
8385		return -EAGAIN;
8386	}
8387
8388	barrier();
8389
8390	/* Close gates #2, #3 and #4 */
8391	bnx2x_set_234_gates(bp, true);
8392
8393	/* Poll for IGU VQs for 57712 and newer chips */
8394	if (!CHIP_IS_E1x(bp) && bnx2x_er_poll_igu_vq(bp))
8395		return -EAGAIN;
8396
8397
8398	/* TBD: Indicate that "process kill" is in progress to MCP */
8399
8400	/* Clear "unprepared" bit */
8401	REG_WR(bp, MISC_REG_UNPREPARED, 0);
8402	barrier();
8403
8404	/* Make sure all is written to the chip before the reset */
8405	mmiowb();
8406
8407	/* Wait for 1ms to empty GLUE and PCI-E core queues,
8408	 * PSWHST, GRC and PSWRD Tetris buffer.
8409	 */
8410	usleep_range(1000, 1000);
8411
8412	/* Prepare to chip reset: */
8413	/* MCP */
8414	if (global)
8415		bnx2x_reset_mcp_prep(bp, &val);
8416
8417	/* PXP */
8418	bnx2x_pxp_prep(bp);
8419	barrier();
8420
8421	/* reset the chip */
8422	bnx2x_process_kill_chip_reset(bp, global);
8423	barrier();
8424
8425	/* Recover after reset: */
8426	/* MCP */
8427	if (global && bnx2x_reset_mcp_comp(bp, val))
8428		return -EAGAIN;
8429
8430	/* TBD: Add resetting the NO_MCP mode DB here */
8431
8432	/* PXP */
8433	bnx2x_pxp_prep(bp);
8434
8435	/* Open the gates #2, #3 and #4 */
8436	bnx2x_set_234_gates(bp, false);
8437
8438	/* TBD: IGU/AEU preparation bring back the AEU/IGU to a
8439	 * reset state, re-enable attentions. */
8440
8441	return 0;
8442}
8443
8444int bnx2x_leader_reset(struct bnx2x *bp)
8445{
8446	int rc = 0;
8447	bool global = bnx2x_reset_is_global(bp);
8448
8449	/* Try to recover after the failure */
8450	if (bnx2x_process_kill(bp, global)) {
8451		netdev_err(bp->dev, "Something bad had happen on engine %d! "
8452				    "Aii!\n", BP_PATH(bp));
8453		rc = -EAGAIN;
8454		goto exit_leader_reset;
8455	}
8456
8457	/*
8458	 * Clear RESET_IN_PROGRES and RESET_GLOBAL bits and update the driver
8459	 * state.
8460	 */
8461	bnx2x_set_reset_done(bp);
8462	if (global)
8463		bnx2x_clear_reset_global(bp);
8464
8465exit_leader_reset:
8466	bp->is_leader = 0;
8467	bnx2x_release_leader_lock(bp);
8468	smp_mb();
8469	return rc;
8470}
8471
8472static inline void bnx2x_recovery_failed(struct bnx2x *bp)
8473{
8474	netdev_err(bp->dev, "Recovery has failed. Power cycle is needed.\n");
8475
8476	/* Disconnect this device */
8477	netif_device_detach(bp->dev);
8478
8479	/*
8480	 * Block ifup for all function on this engine until "process kill"
8481	 * or power cycle.
8482	 */
8483	bnx2x_set_reset_in_progress(bp);
8484
8485	/* Shut down the power */
8486	bnx2x_set_power_state(bp, PCI_D3hot);
8487
8488	bp->recovery_state = BNX2X_RECOVERY_FAILED;
8489
8490	smp_mb();
8491}
8492
8493/*
8494 * Assumption: runs under rtnl lock. This together with the fact
8495 * that it's called only from bnx2x_sp_rtnl() ensure that it
8496 * will never be called when netif_running(bp->dev) is false.
8497 */
8498static void bnx2x_parity_recover(struct bnx2x *bp)
8499{
8500	bool global = false;
8501
8502	DP(NETIF_MSG_HW, "Handling parity\n");
8503	while (1) {
8504		switch (bp->recovery_state) {
8505		case BNX2X_RECOVERY_INIT:
8506			DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_INIT\n");
8507			bnx2x_chk_parity_attn(bp, &global, false);
8508
8509			/* Try to get a LEADER_LOCK HW lock */
8510			if (bnx2x_trylock_leader_lock(bp)) {
8511				bnx2x_set_reset_in_progress(bp);
8512				/*
8513				 * Check if there is a global attention and if
8514				 * there was a global attention, set the global
8515				 * reset bit.
8516				 */
8517
8518				if (global)
8519					bnx2x_set_reset_global(bp);
8520
8521				bp->is_leader = 1;
8522			}
8523
8524			/* Stop the driver */
8525			/* If interface has been removed - break */
8526			if (bnx2x_nic_unload(bp, UNLOAD_RECOVERY))
8527				return;
8528
8529			bp->recovery_state = BNX2X_RECOVERY_WAIT;
8530
8531			/*
8532			 * Reset MCP command sequence number and MCP mail box
8533			 * sequence as we are going to reset the MCP.
8534			 */
8535			if (global) {
8536				bp->fw_seq = 0;
8537				bp->fw_drv_pulse_wr_seq = 0;
8538			}
8539
8540			/* Ensure "is_leader", MCP command sequence and
8541			 * "recovery_state" update values are seen on other
8542			 * CPUs.
8543			 */
8544			smp_mb();
8545			break;
8546
8547		case BNX2X_RECOVERY_WAIT:
8548			DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_WAIT\n");
8549			if (bp->is_leader) {
8550				int other_engine = BP_PATH(bp) ? 0 : 1;
8551				u32 other_load_counter =
8552					bnx2x_get_load_cnt(bp, other_engine);
8553				u32 load_counter =
8554					bnx2x_get_load_cnt(bp, BP_PATH(bp));
8555				global = bnx2x_reset_is_global(bp);
8556
8557				/*
8558				 * In case of a parity in a global block, let
8559				 * the first leader that performs a
8560				 * leader_reset() reset the global blocks in
8561				 * order to clear global attentions. Otherwise
8562				 * the the gates will remain closed for that
8563				 * engine.
8564				 */
8565				if (load_counter ||
8566				    (global && other_load_counter)) {
8567					/* Wait until all other functions get
8568					 * down.
8569					 */
8570					schedule_delayed_work(&bp->sp_rtnl_task,
8571								HZ/10);
8572					return;
8573				} else {
8574					/* If all other functions got down -
8575					 * try to bring the chip back to
8576					 * normal. In any case it's an exit
8577					 * point for a leader.
8578					 */
8579					if (bnx2x_leader_reset(bp)) {
8580						bnx2x_recovery_failed(bp);
8581						return;
8582					}
8583
8584					/* If we are here, means that the
8585					 * leader has succeeded and doesn't
8586					 * want to be a leader any more. Try
8587					 * to continue as a none-leader.
8588					 */
8589					break;
8590				}
8591			} else { /* non-leader */
8592				if (!bnx2x_reset_is_done(bp, BP_PATH(bp))) {
8593					/* Try to get a LEADER_LOCK HW lock as
8594					 * long as a former leader may have
8595					 * been unloaded by the user or
8596					 * released a leadership by another
8597					 * reason.
8598					 */
8599					if (bnx2x_trylock_leader_lock(bp)) {
8600						/* I'm a leader now! Restart a
8601						 * switch case.
8602						 */
8603						bp->is_leader = 1;
8604						break;
8605					}
8606
8607					schedule_delayed_work(&bp->sp_rtnl_task,
8608								HZ/10);
8609					return;
8610
8611				} else {
8612					/*
8613					 * If there was a global attention, wait
8614					 * for it to be cleared.
8615					 */
8616					if (bnx2x_reset_is_global(bp)) {
8617						schedule_delayed_work(
8618							&bp->sp_rtnl_task,
8619							HZ/10);
8620						return;
8621					}
8622
8623					if (bnx2x_nic_load(bp, LOAD_NORMAL))
8624						bnx2x_recovery_failed(bp);
8625					else {
8626						bp->recovery_state =
8627							BNX2X_RECOVERY_DONE;
8628						smp_mb();
8629					}
8630
8631					return;
8632				}
8633			}
8634		default:
8635			return;
8636		}
8637	}
8638}
8639
8640/* bnx2x_nic_unload() flushes the bnx2x_wq, thus reset task is
8641 * scheduled on a general queue in order to prevent a dead lock.
8642 */
8643static void bnx2x_sp_rtnl_task(struct work_struct *work)
8644{
8645	struct bnx2x *bp = container_of(work, struct bnx2x, sp_rtnl_task.work);
8646
8647	rtnl_lock();
8648
8649	if (!netif_running(bp->dev))
8650		goto sp_rtnl_exit;
8651
8652	/* if stop on error is defined no recovery flows should be executed */
8653#ifdef BNX2X_STOP_ON_ERROR
8654	BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined "
8655		  "so reset not done to allow debug dump,\n"
8656		  "you will need to reboot when done\n");
8657	goto sp_rtnl_not_reset;
8658#endif
8659
8660	if (unlikely(bp->recovery_state != BNX2X_RECOVERY_DONE)) {
8661		/*
8662		 * Clear all pending SP commands as we are going to reset the
8663		 * function anyway.
8664		 */
8665		bp->sp_rtnl_state = 0;
8666		smp_mb();
8667
8668		bnx2x_parity_recover(bp);
8669
8670		goto sp_rtnl_exit;
8671	}
8672
8673	if (test_and_clear_bit(BNX2X_SP_RTNL_TX_TIMEOUT, &bp->sp_rtnl_state)) {
8674		/*
8675		 * Clear all pending SP commands as we are going to reset the
8676		 * function anyway.
8677		 */
8678		bp->sp_rtnl_state = 0;
8679		smp_mb();
8680
8681		bnx2x_nic_unload(bp, UNLOAD_NORMAL);
8682		bnx2x_nic_load(bp, LOAD_NORMAL);
8683
8684		goto sp_rtnl_exit;
8685	}
8686#ifdef BNX2X_STOP_ON_ERROR
8687sp_rtnl_not_reset:
8688#endif
8689	if (test_and_clear_bit(BNX2X_SP_RTNL_SETUP_TC, &bp->sp_rtnl_state))
8690		bnx2x_setup_tc(bp->dev, bp->dcbx_port_params.ets.num_of_cos);
8691
8692	/*
8693	 * in case of fan failure we need to reset id if the "stop on error"
8694	 * debug flag is set, since we trying to prevent permanent overheating
8695	 * damage
8696	 */
8697	if (test_and_clear_bit(BNX2X_SP_RTNL_FAN_FAILURE, &bp->sp_rtnl_state)) {
8698		DP(BNX2X_MSG_SP, "fan failure detected. Unloading driver\n");
8699		netif_device_detach(bp->dev);
8700		bnx2x_close(bp->dev);
8701	}
8702
8703sp_rtnl_exit:
8704	rtnl_unlock();
8705}
8706
8707/* end of nic load/unload */
8708
8709static void bnx2x_period_task(struct work_struct *work)
8710{
8711	struct bnx2x *bp = container_of(work, struct bnx2x, period_task.work);
8712
8713	if (!netif_running(bp->dev))
8714		goto period_task_exit;
8715
8716	if (CHIP_REV_IS_SLOW(bp)) {
8717		BNX2X_ERR("period task called on emulation, ignoring\n");
8718		goto period_task_exit;
8719	}
8720
8721	bnx2x_acquire_phy_lock(bp);
8722	/*
8723	 * The barrier is needed to ensure the ordering between the writing to
8724	 * the bp->port.pmf in the bnx2x_nic_load() or bnx2x_pmf_update() and
8725	 * the reading here.
8726	 */
8727	smp_mb();
8728	if (bp->port.pmf) {
8729		bnx2x_period_func(&bp->link_params, &bp->link_vars);
8730
8731		/* Re-queue task in 1 sec */
8732		queue_delayed_work(bnx2x_wq, &bp->period_task, 1*HZ);
8733	}
8734
8735	bnx2x_release_phy_lock(bp);
8736period_task_exit:
8737	return;
8738}
8739
8740/*
8741 * Init service functions
8742 */
8743
8744static u32 bnx2x_get_pretend_reg(struct bnx2x *bp)
8745{
8746	u32 base = PXP2_REG_PGL_PRETEND_FUNC_F0;
8747	u32 stride = PXP2_REG_PGL_PRETEND_FUNC_F1 - base;
8748	return base + (BP_ABS_FUNC(bp)) * stride;
8749}
8750
8751static void bnx2x_undi_int_disable_e1h(struct bnx2x *bp)
8752{
8753	u32 reg = bnx2x_get_pretend_reg(bp);
8754
8755	/* Flush all outstanding writes */
8756	mmiowb();
8757
8758	/* Pretend to be function 0 */
8759	REG_WR(bp, reg, 0);
8760	REG_RD(bp, reg);	/* Flush the GRC transaction (in the chip) */
8761
8762	/* From now we are in the "like-E1" mode */
8763	bnx2x_int_disable(bp);
8764
8765	/* Flush all outstanding writes */
8766	mmiowb();
8767
8768	/* Restore the original function */
8769	REG_WR(bp, reg, BP_ABS_FUNC(bp));
8770	REG_RD(bp, reg);
8771}
8772
8773static inline void bnx2x_undi_int_disable(struct bnx2x *bp)
8774{
8775	if (CHIP_IS_E1(bp))
8776		bnx2x_int_disable(bp);
8777	else
8778		bnx2x_undi_int_disable_e1h(bp);
8779}
8780
8781static void __devinit bnx2x_undi_unload(struct bnx2x *bp)
8782{
8783	u32 val;
8784
8785	/* Check if there is any driver already loaded */
8786	val = REG_RD(bp, MISC_REG_UNPREPARED);
8787	if (val == 0x1) {
8788
8789		bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
8790		/*
8791		 * Check if it is the UNDI driver
8792		 * UNDI driver initializes CID offset for normal bell to 0x7
8793		 */
8794		val = REG_RD(bp, DORQ_REG_NORM_CID_OFST);
8795		if (val == 0x7) {
8796			u32 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
8797			/* save our pf_num */
8798			int orig_pf_num = bp->pf_num;
8799			int port;
8800			u32 swap_en, swap_val, value;
8801
8802			/* clear the UNDI indication */
8803			REG_WR(bp, DORQ_REG_NORM_CID_OFST, 0);
8804
8805			BNX2X_DEV_INFO("UNDI is active! reset device\n");
8806
8807			/* try unload UNDI on port 0 */
8808			bp->pf_num = 0;
8809			bp->fw_seq =
8810			      (SHMEM_RD(bp, func_mb[bp->pf_num].drv_mb_header) &
8811				DRV_MSG_SEQ_NUMBER_MASK);
8812			reset_code = bnx2x_fw_command(bp, reset_code, 0);
8813
8814			/* if UNDI is loaded on the other port */
8815			if (reset_code != FW_MSG_CODE_DRV_UNLOAD_COMMON) {
8816
8817				/* send "DONE" for previous unload */
8818				bnx2x_fw_command(bp,
8819						 DRV_MSG_CODE_UNLOAD_DONE, 0);
8820
8821				/* unload UNDI on port 1 */
8822				bp->pf_num = 1;
8823				bp->fw_seq =
8824			      (SHMEM_RD(bp, func_mb[bp->pf_num].drv_mb_header) &
8825					DRV_MSG_SEQ_NUMBER_MASK);
8826				reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
8827
8828				bnx2x_fw_command(bp, reset_code, 0);
8829			}
8830
8831			bnx2x_undi_int_disable(bp);
8832			port = BP_PORT(bp);
8833
8834			/* close input traffic and wait for it */
8835			/* Do not rcv packets to BRB */
8836			REG_WR(bp, (port ? NIG_REG_LLH1_BRB1_DRV_MASK :
8837					   NIG_REG_LLH0_BRB1_DRV_MASK), 0x0);
8838			/* Do not direct rcv packets that are not for MCP to
8839			 * the BRB */
8840			REG_WR(bp, (port ? NIG_REG_LLH1_BRB1_NOT_MCP :
8841					   NIG_REG_LLH0_BRB1_NOT_MCP), 0x0);
8842			/* clear AEU */
8843			REG_WR(bp, (port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
8844					   MISC_REG_AEU_MASK_ATTN_FUNC_0), 0);
8845			msleep(10);
8846
8847			/* save NIG port swap info */
8848			swap_val = REG_RD(bp, NIG_REG_PORT_SWAP);
8849			swap_en = REG_RD(bp, NIG_REG_STRAP_OVERRIDE);
8850			/* reset device */
8851			REG_WR(bp,
8852			       GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
8853			       0xd3ffffff);
8854
8855			value = 0x1400;
8856			if (CHIP_IS_E3(bp)) {
8857				value |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
8858				value |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
8859			}
8860
8861			REG_WR(bp,
8862			       GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
8863			       value);
8864
8865			/* take the NIG out of reset and restore swap values */
8866			REG_WR(bp,
8867			       GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET,
8868			       MISC_REGISTERS_RESET_REG_1_RST_NIG);
8869			REG_WR(bp, NIG_REG_PORT_SWAP, swap_val);
8870			REG_WR(bp, NIG_REG_STRAP_OVERRIDE, swap_en);
8871
8872			/* send unload done to the MCP */
8873			bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0);
8874
8875			/* restore our func and fw_seq */
8876			bp->pf_num = orig_pf_num;
8877			bp->fw_seq =
8878			      (SHMEM_RD(bp, func_mb[bp->pf_num].drv_mb_header) &
8879				DRV_MSG_SEQ_NUMBER_MASK);
8880		}
8881
8882		/* now it's safe to release the lock */
8883		bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
8884	}
8885}
8886
8887static void __devinit bnx2x_get_common_hwinfo(struct bnx2x *bp)
8888{
8889	u32 val, val2, val3, val4, id, boot_mode;
8890	u16 pmc;
8891
8892	/* Get the chip revision id and number. */
8893	/* chip num:16-31, rev:12-15, metal:4-11, bond_id:0-3 */
8894	val = REG_RD(bp, MISC_REG_CHIP_NUM);
8895	id = ((val & 0xffff) << 16);
8896	val = REG_RD(bp, MISC_REG_CHIP_REV);
8897	id |= ((val & 0xf) << 12);
8898	val = REG_RD(bp, MISC_REG_CHIP_METAL);
8899	id |= ((val & 0xff) << 4);
8900	val = REG_RD(bp, MISC_REG_BOND_ID);
8901	id |= (val & 0xf);
8902	bp->common.chip_id = id;
8903
8904	/* Set doorbell size */
8905	bp->db_size = (1 << BNX2X_DB_SHIFT);
8906
8907	if (!CHIP_IS_E1x(bp)) {
8908		val = REG_RD(bp, MISC_REG_PORT4MODE_EN_OVWR);
8909		if ((val & 1) == 0)
8910			val = REG_RD(bp, MISC_REG_PORT4MODE_EN);
8911		else
8912			val = (val >> 1) & 1;
8913		BNX2X_DEV_INFO("chip is in %s\n", val ? "4_PORT_MODE" :
8914						       "2_PORT_MODE");
8915		bp->common.chip_port_mode = val ? CHIP_4_PORT_MODE :
8916						 CHIP_2_PORT_MODE;
8917
8918		if (CHIP_MODE_IS_4_PORT(bp))
8919			bp->pfid = (bp->pf_num >> 1);	/* 0..3 */
8920		else
8921			bp->pfid = (bp->pf_num & 0x6);	/* 0, 2, 4, 6 */
8922	} else {
8923		bp->common.chip_port_mode = CHIP_PORT_MODE_NONE; /* N/A */
8924		bp->pfid = bp->pf_num;			/* 0..7 */
8925	}
8926
8927	bp->link_params.chip_id = bp->common.chip_id;
8928	BNX2X_DEV_INFO("chip ID is 0x%x\n", id);
8929
8930	val = (REG_RD(bp, 0x2874) & 0x55);
8931	if ((bp->common.chip_id & 0x1) ||
8932	    (CHIP_IS_E1(bp) && val) || (CHIP_IS_E1H(bp) && (val == 0x55))) {
8933		bp->flags |= ONE_PORT_FLAG;
8934		BNX2X_DEV_INFO("single port device\n");
8935	}
8936
8937	val = REG_RD(bp, MCP_REG_MCPR_NVM_CFG4);
8938	bp->common.flash_size = (BNX2X_NVRAM_1MB_SIZE <<
8939				 (val & MCPR_NVM_CFG4_FLASH_SIZE));
8940	BNX2X_DEV_INFO("flash_size 0x%x (%d)\n",
8941		       bp->common.flash_size, bp->common.flash_size);
8942
8943	bnx2x_init_shmem(bp);
8944
8945
8946
8947	bp->common.shmem2_base = REG_RD(bp, (BP_PATH(bp) ?
