bnx2x_main.c revision 2cfa5a0471fef43fda0b7bd87e3a5e4dbadb7809
1/* bnx2x_main.c: Broadcom Everest network driver.
2 *
3 * Copyright (c) 2007-2011 Broadcom Corporation
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation.
8 *
9 * Maintained by: Eilon Greenstein <eilong@broadcom.com>
10 * Written by: Eliezer Tamir
11 * Based on code from Michael Chan's bnx2 driver
12 * UDP CSUM errata workaround by Arik Gendelman
13 * Slowpath and fastpath rework by Vladislav Zolotarov
14 * Statistics and Link management by Yitchak Gertner
15 *
16 */
17
18#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19
20#include <linux/module.h>
21#include <linux/moduleparam.h>
22#include <linux/kernel.h>
23#include <linux/device.h>  /* for dev_info() */
24#include <linux/timer.h>
25#include <linux/errno.h>
26#include <linux/ioport.h>
27#include <linux/slab.h>
28#include <linux/interrupt.h>
29#include <linux/pci.h>
30#include <linux/init.h>
31#include <linux/netdevice.h>
32#include <linux/etherdevice.h>
33#include <linux/skbuff.h>
34#include <linux/dma-mapping.h>
35#include <linux/bitops.h>
36#include <linux/irq.h>
37#include <linux/delay.h>
38#include <asm/byteorder.h>
39#include <linux/time.h>
40#include <linux/ethtool.h>
41#include <linux/mii.h>
42#include <linux/if.h>
43#include <linux/if_vlan.h>
44#include <net/ip.h>
45#include <net/ipv6.h>
46#include <net/tcp.h>
47#include <net/checksum.h>
48#include <net/ip6_checksum.h>
49#include <linux/workqueue.h>
50#include <linux/crc32.h>
51#include <linux/crc32c.h>
52#include <linux/prefetch.h>
53#include <linux/zlib.h>
54#include <linux/io.h>
55#include <linux/stringify.h>
56#include <linux/vmalloc.h>
57
58#include "bnx2x.h"
59#include "bnx2x_init.h"
60#include "bnx2x_init_ops.h"
61#include "bnx2x_cmn.h"
62#include "bnx2x_dcb.h"
63#include "bnx2x_sp.h"
64
65#include <linux/firmware.h>
66#include "bnx2x_fw_file_hdr.h"
67/* FW files */
68#define FW_FILE_VERSION					\
69	__stringify(BCM_5710_FW_MAJOR_VERSION) "."	\
70	__stringify(BCM_5710_FW_MINOR_VERSION) "."	\
71	__stringify(BCM_5710_FW_REVISION_VERSION) "."	\
72	__stringify(BCM_5710_FW_ENGINEERING_VERSION)
73#define FW_FILE_NAME_E1		"bnx2x/bnx2x-e1-" FW_FILE_VERSION ".fw"
74#define FW_FILE_NAME_E1H	"bnx2x/bnx2x-e1h-" FW_FILE_VERSION ".fw"
75#define FW_FILE_NAME_E2		"bnx2x/bnx2x-e2-" FW_FILE_VERSION ".fw"
76
77/* Time in jiffies before concluding the transmitter is hung */
78#define TX_TIMEOUT		(5*HZ)
79
80static char version[] __devinitdata =
81	"Broadcom NetXtreme II 5771x/578xx 10/20-Gigabit Ethernet Driver "
82	DRV_MODULE_NAME " " DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
83
84MODULE_AUTHOR("Eliezer Tamir");
85MODULE_DESCRIPTION("Broadcom NetXtreme II "
86		   "BCM57710/57711/57711E/"
87		   "57712/57712_MF/57800/57800_MF/57810/57810_MF/"
88		   "57840/57840_MF Driver");
89MODULE_LICENSE("GPL");
90MODULE_VERSION(DRV_MODULE_VERSION);
91MODULE_FIRMWARE(FW_FILE_NAME_E1);
92MODULE_FIRMWARE(FW_FILE_NAME_E1H);
93MODULE_FIRMWARE(FW_FILE_NAME_E2);
94
95static int multi_mode = 1;
96module_param(multi_mode, int, 0);
97MODULE_PARM_DESC(multi_mode, " Multi queue mode "
98			     "(0 Disable; 1 Enable (default))");
99
100int num_queues;
101module_param(num_queues, int, 0);
102MODULE_PARM_DESC(num_queues, " Number of queues for multi_mode=1"
103				" (default is as a number of CPUs)");
104
105static int disable_tpa;
106module_param(disable_tpa, int, 0);
107MODULE_PARM_DESC(disable_tpa, " Disable the TPA (LRO) feature");
108
109#define INT_MODE_INTx			1
110#define INT_MODE_MSI			2
111static int int_mode;
112module_param(int_mode, int, 0);
113MODULE_PARM_DESC(int_mode, " Force interrupt mode other than MSI-X "
114				"(1 INT#x; 2 MSI)");
115
116static int dropless_fc;
117module_param(dropless_fc, int, 0);
118MODULE_PARM_DESC(dropless_fc, " Pause on exhausted host ring");
119
120static int poll;
121module_param(poll, int, 0);
122MODULE_PARM_DESC(poll, " Use polling (for debug)");
123
124static int mrrs = -1;
125module_param(mrrs, int, 0);
126MODULE_PARM_DESC(mrrs, " Force Max Read Req Size (0..3) (for debug)");
127
128static int debug;
129module_param(debug, int, 0);
130MODULE_PARM_DESC(debug, " Default debug msglevel");
131
132
133
134struct workqueue_struct *bnx2x_wq;
135
136enum bnx2x_board_type {
137	BCM57710 = 0,
138	BCM57711,
139	BCM57711E,
140	BCM57712,
141	BCM57712_MF,
142	BCM57800,
143	BCM57800_MF,
144	BCM57810,
145	BCM57810_MF,
146	BCM57840,
147	BCM57840_MF
148};
149
150/* indexed by board_type, above */
151static struct {
152	char *name;
153} board_info[] __devinitdata = {
154	{ "Broadcom NetXtreme II BCM57710 10 Gigabit PCIe [Everest]" },
155	{ "Broadcom NetXtreme II BCM57711 10 Gigabit PCIe" },
156	{ "Broadcom NetXtreme II BCM57711E 10 Gigabit PCIe" },
157	{ "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet" },
158	{ "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet Multi Function" },
159	{ "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet" },
160	{ "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet Multi Function" },
161	{ "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet" },
162	{ "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet Multi Function" },
163	{ "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet" },
164	{ "Broadcom NetXtreme II BCM57840 10/20 Gigabit "
165						"Ethernet Multi Function"}
166};
167
168#ifndef PCI_DEVICE_ID_NX2_57710
169#define PCI_DEVICE_ID_NX2_57710		CHIP_NUM_57710
170#endif
171#ifndef PCI_DEVICE_ID_NX2_57711
172#define PCI_DEVICE_ID_NX2_57711		CHIP_NUM_57711
173#endif
174#ifndef PCI_DEVICE_ID_NX2_57711E
175#define PCI_DEVICE_ID_NX2_57711E	CHIP_NUM_57711E
176#endif
177#ifndef PCI_DEVICE_ID_NX2_57712
178#define PCI_DEVICE_ID_NX2_57712		CHIP_NUM_57712
179#endif
180#ifndef PCI_DEVICE_ID_NX2_57712_MF
181#define PCI_DEVICE_ID_NX2_57712_MF	CHIP_NUM_57712_MF
182#endif
183#ifndef PCI_DEVICE_ID_NX2_57800
184#define PCI_DEVICE_ID_NX2_57800		CHIP_NUM_57800
185#endif
186#ifndef PCI_DEVICE_ID_NX2_57800_MF
187#define PCI_DEVICE_ID_NX2_57800_MF	CHIP_NUM_57800_MF
188#endif
189#ifndef PCI_DEVICE_ID_NX2_57810
190#define PCI_DEVICE_ID_NX2_57810		CHIP_NUM_57810
191#endif
192#ifndef PCI_DEVICE_ID_NX2_57810_MF
193#define PCI_DEVICE_ID_NX2_57810_MF	CHIP_NUM_57810_MF
194#endif
195#ifndef PCI_DEVICE_ID_NX2_57840
196#define PCI_DEVICE_ID_NX2_57840		CHIP_NUM_57840
197#endif
198#ifndef PCI_DEVICE_ID_NX2_57840_MF
199#define PCI_DEVICE_ID_NX2_57840_MF	CHIP_NUM_57840_MF
200#endif
201static DEFINE_PCI_DEVICE_TABLE(bnx2x_pci_tbl) = {
202	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57710), BCM57710 },
203	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711), BCM57711 },
204	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711E), BCM57711E },
205	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712), BCM57712 },
206	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_MF), BCM57712_MF },
207	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800), BCM57800 },
208	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_MF), BCM57800_MF },
209	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810), BCM57810 },
210	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_MF), BCM57810_MF },
211	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840), BCM57840 },
212	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MF), BCM57840_MF },
213	{ 0 }
214};
215
216MODULE_DEVICE_TABLE(pci, bnx2x_pci_tbl);
217
218/****************************************************************************
219* General service functions
220****************************************************************************/
221
222static inline void __storm_memset_dma_mapping(struct bnx2x *bp,
223				       u32 addr, dma_addr_t mapping)
224{
225	REG_WR(bp,  addr, U64_LO(mapping));
226	REG_WR(bp,  addr + 4, U64_HI(mapping));
227}
228
229static inline void storm_memset_spq_addr(struct bnx2x *bp,
230					 dma_addr_t mapping, u16 abs_fid)
231{
232	u32 addr = XSEM_REG_FAST_MEMORY +
233			XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid);
234
235	__storm_memset_dma_mapping(bp, addr, mapping);
236}
237
238static inline void storm_memset_vf_to_pf(struct bnx2x *bp, u16 abs_fid,
239					 u16 pf_id)
240{
241	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid),
242		pf_id);
243	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid),
244		pf_id);
245	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid),
246		pf_id);
247	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid),
248		pf_id);
249}
250
251static inline void storm_memset_func_en(struct bnx2x *bp, u16 abs_fid,
252					u8 enable)
253{
254	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid),
255		enable);
256	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid),
257		enable);
258	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid),
259		enable);
260	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid),
261		enable);
262}
263
264static inline void storm_memset_eq_data(struct bnx2x *bp,
265				struct event_ring_data *eq_data,
266				u16 pfid)
267{
268	size_t size = sizeof(struct event_ring_data);
269
270	u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid);
271
272	__storm_memset_struct(bp, addr, size, (u32 *)eq_data);
273}
274
275static inline void storm_memset_eq_prod(struct bnx2x *bp, u16 eq_prod,
276					u16 pfid)
277{
278	u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_PROD_OFFSET(pfid);
279	REG_WR16(bp, addr, eq_prod);
280}
281
282/* used only at init
283 * locking is done by mcp
284 */
285static void bnx2x_reg_wr_ind(struct bnx2x *bp, u32 addr, u32 val)
286{
287	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
288	pci_write_config_dword(bp->pdev, PCICFG_GRC_DATA, val);
289	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
290			       PCICFG_VENDOR_ID_OFFSET);
291}
292
293static u32 bnx2x_reg_rd_ind(struct bnx2x *bp, u32 addr)
294{
295	u32 val;
296
297	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
298	pci_read_config_dword(bp->pdev, PCICFG_GRC_DATA, &val);
299	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
300			       PCICFG_VENDOR_ID_OFFSET);
301
302	return val;
303}
304
305#define DMAE_DP_SRC_GRC		"grc src_addr [%08x]"
306#define DMAE_DP_SRC_PCI		"pci src_addr [%x:%08x]"
307#define DMAE_DP_DST_GRC		"grc dst_addr [%08x]"
308#define DMAE_DP_DST_PCI		"pci dst_addr [%x:%08x]"
309#define DMAE_DP_DST_NONE	"dst_addr [none]"
310
311static void bnx2x_dp_dmae(struct bnx2x *bp, struct dmae_command *dmae,
312			  int msglvl)
313{
314	u32 src_type = dmae->opcode & DMAE_COMMAND_SRC;
315
316	switch (dmae->opcode & DMAE_COMMAND_DST) {
317	case DMAE_CMD_DST_PCI:
318		if (src_type == DMAE_CMD_SRC_PCI)
319			DP(msglvl, "DMAE: opcode 0x%08x\n"
320			   "src [%x:%08x], len [%d*4], dst [%x:%08x]\n"
321			   "comp_addr [%x:%08x], comp_val 0x%08x\n",
322			   dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
323			   dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
324			   dmae->comp_addr_hi, dmae->comp_addr_lo,
325			   dmae->comp_val);
326		else
327			DP(msglvl, "DMAE: opcode 0x%08x\n"
328			   "src [%08x], len [%d*4], dst [%x:%08x]\n"
329			   "comp_addr [%x:%08x], comp_val 0x%08x\n",
330			   dmae->opcode, dmae->src_addr_lo >> 2,
331			   dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
332			   dmae->comp_addr_hi, dmae->comp_addr_lo,
333			   dmae->comp_val);
334		break;
335	case DMAE_CMD_DST_GRC:
336		if (src_type == DMAE_CMD_SRC_PCI)
337			DP(msglvl, "DMAE: opcode 0x%08x\n"
338			   "src [%x:%08x], len [%d*4], dst_addr [%08x]\n"
339			   "comp_addr [%x:%08x], comp_val 0x%08x\n",
340			   dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
341			   dmae->len, dmae->dst_addr_lo >> 2,
342			   dmae->comp_addr_hi, dmae->comp_addr_lo,
343			   dmae->comp_val);
344		else
345			DP(msglvl, "DMAE: opcode 0x%08x\n"
346			   "src [%08x], len [%d*4], dst [%08x]\n"
347			   "comp_addr [%x:%08x], comp_val 0x%08x\n",
348			   dmae->opcode, dmae->src_addr_lo >> 2,
349			   dmae->len, dmae->dst_addr_lo >> 2,
350			   dmae->comp_addr_hi, dmae->comp_addr_lo,
351			   dmae->comp_val);
352		break;
353	default:
354		if (src_type == DMAE_CMD_SRC_PCI)
355			DP(msglvl, "DMAE: opcode 0x%08x\n"
356			   "src_addr [%x:%08x]  len [%d * 4]  dst_addr [none]\n"
357			   "comp_addr [%x:%08x]  comp_val 0x%08x\n",
358			   dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
359			   dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
360			   dmae->comp_val);
361		else
362			DP(msglvl, "DMAE: opcode 0x%08x\n"
363			   "src_addr [%08x]  len [%d * 4]  dst_addr [none]\n"
364			   "comp_addr [%x:%08x]  comp_val 0x%08x\n",
365			   dmae->opcode, dmae->src_addr_lo >> 2,
366			   dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
367			   dmae->comp_val);
368		break;
369	}
370
371}
372
373/* copy command into DMAE command memory and set DMAE command go */
374void bnx2x_post_dmae(struct bnx2x *bp, struct dmae_command *dmae, int idx)
375{
376	u32 cmd_offset;
377	int i;
378
379	cmd_offset = (DMAE_REG_CMD_MEM + sizeof(struct dmae_command) * idx);
380	for (i = 0; i < (sizeof(struct dmae_command)/4); i++) {
381		REG_WR(bp, cmd_offset + i*4, *(((u32 *)dmae) + i));
382
383		DP(BNX2X_MSG_OFF, "DMAE cmd[%d].%d (0x%08x) : 0x%08x\n",
384		   idx, i, cmd_offset + i*4, *(((u32 *)dmae) + i));
385	}
386	REG_WR(bp, dmae_reg_go_c[idx], 1);
387}
388
389u32 bnx2x_dmae_opcode_add_comp(u32 opcode, u8 comp_type)
390{
391	return opcode | ((comp_type << DMAE_COMMAND_C_DST_SHIFT) |
392			   DMAE_CMD_C_ENABLE);
393}
394
395u32 bnx2x_dmae_opcode_clr_src_reset(u32 opcode)
396{
397	return opcode & ~DMAE_CMD_SRC_RESET;
398}
399
400u32 bnx2x_dmae_opcode(struct bnx2x *bp, u8 src_type, u8 dst_type,
401			     bool with_comp, u8 comp_type)
402{
403	u32 opcode = 0;
404
405	opcode |= ((src_type << DMAE_COMMAND_SRC_SHIFT) |
406		   (dst_type << DMAE_COMMAND_DST_SHIFT));
407
408	opcode |= (DMAE_CMD_SRC_RESET | DMAE_CMD_DST_RESET);
409
410	opcode |= (BP_PORT(bp) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0);
411	opcode |= ((BP_VN(bp) << DMAE_CMD_E1HVN_SHIFT) |
412		   (BP_VN(bp) << DMAE_COMMAND_DST_VN_SHIFT));
413	opcode |= (DMAE_COM_SET_ERR << DMAE_COMMAND_ERR_POLICY_SHIFT);
414
415#ifdef __BIG_ENDIAN
416	opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP;
417#else
418	opcode |= DMAE_CMD_ENDIANITY_DW_SWAP;
419#endif
420	if (with_comp)
421		opcode = bnx2x_dmae_opcode_add_comp(opcode, comp_type);
422	return opcode;
423}
424
425static void bnx2x_prep_dmae_with_comp(struct bnx2x *bp,
426				      struct dmae_command *dmae,
427				      u8 src_type, u8 dst_type)
428{
429	memset(dmae, 0, sizeof(struct dmae_command));
430
431	/* set the opcode */
432	dmae->opcode = bnx2x_dmae_opcode(bp, src_type, dst_type,
433					 true, DMAE_COMP_PCI);
434
435	/* fill in the completion parameters */
436	dmae->comp_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_comp));
437	dmae->comp_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_comp));
438	dmae->comp_val = DMAE_COMP_VAL;
439}
440
441/* issue a dmae command over the init-channel and wailt for completion */
442static int bnx2x_issue_dmae_with_comp(struct bnx2x *bp,
443				      struct dmae_command *dmae)
444{
445	u32 *wb_comp = bnx2x_sp(bp, wb_comp);
446	int cnt = CHIP_REV_IS_SLOW(bp) ? (400000) : 4000;
447	int rc = 0;
448
449	DP(BNX2X_MSG_OFF, "data before [0x%08x 0x%08x 0x%08x 0x%08x]\n",
450	   bp->slowpath->wb_data[0], bp->slowpath->wb_data[1],
451	   bp->slowpath->wb_data[2], bp->slowpath->wb_data[3]);
452
453	/*
454	 * Lock the dmae channel. Disable BHs to prevent a dead-lock
455	 * as long as this code is called both from syscall context and
456	 * from ndo_set_rx_mode() flow that may be called from BH.
457	 */
458	spin_lock_bh(&bp->dmae_lock);
459
460	/* reset completion */
461	*wb_comp = 0;
462
463	/* post the command on the channel used for initializations */
464	bnx2x_post_dmae(bp, dmae, INIT_DMAE_C(bp));
465
466	/* wait for completion */
467	udelay(5);
468	while ((*wb_comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) {
469		DP(BNX2X_MSG_OFF, "wb_comp 0x%08x\n", *wb_comp);
470
471		if (!cnt) {
472			BNX2X_ERR("DMAE timeout!\n");
473			rc = DMAE_TIMEOUT;
474			goto unlock;
475		}
476		cnt--;
477		udelay(50);
478	}
479	if (*wb_comp & DMAE_PCI_ERR_FLAG) {
480		BNX2X_ERR("DMAE PCI error!\n");
481		rc = DMAE_PCI_ERROR;
482	}
483
484	DP(BNX2X_MSG_OFF, "data after [0x%08x 0x%08x 0x%08x 0x%08x]\n",
485	   bp->slowpath->wb_data[0], bp->slowpath->wb_data[1],
486	   bp->slowpath->wb_data[2], bp->slowpath->wb_data[3]);
487
488unlock:
489	spin_unlock_bh(&bp->dmae_lock);
490	return rc;
491}
492
493void bnx2x_write_dmae(struct bnx2x *bp, dma_addr_t dma_addr, u32 dst_addr,
494		      u32 len32)
495{
496	struct dmae_command dmae;
497
498	if (!bp->dmae_ready) {
499		u32 *data = bnx2x_sp(bp, wb_data[0]);
500
501		DP(BNX2X_MSG_OFF, "DMAE is not ready (dst_addr %08x  len32 %d)"
502		   "  using indirect\n", dst_addr, len32);
503		bnx2x_init_ind_wr(bp, dst_addr, data, len32);
504		return;
505	}
506
507	/* set opcode and fixed command fields */
508	bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC);
509
510	/* fill in addresses and len */
511	dmae.src_addr_lo = U64_LO(dma_addr);
512	dmae.src_addr_hi = U64_HI(dma_addr);
513	dmae.dst_addr_lo = dst_addr >> 2;
514	dmae.dst_addr_hi = 0;
515	dmae.len = len32;
516
517	bnx2x_dp_dmae(bp, &dmae, BNX2X_MSG_OFF);
518
519	/* issue the command and wait for completion */
520	bnx2x_issue_dmae_with_comp(bp, &dmae);
521}
522
523void bnx2x_read_dmae(struct bnx2x *bp, u32 src_addr, u32 len32)
524{
525	struct dmae_command dmae;
526
527	if (!bp->dmae_ready) {
528		u32 *data = bnx2x_sp(bp, wb_data[0]);
529		int i;
530
531		DP(BNX2X_MSG_OFF, "DMAE is not ready (src_addr %08x  len32 %d)"
532		   "  using indirect\n", src_addr, len32);
533		for (i = 0; i < len32; i++)
534			data[i] = bnx2x_reg_rd_ind(bp, src_addr + i*4);
535		return;
536	}
537
538	/* set opcode and fixed command fields */
539	bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI);
540
541	/* fill in addresses and len */
542	dmae.src_addr_lo = src_addr >> 2;
543	dmae.src_addr_hi = 0;
544	dmae.dst_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_data));
545	dmae.dst_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_data));
546	dmae.len = len32;
547
548	bnx2x_dp_dmae(bp, &dmae, BNX2X_MSG_OFF);
549
550	/* issue the command and wait for completion */
551	bnx2x_issue_dmae_with_comp(bp, &dmae);
552}
553
554static void bnx2x_write_dmae_phys_len(struct bnx2x *bp, dma_addr_t phys_addr,
555				      u32 addr, u32 len)
556{
557	int dmae_wr_max = DMAE_LEN32_WR_MAX(bp);
558	int offset = 0;
559
560	while (len > dmae_wr_max) {
561		bnx2x_write_dmae(bp, phys_addr + offset,
562				 addr + offset, dmae_wr_max);
563		offset += dmae_wr_max * 4;
564		len -= dmae_wr_max;
565	}
566
567	bnx2x_write_dmae(bp, phys_addr + offset, addr + offset, len);
568}
569
570/* used only for slowpath so not inlined */
571static void bnx2x_wb_wr(struct bnx2x *bp, int reg, u32 val_hi, u32 val_lo)
572{
573	u32 wb_write[2];
574
575	wb_write[0] = val_hi;
576	wb_write[1] = val_lo;
577	REG_WR_DMAE(bp, reg, wb_write, 2);
578}
579
580#ifdef USE_WB_RD
581static u64 bnx2x_wb_rd(struct bnx2x *bp, int reg)
582{
583	u32 wb_data[2];
584
585	REG_RD_DMAE(bp, reg, wb_data, 2);
586
587	return HILO_U64(wb_data[0], wb_data[1]);
588}
589#endif
590
591static int bnx2x_mc_assert(struct bnx2x *bp)
592{
593	char last_idx;
594	int i, rc = 0;
595	u32 row0, row1, row2, row3;
596
597	/* XSTORM */
598	last_idx = REG_RD8(bp, BAR_XSTRORM_INTMEM +
599			   XSTORM_ASSERT_LIST_INDEX_OFFSET);
600	if (last_idx)
601		BNX2X_ERR("XSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
602
603	/* print the asserts */
604	for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
605
606		row0 = REG_RD(bp, BAR_XSTRORM_INTMEM +
607			      XSTORM_ASSERT_LIST_OFFSET(i));
608		row1 = REG_RD(bp, BAR_XSTRORM_INTMEM +
609			      XSTORM_ASSERT_LIST_OFFSET(i) + 4);
610		row2 = REG_RD(bp, BAR_XSTRORM_INTMEM +
611			      XSTORM_ASSERT_LIST_OFFSET(i) + 8);
612		row3 = REG_RD(bp, BAR_XSTRORM_INTMEM +
613			      XSTORM_ASSERT_LIST_OFFSET(i) + 12);
614
615		if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
616			BNX2X_ERR("XSTORM_ASSERT_INDEX 0x%x = 0x%08x"
617				  " 0x%08x 0x%08x 0x%08x\n",
618				  i, row3, row2, row1, row0);
619			rc++;
620		} else {
621			break;
622		}
623	}
624
625	/* TSTORM */
626	last_idx = REG_RD8(bp, BAR_TSTRORM_INTMEM +
627			   TSTORM_ASSERT_LIST_INDEX_OFFSET);
628	if (last_idx)
629		BNX2X_ERR("TSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
630
631	/* print the asserts */
632	for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
633
634		row0 = REG_RD(bp, BAR_TSTRORM_INTMEM +
635			      TSTORM_ASSERT_LIST_OFFSET(i));
636		row1 = REG_RD(bp, BAR_TSTRORM_INTMEM +
637			      TSTORM_ASSERT_LIST_OFFSET(i) + 4);
638		row2 = REG_RD(bp, BAR_TSTRORM_INTMEM +
639			      TSTORM_ASSERT_LIST_OFFSET(i) + 8);
640		row3 = REG_RD(bp, BAR_TSTRORM_INTMEM +
641			      TSTORM_ASSERT_LIST_OFFSET(i) + 12);
642
643		if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
644			BNX2X_ERR("TSTORM_ASSERT_INDEX 0x%x = 0x%08x"
645				  " 0x%08x 0x%08x 0x%08x\n",
646				  i, row3, row2, row1, row0);
647			rc++;
648		} else {
649			break;
650		}
651	}
652
653	/* CSTORM */
654	last_idx = REG_RD8(bp, BAR_CSTRORM_INTMEM +
655			   CSTORM_ASSERT_LIST_INDEX_OFFSET);
656	if (last_idx)
657		BNX2X_ERR("CSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
658
659	/* print the asserts */
660	for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
661
662		row0 = REG_RD(bp, BAR_CSTRORM_INTMEM +
663			      CSTORM_ASSERT_LIST_OFFSET(i));
664		row1 = REG_RD(bp, BAR_CSTRORM_INTMEM +
665			      CSTORM_ASSERT_LIST_OFFSET(i) + 4);
666		row2 = REG_RD(bp, BAR_CSTRORM_INTMEM +
667			      CSTORM_ASSERT_LIST_OFFSET(i) + 8);
668		row3 = REG_RD(bp, BAR_CSTRORM_INTMEM +
669			      CSTORM_ASSERT_LIST_OFFSET(i) + 12);
670
671		if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
672			BNX2X_ERR("CSTORM_ASSERT_INDEX 0x%x = 0x%08x"
673				  " 0x%08x 0x%08x 0x%08x\n",
674				  i, row3, row2, row1, row0);
675			rc++;
676		} else {
677			break;
678		}
679	}
680
681	/* USTORM */
682	last_idx = REG_RD8(bp, BAR_USTRORM_INTMEM +
683			   USTORM_ASSERT_LIST_INDEX_OFFSET);
684	if (last_idx)
685		BNX2X_ERR("USTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
686
687	/* print the asserts */
688	for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
689
690		row0 = REG_RD(bp, BAR_USTRORM_INTMEM +
691			      USTORM_ASSERT_LIST_OFFSET(i));
692		row1 = REG_RD(bp, BAR_USTRORM_INTMEM +
693			      USTORM_ASSERT_LIST_OFFSET(i) + 4);
694		row2 = REG_RD(bp, BAR_USTRORM_INTMEM +
695			      USTORM_ASSERT_LIST_OFFSET(i) + 8);
696		row3 = REG_RD(bp, BAR_USTRORM_INTMEM +
697			      USTORM_ASSERT_LIST_OFFSET(i) + 12);
698
699		if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
700			BNX2X_ERR("USTORM_ASSERT_INDEX 0x%x = 0x%08x"
701				  " 0x%08x 0x%08x 0x%08x\n",
702				  i, row3, row2, row1, row0);
703			rc++;
704		} else {
705			break;
706		}
707	}
708
709	return rc;
710}
711
712void bnx2x_fw_dump_lvl(struct bnx2x *bp, const char *lvl)
713{
714	u32 addr, val;
715	u32 mark, offset;
716	__be32 data[9];
717	int word;
718	u32 trace_shmem_base;
719	if (BP_NOMCP(bp)) {
720		BNX2X_ERR("NO MCP - can not dump\n");
721		return;
722	}
723	netdev_printk(lvl, bp->dev, "bc %d.%d.%d\n",
724		(bp->common.bc_ver & 0xff0000) >> 16,
725		(bp->common.bc_ver & 0xff00) >> 8,
726		(bp->common.bc_ver & 0xff));
727
728	val = REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER);
729	if (val == REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER))
730		printk("%s" "MCP PC at 0x%x\n", lvl, val);
731
732	if (BP_PATH(bp) == 0)
733		trace_shmem_base = bp->common.shmem_base;
734	else
735		trace_shmem_base = SHMEM2_RD(bp, other_shmem_base_addr);
736	addr = trace_shmem_base - 0x0800 + 4;
737	mark = REG_RD(bp, addr);
738	mark = (CHIP_IS_E1x(bp) ? MCP_REG_MCPR_SCRATCH : MCP_A_REG_MCPR_SCRATCH)
739			+ ((mark + 0x3) & ~0x3) - 0x08000000;
740	printk("%s" "begin fw dump (mark 0x%x)\n", lvl, mark);
741
742	printk("%s", lvl);
743	for (offset = mark; offset <= trace_shmem_base; offset += 0x8*4) {
744		for (word = 0; word < 8; word++)
745			data[word] = htonl(REG_RD(bp, offset + 4*word));
746		data[8] = 0x0;
747		pr_cont("%s", (char *)data);
748	}
749	for (offset = addr + 4; offset <= mark; offset += 0x8*4) {
750		for (word = 0; word < 8; word++)
751			data[word] = htonl(REG_RD(bp, offset + 4*word));
752		data[8] = 0x0;
753		pr_cont("%s", (char *)data);
754	}
755	printk("%s" "end of fw dump\n", lvl);
756}
757
758static inline void bnx2x_fw_dump(struct bnx2x *bp)
759{
760	bnx2x_fw_dump_lvl(bp, KERN_ERR);
761}
762
763void bnx2x_panic_dump(struct bnx2x *bp)
764{
765	int i;
766	u16 j;
767	struct hc_sp_status_block_data sp_sb_data;
768	int func = BP_FUNC(bp);
769#ifdef BNX2X_STOP_ON_ERROR
770	u16 start = 0, end = 0;
771	u8 cos;
772#endif
773
774	bp->stats_state = STATS_STATE_DISABLED;
775	DP(BNX2X_MSG_STATS, "stats_state - DISABLED\n");
776
777	BNX2X_ERR("begin crash dump -----------------\n");
778
779	/* Indices */
780	/* Common */
781	BNX2X_ERR("def_idx(0x%x)  def_att_idx(0x%x)  attn_state(0x%x)"
782		  "  spq_prod_idx(0x%x) next_stats_cnt(0x%x)\n",
783		  bp->def_idx, bp->def_att_idx, bp->attn_state,
784		  bp->spq_prod_idx, bp->stats_counter);
785	BNX2X_ERR("DSB: attn bits(0x%x)  ack(0x%x)  id(0x%x)  idx(0x%x)\n",
786		  bp->def_status_blk->atten_status_block.attn_bits,
787		  bp->def_status_blk->atten_status_block.attn_bits_ack,
788		  bp->def_status_blk->atten_status_block.status_block_id,
789		  bp->def_status_blk->atten_status_block.attn_bits_index);
790	BNX2X_ERR("     def (");
791	for (i = 0; i < HC_SP_SB_MAX_INDICES; i++)
792		pr_cont("0x%x%s",
793			bp->def_status_blk->sp_sb.index_values[i],
794			(i == HC_SP_SB_MAX_INDICES - 1) ? ")  " : " ");
795
796	for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++)
797		*((u32 *)&sp_sb_data + i) = REG_RD(bp, BAR_CSTRORM_INTMEM +
798			CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) +
799			i*sizeof(u32));
800
801	pr_cont("igu_sb_id(0x%x)  igu_seg_id(0x%x) pf_id(0x%x)  vnic_id(0x%x)  vf_id(0x%x)  vf_valid (0x%x) state(0x%x)\n",
802	       sp_sb_data.igu_sb_id,
803	       sp_sb_data.igu_seg_id,
804	       sp_sb_data.p_func.pf_id,
805	       sp_sb_data.p_func.vnic_id,
806	       sp_sb_data.p_func.vf_id,
807	       sp_sb_data.p_func.vf_valid,
808	       sp_sb_data.state);
809
810
811	for_each_eth_queue(bp, i) {
812		struct bnx2x_fastpath *fp = &bp->fp[i];
813		int loop;
814		struct hc_status_block_data_e2 sb_data_e2;
815		struct hc_status_block_data_e1x sb_data_e1x;
816		struct hc_status_block_sm  *hc_sm_p =
817			CHIP_IS_E1x(bp) ?
818			sb_data_e1x.common.state_machine :
819			sb_data_e2.common.state_machine;
820		struct hc_index_data *hc_index_p =
821			CHIP_IS_E1x(bp) ?
822			sb_data_e1x.index_data :
823			sb_data_e2.index_data;
824		u8 data_size, cos;
825		u32 *sb_data_p;
826		struct bnx2x_fp_txdata txdata;
827
828		/* Rx */
829		BNX2X_ERR("fp%d: rx_bd_prod(0x%x)  rx_bd_cons(0x%x)"
830			  "  rx_comp_prod(0x%x)"
831			  "  rx_comp_cons(0x%x)  *rx_cons_sb(0x%x)\n",
832			  i, fp->rx_bd_prod, fp->rx_bd_cons,
833			  fp->rx_comp_prod,
834			  fp->rx_comp_cons, le16_to_cpu(*fp->rx_cons_sb));
835		BNX2X_ERR("     rx_sge_prod(0x%x)  last_max_sge(0x%x)"
836			  "  fp_hc_idx(0x%x)\n",
837			  fp->rx_sge_prod, fp->last_max_sge,
838			  le16_to_cpu(fp->fp_hc_idx));
839
840		/* Tx */
841		for_each_cos_in_tx_queue(fp, cos)
842		{
843			txdata = fp->txdata[cos];
844			BNX2X_ERR("fp%d: tx_pkt_prod(0x%x)  tx_pkt_cons(0x%x)"
845				  "  tx_bd_prod(0x%x)  tx_bd_cons(0x%x)"
846				  "  *tx_cons_sb(0x%x)\n",
847				  i, txdata.tx_pkt_prod,
848				  txdata.tx_pkt_cons, txdata.tx_bd_prod,
849				  txdata.tx_bd_cons,
850				  le16_to_cpu(*txdata.tx_cons_sb));
851		}
852
853		loop = CHIP_IS_E1x(bp) ?
854			HC_SB_MAX_INDICES_E1X : HC_SB_MAX_INDICES_E2;
855
856		/* host sb data */
857
858#ifdef BCM_CNIC
859		if (IS_FCOE_FP(fp))
860			continue;
861#endif
862		BNX2X_ERR("     run indexes (");
863		for (j = 0; j < HC_SB_MAX_SM; j++)
864			pr_cont("0x%x%s",
865			       fp->sb_running_index[j],
866			       (j == HC_SB_MAX_SM - 1) ? ")" : " ");
867
868		BNX2X_ERR("     indexes (");
869		for (j = 0; j < loop; j++)
870			pr_cont("0x%x%s",
871			       fp->sb_index_values[j],
872			       (j == loop - 1) ? ")" : " ");
873		/* fw sb data */
874		data_size = CHIP_IS_E1x(bp) ?
875			sizeof(struct hc_status_block_data_e1x) :
876			sizeof(struct hc_status_block_data_e2);
877		data_size /= sizeof(u32);
878		sb_data_p = CHIP_IS_E1x(bp) ?
879			(u32 *)&sb_data_e1x :
880			(u32 *)&sb_data_e2;
881		/* copy sb data in here */
882		for (j = 0; j < data_size; j++)
883			*(sb_data_p + j) = REG_RD(bp, BAR_CSTRORM_INTMEM +
884				CSTORM_STATUS_BLOCK_DATA_OFFSET(fp->fw_sb_id) +
885				j * sizeof(u32));
886
887		if (!CHIP_IS_E1x(bp)) {
888			pr_cont("pf_id(0x%x)  vf_id(0x%x)  vf_valid(0x%x) "
889				"vnic_id(0x%x)  same_igu_sb_1b(0x%x) "
890				"state(0x%x)\n",
891				sb_data_e2.common.p_func.pf_id,
892				sb_data_e2.common.p_func.vf_id,
893				sb_data_e2.common.p_func.vf_valid,
894				sb_data_e2.common.p_func.vnic_id,
895				sb_data_e2.common.same_igu_sb_1b,
896				sb_data_e2.common.state);
897		} else {
898			pr_cont("pf_id(0x%x)  vf_id(0x%x)  vf_valid(0x%x) "
899				"vnic_id(0x%x)  same_igu_sb_1b(0x%x) "
900				"state(0x%x)\n",
901				sb_data_e1x.common.p_func.pf_id,
902				sb_data_e1x.common.p_func.vf_id,
903				sb_data_e1x.common.p_func.vf_valid,
904				sb_data_e1x.common.p_func.vnic_id,
905				sb_data_e1x.common.same_igu_sb_1b,
906				sb_data_e1x.common.state);
907		}
908
909		/* SB_SMs data */
910		for (j = 0; j < HC_SB_MAX_SM; j++) {
911			pr_cont("SM[%d] __flags (0x%x) "
912			       "igu_sb_id (0x%x)  igu_seg_id(0x%x) "
913			       "time_to_expire (0x%x) "
914			       "timer_value(0x%x)\n", j,
915			       hc_sm_p[j].__flags,
916			       hc_sm_p[j].igu_sb_id,
917			       hc_sm_p[j].igu_seg_id,
918			       hc_sm_p[j].time_to_expire,
919			       hc_sm_p[j].timer_value);
920		}
921
922		/* Indecies data */
923		for (j = 0; j < loop; j++) {
924			pr_cont("INDEX[%d] flags (0x%x) "
925					 "timeout (0x%x)\n", j,
926			       hc_index_p[j].flags,
927			       hc_index_p[j].timeout);
928		}
929	}
930
931#ifdef BNX2X_STOP_ON_ERROR
932	/* Rings */
933	/* Rx */
934	for_each_rx_queue(bp, i) {
935		struct bnx2x_fastpath *fp = &bp->fp[i];
936
937		start = RX_BD(le16_to_cpu(*fp->rx_cons_sb) - 10);
938		end = RX_BD(le16_to_cpu(*fp->rx_cons_sb) + 503);
939		for (j = start; j != end; j = RX_BD(j + 1)) {
940			u32 *rx_bd = (u32 *)&fp->rx_desc_ring[j];
941			struct sw_rx_bd *sw_bd = &fp->rx_buf_ring[j];
942
943			BNX2X_ERR("fp%d: rx_bd[%x]=[%x:%x]  sw_bd=[%p]\n",
944				  i, j, rx_bd[1], rx_bd[0], sw_bd->skb);
945		}
946
947		start = RX_SGE(fp->rx_sge_prod);
948		end = RX_SGE(fp->last_max_sge);
949		for (j = start; j != end; j = RX_SGE(j + 1)) {
950			u32 *rx_sge = (u32 *)&fp->rx_sge_ring[j];
951			struct sw_rx_page *sw_page = &fp->rx_page_ring[j];
952
953			BNX2X_ERR("fp%d: rx_sge[%x]=[%x:%x]  sw_page=[%p]\n",
954				  i, j, rx_sge[1], rx_sge[0], sw_page->page);
955		}
956
957		start = RCQ_BD(fp->rx_comp_cons - 10);
958		end = RCQ_BD(fp->rx_comp_cons + 503);
959		for (j = start; j != end; j = RCQ_BD(j + 1)) {
960			u32 *cqe = (u32 *)&fp->rx_comp_ring[j];
961
962			BNX2X_ERR("fp%d: cqe[%x]=[%x:%x:%x:%x]\n",
963				  i, j, cqe[0], cqe[1], cqe[2], cqe[3]);
964		}
965	}
966
967	/* Tx */
968	for_each_tx_queue(bp, i) {
969		struct bnx2x_fastpath *fp = &bp->fp[i];
970		for_each_cos_in_tx_queue(fp, cos) {
971			struct bnx2x_fp_txdata *txdata = &fp->txdata[cos];
972
973			start = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) - 10);
974			end = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) + 245);
975			for (j = start; j != end; j = TX_BD(j + 1)) {
976				struct sw_tx_bd *sw_bd =
977					&txdata->tx_buf_ring[j];
978
979				BNX2X_ERR("fp%d: txdata %d, "
980					  "packet[%x]=[%p,%x]\n",
981					  i, cos, j, sw_bd->skb,
982					  sw_bd->first_bd);
983			}
984
985			start = TX_BD(txdata->tx_bd_cons - 10);
986			end = TX_BD(txdata->tx_bd_cons + 254);
987			for (j = start; j != end; j = TX_BD(j + 1)) {
988				u32 *tx_bd = (u32 *)&txdata->tx_desc_ring[j];
989
990				BNX2X_ERR("fp%d: txdata %d, tx_bd[%x]="
991					  "[%x:%x:%x:%x]\n",
992					  i, cos, j, tx_bd[0], tx_bd[1],
993					  tx_bd[2], tx_bd[3]);
994			}
995		}
996	}
997#endif
998	bnx2x_fw_dump(bp);
999	bnx2x_mc_assert(bp);
1000	BNX2X_ERR("end crash dump -----------------\n");
1001}
1002
1003/*
1004 * FLR Support for E2
1005 *
1006 * bnx2x_pf_flr_clnup() is called during nic_load in the per function HW
1007 * initialization.
1008 */
1009#define FLR_WAIT_USEC		10000	/* 10 miliseconds */
1010#define FLR_WAIT_INTERAVAL	50	/* usec */
1011#define	FLR_POLL_CNT		(FLR_WAIT_USEC/FLR_WAIT_INTERAVAL) /* 200 */
1012
1013struct pbf_pN_buf_regs {
1014	int pN;
1015	u32 init_crd;
1016	u32 crd;
1017	u32 crd_freed;
1018};
1019
1020struct pbf_pN_cmd_regs {
1021	int pN;
1022	u32 lines_occup;
1023	u32 lines_freed;
1024};
1025
1026static void bnx2x_pbf_pN_buf_flushed(struct bnx2x *bp,
1027				     struct pbf_pN_buf_regs *regs,
1028				     u32 poll_count)
1029{
1030	u32 init_crd, crd, crd_start, crd_freed, crd_freed_start;
1031	u32 cur_cnt = poll_count;
1032
1033	crd_freed = crd_freed_start = REG_RD(bp, regs->crd_freed);
1034	crd = crd_start = REG_RD(bp, regs->crd);
1035	init_crd = REG_RD(bp, regs->init_crd);
1036
1037	DP(BNX2X_MSG_SP, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd);
1038	DP(BNX2X_MSG_SP, "CREDIT[%d]      : s:%x\n", regs->pN, crd);
1039	DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed);
1040
1041	while ((crd != init_crd) && ((u32)SUB_S32(crd_freed, crd_freed_start) <
1042	       (init_crd - crd_start))) {
1043		if (cur_cnt--) {
1044			udelay(FLR_WAIT_INTERAVAL);
1045			crd = REG_RD(bp, regs->crd);
1046			crd_freed = REG_RD(bp, regs->crd_freed);
1047		} else {
1048			DP(BNX2X_MSG_SP, "PBF tx buffer[%d] timed out\n",
1049			   regs->pN);
1050			DP(BNX2X_MSG_SP, "CREDIT[%d]      : c:%x\n",
1051			   regs->pN, crd);
1052			DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: c:%x\n",
1053			   regs->pN, crd_freed);
1054			break;
1055		}
1056	}
1057	DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF tx buffer[%d]\n",
1058	   poll_count-cur_cnt, FLR_WAIT_INTERAVAL, regs->pN);
1059}
1060
1061static void bnx2x_pbf_pN_cmd_flushed(struct bnx2x *bp,
1062				     struct pbf_pN_cmd_regs *regs,
1063				     u32 poll_count)
1064{
1065	u32 occup, to_free, freed, freed_start;
1066	u32 cur_cnt = poll_count;
1067
1068	occup = to_free = REG_RD(bp, regs->lines_occup);
1069	freed = freed_start = REG_RD(bp, regs->lines_freed);
1070
1071	DP(BNX2X_MSG_SP, "OCCUPANCY[%d]   : s:%x\n", regs->pN, occup);
1072	DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n", regs->pN, freed);
1073
1074	while (occup && ((u32)SUB_S32(freed, freed_start) < to_free)) {
1075		if (cur_cnt--) {
1076			udelay(FLR_WAIT_INTERAVAL);
1077			occup = REG_RD(bp, regs->lines_occup);
1078			freed = REG_RD(bp, regs->lines_freed);
1079		} else {
1080			DP(BNX2X_MSG_SP, "PBF cmd queue[%d] timed out\n",
1081			   regs->pN);
1082			DP(BNX2X_MSG_SP, "OCCUPANCY[%d]   : s:%x\n",
1083			   regs->pN, occup);
1084			DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n",
1085			   regs->pN, freed);
1086			break;
1087		}
1088	}
1089	DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF cmd queue[%d]\n",
1090	   poll_count-cur_cnt, FLR_WAIT_INTERAVAL, regs->pN);
1091}
1092
1093static inline u32 bnx2x_flr_clnup_reg_poll(struct bnx2x *bp, u32 reg,
1094				     u32 expected, u32 poll_count)
1095{
1096	u32 cur_cnt = poll_count;
1097	u32 val;
1098
1099	while ((val = REG_RD(bp, reg)) != expected && cur_cnt--)
1100		udelay(FLR_WAIT_INTERAVAL);
1101
1102	return val;
1103}
1104
1105static inline int bnx2x_flr_clnup_poll_hw_counter(struct bnx2x *bp, u32 reg,
1106						  char *msg, u32 poll_cnt)
1107{
1108	u32 val = bnx2x_flr_clnup_reg_poll(bp, reg, 0, poll_cnt);
1109	if (val != 0) {
1110		BNX2X_ERR("%s usage count=%d\n", msg, val);
1111		return 1;
1112	}
1113	return 0;
1114}
1115
1116static u32 bnx2x_flr_clnup_poll_count(struct bnx2x *bp)
1117{
1118	/* adjust polling timeout */
1119	if (CHIP_REV_IS_EMUL(bp))
1120		return FLR_POLL_CNT * 2000;
1121
1122	if (CHIP_REV_IS_FPGA(bp))
1123		return FLR_POLL_CNT * 120;
1124
1125	return FLR_POLL_CNT;
1126}
1127
1128static void bnx2x_tx_hw_flushed(struct bnx2x *bp, u32 poll_count)
1129{
1130	struct pbf_pN_cmd_regs cmd_regs[] = {
1131		{0, (CHIP_IS_E3B0(bp)) ?
1132			PBF_REG_TQ_OCCUPANCY_Q0 :
1133			PBF_REG_P0_TQ_OCCUPANCY,
1134		    (CHIP_IS_E3B0(bp)) ?
1135			PBF_REG_TQ_LINES_FREED_CNT_Q0 :
1136			PBF_REG_P0_TQ_LINES_FREED_CNT},
1137		{1, (CHIP_IS_E3B0(bp)) ?
1138			PBF_REG_TQ_OCCUPANCY_Q1 :
1139			PBF_REG_P1_TQ_OCCUPANCY,
1140		    (CHIP_IS_E3B0(bp)) ?
1141			PBF_REG_TQ_LINES_FREED_CNT_Q1 :
1142			PBF_REG_P1_TQ_LINES_FREED_CNT},
1143		{4, (CHIP_IS_E3B0(bp)) ?
1144			PBF_REG_TQ_OCCUPANCY_LB_Q :
1145			PBF_REG_P4_TQ_OCCUPANCY,
1146		    (CHIP_IS_E3B0(bp)) ?
1147			PBF_REG_TQ_LINES_FREED_CNT_LB_Q :
1148			PBF_REG_P4_TQ_LINES_FREED_CNT}
1149	};
1150
1151	struct pbf_pN_buf_regs buf_regs[] = {
1152		{0, (CHIP_IS_E3B0(bp)) ?
1153			PBF_REG_INIT_CRD_Q0 :
1154			PBF_REG_P0_INIT_CRD ,
1155		    (CHIP_IS_E3B0(bp)) ?
1156			PBF_REG_CREDIT_Q0 :
1157			PBF_REG_P0_CREDIT,
1158		    (CHIP_IS_E3B0(bp)) ?
1159			PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 :
1160			PBF_REG_P0_INTERNAL_CRD_FREED_CNT},
1161		{1, (CHIP_IS_E3B0(bp)) ?
1162			PBF_REG_INIT_CRD_Q1 :
1163			PBF_REG_P1_INIT_CRD,
1164		    (CHIP_IS_E3B0(bp)) ?
1165			PBF_REG_CREDIT_Q1 :
1166			PBF_REG_P1_CREDIT,
1167		    (CHIP_IS_E3B0(bp)) ?
1168			PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 :
1169			PBF_REG_P1_INTERNAL_CRD_FREED_CNT},
1170		{4, (CHIP_IS_E3B0(bp)) ?
1171			PBF_REG_INIT_CRD_LB_Q :
1172			PBF_REG_P4_INIT_CRD,
1173		    (CHIP_IS_E3B0(bp)) ?
1174			PBF_REG_CREDIT_LB_Q :
1175			PBF_REG_P4_CREDIT,
1176		    (CHIP_IS_E3B0(bp)) ?
1177			PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q :
1178			PBF_REG_P4_INTERNAL_CRD_FREED_CNT},
1179	};
1180
1181	int i;
1182
1183	/* Verify the command queues are flushed P0, P1, P4 */
1184	for (i = 0; i < ARRAY_SIZE(cmd_regs); i++)
1185		bnx2x_pbf_pN_cmd_flushed(bp, &cmd_regs[i], poll_count);
1186
1187
1188	/* Verify the transmission buffers are flushed P0, P1, P4 */
1189	for (i = 0; i < ARRAY_SIZE(buf_regs); i++)
1190		bnx2x_pbf_pN_buf_flushed(bp, &buf_regs[i], poll_count);
1191}
1192
1193#define OP_GEN_PARAM(param) \
1194	(((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM)
1195
1196#define OP_GEN_TYPE(type) \
1197	(((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE)
1198
1199#define OP_GEN_AGG_VECT(index) \
1200	(((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX)
1201
1202
1203static inline int bnx2x_send_final_clnup(struct bnx2x *bp, u8 clnup_func,
1204					 u32 poll_cnt)
1205{
1206	struct sdm_op_gen op_gen = {0};
1207
1208	u32 comp_addr = BAR_CSTRORM_INTMEM +
1209			CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func);
1210	int ret = 0;
1211
1212	if (REG_RD(bp, comp_addr)) {
1213		BNX2X_ERR("Cleanup complete is not 0\n");
1214		return 1;
1215	}
1216
1217	op_gen.command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX);
1218	op_gen.command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE);
1219	op_gen.command |= OP_GEN_AGG_VECT(clnup_func);
1220	op_gen.command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT;
1221
1222	DP(BNX2X_MSG_SP, "FW Final cleanup\n");
1223	REG_WR(bp, XSDM_REG_OPERATION_GEN, op_gen.command);
1224
1225	if (bnx2x_flr_clnup_reg_poll(bp, comp_addr, 1, poll_cnt) != 1) {
1226		BNX2X_ERR("FW final cleanup did not succeed\n");
1227		ret = 1;
1228	}
1229	/* Zero completion for nxt FLR */
1230	REG_WR(bp, comp_addr, 0);
1231
1232	return ret;
1233}
1234
1235static inline u8 bnx2x_is_pcie_pending(struct pci_dev *dev)
1236{
1237	int pos;
1238	u16 status;
1239
1240	pos = pci_pcie_cap(dev);
1241	if (!pos)
1242		return false;
1243
1244	pci_read_config_word(dev, pos + PCI_EXP_DEVSTA, &status);
1245	return status & PCI_EXP_DEVSTA_TRPND;
1246}
1247
1248/* PF FLR specific routines
1249*/
1250static int bnx2x_poll_hw_usage_counters(struct bnx2x *bp, u32 poll_cnt)
1251{
1252
1253	/* wait for CFC PF usage-counter to zero (includes all the VFs) */
1254	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1255			CFC_REG_NUM_LCIDS_INSIDE_PF,
1256			"CFC PF usage counter timed out",
1257			poll_cnt))
1258		return 1;
1259
1260
1261	/* Wait for DQ PF usage-counter to zero (until DQ cleanup) */
1262	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1263			DORQ_REG_PF_USAGE_CNT,
1264			"DQ PF usage counter timed out",
1265			poll_cnt))
1266		return 1;
1267
1268	/* Wait for QM PF usage-counter to zero (until DQ cleanup) */
1269	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1270			QM_REG_PF_USG_CNT_0 + 4*BP_FUNC(bp),
1271			"QM PF usage counter timed out",
1272			poll_cnt))
1273		return 1;
1274
1275	/* Wait for Timer PF usage-counters to zero (until DQ cleanup) */
1276	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1277			TM_REG_LIN0_VNIC_UC + 4*BP_PORT(bp),
1278			"Timers VNIC usage counter timed out",
1279			poll_cnt))
1280		return 1;
1281	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1282			TM_REG_LIN0_NUM_SCANS + 4*BP_PORT(bp),
1283			"Timers NUM_SCANS usage counter timed out",
1284			poll_cnt))
1285		return 1;
1286
1287	/* Wait DMAE PF usage counter to zero */
1288	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1289			dmae_reg_go_c[INIT_DMAE_C(bp)],
1290			"DMAE dommand register timed out",
1291			poll_cnt))
1292		return 1;
1293
1294	return 0;
1295}
1296
1297static void bnx2x_hw_enable_status(struct bnx2x *bp)
1298{
1299	u32 val;
1300
1301	val = REG_RD(bp, CFC_REG_WEAK_ENABLE_PF);
1302	DP(BNX2X_MSG_SP, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val);
1303
1304	val = REG_RD(bp, PBF_REG_DISABLE_PF);
1305	DP(BNX2X_MSG_SP, "PBF_REG_DISABLE_PF is 0x%x\n", val);
1306
1307	val = REG_RD(bp, IGU_REG_PCI_PF_MSI_EN);
1308	DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val);
1309
1310	val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_EN);
1311	DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val);
1312
1313	val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_FUNC_MASK);
1314	DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val);
1315
1316	val = REG_RD(bp, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR);
1317	DP(BNX2X_MSG_SP, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val);
1318
1319	val = REG_RD(bp, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR);
1320	DP(BNX2X_MSG_SP, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val);
1321
1322	val = REG_RD(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
1323	DP(BNX2X_MSG_SP, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n",
1324	   val);
1325}
1326
1327static int bnx2x_pf_flr_clnup(struct bnx2x *bp)
1328{
1329	u32 poll_cnt = bnx2x_flr_clnup_poll_count(bp);
1330
1331	DP(BNX2X_MSG_SP, "Cleanup after FLR PF[%d]\n", BP_ABS_FUNC(bp));
1332
1333	/* Re-enable PF target read access */
1334	REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
1335
1336	/* Poll HW usage counters */
1337	if (bnx2x_poll_hw_usage_counters(bp, poll_cnt))
1338		return -EBUSY;
1339
1340	/* Zero the igu 'trailing edge' and 'leading edge' */
1341
1342	/* Send the FW cleanup command */
1343	if (bnx2x_send_final_clnup(bp, (u8)BP_FUNC(bp), poll_cnt))
1344		return -EBUSY;
1345
1346	/* ATC cleanup */
1347
1348	/* Verify TX hw is flushed */
1349	bnx2x_tx_hw_flushed(bp, poll_cnt);
1350
1351	/* Wait 100ms (not adjusted according to platform) */
1352	msleep(100);
1353
1354	/* Verify no pending pci transactions */
1355	if (bnx2x_is_pcie_pending(bp->pdev))
1356		BNX2X_ERR("PCIE Transactions still pending\n");
1357
1358	/* Debug */
1359	bnx2x_hw_enable_status(bp);
1360
1361	/*
1362	 * Master enable - Due to WB DMAE writes performed before this
1363	 * register is re-initialized as part of the regular function init
1364	 */
1365	REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
1366
1367	return 0;
1368}
1369
1370static void bnx2x_hc_int_enable(struct bnx2x *bp)
1371{
1372	int port = BP_PORT(bp);
1373	u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
1374	u32 val = REG_RD(bp, addr);
1375	int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
1376	int msi = (bp->flags & USING_MSI_FLAG) ? 1 : 0;
1377
1378	if (msix) {
1379		val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1380			 HC_CONFIG_0_REG_INT_LINE_EN_0);
1381		val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1382			HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1383	} else if (msi) {
1384		val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0;
1385		val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1386			HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1387			HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1388	} else {
1389		val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1390			HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1391			HC_CONFIG_0_REG_INT_LINE_EN_0 |
1392			HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1393
1394		if (!CHIP_IS_E1(bp)) {
1395			DP(NETIF_MSG_INTR, "write %x to HC %d (addr 0x%x)\n",
1396			   val, port, addr);
1397
1398			REG_WR(bp, addr, val);
1399
1400			val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0;
1401		}
1402	}
1403
1404	if (CHIP_IS_E1(bp))
1405		REG_WR(bp, HC_REG_INT_MASK + port*4, 0x1FFFF);
1406
1407	DP(NETIF_MSG_INTR, "write %x to HC %d (addr 0x%x)  mode %s\n",
1408	   val, port, addr, (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1409
1410	REG_WR(bp, addr, val);
1411	/*
1412	 * Ensure that HC_CONFIG is written before leading/trailing edge config
1413	 */
1414	mmiowb();
1415	barrier();
1416
1417	if (!CHIP_IS_E1(bp)) {
1418		/* init leading/trailing edge */
1419		if (IS_MF(bp)) {
1420			val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1421			if (bp->port.pmf)
1422				/* enable nig and gpio3 attention */
1423				val |= 0x1100;
1424		} else
1425			val = 0xffff;
1426
1427		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
1428		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
1429	}
1430
1431	/* Make sure that interrupts are indeed enabled from here on */
1432	mmiowb();
1433}
1434
1435static void bnx2x_igu_int_enable(struct bnx2x *bp)
1436{
1437	u32 val;
1438	int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
1439	int msi = (bp->flags & USING_MSI_FLAG) ? 1 : 0;
1440
1441	val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
1442
1443	if (msix) {
1444		val &= ~(IGU_PF_CONF_INT_LINE_EN |
1445			 IGU_PF_CONF_SINGLE_ISR_EN);
1446		val |= (IGU_PF_CONF_FUNC_EN |
1447			IGU_PF_CONF_MSI_MSIX_EN |
1448			IGU_PF_CONF_ATTN_BIT_EN);
1449	} else if (msi) {
1450		val &= ~IGU_PF_CONF_INT_LINE_EN;
1451		val |= (IGU_PF_CONF_FUNC_EN |
1452			IGU_PF_CONF_MSI_MSIX_EN |
1453			IGU_PF_CONF_ATTN_BIT_EN |
1454			IGU_PF_CONF_SINGLE_ISR_EN);
1455	} else {
1456		val &= ~IGU_PF_CONF_MSI_MSIX_EN;
1457		val |= (IGU_PF_CONF_FUNC_EN |
1458			IGU_PF_CONF_INT_LINE_EN |
1459			IGU_PF_CONF_ATTN_BIT_EN |
1460			IGU_PF_CONF_SINGLE_ISR_EN);
1461	}
1462
1463	DP(NETIF_MSG_INTR, "write 0x%x to IGU  mode %s\n",
1464	   val, (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1465
1466	REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1467
1468	barrier();
1469
1470	/* init leading/trailing edge */
1471	if (IS_MF(bp)) {
1472		val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1473		if (bp->port.pmf)
1474			/* enable nig and gpio3 attention */
1475			val |= 0x1100;
1476	} else
1477		val = 0xffff;
1478
1479	REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
1480	REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
1481
1482	/* Make sure that interrupts are indeed enabled from here on */
1483	mmiowb();
1484}
1485
1486void bnx2x_int_enable(struct bnx2x *bp)
1487{
1488	if (bp->common.int_block == INT_BLOCK_HC)
1489		bnx2x_hc_int_enable(bp);
1490	else
1491		bnx2x_igu_int_enable(bp);
1492}
1493
1494static void bnx2x_hc_int_disable(struct bnx2x *bp)
1495{
1496	int port = BP_PORT(bp);
1497	u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
1498	u32 val = REG_RD(bp, addr);
1499
1500	/*
1501	 * in E1 we must use only PCI configuration space to disable
1502	 * MSI/MSIX capablility
1503	 * It's forbitten to disable IGU_PF_CONF_MSI_MSIX_EN in HC block
1504	 */
1505	if (CHIP_IS_E1(bp)) {
1506		/*  Since IGU_PF_CONF_MSI_MSIX_EN still always on
1507		 *  Use mask register to prevent from HC sending interrupts
1508		 *  after we exit the function
1509		 */
1510		REG_WR(bp, HC_REG_INT_MASK + port*4, 0);
1511
1512		val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1513			 HC_CONFIG_0_REG_INT_LINE_EN_0 |
1514			 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1515	} else
1516		val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1517			 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1518			 HC_CONFIG_0_REG_INT_LINE_EN_0 |
1519			 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1520
1521	DP(NETIF_MSG_INTR, "write %x to HC %d (addr 0x%x)\n",
1522	   val, port, addr);
1523
1524	/* flush all outstanding writes */
1525	mmiowb();
1526
1527	REG_WR(bp, addr, val);
1528	if (REG_RD(bp, addr) != val)
1529		BNX2X_ERR("BUG! proper val not read from IGU!\n");
1530}
1531
1532static void bnx2x_igu_int_disable(struct bnx2x *bp)
1533{
1534	u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
1535
1536	val &= ~(IGU_PF_CONF_MSI_MSIX_EN |
1537		 IGU_PF_CONF_INT_LINE_EN |
1538		 IGU_PF_CONF_ATTN_BIT_EN);
1539
1540	DP(NETIF_MSG_INTR, "write %x to IGU\n", val);
1541
1542	/* flush all outstanding writes */
1543	mmiowb();
1544
1545	REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1546	if (REG_RD(bp, IGU_REG_PF_CONFIGURATION) != val)
1547		BNX2X_ERR("BUG! proper val not read from IGU!\n");
1548}
1549
1550void bnx2x_int_disable(struct bnx2x *bp)
1551{
1552	if (bp->common.int_block == INT_BLOCK_HC)
1553		bnx2x_hc_int_disable(bp);
1554	else
1555		bnx2x_igu_int_disable(bp);
1556}
1557
1558void bnx2x_int_disable_sync(struct bnx2x *bp, int disable_hw)
1559{
1560	int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
1561	int i, offset;
1562
1563	if (disable_hw)
1564		/* prevent the HW from sending interrupts */
1565		bnx2x_int_disable(bp);
1566
1567	/* make sure all ISRs are done */
1568	if (msix) {
1569		synchronize_irq(bp->msix_table[0].vector);
1570		offset = 1;
1571#ifdef BCM_CNIC
1572		offset++;
1573#endif
1574		for_each_eth_queue(bp, i)
1575			synchronize_irq(bp->msix_table[offset++].vector);
1576	} else
1577		synchronize_irq(bp->pdev->irq);
1578
1579	/* make sure sp_task is not running */
1580	cancel_delayed_work(&bp->sp_task);
1581	cancel_delayed_work(&bp->period_task);
1582	flush_workqueue(bnx2x_wq);
1583}
1584
1585/* fast path */
1586
1587/*
1588 * General service functions
1589 */
1590
1591/* Return true if succeeded to acquire the lock */
1592static bool bnx2x_trylock_hw_lock(struct bnx2x *bp, u32 resource)
1593{
1594	u32 lock_status;
1595	u32 resource_bit = (1 << resource);
1596	int func = BP_FUNC(bp);
1597	u32 hw_lock_control_reg;
1598
1599	DP(NETIF_MSG_HW, "Trying to take a lock on resource %d\n", resource);
1600
1601	/* Validating that the resource is within range */
1602	if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1603		DP(NETIF_MSG_HW,
1604		   "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1605		   resource, HW_LOCK_MAX_RESOURCE_VALUE);
1606		return false;
1607	}
1608
1609	if (func <= 5)
1610		hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1611	else
1612		hw_lock_control_reg =
1613				(MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1614
1615	/* Try to acquire the lock */
1616	REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
1617	lock_status = REG_RD(bp, hw_lock_control_reg);
1618	if (lock_status & resource_bit)
1619		return true;
1620
1621	DP(NETIF_MSG_HW, "Failed to get a lock on resource %d\n", resource);
1622	return false;
1623}
1624
1625/**
1626 * bnx2x_get_leader_lock_resource - get the recovery leader resource id
1627 *
1628 * @bp:	driver handle
1629 *
1630 * Returns the recovery leader resource id according to the engine this function
1631 * belongs to. Currently only only 2 engines is supported.
1632 */
1633static inline int bnx2x_get_leader_lock_resource(struct bnx2x *bp)
1634{
1635	if (BP_PATH(bp))
1636		return HW_LOCK_RESOURCE_RECOVERY_LEADER_1;
1637	else
1638		return HW_LOCK_RESOURCE_RECOVERY_LEADER_0;
1639}
1640
1641/**
1642 * bnx2x_trylock_leader_lock- try to aquire a leader lock.
1643 *
1644 * @bp: driver handle
1645 *
1646 * Tries to aquire a leader lock for cuurent engine.
1647 */
1648static inline bool bnx2x_trylock_leader_lock(struct bnx2x *bp)
1649{
1650	return bnx2x_trylock_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
1651}
1652
1653#ifdef BCM_CNIC
1654static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err);
1655#endif
1656
1657void bnx2x_sp_event(struct bnx2x_fastpath *fp, union eth_rx_cqe *rr_cqe)
1658{
1659	struct bnx2x *bp = fp->bp;
1660	int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1661	int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1662	enum bnx2x_queue_cmd drv_cmd = BNX2X_Q_CMD_MAX;
1663	struct bnx2x_queue_sp_obj *q_obj = &fp->q_obj;
1664
1665	DP(BNX2X_MSG_SP,
1666	   "fp %d  cid %d  got ramrod #%d  state is %x  type is %d\n",
1667	   fp->index, cid, command, bp->state,
1668	   rr_cqe->ramrod_cqe.ramrod_type);
1669
1670	switch (command) {
1671	case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE):
1672		DP(BNX2X_MSG_SP, "got UPDATE ramrod. CID %d\n", cid);
1673		drv_cmd = BNX2X_Q_CMD_UPDATE;
1674		break;
1675
1676	case (RAMROD_CMD_ID_ETH_CLIENT_SETUP):
1677		DP(BNX2X_MSG_SP, "got MULTI[%d] setup ramrod\n", cid);
1678		drv_cmd = BNX2X_Q_CMD_SETUP;
1679		break;
1680
1681	case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP):
1682		DP(NETIF_MSG_IFUP, "got MULTI[%d] tx-only setup ramrod\n", cid);
1683		drv_cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
1684		break;
1685
1686	case (RAMROD_CMD_ID_ETH_HALT):
1687		DP(BNX2X_MSG_SP, "got MULTI[%d] halt ramrod\n", cid);
1688		drv_cmd = BNX2X_Q_CMD_HALT;
1689		break;
1690
1691	case (RAMROD_CMD_ID_ETH_TERMINATE):
1692		DP(BNX2X_MSG_SP, "got MULTI[%d] teminate ramrod\n", cid);
1693		drv_cmd = BNX2X_Q_CMD_TERMINATE;
1694		break;
1695
1696	case (RAMROD_CMD_ID_ETH_EMPTY):
1697		DP(BNX2X_MSG_SP, "got MULTI[%d] empty ramrod\n", cid);
1698		drv_cmd = BNX2X_Q_CMD_EMPTY;
1699		break;
1700
1701	default:
1702		BNX2X_ERR("unexpected MC reply (%d) on fp[%d]\n",
1703			  command, fp->index);
1704		return;
1705	}
1706
1707	if ((drv_cmd != BNX2X_Q_CMD_MAX) &&
1708	    q_obj->complete_cmd(bp, q_obj, drv_cmd))
1709		/* q_obj->complete_cmd() failure means that this was
1710		 * an unexpected completion.
1711		 *
1712		 * In this case we don't want to increase the bp->spq_left
1713		 * because apparently we haven't sent this command the first
1714		 * place.
1715		 */
1716#ifdef BNX2X_STOP_ON_ERROR
1717		bnx2x_panic();
1718#else
1719		return;
1720#endif
1721
1722	smp_mb__before_atomic_inc();
1723	atomic_inc(&bp->cq_spq_left);
1724	/* push the change in bp->spq_left and towards the memory */
1725	smp_mb__after_atomic_inc();
1726
1727	DP(BNX2X_MSG_SP, "bp->cq_spq_left %x\n", atomic_read(&bp->cq_spq_left));
1728
1729	return;
1730}
1731
1732void bnx2x_update_rx_prod(struct bnx2x *bp, struct bnx2x_fastpath *fp,
1733			u16 bd_prod, u16 rx_comp_prod, u16 rx_sge_prod)
1734{
1735	u32 start = BAR_USTRORM_INTMEM + fp->ustorm_rx_prods_offset;
1736
1737	bnx2x_update_rx_prod_gen(bp, fp, bd_prod, rx_comp_prod, rx_sge_prod,
1738				 start);
1739}
1740
1741irqreturn_t bnx2x_interrupt(int irq, void *dev_instance)
1742{
1743	struct bnx2x *bp = netdev_priv(dev_instance);
1744	u16 status = bnx2x_ack_int(bp);
1745	u16 mask;
1746	int i;
1747	u8 cos;
1748
1749	/* Return here if interrupt is shared and it's not for us */
1750	if (unlikely(status == 0)) {
1751		DP(NETIF_MSG_INTR, "not our interrupt!\n");
1752		return IRQ_NONE;
1753	}
1754	DP(NETIF_MSG_INTR, "got an interrupt  status 0x%x\n", status);
1755
1756#ifdef BNX2X_STOP_ON_ERROR
1757	if (unlikely(bp->panic))
1758		return IRQ_HANDLED;
1759#endif
1760
1761	for_each_eth_queue(bp, i) {
1762		struct bnx2x_fastpath *fp = &bp->fp[i];
1763
1764		mask = 0x2 << (fp->index + CNIC_PRESENT);
1765		if (status & mask) {
1766			/* Handle Rx or Tx according to SB id */
1767			prefetch(fp->rx_cons_sb);
1768			for_each_cos_in_tx_queue(fp, cos)
1769				prefetch(fp->txdata[cos].tx_cons_sb);
1770			prefetch(&fp->sb_running_index[SM_RX_ID]);
1771			napi_schedule(&bnx2x_fp(bp, fp->index, napi));
1772			status &= ~mask;
1773		}
1774	}
1775
1776#ifdef BCM_CNIC
1777	mask = 0x2;
1778	if (status & (mask | 0x1)) {
1779		struct cnic_ops *c_ops = NULL;
1780
1781		if (likely(bp->state == BNX2X_STATE_OPEN)) {
1782			rcu_read_lock();
1783			c_ops = rcu_dereference(bp->cnic_ops);
1784			if (c_ops)
1785				c_ops->cnic_handler(bp->cnic_data, NULL);
1786			rcu_read_unlock();
1787		}
1788
1789		status &= ~mask;
1790	}
1791#endif
1792
1793	if (unlikely(status & 0x1)) {
1794		queue_delayed_work(bnx2x_wq, &bp->sp_task, 0);
1795
1796		status &= ~0x1;
1797		if (!status)
1798			return IRQ_HANDLED;
1799	}
1800
1801	if (unlikely(status))
1802		DP(NETIF_MSG_INTR, "got an unknown interrupt! (status 0x%x)\n",
1803		   status);
1804
1805	return IRQ_HANDLED;
1806}
1807
1808/* Link */
1809
1810/*
1811 * General service functions
1812 */
1813
1814int bnx2x_acquire_hw_lock(struct bnx2x *bp, u32 resource)
1815{
1816	u32 lock_status;
1817	u32 resource_bit = (1 << resource);
1818	int func = BP_FUNC(bp);
1819	u32 hw_lock_control_reg;
1820	int cnt;
1821
1822	/* Validating that the resource is within range */
1823	if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1824		DP(NETIF_MSG_HW,
1825		   "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1826		   resource, HW_LOCK_MAX_RESOURCE_VALUE);
1827		return -EINVAL;
1828	}
1829
1830	if (func <= 5) {
1831		hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1832	} else {
1833		hw_lock_control_reg =
1834				(MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1835	}
1836
1837	/* Validating that the resource is not already taken */
1838	lock_status = REG_RD(bp, hw_lock_control_reg);
1839	if (lock_status & resource_bit) {
1840		DP(NETIF_MSG_HW, "lock_status 0x%x  resource_bit 0x%x\n",
1841		   lock_status, resource_bit);
1842		return -EEXIST;
1843	}
1844
1845	/* Try for 5 second every 5ms */
1846	for (cnt = 0; cnt < 1000; cnt++) {
1847		/* Try to acquire the lock */
1848		REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
1849		lock_status = REG_RD(bp, hw_lock_control_reg);
1850		if (lock_status & resource_bit)
1851			return 0;
1852
1853		msleep(5);
1854	}
1855	DP(NETIF_MSG_HW, "Timeout\n");
1856	return -EAGAIN;
1857}
1858
1859int bnx2x_release_leader_lock(struct bnx2x *bp)
1860{
1861	return bnx2x_release_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
1862}
1863
1864int bnx2x_release_hw_lock(struct bnx2x *bp, u32 resource)
1865{
1866	u32 lock_status;
1867	u32 resource_bit = (1 << resource);
1868	int func = BP_FUNC(bp);
1869	u32 hw_lock_control_reg;
1870
1871	DP(NETIF_MSG_HW, "Releasing a lock on resource %d\n", resource);
1872
1873	/* Validating that the resource is within range */
1874	if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1875		DP(NETIF_MSG_HW,
1876		   "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1877		   resource, HW_LOCK_MAX_RESOURCE_VALUE);
1878		return -EINVAL;
1879	}
1880
1881	if (func <= 5) {
1882		hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1883	} else {
1884		hw_lock_control_reg =
1885				(MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1886	}
1887
1888	/* Validating that the resource is currently taken */
1889	lock_status = REG_RD(bp, hw_lock_control_reg);
1890	if (!(lock_status & resource_bit)) {
1891		DP(NETIF_MSG_HW, "lock_status 0x%x  resource_bit 0x%x\n",
1892		   lock_status, resource_bit);
1893		return -EFAULT;
1894	}
1895
1896	REG_WR(bp, hw_lock_control_reg, resource_bit);
1897	return 0;
1898}
1899
1900
1901int bnx2x_get_gpio(struct bnx2x *bp, int gpio_num, u8 port)
1902{
1903	/* The GPIO should be swapped if swap register is set and active */
1904	int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
1905			 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
1906	int gpio_shift = gpio_num +
1907			(gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
1908	u32 gpio_mask = (1 << gpio_shift);
1909	u32 gpio_reg;
1910	int value;
1911
1912	if (gpio_num > MISC_REGISTERS_GPIO_3) {
1913		BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
1914		return -EINVAL;
1915	}
1916
1917	/* read GPIO value */
1918	gpio_reg = REG_RD(bp, MISC_REG_GPIO);
1919
1920	/* get the requested pin value */
1921	if ((gpio_reg & gpio_mask) == gpio_mask)
1922		value = 1;
1923	else
1924		value = 0;
1925
1926	DP(NETIF_MSG_LINK, "pin %d  value 0x%x\n", gpio_num, value);
1927
1928	return value;
1929}
1930
1931int bnx2x_set_gpio(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
1932{
1933	/* The GPIO should be swapped if swap register is set and active */
1934	int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
1935			 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
1936	int gpio_shift = gpio_num +
1937			(gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
1938	u32 gpio_mask = (1 << gpio_shift);
1939	u32 gpio_reg;
1940
1941	if (gpio_num > MISC_REGISTERS_GPIO_3) {
1942		BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
1943		return -EINVAL;
1944	}
1945
1946	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
1947	/* read GPIO and mask except the float bits */
1948	gpio_reg = (REG_RD(bp, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT);
1949
1950	switch (mode) {
1951	case MISC_REGISTERS_GPIO_OUTPUT_LOW:
1952		DP(NETIF_MSG_LINK, "Set GPIO %d (shift %d) -> output low\n",
1953		   gpio_num, gpio_shift);
1954		/* clear FLOAT and set CLR */
1955		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
1956		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS);
1957		break;
1958
1959	case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
1960		DP(NETIF_MSG_LINK, "Set GPIO %d (shift %d) -> output high\n",
1961		   gpio_num, gpio_shift);
1962		/* clear FLOAT and set SET */
1963		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
1964		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_SET_POS);
1965		break;
1966
1967	case MISC_REGISTERS_GPIO_INPUT_HI_Z:
1968		DP(NETIF_MSG_LINK, "Set GPIO %d (shift %d) -> input\n",
1969		   gpio_num, gpio_shift);
1970		/* set FLOAT */
1971		gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
1972		break;
1973
1974	default:
1975		break;
1976	}
1977
1978	REG_WR(bp, MISC_REG_GPIO, gpio_reg);
1979	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
1980
1981	return 0;
1982}
1983
1984int bnx2x_set_mult_gpio(struct bnx2x *bp, u8 pins, u32 mode)
1985{
1986	u32 gpio_reg = 0;
1987	int rc = 0;
1988
1989	/* Any port swapping should be handled by caller. */
1990
1991	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
1992	/* read GPIO and mask except the float bits */
1993	gpio_reg = REG_RD(bp, MISC_REG_GPIO);
1994	gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS);
1995	gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS);
1996	gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS);
1997
1998	switch (mode) {
1999	case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2000		DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output low\n", pins);
2001		/* set CLR */
2002		gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS);
2003		break;
2004
2005	case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2006		DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output high\n", pins);
2007		/* set SET */
2008		gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS);
2009		break;
2010
2011	case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2012		DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> input\n", pins);
2013		/* set FLOAT */
2014		gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2015		break;
2016
2017	default:
2018		BNX2X_ERR("Invalid GPIO mode assignment %d\n", mode);
2019		rc = -EINVAL;
2020		break;
2021	}
2022
2023	if (rc == 0)
2024		REG_WR(bp, MISC_REG_GPIO, gpio_reg);
2025
2026	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2027
2028	return rc;
2029}
2030
2031int bnx2x_set_gpio_int(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
2032{
2033	/* The GPIO should be swapped if swap register is set and active */
2034	int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2035			 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2036	int gpio_shift = gpio_num +
2037			(gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2038	u32 gpio_mask = (1 << gpio_shift);
2039	u32 gpio_reg;
2040
2041	if (gpio_num > MISC_REGISTERS_GPIO_3) {
2042		BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2043		return -EINVAL;
2044	}
2045
2046	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2047	/* read GPIO int */
2048	gpio_reg = REG_RD(bp, MISC_REG_GPIO_INT);
2049
2050	switch (mode) {
2051	case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR:
2052		DP(NETIF_MSG_LINK, "Clear GPIO INT %d (shift %d) -> "
2053				   "output low\n", gpio_num, gpio_shift);
2054		/* clear SET and set CLR */
2055		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2056		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2057		break;
2058
2059	case MISC_REGISTERS_GPIO_INT_OUTPUT_SET:
2060		DP(NETIF_MSG_LINK, "Set GPIO INT %d (shift %d) -> "
2061				   "output high\n", gpio_num, gpio_shift);
2062		/* clear CLR and set SET */
2063		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2064		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2065		break;
2066
2067	default:
2068		break;
2069	}
2070
2071	REG_WR(bp, MISC_REG_GPIO_INT, gpio_reg);
2072	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2073
2074	return 0;
2075}
2076
2077static int bnx2x_set_spio(struct bnx2x *bp, int spio_num, u32 mode)
2078{
2079	u32 spio_mask = (1 << spio_num);
2080	u32 spio_reg;
2081
2082	if ((spio_num < MISC_REGISTERS_SPIO_4) ||
2083	    (spio_num > MISC_REGISTERS_SPIO_7)) {
2084		BNX2X_ERR("Invalid SPIO %d\n", spio_num);
2085		return -EINVAL;
2086	}
2087
2088	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2089	/* read SPIO and mask except the float bits */
2090	spio_reg = (REG_RD(bp, MISC_REG_SPIO) & MISC_REGISTERS_SPIO_FLOAT);
2091
2092	switch (mode) {
2093	case MISC_REGISTERS_SPIO_OUTPUT_LOW:
2094		DP(NETIF_MSG_LINK, "Set SPIO %d -> output low\n", spio_num);
2095		/* clear FLOAT and set CLR */
2096		spio_reg &= ~(spio_mask << MISC_REGISTERS_SPIO_FLOAT_POS);
2097		spio_reg |=  (spio_mask << MISC_REGISTERS_SPIO_CLR_POS);
2098		break;
2099
2100	case MISC_REGISTERS_SPIO_OUTPUT_HIGH:
2101		DP(NETIF_MSG_LINK, "Set SPIO %d -> output high\n", spio_num);
2102		/* clear FLOAT and set SET */
2103		spio_reg &= ~(spio_mask << MISC_REGISTERS_SPIO_FLOAT_POS);
2104		spio_reg |=  (spio_mask << MISC_REGISTERS_SPIO_SET_POS);
2105		break;
2106
2107	case MISC_REGISTERS_SPIO_INPUT_HI_Z:
2108		DP(NETIF_MSG_LINK, "Set SPIO %d -> input\n", spio_num);
2109		/* set FLOAT */
2110		spio_reg |= (spio_mask << MISC_REGISTERS_SPIO_FLOAT_POS);
2111		break;
2112
2113	default:
2114		break;
2115	}
2116
2117	REG_WR(bp, MISC_REG_SPIO, spio_reg);
2118	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2119
2120	return 0;
2121}
2122
2123void bnx2x_calc_fc_adv(struct bnx2x *bp)
2124{
2125	u8 cfg_idx = bnx2x_get_link_cfg_idx(bp);
2126	switch (bp->link_vars.ieee_fc &
2127		MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) {
2128	case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_NONE:
2129		bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
2130						   ADVERTISED_Pause);
2131		break;
2132
2133	case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH:
2134		bp->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause |
2135						  ADVERTISED_Pause);
2136		break;
2137
2138	case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC:
2139		bp->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause;
2140		break;
2141
2142	default:
2143		bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
2144						   ADVERTISED_Pause);
2145		break;
2146	}
2147}
2148
2149u8 bnx2x_initial_phy_init(struct bnx2x *bp, int load_mode)
2150{
2151	if (!BP_NOMCP(bp)) {
2152		u8 rc;
2153		int cfx_idx = bnx2x_get_link_cfg_idx(bp);
2154		u16 req_line_speed = bp->link_params.req_line_speed[cfx_idx];
2155		/*
2156		 * Initialize link parameters structure variables
2157		 * It is recommended to turn off RX FC for jumbo frames
2158		 * for better performance
2159		 */
2160		if (CHIP_IS_E1x(bp) && (bp->dev->mtu > 5000))
2161			bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_TX;
2162		else
2163			bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_BOTH;
2164
2165		bnx2x_acquire_phy_lock(bp);
2166
2167		if (load_mode == LOAD_DIAG) {
2168			struct link_params *lp = &bp->link_params;
2169			lp->loopback_mode = LOOPBACK_XGXS;
2170			/* do PHY loopback at 10G speed, if possible */
2171			if (lp->req_line_speed[cfx_idx] < SPEED_10000) {
2172				if (lp->speed_cap_mask[cfx_idx] &
2173				    PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)
2174					lp->req_line_speed[cfx_idx] =
2175					SPEED_10000;
2176				else
2177					lp->req_line_speed[cfx_idx] =
2178					SPEED_1000;
2179			}
2180		}
2181
2182		rc = bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2183
2184		bnx2x_release_phy_lock(bp);
2185
2186		bnx2x_calc_fc_adv(bp);
2187
2188		if (CHIP_REV_IS_SLOW(bp) && bp->link_vars.link_up) {
2189			bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2190			bnx2x_link_report(bp);
2191		} else
2192			queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2193		bp->link_params.req_line_speed[cfx_idx] = req_line_speed;
2194		return rc;
2195	}
2196	BNX2X_ERR("Bootcode is missing - can not initialize link\n");
2197	return -EINVAL;
2198}
2199
2200void bnx2x_link_set(struct bnx2x *bp)
2201{
2202	if (!BP_NOMCP(bp)) {
2203		bnx2x_acquire_phy_lock(bp);
2204		bnx2x_link_reset(&bp->link_params, &bp->link_vars, 1);
2205		bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2206		bnx2x_release_phy_lock(bp);
2207
2208		bnx2x_calc_fc_adv(bp);
2209	} else
2210		BNX2X_ERR("Bootcode is missing - can not set link\n");
2211}
2212
2213static void bnx2x__link_reset(struct bnx2x *bp)
2214{
2215	if (!BP_NOMCP(bp)) {
2216		bnx2x_acquire_phy_lock(bp);
2217		bnx2x_link_reset(&bp->link_params, &bp->link_vars, 1);
2218		bnx2x_release_phy_lock(bp);
2219	} else
2220		BNX2X_ERR("Bootcode is missing - can not reset link\n");
2221}
2222
2223u8 bnx2x_link_test(struct bnx2x *bp, u8 is_serdes)
2224{
2225	u8 rc = 0;
2226
2227	if (!BP_NOMCP(bp)) {
2228		bnx2x_acquire_phy_lock(bp);
2229		rc = bnx2x_test_link(&bp->link_params, &bp->link_vars,
2230				     is_serdes);
2231		bnx2x_release_phy_lock(bp);
2232	} else
2233		BNX2X_ERR("Bootcode is missing - can not test link\n");
2234
2235	return rc;
2236}
2237
2238static void bnx2x_init_port_minmax(struct bnx2x *bp)
2239{
2240	u32 r_param = bp->link_vars.line_speed / 8;
2241	u32 fair_periodic_timeout_usec;
2242	u32 t_fair;
2243
2244	memset(&(bp->cmng.rs_vars), 0,
2245	       sizeof(struct rate_shaping_vars_per_port));
2246	memset(&(bp->cmng.fair_vars), 0, sizeof(struct fairness_vars_per_port));
2247
2248	/* 100 usec in SDM ticks = 25 since each tick is 4 usec */
2249	bp->cmng.rs_vars.rs_periodic_timeout = RS_PERIODIC_TIMEOUT_USEC / 4;
2250
2251	/* this is the threshold below which no timer arming will occur
2252	   1.25 coefficient is for the threshold to be a little bigger
2253	   than the real time, to compensate for timer in-accuracy */
2254	bp->cmng.rs_vars.rs_threshold =
2255				(RS_PERIODIC_TIMEOUT_USEC * r_param * 5) / 4;
2256
2257	/* resolution of fairness timer */
2258	fair_periodic_timeout_usec = QM_ARB_BYTES / r_param;
2259	/* for 10G it is 1000usec. for 1G it is 10000usec. */
2260	t_fair = T_FAIR_COEF / bp->link_vars.line_speed;
2261
2262	/* this is the threshold below which we won't arm the timer anymore */
2263	bp->cmng.fair_vars.fair_threshold = QM_ARB_BYTES;
2264
2265	/* we multiply by 1e3/8 to get bytes/msec.