8948					MISC_REG_GENERIC_CR_1 :
8949					MISC_REG_GENERIC_CR_0));
8950
8951	bp->link_params.shmem_base = bp->common.shmem_base;
8952	bp->link_params.shmem2_base = bp->common.shmem2_base;
8953	BNX2X_DEV_INFO("shmem offset 0x%x  shmem2 offset 0x%x\n",
8954		       bp->common.shmem_base, bp->common.shmem2_base);
8955
8956	if (!bp->common.shmem_base) {
8957		BNX2X_DEV_INFO("MCP not active\n");
8958		bp->flags |= NO_MCP_FLAG;
8959		return;
8960	}
8961
8962	bp->common.hw_config = SHMEM_RD(bp, dev_info.shared_hw_config.config);
8963	BNX2X_DEV_INFO("hw_config 0x%08x\n", bp->common.hw_config);
8964
8965	bp->link_params.hw_led_mode = ((bp->common.hw_config &
8966					SHARED_HW_CFG_LED_MODE_MASK) >>
8967				       SHARED_HW_CFG_LED_MODE_SHIFT);
8968
8969	bp->link_params.feature_config_flags = 0;
8970	val = SHMEM_RD(bp, dev_info.shared_feature_config.config);
8971	if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED)
8972		bp->link_params.feature_config_flags |=
8973				FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
8974	else
8975		bp->link_params.feature_config_flags &=
8976				~FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
8977
8978	val = SHMEM_RD(bp, dev_info.bc_rev) >> 8;
8979	bp->common.bc_ver = val;
8980	BNX2X_DEV_INFO("bc_ver %X\n", val);
8981	if (val < BNX2X_BC_VER) {
8982		/* for now only warn
8983		 * later we might need to enforce this */
8984		BNX2X_ERR("This driver needs bc_ver %X but found %X, "
8985			  "please upgrade BC\n", BNX2X_BC_VER, val);
8986	}
8987	bp->link_params.feature_config_flags |=
8988				(val >= REQ_BC_VER_4_VRFY_FIRST_PHY_OPT_MDL) ?
8989				FEATURE_CONFIG_BC_SUPPORTS_OPT_MDL_VRFY : 0;
8990
8991	bp->link_params.feature_config_flags |=
8992		(val >= REQ_BC_VER_4_VRFY_SPECIFIC_PHY_OPT_MDL) ?
8993		FEATURE_CONFIG_BC_SUPPORTS_DUAL_PHY_OPT_MDL_VRFY : 0;
8994
8995	bp->link_params.feature_config_flags |=
8996		(val >= REQ_BC_VER_4_SFP_TX_DISABLE_SUPPORTED) ?
8997		FEATURE_CONFIG_BC_SUPPORTS_SFP_TX_DISABLED : 0;
8998	bp->flags |= (val >= REQ_BC_VER_4_PFC_STATS_SUPPORTED) ?
8999			BC_SUPPORTS_PFC_STATS : 0;
9000
9001	boot_mode = SHMEM_RD(bp,
9002			dev_info.port_feature_config[BP_PORT(bp)].mba_config) &
9003			PORT_FEATURE_MBA_BOOT_AGENT_TYPE_MASK;
9004	switch (boot_mode) {
9005	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_PXE:
9006		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_PXE;
9007		break;
9008	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_ISCSIB:
9009		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_ISCSI;
9010		break;
9011	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_FCOE_BOOT:
9012		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_FCOE;
9013		break;
9014	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_NONE:
9015		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_NONE;
9016		break;
9017	}
9018
9019	pci_read_config_word(bp->pdev, bp->pm_cap + PCI_PM_PMC, &pmc);
9020	bp->flags |= (pmc & PCI_PM_CAP_PME_D3cold) ? 0 : NO_WOL_FLAG;
9021
9022	BNX2X_DEV_INFO("%sWoL capable\n",
9023		       (bp->flags & NO_WOL_FLAG) ? "not " : "");
9024
9025	val = SHMEM_RD(bp, dev_info.shared_hw_config.part_num);
9026	val2 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[4]);
9027	val3 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[8]);
9028	val4 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[12]);
9029
9030	dev_info(&bp->pdev->dev, "part number %X-%X-%X-%X\n",
9031		 val, val2, val3, val4);
9032}
9033
9034#define IGU_FID(val)	GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID)
9035#define IGU_VEC(val)	GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR)
9036
9037static void __devinit bnx2x_get_igu_cam_info(struct bnx2x *bp)
9038{
9039	int pfid = BP_FUNC(bp);
9040	int igu_sb_id;
9041	u32 val;
9042	u8 fid, igu_sb_cnt = 0;
9043
9044	bp->igu_base_sb = 0xff;
9045	if (CHIP_INT_MODE_IS_BC(bp)) {
9046		int vn = BP_VN(bp);
9047		igu_sb_cnt = bp->igu_sb_cnt;
9048		bp->igu_base_sb = (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn) *
9049			FP_SB_MAX_E1x;
9050
9051		bp->igu_dsb_id =  E1HVN_MAX * FP_SB_MAX_E1x +
9052			(CHIP_MODE_IS_4_PORT(bp) ? pfid : vn);
9053
9054		return;
9055	}
9056
9057	/* IGU in normal mode - read CAM */
9058	for (igu_sb_id = 0; igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE;
9059	     igu_sb_id++) {
9060		val = REG_RD(bp, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4);
9061		if (!(val & IGU_REG_MAPPING_MEMORY_VALID))
9062			continue;
9063		fid = IGU_FID(val);
9064		if ((fid & IGU_FID_ENCODE_IS_PF)) {
9065			if ((fid & IGU_FID_PF_NUM_MASK) != pfid)
9066				continue;
9067			if (IGU_VEC(val) == 0)
9068				/* default status block */
9069				bp->igu_dsb_id = igu_sb_id;
9070			else {
9071				if (bp->igu_base_sb == 0xff)
9072					bp->igu_base_sb = igu_sb_id;
9073				igu_sb_cnt++;
9074			}
9075		}
9076	}
9077
9078#ifdef CONFIG_PCI_MSI
9079	/*
9080	 * It's expected that number of CAM entries for this functions is equal
9081	 * to the number evaluated based on the MSI-X table size. We want a
9082	 * harsh warning if these values are different!
9083	 */
9084	WARN_ON(bp->igu_sb_cnt != igu_sb_cnt);
9085#endif
9086
9087	if (igu_sb_cnt == 0)
9088		BNX2X_ERR("CAM configuration error\n");
9089}
9090
9091static void __devinit bnx2x_link_settings_supported(struct bnx2x *bp,
9092						    u32 switch_cfg)
9093{
9094	int cfg_size = 0, idx, port = BP_PORT(bp);
9095
9096	/* Aggregation of supported attributes of all external phys */
9097	bp->port.supported[0] = 0;
9098	bp->port.supported[1] = 0;
9099	switch (bp->link_params.num_phys) {
9100	case 1:
9101		bp->port.supported[0] = bp->link_params.phy[INT_PHY].supported;
9102		cfg_size = 1;
9103		break;
9104	case 2:
9105		bp->port.supported[0] = bp->link_params.phy[EXT_PHY1].supported;
9106		cfg_size = 1;
9107		break;
9108	case 3:
9109		if (bp->link_params.multi_phy_config &
9110		    PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
9111			bp->port.supported[1] =
9112				bp->link_params.phy[EXT_PHY1].supported;
9113			bp->port.supported[0] =
9114				bp->link_params.phy[EXT_PHY2].supported;
9115		} else {
9116			bp->port.supported[0] =
9117				bp->link_params.phy[EXT_PHY1].supported;
9118			bp->port.supported[1] =
9119				bp->link_params.phy[EXT_PHY2].supported;
9120		}
9121		cfg_size = 2;
9122		break;
9123	}
9124
9125	if (!(bp->port.supported[0] || bp->port.supported[1])) {
9126		BNX2X_ERR("NVRAM config error. BAD phy config."
9127			  "PHY1 config 0x%x, PHY2 config 0x%x\n",
9128			   SHMEM_RD(bp,
9129			   dev_info.port_hw_config[port].external_phy_config),
9130			   SHMEM_RD(bp,
9131			   dev_info.port_hw_config[port].external_phy_config2));
9132			return;
9133	}
9134
9135	if (CHIP_IS_E3(bp))
9136		bp->port.phy_addr = REG_RD(bp, MISC_REG_WC0_CTRL_PHY_ADDR);
9137	else {
9138		switch (switch_cfg) {
9139		case SWITCH_CFG_1G:
9140			bp->port.phy_addr = REG_RD(
9141				bp, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10);
9142			break;
9143		case SWITCH_CFG_10G:
9144			bp->port.phy_addr = REG_RD(
9145				bp, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18);
9146			break;
9147		default:
9148			BNX2X_ERR("BAD switch_cfg link_config 0x%x\n",
9149				  bp->port.link_config[0]);
9150			return;
9151		}
9152	}
9153	BNX2X_DEV_INFO("phy_addr 0x%x\n", bp->port.phy_addr);
9154	/* mask what we support according to speed_cap_mask per configuration */
9155	for (idx = 0; idx < cfg_size; idx++) {
9156		if (!(bp->link_params.speed_cap_mask[idx] &
9157				PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF))
9158			bp->port.supported[idx] &= ~SUPPORTED_10baseT_Half;
9159
9160		if (!(bp->link_params.speed_cap_mask[idx] &
9161				PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL))
9162			bp->port.supported[idx] &= ~SUPPORTED_10baseT_Full;
9163
9164		if (!(bp->link_params.speed_cap_mask[idx] &
9165				PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF))
9166			bp->port.supported[idx] &= ~SUPPORTED_100baseT_Half;
9167
9168		if (!(bp->link_params.speed_cap_mask[idx] &
9169				PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL))
9170			bp->port.supported[idx] &= ~SUPPORTED_100baseT_Full;
9171
9172		if (!(bp->link_params.speed_cap_mask[idx] &
9173					PORT_HW_CFG_SPEED_CAPABILITY_D0_1G))
9174			bp->port.supported[idx] &= ~(SUPPORTED_1000baseT_Half |
9175						     SUPPORTED_1000baseT_Full);
9176
9177		if (!(bp->link_params.speed_cap_mask[idx] &
9178					PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G))
9179			bp->port.supported[idx] &= ~SUPPORTED_2500baseX_Full;
9180
9181		if (!(bp->link_params.speed_cap_mask[idx] &
9182					PORT_HW_CFG_SPEED_CAPABILITY_D0_10G))
9183			bp->port.supported[idx] &= ~SUPPORTED_10000baseT_Full;
9184
9185	}
9186
9187	BNX2X_DEV_INFO("supported 0x%x 0x%x\n", bp->port.supported[0],
9188		       bp->port.supported[1]);
9189}
9190
9191static void __devinit bnx2x_link_settings_requested(struct bnx2x *bp)
9192{
9193	u32 link_config, idx, cfg_size = 0;
9194	bp->port.advertising[0] = 0;
9195	bp->port.advertising[1] = 0;
9196	switch (bp->link_params.num_phys) {
9197	case 1:
9198	case 2:
9199		cfg_size = 1;
9200		break;
9201	case 3:
9202		cfg_size = 2;
9203		break;
9204	}
9205	for (idx = 0; idx < cfg_size; idx++) {
9206		bp->link_params.req_duplex[idx] = DUPLEX_FULL;
9207		link_config = bp->port.link_config[idx];
9208		switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) {
9209		case PORT_FEATURE_LINK_SPEED_AUTO:
9210			if (bp->port.supported[idx] & SUPPORTED_Autoneg) {
9211				bp->link_params.req_line_speed[idx] =
9212					SPEED_AUTO_NEG;
9213				bp->port.advertising[idx] |=
9214					bp->port.supported[idx];
9215			} else {
9216				/* force 10G, no AN */
9217				bp->link_params.req_line_speed[idx] =
9218					SPEED_10000;
9219				bp->port.advertising[idx] |=
9220					(ADVERTISED_10000baseT_Full |
9221					 ADVERTISED_FIBRE);
9222				continue;
9223			}
9224			break;
9225
9226		case PORT_FEATURE_LINK_SPEED_10M_FULL:
9227			if (bp->port.supported[idx] & SUPPORTED_10baseT_Full) {
9228				bp->link_params.req_line_speed[idx] =
9229					SPEED_10;
9230				bp->port.advertising[idx] |=
9231					(ADVERTISED_10baseT_Full |
9232					 ADVERTISED_TP);
9233			} else {
9234				BNX2X_ERR("NVRAM config error. "
9235					    "Invalid link_config 0x%x"
9236					    "  speed_cap_mask 0x%x\n",
9237					    link_config,
9238				    bp->link_params.speed_cap_mask[idx]);
9239				return;
9240			}
9241			break;
9242
9243		case PORT_FEATURE_LINK_SPEED_10M_HALF:
9244			if (bp->port.supported[idx] & SUPPORTED_10baseT_Half) {
9245				bp->link_params.req_line_speed[idx] =
9246					SPEED_10;
9247				bp->link_params.req_duplex[idx] =
9248					DUPLEX_HALF;
9249				bp->port.advertising[idx] |=
9250					(ADVERTISED_10baseT_Half |
9251					 ADVERTISED_TP);
9252			} else {
9253				BNX2X_ERR("NVRAM config error. "
9254					    "Invalid link_config 0x%x"
9255					    "  speed_cap_mask 0x%x\n",
9256					    link_config,
9257					  bp->link_params.speed_cap_mask[idx]);
9258				return;
9259			}
9260			break;
9261
9262		case PORT_FEATURE_LINK_SPEED_100M_FULL:
9263			if (bp->port.supported[idx] &
9264			    SUPPORTED_100baseT_Full) {
9265				bp->link_params.req_line_speed[idx] =
9266					SPEED_100;
9267				bp->port.advertising[idx] |=
9268					(ADVERTISED_100baseT_Full |
9269					 ADVERTISED_TP);
9270			} else {
9271				BNX2X_ERR("NVRAM config error. "
9272					    "Invalid link_config 0x%x"
9273					    "  speed_cap_mask 0x%x\n",
9274					    link_config,
9275					  bp->link_params.speed_cap_mask[idx]);
9276				return;
9277			}
9278			break;
9279
9280		case PORT_FEATURE_LINK_SPEED_100M_HALF:
9281			if (bp->port.supported[idx] &
9282			    SUPPORTED_100baseT_Half) {
9283				bp->link_params.req_line_speed[idx] =
9284								SPEED_100;
9285				bp->link_params.req_duplex[idx] =
9286								DUPLEX_HALF;
9287				bp->port.advertising[idx] |=
9288					(ADVERTISED_100baseT_Half |
9289					 ADVERTISED_TP);
9290			} else {
9291				BNX2X_ERR("NVRAM config error. "
9292				    "Invalid link_config 0x%x"
9293				    "  speed_cap_mask 0x%x\n",
9294				    link_config,
9295				    bp->link_params.speed_cap_mask[idx]);
9296				return;
9297			}
9298			break;
9299
9300		case PORT_FEATURE_LINK_SPEED_1G:
9301			if (bp->port.supported[idx] &
9302			    SUPPORTED_1000baseT_Full) {
9303				bp->link_params.req_line_speed[idx] =
9304					SPEED_1000;
9305				bp->port.advertising[idx] |=
9306					(ADVERTISED_1000baseT_Full |
9307					 ADVERTISED_TP);
9308			} else {
9309				BNX2X_ERR("NVRAM config error. "
9310				    "Invalid link_config 0x%x"
9311				    "  speed_cap_mask 0x%x\n",
9312				    link_config,
9313				    bp->link_params.speed_cap_mask[idx]);
9314				return;
9315			}
9316			break;
9317
9318		case PORT_FEATURE_LINK_SPEED_2_5G:
9319			if (bp->port.supported[idx] &
9320			    SUPPORTED_2500baseX_Full) {
9321				bp->link_params.req_line_speed[idx] =
9322					SPEED_2500;
9323				bp->port.advertising[idx] |=
9324					(ADVERTISED_2500baseX_Full |
9325						ADVERTISED_TP);
9326			} else {
9327				BNX2X_ERR("NVRAM config error. "
9328				    "Invalid link_config 0x%x"
9329				    "  speed_cap_mask 0x%x\n",
9330				    link_config,
9331				    bp->link_params.speed_cap_mask[idx]);
9332				return;
9333			}
9334			break;
9335
9336		case PORT_FEATURE_LINK_SPEED_10G_CX4:
9337			if (bp->port.supported[idx] &
9338			    SUPPORTED_10000baseT_Full) {
9339				bp->link_params.req_line_speed[idx] =
9340					SPEED_10000;
9341				bp->port.advertising[idx] |=
9342					(ADVERTISED_10000baseT_Full |
9343						ADVERTISED_FIBRE);
9344			} else {
9345				BNX2X_ERR("NVRAM config error. "
9346				    "Invalid link_config 0x%x"
9347				    "  speed_cap_mask 0x%x\n",
9348				    link_config,
9349				    bp->link_params.speed_cap_mask[idx]);
9350				return;
9351			}
9352			break;
9353		case PORT_FEATURE_LINK_SPEED_20G:
9354			bp->link_params.req_line_speed[idx] = SPEED_20000;
9355
9356			break;
9357		default:
9358			BNX2X_ERR("NVRAM config error. "
9359				  "BAD link speed link_config 0x%x\n",
9360				  link_config);
9361				bp->link_params.req_line_speed[idx] =
9362							SPEED_AUTO_NEG;
9363				bp->port.advertising[idx] =
9364						bp->port.supported[idx];
9365			break;
9366		}
9367
9368		bp->link_params.req_flow_ctrl[idx] = (link_config &
9369					 PORT_FEATURE_FLOW_CONTROL_MASK);
9370		if ((bp->link_params.req_flow_ctrl[idx] ==
9371		     BNX2X_FLOW_CTRL_AUTO) &&
9372		    !(bp->port.supported[idx] & SUPPORTED_Autoneg)) {
9373			bp->link_params.req_flow_ctrl[idx] =
9374				BNX2X_FLOW_CTRL_NONE;
9375		}
9376
9377		BNX2X_DEV_INFO("req_line_speed %d  req_duplex %d req_flow_ctrl"
9378			       " 0x%x advertising 0x%x\n",
9379			       bp->link_params.req_line_speed[idx],
9380			       bp->link_params.req_duplex[idx],
9381			       bp->link_params.req_flow_ctrl[idx],
9382			       bp->port.advertising[idx]);
9383	}
9384}
9385
9386static void __devinit bnx2x_set_mac_buf(u8 *mac_buf, u32 mac_lo, u16 mac_hi)
9387{
9388	mac_hi = cpu_to_be16(mac_hi);
9389	mac_lo = cpu_to_be32(mac_lo);
9390	memcpy(mac_buf, &mac_hi, sizeof(mac_hi));
9391	memcpy(mac_buf + sizeof(mac_hi), &mac_lo, sizeof(mac_lo));
9392}
9393
9394static void __devinit bnx2x_get_port_hwinfo(struct bnx2x *bp)
9395{
9396	int port = BP_PORT(bp);
9397	u32 config;
9398	u32 ext_phy_type, ext_phy_config;
9399
9400	bp->link_params.bp = bp;
9401	bp->link_params.port = port;
9402
9403	bp->link_params.lane_config =
9404		SHMEM_RD(bp, dev_info.port_hw_config[port].lane_config);
9405
9406	bp->link_params.speed_cap_mask[0] =
9407		SHMEM_RD(bp,
9408			 dev_info.port_hw_config[port].speed_capability_mask);
9409	bp->link_params.speed_cap_mask[1] =
9410		SHMEM_RD(bp,
9411			 dev_info.port_hw_config[port].speed_capability_mask2);
9412	bp->port.link_config[0] =
9413		SHMEM_RD(bp, dev_info.port_feature_config[port].link_config);
9414
9415	bp->port.link_config[1] =
9416		SHMEM_RD(bp, dev_info.port_feature_config[port].link_config2);
9417
9418	bp->link_params.multi_phy_config =
9419		SHMEM_RD(bp, dev_info.port_hw_config[port].multi_phy_config);
9420	/* If the device is capable of WoL, set the default state according
9421	 * to the HW
9422	 */
9423	config = SHMEM_RD(bp, dev_info.port_feature_config[port].config);
9424	bp->wol = (!(bp->flags & NO_WOL_FLAG) &&
9425		   (config & PORT_FEATURE_WOL_ENABLED));
9426
9427	BNX2X_DEV_INFO("lane_config 0x%08x  "
9428		       "speed_cap_mask0 0x%08x  link_config0 0x%08x\n",
9429		       bp->link_params.lane_config,
9430		       bp->link_params.speed_cap_mask[0],
9431		       bp->port.link_config[0]);
9432
9433	bp->link_params.switch_cfg = (bp->port.link_config[0] &
9434				      PORT_FEATURE_CONNECTED_SWITCH_MASK);
9435	bnx2x_phy_probe(&bp->link_params);
9436	bnx2x_link_settings_supported(bp, bp->link_params.switch_cfg);
9437
9438	bnx2x_link_settings_requested(bp);
9439
9440	/*
9441	 * If connected directly, work with the internal PHY, otherwise, work
9442	 * with the external PHY
9443	 */
9444	ext_phy_config =
9445		SHMEM_RD(bp,
9446			 dev_info.port_hw_config[port].external_phy_config);
9447	ext_phy_type = XGXS_EXT_PHY_TYPE(ext_phy_config);
9448	if (ext_phy_type == PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT)
9449		bp->mdio.prtad = bp->port.phy_addr;
9450
9451	else if ((ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE) &&
9452		 (ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_NOT_CONN))
9453		bp->mdio.prtad =
9454			XGXS_EXT_PHY_ADDR(ext_phy_config);
9455
9456	/*
9457	 * Check if hw lock is required to access MDC/MDIO bus to the PHY(s)
9458	 * In MF mode, it is set to cover self test cases
9459	 */
9460	if (IS_MF(bp))
9461		bp->port.need_hw_lock = 1;
9462	else
9463		bp->port.need_hw_lock = bnx2x_hw_lock_required(bp,
9464							bp->common.shmem_base,
9465							bp->common.shmem2_base);
9466}
9467
9468void bnx2x_get_iscsi_info(struct bnx2x *bp)
9469{
9470#ifdef BCM_CNIC
9471	int port = BP_PORT(bp);
9472
9473	u32 max_iscsi_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
9474				drv_lic_key[port].max_iscsi_conn);
9475
9476	/* Get the number of maximum allowed iSCSI connections */
9477	bp->cnic_eth_dev.max_iscsi_conn =
9478		(max_iscsi_conn & BNX2X_MAX_ISCSI_INIT_CONN_MASK) >>
9479		BNX2X_MAX_ISCSI_INIT_CONN_SHIFT;
9480
9481	BNX2X_DEV_INFO("max_iscsi_conn 0x%x\n",
9482		       bp->cnic_eth_dev.max_iscsi_conn);
9483
9484	/*
9485	 * If maximum allowed number of connections is zero -
9486	 * disable the feature.
9487	 */
9488	if (!bp->cnic_eth_dev.max_iscsi_conn)
9489		bp->flags |= NO_ISCSI_FLAG;
9490#else
9491	bp->flags |= NO_ISCSI_FLAG;
9492#endif
9493}
9494
9495static void __devinit bnx2x_get_fcoe_info(struct bnx2x *bp)
9496{
9497#ifdef BCM_CNIC
9498	int port = BP_PORT(bp);
9499	int func = BP_ABS_FUNC(bp);
9500
9501	u32 max_fcoe_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
9502				drv_lic_key[port].max_fcoe_conn);
9503
9504	/* Get the number of maximum allowed FCoE connections */
9505	bp->cnic_eth_dev.max_fcoe_conn =
9506		(max_fcoe_conn & BNX2X_MAX_FCOE_INIT_CONN_MASK) >>
9507		BNX2X_MAX_FCOE_INIT_CONN_SHIFT;
9508
9509	/* Read the WWN: */
9510	if (!IS_MF(bp)) {
9511		/* Port info */
9512		bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
9513			SHMEM_RD(bp,
9514				dev_info.port_hw_config[port].
9515				 fcoe_wwn_port_name_upper);
9516		bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
9517			SHMEM_RD(bp,
9518				dev_info.port_hw_config[port].
9519				 fcoe_wwn_port_name_lower);
9520
9521		/* Node info */
9522		bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
9523			SHMEM_RD(bp,
9524				dev_info.port_hw_config[port].
9525				 fcoe_wwn_node_name_upper);
9526		bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
9527			SHMEM_RD(bp,
9528				dev_info.port_hw_config[port].
9529				 fcoe_wwn_node_name_lower);
9530	} else if (!IS_MF_SD(bp)) {
9531		u32 cfg = MF_CFG_RD(bp, func_ext_config[func].func_cfg);
9532
9533		/*
9534		 * Read the WWN info only if the FCoE feature is enabled for
9535		 * this function.
9536		 */
9537		if (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) {
9538			/* Port info */
9539			bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
9540				MF_CFG_RD(bp, func_ext_config[func].
9541						fcoe_wwn_port_name_upper);
9542			bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
9543				MF_CFG_RD(bp, func_ext_config[func].
9544						fcoe_wwn_port_name_lower);
9545
9546			/* Node info */
9547			bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
9548				MF_CFG_RD(bp, func_ext_config[func].
9549						fcoe_wwn_node_name_upper);
9550			bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
9551				MF_CFG_RD(bp, func_ext_config[func].
9552						fcoe_wwn_node_name_lower);
9553		}
9554	}
9555
9556	BNX2X_DEV_INFO("max_fcoe_conn 0x%x\n", bp->cnic_eth_dev.max_fcoe_conn);
9557
9558	/*
9559	 * If maximum allowed number of connections is zero -
9560	 * disable the feature.
9561	 */
9562	if (!bp->cnic_eth_dev.max_fcoe_conn)
9563		bp->flags |= NO_FCOE_FLAG;
9564#else
9565	bp->flags |= NO_FCOE_FLAG;
9566#endif
9567}
9568
9569static void __devinit bnx2x_get_cnic_info(struct bnx2x *bp)
9570{
9571	/*
9572	 * iSCSI may be dynamically disabled but reading
9573	 * info here we will decrease memory usage by driver
9574	 * if the feature is disabled for good
9575	 */
9576	bnx2x_get_iscsi_info(bp);
9577	bnx2x_get_fcoe_info(bp);
9578}
9579
9580static void __devinit bnx2x_get_mac_hwinfo(struct bnx2x *bp)
9581{
9582	u32 val, val2;
9583	int func = BP_ABS_FUNC(bp);
9584	int port = BP_PORT(bp);
9585#ifdef BCM_CNIC
9586	u8 *iscsi_mac = bp->cnic_eth_dev.iscsi_mac;
9587	u8 *fip_mac = bp->fip_mac;
9588#endif
9589
9590	/* Zero primary MAC configuration */
9591	memset(bp->dev->dev_addr, 0, ETH_ALEN);
9592
9593	if (BP_NOMCP(bp)) {
9594		BNX2X_ERROR("warning: random MAC workaround active\n");
9595		random_ether_addr(bp->dev->dev_addr);
9596	} else if (IS_MF(bp)) {
9597		val2 = MF_CFG_RD(bp, func_mf_config[func].mac_upper);
9598		val = MF_CFG_RD(bp, func_mf_config[func].mac_lower);
9599		if ((val2 != FUNC_MF_CFG_UPPERMAC_DEFAULT) &&
9600		    (val != FUNC_MF_CFG_LOWERMAC_DEFAULT))
9601			bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
9602
9603#ifdef BCM_CNIC
9604		/*
9605		 * iSCSI and FCoE NPAR MACs: if there is no either iSCSI or
9606		 * FCoE MAC then the appropriate feature should be disabled.
9607		 */
9608		if (IS_MF_SI(bp)) {
9609			u32 cfg = MF_CFG_RD(bp, func_ext_config[func].func_cfg);
9610			if (cfg & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) {
9611				val2 = MF_CFG_RD(bp, func_ext_config[func].
9612						     iscsi_mac_addr_upper);
9613				val = MF_CFG_RD(bp, func_ext_config[func].
9614						    iscsi_mac_addr_lower);
9615				bnx2x_set_mac_buf(iscsi_mac, val, val2);
9616				BNX2X_DEV_INFO("Read iSCSI MAC: %pM\n",
9617					       iscsi_mac);
9618			} else
9619				bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
9620
9621			if (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) {
9622				val2 = MF_CFG_RD(bp, func_ext_config[func].
9623						     fcoe_mac_addr_upper);
9624				val = MF_CFG_RD(bp, func_ext_config[func].
9625						    fcoe_mac_addr_lower);
9626				bnx2x_set_mac_buf(fip_mac, val, val2);
9627				BNX2X_DEV_INFO("Read FCoE L2 MAC: %pM\n",
9628					       fip_mac);
9629
9630			} else
9631				bp->flags |= NO_FCOE_FLAG;
9632		} else { /* SD mode */
9633			if (BNX2X_IS_MF_PROTOCOL_ISCSI(bp)) {
9634				/* use primary mac as iscsi mac */
9635				memcpy(iscsi_mac, bp->dev->dev_addr, ETH_ALEN);
9636				/* Zero primary MAC configuration */
9637				memset(bp->dev->dev_addr, 0, ETH_ALEN);
9638
9639				BNX2X_DEV_INFO("SD ISCSI MODE\n");
9640				BNX2X_DEV_INFO("Read iSCSI MAC: %pM\n",
9641					       iscsi_mac);
9642			}
9643		}
9644#endif
9645	} else {
9646		/* in SF read MACs from port configuration */
9647		val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper);
9648		val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower);
9649		bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
9650
9651#ifdef BCM_CNIC
9652		val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
9653				    iscsi_mac_upper);
9654		val = SHMEM_RD(bp, dev_info.port_hw_config[port].
9655				   iscsi_mac_lower);
9656		bnx2x_set_mac_buf(iscsi_mac, val, val2);
9657
9658		val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
9659				    fcoe_fip_mac_upper);
9660		val = SHMEM_RD(bp, dev_info.port_hw_config[port].
9661				   fcoe_fip_mac_lower);
9662		bnx2x_set_mac_buf(fip_mac, val, val2);
9663#endif
9664	}
9665
9666	memcpy(bp->link_params.mac_addr, bp->dev->dev_addr, ETH_ALEN);
9667	memcpy(bp->dev->perm_addr, bp->dev->dev_addr, ETH_ALEN);
9668
9669#ifdef BCM_CNIC
9670	/* Set the FCoE MAC in MF_SD mode */
9671	if (!CHIP_IS_E1x(bp) && IS_MF_SD(bp))
9672		memcpy(fip_mac, bp->dev->dev_addr, ETH_ALEN);
9673
9674	/* Disable iSCSI if MAC configuration is
9675	 * invalid.
9676	 */
9677	if (!is_valid_ether_addr(iscsi_mac)) {
9678		bp->flags |= NO_ISCSI_FLAG;
9679		memset(iscsi_mac, 0, ETH_ALEN);
9680	}
9681
9682	/* Disable FCoE if MAC configuration is
9683	 * invalid.