2266	   We don't want the credits to pass a credit
2267	   of the t_fair*FAIR_MEM (algorithm resolution) */
2268	bp->cmng.fair_vars.upper_bound = r_param * t_fair * FAIR_MEM;
2269	/* since each tick is 4 usec */
2270	bp->cmng.fair_vars.fairness_timeout = fair_periodic_timeout_usec / 4;
2271}
2272
2273/* Calculates the sum of vn_min_rates.
2274   It's needed for further normalizing of the min_rates.
2275   Returns:
2276     sum of vn_min_rates.
2277       or
2278     0 - if all the min_rates are 0.
2279     In the later case fainess algorithm should be deactivated.
2280     If not all min_rates are zero then those that are zeroes will be set to 1.
2281 */
2282static void bnx2x_calc_vn_weight_sum(struct bnx2x *bp)
2283{
2284	int all_zero = 1;
2285	int vn;
2286
2287	bp->vn_weight_sum = 0;
2288	for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2289		u32 vn_cfg = bp->mf_config[vn];
2290		u32 vn_min_rate = ((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
2291				   FUNC_MF_CFG_MIN_BW_SHIFT) * 100;
2292
2293		/* Skip hidden vns */
2294		if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
2295			continue;
2296
2297		/* If min rate is zero - set it to 1 */
2298		if (!vn_min_rate)
2299			vn_min_rate = DEF_MIN_RATE;
2300		else
2301			all_zero = 0;
2302
2303		bp->vn_weight_sum += vn_min_rate;
2304	}
2305
2306	/* if ETS or all min rates are zeros - disable fairness */
2307	if (BNX2X_IS_ETS_ENABLED(bp)) {
2308		bp->cmng.flags.cmng_enables &=
2309					~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2310		DP(NETIF_MSG_IFUP, "Fairness will be disabled due to ETS\n");
2311	} else if (all_zero) {
2312		bp->cmng.flags.cmng_enables &=
2313					~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2314		DP(NETIF_MSG_IFUP, "All MIN values are zeroes"
2315		   "  fairness will be disabled\n");
2316	} else
2317		bp->cmng.flags.cmng_enables |=
2318					CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2319}
2320
2321static void bnx2x_init_vn_minmax(struct bnx2x *bp, int vn)
2322{
2323	struct rate_shaping_vars_per_vn m_rs_vn;
2324	struct fairness_vars_per_vn m_fair_vn;
2325	u32 vn_cfg = bp->mf_config[vn];
2326	int func = func_by_vn(bp, vn);
2327	u16 vn_min_rate, vn_max_rate;
2328	int i;
2329
2330	/* If function is hidden - set min and max to zeroes */
2331	if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) {
2332		vn_min_rate = 0;
2333		vn_max_rate = 0;
2334
2335	} else {
2336		u32 maxCfg = bnx2x_extract_max_cfg(bp, vn_cfg);
2337
2338		vn_min_rate = ((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
2339				FUNC_MF_CFG_MIN_BW_SHIFT) * 100;
2340		/* If fairness is enabled (not all min rates are zeroes) and
2341		   if current min rate is zero - set it to 1.
2342		   This is a requirement of the algorithm. */
2343		if (bp->vn_weight_sum && (vn_min_rate == 0))
2344			vn_min_rate = DEF_MIN_RATE;
2345
2346		if (IS_MF_SI(bp))
2347			/* maxCfg in percents of linkspeed */
2348			vn_max_rate = (bp->link_vars.line_speed * maxCfg) / 100;
2349		else
2350			/* maxCfg is absolute in 100Mb units */
2351			vn_max_rate = maxCfg * 100;
2352	}
2353
2354	DP(NETIF_MSG_IFUP,
2355	   "func %d: vn_min_rate %d  vn_max_rate %d  vn_weight_sum %d\n",
2356	   func, vn_min_rate, vn_max_rate, bp->vn_weight_sum);
2357
2358	memset(&m_rs_vn, 0, sizeof(struct rate_shaping_vars_per_vn));
2359	memset(&m_fair_vn, 0, sizeof(struct fairness_vars_per_vn));
2360
2361	/* global vn counter - maximal Mbps for this vn */
2362	m_rs_vn.vn_counter.rate = vn_max_rate;
2363
2364	/* quota - number of bytes transmitted in this period */
2365	m_rs_vn.vn_counter.quota =
2366				(vn_max_rate * RS_PERIODIC_TIMEOUT_USEC) / 8;
2367
2368	if (bp->vn_weight_sum) {
2369		/* credit for each period of the fairness algorithm:
2370		   number of bytes in T_FAIR (the vn share the port rate).
2371		   vn_weight_sum should not be larger than 10000, thus
2372		   T_FAIR_COEF / (8 * vn_weight_sum) will always be greater
2373		   than zero */
2374		m_fair_vn.vn_credit_delta =
2375			max_t(u32, (vn_min_rate * (T_FAIR_COEF /
2376						   (8 * bp->vn_weight_sum))),
2377			      (bp->cmng.fair_vars.fair_threshold +
2378							MIN_ABOVE_THRESH));
2379		DP(NETIF_MSG_IFUP, "m_fair_vn.vn_credit_delta %d\n",
2380		   m_fair_vn.vn_credit_delta);
2381	}
2382
2383	/* Store it to internal memory */
2384	for (i = 0; i < sizeof(struct rate_shaping_vars_per_vn)/4; i++)
2385		REG_WR(bp, BAR_XSTRORM_INTMEM +
2386		       XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func) + i * 4,
2387		       ((u32 *)(&m_rs_vn))[i]);
2388
2389	for (i = 0; i < sizeof(struct fairness_vars_per_vn)/4; i++)
2390		REG_WR(bp, BAR_XSTRORM_INTMEM +
2391		       XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func) + i * 4,
2392		       ((u32 *)(&m_fair_vn))[i]);
2393}
2394
2395static int bnx2x_get_cmng_fns_mode(struct bnx2x *bp)
2396{
2397	if (CHIP_REV_IS_SLOW(bp))
2398		return CMNG_FNS_NONE;
2399	if (IS_MF(bp))
2400		return CMNG_FNS_MINMAX;
2401
2402	return CMNG_FNS_NONE;
2403}
2404
2405void bnx2x_read_mf_cfg(struct bnx2x *bp)
2406{
2407	int vn, n = (CHIP_MODE_IS_4_PORT(bp) ? 2 : 1);
2408
2409	if (BP_NOMCP(bp))
2410		return; /* what should be the default bvalue in this case */
2411
2412	/* For 2 port configuration the absolute function number formula
2413	 * is:
2414	 *      abs_func = 2 * vn + BP_PORT + BP_PATH
2415	 *
2416	 *      and there are 4 functions per port
2417	 *
2418	 * For 4 port configuration it is
2419	 *      abs_func = 4 * vn + 2 * BP_PORT + BP_PATH
2420	 *
2421	 *      and there are 2 functions per port
2422	 */
2423	for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2424		int /*abs*/func = n * (2 * vn + BP_PORT(bp)) + BP_PATH(bp);
2425
2426		if (func >= E1H_FUNC_MAX)
2427			break;
2428
2429		bp->mf_config[vn] =
2430			MF_CFG_RD(bp, func_mf_config[func].config);
2431	}
2432}
2433
2434static void bnx2x_cmng_fns_init(struct bnx2x *bp, u8 read_cfg, u8 cmng_type)
2435{
2436
2437	if (cmng_type == CMNG_FNS_MINMAX) {
2438		int vn;
2439
2440		/* clear cmng_enables */
2441		bp->cmng.flags.cmng_enables = 0;
2442
2443		/* read mf conf from shmem */
2444		if (read_cfg)
2445			bnx2x_read_mf_cfg(bp);
2446
2447		/* Init rate shaping and fairness contexts */
2448		bnx2x_init_port_minmax(bp);
2449
2450		/* vn_weight_sum and enable fairness if not 0 */
2451		bnx2x_calc_vn_weight_sum(bp);
2452
2453		/* calculate and set min-max rate for each vn */
2454		if (bp->port.pmf)
2455			for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++)
2456				bnx2x_init_vn_minmax(bp, vn);
2457
2458		/* always enable rate shaping and fairness */
2459		bp->cmng.flags.cmng_enables |=
2460					CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN;
2461		if (!bp->vn_weight_sum)
2462			DP(NETIF_MSG_IFUP, "All MIN values are zeroes"
2463				   "  fairness will be disabled\n");
2464		return;
2465	}
2466
2467	/* rate shaping and fairness are disabled */
2468	DP(NETIF_MSG_IFUP,
2469	   "rate shaping and fairness are disabled\n");
2470}
2471
2472/* This function is called upon link interrupt */
2473static void bnx2x_link_attn(struct bnx2x *bp)
2474{
2475	/* Make sure that we are synced with the current statistics */
2476	bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2477
2478	bnx2x_link_update(&bp->link_params, &bp->link_vars);
2479
2480	if (bp->link_vars.link_up) {
2481
2482		/* dropless flow control */
2483		if (!CHIP_IS_E1(bp) && bp->dropless_fc) {
2484			int port = BP_PORT(bp);
2485			u32 pause_enabled = 0;
2486
2487			if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_TX)
2488				pause_enabled = 1;
2489
2490			REG_WR(bp, BAR_USTRORM_INTMEM +
2491			       USTORM_ETH_PAUSE_ENABLED_OFFSET(port),
2492			       pause_enabled);
2493		}
2494
2495		if (bp->link_vars.mac_type != MAC_TYPE_EMAC) {
2496			struct host_port_stats *pstats;
2497
2498			pstats = bnx2x_sp(bp, port_stats);
2499			/* reset old mac stats */
2500			memset(&(pstats->mac_stx[0]), 0,
2501			       sizeof(struct mac_stx));
2502		}
2503		if (bp->state == BNX2X_STATE_OPEN)
2504			bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2505	}
2506
2507	if (bp->link_vars.link_up && bp->link_vars.line_speed) {
2508		int cmng_fns = bnx2x_get_cmng_fns_mode(bp);
2509
2510		if (cmng_fns != CMNG_FNS_NONE) {
2511			bnx2x_cmng_fns_init(bp, false, cmng_fns);
2512			storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
2513		} else
2514			/* rate shaping and fairness are disabled */
2515			DP(NETIF_MSG_IFUP,
2516			   "single function mode without fairness\n");
2517	}
2518
2519	__bnx2x_link_report(bp);
2520
2521	if (IS_MF(bp))
2522		bnx2x_link_sync_notify(bp);
2523}
2524
2525void bnx2x__link_status_update(struct bnx2x *bp)
2526{
2527	if (bp->state != BNX2X_STATE_OPEN)
2528		return;
2529
2530	/* read updated dcb configuration */
2531	bnx2x_dcbx_pmf_update(bp);
2532
2533	bnx2x_link_status_update(&bp->link_params, &bp->link_vars);
2534
2535	if (bp->link_vars.link_up)
2536		bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2537	else
2538		bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2539
2540	/* indicate link status */
2541	bnx2x_link_report(bp);
2542}
2543
2544static void bnx2x_pmf_update(struct bnx2x *bp)
2545{
2546	int port = BP_PORT(bp);
2547	u32 val;
2548
2549	bp->port.pmf = 1;
2550	DP(NETIF_MSG_LINK, "pmf %d\n", bp->port.pmf);
2551
2552	/*
2553	 * We need the mb() to ensure the ordering between the writing to
2554	 * bp->port.pmf here and reading it from the bnx2x_periodic_task().
2555	 */
2556	smp_mb();
2557
2558	/* queue a periodic task */
2559	queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2560
2561	bnx2x_dcbx_pmf_update(bp);
2562
2563	/* enable nig attention */
2564	val = (0xff0f | (1 << (BP_VN(bp) + 4)));
2565	if (bp->common.int_block == INT_BLOCK_HC) {
2566		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
2567		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
2568	} else if (!CHIP_IS_E1x(bp)) {
2569		REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
2570		REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
2571	}
2572
2573	bnx2x_stats_handle(bp, STATS_EVENT_PMF);
2574}
2575
2576/* end of Link */
2577
2578/* slow path */
2579
2580/*
2581 * General service functions
2582 */
2583
2584/* send the MCP a request, block until there is a reply */
2585u32 bnx2x_fw_command(struct bnx2x *bp, u32 command, u32 param)
2586{
2587	int mb_idx = BP_FW_MB_IDX(bp);
2588	u32 seq;
2589	u32 rc = 0;
2590	u32 cnt = 1;
2591	u8 delay = CHIP_REV_IS_SLOW(bp) ? 100 : 10;
2592
2593	mutex_lock(&bp->fw_mb_mutex);
2594	seq = ++bp->fw_seq;
2595	SHMEM_WR(bp, func_mb[mb_idx].drv_mb_param, param);
2596	SHMEM_WR(bp, func_mb[mb_idx].drv_mb_header, (command | seq));
2597
2598	DP(BNX2X_MSG_MCP, "wrote command (%x) to FW MB param 0x%08x\n",
2599			(command | seq), param);
2600
2601	do {
2602		/* let the FW do it's magic ... */
2603		msleep(delay);
2604
2605		rc = SHMEM_RD(bp, func_mb[mb_idx].fw_mb_header);
2606
2607		/* Give the FW up to 5 second (500*10ms) */
2608	} while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500));
2609
2610	DP(BNX2X_MSG_MCP, "[after %d ms] read (%x) seq is (%x) from FW MB\n",
2611	   cnt*delay, rc, seq);
2612
2613	/* is this a reply to our command? */
2614	if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK))
2615		rc &= FW_MSG_CODE_MASK;
2616	else {
2617		/* FW BUG! */
2618		BNX2X_ERR("FW failed to respond!\n");
2619		bnx2x_fw_dump(bp);
2620		rc = 0;
2621	}
2622	mutex_unlock(&bp->fw_mb_mutex);
2623
2624	return rc;
2625}
2626
2627static u8 stat_counter_valid(struct bnx2x *bp, struct bnx2x_fastpath *fp)
2628{
2629#ifdef BCM_CNIC
2630	/* Statistics are not supported for CNIC Clients at the moment */
2631	if (IS_FCOE_FP(fp))
2632		return false;
2633#endif
2634	return true;
2635}
2636
2637void bnx2x_func_init(struct bnx2x *bp, struct bnx2x_func_init_params *p)
2638{
2639	if (CHIP_IS_E1x(bp)) {
2640		struct tstorm_eth_function_common_config tcfg = {0};
2641
2642		storm_memset_func_cfg(bp, &tcfg, p->func_id);
2643	}
2644
2645	/* Enable the function in the FW */
2646	storm_memset_vf_to_pf(bp, p->func_id, p->pf_id);
2647	storm_memset_func_en(bp, p->func_id, 1);
2648
2649	/* spq */
2650	if (p->func_flgs & FUNC_FLG_SPQ) {
2651		storm_memset_spq_addr(bp, p->spq_map, p->func_id);
2652		REG_WR(bp, XSEM_REG_FAST_MEMORY +
2653		       XSTORM_SPQ_PROD_OFFSET(p->func_id), p->spq_prod);
2654	}
2655}
2656
2657/**
2658 * bnx2x_get_tx_only_flags - Return common flags
2659 *
2660 * @bp		device handle
2661 * @fp		queue handle
2662 * @zero_stats	TRUE if statistics zeroing is needed
2663 *
2664 * Return the flags that are common for the Tx-only and not normal connections.
2665 */
2666static inline unsigned long bnx2x_get_common_flags(struct bnx2x *bp,
2667						   struct bnx2x_fastpath *fp,
2668						   bool zero_stats)
2669{
2670	unsigned long flags = 0;
2671
2672	/* PF driver will always initialize the Queue to an ACTIVE state */
2673	__set_bit(BNX2X_Q_FLG_ACTIVE, &flags);
2674
2675	/* tx only connections collect statistics (on the same index as the
2676	 *  parent connection). The statistics are zeroed when the parent
2677	 *  connection is initialized.
2678	 */
2679	if (stat_counter_valid(bp, fp)) {
2680		__set_bit(BNX2X_Q_FLG_STATS, &flags);
2681		if (zero_stats)
2682			__set_bit(BNX2X_Q_FLG_ZERO_STATS, &flags);
2683	}
2684
2685	return flags;
2686}
2687
2688static inline unsigned long bnx2x_get_q_flags(struct bnx2x *bp,
2689					      struct bnx2x_fastpath *fp,
2690					      bool leading)
2691{
2692	unsigned long flags = 0;
2693
2694	/* calculate other queue flags */
2695	if (IS_MF_SD(bp))
2696		__set_bit(BNX2X_Q_FLG_OV, &flags);
2697
2698	if (IS_FCOE_FP(fp))
2699		__set_bit(BNX2X_Q_FLG_FCOE, &flags);
2700
2701	if (!fp->disable_tpa) {
2702		__set_bit(BNX2X_Q_FLG_TPA, &flags);
2703		__set_bit(BNX2X_Q_FLG_TPA_IPV6, &flags);
2704	}
2705
2706	if (leading) {
2707		__set_bit(BNX2X_Q_FLG_LEADING_RSS, &flags);
2708		__set_bit(BNX2X_Q_FLG_MCAST, &flags);
2709	}
2710
2711	/* Always set HW VLAN stripping */
2712	__set_bit(BNX2X_Q_FLG_VLAN, &flags);
2713
2714
2715	return flags | bnx2x_get_common_flags(bp, fp, true);
2716}
2717
2718static void bnx2x_pf_q_prep_general(struct bnx2x *bp,
2719	struct bnx2x_fastpath *fp, struct bnx2x_general_setup_params *gen_init,
2720	u8 cos)
2721{
2722	gen_init->stat_id = bnx2x_stats_id(fp);
2723	gen_init->spcl_id = fp->cl_id;
2724
2725	/* Always use mini-jumbo MTU for FCoE L2 ring */
2726	if (IS_FCOE_FP(fp))
2727		gen_init->mtu = BNX2X_FCOE_MINI_JUMBO_MTU;
2728	else
2729		gen_init->mtu = bp->dev->mtu;
2730
2731	gen_init->cos = cos;
2732}
2733
2734static void bnx2x_pf_rx_q_prep(struct bnx2x *bp,
2735	struct bnx2x_fastpath *fp, struct rxq_pause_params *pause,
2736	struct bnx2x_rxq_setup_params *rxq_init)
2737{
2738	u8 max_sge = 0;
2739	u16 sge_sz = 0;
2740	u16 tpa_agg_size = 0;
2741
2742	if (!fp->disable_tpa) {
2743		pause->sge_th_lo = SGE_TH_LO(bp);
2744		pause->sge_th_hi = SGE_TH_HI(bp);
2745
2746		/* validate SGE ring has enough to cross high threshold */
2747		WARN_ON(bp->dropless_fc &&
2748				pause->sge_th_hi + FW_PREFETCH_CNT >
2749				MAX_RX_SGE_CNT * NUM_RX_SGE_PAGES);
2750
2751		tpa_agg_size = min_t(u32,
2752			(min_t(u32, 8, MAX_SKB_FRAGS) *
2753			SGE_PAGE_SIZE * PAGES_PER_SGE), 0xffff);
2754		max_sge = SGE_PAGE_ALIGN(bp->dev->mtu) >>
2755			SGE_PAGE_SHIFT;
2756		max_sge = ((max_sge + PAGES_PER_SGE - 1) &
2757			  (~(PAGES_PER_SGE-1))) >> PAGES_PER_SGE_SHIFT;
2758		sge_sz = (u16)min_t(u32, SGE_PAGE_SIZE * PAGES_PER_SGE,
2759				    0xffff);
2760	}
2761
2762	/* pause - not for e1 */
2763	if (!CHIP_IS_E1(bp)) {
2764		pause->bd_th_lo = BD_TH_LO(bp);
2765		pause->bd_th_hi = BD_TH_HI(bp);
2766
2767		pause->rcq_th_lo = RCQ_TH_LO(bp);
2768		pause->rcq_th_hi = RCQ_TH_HI(bp);
2769		/*
2770		 * validate that rings have enough entries to cross
2771		 * high thresholds
2772		 */
2773		WARN_ON(bp->dropless_fc &&
2774				pause->bd_th_hi + FW_PREFETCH_CNT >
2775				bp->rx_ring_size);
2776		WARN_ON(bp->dropless_fc &&
2777				pause->rcq_th_hi + FW_PREFETCH_CNT >
2778				NUM_RCQ_RINGS * MAX_RCQ_DESC_CNT);
2779
2780		pause->pri_map = 1;
2781	}
2782
2783	/* rxq setup */
2784	rxq_init->dscr_map = fp->rx_desc_mapping;
2785	rxq_init->sge_map = fp->rx_sge_mapping;
2786	rxq_init->rcq_map = fp->rx_comp_mapping;
2787	rxq_init->rcq_np_map = fp->rx_comp_mapping + BCM_PAGE_SIZE;
2788
2789	/* This should be a maximum number of data bytes that may be
2790	 * placed on the BD (not including paddings).
2791	 */
2792	rxq_init->buf_sz = fp->rx_buf_size - BNX2X_FW_RX_ALIGN_START -
2793		BNX2X_FW_RX_ALIGN_END -	IP_HEADER_ALIGNMENT_PADDING;
2794
2795	rxq_init->cl_qzone_id = fp->cl_qzone_id;
2796	rxq_init->tpa_agg_sz = tpa_agg_size;
2797	rxq_init->sge_buf_sz = sge_sz;
2798	rxq_init->max_sges_pkt = max_sge;
2799	rxq_init->rss_engine_id = BP_FUNC(bp);
2800
2801	/* Maximum number or simultaneous TPA aggregation for this Queue.
2802	 *
2803	 * For PF Clients it should be the maximum avaliable number.
2804	 * VF driver(s) may want to define it to a smaller value.
2805	 */
2806	rxq_init->max_tpa_queues = MAX_AGG_QS(bp);
2807
2808	rxq_init->cache_line_log = BNX2X_RX_ALIGN_SHIFT;
2809	rxq_init->fw_sb_id = fp->fw_sb_id;
2810
2811	if (IS_FCOE_FP(fp))
2812		rxq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS;
2813	else
2814		rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
2815}
2816
2817static void bnx2x_pf_tx_q_prep(struct bnx2x *bp,
2818	struct bnx2x_fastpath *fp, struct bnx2x_txq_setup_params *txq_init,
2819	u8 cos)
2820{
2821	txq_init->dscr_map = fp->txdata[cos].tx_desc_mapping;
2822	txq_init->sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos;
2823	txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW;
2824	txq_init->fw_sb_id = fp->fw_sb_id;
2825
2826	/*
2827	 * set the tss leading client id for TX classfication ==
2828	 * leading RSS client id
2829	 */
2830	txq_init->tss_leading_cl_id = bnx2x_fp(bp, 0, cl_id);
2831
2832	if (IS_FCOE_FP(fp)) {
2833		txq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_TX_CQ_CONS;
2834		txq_init->traffic_type = LLFC_TRAFFIC_TYPE_FCOE;
2835	}
2836}
2837
2838static void bnx2x_pf_init(struct bnx2x *bp)
2839{
2840	struct bnx2x_func_init_params func_init = {0};
2841	struct event_ring_data eq_data = { {0} };
2842	u16 flags;
2843
2844	if (!CHIP_IS_E1x(bp)) {
2845		/* reset IGU PF statistics: MSIX + ATTN */
2846		/* PF */
2847		REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
2848			   BNX2X_IGU_STAS_MSG_VF_CNT*4 +
2849			   (CHIP_MODE_IS_4_PORT(bp) ?
2850				BP_FUNC(bp) : BP_VN(bp))*4, 0);
2851		/* ATTN */
2852		REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
2853			   BNX2X_IGU_STAS_MSG_VF_CNT*4 +
2854			   BNX2X_IGU_STAS_MSG_PF_CNT*4 +
2855			   (CHIP_MODE_IS_4_PORT(bp) ?
2856				BP_FUNC(bp) : BP_VN(bp))*4, 0);
2857	}
2858
2859	/* function setup flags */
2860	flags = (FUNC_FLG_STATS | FUNC_FLG_LEADING | FUNC_FLG_SPQ);
2861
2862	/* This flag is relevant for E1x only.
2863	 * E2 doesn't have a TPA configuration in a function level.
2864	 */
2865	flags |= (bp->flags & TPA_ENABLE_FLAG) ? FUNC_FLG_TPA : 0;
2866
2867	func_init.func_flgs = flags;
2868	func_init.pf_id = BP_FUNC(bp);
2869	func_init.func_id = BP_FUNC(bp);
2870	func_init.spq_map = bp->spq_mapping;
2871	func_init.spq_prod = bp->spq_prod_idx;
2872
2873	bnx2x_func_init(bp, &func_init);
2874
2875	memset(&(bp->cmng), 0, sizeof(struct cmng_struct_per_port));
2876
2877	/*
2878	 * Congestion management values depend on the link rate
2879	 * There is no active link so initial link rate is set to 10 Gbps.
2880	 * When the link comes up The congestion management values are
2881	 * re-calculated according to the actual link rate.
2882	 */
2883	bp->link_vars.line_speed = SPEED_10000;
2884	bnx2x_cmng_fns_init(bp, true, bnx2x_get_cmng_fns_mode(bp));
2885
2886	/* Only the PMF sets the HW */
2887	if (bp->port.pmf)
2888		storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
2889
2890	/* init Event Queue */
2891	eq_data.base_addr.hi = U64_HI(bp->eq_mapping);
2892	eq_data.base_addr.lo = U64_LO(bp->eq_mapping);
2893	eq_data.producer = bp->eq_prod;
2894	eq_data.index_id = HC_SP_INDEX_EQ_CONS;
2895	eq_data.sb_id = DEF_SB_ID;
2896	storm_memset_eq_data(bp, &eq_data, BP_FUNC(bp));
2897}
2898
2899
2900static void bnx2x_e1h_disable(struct bnx2x *bp)
2901{
2902	int port = BP_PORT(bp);
2903
2904	bnx2x_tx_disable(bp);
2905
2906	REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
2907}
2908
2909static void bnx2x_e1h_enable(struct bnx2x *bp)
2910{
2911	int port = BP_PORT(bp);
2912
2913	REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 1);
2914
2915	/* Tx queue should be only reenabled */
2916	netif_tx_wake_all_queues(bp->dev);
2917
2918	/*
2919	 * Should not call netif_carrier_on since it will be called if the link
2920	 * is up when checking for link state
2921	 */
2922}
2923
2924/* called due to MCP event (on pmf):
2925 *	reread new bandwidth configuration
2926 *	configure FW
2927 *	notify others function about the change
2928 */
2929static inline void bnx2x_config_mf_bw(struct bnx2x *bp)
2930{
2931	if (bp->link_vars.link_up) {
2932		bnx2x_cmng_fns_init(bp, true, CMNG_FNS_MINMAX);
2933		bnx2x_link_sync_notify(bp);
2934	}
2935	storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
2936}
2937
2938static inline void bnx2x_set_mf_bw(struct bnx2x *bp)
2939{
2940	bnx2x_config_mf_bw(bp);
2941	bnx2x_fw_command(bp, DRV_MSG_CODE_SET_MF_BW_ACK, 0);
2942}
2943
2944static void bnx2x_dcc_event(struct bnx2x *bp, u32 dcc_event)
2945{
2946	DP(BNX2X_MSG_MCP, "dcc_event 0x%x\n", dcc_event);
2947
2948	if (dcc_event & DRV_STATUS_DCC_DISABLE_ENABLE_PF) {
2949
2950		/*
2951		 * This is the only place besides the function initialization
2952		 * where the bp->flags can change so it is done without any
2953		 * locks
2954		 */
2955		if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
2956			DP(NETIF_MSG_IFDOWN, "mf_cfg function disabled\n");
2957			bp->flags |= MF_FUNC_DIS;
2958
2959			bnx2x_e1h_disable(bp);
2960		} else {
2961			DP(NETIF_MSG_IFUP, "mf_cfg function enabled\n");
2962			bp->flags &= ~MF_FUNC_DIS;
2963
2964			bnx2x_e1h_enable(bp);
2965		}
2966		dcc_event &= ~DRV_STATUS_DCC_DISABLE_ENABLE_PF;
2967	}
2968	if (dcc_event & DRV_STATUS_DCC_BANDWIDTH_ALLOCATION) {
2969		bnx2x_config_mf_bw(bp);
2970		dcc_event &= ~DRV_STATUS_DCC_BANDWIDTH_ALLOCATION;
2971	}
2972
2973	/* Report results to MCP */
2974	if (dcc_event)
2975		bnx2x_fw_command(bp, DRV_MSG_CODE_DCC_FAILURE, 0);
2976	else
2977		bnx2x_fw_command(bp, DRV_MSG_CODE_DCC_OK, 0);
2978}
2979
2980/* must be called under the spq lock */
2981static inline struct eth_spe *bnx2x_sp_get_next(struct bnx2x *bp)
2982{
2983	struct eth_spe *next_spe = bp->spq_prod_bd;
2984
2985	if (bp->spq_prod_bd == bp->spq_last_bd) {
2986		bp->spq_prod_bd = bp->spq;
2987		bp->spq_prod_idx = 0;
2988		DP(NETIF_MSG_TIMER, "end of spq\n");
2989	} else {
2990		bp->spq_prod_bd++;
2991		bp->spq_prod_idx++;
2992	}
2993	return next_spe;
2994}
2995
2996/* must be called under the spq lock */
2997static inline void bnx2x_sp_prod_update(struct bnx2x *bp)
2998{
2999	int func = BP_FUNC(bp);
3000
3001	/*
3002	 * Make sure that BD data is updated before writing the producer:
3003	 * BD data is written to the memory, the producer is read from the
3004	 * memory, thus we need a full memory barrier to ensure the ordering.
3005	 */
3006	mb();
3007
3008	REG_WR16(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func),
3009		 bp->spq_prod_idx);
3010	mmiowb();
3011}
3012
3013/**
3014 * bnx2x_is_contextless_ramrod - check if the current command ends on EQ
3015 *
3016 * @cmd:	command to check
3017 * @cmd_type:	command type
3018 */
3019static inline bool bnx2x_is_contextless_ramrod(int cmd, int cmd_type)
3020{
3021	if ((cmd_type == NONE_CONNECTION_TYPE) ||
3022	    (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) ||
3023	    (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) ||
3024	    (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) ||
3025	    (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) ||
3026	    (cmd == RAMROD_CMD_ID_ETH_SET_MAC) ||
3027	    (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE))
3028		return true;
3029	else
3030		return false;
3031
3032}
3033
3034
3035/**
3036 * bnx2x_sp_post - place a single command on an SP ring
3037 *
3038 * @bp:		driver handle
3039 * @command:	command to place (e.g. SETUP, FILTER_RULES, etc.)
3040 * @cid:	SW CID the command is related to
3041 * @data_hi:	command private data address (high 32 bits)
3042 * @data_lo:	command private data address (low 32 bits)
3043 * @cmd_type:	command type (e.g. NONE, ETH)
3044 *
3045 * SP data is handled as if it's always an address pair, thus data fields are
3046 * not swapped to little endian in upper functions. Instead this function swaps
3047 * data as if it's two u32 fields.
3048 */
3049int bnx2x_sp_post(struct bnx2x *bp, int command, int cid,
3050		  u32 data_hi, u32 data_lo, int cmd_type)
3051{
3052	struct eth_spe *spe;
3053	u16 type;
3054	bool common = bnx2x_is_contextless_ramrod(command, cmd_type);
3055
3056#ifdef BNX2X_STOP_ON_ERROR
3057	if (unlikely(bp->panic))
3058		return -EIO;
3059#endif
3060
3061	spin_lock_bh(&bp->spq_lock);
3062
3063	if (common) {
3064		if (!atomic_read(&bp->eq_spq_left)) {
3065			BNX2X_ERR("BUG! EQ ring full!\n");
3066			spin_unlock_bh(&bp->spq_lock);
3067			bnx2x_panic();
3068			return -EBUSY;
3069		}
3070	} else if (!atomic_read(&bp->cq_spq_left)) {
3071			BNX2X_ERR("BUG! SPQ ring full!\n");
3072			spin_unlock_bh(&bp->spq_lock);
3073			bnx2x_panic();
3074			return -EBUSY;
3075	}
3076
3077	spe = bnx2x_sp_get_next(bp);
3078
3079	/* CID needs port number to be encoded int it */
3080	spe->hdr.conn_and_cmd_data =
3081			cpu_to_le32((command << SPE_HDR_CMD_ID_SHIFT) |
3082				    HW_CID(bp, cid));
3083
3084	type = (cmd_type << SPE_HDR_CONN_TYPE_SHIFT) & SPE_HDR_CONN_TYPE;
3085
3086	type |= ((BP_FUNC(bp) << SPE_HDR_FUNCTION_ID_SHIFT) &
3087		 SPE_HDR_FUNCTION_ID);
3088
3089	spe->hdr.type = cpu_to_le16(type);
3090
3091	spe->data.update_data_addr.hi = cpu_to_le32(data_hi);
3092	spe->data.update_data_addr.lo = cpu_to_le32(data_lo);
3093
3094	/*
3095	 * It's ok if the actual decrement is issued towards the memory
3096	 * somewhere between the spin_lock and spin_unlock. Thus no
3097	 * more explict memory barrier is needed.