9684	 */
9685	if (!is_valid_ether_addr(fip_mac)) {
9686		bp->flags |= NO_FCOE_FLAG;
9687		memset(bp->fip_mac, 0, ETH_ALEN);
9688	}
9689#endif
9690
9691	if (!bnx2x_is_valid_ether_addr(bp, bp->dev->dev_addr))
9692		dev_err(&bp->pdev->dev,
9693			"bad Ethernet MAC address configuration: "
9694			"%pM, change it manually before bringing up "
9695			"the appropriate network interface\n",
9696			bp->dev->dev_addr);
9697}
9698
9699static int __devinit bnx2x_get_hwinfo(struct bnx2x *bp)
9700{
9701	int /*abs*/func = BP_ABS_FUNC(bp);
9702	int vn;
9703	u32 val = 0;
9704	int rc = 0;
9705
9706	bnx2x_get_common_hwinfo(bp);
9707
9708	/*
9709	 * initialize IGU parameters
9710	 */
9711	if (CHIP_IS_E1x(bp)) {
9712		bp->common.int_block = INT_BLOCK_HC;
9713
9714		bp->igu_dsb_id = DEF_SB_IGU_ID;
9715		bp->igu_base_sb = 0;
9716	} else {
9717		bp->common.int_block = INT_BLOCK_IGU;
9718
9719		/* do not allow device reset during IGU info preocessing */
9720		bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
9721
9722		val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
9723
9724		if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
9725			int tout = 5000;
9726
9727			BNX2X_DEV_INFO("FORCING Normal Mode\n");
9728
9729			val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN);
9730			REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION, val);
9731			REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x7f);
9732
9733			while (tout && REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
9734				tout--;
9735				usleep_range(1000, 1000);
9736			}
9737
9738			if (REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
9739				dev_err(&bp->pdev->dev,
9740					"FORCING Normal Mode failed!!!\n");
9741				return -EPERM;
9742			}
9743		}
9744
9745		if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
9746			BNX2X_DEV_INFO("IGU Backward Compatible Mode\n");
9747			bp->common.int_block |= INT_BLOCK_MODE_BW_COMP;
9748		} else
9749			BNX2X_DEV_INFO("IGU Normal Mode\n");
9750
9751		bnx2x_get_igu_cam_info(bp);
9752
9753		bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
9754	}
9755
9756	/*
9757	 * set base FW non-default (fast path) status block id, this value is
9758	 * used to initialize the fw_sb_id saved on the fp/queue structure to
9759	 * determine the id used by the FW.
9760	 */
9761	if (CHIP_IS_E1x(bp))
9762		bp->base_fw_ndsb = BP_PORT(bp) * FP_SB_MAX_E1x + BP_L_ID(bp);
9763	else /*
9764	      * 57712 - we currently use one FW SB per IGU SB (Rx and Tx of
9765	      * the same queue are indicated on the same IGU SB). So we prefer
9766	      * FW and IGU SBs to be the same value.
9767	      */
9768		bp->base_fw_ndsb = bp->igu_base_sb;
9769
9770	BNX2X_DEV_INFO("igu_dsb_id %d  igu_base_sb %d  igu_sb_cnt %d\n"
9771		       "base_fw_ndsb %d\n", bp->igu_dsb_id, bp->igu_base_sb,
9772		       bp->igu_sb_cnt, bp->base_fw_ndsb);
9773
9774	/*
9775	 * Initialize MF configuration
9776	 */
9777
9778	bp->mf_ov = 0;
9779	bp->mf_mode = 0;
9780	vn = BP_VN(bp);
9781
9782	if (!CHIP_IS_E1(bp) && !BP_NOMCP(bp)) {
9783		BNX2X_DEV_INFO("shmem2base 0x%x, size %d, mfcfg offset %d\n",
9784			       bp->common.shmem2_base, SHMEM2_RD(bp, size),
9785			      (u32)offsetof(struct shmem2_region, mf_cfg_addr));
9786
9787		if (SHMEM2_HAS(bp, mf_cfg_addr))
9788			bp->common.mf_cfg_base = SHMEM2_RD(bp, mf_cfg_addr);
9789		else
9790			bp->common.mf_cfg_base = bp->common.shmem_base +
9791				offsetof(struct shmem_region, func_mb) +
9792				E1H_FUNC_MAX * sizeof(struct drv_func_mb);
9793		/*
9794		 * get mf configuration:
9795		 * 1. existence of MF configuration
9796		 * 2. MAC address must be legal (check only upper bytes)
9797		 *    for  Switch-Independent mode;
9798		 *    OVLAN must be legal for Switch-Dependent mode
9799		 * 3. SF_MODE configures specific MF mode
9800		 */
9801		if (bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
9802			/* get mf configuration */
9803			val = SHMEM_RD(bp,
9804				       dev_info.shared_feature_config.config);
9805			val &= SHARED_FEAT_CFG_FORCE_SF_MODE_MASK;
9806
9807			switch (val) {
9808			case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT:
9809				val = MF_CFG_RD(bp, func_mf_config[func].
9810						mac_upper);
9811				/* check for legal mac (upper bytes)*/
9812				if (val != 0xffff) {
9813					bp->mf_mode = MULTI_FUNCTION_SI;
9814					bp->mf_config[vn] = MF_CFG_RD(bp,
9815						   func_mf_config[func].config);
9816				} else
9817					BNX2X_DEV_INFO("illegal MAC address "
9818						       "for SI\n");
9819				break;
9820			case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED:
9821				/* get OV configuration */
9822				val = MF_CFG_RD(bp,
9823					func_mf_config[FUNC_0].e1hov_tag);
9824				val &= FUNC_MF_CFG_E1HOV_TAG_MASK;
9825
9826				if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
9827					bp->mf_mode = MULTI_FUNCTION_SD;
9828					bp->mf_config[vn] = MF_CFG_RD(bp,
9829						func_mf_config[func].config);
9830				} else
9831					BNX2X_DEV_INFO("illegal OV for SD\n");
9832				break;
9833			default:
9834				/* Unknown configuration: reset mf_config */
9835				bp->mf_config[vn] = 0;
9836				BNX2X_DEV_INFO("unkown MF mode 0x%x\n", val);
9837			}
9838		}
9839
9840		BNX2X_DEV_INFO("%s function mode\n",
9841			       IS_MF(bp) ? "multi" : "single");
9842
9843		switch (bp->mf_mode) {
9844		case MULTI_FUNCTION_SD:
9845			val = MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
9846			      FUNC_MF_CFG_E1HOV_TAG_MASK;
9847			if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
9848				bp->mf_ov = val;
9849				bp->path_has_ovlan = true;
9850
9851				BNX2X_DEV_INFO("MF OV for func %d is %d "
9852					       "(0x%04x)\n", func, bp->mf_ov,
9853					       bp->mf_ov);
9854			} else {
9855				dev_err(&bp->pdev->dev,
9856					"No valid MF OV for func %d, "
9857					"aborting\n", func);
9858				return -EPERM;
9859			}
9860			break;
9861		case MULTI_FUNCTION_SI:
9862			BNX2X_DEV_INFO("func %d is in MF "
9863				       "switch-independent mode\n", func);
9864			break;
9865		default:
9866			if (vn) {
9867				dev_err(&bp->pdev->dev,
9868					"VN %d is in a single function mode, "
9869					"aborting\n", vn);
9870				return -EPERM;
9871			}
9872			break;
9873		}
9874
9875		/* check if other port on the path needs ovlan:
9876		 * Since MF configuration is shared between ports
9877		 * Possible mixed modes are only
9878		 * {SF, SI} {SF, SD} {SD, SF} {SI, SF}
9879		 */
9880		if (CHIP_MODE_IS_4_PORT(bp) &&
9881		    !bp->path_has_ovlan &&
9882		    !IS_MF(bp) &&
9883		    bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
9884			u8 other_port = !BP_PORT(bp);
9885			u8 other_func = BP_PATH(bp) + 2*other_port;
9886			val = MF_CFG_RD(bp,
9887					func_mf_config[other_func].e1hov_tag);
9888			if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT)
9889				bp->path_has_ovlan = true;
9890		}
9891	}
9892
9893	/* adjust igu_sb_cnt to MF for E1x */
9894	if (CHIP_IS_E1x(bp) && IS_MF(bp))
9895		bp->igu_sb_cnt /= E1HVN_MAX;
9896
9897	/* port info */
9898	bnx2x_get_port_hwinfo(bp);
9899
9900	/* Get MAC addresses */
9901	bnx2x_get_mac_hwinfo(bp);
9902
9903	bnx2x_get_cnic_info(bp);
9904
9905	/* Get current FW pulse sequence */
9906	if (!BP_NOMCP(bp)) {
9907		int mb_idx = BP_FW_MB_IDX(bp);
9908
9909		bp->fw_drv_pulse_wr_seq =
9910				(SHMEM_RD(bp, func_mb[mb_idx].drv_pulse_mb) &
9911				 DRV_PULSE_SEQ_MASK);
9912		BNX2X_DEV_INFO("drv_pulse 0x%x\n", bp->fw_drv_pulse_wr_seq);
9913	}
9914
9915	return rc;
9916}
9917
9918static void __devinit bnx2x_read_fwinfo(struct bnx2x *bp)
9919{
9920	int cnt, i, block_end, rodi;
9921	char vpd_start[BNX2X_VPD_LEN+1];
9922	char str_id_reg[VENDOR_ID_LEN+1];
9923	char str_id_cap[VENDOR_ID_LEN+1];
9924	char *vpd_data;
9925	char *vpd_extended_data = NULL;
9926	u8 len;
9927
9928	cnt = pci_read_vpd(bp->pdev, 0, BNX2X_VPD_LEN, vpd_start);
9929	memset(bp->fw_ver, 0, sizeof(bp->fw_ver));
9930
9931	if (cnt < BNX2X_VPD_LEN)
9932		goto out_not_found;
9933
9934	/* VPD RO tag should be first tag after identifier string, hence
9935	 * we should be able to find it in first BNX2X_VPD_LEN chars
9936	 */
9937	i = pci_vpd_find_tag(vpd_start, 0, BNX2X_VPD_LEN,
9938			     PCI_VPD_LRDT_RO_DATA);
9939	if (i < 0)
9940		goto out_not_found;
9941
9942	block_end = i + PCI_VPD_LRDT_TAG_SIZE +
9943		    pci_vpd_lrdt_size(&vpd_start[i]);
9944
9945	i += PCI_VPD_LRDT_TAG_SIZE;
9946
9947	if (block_end > BNX2X_VPD_LEN) {
9948		vpd_extended_data = kmalloc(block_end, GFP_KERNEL);
9949		if (vpd_extended_data  == NULL)
9950			goto out_not_found;
9951
9952		/* read rest of vpd image into vpd_extended_data */
9953		memcpy(vpd_extended_data, vpd_start, BNX2X_VPD_LEN);
9954		cnt = pci_read_vpd(bp->pdev, BNX2X_VPD_LEN,
9955				   block_end - BNX2X_VPD_LEN,
9956				   vpd_extended_data + BNX2X_VPD_LEN);
9957		if (cnt < (block_end - BNX2X_VPD_LEN))
9958			goto out_not_found;
9959		vpd_data = vpd_extended_data;
9960	} else
9961		vpd_data = vpd_start;
9962
9963	/* now vpd_data holds full vpd content in both cases */
9964
9965	rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
9966				   PCI_VPD_RO_KEYWORD_MFR_ID);
9967	if (rodi < 0)
9968		goto out_not_found;
9969
9970	len = pci_vpd_info_field_size(&vpd_data[rodi]);
9971
9972	if (len != VENDOR_ID_LEN)
9973		goto out_not_found;
9974
9975	rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
9976
9977	/* vendor specific info */
9978	snprintf(str_id_reg, VENDOR_ID_LEN + 1, "%04x", PCI_VENDOR_ID_DELL);
9979	snprintf(str_id_cap, VENDOR_ID_LEN + 1, "%04X", PCI_VENDOR_ID_DELL);
9980	if (!strncmp(str_id_reg, &vpd_data[rodi], VENDOR_ID_LEN) ||
9981	    !strncmp(str_id_cap, &vpd_data[rodi], VENDOR_ID_LEN)) {
9982
9983		rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
9984						PCI_VPD_RO_KEYWORD_VENDOR0);
9985		if (rodi >= 0) {
9986			len = pci_vpd_info_field_size(&vpd_data[rodi]);
9987
9988			rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
9989
9990			if (len < 32 && (len + rodi) <= BNX2X_VPD_LEN) {
9991				memcpy(bp->fw_ver, &vpd_data[rodi], len);
9992				bp->fw_ver[len] = ' ';
9993			}
9994		}
9995		kfree(vpd_extended_data);
9996		return;
9997	}
9998out_not_found:
9999	kfree(vpd_extended_data);
10000	return;
10001}
10002
10003static void __devinit bnx2x_set_modes_bitmap(struct bnx2x *bp)
10004{
10005	u32 flags = 0;
10006
10007	if (CHIP_REV_IS_FPGA(bp))
10008		SET_FLAGS(flags, MODE_FPGA);
10009	else if (CHIP_REV_IS_EMUL(bp))
10010		SET_FLAGS(flags, MODE_EMUL);
10011	else
10012		SET_FLAGS(flags, MODE_ASIC);
10013
10014	if (CHIP_MODE_IS_4_PORT(bp))
10015		SET_FLAGS(flags, MODE_PORT4);
10016	else
10017		SET_FLAGS(flags, MODE_PORT2);
10018
10019	if (CHIP_IS_E2(bp))
10020		SET_FLAGS(flags, MODE_E2);
10021	else if (CHIP_IS_E3(bp)) {
10022		SET_FLAGS(flags, MODE_E3);
10023		if (CHIP_REV(bp) == CHIP_REV_Ax)
10024			SET_FLAGS(flags, MODE_E3_A0);
10025		else /*if (CHIP_REV(bp) == CHIP_REV_Bx)*/
10026			SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3);
10027	}
10028
10029	if (IS_MF(bp)) {
10030		SET_FLAGS(flags, MODE_MF);
10031		switch (bp->mf_mode) {
10032		case MULTI_FUNCTION_SD:
10033			SET_FLAGS(flags, MODE_MF_SD);
10034			break;
10035		case MULTI_FUNCTION_SI:
10036			SET_FLAGS(flags, MODE_MF_SI);
10037			break;
10038		}
10039	} else
10040		SET_FLAGS(flags, MODE_SF);
10041
10042#if defined(__LITTLE_ENDIAN)
10043	SET_FLAGS(flags, MODE_LITTLE_ENDIAN);
10044#else /*(__BIG_ENDIAN)*/
10045	SET_FLAGS(flags, MODE_BIG_ENDIAN);
10046#endif
10047	INIT_MODE_FLAGS(bp) = flags;
10048}
10049
10050static int __devinit bnx2x_init_bp(struct bnx2x *bp)
10051{
10052	int func;
10053	int rc;
10054
10055	mutex_init(&bp->port.phy_mutex);
10056	mutex_init(&bp->fw_mb_mutex);
10057	spin_lock_init(&bp->stats_lock);
10058#ifdef BCM_CNIC
10059	mutex_init(&bp->cnic_mutex);
10060#endif
10061
10062	INIT_DELAYED_WORK(&bp->sp_task, bnx2x_sp_task);
10063	INIT_DELAYED_WORK(&bp->sp_rtnl_task, bnx2x_sp_rtnl_task);
10064	INIT_DELAYED_WORK(&bp->period_task, bnx2x_period_task);
10065	rc = bnx2x_get_hwinfo(bp);
10066	if (rc)
10067		return rc;
10068
10069	bnx2x_set_modes_bitmap(bp);
10070
10071	rc = bnx2x_alloc_mem_bp(bp);
10072	if (rc)
10073		return rc;
10074
10075	bnx2x_read_fwinfo(bp);
10076
10077	func = BP_FUNC(bp);
10078
10079	/* need to reset chip if undi was active */
10080	if (!BP_NOMCP(bp))
10081		bnx2x_undi_unload(bp);
10082
10083	/* init fw_seq after undi_unload! */
10084	if (!BP_NOMCP(bp)) {
10085		bp->fw_seq =
10086			(SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
10087			 DRV_MSG_SEQ_NUMBER_MASK);
10088		BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp->fw_seq);
10089	}
10090
10091	if (CHIP_REV_IS_FPGA(bp))
10092		dev_err(&bp->pdev->dev, "FPGA detected\n");
10093
10094	if (BP_NOMCP(bp) && (func == 0))
10095		dev_err(&bp->pdev->dev, "MCP disabled, "
10096					"must load devices in order!\n");
10097
10098	bp->multi_mode = multi_mode;
10099
10100	bp->disable_tpa = disable_tpa;
10101
10102#ifdef BCM_CNIC
10103	bp->disable_tpa |= IS_MF_ISCSI_SD(bp);
10104#endif
10105
10106	/* Set TPA flags */
10107	if (bp->disable_tpa) {
10108		bp->flags &= ~TPA_ENABLE_FLAG;
10109		bp->dev->features &= ~NETIF_F_LRO;
10110	} else {
10111		bp->flags |= TPA_ENABLE_FLAG;
10112		bp->dev->features |= NETIF_F_LRO;
10113	}
10114
10115	if (CHIP_IS_E1(bp))
10116		bp->dropless_fc = 0;
10117	else
10118		bp->dropless_fc = dropless_fc;
10119
10120	bp->mrrs = mrrs;
10121
10122	bp->tx_ring_size = MAX_TX_AVAIL;
10123
10124	/* make sure that the numbers are in the right granularity */
10125	bp->tx_ticks = (50 / BNX2X_BTR) * BNX2X_BTR;
10126	bp->rx_ticks = (25 / BNX2X_BTR) * BNX2X_BTR;
10127
10128	bp->current_interval = CHIP_REV_IS_SLOW(bp) ? 5*HZ : HZ;
10129
10130	init_timer(&bp->timer);
10131	bp->timer.expires = jiffies + bp->current_interval;
10132	bp->timer.data = (unsigned long) bp;
10133	bp->timer.function = bnx2x_timer;
10134
10135	bnx2x_dcbx_set_state(bp, true, BNX2X_DCBX_ENABLED_ON_NEG_ON);
10136	bnx2x_dcbx_init_params(bp);
10137
10138#ifdef BCM_CNIC
10139	if (CHIP_IS_E1x(bp))
10140		bp->cnic_base_cl_id = FP_SB_MAX_E1x;
10141	else
10142		bp->cnic_base_cl_id = FP_SB_MAX_E2;
10143#endif
10144
10145	/* multiple tx priority */
10146	if (CHIP_IS_E1x(bp))
10147		bp->max_cos = BNX2X_MULTI_TX_COS_E1X;
10148	if (CHIP_IS_E2(bp) || CHIP_IS_E3A0(bp))
10149		bp->max_cos = BNX2X_MULTI_TX_COS_E2_E3A0;
10150	if (CHIP_IS_E3B0(bp))
10151		bp->max_cos = BNX2X_MULTI_TX_COS_E3B0;
10152
10153	return rc;
10154}
10155
10156
10157/****************************************************************************
10158* General service functions
10159****************************************************************************/
10160
10161/*
10162 * net_device service functions
10163 */
10164
10165/* called with rtnl_lock */
10166static int bnx2x_open(struct net_device *dev)
10167{
10168	struct bnx2x *bp = netdev_priv(dev);
10169	bool global = false;
10170	int other_engine = BP_PATH(bp) ? 0 : 1;
10171	u32 other_load_counter, load_counter;
10172
10173	netif_carrier_off(dev);
10174
10175	bnx2x_set_power_state(bp, PCI_D0);
10176
10177	other_load_counter = bnx2x_get_load_cnt(bp, other_engine);
10178	load_counter = bnx2x_get_load_cnt(bp, BP_PATH(bp));
10179
10180	/*
10181	 * If parity had happen during the unload, then attentions
10182	 * and/or RECOVERY_IN_PROGRES may still be set. In this case we
10183	 * want the first function loaded on the current engine to
10184	 * complete the recovery.
10185	 */
10186	if (!bnx2x_reset_is_done(bp, BP_PATH(bp)) ||
10187	    bnx2x_chk_parity_attn(bp, &global, true))
10188		do {
10189			/*
10190			 * If there are attentions and they are in a global
10191			 * blocks, set the GLOBAL_RESET bit regardless whether
10192			 * it will be this function that will complete the
10193			 * recovery or not.
10194			 */
10195			if (global)
10196				bnx2x_set_reset_global(bp);
10197
10198			/*
10199			 * Only the first function on the current engine should
10200			 * try to recover in open. In case of attentions in
10201			 * global blocks only the first in the chip should try
10202			 * to recover.
10203			 */
10204			if ((!load_counter &&
10205			     (!global || !other_load_counter)) &&
10206			    bnx2x_trylock_leader_lock(bp) &&
10207			    !bnx2x_leader_reset(bp)) {
10208				netdev_info(bp->dev, "Recovered in open\n");
10209				break;
10210			}
10211
10212			/* recovery has failed... */
10213			bnx2x_set_power_state(bp, PCI_D3hot);
10214			bp->recovery_state = BNX2X_RECOVERY_FAILED;
10215
10216			netdev_err(bp->dev, "Recovery flow hasn't been properly"
10217			" completed yet. Try again later. If u still see this"
10218			" message after a few retries then power cycle is"
10219			" required.\n");
10220
10221			return -EAGAIN;
10222		} while (0);
10223
10224	bp->recovery_state = BNX2X_RECOVERY_DONE;
10225	return bnx2x_nic_load(bp, LOAD_OPEN);
10226}
10227
10228/* called with rtnl_lock */
10229int bnx2x_close(struct net_device *dev)
10230{
10231	struct bnx2x *bp = netdev_priv(dev);
10232
10233	/* Unload the driver, release IRQs */
10234	bnx2x_nic_unload(bp, UNLOAD_CLOSE);
10235
10236	/* Power off */
10237	bnx2x_set_power_state(bp, PCI_D3hot);
10238
10239	return 0;
10240}
10241
10242static inline int bnx2x_init_mcast_macs_list(struct bnx2x *bp,
10243					 struct bnx2x_mcast_ramrod_params *p)
10244{
10245	int mc_count = netdev_mc_count(bp->dev);
10246	struct bnx2x_mcast_list_elem *mc_mac =
10247		kzalloc(sizeof(*mc_mac) * mc_count, GFP_ATOMIC);
10248	struct netdev_hw_addr *ha;
10249
10250	if (!mc_mac)
10251		return -ENOMEM;
10252
10253	INIT_LIST_HEAD(&p->mcast_list);
10254
10255	netdev_for_each_mc_addr(ha, bp->dev) {
10256		mc_mac->mac = bnx2x_mc_addr(ha);
10257		list_add_tail(&mc_mac->link, &p->mcast_list);
10258		mc_mac++;
10259	}
10260
10261	p->mcast_list_len = mc_count;
10262
10263	return 0;
10264}
10265
10266static inline void bnx2x_free_mcast_macs_list(
10267	struct bnx2x_mcast_ramrod_params *p)
10268{
10269	struct bnx2x_mcast_list_elem *mc_mac =
10270		list_first_entry(&p->mcast_list, struct bnx2x_mcast_list_elem,
10271				 link);
10272
10273	WARN_ON(!mc_mac);
10274	kfree(mc_mac);
10275}
10276
10277/**
10278 * bnx2x_set_uc_list - configure a new unicast MACs list.
10279 *
10280 * @bp: driver handle
10281 *
10282 * We will use zero (0) as a MAC type for these MACs.
10283 */
10284static inline int bnx2x_set_uc_list(struct bnx2x *bp)
10285{
10286	int rc;
10287	struct net_device *dev = bp->dev;
10288	struct netdev_hw_addr *ha;
10289	struct bnx2x_vlan_mac_obj *mac_obj = &bp->fp->mac_obj;
10290	unsigned long ramrod_flags = 0;
10291
10292	/* First schedule a cleanup up of old configuration */
10293	rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_UC_LIST_MAC, false);
10294	if (rc < 0) {
10295		BNX2X_ERR("Failed to schedule DELETE operations: %d\n", rc);
10296		return rc;
10297	}
10298
10299	netdev_for_each_uc_addr(ha, dev) {
10300		rc = bnx2x_set_mac_one(bp, bnx2x_uc_addr(ha), mac_obj, true,
10301				       BNX2X_UC_LIST_MAC, &ramrod_flags);
10302		if (rc < 0) {
10303			BNX2X_ERR("Failed to schedule ADD operations: %d\n",
10304				  rc);
10305			return rc;
10306		}
10307	}
10308
10309	/* Execute the pending commands */
10310	__set_bit(RAMROD_CONT, &ramrod_flags);
10311	return bnx2x_set_mac_one(bp, NULL, mac_obj, false /* don't care */,
10312				 BNX2X_UC_LIST_MAC, &ramrod_flags);
10313}
10314
10315static inline int bnx2x_set_mc_list(struct bnx2x *bp)
10316{
10317	struct net_device *dev = bp->dev;
10318	struct bnx2x_mcast_ramrod_params rparam = {0};
10319	int rc = 0;
10320
10321	rparam.mcast_obj = &bp->mcast_obj;
10322
10323	/* first, clear all configured multicast MACs */
10324	rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
10325	if (rc < 0) {
10326		BNX2X_ERR("Failed to clear multicast "
10327			  "configuration: %d\n", rc);
10328		return rc;
10329	}
10330
10331	/* then, configure a new MACs list */
10332	if (netdev_mc_count(dev)) {
10333		rc = bnx2x_init_mcast_macs_list(bp, &rparam);
10334		if (rc) {
10335			BNX2X_ERR("Failed to create multicast MACs "
10336				  "list: %d\n", rc);
10337			return rc;
10338		}
10339
10340		/* Now add the new MACs */
10341		rc = bnx2x_config_mcast(bp, &rparam,
10342					BNX2X_MCAST_CMD_ADD);
10343		if (rc < 0)
10344			BNX2X_ERR("Failed to set a new multicast "
10345				  "configuration: %d\n", rc);
10346
10347		bnx2x_free_mcast_macs_list(&rparam);
10348	}
10349
10350	return rc;
10351}
10352
10353
10354/* If bp->state is OPEN, should be called with netif_addr_lock_bh() */
10355void bnx2x_set_rx_mode(struct net_device *dev)
10356{
10357	struct bnx2x *bp = netdev_priv(dev);
10358	u32 rx_mode = BNX2X_RX_MODE_NORMAL;
10359
10360	if (bp->state != BNX2X_STATE_OPEN) {
10361		DP(NETIF_MSG_IFUP, "state is %x, returning\n", bp->state);
10362		return;
10363	}
10364
10365	DP(NETIF_MSG_IFUP, "dev->flags = %x\n", bp->dev->flags);
10366
10367	if (dev->flags & IFF_PROMISC)
10368		rx_mode = BNX2X_RX_MODE_PROMISC;
10369	else if ((dev->flags & IFF_ALLMULTI) ||
10370		 ((netdev_mc_count(dev) > BNX2X_MAX_MULTICAST) &&
10371		  CHIP_IS_E1(bp)))
10372		rx_mode = BNX2X_RX_MODE_ALLMULTI;
10373	else {
10374		/* some multicasts */
10375		if (bnx2x_set_mc_list(bp) < 0)
10376			rx_mode = BNX2X_RX_MODE_ALLMULTI;
10377
10378		if (bnx2x_set_uc_list(bp) < 0)
10379			rx_mode = BNX2X_RX_MODE_PROMISC;
10380	}
10381
10382	bp->rx_mode = rx_mode;
10383#ifdef BCM_CNIC
10384	/* handle ISCSI SD mode */
10385	if (IS_MF_ISCSI_SD(bp))
10386		bp->rx_mode = BNX2X_RX_MODE_NONE;
10387#endif
10388
10389	/* Schedule the rx_mode command */
10390	if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state)) {
10391		set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
10392		return;
10393	}
10394
10395	bnx2x_set_storm_rx_mode(bp);
10396}
10397
10398/* called with rtnl_lock */
10399static int bnx2x_mdio_read(struct net_device *netdev, int prtad,
10400			   int devad, u16 addr)
10401{
10402	struct bnx2x *bp = netdev_priv(netdev);
10403	u16 value;
10404	int rc;
10405
10406	DP(NETIF_MSG_LINK, "mdio_read: prtad 0x%x, devad 0x%x, addr 0x%x\n",
10407	   prtad, devad, addr);
10408
10409	/* The HW expects different devad if CL22 is used */
10410	devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
10411
10412	bnx2x_acquire_phy_lock(bp);
10413	rc = bnx2x_phy_read(&bp->link_params, prtad, devad, addr, &value);
10414	bnx2x_release_phy_lock(bp);
10415	DP(NETIF_MSG_LINK, "mdio_read_val 0x%x rc = 0x%x\n", value, rc);
10416
10417	if (!rc)
10418		rc = value;
10419	return rc;
10420}
10421
10422/* called with rtnl_lock */
10423static int bnx2x_mdio_write(struct net_device *netdev, int prtad, int devad,
10424			    u16 addr, u16 value)
10425{
10426	struct bnx2x *bp = netdev_priv(netdev);
10427	int rc;
10428
10429	DP(NETIF_MSG_LINK, "mdio_write: prtad 0x%x, devad 0x%x, addr 0x%x,"
10430			   " value 0x%x\n", prtad, devad, addr, value);
10431
10432	/* The HW expects different devad if CL22 is used */
10433	devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
10434
10435	bnx2x_acquire_phy_lock(bp);
10436	rc = bnx2x_phy_write(&bp->link_params, prtad, devad, addr, value);
10437	bnx2x_release_phy_lock(bp);
10438	return rc;
10439}
10440
10441/* called with rtnl_lock */
10442static int bnx2x_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
10443{
10444	struct bnx2x *bp = netdev_priv(dev);
10445	struct mii_ioctl_data *mdio = if_mii(ifr);
10446
10447	DP(NETIF_MSG_LINK, "ioctl: phy id 0x%x, reg 0x%x, val_in 0x%x\n",
10448	   mdio->phy_id, mdio->reg_num, mdio->val_in);
10449
10450	if (!netif_running(dev))
10451		return -EAGAIN;
10452
10453	return mdio_mii_ioctl(&bp->mdio, mdio, cmd);
10454}
10455
10456#ifdef CONFIG_NET_POLL_CONTROLLER
10457static void poll_bnx2x(struct net_device *dev)
10458{
10459	struct bnx2x *bp = netdev_priv(dev);
10460
10461	disable_irq(bp->pdev->irq);
10462	bnx2x_interrupt(bp->pdev->irq, dev);
10463	enable_irq(bp->pdev->irq);
10464}
10465#endif
10466
10467static int bnx2x_validate_addr(struct net_device *dev)
10468{
10469	struct bnx2x *bp = netdev_priv(dev);
10470
10471	if (!bnx2x_is_valid_ether_addr(bp, dev->dev_addr))
10472		return -EADDRNOTAVAIL;
10473	return 0;
10474}
10475
10476static const struct net_device_ops bnx2x_netdev_ops = {
10477	.ndo_open		= bnx2x_open,
10478	.ndo_stop		= bnx2x_close,
10479	.ndo_start_xmit		= bnx2x_start_xmit,
10480	.ndo_select_queue	= bnx2x_select_queue,
10481	.ndo_set_rx_mode	= bnx2x_set_rx_mode,
10482	.ndo_set_mac_address	= bnx2x_change_mac_addr,
10483	.ndo_validate_addr	= bnx2x_validate_addr,
10484	.ndo_do_ioctl		= bnx2x_ioctl,
10485	.ndo_change_mtu		= bnx2x_change_mtu,
10486	.ndo_fix_features	= bnx2x_fix_features,
10487	.ndo_set_features	= bnx2x_set_features,
10488	.ndo_tx_timeout		= bnx2x_tx_timeout,
10489#ifdef CONFIG_NET_POLL_CONTROLLER
10490	.ndo_poll_controller	= poll_bnx2x,
10491#endif
10492	.ndo_setup_tc		= bnx2x_setup_tc,
10493
10494#if defined(NETDEV_FCOE_WWNN) && defined(BCM_CNIC)
10495	.ndo_fcoe_get_wwn	= bnx2x_fcoe_get_wwn,
10496#endif
10497};
10498
10499static inline int bnx2x_set_coherency_mask(struct bnx2x *bp)
10500{
10501	struct device *dev = &bp->pdev->dev;
10502
10503	if (dma_set_mask(dev, DMA_BIT_MASK(64)) == 0) {
10504		bp->flags |= USING_DAC_FLAG;
10505		if (dma_set_coherent_mask(dev, DMA_BIT_MASK(64)) != 0) {
10506			dev_err(dev, "dma_set_coherent_mask failed, "
10507				     "aborting\n");
10508			return -EIO;
10509		}
10510	} else if (dma_set_mask(dev, DMA_BIT_MASK(32)) != 0) {
10511		dev_err(dev, "System does not support DMA, aborting\n");
10512		return -EIO;
10513	}
10514
10515	return 0;
10516}
10517
10518static int __devinit bnx2x_init_dev(struct pci_dev *pdev,
10519				    struct net_device *dev,
10520				    unsigned long board_type)
10521{
10522	struct bnx2x *bp;
10523	int rc;
10524	bool chip_is_e1x = (board_type == BCM57710 ||
10525			    board_type == BCM57711 ||
10526			    board_type == BCM57711E);
10527
10528	SET_NETDEV_DEV(dev, &pdev->dev);
10529	bp = netdev_priv(dev);
10530
10531	bp->dev = dev;
10532	bp->pdev = pdev;
10533	bp->flags = 0;
10534	bp->pf_num = PCI_FUNC(pdev->devfn);
10535
10536	rc = pci_enable_device(pdev);
10537	if (rc) {
10538		dev_err(&bp->pdev->dev,
10539			"Cannot enable PCI device, aborting\n");
10540		goto err_out;
10541	}
10542
10543	if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
10544		dev_err(&bp->pdev->dev,
10545			"Cannot find PCI device base address, aborting\n");
10546		rc = -ENODEV;
10547		goto err_out_disable;
10548	}
10549
10550	if (!(pci_resource_flags(pdev, 2) & IORESOURCE_MEM)) {
10551		dev_err(&bp->pdev->dev, "Cannot find second PCI device"
10552		       " base address, aborting\n");
10553		rc = -ENODEV;
10554		goto err_out_disable;
10555	}
10556
10557	if (atomic_read(&pdev->enable_cnt) == 1) {
10558		rc = pci_request_regions(pdev, DRV_MODULE_NAME);
10559		if (rc) {
10560			dev_err(&bp->pdev->dev,
10561				"Cannot obtain PCI resources, aborting\n");
10562			goto err_out_disable;
10563		}
10564
10565		pci_set_master(pdev);
10566		pci_save_state(pdev);
10567	}
10568
10569	bp->pm_cap = pci_find_capability(pdev, PCI_CAP_ID_PM);
10570	if (bp->pm_cap == 0) {
10571		dev_err(&bp->pdev->dev,
10572			"Cannot find power management capability, aborting\n");
10573		rc = -EIO;
10574		goto err_out_release;
10575	}
10576
10577	if (!pci_is_pcie(pdev)) {
10578		dev_err(&bp->pdev->dev,	"Not PCI Express, aborting\n");
10579		rc = -EIO;
10580		goto err_out_release;
10581	}
10582
10583	rc = bnx2x_set_coherency_mask(bp);
10584	if (rc)
10585		goto err_out_release;
10586
10587	dev->mem_start = pci_resource_start(pdev, 0);
10588	dev->base_addr = dev->mem_start;
10589	dev->mem_end = pci_resource_end(pdev, 0);
10590
10591	dev->irq = pdev->irq;
10592
10593	bp->regview = pci_ioremap_bar(pdev, 0);
10594	if (!bp->regview) {
10595		dev_err(&bp->pdev->dev,
10596			"Cannot map register space, aborting\n");
10597		rc = -ENOMEM;
10598		goto err_out_release;
10599	}
10600
10601	bnx2x_set_power_state(bp, PCI_D0);
10602
10603	/* clean indirect addresses */
10604	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
10605			       PCICFG_VENDOR_ID_OFFSET);
10606	/*
10607	 * Clean the following indirect addresses for all functions since it
10608	 * is not used by the driver.