3098	 */
3099	if (common)
3100		atomic_dec(&bp->eq_spq_left);
3101	else
3102		atomic_dec(&bp->cq_spq_left);
3103
3104
3105	DP(BNX2X_MSG_SP/*NETIF_MSG_TIMER*/,
3106	   "SPQE[%x] (%x:%x)  (cmd, common?) (%d,%d)  hw_cid %x  data (%x:%x) "
3107	   "type(0x%x) left (CQ, EQ) (%x,%x)\n",
3108	   bp->spq_prod_idx, (u32)U64_HI(bp->spq_mapping),
3109	   (u32)(U64_LO(bp->spq_mapping) +
3110	   (void *)bp->spq_prod_bd - (void *)bp->spq), command, common,
3111	   HW_CID(bp, cid), data_hi, data_lo, type,
3112	   atomic_read(&bp->cq_spq_left), atomic_read(&bp->eq_spq_left));
3113
3114	bnx2x_sp_prod_update(bp);
3115	spin_unlock_bh(&bp->spq_lock);
3116	return 0;
3117}
3118
3119/* acquire split MCP access lock register */
3120static int bnx2x_acquire_alr(struct bnx2x *bp)
3121{
3122	u32 j, val;
3123	int rc = 0;
3124
3125	might_sleep();
3126	for (j = 0; j < 1000; j++) {
3127		val = (1UL << 31);
3128		REG_WR(bp, GRCBASE_MCP + 0x9c, val);
3129		val = REG_RD(bp, GRCBASE_MCP + 0x9c);
3130		if (val & (1L << 31))
3131			break;
3132
3133		msleep(5);
3134	}
3135	if (!(val & (1L << 31))) {
3136		BNX2X_ERR("Cannot acquire MCP access lock register\n");
3137		rc = -EBUSY;
3138	}
3139
3140	return rc;
3141}
3142
3143/* release split MCP access lock register */
3144static void bnx2x_release_alr(struct bnx2x *bp)
3145{
3146	REG_WR(bp, GRCBASE_MCP + 0x9c, 0);
3147}
3148
3149#define BNX2X_DEF_SB_ATT_IDX	0x0001
3150#define BNX2X_DEF_SB_IDX	0x0002
3151
3152static inline u16 bnx2x_update_dsb_idx(struct bnx2x *bp)
3153{
3154	struct host_sp_status_block *def_sb = bp->def_status_blk;
3155	u16 rc = 0;
3156
3157	barrier(); /* status block is written to by the chip */
3158	if (bp->def_att_idx != def_sb->atten_status_block.attn_bits_index) {
3159		bp->def_att_idx = def_sb->atten_status_block.attn_bits_index;
3160		rc |= BNX2X_DEF_SB_ATT_IDX;
3161	}
3162
3163	if (bp->def_idx != def_sb->sp_sb.running_index) {
3164		bp->def_idx = def_sb->sp_sb.running_index;
3165		rc |= BNX2X_DEF_SB_IDX;
3166	}
3167
3168	/* Do not reorder: indecies reading should complete before handling */
3169	barrier();
3170	return rc;
3171}
3172
3173/*
3174 * slow path service functions
3175 */
3176
3177static void bnx2x_attn_int_asserted(struct bnx2x *bp, u32 asserted)
3178{
3179	int port = BP_PORT(bp);
3180	u32 aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
3181			      MISC_REG_AEU_MASK_ATTN_FUNC_0;
3182	u32 nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 :
3183				       NIG_REG_MASK_INTERRUPT_PORT0;
3184	u32 aeu_mask;
3185	u32 nig_mask = 0;
3186	u32 reg_addr;
3187
3188	if (bp->attn_state & asserted)
3189		BNX2X_ERR("IGU ERROR\n");
3190
3191	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
3192	aeu_mask = REG_RD(bp, aeu_addr);
3193
3194	DP(NETIF_MSG_HW, "aeu_mask %x  newly asserted %x\n",
3195	   aeu_mask, asserted);
3196	aeu_mask &= ~(asserted & 0x3ff);
3197	DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
3198
3199	REG_WR(bp, aeu_addr, aeu_mask);
3200	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
3201
3202	DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
3203	bp->attn_state |= asserted;
3204	DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
3205
3206	if (asserted & ATTN_HARD_WIRED_MASK) {
3207		if (asserted & ATTN_NIG_FOR_FUNC) {
3208
3209			bnx2x_acquire_phy_lock(bp);
3210
3211			/* save nig interrupt mask */
3212			nig_mask = REG_RD(bp, nig_int_mask_addr);
3213
3214			/* If nig_mask is not set, no need to call the update
3215			 * function.
3216			 */
3217			if (nig_mask) {
3218				REG_WR(bp, nig_int_mask_addr, 0);
3219
3220				bnx2x_link_attn(bp);
3221			}
3222
3223			/* handle unicore attn? */
3224		}
3225		if (asserted & ATTN_SW_TIMER_4_FUNC)
3226			DP(NETIF_MSG_HW, "ATTN_SW_TIMER_4_FUNC!\n");
3227
3228		if (asserted & GPIO_2_FUNC)
3229			DP(NETIF_MSG_HW, "GPIO_2_FUNC!\n");
3230
3231		if (asserted & GPIO_3_FUNC)
3232			DP(NETIF_MSG_HW, "GPIO_3_FUNC!\n");
3233
3234		if (asserted & GPIO_4_FUNC)
3235			DP(NETIF_MSG_HW, "GPIO_4_FUNC!\n");
3236
3237		if (port == 0) {
3238			if (asserted & ATTN_GENERAL_ATTN_1) {
3239				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_1!\n");
3240				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_1, 0x0);
3241			}
3242			if (asserted & ATTN_GENERAL_ATTN_2) {
3243				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_2!\n");
3244				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_2, 0x0);
3245			}
3246			if (asserted & ATTN_GENERAL_ATTN_3) {
3247				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_3!\n");
3248				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_3, 0x0);
3249			}
3250		} else {
3251			if (asserted & ATTN_GENERAL_ATTN_4) {
3252				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_4!\n");
3253				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_4, 0x0);
3254			}
3255			if (asserted & ATTN_GENERAL_ATTN_5) {
3256				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_5!\n");
3257				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_5, 0x0);
3258			}
3259			if (asserted & ATTN_GENERAL_ATTN_6) {
3260				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_6!\n");
3261				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_6, 0x0);
3262			}
3263		}
3264
3265	} /* if hardwired */
3266
3267	if (bp->common.int_block == INT_BLOCK_HC)
3268		reg_addr = (HC_REG_COMMAND_REG + port*32 +
3269			    COMMAND_REG_ATTN_BITS_SET);
3270	else
3271		reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8);
3272
3273	DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", asserted,
3274	   (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
3275	REG_WR(bp, reg_addr, asserted);
3276
3277	/* now set back the mask */
3278	if (asserted & ATTN_NIG_FOR_FUNC) {
3279		REG_WR(bp, nig_int_mask_addr, nig_mask);
3280		bnx2x_release_phy_lock(bp);
3281	}
3282}
3283
3284static inline void bnx2x_fan_failure(struct bnx2x *bp)
3285{
3286	int port = BP_PORT(bp);
3287	u32 ext_phy_config;
3288	/* mark the failure */
3289	ext_phy_config =
3290		SHMEM_RD(bp,
3291			 dev_info.port_hw_config[port].external_phy_config);
3292
3293	ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK;
3294	ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE;
3295	SHMEM_WR(bp, dev_info.port_hw_config[port].external_phy_config,
3296		 ext_phy_config);
3297
3298	/* log the failure */
3299	netdev_err(bp->dev, "Fan Failure on Network Controller has caused"
3300	       " the driver to shutdown the card to prevent permanent"
3301	       " damage.  Please contact OEM Support for assistance\n");
3302
3303	/*
3304	 * Scheudle device reset (unload)
3305	 * This is due to some boards consuming sufficient power when driver is
3306	 * up to overheat if fan fails.
3307	 */
3308	smp_mb__before_clear_bit();
3309	set_bit(BNX2X_SP_RTNL_FAN_FAILURE, &bp->sp_rtnl_state);
3310	smp_mb__after_clear_bit();
3311	schedule_delayed_work(&bp->sp_rtnl_task, 0);
3312
3313}
3314
3315static inline void bnx2x_attn_int_deasserted0(struct bnx2x *bp, u32 attn)
3316{
3317	int port = BP_PORT(bp);
3318	int reg_offset;
3319	u32 val;
3320
3321	reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
3322			     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
3323
3324	if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) {
3325
3326		val = REG_RD(bp, reg_offset);
3327		val &= ~AEU_INPUTS_ATTN_BITS_SPIO5;
3328		REG_WR(bp, reg_offset, val);
3329
3330		BNX2X_ERR("SPIO5 hw attention\n");
3331
3332		/* Fan failure attention */
3333		bnx2x_hw_reset_phy(&bp->link_params);
3334		bnx2x_fan_failure(bp);
3335	}
3336
3337	if ((attn & bp->link_vars.aeu_int_mask) && bp->port.pmf) {
3338		bnx2x_acquire_phy_lock(bp);
3339		bnx2x_handle_module_detect_int(&bp->link_params);
3340		bnx2x_release_phy_lock(bp);
3341	}
3342
3343	if (attn & HW_INTERRUT_ASSERT_SET_0) {
3344
3345		val = REG_RD(bp, reg_offset);
3346		val &= ~(attn & HW_INTERRUT_ASSERT_SET_0);
3347		REG_WR(bp, reg_offset, val);
3348
3349		BNX2X_ERR("FATAL HW block attention set0 0x%x\n",
3350			  (u32)(attn & HW_INTERRUT_ASSERT_SET_0));
3351		bnx2x_panic();
3352	}
3353}
3354
3355static inline void bnx2x_attn_int_deasserted1(struct bnx2x *bp, u32 attn)
3356{
3357	u32 val;
3358
3359	if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) {
3360
3361		val = REG_RD(bp, DORQ_REG_DORQ_INT_STS_CLR);
3362		BNX2X_ERR("DB hw attention 0x%x\n", val);
3363		/* DORQ discard attention */
3364		if (val & 0x2)
3365			BNX2X_ERR("FATAL error from DORQ\n");
3366	}
3367
3368	if (attn & HW_INTERRUT_ASSERT_SET_1) {
3369
3370		int port = BP_PORT(bp);
3371		int reg_offset;
3372
3373		reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 :
3374				     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1);
3375
3376		val = REG_RD(bp, reg_offset);
3377		val &= ~(attn & HW_INTERRUT_ASSERT_SET_1);
3378		REG_WR(bp, reg_offset, val);
3379
3380		BNX2X_ERR("FATAL HW block attention set1 0x%x\n",
3381			  (u32)(attn & HW_INTERRUT_ASSERT_SET_1));
3382		bnx2x_panic();
3383	}
3384}
3385
3386static inline void bnx2x_attn_int_deasserted2(struct bnx2x *bp, u32 attn)
3387{
3388	u32 val;
3389
3390	if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) {
3391
3392		val = REG_RD(bp, CFC_REG_CFC_INT_STS_CLR);
3393		BNX2X_ERR("CFC hw attention 0x%x\n", val);
3394		/* CFC error attention */
3395		if (val & 0x2)
3396			BNX2X_ERR("FATAL error from CFC\n");
3397	}
3398
3399	if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) {
3400		val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_0);
3401		BNX2X_ERR("PXP hw attention-0 0x%x\n", val);
3402		/* RQ_USDMDP_FIFO_OVERFLOW */
3403		if (val & 0x18000)
3404			BNX2X_ERR("FATAL error from PXP\n");
3405
3406		if (!CHIP_IS_E1x(bp)) {
3407			val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_1);
3408			BNX2X_ERR("PXP hw attention-1 0x%x\n", val);
3409		}
3410	}
3411
3412	if (attn & HW_INTERRUT_ASSERT_SET_2) {
3413
3414		int port = BP_PORT(bp);
3415		int reg_offset;
3416
3417		reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 :
3418				     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2);
3419
3420		val = REG_RD(bp, reg_offset);
3421		val &= ~(attn & HW_INTERRUT_ASSERT_SET_2);
3422		REG_WR(bp, reg_offset, val);
3423
3424		BNX2X_ERR("FATAL HW block attention set2 0x%x\n",
3425			  (u32)(attn & HW_INTERRUT_ASSERT_SET_2));
3426		bnx2x_panic();
3427	}
3428}
3429
3430static inline void bnx2x_attn_int_deasserted3(struct bnx2x *bp, u32 attn)
3431{
3432	u32 val;
3433
3434	if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) {
3435
3436		if (attn & BNX2X_PMF_LINK_ASSERT) {
3437			int func = BP_FUNC(bp);
3438
3439			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
3440			bp->mf_config[BP_VN(bp)] = MF_CFG_RD(bp,
3441					func_mf_config[BP_ABS_FUNC(bp)].config);
3442			val = SHMEM_RD(bp,
3443				       func_mb[BP_FW_MB_IDX(bp)].drv_status);
3444			if (val & DRV_STATUS_DCC_EVENT_MASK)
3445				bnx2x_dcc_event(bp,
3446					    (val & DRV_STATUS_DCC_EVENT_MASK));
3447
3448			if (val & DRV_STATUS_SET_MF_BW)
3449				bnx2x_set_mf_bw(bp);
3450
3451			if ((bp->port.pmf == 0) && (val & DRV_STATUS_PMF))
3452				bnx2x_pmf_update(bp);
3453
3454			if (bp->port.pmf &&
3455			    (val & DRV_STATUS_DCBX_NEGOTIATION_RESULTS) &&
3456				bp->dcbx_enabled > 0)
3457				/* start dcbx state machine */
3458				bnx2x_dcbx_set_params(bp,
3459					BNX2X_DCBX_STATE_NEG_RECEIVED);
3460			if (bp->link_vars.periodic_flags &
3461			    PERIODIC_FLAGS_LINK_EVENT) {
3462				/*  sync with link */
3463				bnx2x_acquire_phy_lock(bp);
3464				bp->link_vars.periodic_flags &=
3465					~PERIODIC_FLAGS_LINK_EVENT;
3466				bnx2x_release_phy_lock(bp);
3467				if (IS_MF(bp))
3468					bnx2x_link_sync_notify(bp);
3469				bnx2x_link_report(bp);
3470			}
3471			/* Always call it here: bnx2x_link_report() will
3472			 * prevent the link indication duplication.
3473			 */
3474			bnx2x__link_status_update(bp);
3475		} else if (attn & BNX2X_MC_ASSERT_BITS) {
3476
3477			BNX2X_ERR("MC assert!\n");
3478			bnx2x_mc_assert(bp);
3479			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_10, 0);
3480			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_9, 0);
3481			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_8, 0);
3482			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_7, 0);
3483			bnx2x_panic();
3484
3485		} else if (attn & BNX2X_MCP_ASSERT) {
3486
3487			BNX2X_ERR("MCP assert!\n");
3488			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_11, 0);
3489			bnx2x_fw_dump(bp);
3490
3491		} else
3492			BNX2X_ERR("Unknown HW assert! (attn 0x%x)\n", attn);
3493	}
3494
3495	if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) {
3496		BNX2X_ERR("LATCHED attention 0x%08x (masked)\n", attn);
3497		if (attn & BNX2X_GRC_TIMEOUT) {
3498			val = CHIP_IS_E1(bp) ? 0 :
3499					REG_RD(bp, MISC_REG_GRC_TIMEOUT_ATTN);
3500			BNX2X_ERR("GRC time-out 0x%08x\n", val);
3501		}
3502		if (attn & BNX2X_GRC_RSV) {
3503			val = CHIP_IS_E1(bp) ? 0 :
3504					REG_RD(bp, MISC_REG_GRC_RSV_ATTN);
3505			BNX2X_ERR("GRC reserved 0x%08x\n", val);
3506		}
3507		REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff);
3508	}
3509}
3510
3511/*
3512 * Bits map:
3513 * 0-7   - Engine0 load counter.
3514 * 8-15  - Engine1 load counter.
3515 * 16    - Engine0 RESET_IN_PROGRESS bit.
3516 * 17    - Engine1 RESET_IN_PROGRESS bit.
3517 * 18    - Engine0 ONE_IS_LOADED. Set when there is at least one active function
3518 *         on the engine
3519 * 19    - Engine1 ONE_IS_LOADED.
3520 * 20    - Chip reset flow bit. When set none-leader must wait for both engines
3521 *         leader to complete (check for both RESET_IN_PROGRESS bits and not for
3522 *         just the one belonging to its engine).
3523 *
3524 */
3525#define BNX2X_RECOVERY_GLOB_REG		MISC_REG_GENERIC_POR_1
3526
3527#define BNX2X_PATH0_LOAD_CNT_MASK	0x000000ff
3528#define BNX2X_PATH0_LOAD_CNT_SHIFT	0
3529#define BNX2X_PATH1_LOAD_CNT_MASK	0x0000ff00
3530#define BNX2X_PATH1_LOAD_CNT_SHIFT	8
3531#define BNX2X_PATH0_RST_IN_PROG_BIT	0x00010000
3532#define BNX2X_PATH1_RST_IN_PROG_BIT	0x00020000
3533#define BNX2X_GLOBAL_RESET_BIT		0x00040000
3534
3535/*
3536 * Set the GLOBAL_RESET bit.
3537 *
3538 * Should be run under rtnl lock
3539 */
3540void bnx2x_set_reset_global(struct bnx2x *bp)
3541{
3542	u32 val	= REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3543
3544	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val | BNX2X_GLOBAL_RESET_BIT);
3545	barrier();
3546	mmiowb();
3547}
3548
3549/*
3550 * Clear the GLOBAL_RESET bit.
3551 *
3552 * Should be run under rtnl lock
3553 */
3554static inline void bnx2x_clear_reset_global(struct bnx2x *bp)
3555{
3556	u32 val	= REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3557
3558	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val & (~BNX2X_GLOBAL_RESET_BIT));
3559	barrier();
3560	mmiowb();
3561}
3562
3563/*
3564 * Checks the GLOBAL_RESET bit.
3565 *
3566 * should be run under rtnl lock
3567 */
3568static inline bool bnx2x_reset_is_global(struct bnx2x *bp)
3569{
3570	u32 val	= REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3571
3572	DP(NETIF_MSG_HW, "GEN_REG_VAL=0x%08x\n", val);
3573	return (val & BNX2X_GLOBAL_RESET_BIT) ? true : false;
3574}
3575
3576/*
3577 * Clear RESET_IN_PROGRESS bit for the current engine.
3578 *
3579 * Should be run under rtnl lock
3580 */
3581static inline void bnx2x_set_reset_done(struct bnx2x *bp)
3582{
3583	u32 val	= REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3584	u32 bit = BP_PATH(bp) ?
3585		BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
3586
3587	/* Clear the bit */
3588	val &= ~bit;
3589	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
3590	barrier();
3591	mmiowb();
3592}
3593
3594/*
3595 * Set RESET_IN_PROGRESS for the current engine.
3596 *
3597 * should be run under rtnl lock
3598 */
3599void bnx2x_set_reset_in_progress(struct bnx2x *bp)
3600{
3601	u32 val	= REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3602	u32 bit = BP_PATH(bp) ?
3603		BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
3604
3605	/* Set the bit */
3606	val |= bit;
3607	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
3608	barrier();
3609	mmiowb();
3610}
3611
3612/*
3613 * Checks the RESET_IN_PROGRESS bit for the given engine.
3614 * should be run under rtnl lock
3615 */
3616bool bnx2x_reset_is_done(struct bnx2x *bp, int engine)
3617{
3618	u32 val	= REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3619	u32 bit = engine ?
3620		BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
3621
3622	/* return false if bit is set */
3623	return (val & bit) ? false : true;
3624}
3625
3626/*
3627 * Increment the load counter for the current engine.
3628 *
3629 * should be run under rtnl lock
3630 */
3631void bnx2x_inc_load_cnt(struct bnx2x *bp)
3632{
3633	u32 val1, val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3634	u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
3635			     BNX2X_PATH0_LOAD_CNT_MASK;
3636	u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
3637			     BNX2X_PATH0_LOAD_CNT_SHIFT;
3638
3639	DP(NETIF_MSG_HW, "Old GEN_REG_VAL=0x%08x\n", val);
3640
3641	/* get the current counter value */
3642	val1 = (val & mask) >> shift;
3643
3644	/* increment... */
3645	val1++;
3646
3647	/* clear the old value */
3648	val &= ~mask;
3649
3650	/* set the new one */
3651	val |= ((val1 << shift) & mask);
3652
3653	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
3654	barrier();
3655	mmiowb();
3656}
3657
3658/**
3659 * bnx2x_dec_load_cnt - decrement the load counter
3660 *
3661 * @bp:		driver handle
3662 *
3663 * Should be run under rtnl lock.
3664 * Decrements the load counter for the current engine. Returns
3665 * the new counter value.
3666 */
3667u32 bnx2x_dec_load_cnt(struct bnx2x *bp)
3668{
3669	u32 val1, val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3670	u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
3671			     BNX2X_PATH0_LOAD_CNT_MASK;
3672	u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
3673			     BNX2X_PATH0_LOAD_CNT_SHIFT;
3674
3675	DP(NETIF_MSG_HW, "Old GEN_REG_VAL=0x%08x\n", val);
3676
3677	/* get the current counter value */
3678	val1 = (val & mask) >> shift;
3679
3680	/* decrement... */
3681	val1--;
3682
3683	/* clear the old value */
3684	val &= ~mask;
3685
3686	/* set the new one */
3687	val |= ((val1 << shift) & mask);
3688
3689	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
3690	barrier();
3691	mmiowb();
3692
3693	return val1;
3694}
3695
3696/*
3697 * Read the load counter for the current engine.
3698 *
3699 * should be run under rtnl lock
3700 */
3701static inline u32 bnx2x_get_load_cnt(struct bnx2x *bp, int engine)
3702{
3703	u32 mask = (engine ? BNX2X_PATH1_LOAD_CNT_MASK :
3704			     BNX2X_PATH0_LOAD_CNT_MASK);
3705	u32 shift = (engine ? BNX2X_PATH1_LOAD_CNT_SHIFT :
3706			     BNX2X_PATH0_LOAD_CNT_SHIFT);
3707	u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3708
3709	DP(NETIF_MSG_HW, "GLOB_REG=0x%08x\n", val);
3710
3711	val = (val & mask) >> shift;
3712
3713	DP(NETIF_MSG_HW, "load_cnt for engine %d = %d\n", engine, val);
3714
3715	return val;
3716}
3717
3718/*
3719 * Reset the load counter for the current engine.
3720 *
3721 * should be run under rtnl lock
3722 */
3723static inline void bnx2x_clear_load_cnt(struct bnx2x *bp)
3724{
3725	u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3726	u32 mask = (BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
3727			     BNX2X_PATH0_LOAD_CNT_MASK);
3728
3729	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val & (~mask));
3730}
3731
3732static inline void _print_next_block(int idx, const char *blk)
3733{
3734	pr_cont("%s%s", idx ? ", " : "", blk);
3735}
3736
3737static inline int bnx2x_check_blocks_with_parity0(u32 sig, int par_num,
3738						  bool print)
3739{
3740	int i = 0;
3741	u32 cur_bit = 0;
3742	for (i = 0; sig; i++) {
3743		cur_bit = ((u32)0x1 << i);
3744		if (sig & cur_bit) {
3745			switch (cur_bit) {
3746			case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR:
3747				if (print)
3748					_print_next_block(par_num++, "BRB");
3749				break;
3750			case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR:
3751				if (print)
3752					_print_next_block(par_num++, "PARSER");
3753				break;
3754			case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR:
3755				if (print)
3756					_print_next_block(par_num++, "TSDM");
3757				break;
3758			case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR:
3759				if (print)
3760					_print_next_block(par_num++,
3761							  "SEARCHER");
3762				break;
3763			case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR:
3764				if (print)
3765					_print_next_block(par_num++, "TCM");
3766				break;
3767			case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR:
3768				if (print)
3769					_print_next_block(par_num++, "TSEMI");
3770				break;
3771			case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR:
3772				if (print)
3773					_print_next_block(par_num++, "XPB");
3774				break;
3775			}
3776
3777			/* Clear the bit */
3778			sig &= ~cur_bit;
3779		}
3780	}
3781
3782	return par_num;
3783}
3784
3785static inline int bnx2x_check_blocks_with_parity1(u32 sig, int par_num,
3786						  bool *global, bool print)
3787{
3788	int i = 0;
3789	u32 cur_bit = 0;
3790	for (i = 0; sig; i++) {
3791		cur_bit = ((u32)0x1 << i);
3792		if (sig & cur_bit) {
3793			switch (cur_bit) {
3794			case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR:
3795				if (print)
3796					_print_next_block(par_num++, "PBF");
3797				break;
3798			case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR:
3799				if (print)
3800					_print_next_block(par_num++, "QM");
3801				break;
3802			case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR:
3803				if (print)
3804					_print_next_block(par_num++, "TM");
3805				break;
3806			case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR:
3807				if (print)
3808					_print_next_block(par_num++, "XSDM");
3809				break;
3810			case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR:
3811				if (print)
3812					_print_next_block(par_num++, "XCM");
3813				break;
3814			case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR:
3815				if (print)
3816					_print_next_block(par_num++, "XSEMI");
3817				break;
3818			case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR:
3819				if (print)
3820					_print_next_block(par_num++,
3821							  "DOORBELLQ");
3822				break;
3823			case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR:
3824				if (print)
3825					_print_next_block(par_num++, "NIG");
3826				break;
3827			case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR:
3828				if (print)
3829					_print_next_block(par_num++,
3830							  "VAUX PCI CORE");
3831				*global = true;
3832				break;
3833			case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR:
3834				if (print)
3835					_print_next_block(par_num++, "DEBUG");
3836				break;
3837			case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR:
3838				if (print)
3839					_print_next_block(par_num++, "USDM");
3840				break;
3841			case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR:
3842				if (print)
3843					_print_next_block(par_num++, "UCM");
3844				break;
3845			case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR:
3846				if (print)
3847					_print_next_block(par_num++, "USEMI");
3848				break;
3849			case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR:
3850				if (print)
3851					_print_next_block(par_num++, "UPB");
3852				break;
3853			case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR:
3854				if (print)
3855					_print_next_block(par_num++, "CSDM");
3856				break;
3857			case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR:
3858				if (print)
3859					_print_next_block(par_num++, "CCM");
3860				break;
3861			}
3862
3863			/* Clear the bit */
3864			sig &= ~cur_bit;
3865		}
3866	}
3867
3868	return par_num;
3869}
3870
3871static inline int bnx2x_check_blocks_with_parity2(u32 sig, int par_num,
3872						  bool print)
3873{
3874	int i = 0;
3875	u32 cur_bit = 0;
3876	for (i = 0; sig; i++) {
3877		cur_bit = ((u32)0x1 << i);
3878		if (sig & cur_bit) {
3879			switch (cur_bit) {
3880			case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR:
3881				if (print)
3882					_print_next_block(par_num++, "CSEMI");
3883				break;
3884			case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR:
3885				if (print)
3886					_print_next_block(par_num++, "PXP");
3887				break;
3888			case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR:
3889				if (print)
3890					_print_next_block(par_num++,
3891					"PXPPCICLOCKCLIENT");
3892				break;
3893			case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR:
3894				if (print)
3895					_print_next_block(par_num++, "CFC");
3896				break;
3897			case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR:
3898				if (print)
3899					_print_next_block(par_num++, "CDU");
3900				break;
3901			case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR:
3902				if (print)
3903					_print_next_block(par_num++, "DMAE");
3904				break;
3905			case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR:
3906				if (print)
3907					_print_next_block(par_num++, "IGU");
3908				break;
3909			case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR:
3910				if (print)
3911					_print_next_block(par_num++, "MISC");
3912				break;
3913			}
3914
3915			/* Clear the bit */
3916			sig &= ~cur_bit;
3917		}
3918	}
3919
3920	return par_num;
3921}
3922
3923static inline int bnx2x_check_blocks_with_parity3(u32 sig, int par_num,
3924						  bool *global, bool print)
3925{
3926	int i = 0;
3927	u32 cur_bit = 0;
3928	for (i = 0; sig; i++) {
3929		cur_bit = ((u32)0x1 << i);
3930		if (sig & cur_bit) {
3931			switch (cur_bit) {
3932			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY:
3933				if (print)
3934					_print_next_block(par_num++, "MCP ROM");
3935				*global = true;
3936				break;
3937			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY:
3938				if (print)
3939					_print_next_block(par_num++,
3940							  "MCP UMP RX");
3941				*global = true;
3942				break;
3943			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY:
3944				if (print)
3945					_print_next_block(par_num++,
3946							  "MCP UMP TX");
3947				*global = true;
3948				break;
3949			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY:
3950				if (print)
3951					_print_next_block(par_num++,
3952							  "MCP SCPAD");
3953				*global = true;
3954				break;
3955			}
3956
3957			/* Clear the bit */
3958			sig &= ~cur_bit;
3959		}
3960	}
3961
3962	return par_num;
3963}
3964
3965static inline int bnx2x_check_blocks_with_parity4(u32 sig, int par_num,
3966						  bool print)
3967{
3968	int i = 0;
3969	u32 cur_bit = 0;
3970	for (i = 0; sig; i++) {
3971		cur_bit = ((u32)0x1 << i);
3972		if (sig & cur_bit) {
3973			switch (cur_bit) {
3974			case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR:
3975				if (print)
3976					_print_next_block(par_num++, "PGLUE_B");
3977				break;
3978			case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR:
3979				if (print)
3980					_print_next_block(par_num++, "ATC");
3981				break;
3982			}
3983
3984			/* Clear the bit */
3985			sig &= ~cur_bit;
3986		}
3987	}
3988
3989	return par_num;
3990}
3991
3992static inline bool bnx2x_parity_attn(struct bnx2x *bp, bool *global, bool print,
3993				     u32 *sig)
3994{
3995	if ((sig[0] & HW_PRTY_ASSERT_SET_0) ||
3996	    (sig[1] & HW_PRTY_ASSERT_SET_1) ||
3997	    (sig[2] & HW_PRTY_ASSERT_SET_2) ||
3998	    (sig[3] & HW_PRTY_ASSERT_SET_3) ||
3999	    (sig[4] & HW_PRTY_ASSERT_SET_4)) {
4000		int par_num = 0;
4001		DP(NETIF_MSG_HW, "Was parity error: HW block parity attention: "
4002			"[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x "
4003			"[4]:0x%08x\n",
4004			  sig[0] & HW_PRTY_ASSERT_SET_0,
4005			  sig[1] & HW_PRTY_ASSERT_SET_1,
4006			  sig[2] & HW_PRTY_ASSERT_SET_2,
4007			  sig[3] & HW_PRTY_ASSERT_SET_3,
4008			  sig[4] & HW_PRTY_ASSERT_SET_4);
4009		if (print)
4010			netdev_err(bp->dev,
4011				   "Parity errors detected in blocks: ");
4012		par_num = bnx2x_check_blocks_with_parity0(
4013			sig[0] & HW_PRTY_ASSERT_SET_0, par_num, print);
4014		par_num = bnx2x_check_blocks_with_parity1(
4015			sig[1] & HW_PRTY_ASSERT_SET_1, par_num, global, print);
4016		par_num = bnx2x_check_blocks_with_parity2(
4017			sig[2] & HW_PRTY_ASSERT_SET_2, par_num, print);
4018		par_num = bnx2x_check_blocks_with_parity3(
4019			sig[3] & HW_PRTY_ASSERT_SET_3, par_num, global, print);
4020		par_num = bnx2x_check_blocks_with_parity4(
4021			sig[4] & HW_PRTY_ASSERT_SET_4, par_num, print);
4022
4023		if (print)
4024			pr_cont("\n");
4025
4026		return true;
4027	} else
4028		return false;
4029}
4030
4031/**
4032 * bnx2x_chk_parity_attn - checks for parity attentions.
4033 *
4034 * @bp:		driver handle
4035 * @global:	true if there was a global attention
4036 * @print:	show parity attention in syslog
4037 */
4038bool bnx2x_chk_parity_attn(struct bnx2x *bp, bool *global, bool print)
4039{
4040	struct attn_route attn = { {0} };
4041	int port = BP_PORT(bp);
4042
4043	attn.sig[0] = REG_RD(bp,
4044		MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 +
4045			     port*4);
4046	attn.sig[1] = REG_RD(bp,
4047		MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 +
4048			     port*4);
4049	attn.sig[2] = REG_RD(bp,
4050		MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 +
4051			     port*4);
4052	attn.sig[3] = REG_RD(bp,
4053		MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 +
4054			     port*4);
4055
4056	if (!CHIP_IS_E1x(bp))
4057		attn.sig[4] = REG_RD(bp,
4058			MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 +
4059				     port*4);
4060
4061	return bnx2x_parity_attn(bp, global, print, attn.sig);
4062}
4063
4064
4065static inline void bnx2x_attn_int_deasserted4(struct bnx2x *bp, u32 attn)
4066{
4067	u32 val;
4068	if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) {
4069
4070		val = REG_RD(bp, PGLUE_B_REG_PGLUE_B_INT_STS_CLR);
4071		BNX2X_ERR("PGLUE hw attention 0x%x\n", val);
4072		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR)
4073			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
4074				  "ADDRESS_ERROR\n");
4075		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR)
4076			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
4077				  "INCORRECT_RCV_BEHAVIOR\n");
4078		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN)
4079			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
4080				  "WAS_ERROR_ATTN\n");
4081		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN)
4082			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
4083				  "VF_LENGTH_VIOLATION_ATTN\n");
4084		if (val &
4085		    PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN)
4086			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
4087				  "VF_GRC_SPACE_VIOLATION_ATTN\n");
4088		if (val &
4089		    PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN)
4090			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
4091				  "VF_MSIX_BAR_VIOLATION_ATTN\n");
4092		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN)
4093			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
4094				  "TCPL_ERROR_ATTN\n");
4095		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN)
4096			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
4097				  "TCPL_IN_TWO_RCBS_ATTN\n");
4098		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW)
4099			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
4100				  "CSSNOOP_FIFO_OVERFLOW\n");
4101	}
4102	if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) {
4103		val = REG_RD(bp, ATC_REG_ATC_INT_STS_CLR);
4104		BNX2X_ERR("ATC hw attention 0x%x\n", val);
4105		if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR)
4106			BNX2X_ERR("ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n");
4107		if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND)
4108			BNX2X_ERR("ATC_ATC_INT_STS_REG"
4109				  "_ATC_TCPL_TO_NOT_PEND\n");
4110		if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS)
4111			BNX2X_ERR("ATC_ATC_INT_STS_REG_"
4112				  "ATC_GPA_MULTIPLE_HITS\n");
4113		if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT)
4114			BNX2X_ERR("ATC_ATC_INT_STS_REG_"
4115				  "ATC_RCPL_TO_EMPTY_CNT\n");
4116		if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR)
4117			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n");
4118		if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU)
4119			BNX2X_ERR("ATC_ATC_INT_STS_REG_"
4120				  "ATC_IREQ_LESS_THAN_STU\n");
4121	}
4122
4123	if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
4124		    AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) {
4125		BNX2X_ERR("FATAL parity attention set4 0x%x\n",
4126		(u32)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
4127		    AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)));
4128	}
4129
4130}
4131
4132static void bnx2x_attn_int_deasserted(struct bnx2x *bp, u32 deasserted)
4133{
4134	struct attn_route attn, *group_mask;
4135	int port = BP_PORT(bp);
4136	int index;
4137	u32 reg_addr;
4138	u32 val;
4139	u32 aeu_mask;
4140	bool global = false;
4141
4142	/* need to take HW lock because MCP or other port might also
4143	   try to handle this event */
4144	bnx2x_acquire_alr(bp);
4145
4146	if (bnx2x_chk_parity_attn(bp, &global, true)) {
4147#ifndef BNX2X_STOP_ON_ERROR
4148		bp->recovery_state = BNX2X_RECOVERY_INIT;
4149		schedule_delayed_work(&bp->sp_rtnl_task, 0);
4150		/* Disable HW interrupts */
4151		bnx2x_int_disable(bp);
4152		/* In case of parity errors don't handle attentions so that
4153		 * other function would "see" parity errors.
4154		 */
4155#else
4156		bnx2x_panic();
4157#endif
4158		bnx2x_release_alr(bp);
4159		return;
4160	}
4161
4162	attn.sig[0] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4);
4163	attn.sig[1] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4);
4164	attn.sig[2] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4);
4165	attn.sig[3] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4);
4166	if (!CHIP_IS_E1x(bp))
4167		attn.sig[4] =
4168		      REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4);
4169	else
4170		attn.sig[4] = 0;
4171
4172	DP(NETIF_MSG_HW, "attn: %08x %08x %08x %08x %08x\n",
4173	   attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]);
4174
4175	for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
4176		if (deasserted & (1 << index)) {
4177			group_mask = &bp->attn_group[index];
4178
4179			DP(NETIF_MSG_HW, "group[%d]: %08x %08x "
4180					 "%08x %08x %08x\n",
4181			   index,
4182			   group_mask->sig[0], group_mask->sig[1],
4183			   group_mask->sig[2], group_mask->sig[3],
4184			   group_mask->sig[4]);
4185
4186			bnx2x_attn_int_deasserted4(bp,
4187					attn.sig[4] & group_mask->sig[4]);
4188			bnx2x_attn_int_deasserted3(bp,
4189					attn.sig[3] & group_mask->sig[3]);
4190			bnx2x_attn_int_deasserted1(bp,
4191					attn.sig[1] & group_mask->sig[1]);
4192			bnx2x_attn_int_deasserted2(bp,
4193					attn.sig[2] & group_mask->sig[2]);
4194			bnx2x_attn_int_deasserted0(bp,
4195					attn.sig[0] & group_mask->sig[0]);
4196		}
4197	}
4198
4199	bnx2x_release_alr(bp);
4200
4201	if (bp->common.int_block == INT_BLOCK_HC)
4202		reg_addr = (HC_REG_COMMAND_REG + port*32 +
4203			    COMMAND_REG_ATTN_BITS_CLR);
4204	else
4205		reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8);
4206
4207	val = ~deasserted;
4208	DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", val,
4209	   (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
4210	REG_WR(bp, reg_addr, val);
4211
4212	if (~bp->attn_state & deasserted)
4213		BNX2X_ERR("IGU ERROR\n");
4214
4215	reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
4216			  MISC_REG_AEU_MASK_ATTN_FUNC_0;
4217
4218	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4219	aeu_mask = REG_RD(bp, reg_addr);
4220
4221	DP(NETIF_MSG_HW, "aeu_mask %x  newly deasserted %x\n",
4222	   aeu_mask, deasserted);
4223	aeu_mask |= (deasserted & 0x3ff);
4224	DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
4225
4226	REG_WR(bp, reg_addr, aeu_mask);
4227	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4228
4229	DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
4230	bp->attn_state &= ~deasserted;
4231	DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
4232}
4233
4234static void bnx2x_attn_int(struct bnx2x *bp)
4235{
4236	/* read local copy of bits */
4237	u32 attn_bits = le32_to_cpu(bp->def_status_blk->atten_status_block.
4238								attn_bits);
4239	u32 attn_ack = le32_to_cpu(bp->def_status_blk->atten_status_block.
4240								attn_bits_ack);
4241	u32 attn_state = bp->attn_state;
4242
4243	/* look for changed bits */
4244	u32 asserted   =  attn_bits & ~attn_ack & ~attn_state;
4245	u32 deasserted = ~attn_bits &  attn_ack &  attn_state;
4246
4247	DP(NETIF_MSG_HW,
4248	   "attn_bits %x  attn_ack %x  asserted %x  deasserted %x\n",
4249	   attn_bits, attn_ack, asserted, deasserted);
4250
4251	if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state))
4252		BNX2X_ERR("BAD attention state\n");
4253
4254	/* handle bits that were raised */
4255	if (asserted)
4256		bnx2x_attn_int_asserted(bp, asserted);
4257
4258	if (deasserted)
4259		bnx2x_attn_int_deasserted(bp, deasserted);
4260}
4261
4262void bnx2x_igu_ack_sb(struct bnx2x *bp, u8 igu_sb_id, u8 segment,
4263		      u16 index, u8 op, u8 update)
4264{
4265	u32 igu_addr = BAR_IGU_INTMEM + (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8;
4266
4267	bnx2x_igu_ack_sb_gen(bp, igu_sb_id, segment, index, op, update,
4268			     igu_addr);
4269}
4270
4271static inline void bnx2x_update_eq_prod(struct bnx2x *bp, u16 prod)
4272{
4273	/* No memory barriers */
4274	storm_memset_eq_prod(bp, prod, BP_FUNC(bp));
4275	mmiowb(); /* keep prod updates ordered */
4276}
4277
4278#ifdef BCM_CNIC
4279static int  bnx2x_cnic_handle_cfc_del(struct bnx2x *bp, u32 cid,
4280				      union event_ring_elem *elem)
4281{
4282	u8 err = elem->message.error;
4283
4284	if (!bp->cnic_eth_dev.starting_cid  ||
4285	    (cid < bp->cnic_eth_dev.starting_cid &&
4286	    cid != bp->cnic_eth_dev.iscsi_l2_cid))
4287		return 1;
4288
4289	DP(BNX2X_MSG_SP, "got delete ramrod for CNIC CID %d\n", cid);
4290
4291	if (unlikely(err)) {
4292
4293		BNX2X_ERR("got delete ramrod for CNIC CID %d with error!\n",
4294			  cid);
4295		bnx2x_panic_dump(bp);
4296	}
4297	bnx2x_cnic_cfc_comp(bp, cid, err);
4298	return 0;
4299}
4300#endif
4301
4302static inline void bnx2x_handle_mcast_eqe(struct bnx2x *bp)
4303{
4304	struct bnx2x_mcast_ramrod_params rparam;
4305	int rc;
4306
4307	memset(&rparam, 0, sizeof(rparam));
4308
4309	rparam.mcast_obj = &bp->mcast_obj;
4310
4311	netif_addr_lock_bh(bp->dev);
4312
4313	/* Clear pending state for the last command */
4314	bp->mcast_obj.raw.clear_pending(&bp->mcast_obj.raw);
4315
4316	/* If there are pending mcast commands - send them */
4317	if (bp->mcast_obj.check_pending(&bp->mcast_obj)) {
4318		rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
4319		if (rc < 0)
4320			BNX2X_ERR("Failed to send pending mcast commands: %d\n",
4321				  rc);
4322	}
4323
4324	netif_addr_unlock_bh(bp->dev);
4325}
4326
4327static inline void bnx2x_handle_classification_eqe(struct bnx2x *bp,
4328						   union event_ring_elem *elem)
4329{
4330	unsigned long ramrod_flags = 0;
4331	int rc = 0;
4332	u32 cid = elem->message.data.eth_event.echo & BNX2X_SWCID_MASK;
4333	struct bnx2x_vlan_mac_obj *vlan_mac_obj;
4334
4335	/* Always push next commands out, don't wait here */
4336	__set_bit(RAMROD_CONT, &ramrod_flags);
4337
4338	switch (elem->message.data.eth_event.echo >> BNX2X_SWCID_SHIFT) {
4339	case BNX2X_FILTER_MAC_PENDING:
4340#ifdef BCM_CNIC
4341		if (cid == BNX2X_ISCSI_ETH_CID)
4342			vlan_mac_obj = &bp->iscsi_l2_mac_obj;
4343		else
4344#endif
4345			vlan_mac_obj = &bp->fp[cid].mac_obj;
4346
4347		break;
4348	case BNX2X_FILTER_MCAST_PENDING:
4349		/* This is only relevant for 57710 where multicast MACs are
4350		 * configured as unicast MACs using the same ramrod.
4351		 */
4352		bnx2x_handle_mcast_eqe(bp);
4353		return;
4354	default:
4355		BNX2X_ERR("Unsupported classification command: %d\n",
4356			  elem->message.data.eth_event.echo);
4357		return;
4358	}
4359
4360	rc = vlan_mac_obj->complete(bp, vlan_mac_obj, elem, &ramrod_flags);
4361
4362	if (rc < 0)
4363		BNX2X_ERR("Failed to schedule new commands: %d\n", rc);
4364	else if (rc > 0)
4365		DP(BNX2X_MSG_SP, "Scheduled next pending commands...\n");
4366
4367}
4368
4369#ifdef BCM_CNIC
4370static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start);
4371#endif
4372
4373static inline void bnx2x_handle_rx_mode_eqe(struct bnx2x *bp)
4374{
4375	netif_addr_lock_bh(bp->dev);
4376
4377	clear_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
4378
4379	/* Send rx_mode command again if was requested */
4380	if (test_and_clear_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state))
4381		bnx2x_set_storm_rx_mode(bp);
4382#ifdef BCM_CNIC
4383	else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED,
4384				    &bp->sp_state))
4385		bnx2x_set_iscsi_eth_rx_mode(bp, true);
4386	else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED,
4387				    &bp->sp_state))
4388		bnx2x_set_iscsi_eth_rx_mode(bp, false);
4389#endif
4390
4391	netif_addr_unlock_bh(bp->dev);
4392}
4393
4394static inline struct bnx2x_queue_sp_obj *bnx2x_cid_to_q_obj(
4395	struct bnx2x *bp, u32 cid)
4396{
4397	DP(BNX2X_MSG_SP, "retrieving fp from cid %d\n", cid);
4398#ifdef BCM_CNIC
4399	if (cid == BNX2X_FCOE_ETH_CID)
4400		return &bnx2x_fcoe(bp, q_obj);
4401	else
4402#endif
4403		return &bnx2x_fp(bp, CID_TO_FP(cid), q_obj);
4404}
4405
4406static void bnx2x_eq_int(struct bnx2x *bp)
4407{
4408	u16 hw_cons, sw_cons, sw_prod;
4409	union event_ring_elem *elem;
4410	u32 cid;
4411	u8 opcode;
4412	int spqe_cnt = 0;
4413	struct bnx2x_queue_sp_obj *q_obj;
4414	struct bnx2x_func_sp_obj *f_obj = &bp->func_obj;
4415	struct bnx2x_raw_obj *rss_raw = &bp->rss_conf_obj.raw;
4416
4417	hw_cons = le16_to_cpu(*bp->eq_cons_sb);
4418
4419	/* The hw_cos range is 1-255, 257 - the sw_cons range is 0-254, 256.
4420	 * when we get the the next-page we nned to adjust so the loop
4421	 * condition below will be met. The next element is the size of a
4422	 * regular element and hence incrementing by 1
4423	 */
4424	if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE)
4425		hw_cons++;
4426
4427	/* This function may never run in parallel with itself for a
4428	 * specific bp, thus there is no need in "paired" read memory
4429	 * barrier here.
4430	 */
4431	sw_cons = bp->eq_cons;
4432	sw_prod = bp->eq_prod;
4433
4434	DP(BNX2X_MSG_SP, "EQ:  hw_cons %u  sw_cons %u bp->eq_spq_left %x\n",
4435			hw_cons, sw_cons, atomic_read(&bp->eq_spq_left));
4436
4437	for (; sw_cons != hw_cons;
4438	      sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) {
4439
4440
4441		elem = &bp->eq_ring[EQ_DESC(sw_cons)];
4442
4443		cid = SW_CID(elem->message.data.cfc_del_event.cid);
4444		opcode = elem->message.opcode;
4445
4446
4447		/* handle eq element */
4448		switch (opcode) {
4449		case EVENT_RING_OPCODE_STAT_QUERY:
4450			DP(NETIF_MSG_TIMER, "got statistics comp event %d\n",
4451			   bp->stats_comp++);
4452			/* nothing to do with stats comp */
4453			goto next_spqe;
4454
4455		case EVENT_RING_OPCODE_CFC_DEL:
4456			/* handle according to cid range */
4457			/*
4458			 * we may want to verify here that the bp state is
4459			 * HALTING
4460			 */
4461			DP(BNX2X_MSG_SP,
4462			   "got delete ramrod for MULTI[%d]\n", cid);
4463#ifdef BCM_CNIC
4464			if (!bnx2x_cnic_handle_cfc_del(bp, cid, elem))
4465				goto next_spqe;
4466#endif
4467			q_obj = bnx2x_cid_to_q_obj(bp, cid);
4468
4469			if (q_obj->complete_cmd(bp, q_obj, BNX2X_Q_CMD_CFC_DEL))
4470				break;
4471
4472
4473
4474			goto next_spqe;
4475
4476		case EVENT_RING_OPCODE_STOP_TRAFFIC:
4477			DP(BNX2X_MSG_SP, "got STOP TRAFFIC\n");
4478			if (f_obj->complete_cmd(bp, f_obj,
4479						BNX2X_F_CMD_TX_STOP))
4480				break;
4481			bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_PAUSED);
4482			goto next_spqe;
4483
4484		case EVENT_RING_OPCODE_START_TRAFFIC:
4485			DP(BNX2X_MSG_SP, "got START TRAFFIC\n");
4486			if (f_obj->complete_cmd(bp, f_obj,
4487						BNX2X_F_CMD_TX_START))
4488				break;
4489			bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_RELEASED);
4490			goto next_spqe;
4491		case EVENT_RING_OPCODE_FUNCTION_START:
4492			DP(BNX2X_MSG_SP, "got FUNC_START ramrod\n");
4493			if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_START))
4494				break;
4495
4496			goto next_spqe;
4497
4498		case EVENT_RING_OPCODE_FUNCTION_STOP:
4499			DP(BNX2X_MSG_SP, "got FUNC_STOP ramrod\n");
4500			if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_STOP))
4501				break;
4502
4503			goto next_spqe;
4504		}
4505
4506		switch (opcode | bp->state) {
4507		case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
4508		      BNX2X_STATE_OPEN):
4509		case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
4510		      BNX2X_STATE_OPENING_WAIT4_PORT):
4511			cid = elem->message.data.eth_event.echo &
4512				BNX2X_SWCID_MASK;
4513			DP(BNX2X_MSG_SP, "got RSS_UPDATE ramrod. CID %d\n",
4514			   cid);
4515			rss_raw->clear_pending(rss_raw);
4516			break;
4517
4518		case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_OPEN):
4519		case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_DIAG):
4520		case (EVENT_RING_OPCODE_SET_MAC |
4521		      BNX2X_STATE_CLOSING_WAIT4_HALT):
4522		case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
4523		      BNX2X_STATE_OPEN):
4524		case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
4525		      BNX2X_STATE_DIAG):
4526		case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
4527		      BNX2X_STATE_CLOSING_WAIT4_HALT):
4528			DP(BNX2X_MSG_SP, "got (un)set mac ramrod\n");
4529			bnx2x_handle_classification_eqe(bp, elem);
4530			break;
4531
4532		case (EVENT_RING_OPCODE_MULTICAST_RULES |
4533		      BNX2X_STATE_OPEN):
4534		case (EVENT_RING_OPCODE_MULTICAST_RULES |
4535		      BNX2X_STATE_DIAG):
4536		case (EVENT_RING_OPCODE_MULTICAST_RULES |
4537		      BNX2X_STATE_CLOSING_WAIT4_HALT):
4538			DP(BNX2X_MSG_SP, "got mcast ramrod\n");
4539			bnx2x_handle_mcast_eqe(bp);
4540			break;
4541
4542		case (EVENT_RING_OPCODE_FILTERS_RULES |
4543		      BNX2X_STATE_OPEN):
4544		case (EVENT_RING_OPCODE_FILTERS_RULES |
4545		      BNX2X_STATE_DIAG):
4546		case (EVENT_RING_OPCODE_FILTERS_RULES |
4547		      BNX2X_STATE_CLOSING_WAIT4_HALT):
4548			DP(BNX2X_MSG_SP, "got rx_mode ramrod\n");
4549			bnx2x_handle_rx_mode_eqe(bp);
4550			break;
4551		default:
4552			/* unknown event log error and continue */
4553			BNX2X_ERR("Unknown EQ event %d, bp->state 0x%x\n",
4554				  elem->message.opcode, bp->state);
4555		}
4556next_spqe:
4557		spqe_cnt++;
4558	} /* for */
4559
4560	smp_mb__before_atomic_inc();
4561	atomic_add(spqe_cnt, &bp->eq_spq_left);
4562
4563	bp->eq_cons = sw_cons;
4564	bp->eq_prod = sw_prod;
4565	/* Make sure that above mem writes were issued towards the memory */
4566	smp_wmb();
4567
4568	/* update producer */
4569	bnx2x_update_eq_prod(bp, bp->eq_prod);
4570}
4571
4572static void bnx2x_sp_task(struct work_struct *work)
4573{
4574	struct bnx2x *bp = container_of(work, struct bnx2x, sp_task.work);
4575	u16 status;
4576
4577	status = bnx2x_update_dsb_idx(bp);
4578/*	if (status == 0)				     */
4579/*		BNX2X_ERR("spurious slowpath interrupt!\n"); */
4580
4581	DP(NETIF_MSG_INTR, "got a slowpath interrupt (status 0x%x)\n", status);
4582
4583	/* HW attentions */
4584	if (status & BNX2X_DEF_SB_ATT_IDX) {
4585		bnx2x_attn_int(bp);
4586		status &= ~BNX2X_DEF_SB_ATT_IDX;
4587	}
4588
4589	/* SP events: STAT_QUERY and others */
4590	if (status & BNX2X_DEF_SB_IDX) {
4591#ifdef BCM_CNIC
4592		struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp);
4593
4594		if ((!NO_FCOE(bp)) &&
4595			(bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) {
4596			/*
4597			 * Prevent local bottom-halves from running as
4598			 * we are going to change the local NAPI list.
4599			 */
4600			local_bh_disable();
4601			napi_schedule(&bnx2x_fcoe(bp, napi));
4602			local_bh_enable();
4603		}
4604#endif
4605		/* Handle EQ completions */
4606		bnx2x_eq_int(bp);
4607
4608		bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID,
4609			le16_to_cpu(bp->def_idx), IGU_INT_NOP, 1);
4610
4611		status &= ~BNX2X_DEF_SB_IDX;
4612	}
4613
4614	if (unlikely(status))
4615		DP(NETIF_MSG_INTR, "got an unknown interrupt! (status 0x%x)\n",
4616		   status);
4617
4618	bnx2x_ack_sb(bp, bp->igu_dsb_id, ATTENTION_ID,
4619	     le16_to_cpu(bp->def_att_idx), IGU_INT_ENABLE, 1);
4620}
4621
4622irqreturn_t bnx2x_msix_sp_int(int irq, void *dev_instance)
4623{
4624	struct net_device *dev = dev_instance;
4625	struct bnx2x *bp = netdev_priv(dev);
4626
4627	bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0,
4628		     IGU_INT_DISABLE, 0);
4629
4630#ifdef BNX2X_STOP_ON_ERROR
4631	if (unlikely(bp->panic))
4632		return IRQ_HANDLED;
4633#endif
4634
4635#ifdef BCM_CNIC
4636	{
4637		struct cnic_ops *c_ops;
4638
4639		rcu_read_lock();
4640		c_ops = rcu_dereference(bp->cnic_ops);
4641		if (c_ops)
4642			c_ops->cnic_handler(bp->cnic_data, NULL);
4643		rcu_read_unlock();
4644	}
4645#endif
4646	queue_delayed_work(bnx2x_wq, &bp->sp_task, 0);
4647
4648	return IRQ_HANDLED;
4649}
4650
4651/* end of slow path */
4652
4653
4654void bnx2x_drv_pulse(struct bnx2x *bp)
4655{
4656	SHMEM_WR(bp, func_mb[BP_FW_MB_IDX(bp)].drv_pulse_mb,
4657		 bp->fw_drv_pulse_wr_seq);
4658}
4659
4660
4661static void bnx2x_timer(unsigned long data)
4662{
4663	u8 cos;
4664	struct bnx2x *bp = (struct bnx2x *) data;
4665
4666	if (!netif_running(bp->dev))
4667		return;
4668
4669	if (poll) {
4670		struct bnx2x_fastpath *fp = &bp->fp[0];
4671
4672		for_each_cos_in_tx_queue(fp, cos)
4673			bnx2x_tx_int(bp, &fp->txdata[cos]);
4674		bnx2x_rx_int(fp, 1000);
4675	}
4676
4677	if (!BP_NOMCP(bp)) {
4678		int mb_idx = BP_FW_MB_IDX(bp);
4679		u32 drv_pulse;
4680		u32 mcp_pulse;
4681
4682		++bp->fw_drv_pulse_wr_seq;
4683		bp->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK;
4684		/* TBD - add SYSTEM_TIME */
4685		drv_pulse = bp->fw_drv_pulse_wr_seq;
4686		bnx2x_drv_pulse(bp);
4687
4688		mcp_pulse = (SHMEM_RD(bp, func_mb[mb_idx].mcp_pulse_mb) &
4689			     MCP_PULSE_SEQ_MASK);
4690		/* The delta between driver pulse and mcp response
4691		 * should be 1 (before mcp response) or 0 (after mcp response)
4692		 */
4693		if ((drv_pulse != mcp_pulse) &&
4694		    (drv_pulse != ((mcp_pulse + 1) & MCP_PULSE_SEQ_MASK))) {
4695			/* someone lost a heartbeat... */
4696			BNX2X_ERR("drv_pulse (0x%x) != mcp_pulse (0x%x)\n",
4697				  drv_pulse, mcp_pulse);
4698		}
4699	}
4700
4701	if (bp->state == BNX2X_STATE_OPEN)
4702		bnx2x_stats_handle(bp, STATS_EVENT_UPDATE);
4703
4704	mod_timer(&bp->timer, jiffies + bp->current_interval);
4705}
4706
4707/* end of Statistics */
4708
4709/* nic init */
4710
4711/*
4712 * nic init service functions
4713 */
4714
4715static inline void bnx2x_fill(struct bnx2x *bp, u32 addr, int fill, u32 len)
4716{
4717	u32 i;
4718	if (!(len%4) && !(addr%4))
4719		for (i = 0; i < len; i += 4)
4720			REG_WR(bp, addr + i, fill);
4721	else
4722		for (i = 0; i < len; i++)
4723			REG_WR8(bp, addr + i, fill);
4724
4725}
4726
4727/* helper: writes FP SP data to FW - data_size in dwords */
4728static inline void bnx2x_wr_fp_sb_data(struct bnx2x *bp,
4729				       int fw_sb_id,
4730				       u32 *sb_data_p,
4731				       u32 data_size)
4732{
4733	int index;
4734	for (index = 0; index < data_size; index++)
4735		REG_WR(bp, BAR_CSTRORM_INTMEM +
4736			CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) +
4737			sizeof(u32)*index,
4738			*(sb_data_p + index));
4739}
4740
4741static inline void bnx2x_zero_fp_sb(struct bnx2x *bp, int fw_sb_id)
4742{
4743	u32 *sb_data_p;
4744	u32 data_size = 0;
4745	struct hc_status_block_data_e2 sb_data_e2;
4746	struct hc_status_block_data_e1x sb_data_e1x;
4747
4748	/* disable the function first */
4749	if (!CHIP_IS_E1x(bp)) {
4750		memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
4751		sb_data_e2.common.state = SB_DISABLED;
4752		sb_data_e2.common.p_func.vf_valid = false;
4753		sb_data_p = (u32 *)&sb_data_e2;
4754		data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
4755	} else {
4756		memset(&sb_data_e1x, 0,
4757		       sizeof(struct hc_status_block_data_e1x));
4758		sb_data_e1x.common.state = SB_DISABLED;
4759		sb_data_e1x.common.p_func.vf_valid = false;
4760		sb_data_p = (u32 *)&sb_data_e1x;
4761		data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
4762	}
4763	bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
4764
4765	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
4766			CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id), 0,
4767			CSTORM_STATUS_BLOCK_SIZE);
4768	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
4769			CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id), 0,
4770			CSTORM_SYNC_BLOCK_SIZE);
4771}
4772
4773/* helper:  writes SP SB data to FW */
4774static inline void bnx2x_wr_sp_sb_data(struct bnx2x *bp,
4775		struct hc_sp_status_block_data *sp_sb_data)
4776{
4777	int func = BP_FUNC(bp);
4778	int i;
4779	for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++)
4780		REG_WR(bp, BAR_CSTRORM_INTMEM +
4781			CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) +
4782			i*sizeof(u32),
4783			*((u32 *)sp_sb_data + i));
4784}
4785
4786static inline void bnx2x_zero_sp_sb(struct bnx2x *bp)
4787{
4788	int func = BP_FUNC(bp);
4789	struct hc_sp_status_block_data sp_sb_data;
4790	memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
4791
4792	sp_sb_data.state = SB_DISABLED;
4793	sp_sb_data.p_func.vf_valid = false;
4794
4795	bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
4796
4797	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
4798			CSTORM_SP_STATUS_BLOCK_OFFSET(func), 0,
4799			CSTORM_SP_STATUS_BLOCK_SIZE);
4800	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
4801			CSTORM_SP_SYNC_BLOCK_OFFSET(func), 0,
4802			CSTORM_SP_SYNC_BLOCK_SIZE);
4803
4804}
4805
4806
4807static inline
4808void bnx2x_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm,
4809					   int igu_sb_id, int igu_seg_id)
4810{
4811	hc_sm->igu_sb_id = igu_sb_id;
4812	hc_sm->igu_seg_id = igu_seg_id;
4813	hc_sm->timer_value = 0xFF;
4814	hc_sm->time_to_expire = 0xFFFFFFFF;
4815}
4816
4817
4818/* allocates state machine ids. */
4819static inline
4820void bnx2x_map_sb_state_machines(struct hc_index_data *index_data)
4821{
4822	/* zero out state machine indices */
4823	/* rx indices */
4824	index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
4825
4826	/* tx indices */
4827	index_data[HC_INDEX_OOO_TX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
4828	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID;
4829	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID;
4830	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID;
4831
4832	/* map indices */
4833	/* rx indices */
4834	index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |=
4835		SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
4836
4837	/* tx indices */
4838	index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |=
4839		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
4840	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |=
4841		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
4842	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |=
4843		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
4844	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |=
4845		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
4846}
4847
4848static void bnx2x_init_sb(struct bnx2x *bp, dma_addr_t mapping, int vfid,
4849			  u8 vf_valid, int fw_sb_id, int igu_sb_id)
4850{
4851	int igu_seg_id;
4852
4853	struct hc_status_block_data_e2 sb_data_e2;
4854	struct hc_status_block_data_e1x sb_data_e1x;
4855	struct hc_status_block_sm  *hc_sm_p;
4856	int data_size;
4857	u32 *sb_data_p;
4858
4859	if (CHIP_INT_MODE_IS_BC(bp))
4860		igu_seg_id = HC_SEG_ACCESS_NORM;
4861	else
4862		igu_seg_id = IGU_SEG_ACCESS_NORM;
4863
4864	bnx2x_zero_fp_sb(bp, fw_sb_id);
4865
4866	if (!CHIP_IS_E1x(bp)) {
4867		memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
4868		sb_data_e2.common.state = SB_ENABLED;
4869		sb_data_e2.common.p_func.pf_id = BP_FUNC(bp);
4870		sb_data_e2.common.p_func.vf_id = vfid;
4871		sb_data_e2.common.p_func.vf_valid = vf_valid;
4872		sb_data_e2.common.p_func.vnic_id = BP_VN(bp);
4873		sb_data_e2.common.same_igu_sb_1b = true;
4874		sb_data_e2.common.host_sb_addr.hi = U64_HI(mapping);
4875		sb_data_e2.common.host_sb_addr.lo = U64_LO(mapping);
4876		hc_sm_p = sb_data_e2.common.state_machine;
4877		sb_data_p = (u32 *)&sb_data_e2;
4878		data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
4879		bnx2x_map_sb_state_machines(sb_data_e2.index_data);
4880	} else {
4881		memset(&sb_data_e1x, 0,
4882		       sizeof(struct hc_status_block_data_e1x));
4883		sb_data_e1x.common.state = SB_ENABLED;
4884		sb_data_e1x.common.p_func.pf_id = BP_FUNC(bp);
4885		sb_data_e1x.common.p_func.vf_id = 0xff;
4886		sb_data_e1x.common.p_func.vf_valid = false;
4887		sb_data_e1x.common.p_func.vnic_id = BP_VN(bp);
4888		sb_data_e1x.common.same_igu_sb_1b = true;
4889		sb_data_e1x.common.host_sb_addr.hi = U64_HI(mapping);
4890		sb_data_e1x.common.host_sb_addr.lo = U64_LO(mapping);
4891		hc_sm_p = sb_data_e1x.common.state_machine;
4892		sb_data_p = (u32 *)&sb_data_e1x;
4893		data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
4894		bnx2x_map_sb_state_machines(sb_data_e1x.index_data);
4895	}
4896
4897	bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID],
4898				       igu_sb_id, igu_seg_id);
4899	bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID],
4900				       igu_sb_id, igu_seg_id);
4901
4902	DP(NETIF_MSG_HW, "Init FW SB %d\n", fw_sb_id);
4903
4904	/* write indecies to HW */
4905	bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
4906}
4907
4908static void bnx2x_update_coalesce_sb(struct bnx2x *bp, u8 fw_sb_id,
4909				     u16 tx_usec, u16 rx_usec)
4910{
4911	bnx2x_update_coalesce_sb_index(bp, fw_sb_id, HC_INDEX_ETH_RX_CQ_CONS,
4912				    false, rx_usec);
4913	bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
4914				       HC_INDEX_ETH_TX_CQ_CONS_COS0, false,
4915				       tx_usec);
4916	bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
4917				       HC_INDEX_ETH_TX_CQ_CONS_COS1, false,
4918				       tx_usec);
4919	bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
4920				       HC_INDEX_ETH_TX_CQ_CONS_COS2, false,
4921				       tx_usec);
4922}
4923
4924static void bnx2x_init_def_sb(struct bnx2x *bp)
4925{
4926	struct host_sp_status_block *def_sb = bp->def_status_blk;
4927	dma_addr_t mapping = bp->def_status_blk_mapping;
4928	int igu_sp_sb_index;
4929	int igu_seg_id;
4930	int port = BP_PORT(bp);
4931	int func = BP_FUNC(bp);
4932	int reg_offset, reg_offset_en5;
4933	u64 section;
4934	int index;
4935	struct hc_sp_status_block_data sp_sb_data;
4936	memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
4937
4938	if (CHIP_INT_MODE_IS_BC(bp)) {
4939		igu_sp_sb_index = DEF_SB_IGU_ID;
4940		igu_seg_id = HC_SEG_ACCESS_DEF;
4941	} else {
4942		igu_sp_sb_index = bp->igu_dsb_id;
4943		igu_seg_id = IGU_SEG_ACCESS_DEF;
4944	}
4945
4946	/* ATTN */
4947	section = ((u64)mapping) + offsetof(struct host_sp_status_block,
4948					    atten_status_block);
4949	def_sb->atten_status_block.status_block_id = igu_sp_sb_index;
4950
4951	bp->attn_state = 0;
4952
4953	reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
4954			     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
4955	reg_offset_en5 = (port ? MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 :
4956				 MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0);
4957	for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
4958		int sindex;
4959		/* take care of sig[0]..sig[4] */
4960		for (sindex = 0; sindex < 4; sindex++)
4961			bp->attn_group[index].sig[sindex] =
4962			   REG_RD(bp, reg_offset + sindex*0x4 + 0x10*index);
4963
4964		if (!CHIP_IS_E1x(bp))
4965			/*
4966			 * enable5 is separate from the rest of the registers,
4967			 * and therefore the address skip is 4
4968			 * and not 16 between the different groups
4969			 */
4970			bp->attn_group[index].sig[4] = REG_RD(bp,
4971					reg_offset_en5 + 0x4*index);
4972		else
4973			bp->attn_group[index].sig[4] = 0;
4974	}
4975
4976	if (bp->common.int_block == INT_BLOCK_HC) {
4977		reg_offset = (port ? HC_REG_ATTN_MSG1_ADDR_L :
4978				     HC_REG_ATTN_MSG0_ADDR_L);
4979
4980		REG_WR(bp, reg_offset, U64_LO(section));
4981		REG_WR(bp, reg_offset + 4, U64_HI(section));
4982	} else if (!CHIP_IS_E1x(bp)) {
4983		REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section));
4984		REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section));
4985	}
4986
4987	section = ((u64)mapping) + offsetof(struct host_sp_status_block,
4988					    sp_sb);
4989
4990	bnx2x_zero_sp_sb(bp);
4991
4992	sp_sb_data.state		= SB_ENABLED;
4993	sp_sb_data.host_sb_addr.lo	= U64_LO(section);
4994	sp_sb_data.host_sb_addr.hi	= U64_HI(section);
4995	sp_sb_data.igu_sb_id		= igu_sp_sb_index;
4996	sp_sb_data.igu_seg_id		= igu_seg_id;
4997	sp_sb_data.p_func.pf_id		= func;
4998	sp_sb_data.p_func.vnic_id	= BP_VN(bp);
4999	sp_sb_data.p_func.vf_id		= 0xff;
5000
5001	bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
5002
5003	bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
5004}
5005
5006void bnx2x_update_coalesce(struct bnx2x *bp)
5007{
5008	int i;
5009
5010	for_each_eth_queue(bp, i)
5011		bnx2x_update_coalesce_sb(bp, bp->fp[i].fw_sb_id,
5012					 bp->tx_ticks, bp->rx_ticks);
5013}
5014
5015static void bnx2x_init_sp_ring(struct bnx2x *bp)
5016{
5017	spin_lock_init(&bp->spq_lock);
5018	atomic_set(&bp->cq_spq_left, MAX_SPQ_PENDING);
5019
5020	bp->spq_prod_idx = 0;
5021	bp->dsb_sp_prod = BNX2X_SP_DSB_INDEX;
5022	bp->spq_prod_bd = bp->spq;
5023	bp->spq_last_bd = bp->spq_prod_bd + MAX_SP_DESC_CNT;
5024}
5025
5026static void bnx2x_init_eq_ring(struct bnx2x *bp)
5027{
5028	int i;
5029	for (i = 1; i <= NUM_EQ_PAGES; i++) {
5030		union event_ring_elem *elem =
5031			&bp->eq_ring[EQ_DESC_CNT_PAGE * i - 1];
5032
5033		elem->next_page.addr.hi =
5034			cpu_to_le32(U64_HI(bp->eq_mapping +
5035				   BCM_PAGE_SIZE * (i % NUM_EQ_PAGES)));
5036		elem->next_page.addr.lo =
5037			cpu_to_le32(U64_LO(bp->eq_mapping +
5038				   BCM_PAGE_SIZE*(i % NUM_EQ_PAGES)));
5039	}
5040	bp->eq_cons = 0;
5041	bp->eq_prod = NUM_EQ_DESC;
5042	bp->eq_cons_sb = BNX2X_EQ_INDEX;
5043	/* we want a warning message before it gets rought... */
5044	atomic_set(&bp->eq_spq_left,
5045		min_t(int, MAX_SP_DESC_CNT - MAX_SPQ_PENDING, NUM_EQ_DESC) - 1);
5046}
5047
5048
5049/* called with netif_addr_lock_bh() */
5050void bnx2x_set_q_rx_mode(struct bnx2x *bp, u8 cl_id,
5051			 unsigned long rx_mode_flags,
5052			 unsigned long rx_accept_flags,
5053			 unsigned long tx_accept_flags,
5054			 unsigned long ramrod_flags)
5055{
5056	struct bnx2x_rx_mode_ramrod_params ramrod_param;
5057	int rc;
5058
5059	memset(&ramrod_param, 0, sizeof(ramrod_param));
5060
5061	/* Prepare ramrod parameters */
5062	ramrod_param.cid = 0;
5063	ramrod_param.cl_id = cl_id;
5064	ramrod_param.rx_mode_obj = &bp->rx_mode_obj;
5065	ramrod_param.func_id = BP_FUNC(bp);
5066
5067	ramrod_param.pstate = &bp->sp_state;
5068	ramrod_param.state = BNX2X_FILTER_RX_MODE_PENDING;
5069
5070	ramrod_param.rdata = bnx2x_sp(bp, rx_mode_rdata);
5071	ramrod_param.rdata_mapping = bnx2x_sp_mapping(bp, rx_mode_rdata);
5072
5073	set_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
5074
5075	ramrod_param.ramrod_flags = ramrod_flags;
5076	ramrod_param.rx_mode_flags = rx_mode_flags;
5077
5078	ramrod_param.rx_accept_flags = rx_accept_flags;
5079	ramrod_param.tx_accept_flags = tx_accept_flags;
5080
5081	rc = bnx2x_config_rx_mode(bp, &ramrod_param);
5082	if (rc < 0) {
5083		BNX2X_ERR("Set rx_mode %d failed\n", bp->rx_mode);
5084		return;
5085	}
5086}
5087
5088/* called with netif_addr_lock_bh() */
5089void bnx2x_set_storm_rx_mode(struct bnx2x *bp)
5090{
5091	unsigned long rx_mode_flags = 0, ramrod_flags = 0;
5092	unsigned long rx_accept_flags = 0, tx_accept_flags = 0;
5093
5094#ifdef BCM_CNIC
5095	if (!NO_FCOE(bp))
5096
5097		/* Configure rx_mode of FCoE Queue */
5098		__set_bit(BNX2X_RX_MODE_FCOE_ETH, &rx_mode_flags);
5099#endif
5100
5101	switch (bp->rx_mode) {
5102	case BNX2X_RX_MODE_NONE:
5103		/*
5104		 * 'drop all' supersedes any accept flags that may have been
5105		 * passed to the function.
5106		 */
5107		break;
5108	case BNX2X_RX_MODE_NORMAL:
5109		__set_bit(BNX2X_ACCEPT_UNICAST, &rx_accept_flags);
5110		__set_bit(BNX2X_ACCEPT_MULTICAST, &rx_accept_flags);
5111		__set_bit(BNX2X_ACCEPT_BROADCAST, &rx_accept_flags);
5112
5113		/* internal switching mode */
5114		__set_bit(BNX2X_ACCEPT_UNICAST, &tx_accept_flags);
5115		__set_bit(BNX2X_ACCEPT_MULTICAST, &tx_accept_flags);
5116		__set_bit(BNX2X_ACCEPT_BROADCAST, &tx_accept_flags);
5117
5118		break;
5119	case BNX2X_RX_MODE_ALLMULTI:
5120		__set_bit(BNX2X_ACCEPT_UNICAST, &rx_accept_flags);
5121		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &rx_accept_flags);
5122		__set_bit(BNX2X_ACCEPT_BROADCAST, &rx_accept_flags);
5123
5124		/* internal switching mode */
5125		__set_bit(BNX2X_ACCEPT_UNICAST, &tx_accept_flags);
5126		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &tx_accept_flags);
5127		__set_bit(BNX2X_ACCEPT_BROADCAST, &tx_accept_flags);
5128
5129		break;
5130	case BNX2X_RX_MODE_PROMISC:
5131		/* According to deffinition of SI mode, iface in promisc mode
5132		 * should receive matched and unmatched (in resolution of port)
5133		 * unicast packets.