10609	 */
10610	REG_WR(bp, PXP2_REG_PGL_ADDR_88_F0, 0);
10611	REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F0, 0);
10612	REG_WR(bp, PXP2_REG_PGL_ADDR_90_F0, 0);
10613	REG_WR(bp, PXP2_REG_PGL_ADDR_94_F0, 0);
10614
10615	if (chip_is_e1x) {
10616		REG_WR(bp, PXP2_REG_PGL_ADDR_88_F1, 0);
10617		REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F1, 0);
10618		REG_WR(bp, PXP2_REG_PGL_ADDR_90_F1, 0);
10619		REG_WR(bp, PXP2_REG_PGL_ADDR_94_F1, 0);
10620	}
10621
10622	/*
10623	 * Enable internal target-read (in case we are probed after PF FLR).
10624	 * Must be done prior to any BAR read access. Only for 57712 and up
10625	 */
10626	if (!chip_is_e1x)
10627		REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
10628
10629	/* Reset the load counter */
10630	bnx2x_clear_load_cnt(bp);
10631
10632	dev->watchdog_timeo = TX_TIMEOUT;
10633
10634	dev->netdev_ops = &bnx2x_netdev_ops;
10635	bnx2x_set_ethtool_ops(dev);
10636
10637	dev->priv_flags |= IFF_UNICAST_FLT;
10638
10639	dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
10640		NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 | NETIF_F_LRO |
10641		NETIF_F_RXCSUM | NETIF_F_RXHASH | NETIF_F_HW_VLAN_TX;
10642
10643	dev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
10644		NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 | NETIF_F_HIGHDMA;
10645
10646	dev->features |= dev->hw_features | NETIF_F_HW_VLAN_RX;
10647	if (bp->flags & USING_DAC_FLAG)
10648		dev->features |= NETIF_F_HIGHDMA;
10649
10650	/* Add Loopback capability to the device */
10651	dev->hw_features |= NETIF_F_LOOPBACK;
10652
10653#ifdef BCM_DCBNL
10654	dev->dcbnl_ops = &bnx2x_dcbnl_ops;
10655#endif
10656
10657	/* get_port_hwinfo() will set prtad and mmds properly */
10658	bp->mdio.prtad = MDIO_PRTAD_NONE;
10659	bp->mdio.mmds = 0;
10660	bp->mdio.mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22;
10661	bp->mdio.dev = dev;
10662	bp->mdio.mdio_read = bnx2x_mdio_read;
10663	bp->mdio.mdio_write = bnx2x_mdio_write;
10664
10665	return 0;
10666
10667err_out_release:
10668	if (atomic_read(&pdev->enable_cnt) == 1)
10669		pci_release_regions(pdev);
10670
10671err_out_disable:
10672	pci_disable_device(pdev);
10673	pci_set_drvdata(pdev, NULL);
10674
10675err_out:
10676	return rc;
10677}
10678
10679static void __devinit bnx2x_get_pcie_width_speed(struct bnx2x *bp,
10680						 int *width, int *speed)
10681{
10682	u32 val = REG_RD(bp, PCICFG_OFFSET + PCICFG_LINK_CONTROL);
10683
10684	*width = (val & PCICFG_LINK_WIDTH) >> PCICFG_LINK_WIDTH_SHIFT;
10685
10686	/* return value of 1=2.5GHz 2=5GHz */
10687	*speed = (val & PCICFG_LINK_SPEED) >> PCICFG_LINK_SPEED_SHIFT;
10688}
10689
10690static int bnx2x_check_firmware(struct bnx2x *bp)
10691{
10692	const struct firmware *firmware = bp->firmware;
10693	struct bnx2x_fw_file_hdr *fw_hdr;
10694	struct bnx2x_fw_file_section *sections;
10695	u32 offset, len, num_ops;
10696	u16 *ops_offsets;
10697	int i;
10698	const u8 *fw_ver;
10699
10700	if (firmware->size < sizeof(struct bnx2x_fw_file_hdr))
10701		return -EINVAL;
10702
10703	fw_hdr = (struct bnx2x_fw_file_hdr *)firmware->data;
10704	sections = (struct bnx2x_fw_file_section *)fw_hdr;
10705
10706	/* Make sure none of the offsets and sizes make us read beyond
10707	 * the end of the firmware data */
10708	for (i = 0; i < sizeof(*fw_hdr) / sizeof(*sections); i++) {
10709		offset = be32_to_cpu(sections[i].offset);
10710		len = be32_to_cpu(sections[i].len);
10711		if (offset + len > firmware->size) {
10712			dev_err(&bp->pdev->dev,
10713				"Section %d length is out of bounds\n", i);
10714			return -EINVAL;
10715		}
10716	}
10717
10718	/* Likewise for the init_ops offsets */
10719	offset = be32_to_cpu(fw_hdr->init_ops_offsets.offset);
10720	ops_offsets = (u16 *)(firmware->data + offset);
10721	num_ops = be32_to_cpu(fw_hdr->init_ops.len) / sizeof(struct raw_op);
10722
10723	for (i = 0; i < be32_to_cpu(fw_hdr->init_ops_offsets.len) / 2; i++) {
10724		if (be16_to_cpu(ops_offsets[i]) > num_ops) {
10725			dev_err(&bp->pdev->dev,
10726				"Section offset %d is out of bounds\n", i);
10727			return -EINVAL;
10728		}
10729	}
10730
10731	/* Check FW version */
10732	offset = be32_to_cpu(fw_hdr->fw_version.offset);
10733	fw_ver = firmware->data + offset;
10734	if ((fw_ver[0] != BCM_5710_FW_MAJOR_VERSION) ||
10735	    (fw_ver[1] != BCM_5710_FW_MINOR_VERSION) ||
10736	    (fw_ver[2] != BCM_5710_FW_REVISION_VERSION) ||
10737	    (fw_ver[3] != BCM_5710_FW_ENGINEERING_VERSION)) {
10738		dev_err(&bp->pdev->dev,
10739			"Bad FW version:%d.%d.%d.%d. Should be %d.%d.%d.%d\n",
10740		       fw_ver[0], fw_ver[1], fw_ver[2],
10741		       fw_ver[3], BCM_5710_FW_MAJOR_VERSION,
10742		       BCM_5710_FW_MINOR_VERSION,
10743		       BCM_5710_FW_REVISION_VERSION,
10744		       BCM_5710_FW_ENGINEERING_VERSION);
10745		return -EINVAL;
10746	}
10747
10748	return 0;
10749}
10750
10751static inline void be32_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
10752{
10753	const __be32 *source = (const __be32 *)_source;
10754	u32 *target = (u32 *)_target;
10755	u32 i;
10756
10757	for (i = 0; i < n/4; i++)
10758		target[i] = be32_to_cpu(source[i]);
10759}
10760
10761/*
10762   Ops array is stored in the following format:
10763   {op(8bit), offset(24bit, big endian), data(32bit, big endian)}
10764 */
10765static inline void bnx2x_prep_ops(const u8 *_source, u8 *_target, u32 n)
10766{
10767	const __be32 *source = (const __be32 *)_source;
10768	struct raw_op *target = (struct raw_op *)_target;
10769	u32 i, j, tmp;
10770
10771	for (i = 0, j = 0; i < n/8; i++, j += 2) {
10772		tmp = be32_to_cpu(source[j]);
10773		target[i].op = (tmp >> 24) & 0xff;
10774		target[i].offset = tmp & 0xffffff;
10775		target[i].raw_data = be32_to_cpu(source[j + 1]);
10776	}
10777}
10778
10779/**
10780 * IRO array is stored in the following format:
10781 * {base(24bit), m1(16bit), m2(16bit), m3(16bit), size(16bit) }
10782 */
10783static inline void bnx2x_prep_iro(const u8 *_source, u8 *_target, u32 n)
10784{
10785	const __be32 *source = (const __be32 *)_source;
10786	struct iro *target = (struct iro *)_target;
10787	u32 i, j, tmp;
10788
10789	for (i = 0, j = 0; i < n/sizeof(struct iro); i++) {
10790		target[i].base = be32_to_cpu(source[j]);
10791		j++;
10792		tmp = be32_to_cpu(source[j]);
10793		target[i].m1 = (tmp >> 16) & 0xffff;
10794		target[i].m2 = tmp & 0xffff;
10795		j++;
10796		tmp = be32_to_cpu(source[j]);
10797		target[i].m3 = (tmp >> 16) & 0xffff;
10798		target[i].size = tmp & 0xffff;
10799		j++;
10800	}
10801}
10802
10803static inline void be16_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
10804{
10805	const __be16 *source = (const __be16 *)_source;
10806	u16 *target = (u16 *)_target;
10807	u32 i;
10808
10809	for (i = 0; i < n/2; i++)
10810		target[i] = be16_to_cpu(source[i]);
10811}
10812
10813#define BNX2X_ALLOC_AND_SET(arr, lbl, func)				\
10814do {									\
10815	u32 len = be32_to_cpu(fw_hdr->arr.len);				\
10816	bp->arr = kmalloc(len, GFP_KERNEL);				\
10817	if (!bp->arr) {							\
10818		pr_err("Failed to allocate %d bytes for "#arr"\n", len); \
10819		goto lbl;						\
10820	}								\
10821	func(bp->firmware->data + be32_to_cpu(fw_hdr->arr.offset),	\
10822	     (u8 *)bp->arr, len);					\
10823} while (0)
10824
10825int bnx2x_init_firmware(struct bnx2x *bp)
10826{
10827	struct bnx2x_fw_file_hdr *fw_hdr;
10828	int rc;
10829
10830
10831	if (!bp->firmware) {
10832		const char *fw_file_name;
10833
10834		if (CHIP_IS_E1(bp))
10835			fw_file_name = FW_FILE_NAME_E1;
10836		else if (CHIP_IS_E1H(bp))
10837			fw_file_name = FW_FILE_NAME_E1H;
10838		else if (!CHIP_IS_E1x(bp))
10839			fw_file_name = FW_FILE_NAME_E2;
10840		else {
10841			BNX2X_ERR("Unsupported chip revision\n");
10842			return -EINVAL;
10843		}
10844		BNX2X_DEV_INFO("Loading %s\n", fw_file_name);
10845
10846		rc = request_firmware(&bp->firmware, fw_file_name,
10847				      &bp->pdev->dev);
10848		if (rc) {
10849			BNX2X_ERR("Can't load firmware file %s\n",
10850				  fw_file_name);
10851			goto request_firmware_exit;
10852		}
10853
10854		rc = bnx2x_check_firmware(bp);
10855		if (rc) {
10856			BNX2X_ERR("Corrupt firmware file %s\n", fw_file_name);
10857			goto request_firmware_exit;
10858		}
10859	}
10860
10861	fw_hdr = (struct bnx2x_fw_file_hdr *)bp->firmware->data;
10862
10863	/* Initialize the pointers to the init arrays */
10864	/* Blob */
10865	BNX2X_ALLOC_AND_SET(init_data, request_firmware_exit, be32_to_cpu_n);
10866
10867	/* Opcodes */
10868	BNX2X_ALLOC_AND_SET(init_ops, init_ops_alloc_err, bnx2x_prep_ops);
10869
10870	/* Offsets */
10871	BNX2X_ALLOC_AND_SET(init_ops_offsets, init_offsets_alloc_err,
10872			    be16_to_cpu_n);
10873
10874	/* STORMs firmware */
10875	INIT_TSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
10876			be32_to_cpu(fw_hdr->tsem_int_table_data.offset);
10877	INIT_TSEM_PRAM_DATA(bp)      = bp->firmware->data +
10878			be32_to_cpu(fw_hdr->tsem_pram_data.offset);
10879	INIT_USEM_INT_TABLE_DATA(bp) = bp->firmware->data +
10880			be32_to_cpu(fw_hdr->usem_int_table_data.offset);
10881	INIT_USEM_PRAM_DATA(bp)      = bp->firmware->data +
10882			be32_to_cpu(fw_hdr->usem_pram_data.offset);
10883	INIT_XSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
10884			be32_to_cpu(fw_hdr->xsem_int_table_data.offset);
10885	INIT_XSEM_PRAM_DATA(bp)      = bp->firmware->data +
10886			be32_to_cpu(fw_hdr->xsem_pram_data.offset);
10887	INIT_CSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
10888			be32_to_cpu(fw_hdr->csem_int_table_data.offset);
10889	INIT_CSEM_PRAM_DATA(bp)      = bp->firmware->data +
10890			be32_to_cpu(fw_hdr->csem_pram_data.offset);
10891	/* IRO */
10892	BNX2X_ALLOC_AND_SET(iro_arr, iro_alloc_err, bnx2x_prep_iro);
10893
10894	return 0;
10895
10896iro_alloc_err:
10897	kfree(bp->init_ops_offsets);
10898init_offsets_alloc_err:
10899	kfree(bp->init_ops);
10900init_ops_alloc_err:
10901	kfree(bp->init_data);
10902request_firmware_exit:
10903	release_firmware(bp->firmware);
10904	bp->firmware = NULL;
10905
10906	return rc;
10907}
10908
10909static void bnx2x_release_firmware(struct bnx2x *bp)
10910{
10911	kfree(bp->init_ops_offsets);
10912	kfree(bp->init_ops);
10913	kfree(bp->init_data);
10914	release_firmware(bp->firmware);
10915	bp->firmware = NULL;
10916}
10917
10918
10919static struct bnx2x_func_sp_drv_ops bnx2x_func_sp_drv = {
10920	.init_hw_cmn_chip = bnx2x_init_hw_common_chip,
10921	.init_hw_cmn      = bnx2x_init_hw_common,
10922	.init_hw_port     = bnx2x_init_hw_port,
10923	.init_hw_func     = bnx2x_init_hw_func,
10924
10925	.reset_hw_cmn     = bnx2x_reset_common,
10926	.reset_hw_port    = bnx2x_reset_port,
10927	.reset_hw_func    = bnx2x_reset_func,
10928
10929	.gunzip_init      = bnx2x_gunzip_init,
10930	.gunzip_end       = bnx2x_gunzip_end,
10931
10932	.init_fw          = bnx2x_init_firmware,
10933	.release_fw       = bnx2x_release_firmware,
10934};
10935
10936void bnx2x__init_func_obj(struct bnx2x *bp)
10937{
10938	/* Prepare DMAE related driver resources */
10939	bnx2x_setup_dmae(bp);
10940
10941	bnx2x_init_func_obj(bp, &bp->func_obj,
10942			    bnx2x_sp(bp, func_rdata),
10943			    bnx2x_sp_mapping(bp, func_rdata),
10944			    &bnx2x_func_sp_drv);
10945}
10946
10947/* must be called after sriov-enable */
10948static inline int bnx2x_set_qm_cid_count(struct bnx2x *bp)
10949{
10950	int cid_count = BNX2X_L2_CID_COUNT(bp);
10951
10952#ifdef BCM_CNIC
10953	cid_count += CNIC_CID_MAX;
10954#endif
10955	return roundup(cid_count, QM_CID_ROUND);
10956}
10957
10958/**
10959 * bnx2x_get_num_none_def_sbs - return the number of none default SBs
10960 *
10961 * @dev:	pci device
10962 *
10963 */
10964static inline int bnx2x_get_num_non_def_sbs(struct pci_dev *pdev)
10965{
10966	int pos;
10967	u16 control;
10968
10969	pos = pci_find_capability(pdev, PCI_CAP_ID_MSIX);
10970
10971	/*
10972	 * If MSI-X is not supported - return number of SBs needed to support
10973	 * one fast path queue: one FP queue + SB for CNIC
10974	 */
10975	if (!pos)
10976		return 1 + CNIC_PRESENT;
10977
10978	/*
10979	 * The value in the PCI configuration space is the index of the last
10980	 * entry, namely one less than the actual size of the table, which is
10981	 * exactly what we want to return from this function: number of all SBs
10982	 * without the default SB.