5134		 */
5135		__set_bit(BNX2X_ACCEPT_UNMATCHED, &rx_accept_flags);
5136		__set_bit(BNX2X_ACCEPT_UNICAST, &rx_accept_flags);
5137		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &rx_accept_flags);
5138		__set_bit(BNX2X_ACCEPT_BROADCAST, &rx_accept_flags);
5139
5140		/* internal switching mode */
5141		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &tx_accept_flags);
5142		__set_bit(BNX2X_ACCEPT_BROADCAST, &tx_accept_flags);
5143
5144		if (IS_MF_SI(bp))
5145			__set_bit(BNX2X_ACCEPT_ALL_UNICAST, &tx_accept_flags);
5146		else
5147			__set_bit(BNX2X_ACCEPT_UNICAST, &tx_accept_flags);
5148
5149		break;
5150	default:
5151		BNX2X_ERR("Unknown rx_mode: %d\n", bp->rx_mode);
5152		return;
5153	}
5154
5155	if (bp->rx_mode != BNX2X_RX_MODE_NONE) {
5156		__set_bit(BNX2X_ACCEPT_ANY_VLAN, &rx_accept_flags);
5157		__set_bit(BNX2X_ACCEPT_ANY_VLAN, &tx_accept_flags);
5158	}
5159
5160	__set_bit(RAMROD_RX, &ramrod_flags);
5161	__set_bit(RAMROD_TX, &ramrod_flags);
5162
5163	bnx2x_set_q_rx_mode(bp, bp->fp->cl_id, rx_mode_flags, rx_accept_flags,
5164			    tx_accept_flags, ramrod_flags);
5165}
5166
5167static void bnx2x_init_internal_common(struct bnx2x *bp)
5168{
5169	int i;
5170
5171	if (IS_MF_SI(bp))
5172		/*
5173		 * In switch independent mode, the TSTORM needs to accept
5174		 * packets that failed classification, since approximate match
5175		 * mac addresses aren't written to NIG LLH
5176		 */
5177		REG_WR8(bp, BAR_TSTRORM_INTMEM +
5178			    TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET, 2);
5179	else if (!CHIP_IS_E1(bp)) /* 57710 doesn't support MF */
5180		REG_WR8(bp, BAR_TSTRORM_INTMEM +
5181			    TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET, 0);
5182
5183	/* Zero this manually as its initialization is
5184	   currently missing in the initTool */
5185	for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++)
5186		REG_WR(bp, BAR_USTRORM_INTMEM +
5187		       USTORM_AGG_DATA_OFFSET + i * 4, 0);
5188	if (!CHIP_IS_E1x(bp)) {
5189		REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET,
5190			CHIP_INT_MODE_IS_BC(bp) ?
5191			HC_IGU_BC_MODE : HC_IGU_NBC_MODE);
5192	}
5193}
5194
5195static void bnx2x_init_internal(struct bnx2x *bp, u32 load_code)
5196{
5197	switch (load_code) {
5198	case FW_MSG_CODE_DRV_LOAD_COMMON:
5199	case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP:
5200		bnx2x_init_internal_common(bp);
5201		/* no break */
5202
5203	case FW_MSG_CODE_DRV_LOAD_PORT:
5204		/* nothing to do */
5205		/* no break */
5206
5207	case FW_MSG_CODE_DRV_LOAD_FUNCTION:
5208		/* internal memory per function is
5209		   initialized inside bnx2x_pf_init */
5210		break;
5211
5212	default:
5213		BNX2X_ERR("Unknown load_code (0x%x) from MCP\n", load_code);
5214		break;
5215	}
5216}
5217
5218static inline u8 bnx2x_fp_igu_sb_id(struct bnx2x_fastpath *fp)
5219{
5220	return fp->bp->igu_base_sb + fp->index + CNIC_PRESENT;
5221}
5222
5223static inline u8 bnx2x_fp_fw_sb_id(struct bnx2x_fastpath *fp)
5224{
5225	return fp->bp->base_fw_ndsb + fp->index + CNIC_PRESENT;
5226}
5227
5228static inline u8 bnx2x_fp_cl_id(struct bnx2x_fastpath *fp)
5229{
5230	if (CHIP_IS_E1x(fp->bp))
5231		return BP_L_ID(fp->bp) + fp->index;
5232	else	/* We want Client ID to be the same as IGU SB ID for 57712 */
5233		return bnx2x_fp_igu_sb_id(fp);
5234}
5235
5236static void bnx2x_init_eth_fp(struct bnx2x *bp, int fp_idx)
5237{
5238	struct bnx2x_fastpath *fp = &bp->fp[fp_idx];
5239	u8 cos;
5240	unsigned long q_type = 0;
5241	u32 cids[BNX2X_MULTI_TX_COS] = { 0 };
5242	fp->rx_queue = fp_idx;
5243	fp->cid = fp_idx;
5244	fp->cl_id = bnx2x_fp_cl_id(fp);
5245	fp->fw_sb_id = bnx2x_fp_fw_sb_id(fp);
5246	fp->igu_sb_id = bnx2x_fp_igu_sb_id(fp);
5247	/* qZone id equals to FW (per path) client id */
5248	fp->cl_qzone_id  = bnx2x_fp_qzone_id(fp);
5249
5250	/* init shortcut */
5251	fp->ustorm_rx_prods_offset = bnx2x_rx_ustorm_prods_offset(fp);
5252	/* Setup SB indicies */
5253	fp->rx_cons_sb = BNX2X_RX_SB_INDEX;
5254
5255	/* Configure Queue State object */
5256	__set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
5257	__set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
5258
5259	BUG_ON(fp->max_cos > BNX2X_MULTI_TX_COS);
5260
5261	/* init tx data */
5262	for_each_cos_in_tx_queue(fp, cos) {
5263		bnx2x_init_txdata(bp, &fp->txdata[cos],
5264				  CID_COS_TO_TX_ONLY_CID(fp->cid, cos),
5265				  FP_COS_TO_TXQ(fp, cos),
5266				  BNX2X_TX_SB_INDEX_BASE + cos);
5267		cids[cos] = fp->txdata[cos].cid;
5268	}
5269
5270	bnx2x_init_queue_obj(bp, &fp->q_obj, fp->cl_id, cids, fp->max_cos,
5271			     BP_FUNC(bp), bnx2x_sp(bp, q_rdata),
5272			     bnx2x_sp_mapping(bp, q_rdata), q_type);
5273
5274	/**
5275	 * Configure classification DBs: Always enable Tx switching
5276	 */
5277	bnx2x_init_vlan_mac_fp_objs(fp, BNX2X_OBJ_TYPE_RX_TX);
5278
5279	DP(NETIF_MSG_IFUP, "queue[%d]:  bnx2x_init_sb(%p,%p)  "
5280				   "cl_id %d  fw_sb %d  igu_sb %d\n",
5281		   fp_idx, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id,
5282		   fp->igu_sb_id);
5283	bnx2x_init_sb(bp, fp->status_blk_mapping, BNX2X_VF_ID_INVALID, false,
5284		      fp->fw_sb_id, fp->igu_sb_id);
5285
5286	bnx2x_update_fpsb_idx(fp);
5287}
5288
5289void bnx2x_nic_init(struct bnx2x *bp, u32 load_code)
5290{
5291	int i;
5292
5293	for_each_eth_queue(bp, i)
5294		bnx2x_init_eth_fp(bp, i);
5295#ifdef BCM_CNIC
5296	if (!NO_FCOE(bp))
5297		bnx2x_init_fcoe_fp(bp);
5298
5299	bnx2x_init_sb(bp, bp->cnic_sb_mapping,
5300		      BNX2X_VF_ID_INVALID, false,
5301		      bnx2x_cnic_fw_sb_id(bp), bnx2x_cnic_igu_sb_id(bp));
5302
5303#endif
5304
5305	/* Initialize MOD_ABS interrupts */
5306	bnx2x_init_mod_abs_int(bp, &bp->link_vars, bp->common.chip_id,
5307			       bp->common.shmem_base, bp->common.shmem2_base,
5308			       BP_PORT(bp));
5309	/* ensure status block indices were read */
5310	rmb();
5311
5312	bnx2x_init_def_sb(bp);
5313	bnx2x_update_dsb_idx(bp);
5314	bnx2x_init_rx_rings(bp);
5315	bnx2x_init_tx_rings(bp);
5316	bnx2x_init_sp_ring(bp);
5317	bnx2x_init_eq_ring(bp);
5318	bnx2x_init_internal(bp, load_code);
5319	bnx2x_pf_init(bp);
5320	bnx2x_stats_init(bp);
5321
5322	/* flush all before enabling interrupts */
5323	mb();
5324	mmiowb();
5325
5326	bnx2x_int_enable(bp);
5327
5328	/* Check for SPIO5 */
5329	bnx2x_attn_int_deasserted0(bp,
5330		REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + BP_PORT(bp)*4) &
5331				   AEU_INPUTS_ATTN_BITS_SPIO5);
5332}
5333
5334/* end of nic init */
5335
5336/*
5337 * gzip service functions
5338 */
5339
5340static int bnx2x_gunzip_init(struct bnx2x *bp)
5341{
5342	bp->gunzip_buf = dma_alloc_coherent(&bp->pdev->dev, FW_BUF_SIZE,
5343					    &bp->gunzip_mapping, GFP_KERNEL);
5344	if (bp->gunzip_buf  == NULL)
5345		goto gunzip_nomem1;
5346
5347	bp->strm = kmalloc(sizeof(*bp->strm), GFP_KERNEL);
5348	if (bp->strm  == NULL)
5349		goto gunzip_nomem2;
5350
5351	bp->strm->workspace = vmalloc(zlib_inflate_workspacesize());
5352	if (bp->strm->workspace == NULL)
5353		goto gunzip_nomem3;
5354
5355	return 0;
5356
5357gunzip_nomem3:
5358	kfree(bp->strm);
5359	bp->strm = NULL;
5360
5361gunzip_nomem2:
5362	dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
5363			  bp->gunzip_mapping);
5364	bp->gunzip_buf = NULL;
5365
5366gunzip_nomem1:
5367	netdev_err(bp->dev, "Cannot allocate firmware buffer for"
5368	       " un-compression\n");
5369	return -ENOMEM;
5370}
5371
5372static void bnx2x_gunzip_end(struct bnx2x *bp)
5373{
5374	if (bp->strm) {
5375		vfree(bp->strm->workspace);
5376		kfree(bp->strm);
5377		bp->strm = NULL;
5378	}
5379
5380	if (bp->gunzip_buf) {
5381		dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
5382				  bp->gunzip_mapping);
5383		bp->gunzip_buf = NULL;
5384	}
5385}
5386
5387static int bnx2x_gunzip(struct bnx2x *bp, const u8 *zbuf, int len)
5388{
5389	int n, rc;
5390
5391	/* check gzip header */
5392	if ((zbuf[0] != 0x1f) || (zbuf[1] != 0x8b) || (zbuf[2] != Z_DEFLATED)) {
5393		BNX2X_ERR("Bad gzip header\n");
5394		return -EINVAL;
5395	}
5396
5397	n = 10;
5398
5399#define FNAME				0x8
5400
5401	if (zbuf[3] & FNAME)
5402		while ((zbuf[n++] != 0) && (n < len));
5403
5404	bp->strm->next_in = (typeof(bp->strm->next_in))zbuf + n;
5405	bp->strm->avail_in = len - n;
5406	bp->strm->next_out = bp->gunzip_buf;
5407	bp->strm->avail_out = FW_BUF_SIZE;
5408
5409	rc = zlib_inflateInit2(bp->strm, -MAX_WBITS);
5410	if (rc != Z_OK)
5411		return rc;
5412
5413	rc = zlib_inflate(bp->strm, Z_FINISH);
5414	if ((rc != Z_OK) && (rc != Z_STREAM_END))
5415		netdev_err(bp->dev, "Firmware decompression error: %s\n",
5416			   bp->strm->msg);
5417
5418	bp->gunzip_outlen = (FW_BUF_SIZE - bp->strm->avail_out);
5419	if (bp->gunzip_outlen & 0x3)
5420		netdev_err(bp->dev, "Firmware decompression error:"
5421				    " gunzip_outlen (%d) not aligned\n",
5422				bp->gunzip_outlen);
5423	bp->gunzip_outlen >>= 2;
5424
5425	zlib_inflateEnd(bp->strm);
5426
5427	if (rc == Z_STREAM_END)
5428		return 0;
5429
5430	return rc;
5431}
5432
5433/* nic load/unload */
5434
5435/*
5436 * General service functions
5437 */
5438
5439/* send a NIG loopback debug packet */
5440static void bnx2x_lb_pckt(struct bnx2x *bp)
5441{
5442	u32 wb_write[3];
5443
5444	/* Ethernet source and destination addresses */
5445	wb_write[0] = 0x55555555;
5446	wb_write[1] = 0x55555555;
5447	wb_write[2] = 0x20;		/* SOP */
5448	REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
5449
5450	/* NON-IP protocol */
5451	wb_write[0] = 0x09000000;
5452	wb_write[1] = 0x55555555;
5453	wb_write[2] = 0x10;		/* EOP, eop_bvalid = 0 */
5454	REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
5455}
5456
5457/* some of the internal memories
5458 * are not directly readable from the driver
5459 * to test them we send debug packets
5460 */
5461static int bnx2x_int_mem_test(struct bnx2x *bp)
5462{
5463	int factor;
5464	int count, i;
5465	u32 val = 0;
5466
5467	if (CHIP_REV_IS_FPGA(bp))
5468		factor = 120;
5469	else if (CHIP_REV_IS_EMUL(bp))
5470		factor = 200;
5471	else
5472		factor = 1;
5473
5474	/* Disable inputs of parser neighbor blocks */
5475	REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
5476	REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
5477	REG_WR(bp, CFC_REG_DEBUG0, 0x1);
5478	REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
5479
5480	/*  Write 0 to parser credits for CFC search request */
5481	REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
5482
5483	/* send Ethernet packet */
5484	bnx2x_lb_pckt(bp);
5485
5486	/* TODO do i reset NIG statistic? */
5487	/* Wait until NIG register shows 1 packet of size 0x10 */
5488	count = 1000 * factor;
5489	while (count) {
5490
5491		bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
5492		val = *bnx2x_sp(bp, wb_data[0]);
5493		if (val == 0x10)
5494			break;
5495
5496		msleep(10);
5497		count--;
5498	}
5499	if (val != 0x10) {
5500		BNX2X_ERR("NIG timeout  val = 0x%x\n", val);
5501		return -1;
5502	}
5503
5504	/* Wait until PRS register shows 1 packet */
5505	count = 1000 * factor;
5506	while (count) {
5507		val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
5508		if (val == 1)
5509			break;
5510
5511		msleep(10);
5512		count--;
5513	}
5514	if (val != 0x1) {
5515		BNX2X_ERR("PRS timeout val = 0x%x\n", val);
5516		return -2;
5517	}
5518
5519	/* Reset and init BRB, PRS */
5520	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
5521	msleep(50);
5522	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
5523	msleep(50);
5524	bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
5525	bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
5526
5527	DP(NETIF_MSG_HW, "part2\n");
5528
5529	/* Disable inputs of parser neighbor blocks */
5530	REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
5531	REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
5532	REG_WR(bp, CFC_REG_DEBUG0, 0x1);
5533	REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
5534
5535	/* Write 0 to parser credits for CFC search request */
5536	REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
5537
5538	/* send 10 Ethernet packets */
5539	for (i = 0; i < 10; i++)
5540		bnx2x_lb_pckt(bp);
5541
5542	/* Wait until NIG register shows 10 + 1
5543	   packets of size 11*0x10 = 0xb0 */
5544	count = 1000 * factor;
5545	while (count) {
5546
5547		bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
5548		val = *bnx2x_sp(bp, wb_data[0]);
5549		if (val == 0xb0)
5550			break;
5551
5552		msleep(10);
5553		count--;
5554	}
5555	if (val != 0xb0) {
5556		BNX2X_ERR("NIG timeout  val = 0x%x\n", val);
5557		return -3;
5558	}
5559
5560	/* Wait until PRS register shows 2 packets */
5561	val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
5562	if (val != 2)
5563		BNX2X_ERR("PRS timeout  val = 0x%x\n", val);
5564
5565	/* Write 1 to parser credits for CFC search request */
5566	REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1);
5567
5568	/* Wait until PRS register shows 3 packets */
5569	msleep(10 * factor);
5570	/* Wait until NIG register shows 1 packet of size 0x10 */
5571	val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
5572	if (val != 3)
5573		BNX2X_ERR("PRS timeout  val = 0x%x\n", val);
5574
5575	/* clear NIG EOP FIFO */
5576	for (i = 0; i < 11; i++)
5577		REG_RD(bp, NIG_REG_INGRESS_EOP_LB_FIFO);
5578	val = REG_RD(bp, NIG_REG_INGRESS_EOP_LB_EMPTY);
5579	if (val != 1) {
5580		BNX2X_ERR("clear of NIG failed\n");
5581		return -4;
5582	}
5583
5584	/* Reset and init BRB, PRS, NIG */
5585	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
5586	msleep(50);
5587	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
5588	msleep(50);
5589	bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
5590	bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
5591#ifndef BCM_CNIC
5592	/* set NIC mode */
5593	REG_WR(bp, PRS_REG_NIC_MODE, 1);
5594#endif
5595
5596	/* Enable inputs of parser neighbor blocks */
5597	REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x7fffffff);
5598	REG_WR(bp, TCM_REG_PRS_IFEN, 0x1);
5599	REG_WR(bp, CFC_REG_DEBUG0, 0x0);
5600	REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x1);
5601
5602	DP(NETIF_MSG_HW, "done\n");
5603
5604	return 0; /* OK */
5605}
5606
5607static void bnx2x_enable_blocks_attention(struct bnx2x *bp)
5608{
5609	REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
5610	if (!CHIP_IS_E1x(bp))
5611		REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0x40);
5612	else
5613		REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0);
5614	REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
5615	REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
5616	/*
5617	 * mask read length error interrupts in brb for parser
5618	 * (parsing unit and 'checksum and crc' unit)
5619	 * these errors are legal (PU reads fixed length and CAC can cause
5620	 * read length error on truncated packets)
5621	 */
5622	REG_WR(bp, BRB1_REG_BRB1_INT_MASK, 0xFC00);
5623	REG_WR(bp, QM_REG_QM_INT_MASK, 0);
5624	REG_WR(bp, TM_REG_TM_INT_MASK, 0);
5625	REG_WR(bp, XSDM_REG_XSDM_INT_MASK_0, 0);
5626	REG_WR(bp, XSDM_REG_XSDM_INT_MASK_1, 0);
5627	REG_WR(bp, XCM_REG_XCM_INT_MASK, 0);
5628/*	REG_WR(bp, XSEM_REG_XSEM_INT_MASK_0, 0); */
5629/*	REG_WR(bp, XSEM_REG_XSEM_INT_MASK_1, 0); */
5630	REG_WR(bp, USDM_REG_USDM_INT_MASK_0, 0);
5631	REG_WR(bp, USDM_REG_USDM_INT_MASK_1, 0);
5632	REG_WR(bp, UCM_REG_UCM_INT_MASK, 0);
5633/*	REG_WR(bp, USEM_REG_USEM_INT_MASK_0, 0); */
5634/*	REG_WR(bp, USEM_REG_USEM_INT_MASK_1, 0); */
5635	REG_WR(bp, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0);
5636	REG_WR(bp, CSDM_REG_CSDM_INT_MASK_0, 0);
5637	REG_WR(bp, CSDM_REG_CSDM_INT_MASK_1, 0);
5638	REG_WR(bp, CCM_REG_CCM_INT_MASK, 0);
5639/*	REG_WR(bp, CSEM_REG_CSEM_INT_MASK_0, 0); */
5640/*	REG_WR(bp, CSEM_REG_CSEM_INT_MASK_1, 0); */
5641
5642	if (CHIP_REV_IS_FPGA(bp))
5643		REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0, 0x580000);
5644	else if (!CHIP_IS_E1x(bp))
5645		REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0,
5646			   (PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF
5647				| PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT
5648				| PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN
5649				| PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED
5650				| PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED));
5651	else
5652		REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0, 0x480000);
5653	REG_WR(bp, TSDM_REG_TSDM_INT_MASK_0, 0);
5654	REG_WR(bp, TSDM_REG_TSDM_INT_MASK_1, 0);
5655	REG_WR(bp, TCM_REG_TCM_INT_MASK, 0);
5656/*	REG_WR(bp, TSEM_REG_TSEM_INT_MASK_0, 0); */
5657
5658	if (!CHIP_IS_E1x(bp))
5659		/* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */
5660		REG_WR(bp, TSEM_REG_TSEM_INT_MASK_1, 0x07ff);
5661
5662	REG_WR(bp, CDU_REG_CDU_INT_MASK, 0);
5663	REG_WR(bp, DMAE_REG_DMAE_INT_MASK, 0);
5664/*	REG_WR(bp, MISC_REG_MISC_INT_MASK, 0); */
5665	REG_WR(bp, PBF_REG_PBF_INT_MASK, 0x18);		/* bit 3,4 masked */
5666}
5667
5668static void bnx2x_reset_common(struct bnx2x *bp)
5669{
5670	u32 val = 0x1400;
5671
5672	/* reset_common */
5673	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
5674	       0xd3ffff7f);
5675
5676	if (CHIP_IS_E3(bp)) {
5677		val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
5678		val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
5679	}
5680
5681	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR, val);
5682}
5683
5684static void bnx2x_setup_dmae(struct bnx2x *bp)
5685{
5686	bp->dmae_ready = 0;
5687	spin_lock_init(&bp->dmae_lock);
5688}
5689
5690static void bnx2x_init_pxp(struct bnx2x *bp)
5691{
5692	u16 devctl;
5693	int r_order, w_order;
5694
5695	pci_read_config_word(bp->pdev,
5696			     pci_pcie_cap(bp->pdev) + PCI_EXP_DEVCTL, &devctl);
5697	DP(NETIF_MSG_HW, "read 0x%x from devctl\n", devctl);
5698	w_order = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
5699	if (bp->mrrs == -1)
5700		r_order = ((devctl & PCI_EXP_DEVCTL_READRQ) >> 12);
5701	else {
5702		DP(NETIF_MSG_HW, "force read order to %d\n", bp->mrrs);
5703		r_order = bp->mrrs;
5704	}
5705
5706	bnx2x_init_pxp_arb(bp, r_order, w_order);
5707}
5708
5709static void bnx2x_setup_fan_failure_detection(struct bnx2x *bp)
5710{
5711	int is_required;
5712	u32 val;
5713	int port;
5714
5715	if (BP_NOMCP(bp))
5716		return;
5717
5718	is_required = 0;
5719	val = SHMEM_RD(bp, dev_info.shared_hw_config.config2) &
5720	      SHARED_HW_CFG_FAN_FAILURE_MASK;
5721
5722	if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED)
5723		is_required = 1;
5724
5725	/*
5726	 * The fan failure mechanism is usually related to the PHY type since
5727	 * the power consumption of the board is affected by the PHY. Currently,
5728	 * fan is required for most designs with SFX7101, BCM8727 and BCM8481.
5729	 */
5730	else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE)
5731		for (port = PORT_0; port < PORT_MAX; port++) {
5732			is_required |=
5733				bnx2x_fan_failure_det_req(
5734					bp,
5735					bp->common.shmem_base,
5736					bp->common.shmem2_base,
5737					port);
5738		}
5739
5740	DP(NETIF_MSG_HW, "fan detection setting: %d\n", is_required);
5741
5742	if (is_required == 0)
5743		return;
5744
5745	/* Fan failure is indicated by SPIO 5 */
5746	bnx2x_set_spio(bp, MISC_REGISTERS_SPIO_5,
5747		       MISC_REGISTERS_SPIO_INPUT_HI_Z);
5748
5749	/* set to active low mode */
5750	val = REG_RD(bp, MISC_REG_SPIO_INT);
5751	val |= ((1 << MISC_REGISTERS_SPIO_5) <<
5752					MISC_REGISTERS_SPIO_INT_OLD_SET_POS);
5753	REG_WR(bp, MISC_REG_SPIO_INT, val);
5754
5755	/* enable interrupt to signal the IGU */
5756	val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
5757	val |= (1 << MISC_REGISTERS_SPIO_5);
5758	REG_WR(bp, MISC_REG_SPIO_EVENT_EN, val);
5759}
5760
5761static void bnx2x_pretend_func(struct bnx2x *bp, u8 pretend_func_num)
5762{
5763	u32 offset = 0;
5764
5765	if (CHIP_IS_E1(bp))
5766		return;
5767	if (CHIP_IS_E1H(bp) && (pretend_func_num >= E1H_FUNC_MAX))
5768		return;
5769
5770	switch (BP_ABS_FUNC(bp)) {
5771	case 0:
5772		offset = PXP2_REG_PGL_PRETEND_FUNC_F0;
5773		break;
5774	case 1:
5775		offset = PXP2_REG_PGL_PRETEND_FUNC_F1;
5776		break;
5777	case 2:
5778		offset = PXP2_REG_PGL_PRETEND_FUNC_F2;
5779		break;
5780	case 3:
5781		offset = PXP2_REG_PGL_PRETEND_FUNC_F3;
5782		break;
5783	case 4:
5784		offset = PXP2_REG_PGL_PRETEND_FUNC_F4;
5785		break;
5786	case 5:
5787		offset = PXP2_REG_PGL_PRETEND_FUNC_F5;
5788		break;
5789	case 6:
5790		offset = PXP2_REG_PGL_PRETEND_FUNC_F6;
5791		break;
5792	case 7:
5793		offset = PXP2_REG_PGL_PRETEND_FUNC_F7;
5794		break;
5795	default:
5796		return;
5797	}
5798
5799	REG_WR(bp, offset, pretend_func_num);
5800	REG_RD(bp, offset);
5801	DP(NETIF_MSG_HW, "Pretending to func %d\n", pretend_func_num);
5802}
5803
5804void bnx2x_pf_disable(struct bnx2x *bp)
5805{
5806	u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
5807	val &= ~IGU_PF_CONF_FUNC_EN;
5808
5809	REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
5810	REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
5811	REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 0);
5812}
5813
5814static inline void bnx2x__common_init_phy(struct bnx2x *bp)
5815{
5816	u32 shmem_base[2], shmem2_base[2];
5817	shmem_base[0] =  bp->common.shmem_base;
5818	shmem2_base[0] = bp->common.shmem2_base;
5819	if (!CHIP_IS_E1x(bp)) {
5820		shmem_base[1] =
5821			SHMEM2_RD(bp, other_shmem_base_addr);
5822		shmem2_base[1] =
5823			SHMEM2_RD(bp, other_shmem2_base_addr);
5824	}
5825	bnx2x_acquire_phy_lock(bp);
5826	bnx2x_common_init_phy(bp, shmem_base, shmem2_base,
5827			      bp->common.chip_id);
5828	bnx2x_release_phy_lock(bp);
5829}
5830
5831/**
5832 * bnx2x_init_hw_common - initialize the HW at the COMMON phase.
5833 *
5834 * @bp:		driver handle
5835 */
5836static int bnx2x_init_hw_common(struct bnx2x *bp)
5837{
5838	u32 val;
5839
5840	DP(BNX2X_MSG_MCP, "starting common init  func %d\n", BP_ABS_FUNC(bp));
5841
5842	/*
5843	 * take the UNDI lock to protect undi_unload flow from accessing
5844	 * registers while we're resetting the chip
5845	 */
5846	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
5847
5848	bnx2x_reset_common(bp);
5849	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0xffffffff);
5850
5851	val = 0xfffc;
5852	if (CHIP_IS_E3(bp)) {
5853		val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
5854		val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
5855	}
5856	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET, val);
5857
5858	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
5859
5860	bnx2x_init_block(bp, BLOCK_MISC, PHASE_COMMON);
5861
5862	if (!CHIP_IS_E1x(bp)) {
5863		u8 abs_func_id;
5864
5865		/**
5866		 * 4-port mode or 2-port mode we need to turn of master-enable
5867		 * for everyone, after that, turn it back on for self.
5868		 * so, we disregard multi-function or not, and always disable
5869		 * for all functions on the given path, this means 0,2,4,6 for
5870		 * path 0 and 1,3,5,7 for path 1
5871		 */
5872		for (abs_func_id = BP_PATH(bp);
5873		     abs_func_id < E2_FUNC_MAX*2; abs_func_id += 2) {
5874			if (abs_func_id == BP_ABS_FUNC(bp)) {
5875				REG_WR(bp,
5876				    PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER,
5877				    1);
5878				continue;
5879			}
5880
5881			bnx2x_pretend_func(bp, abs_func_id);
5882			/* clear pf enable */
5883			bnx2x_pf_disable(bp);
5884			bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
5885		}
5886	}
5887
5888	bnx2x_init_block(bp, BLOCK_PXP, PHASE_COMMON);
5889	if (CHIP_IS_E1(bp)) {
5890		/* enable HW interrupt from PXP on USDM overflow
5891		   bit 16 on INT_MASK_0 */
5892		REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
5893	}
5894
5895	bnx2x_init_block(bp, BLOCK_PXP2, PHASE_COMMON);
5896	bnx2x_init_pxp(bp);
5897
5898#ifdef __BIG_ENDIAN
5899	REG_WR(bp, PXP2_REG_RQ_QM_ENDIAN_M, 1);
5900	REG_WR(bp, PXP2_REG_RQ_TM_ENDIAN_M, 1);
5901	REG_WR(bp, PXP2_REG_RQ_SRC_ENDIAN_M, 1);
5902	REG_WR(bp, PXP2_REG_RQ_CDU_ENDIAN_M, 1);
5903	REG_WR(bp, PXP2_REG_RQ_DBG_ENDIAN_M, 1);
5904	/* make sure this value is 0 */
5905	REG_WR(bp, PXP2_REG_RQ_HC_ENDIAN_M, 0);
5906
5907/*	REG_WR(bp, PXP2_REG_RD_PBF_SWAP_MODE, 1); */
5908	REG_WR(bp, PXP2_REG_RD_QM_SWAP_MODE, 1);
5909	REG_WR(bp, PXP2_REG_RD_TM_SWAP_MODE, 1);
5910	REG_WR(bp, PXP2_REG_RD_SRC_SWAP_MODE, 1);
5911	REG_WR(bp, PXP2_REG_RD_CDURD_SWAP_MODE, 1);
5912#endif
5913
5914	bnx2x_ilt_init_page_size(bp, INITOP_SET);
5915
5916	if (CHIP_REV_IS_FPGA(bp) && CHIP_IS_E1H(bp))
5917		REG_WR(bp, PXP2_REG_PGL_TAGS_LIMIT, 0x1);
5918
5919	/* let the HW do it's magic ... */
5920	msleep(100);
5921	/* finish PXP init */
5922	val = REG_RD(bp, PXP2_REG_RQ_CFG_DONE);
5923	if (val != 1) {
5924		BNX2X_ERR("PXP2 CFG failed\n");
5925		return -EBUSY;
5926	}
5927	val = REG_RD(bp, PXP2_REG_RD_INIT_DONE);
5928	if (val != 1) {
5929		BNX2X_ERR("PXP2 RD_INIT failed\n");
5930		return -EBUSY;
5931	}
5932
5933	/* Timers bug workaround E2 only. We need to set the entire ILT to
5934	 * have entries with value "0" and valid bit on.
5935	 * This needs to be done by the first PF that is loaded in a path
5936	 * (i.e. common phase)
5937	 */
5938	if (!CHIP_IS_E1x(bp)) {
5939/* In E2 there is a bug in the timers block that can cause function 6 / 7
5940 * (i.e. vnic3) to start even if it is marked as "scan-off".
5941 * This occurs when a different function (func2,3) is being marked
5942 * as "scan-off". Real-life scenario for example: if a driver is being
5943 * load-unloaded while func6,7 are down. This will cause the timer to access
5944 * the ilt, translate to a logical address and send a request to read/write.
5945 * Since the ilt for the function that is down is not valid, this will cause
5946 * a translation error which is unrecoverable.
5947 * The Workaround is intended to make sure that when this happens nothing fatal
5948 * will occur. The workaround:
5949 *	1.  First PF driver which loads on a path will:
5950 *		a.  After taking the chip out of reset, by using pretend,
5951 *		    it will write "0" to the following registers of
5952 *		    the other vnics.
5953 *		    REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
5954 *		    REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0);
5955 *		    REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0);
5956 *		    And for itself it will write '1' to
5957 *		    PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable
5958 *		    dmae-operations (writing to pram for example.)
5959 *		    note: can be done for only function 6,7 but cleaner this
5960 *			  way.
5961 *		b.  Write zero+valid to the entire ILT.
5962 *		c.  Init the first_timers_ilt_entry, last_timers_ilt_entry of
5963 *		    VNIC3 (of that port). The range allocated will be the
5964 *		    entire ILT. This is needed to prevent  ILT range error.
5965 *	2.  Any PF driver load flow:
5966 *		a.  ILT update with the physical addresses of the allocated
5967 *		    logical pages.
5968 *		b.  Wait 20msec. - note that this timeout is needed to make
5969 *		    sure there are no requests in one of the PXP internal
5970 *		    queues with "old" ILT addresses.
5971 *		c.  PF enable in the PGLC.
5972 *		d.  Clear the was_error of the PF in the PGLC. (could have
5973 *		    occured while driver was down)
5974 *		e.  PF enable in the CFC (WEAK + STRONG)
5975 *		f.  Timers scan enable
5976 *	3.  PF driver unload flow:
5977 *		a.  Clear the Timers scan_en.
5978 *		b.  Polling for scan_on=0 for that PF.
5979 *		c.  Clear the PF enable bit in the PXP.
5980 *		d.  Clear the PF enable in the CFC (WEAK + STRONG)
5981 *		e.  Write zero+valid to all ILT entries (The valid bit must
5982 *		    stay set)
5983 *		f.  If this is VNIC 3 of a port then also init
5984 *		    first_timers_ilt_entry to zero and last_timers_ilt_entry
5985 *		    to the last enrty in the ILT.
5986 *
5987 *	Notes:
5988 *	Currently the PF error in the PGLC is non recoverable.
5989 *	In the future the there will be a recovery routine for this error.
5990 *	Currently attention is masked.
5991 *	Having an MCP lock on the load/unload process does not guarantee that
5992 *	there is no Timer disable during Func6/7 enable. This is because the
5993 *	Timers scan is currently being cleared by the MCP on FLR.
5994 *	Step 2.d can be done only for PF6/7 and the driver can also check if
5995 *	there is error before clearing it. But the flow above is simpler and
5996 *	more general.
5997 *	All ILT entries are written by zero+valid and not just PF6/7
5998 *	ILT entries since in the future the ILT entries allocation for
5999 *	PF-s might be dynamic.
6000 */
6001		struct ilt_client_info ilt_cli;
6002		struct bnx2x_ilt ilt;
6003		memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
6004		memset(&ilt, 0, sizeof(struct bnx2x_ilt));
6005
6006		/* initialize dummy TM client */
6007		ilt_cli.start = 0;
6008		ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
6009		ilt_cli.client_num = ILT_CLIENT_TM;
6010
6011		/* Step 1: set zeroes to all ilt page entries with valid bit on
6012		 * Step 2: set the timers first/last ilt entry to point
6013		 * to the entire range to prevent ILT range error for 3rd/4th
6014		 * vnic	(this code assumes existance of the vnic)
6015		 *
6016		 * both steps performed by call to bnx2x_ilt_client_init_op()
6017		 * with dummy TM client
6018		 *
6019		 * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT
6020		 * and his brother are split registers
6021		 */
6022		bnx2x_pretend_func(bp, (BP_PATH(bp) + 6));
6023		bnx2x_ilt_client_init_op_ilt(bp, &ilt, &ilt_cli, INITOP_CLEAR);
6024		bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
6025
6026		REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN, BNX2X_PXP_DRAM_ALIGN);
6027		REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_RD, BNX2X_PXP_DRAM_ALIGN);
6028		REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1);
6029	}
6030
6031
6032	REG_WR(bp, PXP2_REG_RQ_DISABLE_INPUTS, 0);
6033	REG_WR(bp, PXP2_REG_RD_DISABLE_INPUTS, 0);
6034
6035	if (!CHIP_IS_E1x(bp)) {
6036		int factor = CHIP_REV_IS_EMUL(bp) ? 1000 :
6037				(CHIP_REV_IS_FPGA(bp) ? 400 : 0);
6038		bnx2x_init_block(bp, BLOCK_PGLUE_B, PHASE_COMMON);
6039
6040		bnx2x_init_block(bp, BLOCK_ATC, PHASE_COMMON);
6041
6042		/* let the HW do it's magic ... */
6043		do {
6044			msleep(200);
6045			val = REG_RD(bp, ATC_REG_ATC_INIT_DONE);
6046		} while (factor-- && (val != 1));
6047
6048		if (val != 1) {
6049			BNX2X_ERR("ATC_INIT failed\n");
6050			return -EBUSY;
6051		}
6052	}
6053
6054	bnx2x_init_block(bp, BLOCK_DMAE, PHASE_COMMON);
6055
6056	/* clean the DMAE memory */
6057	bp->dmae_ready = 1;
6058	bnx2x_init_fill(bp, TSEM_REG_PRAM, 0, 8, 1);
6059
6060	bnx2x_init_block(bp, BLOCK_TCM, PHASE_COMMON);
6061
6062	bnx2x_init_block(bp, BLOCK_UCM, PHASE_COMMON);
6063
6064	bnx2x_init_block(bp, BLOCK_CCM, PHASE_COMMON);
6065
6066	bnx2x_init_block(bp, BLOCK_XCM, PHASE_COMMON);
6067
6068	bnx2x_read_dmae(bp, XSEM_REG_PASSIVE_BUFFER, 3);
6069	bnx2x_read_dmae(bp, CSEM_REG_PASSIVE_BUFFER, 3);
6070	bnx2x_read_dmae(bp, TSEM_REG_PASSIVE_BUFFER, 3);
6071	bnx2x_read_dmae(bp, USEM_REG_PASSIVE_BUFFER, 3);
6072
6073	bnx2x_init_block(bp, BLOCK_QM, PHASE_COMMON);
6074
6075
6076	/* QM queues pointers table */
6077	bnx2x_qm_init_ptr_table(bp, bp->qm_cid_count, INITOP_SET);
6078
6079	/* soft reset pulse */
6080	REG_WR(bp, QM_REG_SOFT_RESET, 1);
6081	REG_WR(bp, QM_REG_SOFT_RESET, 0);
6082
6083#ifdef BCM_CNIC
6084	bnx2x_init_block(bp, BLOCK_TM, PHASE_COMMON);
6085#endif
6086
6087	bnx2x_init_block(bp, BLOCK_DORQ, PHASE_COMMON);
6088	REG_WR(bp, DORQ_REG_DPM_CID_OFST, BNX2X_DB_SHIFT);
6089	if (!CHIP_REV_IS_SLOW(bp))
6090		/* enable hw interrupt from doorbell Q */
6091		REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
6092
6093	bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6094
6095	bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6096	REG_WR(bp, PRS_REG_A_PRSU_20, 0xf);
6097
6098	if (!CHIP_IS_E1(bp))
6099		REG_WR(bp, PRS_REG_E1HOV_MODE, bp->path_has_ovlan);
6100
6101	if (!CHIP_IS_E1x(bp) && !CHIP_IS_E3B0(bp))
6102		/* Bit-map indicating which L2 hdrs may appear
6103		 * after the basic Ethernet header
6104		 */
6105		REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC,
6106		       bp->path_has_ovlan ? 7 : 6);
6107
6108	bnx2x_init_block(bp, BLOCK_TSDM, PHASE_COMMON);
6109	bnx2x_init_block(bp, BLOCK_CSDM, PHASE_COMMON);
6110	bnx2x_init_block(bp, BLOCK_USDM, PHASE_COMMON);
6111	bnx2x_init_block(bp, BLOCK_XSDM, PHASE_COMMON);
6112
6113	if (!CHIP_IS_E1x(bp)) {
6114		/* reset VFC memories */
6115		REG_WR(bp, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
6116			   VFC_MEMORIES_RST_REG_CAM_RST |
6117			   VFC_MEMORIES_RST_REG_RAM_RST);
6118		REG_WR(bp, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
6119			   VFC_MEMORIES_RST_REG_CAM_RST |
6120			   VFC_MEMORIES_RST_REG_RAM_RST);
6121
6122		msleep(20);
6123	}
6124
6125	bnx2x_init_block(bp, BLOCK_TSEM, PHASE_COMMON);
6126	bnx2x_init_block(bp, BLOCK_USEM, PHASE_COMMON);
6127	bnx2x_init_block(bp, BLOCK_CSEM, PHASE_COMMON);
6128	bnx2x_init_block(bp, BLOCK_XSEM, PHASE_COMMON);
6129
6130	/* sync semi rtc */
6131	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
6132	       0x80000000);
6133	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET,
6134	       0x80000000);
6135
6136	bnx2x_init_block(bp, BLOCK_UPB, PHASE_COMMON);
6137	bnx2x_init_block(bp, BLOCK_XPB, PHASE_COMMON);
6138	bnx2x_init_block(bp, BLOCK_PBF, PHASE_COMMON);
6139
6140	if (!CHIP_IS_E1x(bp))
6141		REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC,
6142		       bp->path_has_ovlan ? 7 : 6);
6143
6144	REG_WR(bp, SRC_REG_SOFT_RST, 1);
6145
6146	bnx2x_init_block(bp, BLOCK_SRC, PHASE_COMMON);
6147
6148#ifdef BCM_CNIC
6149	REG_WR(bp, SRC_REG_KEYSEARCH_0, 0x63285672);
6150	REG_WR(bp, SRC_REG_KEYSEARCH_1, 0x24b8f2cc);
6151	REG_WR(bp, SRC_REG_KEYSEARCH_2, 0x223aef9b);
6152	REG_WR(bp, SRC_REG_KEYSEARCH_3, 0x26001e3a);
6153	REG_WR(bp, SRC_REG_KEYSEARCH_4, 0x7ae91116);
6154	REG_WR(bp, SRC_REG_KEYSEARCH_5, 0x5ce5230b);
6155	REG_WR(bp, SRC_REG_KEYSEARCH_6, 0x298d8adf);
6156	REG_WR(bp, SRC_REG_KEYSEARCH_7, 0x6eb0ff09);
6157	REG_WR(bp, SRC_REG_KEYSEARCH_8, 0x1830f82f);
6158	REG_WR(bp, SRC_REG_KEYSEARCH_9, 0x01e46be7);
6159#endif
6160	REG_WR(bp, SRC_REG_SOFT_RST, 0);
6161
6162	if (sizeof(union cdu_context) != 1024)
6163		/* we currently assume that a context is 1024 bytes */
6164		dev_alert(&bp->pdev->dev, "please adjust the size "
6165					  "of cdu_context(%ld)\n",
6166			 (long)sizeof(union cdu_context));
6167
6168	bnx2x_init_block(bp, BLOCK_CDU, PHASE_COMMON);
6169	val = (4 << 24) + (0 << 12) + 1024;
6170	REG_WR(bp, CDU_REG_CDU_GLOBAL_PARAMS, val);
6171
6172	bnx2x_init_block(bp, BLOCK_CFC, PHASE_COMMON);
6173	REG_WR(bp, CFC_REG_INIT_REG, 0x7FF);
6174	/* enable context validation interrupt from CFC */
6175	REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
6176
6177	/* set the thresholds to prevent CFC/CDU race */
6178	REG_WR(bp, CFC_REG_DEBUG0, 0x20020000);
6179
6180	bnx2x_init_block(bp, BLOCK_HC, PHASE_COMMON);
6181
6182	if (!CHIP_IS_E1x(bp) && BP_NOMCP(bp))
6183		REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x36);
6184
6185	bnx2x_init_block(bp, BLOCK_IGU, PHASE_COMMON);
6186	bnx2x_init_block(bp, BLOCK_MISC_AEU, PHASE_COMMON);
6187
6188	/* Reset PCIE errors for debug */
6189	REG_WR(bp, 0x2814, 0xffffffff);
6190	REG_WR(bp, 0x3820, 0xffffffff);
6191
6192	if (!CHIP_IS_E1x(bp)) {
6193		REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_CONTROL_5,
6194			   (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 |
6195				PXPCS_TL_CONTROL_5_ERR_UNSPPORT));
6196		REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT,
6197			   (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 |
6198				PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 |
6199				PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2));
6200		REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT,
6201			   (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 |
6202				PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 |
6203				PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5));
6204	}
6205
6206	bnx2x_init_block(bp, BLOCK_NIG, PHASE_COMMON);
6207	if (!CHIP_IS_E1(bp)) {
6208		/* in E3 this done in per-port section */
6209		if (!CHIP_IS_E3(bp))
6210			REG_WR(bp, NIG_REG_LLH_MF_MODE, IS_MF(bp));
6211	}
6212	if (CHIP_IS_E1H(bp))
6213		/* not applicable for E2 (and above ...) */
6214		REG_WR(bp, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(bp));
6215
6216	if (CHIP_REV_IS_SLOW(bp))
6217		msleep(200);
6218
6219	/* finish CFC init */
6220	val = reg_poll(bp, CFC_REG_LL_INIT_DONE, 1, 100, 10);
6221	if (val != 1) {
6222		BNX2X_ERR("CFC LL_INIT failed\n");
6223		return -EBUSY;
6224	}
6225	val = reg_poll(bp, CFC_REG_AC_INIT_DONE, 1, 100, 10);
6226	if (val != 1) {
6227		BNX2X_ERR("CFC AC_INIT failed\n");
6228		return -EBUSY;
6229	}
6230	val = reg_poll(bp, CFC_REG_CAM_INIT_DONE, 1, 100, 10);
6231	if (val != 1) {
6232		BNX2X_ERR("CFC CAM_INIT failed\n");
6233		return -EBUSY;
6234	}
6235	REG_WR(bp, CFC_REG_DEBUG0, 0);
6236
6237	if (CHIP_IS_E1(bp)) {
6238		/* read NIG statistic
6239		   to see if this is our first up since powerup */
6240		bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
6241		val = *bnx2x_sp(bp, wb_data[0]);
6242
6243		/* do internal memory self test */
6244		if ((val == 0) && bnx2x_int_mem_test(bp)) {
6245			BNX2X_ERR("internal mem self test failed\n");
6246			return -EBUSY;
6247		}
6248	}
6249
6250	bnx2x_setup_fan_failure_detection(bp);
6251
6252	/* clear PXP2 attentions */
6253	REG_RD(bp, PXP2_REG_PXP2_INT_STS_CLR_0);
6254
6255	bnx2x_enable_blocks_attention(bp);
6256	bnx2x_enable_blocks_parity(bp);
6257
6258	if (!BP_NOMCP(bp)) {
6259		if (CHIP_IS_E1x(bp))
6260			bnx2x__common_init_phy(bp);
6261	} else
6262		BNX2X_ERR("Bootcode is missing - can not initialize link\n");
6263
6264	return 0;
6265}
6266
6267/**
6268 * bnx2x_init_hw_common_chip - init HW at the COMMON_CHIP phase.
6269 *
6270 * @bp:		driver handle
6271 */
6272static int bnx2x_init_hw_common_chip(struct bnx2x *bp)
6273{
6274	int rc = bnx2x_init_hw_common(bp);
6275
6276	if (rc)
6277		return rc;
6278
6279	/* In E2 2-PORT mode, same ext phy is used for the two paths */
6280	if (!BP_NOMCP(bp))
6281		bnx2x__common_init_phy(bp);
6282
6283	return 0;
6284}
6285
6286static int bnx2x_init_hw_port(struct bnx2x *bp)
6287{
6288	int port = BP_PORT(bp);
6289	int init_phase = port ? PHASE_PORT1 : PHASE_PORT0;
6290	u32 low, high;
6291	u32 val;
6292
6293	bnx2x__link_reset(bp);
6294
6295	DP(BNX2X_MSG_MCP, "starting port init  port %d\n", port);
6296
6297	REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
6298
6299	bnx2x_init_block(bp, BLOCK_MISC, init_phase);
6300	bnx2x_init_block(bp, BLOCK_PXP, init_phase);
6301	bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
6302
6303	/* Timers bug workaround: disables the pf_master bit in pglue at
6304	 * common phase, we need to enable it here before any dmae access are
6305	 * attempted. Therefore we manually added the enable-master to the
6306	 * port phase (it also happens in the function phase)
6307	 */
6308	if (!CHIP_IS_E1x(bp))
6309		REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
6310
6311	bnx2x_init_block(bp, BLOCK_ATC, init_phase);
6312	bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
6313	bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
6314	bnx2x_init_block(bp, BLOCK_QM, init_phase);
6315
6316	bnx2x_init_block(bp, BLOCK_TCM, init_phase);
6317	bnx2x_init_block(bp, BLOCK_UCM, init_phase);
6318	bnx2x_init_block(bp, BLOCK_CCM, init_phase);
6319	bnx2x_init_block(bp, BLOCK_XCM, init_phase);
6320
6321	/* QM cid (connection) count */
6322	bnx2x_qm_init_cid_count(bp, bp->qm_cid_count, INITOP_SET);
6323
6324#ifdef BCM_CNIC
6325	bnx2x_init_block(bp, BLOCK_TM, init_phase);
6326	REG_WR(bp, TM_REG_LIN0_SCAN_TIME + port*4, 20);
6327	REG_WR(bp, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31);
6328#endif
6329
6330	bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
6331
6332	if (CHIP_IS_E1(bp) || CHIP_IS_E1H(bp)) {
6333		bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
6334
6335		if (IS_MF(bp))
6336			low = ((bp->flags & ONE_PORT_FLAG) ? 160 : 246);
6337		else if (bp->dev->mtu > 4096) {
6338			if (bp->flags & ONE_PORT_FLAG)
6339				low = 160;
6340			else {
6341				val = bp->dev->mtu;
6342				/* (24*1024 + val*4)/256 */
6343				low = 96 + (val/64) +
6344						((val % 64) ? 1 : 0);
6345			}
6346		} else
6347			low = ((bp->flags & ONE_PORT_FLAG) ? 80 : 160);
6348		high = low + 56;	/* 14*1024/256 */
6349		REG_WR(bp, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low);
6350		REG_WR(bp, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high);
6351	}
6352
6353	if (CHIP_MODE_IS_4_PORT(bp))
6354		REG_WR(bp, (BP_PORT(bp) ?
6355			    BRB1_REG_MAC_GUARANTIED_1 :
6356			    BRB1_REG_MAC_GUARANTIED_0), 40);
6357
6358
6359	bnx2x_init_block(bp, BLOCK_PRS, init_phase);
6360	if (CHIP_IS_E3B0(bp))
6361		/* Ovlan exists only if we are in multi-function +
6362		 * switch-dependent mode, in switch-independent there
6363		 * is no ovlan headers
6364		 */
6365		REG_WR(bp, BP_PORT(bp) ?
6366		       PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
6367		       PRS_REG_HDRS_AFTER_BASIC_PORT_0,
6368		       (bp->path_has_ovlan ? 7 : 6));
6369
6370	bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
6371	bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
6372	bnx2x_init_block(bp, BLOCK_USDM, init_phase);
6373	bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
6374
6375	bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
6376	bnx2x_init_block(bp, BLOCK_USEM, init_phase);
6377	bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
6378	bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
6379
6380	bnx2x_init_block(bp, BLOCK_UPB, init_phase);
6381	bnx2x_init_block(bp, BLOCK_XPB, init_phase);
6382
6383	bnx2x_init_block(bp, BLOCK_PBF, init_phase);
6384
6385	if (CHIP_IS_E1x(bp)) {
6386		/* configure PBF to work without PAUSE mtu 9000 */
6387		REG_WR(bp, PBF_REG_P0_PAUSE_ENABLE + port*4, 0);
6388
6389		/* update threshold */
6390		REG_WR(bp, PBF_REG_P0_ARB_THRSH + port*4, (9040/16));
6391		/* update init credit */
6392		REG_WR(bp, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22);
6393
6394		/* probe changes */
6395		REG_WR(bp, PBF_REG_INIT_P0 + port*4, 1);
6396		udelay(50);
6397		REG_WR(bp, PBF_REG_INIT_P0 + port*4, 0);
6398	}
6399
6400#ifdef BCM_CNIC
6401	bnx2x_init_block(bp, BLOCK_SRC, init_phase);
6402#endif
6403	bnx2x_init_block(bp, BLOCK_CDU, init_phase);
6404	bnx2x_init_block(bp, BLOCK_CFC, init_phase);
6405
6406	if (CHIP_IS_E1(bp)) {
6407		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
6408		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
6409	}
6410	bnx2x_init_block(bp, BLOCK_HC, init_phase);
6411
6412	bnx2x_init_block(bp, BLOCK_IGU, init_phase);
6413
6414	bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
6415	/* init aeu_mask_attn_func_0/1:
6416	 *  - SF mode: bits 3-7 are masked. only bits 0-2 are in use
6417	 *  - MF mode: bit 3 is masked. bits 0-2 are in use as in SF
6418	 *             bits 4-7 are used for "per vn group attention" */
6419	val = IS_MF(bp) ? 0xF7 : 0x7;
6420	/* Enable DCBX attention for all but E1 */
6421	val |= CHIP_IS_E1(bp) ? 0 : 0x10;
6422	REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val);
6423
6424	bnx2x_init_block(bp, BLOCK_NIG, init_phase);
6425
6426	if (!CHIP_IS_E1x(bp)) {
6427		/* Bit-map indicating which L2 hdrs may appear after the
6428		 * basic Ethernet header
6429		 */
6430		REG_WR(bp, BP_PORT(bp) ?
6431			   NIG_REG_P1_HDRS_AFTER_BASIC :
6432			   NIG_REG_P0_HDRS_AFTER_BASIC,
6433			   IS_MF_SD(bp) ? 7 : 6);
6434
6435		if (CHIP_IS_E3(bp))
6436			REG_WR(bp, BP_PORT(bp) ?
6437				   NIG_REG_LLH1_MF_MODE :
6438				   NIG_REG_LLH_MF_MODE, IS_MF(bp));
6439	}
6440	if (!CHIP_IS_E3(bp))
6441		REG_WR(bp, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1);
6442
6443	if (!CHIP_IS_E1(bp)) {
6444		/* 0x2 disable mf_ov, 0x1 enable */
6445		REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4,
6446		       (IS_MF_SD(bp) ? 0x1 : 0x2));
6447
6448		if (!CHIP_IS_E1x(bp)) {
6449			val = 0;
6450			switch (bp->mf_mode) {
6451			case MULTI_FUNCTION_SD:
6452				val = 1;
6453				break;
6454			case MULTI_FUNCTION_SI:
6455				val = 2;
6456				break;
6457			}
6458
6459			REG_WR(bp, (BP_PORT(bp) ? NIG_REG_LLH1_CLS_TYPE :
6460						  NIG_REG_LLH0_CLS_TYPE), val);
6461		}
6462		{
6463			REG_WR(bp, NIG_REG_LLFC_ENABLE_0 + port*4, 0);
6464			REG_WR(bp, NIG_REG_LLFC_OUT_EN_0 + port*4, 0);
6465			REG_WR(bp, NIG_REG_PAUSE_ENABLE_0 + port*4, 1);
6466		}
6467	}
6468
6469
6470	/* If SPIO5 is set to generate interrupts, enable it for this port */
6471	val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
6472	if (val & (1 << MISC_REGISTERS_SPIO_5)) {
6473		u32 reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
6474				       MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
6475		val = REG_RD(bp, reg_addr);
6476		val |= AEU_INPUTS_ATTN_BITS_SPIO5;
6477		REG_WR(bp, reg_addr, val);
6478	}
6479
6480	return 0;
6481}
6482
6483static void bnx2x_ilt_wr(struct bnx2x *bp, u32 index, dma_addr_t addr)
6484{
6485	int reg;
6486
6487	if (CHIP_IS_E1(bp))
6488		reg = PXP2_REG_RQ_ONCHIP_AT + index*8;
6489	else
6490		reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8;
6491
6492	bnx2x_wb_wr(bp, reg, ONCHIP_ADDR1(addr), ONCHIP_ADDR2(addr));
6493}
6494
6495static inline void bnx2x_igu_clear_sb(struct bnx2x *bp, u8 idu_sb_id)
6496{
6497	bnx2x_igu_clear_sb_gen(bp, BP_FUNC(bp), idu_sb_id, true /*PF*/);
6498}
6499
6500static inline void bnx2x_clear_func_ilt(struct bnx2x *bp, u32 func)
6501{
6502	u32 i, base = FUNC_ILT_BASE(func);
6503	for (i = base; i < base + ILT_PER_FUNC; i++)
6504		bnx2x_ilt_wr(bp, i, 0);
6505}
6506
6507static int bnx2x_init_hw_func(struct bnx2x *bp)
6508{
6509	int port = BP_PORT(bp);
6510	int func = BP_FUNC(bp);
6511	int init_phase = PHASE_PF0 + func;
6512	struct bnx2x_ilt *ilt = BP_ILT(bp);
6513	u16 cdu_ilt_start;
6514	u32 addr, val;
6515	u32 main_mem_base, main_mem_size, main_mem_prty_clr;
6516	int i, main_mem_width;
6517
6518	DP(BNX2X_MSG_MCP, "starting func init  func %d\n", func);
6519
6520	/* FLR cleanup - hmmm */
6521	if (!CHIP_IS_E1x(bp))
6522		bnx2x_pf_flr_clnup(bp);
6523
6524	/* set MSI reconfigure capability */
6525	if (bp->common.int_block == INT_BLOCK_HC) {
6526		addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0);
6527		val = REG_RD(bp, addr);
6528		val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0;
6529		REG_WR(bp, addr, val);
6530	}
6531
6532	bnx2x_init_block(bp, BLOCK_PXP, init_phase);
6533	bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
6534
6535	ilt = BP_ILT(bp);
6536	cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
6537
6538	for (i = 0; i < L2_ILT_LINES(bp); i++) {
6539		ilt->lines[cdu_ilt_start + i].page =
6540			bp->context.vcxt + (ILT_PAGE_CIDS * i);
6541		ilt->lines[cdu_ilt_start + i].page_mapping =
6542			bp->context.cxt_mapping + (CDU_ILT_PAGE_SZ * i);
6543		/* cdu ilt pages are allocated manually so there's no need to
6544		set the size */
6545	}
6546	bnx2x_ilt_init_op(bp, INITOP_SET);
6547
6548#ifdef BCM_CNIC
6549	bnx2x_src_init_t2(bp, bp->t2, bp->t2_mapping, SRC_CONN_NUM);
6550
6551	/* T1 hash bits value determines the T1 number of entries */
6552	REG_WR(bp, SRC_REG_NUMBER_HASH_BITS0 + port*4, SRC_HASH_BITS);
6553#endif
6554
6555#ifndef BCM_CNIC
6556	/* set NIC mode */
6557	REG_WR(bp, PRS_REG_NIC_MODE, 1);
6558#endif  /* BCM_CNIC */
6559
6560	if (!CHIP_IS_E1x(bp)) {
6561		u32 pf_conf = IGU_PF_CONF_FUNC_EN;
6562
6563		/* Turn on a single ISR mode in IGU if driver is going to use
6564		 * INT#x or MSI
6565		 */
6566		if (!(bp->flags & USING_MSIX_FLAG))
6567			pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
6568		/*
6569		 * Timers workaround bug: function init part.
6570		 * Need to wait 20msec after initializing ILT,
6571		 * needed to make sure there are no requests in
6572		 * one of the PXP internal queues with "old" ILT addresses
6573		 */
6574		msleep(20);
6575		/*
6576		 * Master enable - Due to WB DMAE writes performed before this
6577		 * register is re-initialized as part of the regular function
6578		 * init
6579		 */
6580		REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
6581		/* Enable the function in IGU */
6582		REG_WR(bp, IGU_REG_PF_CONFIGURATION, pf_conf);
6583	}
6584
6585	bp->dmae_ready = 1;
6586
6587	bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
6588
6589	if (!CHIP_IS_E1x(bp))
6590		REG_WR(bp, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, func);
6591
6592	bnx2x_init_block(bp, BLOCK_ATC, init_phase);
6593	bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
6594	bnx2x_init_block(bp, BLOCK_NIG, init_phase);
6595	bnx2x_init_block(bp, BLOCK_SRC, init_phase);
6596	bnx2x_init_block(bp, BLOCK_MISC, init_phase);
6597	bnx2x_init_block(bp, BLOCK_TCM, init_phase);
6598	bnx2x_init_block(bp, BLOCK_UCM, init_phase);
6599	bnx2x_init_block(bp, BLOCK_CCM, init_phase);
6600	bnx2x_init_block(bp, BLOCK_XCM, init_phase);
6601	bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
6602	bnx2x_init_block(bp, BLOCK_USEM, init_phase);
6603	bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
6604	bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
6605
6606	if (!CHIP_IS_E1x(bp))
6607		REG_WR(bp, QM_REG_PF_EN, 1);
6608
6609	if (!CHIP_IS_E1x(bp)) {
6610		REG_WR(bp, TSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
6611		REG_WR(bp, USEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
6612		REG_WR(bp, CSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
6613		REG_WR(bp, XSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
6614	}
6615	bnx2x_init_block(bp, BLOCK_QM, init_phase);
6616
6617	bnx2x_init_block(bp, BLOCK_TM, init_phase);
6618	bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
6619	bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
6620	bnx2x_init_block(bp, BLOCK_PRS, init_phase);
6621	bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
6622	bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
6623	bnx2x_init_block(bp, BLOCK_USDM, init_phase);
6624	bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
6625	bnx2x_init_block(bp, BLOCK_UPB, init_phase);
6626	bnx2x_init_block(bp, BLOCK_XPB, init_phase);
6627	bnx2x_init_block(bp, BLOCK_PBF, init_phase);
6628	if (!CHIP_IS_E1x(bp))
6629		REG_WR(bp, PBF_REG_DISABLE_PF, 0);
6630
6631	bnx2x_init_block(bp, BLOCK_CDU, init_phase);
6632
6633	bnx2x_init_block(bp, BLOCK_CFC, init_phase);
6634
6635	if (!CHIP_IS_E1x(bp))
6636		REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 1);
6637
6638	if (IS_MF(bp)) {
6639		REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 1);
6640		REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + port*8, bp->mf_ov);
6641	}
6642
6643	bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
6644
6645	/* HC init per function */
6646	if (bp->common.int_block == INT_BLOCK_HC) {
6647		if (CHIP_IS_E1H(bp)) {
6648			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
6649
6650			REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
6651			REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
6652		}
6653		bnx2x_init_block(bp, BLOCK_HC, init_phase);
6654
6655	} else {
6656		int num_segs, sb_idx, prod_offset;
6657
6658		REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
6659
6660		if (!CHIP_IS_E1x(bp)) {
6661			REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
6662			REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
6663		}
6664
6665		bnx2x_init_block(bp, BLOCK_IGU, init_phase);
6666
6667		if (!CHIP_IS_E1x(bp)) {
6668			int dsb_idx = 0;
6669			/**
6670			 * Producer memory:
6671			 * E2 mode: address 0-135 match to the mapping memory;
6672			 * 136 - PF0 default prod; 137 - PF1 default prod;
6673			 * 138 - PF2 default prod; 139 - PF3 default prod;
6674			 * 140 - PF0 attn prod;    141 - PF1 attn prod;
6675			 * 142 - PF2 attn prod;    143 - PF3 attn prod;
6676			 * 144-147 reserved.
6677			 *
6678			 * E1.5 mode - In backward compatible mode;
6679			 * for non default SB; each even line in the memory
6680			 * holds the U producer and each odd line hold
6681			 * the C producer. The first 128 producers are for
6682			 * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20
6683			 * producers are for the DSB for each PF.
6684			 * Each PF has five segments: (the order inside each
6685			 * segment is PF0; PF1; PF2; PF3) - 128-131 U prods;
6686			 * 132-135 C prods; 136-139 X prods; 140-143 T prods;
6687			 * 144-147 attn prods;
6688			 */
6689			/* non-default-status-blocks */
6690			num_segs = CHIP_INT_MODE_IS_BC(bp) ?
6691				IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS;
6692			for (sb_idx = 0; sb_idx < bp->igu_sb_cnt; sb_idx++) {
6693				prod_offset = (bp->igu_base_sb + sb_idx) *
6694					num_segs;
6695
6696				for (i = 0; i < num_segs; i++) {
6697					addr = IGU_REG_PROD_CONS_MEMORY +
6698							(prod_offset + i) * 4;
6699					REG_WR(bp, addr, 0);
6700				}
6701				/* send consumer update with value 0 */
6702				bnx2x_ack_sb(bp, bp->igu_base_sb + sb_idx,
6703					     USTORM_ID, 0, IGU_INT_NOP, 1);
6704				bnx2x_igu_clear_sb(bp,
6705						   bp->igu_base_sb + sb_idx);
6706			}
6707
6708			/* default-status-blocks */
6709			num_segs = CHIP_INT_MODE_IS_BC(bp) ?
6710				IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS;
6711
6712			if (CHIP_MODE_IS_4_PORT(bp))
6713				dsb_idx = BP_FUNC(bp);
6714			else
6715				dsb_idx = BP_VN(bp);
6716
6717			prod_offset = (CHIP_INT_MODE_IS_BC(bp) ?
6718				       IGU_BC_BASE_DSB_PROD + dsb_idx :
6719				       IGU_NORM_BASE_DSB_PROD + dsb_idx);
6720
6721			/*
6722			 * igu prods come in chunks of E1HVN_MAX (4) -
6723			 * does not matters what is the current chip mode
6724			 */
6725			for (i = 0; i < (num_segs * E1HVN_MAX);
6726			     i += E1HVN_MAX) {
6727				addr = IGU_REG_PROD_CONS_MEMORY +
6728							(prod_offset + i)*4;
6729				REG_WR(bp, addr, 0);
6730			}
6731			/* send consumer update with 0 */
6732			if (CHIP_INT_MODE_IS_BC(bp)) {
6733				bnx2x_ack_sb(bp, bp->igu_dsb_id,
6734					     USTORM_ID, 0, IGU_INT_NOP, 1);
6735				bnx2x_ack_sb(bp, bp->igu_dsb_id,
6736					     CSTORM_ID, 0, IGU_INT_NOP, 1);
6737				bnx2x_ack_sb(bp, bp->igu_dsb_id,
6738					     XSTORM_ID, 0, IGU_INT_NOP, 1);
6739				bnx2x_ack_sb(bp, bp->igu_dsb_id,
6740					     TSTORM_ID, 0, IGU_INT_NOP, 1);
6741				bnx2x_ack_sb(bp, bp->igu_dsb_id,
6742					     ATTENTION_ID, 0, IGU_INT_NOP, 1);
6743			} else {
6744				bnx2x_ack_sb(bp, bp->igu_dsb_id,
6745					     USTORM_ID, 0, IGU_INT_NOP, 1);
6746				bnx2x_ack_sb(bp, bp->igu_dsb_id,
6747					     ATTENTION_ID, 0, IGU_INT_NOP, 1);
6748			}
6749			bnx2x_igu_clear_sb(bp, bp->igu_dsb_id);
6750
6751			/* !!! these should become driver const once
6752			   rf-tool supports split-68 const */
6753			REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
6754			REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
6755			REG_WR(bp, IGU_REG_SB_MASK_LSB, 0);
6756			REG_WR(bp, IGU_REG_SB_MASK_MSB, 0);
6757			REG_WR(bp, IGU_REG_PBA_STATUS_LSB, 0);
6758			REG_WR(bp, IGU_REG_PBA_STATUS_MSB, 0);
6759		}
6760	}
6761
6762	/* Reset PCIE errors for debug */
6763	REG_WR(bp, 0x2114, 0xffffffff);
6764	REG_WR(bp, 0x2120, 0xffffffff);
6765
6766	if (CHIP_IS_E1x(bp)) {
6767		main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/
6768		main_mem_base = HC_REG_MAIN_MEMORY +
6769				BP_PORT(bp) * (main_mem_size * 4);
6770		main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR;
6771		main_mem_width = 8;
6772
6773		val = REG_RD(bp, main_mem_prty_clr);
6774		if (val)
6775			DP(BNX2X_MSG_MCP, "Hmmm... Parity errors in HC "
6776					  "block during "
6777					  "function init (0x%x)!\n", val);
6778
6779		/* Clear "false" parity errors in MSI-X table */
6780		for (i = main_mem_base;
6781		     i < main_mem_base + main_mem_size * 4;
6782		     i += main_mem_width) {
6783			bnx2x_read_dmae(bp, i, main_mem_width / 4);
6784			bnx2x_write_dmae(bp, bnx2x_sp_mapping(bp, wb_data),
6785					 i, main_mem_width / 4);
6786		}
6787		/* Clear HC parity attention */
6788		REG_RD(bp, main_mem_prty_clr);
6789	}
6790
6791#ifdef BNX2X_STOP_ON_ERROR
6792	/* Enable STORMs SP logging */
6793	REG_WR8(bp, BAR_USTRORM_INTMEM +
6794	       USTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
6795	REG_WR8(bp, BAR_TSTRORM_INTMEM +
6796	       TSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
6797	REG_WR8(bp, BAR_CSTRORM_INTMEM +
6798	       CSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
6799	REG_WR8(bp, BAR_XSTRORM_INTMEM +
6800	       XSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
6801#endif
6802
6803	bnx2x_phy_probe(&bp->link_params);
6804
6805	return 0;
6806}
6807
6808
6809void bnx2x_free_mem(struct bnx2x *bp)
6810{
6811	/* fastpath */
6812	bnx2x_free_fp_mem(bp);
6813	/* end of fastpath */
6814
6815	BNX2X_PCI_FREE(bp->def_status_blk, bp->def_status_blk_mapping,
6816		       sizeof(struct host_sp_status_block));
6817
6818	BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping,
6819		       bp->fw_stats_data_sz + bp->fw_stats_req_sz);
6820
6821	BNX2X_PCI_FREE(bp->slowpath, bp->slowpath_mapping,
6822		       sizeof(struct bnx2x_slowpath));
6823
6824	BNX2X_PCI_FREE(bp->context.vcxt, bp->context.cxt_mapping,
6825		       bp->context.size);
6826
6827	bnx2x_ilt_mem_op(bp, ILT_MEMOP_FREE);
6828
6829	BNX2X_FREE(bp->ilt->lines);
6830
6831#ifdef BCM_CNIC
6832	if (!CHIP_IS_E1x(bp))
6833		BNX2X_PCI_FREE(bp->cnic_sb.e2_sb, bp->cnic_sb_mapping,
6834			       sizeof(struct host_hc_status_block_e2));
6835	else
6836		BNX2X_PCI_FREE(bp->cnic_sb.e1x_sb, bp->cnic_sb_mapping,
6837			       sizeof(struct host_hc_status_block_e1x));
6838
6839	BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ);
6840#endif
6841
6842	BNX2X_PCI_FREE(bp->spq, bp->spq_mapping, BCM_PAGE_SIZE);
6843
6844	BNX2X_PCI_FREE(bp->eq_ring, bp->eq_mapping,
6845		       BCM_PAGE_SIZE * NUM_EQ_PAGES);
6846}
6847
6848static inline int bnx2x_alloc_fw_stats_mem(struct bnx2x *bp)
6849{
6850	int num_groups;
6851
6852	/* number of eth_queues */
6853	u8 num_queue_stats = BNX2X_NUM_ETH_QUEUES(bp);
6854
6855	/* Total number of FW statistics requests =
6856	 * 1 for port stats + 1 for PF stats + num_eth_queues */
6857	bp->fw_stats_num = 2 + num_queue_stats;
6858
6859
6860	/* Request is built from stats_query_header and an array of
6861	 * stats_query_cmd_group each of which contains
6862	 * STATS_QUERY_CMD_COUNT rules. The real number or requests is
6863	 * configured in the stats_query_header.
6864	 */
6865	num_groups = (2 + num_queue_stats) / STATS_QUERY_CMD_COUNT +
6866		(((2 + num_queue_stats) % STATS_QUERY_CMD_COUNT) ? 1 : 0);
6867
6868	bp->fw_stats_req_sz = sizeof(struct stats_query_header) +
6869			num_groups * sizeof(struct stats_query_cmd_group);
6870
6871	/* Data for statistics requests + stats_conter
6872	 *
6873	 * stats_counter holds per-STORM counters that are incremented
6874	 * when STORM has finished with the current request.
6875	 */
6876	bp->fw_stats_data_sz = sizeof(struct per_port_stats) +
6877		sizeof(struct per_pf_stats) +
6878		sizeof(struct per_queue_stats) * num_queue_stats +
6879		sizeof(struct stats_counter);
6880
6881	BNX2X_PCI_ALLOC(bp->fw_stats, &bp->fw_stats_mapping,
6882			bp->fw_stats_data_sz + bp->fw_stats_req_sz);
6883
6884	/* Set shortcuts */
6885	bp->fw_stats_req = (struct bnx2x_fw_stats_req *)bp->fw_stats;
6886	bp->fw_stats_req_mapping = bp->fw_stats_mapping;
6887
6888	bp->fw_stats_data = (struct bnx2x_fw_stats_data *)
6889		((u8 *)bp->fw_stats + bp->fw_stats_req_sz);
6890
6891	bp->fw_stats_data_mapping = bp->fw_stats_mapping +
6892				   bp->fw_stats_req_sz;
6893	return 0;
6894
6895alloc_mem_err:
6896	BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping,
6897		       bp->fw_stats_data_sz + bp->fw_stats_req_sz);
6898	return -ENOMEM;
6899}
6900
6901
6902int bnx2x_alloc_mem(struct bnx2x *bp)
6903{
6904#ifdef BCM_CNIC
6905	if (!CHIP_IS_E1x(bp))
6906		/* size = the status block + ramrod buffers */
6907		BNX2X_PCI_ALLOC(bp->cnic_sb.e2_sb, &bp->cnic_sb_mapping,
6908				sizeof(struct host_hc_status_block_e2));
6909	else
6910		BNX2X_PCI_ALLOC(bp->cnic_sb.e1x_sb, &bp->cnic_sb_mapping,
6911				sizeof(struct host_hc_status_block_e1x));
6912
6913	/* allocate searcher T2 table */
6914	BNX2X_PCI_ALLOC(bp->t2, &bp->t2_mapping, SRC_T2_SZ);
6915#endif
6916
6917
6918	BNX2X_PCI_ALLOC(bp->def_status_blk, &bp->def_status_blk_mapping,
6919			sizeof(struct host_sp_status_block));
6920
6921	BNX2X_PCI_ALLOC(bp->slowpath, &bp->slowpath_mapping,
6922			sizeof(struct bnx2x_slowpath));
6923
6924	/* Allocated memory for FW statistics  */
6925	if (bnx2x_alloc_fw_stats_mem(bp))
6926		goto alloc_mem_err;
6927
6928	bp->context.size = sizeof(union cdu_context) * BNX2X_L2_CID_COUNT(bp);
6929
6930	BNX2X_PCI_ALLOC(bp->context.vcxt, &bp->context.cxt_mapping,
6931			bp->context.size);
6932
6933	BNX2X_ALLOC(bp->ilt->lines, sizeof(struct ilt_line) * ILT_MAX_LINES);
6934
6935	if (bnx2x_ilt_mem_op(bp, ILT_MEMOP_ALLOC))
6936		goto alloc_mem_err;
6937
6938	/* Slow path ring */
6939	BNX2X_PCI_ALLOC(bp->spq, &bp->spq_mapping, BCM_PAGE_SIZE);
6940
6941	/* EQ */
6942	BNX2X_PCI_ALLOC(bp->eq_ring, &bp->eq_mapping,
6943			BCM_PAGE_SIZE * NUM_EQ_PAGES);
6944
6945
6946	/* fastpath */
6947	/* need to be done at the end, since it's self adjusting to amount
6948	 * of memory available for RSS queues
6949	 */
6950	if (bnx2x_alloc_fp_mem(bp))
6951		goto alloc_mem_err;
6952	return 0;
6953
6954alloc_mem_err:
6955	bnx2x_free_mem(bp);
6956	return -ENOMEM;
6957}
6958
6959/*
6960 * Init service functions
6961 */
6962
6963int bnx2x_set_mac_one(struct bnx2x *bp, u8 *mac,
6964		      struct bnx2x_vlan_mac_obj *obj, bool set,
6965		      int mac_type, unsigned long *ramrod_flags)
6966{
6967	int rc;
6968	struct bnx2x_vlan_mac_ramrod_params ramrod_param;
6969
6970	memset(&ramrod_param, 0, sizeof(ramrod_param));
6971
6972	/* Fill general parameters */
6973	ramrod_param.vlan_mac_obj = obj;
6974	ramrod_param.ramrod_flags = *ramrod_flags;
6975
6976	/* Fill a user request section if needed */
6977	if (!test_bit(RAMROD_CONT, ramrod_flags)) {
6978		memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN);
6979
6980		__set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags);
6981
6982		/* Set the command: ADD or DEL */
6983		if (set)
6984			ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_ADD;
6985		else
6986			ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_DEL;
6987	}
6988
6989	rc = bnx2x_config_vlan_mac(bp, &ramrod_param);
6990	if (rc < 0)
6991		BNX2X_ERR("%s MAC failed\n", (set ? "Set" : "Del"));
6992	return rc;
6993}
6994
6995int bnx2x_del_all_macs(struct bnx2x *bp,
6996		       struct bnx2x_vlan_mac_obj *mac_obj,
6997		       int mac_type, bool wait_for_comp)
6998{
6999	int rc;
7000	unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
7001
7002	/* Wait for completion of requested */
7003	if (wait_for_comp)
7004		__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
7005
7006	/* Set the mac type of addresses we want to clear */
7007	__set_bit(mac_type, &vlan_mac_flags);
7008
7009	rc = mac_obj->delete_all(bp, mac_obj, &vlan_mac_flags, &ramrod_flags);
7010	if (rc < 0)
7011		BNX2X_ERR("Failed to delete MACs: %d\n", rc);
7012
7013	return rc;
7014}
7015
7016int bnx2x_set_eth_mac(struct bnx2x *bp, bool set)
7017{
7018	unsigned long ramrod_flags = 0;
7019
7020	DP(NETIF_MSG_IFUP, "Adding Eth MAC\n");
7021
7022	__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
7023	/* Eth MAC is set on RSS leading client (fp[0]) */
7024	return bnx2x_set_mac_one(bp, bp->dev->dev_addr, &bp->fp->mac_obj, set,
7025				 BNX2X_ETH_MAC, &ramrod_flags);
7026}
7027
7028int bnx2x_setup_leading(struct bnx2x *bp)
7029{
7030	return bnx2x_setup_queue(bp, &bp->fp[0], 1);
7031}
7032
7033/**
7034 * bnx2x_set_int_mode - configure interrupt mode
7035 *
7036 * @bp:		driver handle
7037 *
7038 * In case of MSI-X it will also try to enable MSI-X.
7039 */
7040static void __devinit bnx2x_set_int_mode(struct bnx2x *bp)
7041{
7042	switch (int_mode) {
7043	case INT_MODE_MSI:
7044		bnx2x_enable_msi(bp);
7045		/* falling through... */
7046	case INT_MODE_INTx:
7047		bp->num_queues = 1 + NON_ETH_CONTEXT_USE;
7048		DP(NETIF_MSG_IFUP, "set number of queues to 1\n");
7049		break;
7050	default:
7051		/* Set number of queues according to bp->multi_mode value */
7052		bnx2x_set_num_queues(bp);
7053
7054		DP(NETIF_MSG_IFUP, "set number of queues to %d\n",
7055		   bp->num_queues);
7056
7057		/* if we can't use MSI-X we only need one fp,
7058		 * so try to enable MSI-X with the requested number of fp's
7059		 * and fallback to MSI or legacy INTx with one fp
7060		 */
7061		if (bnx2x_enable_msix(bp)) {
7062			/* failed to enable MSI-X */
7063			if (bp->multi_mode)
7064				DP(NETIF_MSG_IFUP,
7065					  "Multi requested but failed to "
7066					  "enable MSI-X (%d), "
7067					  "set number of queues to %d\n",
7068				   bp->num_queues,
7069				   1 + NON_ETH_CONTEXT_USE);
7070			bp->num_queues = 1 + NON_ETH_CONTEXT_USE;
7071
7072			/* Try to enable MSI */
7073			if (!(bp->flags & DISABLE_MSI_FLAG))
7074				bnx2x_enable_msi(bp);
7075		}
7076		break;
7077	}
7078}
7079
7080/* must be called prioir to any HW initializations */
7081static inline u16 bnx2x_cid_ilt_lines(struct bnx2x *bp)
7082{
7083	return L2_ILT_LINES(bp);
7084}
7085
7086void bnx2x_ilt_set_info(struct bnx2x *bp)
7087{
7088	struct ilt_client_info *ilt_client;
7089	struct bnx2x_ilt *ilt = BP_ILT(bp);
7090	u16 line = 0;
7091
7092	ilt->start_line = FUNC_ILT_BASE(BP_FUNC(bp));
7093	DP(BNX2X_MSG_SP, "ilt starts at line %d\n", ilt->start_line);
7094
7095	/* CDU */
7096	ilt_client = &ilt->clients[ILT_CLIENT_CDU];
7097	ilt_client->client_num = ILT_CLIENT_CDU;
7098	ilt_client->page_size = CDU_ILT_PAGE_SZ;
7099	ilt_client->flags = ILT_CLIENT_SKIP_MEM;
7100	ilt_client->start = line;
7101	line += bnx2x_cid_ilt_lines(bp);
7102#ifdef BCM_CNIC
7103	line += CNIC_ILT_LINES;
7104#endif
7105	ilt_client->end = line - 1;
7106
7107	DP(BNX2X_MSG_SP, "ilt client[CDU]: start %d, end %d, psz 0x%x, "
7108					 "flags 0x%x, hw psz %d\n",
7109	   ilt_client->start,
7110	   ilt_client->end,
7111	   ilt_client->page_size,
7112	   ilt_client->flags,
7113	   ilog2(ilt_client->page_size >> 12));
7114
7115	/* QM */
7116	if (QM_INIT(bp->qm_cid_count)) {
7117		ilt_client = &ilt->clients[ILT_CLIENT_QM];
7118		ilt_client->client_num = ILT_CLIENT_QM;
7119		ilt_client->page_size = QM_ILT_PAGE_SZ;
7120		ilt_client->flags = 0;
7121		ilt_client->start = line;
7122
7123		/* 4 bytes for each cid */
7124		line += DIV_ROUND_UP(bp->qm_cid_count * QM_QUEUES_PER_FUNC * 4,
7125							 QM_ILT_PAGE_SZ);
7126
7127		ilt_client->end = line - 1;
7128
7129		DP(BNX2X_MSG_SP, "ilt client[QM]: start %d, end %d, psz 0x%x, "
7130						 "flags 0x%x, hw psz %d\n",
7131		   ilt_client->start,
7132		   ilt_client->end,
7133		   ilt_client->page_size,
7134		   ilt_client->flags,
7135		   ilog2(ilt_client->page_size >> 12));
7136
7137	}
7138	/* SRC */
7139	ilt_client = &ilt->clients[ILT_CLIENT_SRC];
7140#ifdef BCM_CNIC
7141	ilt_client->client_num = ILT_CLIENT_SRC;
7142	ilt_client->page_size = SRC_ILT_PAGE_SZ;
7143	ilt_client->flags = 0;
7144	ilt_client->start = line;
7145	line += SRC_ILT_LINES;
7146	ilt_client->end = line - 1;
7147
7148	DP(BNX2X_MSG_SP, "ilt client[SRC]: start %d, end %d, psz 0x%x, "
7149					 "flags 0x%x, hw psz %d\n",
7150	   ilt_client->start,
7151	   ilt_client->end,
7152	   ilt_client->page_size,
7153	   ilt_client->flags,
7154	   ilog2(ilt_client->page_size >> 12));
7155
7156#else
7157	ilt_client->flags = (ILT_CLIENT_SKIP_INIT | ILT_CLIENT_SKIP_MEM);
7158#endif
7159
7160	/* TM */
7161	ilt_client = &ilt->clients[ILT_CLIENT_TM];
7162#ifdef BCM_CNIC
7163	ilt_client->client_num = ILT_CLIENT_TM;
7164	ilt_client->page_size = TM_ILT_PAGE_SZ;
7165	ilt_client->flags = 0;
7166	ilt_client->start = line;
7167	line += TM_ILT_LINES;
7168	ilt_client->end = line - 1;
7169
7170	DP(BNX2X_MSG_SP, "ilt client[TM]: start %d, end %d, psz 0x%x, "
7171					 "flags 0x%x, hw psz %d\n",
7172	   ilt_client->start,
7173	   ilt_client->end,
7174	   ilt_client->page_size,
7175	   ilt_client->flags,
7176	   ilog2(ilt_client->page_size >> 12));
7177
7178#else
7179	ilt_client->flags = (ILT_CLIENT_SKIP_INIT | ILT_CLIENT_SKIP_MEM);
7180#endif
7181	BUG_ON(line > ILT_MAX_LINES);
7182}
7183
7184/**
7185 * bnx2x_pf_q_prep_init - prepare INIT transition parameters
7186 *
7187 * @bp:			driver handle
7188 * @fp:			pointer to fastpath
7189 * @init_params:	pointer to parameters structure
7190 *
7191 * parameters configured:
7192 *      - HC configuration
7193 *      - Queue's CDU context
7194 */
7195static inline void bnx2x_pf_q_prep_init(struct bnx2x *bp,
7196	struct bnx2x_fastpath *fp, struct bnx2x_queue_init_params *init_params)
7197{
7198
7199	u8 cos;
7200	/* FCoE Queue uses Default SB, thus has no HC capabilities */
7201	if (!IS_FCOE_FP(fp)) {
7202		__set_bit(BNX2X_Q_FLG_HC, &init_params->rx.flags);
7203		__set_bit(BNX2X_Q_FLG_HC, &init_params->tx.flags);
7204
7205		/* If HC is supporterd, enable host coalescing in the transition
7206		 * to INIT state.