10983	 */
10984	pci_read_config_word(pdev, pos  + PCI_MSI_FLAGS, &control);
10985	return control & PCI_MSIX_FLAGS_QSIZE;
10986}
10987
10988static int __devinit bnx2x_init_one(struct pci_dev *pdev,
10989				    const struct pci_device_id *ent)
10990{
10991	struct net_device *dev = NULL;
10992	struct bnx2x *bp;
10993	int pcie_width, pcie_speed;
10994	int rc, max_non_def_sbs;
10995	int rx_count, tx_count, rss_count;
10996	/*
10997	 * An estimated maximum supported CoS number according to the chip
10998	 * version.
10999	 * We will try to roughly estimate the maximum number of CoSes this chip
11000	 * may support in order to minimize the memory allocated for Tx
11001	 * netdev_queue's. This number will be accurately calculated during the
11002	 * initialization of bp->max_cos based on the chip versions AND chip
11003	 * revision in the bnx2x_init_bp().
11004	 */
11005	u8 max_cos_est = 0;
11006
11007	switch (ent->driver_data) {
11008	case BCM57710:
11009	case BCM57711:
11010	case BCM57711E:
11011		max_cos_est = BNX2X_MULTI_TX_COS_E1X;
11012		break;
11013
11014	case BCM57712:
11015	case BCM57712_MF:
11016		max_cos_est = BNX2X_MULTI_TX_COS_E2_E3A0;
11017		break;
11018
11019	case BCM57800:
11020	case BCM57800_MF:
11021	case BCM57810:
11022	case BCM57810_MF:
11023	case BCM57840:
11024	case BCM57840_MF:
11025		max_cos_est = BNX2X_MULTI_TX_COS_E3B0;
11026		break;
11027
11028	default:
11029		pr_err("Unknown board_type (%ld), aborting\n",
11030			   ent->driver_data);
11031		return -ENODEV;
11032	}
11033
11034	max_non_def_sbs = bnx2x_get_num_non_def_sbs(pdev);
11035
11036	/* !!! FIXME !!!
11037	 * Do not allow the maximum SB count to grow above 16
11038	 * since Special CIDs starts from 16*BNX2X_MULTI_TX_COS=48.
11039	 * We will use the FP_SB_MAX_E1x macro for this matter.
11040	 */
11041	max_non_def_sbs = min_t(int, FP_SB_MAX_E1x, max_non_def_sbs);
11042
11043	WARN_ON(!max_non_def_sbs);
11044
11045	/* Maximum number of RSS queues: one IGU SB goes to CNIC */
11046	rss_count = max_non_def_sbs - CNIC_PRESENT;
11047
11048	/* Maximum number of netdev Rx queues: RSS + FCoE L2 */
11049	rx_count = rss_count + FCOE_PRESENT;
11050
11051	/*
11052	 * Maximum number of netdev Tx queues:
11053	 *      Maximum TSS queues * Maximum supported number of CoS  + FCoE L2
11054	 */
11055	tx_count = MAX_TXQS_PER_COS * max_cos_est + FCOE_PRESENT;
11056
11057	/* dev zeroed in init_etherdev */
11058	dev = alloc_etherdev_mqs(sizeof(*bp), tx_count, rx_count);
11059	if (!dev) {
11060		dev_err(&pdev->dev, "Cannot allocate net device\n");
11061		return -ENOMEM;
11062	}
11063
11064	bp = netdev_priv(dev);
11065
11066	DP(NETIF_MSG_DRV, "Allocated netdev with %d tx and %d rx queues\n",
11067			  tx_count, rx_count);
11068
11069	bp->igu_sb_cnt = max_non_def_sbs;
11070	bp->msg_enable = debug;
11071	pci_set_drvdata(pdev, dev);
11072
11073	rc = bnx2x_init_dev(pdev, dev, ent->driver_data);
11074	if (rc < 0) {
11075		free_netdev(dev);
11076		return rc;
11077	}
11078
11079	DP(NETIF_MSG_DRV, "max_non_def_sbs %d\n", max_non_def_sbs);
11080
11081	rc = bnx2x_init_bp(bp);
11082	if (rc)
11083		goto init_one_exit;
11084
11085	/*
11086	 * Map doorbels here as we need the real value of bp->max_cos which
11087	 * is initialized in bnx2x_init_bp().
11088	 */
11089	bp->doorbells = ioremap_nocache(pci_resource_start(pdev, 2),
11090					min_t(u64, BNX2X_DB_SIZE(bp),
11091					      pci_resource_len(pdev, 2)));
11092	if (!bp->doorbells) {
11093		dev_err(&bp->pdev->dev,
11094			"Cannot map doorbell space, aborting\n");
11095		rc = -ENOMEM;
11096		goto init_one_exit;
11097	}
11098
11099	/* calc qm_cid_count */
11100	bp->qm_cid_count = bnx2x_set_qm_cid_count(bp);
11101
11102#ifdef BCM_CNIC
11103	/* disable FCOE L2 queue for E1x */
11104	if (CHIP_IS_E1x(bp))
11105		bp->flags |= NO_FCOE_FLAG;
11106
11107#endif
11108
11109	/* Configure interrupt mode: try to enable MSI-X/MSI if
11110	 * needed, set bp->num_queues appropriately.
11111	 */
11112	bnx2x_set_int_mode(bp);
11113
11114	/* Add all NAPI objects */
11115	bnx2x_add_all_napi(bp);
11116
11117	rc = register_netdev(dev);
11118	if (rc) {
11119		dev_err(&pdev->dev, "Cannot register net device\n");
11120		goto init_one_exit;
11121	}
11122
11123#ifdef BCM_CNIC
11124	if (!NO_FCOE(bp)) {
11125		/* Add storage MAC address */
11126		rtnl_lock();
11127		dev_addr_add(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
11128		rtnl_unlock();
11129	}
11130#endif
11131
11132	bnx2x_get_pcie_width_speed(bp, &pcie_width, &pcie_speed);
11133
11134	netdev_info(dev, "%s (%c%d) PCI-E x%d %s found at mem %lx, IRQ %d, node addr %pM\n",
11135		    board_info[ent->driver_data].name,
11136		    (CHIP_REV(bp) >> 12) + 'A', (CHIP_METAL(bp) >> 4),
11137		    pcie_width,
11138		    ((!CHIP_IS_E2(bp) && pcie_speed == 2) ||
11139		     (CHIP_IS_E2(bp) && pcie_speed == 1)) ?
11140		    "5GHz (Gen2)" : "2.5GHz",
11141		    dev->base_addr, bp->pdev->irq, dev->dev_addr);
11142
11143	return 0;
11144
11145init_one_exit:
11146	if (bp->regview)
11147		iounmap(bp->regview);
11148
11149	if (bp->doorbells)
11150		iounmap(bp->doorbells);
11151
11152	free_netdev(dev);
11153
11154	if (atomic_read(&pdev->enable_cnt) == 1)
11155		pci_release_regions(pdev);
11156
11157	pci_disable_device(pdev);
11158	pci_set_drvdata(pdev, NULL);
11159
11160	return rc;
11161}
11162
11163static void __devexit bnx2x_remove_one(struct pci_dev *pdev)
11164{
11165	struct net_device *dev = pci_get_drvdata(pdev);
11166	struct bnx2x *bp;
11167
11168	if (!dev) {
11169		dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n");
11170		return;
11171	}
11172	bp = netdev_priv(dev);
11173
11174#ifdef BCM_CNIC
11175	/* Delete storage MAC address */
11176	if (!NO_FCOE(bp)) {
11177		rtnl_lock();
11178		dev_addr_del(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
11179		rtnl_unlock();
11180	}
11181#endif
11182
11183#ifdef BCM_DCBNL
11184	/* Delete app tlvs from dcbnl */
11185	bnx2x_dcbnl_update_applist(bp, true);
11186#endif
11187
11188	unregister_netdev(dev);
11189
11190	/* Delete all NAPI objects */
11191	bnx2x_del_all_napi(bp);
11192
11193	/* Power on: we can't let PCI layer write to us while we are in D3 */
11194	bnx2x_set_power_state(bp, PCI_D0);
11195
11196	/* Disable MSI/MSI-X */
11197	bnx2x_disable_msi(bp);
11198
11199	/* Power off */
11200	bnx2x_set_power_state(bp, PCI_D3hot);
11201
11202	/* Make sure RESET task is not scheduled before continuing */
11203	cancel_delayed_work_sync(&bp->sp_rtnl_task);
11204
11205	if (bp->regview)
11206		iounmap(bp->regview);
11207
11208	if (bp->doorbells)
11209		iounmap(bp->doorbells);
11210
11211	bnx2x_release_firmware(bp);
11212
11213	bnx2x_free_mem_bp(bp);
11214
11215	free_netdev(dev);
11216
11217	if (atomic_read(&pdev->enable_cnt) == 1)
11218		pci_release_regions(pdev);
11219
11220	pci_disable_device(pdev);
11221	pci_set_drvdata(pdev, NULL);
11222}
11223
11224static int bnx2x_eeh_nic_unload(struct bnx2x *bp)
11225{
11226	int i;
11227
11228	bp->state = BNX2X_STATE_ERROR;
11229
11230	bp->rx_mode = BNX2X_RX_MODE_NONE;
11231
11232#ifdef BCM_CNIC
11233	bnx2x_cnic_notify(bp, CNIC_CTL_STOP_CMD);
11234#endif
11235	/* Stop Tx */
11236	bnx2x_tx_disable(bp);
11237
11238	bnx2x_netif_stop(bp, 0);
11239
11240	del_timer_sync(&bp->timer);
11241
11242	bnx2x_stats_handle(bp, STATS_EVENT_STOP);
11243
11244	/* Release IRQs */
11245	bnx2x_free_irq(bp);
11246
11247	/* Free SKBs, SGEs, TPA pool and driver internals */
11248	bnx2x_free_skbs(bp);
11249
11250	for_each_rx_queue(bp, i)
11251		bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE);
11252
11253	bnx2x_free_mem(bp);
11254
11255	bp->state = BNX2X_STATE_CLOSED;
11256
11257	netif_carrier_off(bp->dev);
11258
11259	return 0;
11260}
11261
11262static void bnx2x_eeh_recover(struct bnx2x *bp)
11263{
11264	u32 val;
11265
11266	mutex_init(&bp->port.phy_mutex);
11267
11268	bp->common.shmem_base = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
11269	bp->link_params.shmem_base = bp->common.shmem_base;
11270	BNX2X_DEV_INFO("shmem offset is 0x%x\n", bp->common.shmem_base);
11271
11272	if (!bp->common.shmem_base ||
11273	    (bp->common.shmem_base < 0xA0000) ||
11274	    (bp->common.shmem_base >= 0xC0000)) {
11275		BNX2X_DEV_INFO("MCP not active\n");
11276		bp->flags |= NO_MCP_FLAG;
11277		return;
11278	}
11279
11280	val = SHMEM_RD(bp, validity_map[BP_PORT(bp)]);
11281	if ((val & (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB))
11282		!= (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB))
11283		BNX2X_ERR("BAD MCP validity signature\n");
11284
11285	if (!BP_NOMCP(bp)) {
11286		bp->fw_seq =
11287		    (SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
11288		    DRV_MSG_SEQ_NUMBER_MASK);
11289		BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp->fw_seq);
11290	}
11291}
11292
11293/**
11294 * bnx2x_io_error_detected - called when PCI error is detected
11295 * @pdev: Pointer to PCI device
11296 * @state: The current pci connection state
11297 *
11298 * This function is called after a PCI bus error affecting
11299 * this device has been detected.
11300 */
11301static pci_ers_result_t bnx2x_io_error_detected(struct pci_dev *pdev,
11302						pci_channel_state_t state)
11303{
11304	struct net_device *dev = pci_get_drvdata(pdev);
11305	struct bnx2x *bp = netdev_priv(dev);
11306
11307	rtnl_lock();
11308
11309	netif_device_detach(dev);
11310
11311	if (state == pci_channel_io_perm_failure) {
11312		rtnl_unlock();
11313		return PCI_ERS_RESULT_DISCONNECT;
11314	}
11315
11316	if (netif_running(dev))
11317		bnx2x_eeh_nic_unload(bp);
11318
11319	pci_disable_device(pdev);
11320
11321	rtnl_unlock();
11322
11323	/* Request a slot reset */
11324	return PCI_ERS_RESULT_NEED_RESET;
11325}
11326
11327/**
11328 * bnx2x_io_slot_reset - called after the PCI bus has been reset
11329 * @pdev: Pointer to PCI device
11330 *
11331 * Restart the card from scratch, as if from a cold-boot.
11332 */
11333static pci_ers_result_t bnx2x_io_slot_reset(struct pci_dev *pdev)
11334{
11335	struct net_device *dev = pci_get_drvdata(pdev);
11336	struct bnx2x *bp = netdev_priv(dev);
11337
11338	rtnl_lock();
11339
11340	if (pci_enable_device(pdev)) {
11341		dev_err(&pdev->dev,
11342			"Cannot re-enable PCI device after reset\n");
11343		rtnl_unlock();
11344		return PCI_ERS_RESULT_DISCONNECT;
11345	}
11346
11347	pci_set_master(pdev);
11348	pci_restore_state(pdev);
11349
11350	if (netif_running(dev))
11351		bnx2x_set_power_state(bp, PCI_D0);
11352
11353	rtnl_unlock();
11354
11355	return PCI_ERS_RESULT_RECOVERED;
11356}
11357
11358/**
11359 * bnx2x_io_resume - called when traffic can start flowing again
11360 * @pdev: Pointer to PCI device
11361 *
11362 * This callback is called when the error recovery driver tells us that
11363 * its OK to resume normal operation.
11364 */
11365static void bnx2x_io_resume(struct pci_dev *pdev)
11366{
11367	struct net_device *dev = pci_get_drvdata(pdev);
11368	struct bnx2x *bp = netdev_priv(dev);
11369
11370	if (bp->recovery_state != BNX2X_RECOVERY_DONE) {
11371		netdev_err(bp->dev, "Handling parity error recovery. "
11372				    "Try again later\n");
11373		return;
11374	}
11375
11376	rtnl_lock();
11377
11378	bnx2x_eeh_recover(bp);
11379
11380	if (netif_running(dev))
11381		bnx2x_nic_load(bp, LOAD_NORMAL);
11382
11383	netif_device_attach(dev);
11384
11385	rtnl_unlock();
11386}
11387
11388static struct pci_error_handlers bnx2x_err_handler = {
11389	.error_detected = bnx2x_io_error_detected,
11390	.slot_reset     = bnx2x_io_slot_reset,
11391	.resume         = bnx2x_io_resume,
11392};
11393
11394static struct pci_driver bnx2x_pci_driver = {
11395	.name        = DRV_MODULE_NAME,
11396	.id_table    = bnx2x_pci_tbl,
11397	.probe       = bnx2x_init_one,
11398	.remove      = __devexit_p(bnx2x_remove_one),
11399	.suspend     = bnx2x_suspend,
11400	.resume      = bnx2x_resume,
11401	.err_handler = &bnx2x_err_handler,
11402};
11403
11404static int __init bnx2x_init(void)
11405{
11406	int ret;
11407
11408	pr_info("%s", version);
11409
11410	bnx2x_wq = create_singlethread_workqueue("bnx2x");
11411	if (bnx2x_wq == NULL) {
11412		pr_err("Cannot create workqueue\n");
11413		return -ENOMEM;
11414	}
11415
11416	ret = pci_register_driver(&bnx2x_pci_driver);
11417	if (ret) {
11418		pr_err("Cannot register driver\n");
11419		destroy_workqueue(bnx2x_wq);
11420	}
11421	return ret;
11422}
11423
11424static void __exit bnx2x_cleanup(void)
11425{
11426	pci_unregister_driver(&bnx2x_pci_driver);
11427
11428	destroy_workqueue(bnx2x_wq);
11429}
11430
11431void bnx2x_notify_link_changed(struct bnx2x *bp)
11432{
11433	REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + BP_FUNC(bp)*sizeof(u32), 1);
11434}
11435
11436module_init(bnx2x_init);
11437module_exit(bnx2x_cleanup);
11438
11439#ifdef BCM_CNIC
11440/**
11441 * bnx2x_set_iscsi_eth_mac_addr - set iSCSI MAC(s).
11442 *
11443 * @bp:		driver handle
11444 * @set:	set or clear the CAM entry
11445 *
11446 * This function will wait until the ramdord completion returns.
11447 * Return 0 if success, -ENODEV if ramrod doesn't return.
11448 */
11449static inline int bnx2x_set_iscsi_eth_mac_addr(struct bnx2x *bp)
11450{
11451	unsigned long ramrod_flags = 0;
11452
11453	__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
11454	return bnx2x_set_mac_one(bp, bp->cnic_eth_dev.iscsi_mac,
11455				 &bp->iscsi_l2_mac_obj, true,
11456				 BNX2X_ISCSI_ETH_MAC, &ramrod_flags);
11457}
11458
11459/* count denotes the number of new completions we have seen */
11460static void bnx2x_cnic_sp_post(struct bnx2x *bp, int count)
11461{
11462	struct eth_spe *spe;
11463
11464#ifdef BNX2X_STOP_ON_ERROR
11465	if (unlikely(bp->panic))
11466		return;
11467#endif
11468
11469	spin_lock_bh(&bp->spq_lock);
11470	BUG_ON(bp->cnic_spq_pending < count);
11471	bp->cnic_spq_pending -= count;
11472
11473
11474	for (; bp->cnic_kwq_pending; bp->cnic_kwq_pending--) {
11475		u16 type =  (le16_to_cpu(bp->cnic_kwq_cons->hdr.type)
11476				& SPE_HDR_CONN_TYPE) >>
11477				SPE_HDR_CONN_TYPE_SHIFT;
11478		u8 cmd = (le32_to_cpu(bp->cnic_kwq_cons->hdr.conn_and_cmd_data)
11479				>> SPE_HDR_CMD_ID_SHIFT) & 0xff;
11480
11481		/* Set validation for iSCSI L2 client before sending SETUP
11482		 *  ramrod
11483		 */
11484		if (type == ETH_CONNECTION_TYPE) {
11485			if (cmd == RAMROD_CMD_ID_ETH_CLIENT_SETUP)
11486				bnx2x_set_ctx_validation(bp, &bp->context.
11487					vcxt[BNX2X_ISCSI_ETH_CID].eth,
11488					BNX2X_ISCSI_ETH_CID);
11489		}
11490
11491		/*
11492		 * There may be not more than 8 L2, not more than 8 L5 SPEs
11493		 * and in the air. We also check that number of outstanding
11494		 * COMMON ramrods is not more than the EQ and SPQ can
11495		 * accommodate.
11496		 */
11497		if (type == ETH_CONNECTION_TYPE) {
11498			if (!atomic_read(&bp->cq_spq_left))
11499				break;
11500			else
11501				atomic_dec(&bp->cq_spq_left);
11502		} else if (type == NONE_CONNECTION_TYPE) {
11503			if (!atomic_read(&bp->eq_spq_left))
11504				break;
11505			else
11506				atomic_dec(&bp->eq_spq_left);
11507		} else if ((type == ISCSI_CONNECTION_TYPE) ||
11508			   (type == FCOE_CONNECTION_TYPE)) {
11509			if (bp->cnic_spq_pending >=
11510			    bp->cnic_eth_dev.max_kwqe_pending)
11511				break;
11512			else
11513				bp->cnic_spq_pending++;
11514		} else {
11515			BNX2X_ERR("Unknown SPE type: %d\n", type);
11516			bnx2x_panic();
11517			break;
11518		}
11519
11520		spe = bnx2x_sp_get_next(bp);
11521		*spe = *bp->cnic_kwq_cons;
11522
11523		DP(NETIF_MSG_TIMER, "pending on SPQ %d, on KWQ %d count %d\n",
11524		   bp->cnic_spq_pending, bp->cnic_kwq_pending, count);
11525
11526		if (bp->cnic_kwq_cons == bp->cnic_kwq_last)
11527			bp->cnic_kwq_cons = bp->cnic_kwq;
11528		else
11529			bp->cnic_kwq_cons++;
11530	}
11531	bnx2x_sp_prod_update(bp);
11532	spin_unlock_bh(&bp->spq_lock);
11533}
11534
11535static int bnx2x_cnic_sp_queue(struct net_device *dev,
11536			       struct kwqe_16 *kwqes[], u32 count)
11537{
11538	struct bnx2x *bp = netdev_priv(dev);
11539	int i;
11540
11541#ifdef BNX2X_STOP_ON_ERROR
11542	if (unlikely(bp->panic))
11543		return -EIO;
11544#endif
11545
11546	spin_lock_bh(&bp->spq_lock);
11547
11548	for (i = 0; i < count; i++) {
11549		struct eth_spe *spe = (struct eth_spe *)kwqes[i];
11550
11551		if (bp->cnic_kwq_pending == MAX_SP_DESC_CNT)
11552			break;
11553
11554		*bp->cnic_kwq_prod = *spe;
11555
11556		bp->cnic_kwq_pending++;
11557
11558		DP(NETIF_MSG_TIMER, "L5 SPQE %x %x %x:%x pos %d\n",
11559		   spe->hdr.conn_and_cmd_data, spe->hdr.type,
11560		   spe->data.update_data_addr.hi,
11561		   spe->data.update_data_addr.lo,
11562		   bp->cnic_kwq_pending);
11563
11564		if (bp->cnic_kwq_prod == bp->cnic_kwq_last)
11565			bp->cnic_kwq_prod = bp->cnic_kwq;
11566		else
11567			bp->cnic_kwq_prod++;
11568	}
11569
11570	spin_unlock_bh(&bp->spq_lock);
11571
11572	if (bp->cnic_spq_pending < bp->cnic_eth_dev.max_kwqe_pending)
11573		bnx2x_cnic_sp_post(bp, 0);
11574
11575	return i;
11576}
11577
11578static int bnx2x_cnic_ctl_send(struct bnx2x *bp, struct cnic_ctl_info *ctl)
11579{
11580	struct cnic_ops *c_ops;
11581	int rc = 0;
11582
11583	mutex_lock(&bp->cnic_mutex);
11584	c_ops = rcu_dereference_protected(bp->cnic_ops,
11585					  lockdep_is_held(&bp->cnic_mutex));
11586	if (c_ops)
11587		rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
11588	mutex_unlock(&bp->cnic_mutex);
11589
11590	return rc;
11591}
11592
11593static int bnx2x_cnic_ctl_send_bh(struct bnx2x *bp, struct cnic_ctl_info *ctl)
11594{
11595	struct cnic_ops *c_ops;
11596	int rc = 0;
11597
11598	rcu_read_lock();
11599	c_ops = rcu_dereference(bp->cnic_ops);
11600	if (c_ops)
11601		rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
11602	rcu_read_unlock();
11603
11604	return rc;
11605}
11606
11607/*
11608 * for commands that have no data
11609 */
11610int bnx2x_cnic_notify(struct bnx2x *bp, int cmd)
11611{
11612	struct cnic_ctl_info ctl = {0};
11613
11614	ctl.cmd = cmd;
11615
11616	return bnx2x_cnic_ctl_send(bp, &ctl);
11617}
11618
11619static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err)
11620{
11621	struct cnic_ctl_info ctl = {0};
11622
11623	/* first we tell CNIC and only then we count this as a completion */
11624	ctl.cmd = CNIC_CTL_COMPLETION_CMD;
11625	ctl.data.comp.cid = cid;
11626	ctl.data.comp.error = err;
11627
11628	bnx2x_cnic_ctl_send_bh(bp, &ctl);
11629	bnx2x_cnic_sp_post(bp, 0);
11630}
11631
11632
11633/* Called with netif_addr_lock_bh() taken.
11634 * Sets an rx_mode config for an iSCSI ETH client.
11635 * Doesn't block.
11636 * Completion should be checked outside.
11637 */
11638static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start)
11639{
11640	unsigned long accept_flags = 0, ramrod_flags = 0;
11641	u8 cl_id = bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
11642	int sched_state = BNX2X_FILTER_ISCSI_ETH_STOP_SCHED;
11643
11644	if (start) {
11645		/* Start accepting on iSCSI L2 ring. Accept all multicasts
11646		 * because it's the only way for UIO Queue to accept
11647		 * multicasts (in non-promiscuous mode only one Queue per
11648		 * function will receive multicast packets (leading in our
11649		 * case).
11650		 */
11651		__set_bit(BNX2X_ACCEPT_UNICAST, &accept_flags);
11652		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &accept_flags);
11653		__set_bit(BNX2X_ACCEPT_BROADCAST, &accept_flags);
11654		__set_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags);
11655
11656		/* Clear STOP_PENDING bit if START is requested */
11657		clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &bp->sp_state);
11658
11659		sched_state = BNX2X_FILTER_ISCSI_ETH_START_SCHED;
11660	} else
11661		/* Clear START_PENDING bit if STOP is requested */
11662		clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &bp->sp_state);
11663
11664	if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
11665		set_bit(sched_state, &bp->sp_state);
11666	else {
11667		__set_bit(RAMROD_RX, &ramrod_flags);
11668		bnx2x_set_q_rx_mode(bp, cl_id, 0, accept_flags, 0,
11669				    ramrod_flags);
11670	}
11671}
11672
11673
11674static int bnx2x_drv_ctl(struct net_device *dev, struct drv_ctl_info *ctl)
11675{
11676	struct bnx2x *bp = netdev_priv(dev);
11677	int rc = 0;
11678
11679	switch (ctl->cmd) {
11680	case DRV_CTL_CTXTBL_WR_CMD: {
11681		u32 index = ctl->data.io.offset;
11682		dma_addr_t addr = ctl->data.io.dma_addr;
11683
11684		bnx2x_ilt_wr(bp, index, addr);
11685		break;
11686	}
11687
11688	case DRV_CTL_RET_L5_SPQ_CREDIT_CMD: {
11689		int count = ctl->data.credit.credit_count;
11690
11691		bnx2x_cnic_sp_post(bp, count);
11692		break;
11693	}
11694
11695	/* rtnl_lock is held.  */
11696	case DRV_CTL_START_L2_CMD: {
11697		struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
11698		unsigned long sp_bits = 0;
11699
11700		/* Configure the iSCSI classification object */
11701		bnx2x_init_mac_obj(bp, &bp->iscsi_l2_mac_obj,
11702				   cp->iscsi_l2_client_id,
11703				   cp->iscsi_l2_cid, BP_FUNC(bp),
11704				   bnx2x_sp(bp, mac_rdata),
11705				   bnx2x_sp_mapping(bp, mac_rdata),
11706				   BNX2X_FILTER_MAC_PENDING,
11707				   &bp->sp_state, BNX2X_OBJ_TYPE_RX,
11708				   &bp->macs_pool);
11709
11710		/* Set iSCSI MAC address */
11711		rc = bnx2x_set_iscsi_eth_mac_addr(bp);
11712		if (rc)
11713			break;
11714
11715		mmiowb();
11716		barrier();
11717
11718		/* Start accepting on iSCSI L2 ring */
11719
11720		netif_addr_lock_bh(dev);
11721		bnx2x_set_iscsi_eth_rx_mode(bp, true);
11722		netif_addr_unlock_bh(dev);
11723
11724		/* bits to wait on */
11725		__set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
11726		__set_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &sp_bits);
11727
11728		if (!bnx2x_wait_sp_comp(bp, sp_bits))
11729			BNX2X_ERR("rx_mode completion timed out!\n");
11730
11731		break;
11732	}
11733
11734	/* rtnl_lock is held.  */
11735	case DRV_CTL_STOP_L2_CMD: {
11736		unsigned long sp_bits = 0;
11737
11738		/* Stop accepting on iSCSI L2 ring */
11739		netif_addr_lock_bh(dev);
11740		bnx2x_set_iscsi_eth_rx_mode(bp, false);
11741		netif_addr_unlock_bh(dev);
11742
11743		/* bits to wait on */
11744		__set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
11745		__set_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &sp_bits);
11746
11747		if (!bnx2x_wait_sp_comp(bp, sp_bits))
11748			BNX2X_ERR("rx_mode completion timed out!\n");
11749
11750		mmiowb();
11751		barrier();
11752
11753		/* Unset iSCSI L2 MAC */
11754		rc = bnx2x_del_all_macs(bp, &bp->iscsi_l2_mac_obj,
11755					BNX2X_ISCSI_ETH_MAC, true);
11756		break;
11757	}
11758	case DRV_CTL_RET_L2_SPQ_CREDIT_CMD: {
11759		int count = ctl->data.credit.credit_count;
11760
11761		smp_mb__before_atomic_inc();
11762		atomic_add(count, &bp->cq_spq_left);
11763		smp_mb__after_atomic_inc();
11764		break;
11765	}
11766	case DRV_CTL_ULP_REGISTER_CMD: {
11767		int ulp_type = ctl->data.ulp_type;
11768
11769		if (CHIP_IS_E3(bp)) {
11770			int idx = BP_FW_MB_IDX(bp);
11771			u32 cap;
11772
11773			cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
11774			if (ulp_type == CNIC_ULP_ISCSI)
11775				cap |= DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
11776			else if (ulp_type == CNIC_ULP_FCOE)
11777				cap |= DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
11778			SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
11779		}
11780		break;
11781	}
11782	case DRV_CTL_ULP_UNREGISTER_CMD: {
11783		int ulp_type = ctl->data.ulp_type;
11784
11785		if (CHIP_IS_E3(bp)) {
11786			int idx = BP_FW_MB_IDX(bp);
11787			u32 cap;
11788
11789			cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
11790			if (ulp_type == CNIC_ULP_ISCSI)
11791				cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
11792			else if (ulp_type == CNIC_ULP_FCOE)
11793				cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
11794			SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
11795		}
11796		break;
11797	}
11798
11799	default:
11800		BNX2X_ERR("unknown command %x\n", ctl->cmd);
11801		rc = -EINVAL;
11802	}
11803
11804	return rc;
11805}
11806
11807void bnx2x_setup_cnic_irq_info(struct bnx2x *bp)
11808{
11809	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
11810
11811	if (bp->flags & USING_MSIX_FLAG) {
11812		cp->drv_state |= CNIC_DRV_STATE_USING_MSIX;
11813		cp->irq_arr[0].irq_flags |= CNIC_IRQ_FL_MSIX;
11814		cp->irq_arr[0].vector = bp->msix_table[1].vector;
11815	} else {
11816		cp->drv_state &= ~CNIC_DRV_STATE_USING_MSIX;
11817		cp->irq_arr[0].irq_flags &= ~CNIC_IRQ_FL_MSIX;
11818	}
11819	if (!CHIP_IS_E1x(bp))
11820		cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e2_sb;
11821	else
11822		cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e1x_sb;
11823
11824	cp->irq_arr[0].status_blk_num =  bnx2x_cnic_fw_sb_id(bp);
11825	cp->irq_arr[0].status_blk_num2 = bnx2x_cnic_igu_sb_id(bp);
11826	cp->irq_arr[1].status_blk = bp->def_status_blk;
11827	cp->irq_arr[1].status_blk_num = DEF_SB_ID;
11828	cp->irq_arr[1].status_blk_num2 = DEF_SB_IGU_ID;
11829
11830	cp->num_irq = 2;
11831}
11832
11833static int bnx2x_register_cnic(struct net_device *dev, struct cnic_ops *ops,
11834			       void *data)
11835{
11836	struct bnx2x *bp = netdev_priv(dev);
11837	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
11838
11839	if (ops == NULL)
11840		return -EINVAL;
11841
11842	bp->cnic_kwq = kzalloc(PAGE_SIZE, GFP_KERNEL);
11843	if (!bp->cnic_kwq)
11844		return -ENOMEM;
11845
11846	bp->cnic_kwq_cons = bp->cnic_kwq;
11847	bp->cnic_kwq_prod = bp->cnic_kwq;
11848	bp->cnic_kwq_last = bp->cnic_kwq + MAX_SP_DESC_CNT;
11849
11850	bp->cnic_spq_pending = 0;
11851	bp->cnic_kwq_pending = 0;
11852
11853	bp->cnic_data = data;
11854
11855	cp->num_irq = 0;
11856	cp->drv_state |= CNIC_DRV_STATE_REGD;
11857	cp->iro_arr = bp->iro_arr;
11858
11859	bnx2x_setup_cnic_irq_info(bp);
11860
11861	rcu_assign_pointer(bp->cnic_ops, ops);
11862
11863	return 0;
11864}
11865
11866static int bnx2x_unregister_cnic(struct net_device *dev)
11867{
11868	struct bnx2x *bp = netdev_priv(dev);
11869	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
11870
11871	mutex_lock(&bp->cnic_mutex);
11872	cp->drv_state = 0;
11873	RCU_INIT_POINTER(bp->cnic_ops, NULL);
11874	mutex_unlock(&bp->cnic_mutex);
11875	synchronize_rcu();
11876	kfree(bp->cnic_kwq);
11877	bp->cnic_kwq = NULL;
11878
11879	return 0;
11880}
11881
11882struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev)
11883{
11884	struct bnx2x *bp = netdev_priv(dev);
11885	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
11886
11887	/* If both iSCSI and FCoE are disabled - return NULL in
11888	 * order to indicate CNIC that it should not try to work
11889	 * with this device.
11890	 */
11891	if (NO_ISCSI(bp) && NO_FCOE(bp))
11892		return NULL;
11893
11894	cp->drv_owner = THIS_MODULE;
11895	cp->chip_id = CHIP_ID(bp);
11896	cp->pdev = bp->pdev;
11897	cp->io_base = bp->regview;
11898	cp->io_base2 = bp->doorbells;
11899	cp->max_kwqe_pending = 8;
11900	cp->ctx_blk_size = CDU_ILT_PAGE_SZ;
11901	cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
11902			     bnx2x_cid_ilt_lines(bp);
11903	cp->ctx_tbl_len = CNIC_ILT_LINES;
11904	cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
11905	cp->drv_submit_kwqes_16 = bnx2x_cnic_sp_queue;
11906	cp->drv_ctl = bnx2x_drv_ctl;
11907	cp->drv_register_cnic = bnx2x_register_cnic;
11908	cp->drv_unregister_cnic = bnx2x_unregister_cnic;
11909	cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID;
11910	cp->iscsi_l2_client_id =
11911		bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
11912	cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID;
11913
11914	if (NO_ISCSI_OOO(bp))
11915		cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
11916
11917	if (NO_ISCSI(bp))
11918		cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI;
11919
11920	if (NO_FCOE(bp))
11921		cp->drv_state |= CNIC_DRV_STATE_NO_FCOE;
11922
11923	DP(BNX2X_MSG_SP, "page_size %d, tbl_offset %d, tbl_lines %d, "
11924			 "starting cid %d\n",
11925	   cp->ctx_blk_size,
11926	   cp->ctx_tbl_offset,
11927	   cp->ctx_tbl_len,
11928	   cp->starting_cid);
11929	return cp;
11930}
11931EXPORT_SYMBOL(bnx2x_cnic_probe);
11932
11933#endif /* BCM_CNIC */
11934
11935