7207		 */
7208		__set_bit(BNX2X_Q_FLG_HC_EN, &init_params->rx.flags);
7209		__set_bit(BNX2X_Q_FLG_HC_EN, &init_params->tx.flags);
7210
7211		/* HC rate */
7212		init_params->rx.hc_rate = bp->rx_ticks ?
7213			(1000000 / bp->rx_ticks) : 0;
7214		init_params->tx.hc_rate = bp->tx_ticks ?
7215			(1000000 / bp->tx_ticks) : 0;
7216
7217		/* FW SB ID */
7218		init_params->rx.fw_sb_id = init_params->tx.fw_sb_id =
7219			fp->fw_sb_id;
7220
7221		/*
7222		 * CQ index among the SB indices: FCoE clients uses the default
7223		 * SB, therefore it's different.
7224		 */
7225		init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
7226		init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS;
7227	}
7228
7229	/* set maximum number of COSs supported by this queue */
7230	init_params->max_cos = fp->max_cos;
7231
7232	DP(BNX2X_MSG_SP, "fp: %d setting queue params max cos to: %d\n",
7233	    fp->index, init_params->max_cos);
7234
7235	/* set the context pointers queue object */
7236	for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++)
7237		init_params->cxts[cos] =
7238			&bp->context.vcxt[fp->txdata[cos].cid].eth;
7239}
7240
7241int bnx2x_setup_tx_only(struct bnx2x *bp, struct bnx2x_fastpath *fp,
7242			struct bnx2x_queue_state_params *q_params,
7243			struct bnx2x_queue_setup_tx_only_params *tx_only_params,
7244			int tx_index, bool leading)
7245{
7246	memset(tx_only_params, 0, sizeof(*tx_only_params));
7247
7248	/* Set the command */
7249	q_params->cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
7250
7251	/* Set tx-only QUEUE flags: don't zero statistics */
7252	tx_only_params->flags = bnx2x_get_common_flags(bp, fp, false);
7253
7254	/* choose the index of the cid to send the slow path on */
7255	tx_only_params->cid_index = tx_index;
7256
7257	/* Set general TX_ONLY_SETUP parameters */
7258	bnx2x_pf_q_prep_general(bp, fp, &tx_only_params->gen_params, tx_index);
7259
7260	/* Set Tx TX_ONLY_SETUP parameters */
7261	bnx2x_pf_tx_q_prep(bp, fp, &tx_only_params->txq_params, tx_index);
7262
7263	DP(BNX2X_MSG_SP, "preparing to send tx-only ramrod for connection:"
7264			 "cos %d, primary cid %d, cid %d, "
7265			 "client id %d, sp-client id %d, flags %lx\n",
7266	   tx_index, q_params->q_obj->cids[FIRST_TX_COS_INDEX],
7267	   q_params->q_obj->cids[tx_index], q_params->q_obj->cl_id,
7268	   tx_only_params->gen_params.spcl_id, tx_only_params->flags);
7269
7270	/* send the ramrod */
7271	return bnx2x_queue_state_change(bp, q_params);
7272}
7273
7274
7275/**
7276 * bnx2x_setup_queue - setup queue
7277 *
7278 * @bp:		driver handle
7279 * @fp:		pointer to fastpath
7280 * @leading:	is leading
7281 *
7282 * This function performs 2 steps in a Queue state machine
7283 *      actually: 1) RESET->INIT 2) INIT->SETUP
7284 */
7285
7286int bnx2x_setup_queue(struct bnx2x *bp, struct bnx2x_fastpath *fp,
7287		       bool leading)
7288{
7289	struct bnx2x_queue_state_params q_params = {0};
7290	struct bnx2x_queue_setup_params *setup_params =
7291						&q_params.params.setup;
7292	struct bnx2x_queue_setup_tx_only_params *tx_only_params =
7293						&q_params.params.tx_only;
7294	int rc;
7295	u8 tx_index;
7296
7297	DP(BNX2X_MSG_SP, "setting up queue %d\n", fp->index);
7298
7299	/* reset IGU state skip FCoE L2 queue */
7300	if (!IS_FCOE_FP(fp))
7301		bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, 0,
7302			     IGU_INT_ENABLE, 0);
7303
7304	q_params.q_obj = &fp->q_obj;
7305	/* We want to wait for completion in this context */
7306	__set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
7307
7308	/* Prepare the INIT parameters */
7309	bnx2x_pf_q_prep_init(bp, fp, &q_params.params.init);
7310
7311	/* Set the command */
7312	q_params.cmd = BNX2X_Q_CMD_INIT;
7313
7314	/* Change the state to INIT */
7315	rc = bnx2x_queue_state_change(bp, &q_params);
7316	if (rc) {
7317		BNX2X_ERR("Queue(%d) INIT failed\n", fp->index);
7318		return rc;
7319	}
7320
7321	DP(BNX2X_MSG_SP, "init complete\n");
7322
7323
7324	/* Now move the Queue to the SETUP state... */
7325	memset(setup_params, 0, sizeof(*setup_params));
7326
7327	/* Set QUEUE flags */
7328	setup_params->flags = bnx2x_get_q_flags(bp, fp, leading);
7329
7330	/* Set general SETUP parameters */
7331	bnx2x_pf_q_prep_general(bp, fp, &setup_params->gen_params,
7332				FIRST_TX_COS_INDEX);
7333
7334	bnx2x_pf_rx_q_prep(bp, fp, &setup_params->pause_params,
7335			    &setup_params->rxq_params);
7336
7337	bnx2x_pf_tx_q_prep(bp, fp, &setup_params->txq_params,
7338			   FIRST_TX_COS_INDEX);
7339
7340	/* Set the command */
7341	q_params.cmd = BNX2X_Q_CMD_SETUP;
7342
7343	/* Change the state to SETUP */
7344	rc = bnx2x_queue_state_change(bp, &q_params);
7345	if (rc) {
7346		BNX2X_ERR("Queue(%d) SETUP failed\n", fp->index);
7347		return rc;
7348	}
7349
7350	/* loop through the relevant tx-only indices */
7351	for (tx_index = FIRST_TX_ONLY_COS_INDEX;
7352	      tx_index < fp->max_cos;
7353	      tx_index++) {
7354
7355		/* prepare and send tx-only ramrod*/
7356		rc = bnx2x_setup_tx_only(bp, fp, &q_params,
7357					  tx_only_params, tx_index, leading);
7358		if (rc) {
7359			BNX2X_ERR("Queue(%d.%d) TX_ONLY_SETUP failed\n",
7360				  fp->index, tx_index);
7361			return rc;
7362		}
7363	}
7364
7365	return rc;
7366}
7367
7368static int bnx2x_stop_queue(struct bnx2x *bp, int index)
7369{
7370	struct bnx2x_fastpath *fp = &bp->fp[index];
7371	struct bnx2x_fp_txdata *txdata;
7372	struct bnx2x_queue_state_params q_params = {0};
7373	int rc, tx_index;
7374
7375	DP(BNX2X_MSG_SP, "stopping queue %d cid %d\n", index, fp->cid);
7376
7377	q_params.q_obj = &fp->q_obj;
7378	/* We want to wait for completion in this context */
7379	__set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
7380
7381
7382	/* close tx-only connections */
7383	for (tx_index = FIRST_TX_ONLY_COS_INDEX;
7384	     tx_index < fp->max_cos;
7385	     tx_index++){
7386
7387		/* ascertain this is a normal queue*/
7388		txdata = &fp->txdata[tx_index];
7389
7390		DP(BNX2X_MSG_SP, "stopping tx-only queue %d\n",
7391							txdata->txq_index);
7392
7393		/* send halt terminate on tx-only connection */
7394		q_params.cmd = BNX2X_Q_CMD_TERMINATE;
7395		memset(&q_params.params.terminate, 0,
7396		       sizeof(q_params.params.terminate));
7397		q_params.params.terminate.cid_index = tx_index;
7398
7399		rc = bnx2x_queue_state_change(bp, &q_params);
7400		if (rc)
7401			return rc;
7402
7403		/* send halt terminate on tx-only connection */
7404		q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
7405		memset(&q_params.params.cfc_del, 0,
7406		       sizeof(q_params.params.cfc_del));
7407		q_params.params.cfc_del.cid_index = tx_index;
7408		rc = bnx2x_queue_state_change(bp, &q_params);
7409		if (rc)
7410			return rc;
7411	}
7412	/* Stop the primary connection: */
7413	/* ...halt the connection */
7414	q_params.cmd = BNX2X_Q_CMD_HALT;
7415	rc = bnx2x_queue_state_change(bp, &q_params);
7416	if (rc)
7417		return rc;
7418
7419	/* ...terminate the connection */
7420	q_params.cmd = BNX2X_Q_CMD_TERMINATE;
7421	memset(&q_params.params.terminate, 0,
7422	       sizeof(q_params.params.terminate));
7423	q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX;
7424	rc = bnx2x_queue_state_change(bp, &q_params);
7425	if (rc)
7426		return rc;
7427	/* ...delete cfc entry */
7428	q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
7429	memset(&q_params.params.cfc_del, 0,
7430	       sizeof(q_params.params.cfc_del));
7431	q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX;
7432	return bnx2x_queue_state_change(bp, &q_params);
7433}
7434
7435
7436static void bnx2x_reset_func(struct bnx2x *bp)
7437{
7438	int port = BP_PORT(bp);
7439	int func = BP_FUNC(bp);
7440	int i;
7441
7442	/* Disable the function in the FW */
7443	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0);
7444	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0);
7445	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0);
7446	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0);
7447
7448	/* FP SBs */
7449	for_each_eth_queue(bp, i) {
7450		struct bnx2x_fastpath *fp = &bp->fp[i];
7451		REG_WR8(bp, BAR_CSTRORM_INTMEM +
7452			   CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id),
7453			   SB_DISABLED);
7454	}
7455
7456#ifdef BCM_CNIC
7457	/* CNIC SB */
7458	REG_WR8(bp, BAR_CSTRORM_INTMEM +
7459		CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(bnx2x_cnic_fw_sb_id(bp)),
7460		SB_DISABLED);
7461#endif
7462	/* SP SB */
7463	REG_WR8(bp, BAR_CSTRORM_INTMEM +
7464		   CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func),
7465		   SB_DISABLED);
7466
7467	for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++)
7468		REG_WR(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func),
7469		       0);
7470
7471	/* Configure IGU */
7472	if (bp->common.int_block == INT_BLOCK_HC) {
7473		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
7474		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
7475	} else {
7476		REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
7477		REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
7478	}
7479
7480#ifdef BCM_CNIC
7481	/* Disable Timer scan */
7482	REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 0);
7483	/*
7484	 * Wait for at least 10ms and up to 2 second for the timers scan to
7485	 * complete
7486	 */
7487	for (i = 0; i < 200; i++) {
7488		msleep(10);
7489		if (!REG_RD(bp, TM_REG_LIN0_SCAN_ON + port*4))
7490			break;
7491	}
7492#endif
7493	/* Clear ILT */
7494	bnx2x_clear_func_ilt(bp, func);
7495
7496	/* Timers workaround bug for E2: if this is vnic-3,
7497	 * we need to set the entire ilt range for this timers.
7498	 */
7499	if (!CHIP_IS_E1x(bp) && BP_VN(bp) == 3) {
7500		struct ilt_client_info ilt_cli;
7501		/* use dummy TM client */
7502		memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
7503		ilt_cli.start = 0;
7504		ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
7505		ilt_cli.client_num = ILT_CLIENT_TM;
7506
7507		bnx2x_ilt_boundry_init_op(bp, &ilt_cli, 0, INITOP_CLEAR);
7508	}
7509
7510	/* this assumes that reset_port() called before reset_func()*/
7511	if (!CHIP_IS_E1x(bp))
7512		bnx2x_pf_disable(bp);
7513
7514	bp->dmae_ready = 0;
7515}
7516
7517static void bnx2x_reset_port(struct bnx2x *bp)
7518{
7519	int port = BP_PORT(bp);
7520	u32 val;
7521
7522	/* Reset physical Link */
7523	bnx2x__link_reset(bp);
7524
7525	REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
7526
7527	/* Do not rcv packets to BRB */
7528	REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0);
7529	/* Do not direct rcv packets that are not for MCP to the BRB */
7530	REG_WR(bp, (port ? NIG_REG_LLH1_BRB1_NOT_MCP :
7531			   NIG_REG_LLH0_BRB1_NOT_MCP), 0x0);
7532
7533	/* Configure AEU */
7534	REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0);
7535
7536	msleep(100);
7537	/* Check for BRB port occupancy */
7538	val = REG_RD(bp, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4);
7539	if (val)
7540		DP(NETIF_MSG_IFDOWN,
7541		   "BRB1 is not empty  %d blocks are occupied\n", val);
7542
7543	/* TODO: Close Doorbell port? */
7544}
7545
7546static inline int bnx2x_reset_hw(struct bnx2x *bp, u32 load_code)
7547{
7548	struct bnx2x_func_state_params func_params = {0};
7549
7550	/* Prepare parameters for function state transitions */
7551	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
7552
7553	func_params.f_obj = &bp->func_obj;
7554	func_params.cmd = BNX2X_F_CMD_HW_RESET;
7555
7556	func_params.params.hw_init.load_phase = load_code;
7557
7558	return bnx2x_func_state_change(bp, &func_params);
7559}
7560
7561static inline int bnx2x_func_stop(struct bnx2x *bp)
7562{
7563	struct bnx2x_func_state_params func_params = {0};
7564	int rc;
7565
7566	/* Prepare parameters for function state transitions */
7567	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
7568	func_params.f_obj = &bp->func_obj;
7569	func_params.cmd = BNX2X_F_CMD_STOP;
7570
7571	/*
7572	 * Try to stop the function the 'good way'. If fails (in case
7573	 * of a parity error during bnx2x_chip_cleanup()) and we are
7574	 * not in a debug mode, perform a state transaction in order to
7575	 * enable further HW_RESET transaction.
7576	 */
7577	rc = bnx2x_func_state_change(bp, &func_params);
7578	if (rc) {
7579#ifdef BNX2X_STOP_ON_ERROR
7580		return rc;
7581#else
7582		BNX2X_ERR("FUNC_STOP ramrod failed. Running a dry "
7583			  "transaction\n");
7584		__set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
7585		return bnx2x_func_state_change(bp, &func_params);
7586#endif
7587	}
7588
7589	return 0;
7590}
7591
7592/**
7593 * bnx2x_send_unload_req - request unload mode from the MCP.
7594 *
7595 * @bp:			driver handle
7596 * @unload_mode:	requested function's unload mode
7597 *
7598 * Return unload mode returned by the MCP: COMMON, PORT or FUNC.
7599 */
7600u32 bnx2x_send_unload_req(struct bnx2x *bp, int unload_mode)
7601{
7602	u32 reset_code = 0;
7603	int port = BP_PORT(bp);
7604
7605	/* Select the UNLOAD request mode */
7606	if (unload_mode == UNLOAD_NORMAL)
7607		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
7608
7609	else if (bp->flags & NO_WOL_FLAG)
7610		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP;
7611
7612	else if (bp->wol) {
7613		u32 emac_base = port ? GRCBASE_EMAC1 : GRCBASE_EMAC0;
7614		u8 *mac_addr = bp->dev->dev_addr;
7615		u32 val;
7616		u16 pmc;
7617
7618		/* The mac address is written to entries 1-4 to
7619		 * preserve entry 0 which is used by the PMF
7620		 */
7621		u8 entry = (BP_VN(bp) + 1)*8;
7622
7623		val = (mac_addr[0] << 8) | mac_addr[1];
7624		EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry, val);
7625
7626		val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
7627		      (mac_addr[4] << 8) | mac_addr[5];
7628		EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry + 4, val);
7629
7630		/* Enable the PME and clear the status */
7631		pci_read_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, &pmc);
7632		pmc |= PCI_PM_CTRL_PME_ENABLE | PCI_PM_CTRL_PME_STATUS;
7633		pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, pmc);
7634
7635		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_EN;
7636
7637	} else
7638		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
7639
7640	/* Send the request to the MCP */
7641	if (!BP_NOMCP(bp))
7642		reset_code = bnx2x_fw_command(bp, reset_code, 0);
7643	else {
7644		int path = BP_PATH(bp);
7645
7646		DP(NETIF_MSG_IFDOWN, "NO MCP - load counts[%d]      "
7647				     "%d, %d, %d\n",
7648		   path, load_count[path][0], load_count[path][1],
7649		   load_count[path][2]);
7650		load_count[path][0]--;
7651		load_count[path][1 + port]--;
7652		DP(NETIF_MSG_IFDOWN, "NO MCP - new load counts[%d]  "
7653				     "%d, %d, %d\n",
7654		   path, load_count[path][0], load_count[path][1],
7655		   load_count[path][2]);
7656		if (load_count[path][0] == 0)
7657			reset_code = FW_MSG_CODE_DRV_UNLOAD_COMMON;
7658		else if (load_count[path][1 + port] == 0)
7659			reset_code = FW_MSG_CODE_DRV_UNLOAD_PORT;
7660		else
7661			reset_code = FW_MSG_CODE_DRV_UNLOAD_FUNCTION;
7662	}
7663
7664	return reset_code;
7665}
7666
7667/**
7668 * bnx2x_send_unload_done - send UNLOAD_DONE command to the MCP.
7669 *
7670 * @bp:		driver handle
7671 */
7672void bnx2x_send_unload_done(struct bnx2x *bp)
7673{
7674	/* Report UNLOAD_DONE to MCP */
7675	if (!BP_NOMCP(bp))
7676		bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0);
7677}
7678
7679static inline int bnx2x_func_wait_started(struct bnx2x *bp)
7680{
7681	int tout = 50;
7682	int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
7683
7684	if (!bp->port.pmf)
7685		return 0;
7686
7687	/*
7688	 * (assumption: No Attention from MCP at this stage)
7689	 * PMF probably in the middle of TXdisable/enable transaction
7690	 * 1. Sync IRS for default SB
7691	 * 2. Sync SP queue - this guarantes us that attention handling started
7692	 * 3. Wait, that TXdisable/enable transaction completes
7693	 *
7694	 * 1+2 guranty that if DCBx attention was scheduled it already changed
7695	 * pending bit of transaction from STARTED-->TX_STOPPED, if we alredy
7696	 * received complettion for the transaction the state is TX_STOPPED.
7697	 * State will return to STARTED after completion of TX_STOPPED-->STARTED
7698	 * transaction.
7699	 */
7700
7701	/* make sure default SB ISR is done */
7702	if (msix)
7703		synchronize_irq(bp->msix_table[0].vector);
7704	else
7705		synchronize_irq(bp->pdev->irq);
7706
7707	flush_workqueue(bnx2x_wq);
7708
7709	while (bnx2x_func_get_state(bp, &bp->func_obj) !=
7710				BNX2X_F_STATE_STARTED && tout--)
7711		msleep(20);
7712
7713	if (bnx2x_func_get_state(bp, &bp->func_obj) !=
7714						BNX2X_F_STATE_STARTED) {
7715#ifdef BNX2X_STOP_ON_ERROR
7716		return -EBUSY;
7717#else
7718		/*
7719		 * Failed to complete the transaction in a "good way"
7720		 * Force both transactions with CLR bit
7721		 */
7722		struct bnx2x_func_state_params func_params = {0};
7723
7724		DP(BNX2X_MSG_SP, "Hmmm... unexpected function state! "
7725			  "Forcing STARTED-->TX_ST0PPED-->STARTED\n");
7726
7727		func_params.f_obj = &bp->func_obj;
7728		__set_bit(RAMROD_DRV_CLR_ONLY,
7729					&func_params.ramrod_flags);
7730
7731		/* STARTED-->TX_ST0PPED */
7732		func_params.cmd = BNX2X_F_CMD_TX_STOP;
7733		bnx2x_func_state_change(bp, &func_params);
7734
7735		/* TX_ST0PPED-->STARTED */
7736		func_params.cmd = BNX2X_F_CMD_TX_START;
7737		return bnx2x_func_state_change(bp, &func_params);
7738#endif
7739	}
7740
7741	return 0;
7742}
7743
7744void bnx2x_chip_cleanup(struct bnx2x *bp, int unload_mode)
7745{
7746	int port = BP_PORT(bp);
7747	int i, rc = 0;
7748	u8 cos;
7749	struct bnx2x_mcast_ramrod_params rparam = {0};
7750	u32 reset_code;
7751
7752	/* Wait until tx fastpath tasks complete */
7753	for_each_tx_queue(bp, i) {
7754		struct bnx2x_fastpath *fp = &bp->fp[i];
7755
7756		for_each_cos_in_tx_queue(fp, cos)
7757			rc = bnx2x_clean_tx_queue(bp, &fp->txdata[cos]);
7758#ifdef BNX2X_STOP_ON_ERROR
7759		if (rc)
7760			return;
7761#endif
7762	}
7763
7764	/* Give HW time to discard old tx messages */
7765	usleep_range(1000, 1000);
7766
7767	/* Clean all ETH MACs */
7768	rc = bnx2x_del_all_macs(bp, &bp->fp[0].mac_obj, BNX2X_ETH_MAC, false);
7769	if (rc < 0)
7770		BNX2X_ERR("Failed to delete all ETH macs: %d\n", rc);
7771
7772	/* Clean up UC list  */
7773	rc = bnx2x_del_all_macs(bp, &bp->fp[0].mac_obj, BNX2X_UC_LIST_MAC,
7774				true);
7775	if (rc < 0)
7776		BNX2X_ERR("Failed to schedule DEL commands for UC MACs list: "
7777			  "%d\n", rc);
7778
7779	/* Disable LLH */
7780	if (!CHIP_IS_E1(bp))
7781		REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
7782
7783	/* Set "drop all" (stop Rx).
7784	 * We need to take a netif_addr_lock() here in order to prevent
7785	 * a race between the completion code and this code.
7786	 */
7787	netif_addr_lock_bh(bp->dev);
7788	/* Schedule the rx_mode command */
7789	if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
7790		set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
7791	else
7792		bnx2x_set_storm_rx_mode(bp);
7793
7794	/* Cleanup multicast configuration */
7795	rparam.mcast_obj = &bp->mcast_obj;
7796	rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
7797	if (rc < 0)
7798		BNX2X_ERR("Failed to send DEL multicast command: %d\n", rc);
7799
7800	netif_addr_unlock_bh(bp->dev);
7801
7802
7803
7804	/*
7805	 * Send the UNLOAD_REQUEST to the MCP. This will return if
7806	 * this function should perform FUNC, PORT or COMMON HW
7807	 * reset.
7808	 */
7809	reset_code = bnx2x_send_unload_req(bp, unload_mode);
7810
7811	/*
7812	 * (assumption: No Attention from MCP at this stage)
7813	 * PMF probably in the middle of TXdisable/enable transaction
7814	 */
7815	rc = bnx2x_func_wait_started(bp);
7816	if (rc) {
7817		BNX2X_ERR("bnx2x_func_wait_started failed\n");
7818#ifdef BNX2X_STOP_ON_ERROR
7819		return;
7820#endif
7821	}
7822
7823	/* Close multi and leading connections
7824	 * Completions for ramrods are collected in a synchronous way
7825	 */
7826	for_each_queue(bp, i)
7827		if (bnx2x_stop_queue(bp, i))
7828#ifdef BNX2X_STOP_ON_ERROR
7829			return;
7830#else
7831			goto unload_error;
7832#endif
7833	/* If SP settings didn't get completed so far - something
7834	 * very wrong has happen.
7835	 */
7836	if (!bnx2x_wait_sp_comp(bp, ~0x0UL))
7837		BNX2X_ERR("Hmmm... Common slow path ramrods got stuck!\n");
7838
7839#ifndef BNX2X_STOP_ON_ERROR
7840unload_error:
7841#endif
7842	rc = bnx2x_func_stop(bp);
7843	if (rc) {
7844		BNX2X_ERR("Function stop failed!\n");
7845#ifdef BNX2X_STOP_ON_ERROR
7846		return;
7847#endif
7848	}
7849
7850	/* Disable HW interrupts, NAPI */
7851	bnx2x_netif_stop(bp, 1);
7852
7853	/* Release IRQs */
7854	bnx2x_free_irq(bp);
7855
7856	/* Reset the chip */
7857	rc = bnx2x_reset_hw(bp, reset_code);
7858	if (rc)
7859		BNX2X_ERR("HW_RESET failed\n");
7860
7861
7862	/* Report UNLOAD_DONE to MCP */
7863	bnx2x_send_unload_done(bp);
7864}
7865
7866void bnx2x_disable_close_the_gate(struct bnx2x *bp)
7867{
7868	u32 val;
7869
7870	DP(NETIF_MSG_HW, "Disabling \"close the gates\"\n");
7871
7872	if (CHIP_IS_E1(bp)) {
7873		int port = BP_PORT(bp);
7874		u32 addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
7875			MISC_REG_AEU_MASK_ATTN_FUNC_0;
7876
7877		val = REG_RD(bp, addr);
7878		val &= ~(0x300);
7879		REG_WR(bp, addr, val);
7880	} else {
7881		val = REG_RD(bp, MISC_REG_AEU_GENERAL_MASK);
7882		val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK |
7883			 MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK);
7884		REG_WR(bp, MISC_REG_AEU_GENERAL_MASK, val);
7885	}
7886}
7887
7888/* Close gates #2, #3 and #4: */
7889static void bnx2x_set_234_gates(struct bnx2x *bp, bool close)
7890{
7891	u32 val;
7892
7893	/* Gates #2 and #4a are closed/opened for "not E1" only */
7894	if (!CHIP_IS_E1(bp)) {
7895		/* #4 */
7896		REG_WR(bp, PXP_REG_HST_DISCARD_DOORBELLS, !!close);
7897		/* #2 */
7898		REG_WR(bp, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close);
7899	}
7900
7901	/* #3 */
7902	if (CHIP_IS_E1x(bp)) {
7903		/* Prevent interrupts from HC on both ports */
7904		val = REG_RD(bp, HC_REG_CONFIG_1);
7905		REG_WR(bp, HC_REG_CONFIG_1,
7906		       (!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) :
7907		       (val & ~(u32)HC_CONFIG_1_REG_BLOCK_DISABLE_1));
7908
7909		val = REG_RD(bp, HC_REG_CONFIG_0);
7910		REG_WR(bp, HC_REG_CONFIG_0,
7911		       (!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) :
7912		       (val & ~(u32)HC_CONFIG_0_REG_BLOCK_DISABLE_0));
7913	} else {
7914		/* Prevent incomming interrupts in IGU */
7915		val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
7916
7917		REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION,
7918		       (!close) ?
7919		       (val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) :
7920		       (val & ~(u32)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE));
7921	}
7922
7923	DP(NETIF_MSG_HW, "%s gates #2, #3 and #4\n",
7924		close ? "closing" : "opening");
7925	mmiowb();
7926}
7927
7928#define SHARED_MF_CLP_MAGIC  0x80000000 /* `magic' bit */
7929
7930static void bnx2x_clp_reset_prep(struct bnx2x *bp, u32 *magic_val)
7931{
7932	/* Do some magic... */
7933	u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
7934	*magic_val = val & SHARED_MF_CLP_MAGIC;
7935	MF_CFG_WR(bp, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC);
7936}
7937
7938/**
7939 * bnx2x_clp_reset_done - restore the value of the `magic' bit.
7940 *
7941 * @bp:		driver handle
7942 * @magic_val:	old value of the `magic' bit.
7943 */
7944static void bnx2x_clp_reset_done(struct bnx2x *bp, u32 magic_val)
7945{
7946	/* Restore the `magic' bit value... */
7947	u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
7948	MF_CFG_WR(bp, shared_mf_config.clp_mb,
7949		(val & (~SHARED_MF_CLP_MAGIC)) | magic_val);
7950}
7951
7952/**
7953 * bnx2x_reset_mcp_prep - prepare for MCP reset.
7954 *
7955 * @bp:		driver handle
7956 * @magic_val:	old value of 'magic' bit.
7957 *
7958 * Takes care of CLP configurations.
7959 */
7960static void bnx2x_reset_mcp_prep(struct bnx2x *bp, u32 *magic_val)
7961{
7962	u32 shmem;
7963	u32 validity_offset;
7964
7965	DP(NETIF_MSG_HW, "Starting\n");
7966
7967	/* Set `magic' bit in order to save MF config */
7968	if (!CHIP_IS_E1(bp))
7969		bnx2x_clp_reset_prep(bp, magic_val);
7970
7971	/* Get shmem offset */
7972	shmem = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
7973	validity_offset = offsetof(struct shmem_region, validity_map[0]);
7974
7975	/* Clear validity map flags */
7976	if (shmem > 0)
7977		REG_WR(bp, shmem + validity_offset, 0);
7978}
7979
7980#define MCP_TIMEOUT      5000   /* 5 seconds (in ms) */
7981#define MCP_ONE_TIMEOUT  100    /* 100 ms */
7982
7983/**
7984 * bnx2x_mcp_wait_one - wait for MCP_ONE_TIMEOUT
7985 *
7986 * @bp:	driver handle
7987 */
7988static inline void bnx2x_mcp_wait_one(struct bnx2x *bp)
7989{
7990	/* special handling for emulation and FPGA,
7991	   wait 10 times longer */
7992	if (CHIP_REV_IS_SLOW(bp))
7993		msleep(MCP_ONE_TIMEOUT*10);
7994	else
7995		msleep(MCP_ONE_TIMEOUT);
7996}
7997
7998/*
7999 * initializes bp->common.shmem_base and waits for validity signature to appear
8000 */
8001static int bnx2x_init_shmem(struct bnx2x *bp)
8002{
8003	int cnt = 0;
8004	u32 val = 0;
8005
8006	do {
8007		bp->common.shmem_base = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
8008		if (bp->common.shmem_base) {
8009			val = SHMEM_RD(bp, validity_map[BP_PORT(bp)]);
8010			if (val & SHR_MEM_VALIDITY_MB)
8011				return 0;
8012		}
8013
8014		bnx2x_mcp_wait_one(bp);
8015
8016	} while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT));
8017
8018	BNX2X_ERR("BAD MCP validity signature\n");
8019
8020	return -ENODEV;
8021}
8022
8023static int bnx2x_reset_mcp_comp(struct bnx2x *bp, u32 magic_val)
8024{
8025	int rc = bnx2x_init_shmem(bp);
8026
8027	/* Restore the `magic' bit value */
8028	if (!CHIP_IS_E1(bp))
8029		bnx2x_clp_reset_done(bp, magic_val);
8030
8031	return rc;
8032}
8033
8034static void bnx2x_pxp_prep(struct bnx2x *bp)
8035{
8036	if (!CHIP_IS_E1(bp)) {
8037		REG_WR(bp, PXP2_REG_RD_START_INIT, 0);
8038		REG_WR(bp, PXP2_REG_RQ_RBC_DONE, 0);
8039		mmiowb();
8040	}
8041}
8042
8043/*
8044 * Reset the whole chip except for:
8045 *      - PCIE core
8046 *      - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by
8047 *              one reset bit)
8048 *      - IGU
8049 *      - MISC (including AEU)
8050 *      - GRC
8051 *      - RBCN, RBCP
8052 */
8053static void bnx2x_process_kill_chip_reset(struct bnx2x *bp, bool global)
8054{
8055	u32 not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2;
8056	u32 global_bits2, stay_reset2;
8057
8058	/*
8059	 * Bits that have to be set in reset_mask2 if we want to reset 'global'
8060	 * (per chip) blocks.
8061	 */
8062	global_bits2 =
8063		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU |
8064		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE;
8065
8066	/* Don't reset the following blocks */
8067	not_reset_mask1 =
8068		MISC_REGISTERS_RESET_REG_1_RST_HC |
8069		MISC_REGISTERS_RESET_REG_1_RST_PXPV |
8070		MISC_REGISTERS_RESET_REG_1_RST_PXP;
8071
8072	not_reset_mask2 =
8073		MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO |
8074		MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE |
8075		MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE |
8076		MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE |
8077		MISC_REGISTERS_RESET_REG_2_RST_RBCN |
8078		MISC_REGISTERS_RESET_REG_2_RST_GRC  |
8079		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE |
8080		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B |
8081		MISC_REGISTERS_RESET_REG_2_RST_ATC |
8082		MISC_REGISTERS_RESET_REG_2_PGLC;
8083
8084	/*
8085	 * Keep the following blocks in reset:
8086	 *  - all xxMACs are handled by the bnx2x_link code.
8087	 */
8088	stay_reset2 =
8089		MISC_REGISTERS_RESET_REG_2_RST_BMAC0 |
8090		MISC_REGISTERS_RESET_REG_2_RST_BMAC1 |
8091		MISC_REGISTERS_RESET_REG_2_RST_EMAC0 |
8092		MISC_REGISTERS_RESET_REG_2_RST_EMAC1 |
8093		MISC_REGISTERS_RESET_REG_2_UMAC0 |
8094		MISC_REGISTERS_RESET_REG_2_UMAC1 |
8095		MISC_REGISTERS_RESET_REG_2_XMAC |
8096		MISC_REGISTERS_RESET_REG_2_XMAC_SOFT;
8097
8098	/* Full reset masks according to the chip */
8099	reset_mask1 = 0xffffffff;
8100
8101	if (CHIP_IS_E1(bp))
8102		reset_mask2 = 0xffff;
8103	else if (CHIP_IS_E1H(bp))
8104		reset_mask2 = 0x1ffff;
8105	else if (CHIP_IS_E2(bp))
8106		reset_mask2 = 0xfffff;
8107	else /* CHIP_IS_E3 */
8108		reset_mask2 = 0x3ffffff;
8109
8110	/* Don't reset global blocks unless we need to */
8111	if (!global)
8112		reset_mask2 &= ~global_bits2;
8113
8114	/*
8115	 * In case of attention in the QM, we need to reset PXP
8116	 * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM
8117	 * because otherwise QM reset would release 'close the gates' shortly
8118	 * before resetting the PXP, then the PSWRQ would send a write
8119	 * request to PGLUE. Then when PXP is reset, PGLUE would try to
8120	 * read the payload data from PSWWR, but PSWWR would not
8121	 * respond. The write queue in PGLUE would stuck, dmae commands
8122	 * would not return. Therefore it's important to reset the second
8123	 * reset register (containing the
8124	 * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the
8125	 * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM
8126	 * bit).
8127	 */
8128	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
8129	       reset_mask2 & (~not_reset_mask2));
8130
8131	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
8132	       reset_mask1 & (~not_reset_mask1));
8133
8134	barrier();
8135	mmiowb();
8136
8137	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET,
8138	       reset_mask2 & (~stay_reset2));
8139
8140	barrier();
8141	mmiowb();
8142
8143	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1);
8144	mmiowb();
8145}
8146
8147/**
8148 * bnx2x_er_poll_igu_vq - poll for pending writes bit.
8149 * It should get cleared in no more than 1s.
8150 *
8151 * @bp:	driver handle
8152 *
8153 * It should get cleared in no more than 1s. Returns 0 if
8154 * pending writes bit gets cleared.
8155 */
8156static int bnx2x_er_poll_igu_vq(struct bnx2x *bp)
8157{
8158	u32 cnt = 1000;
8159	u32 pend_bits = 0;
8160
8161	do {
8162		pend_bits  = REG_RD(bp, IGU_REG_PENDING_BITS_STATUS);
8163
8164		if (pend_bits == 0)
8165			break;
8166
8167		usleep_range(1000, 1000);
8168	} while (cnt-- > 0);
8169
8170	if (cnt <= 0) {
8171		BNX2X_ERR("Still pending IGU requests pend_bits=%x!\n",
8172			  pend_bits);
8173		return -EBUSY;
8174	}
8175
8176	return 0;
8177}
8178
8179static int bnx2x_process_kill(struct bnx2x *bp, bool global)
8180{
8181	int cnt = 1000;
8182	u32 val = 0;
8183	u32 sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2;
8184
8185
8186	/* Empty the Tetris buffer, wait for 1s */
8187	do {
8188		sr_cnt  = REG_RD(bp, PXP2_REG_RD_SR_CNT);
8189		blk_cnt = REG_RD(bp, PXP2_REG_RD_BLK_CNT);
8190		port_is_idle_0 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_0);
8191		port_is_idle_1 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_1);
8192		pgl_exp_rom2 = REG_RD(bp, PXP2_REG_PGL_EXP_ROM2);
8193		if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) &&
8194		    ((port_is_idle_0 & 0x1) == 0x1) &&
8195		    ((port_is_idle_1 & 0x1) == 0x1) &&
8196		    (pgl_exp_rom2 == 0xffffffff))
8197			break;
8198		usleep_range(1000, 1000);
8199	} while (cnt-- > 0);
8200
8201	if (cnt <= 0) {
8202		DP(NETIF_MSG_HW, "Tetris buffer didn't get empty or there"
8203			  " are still"
8204			  " outstanding read requests after 1s!\n");
8205		DP(NETIF_MSG_HW, "sr_cnt=0x%08x, blk_cnt=0x%08x,"
8206			  " port_is_idle_0=0x%08x,"
8207			  " port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n",
8208			  sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1,
8209			  pgl_exp_rom2);
8210		return -EAGAIN;
8211	}
8212
8213	barrier();
8214
8215	/* Close gates #2, #3 and #4 */
8216	bnx2x_set_234_gates(bp, true);
8217
8218	/* Poll for IGU VQs for 57712 and newer chips */
8219	if (!CHIP_IS_E1x(bp) && bnx2x_er_poll_igu_vq(bp))
8220		return -EAGAIN;
8221
8222
8223	/* TBD: Indicate that "process kill" is in progress to MCP */
8224
8225	/* Clear "unprepared" bit */
8226	REG_WR(bp, MISC_REG_UNPREPARED, 0);
8227	barrier();
8228
8229	/* Make sure all is written to the chip before the reset */
8230	mmiowb();
8231
8232	/* Wait for 1ms to empty GLUE and PCI-E core queues,
8233	 * PSWHST, GRC and PSWRD Tetris buffer.
8234	 */
8235	usleep_range(1000, 1000);
8236
8237	/* Prepare to chip reset: */
8238	/* MCP */
8239	if (global)
8240		bnx2x_reset_mcp_prep(bp, &val);
8241
8242	/* PXP */
8243	bnx2x_pxp_prep(bp);
8244	barrier();
8245
8246	/* reset the chip */
8247	bnx2x_process_kill_chip_reset(bp, global);
8248	barrier();
8249
8250	/* Recover after reset: */
8251	/* MCP */
8252	if (global && bnx2x_reset_mcp_comp(bp, val))
8253		return -EAGAIN;
8254
8255	/* TBD: Add resetting the NO_MCP mode DB here */
8256
8257	/* PXP */
8258	bnx2x_pxp_prep(bp);
8259
8260	/* Open the gates #2, #3 and #4 */
8261	bnx2x_set_234_gates(bp, false);
8262
8263	/* TBD: IGU/AEU preparation bring back the AEU/IGU to a
8264	 * reset state, re-enable attentions. */
8265
8266	return 0;
8267}
8268
8269int bnx2x_leader_reset(struct bnx2x *bp)
8270{
8271	int rc = 0;
8272	bool global = bnx2x_reset_is_global(bp);
8273
8274	/* Try to recover after the failure */
8275	if (bnx2x_process_kill(bp, global)) {
8276		netdev_err(bp->dev, "Something bad had happen on engine %d! "
8277				    "Aii!\n", BP_PATH(bp));
8278		rc = -EAGAIN;
8279		goto exit_leader_reset;
8280	}
8281
8282	/*
8283	 * Clear RESET_IN_PROGRES and RESET_GLOBAL bits and update the driver
8284	 * state.
8285	 */
8286	bnx2x_set_reset_done(bp);
8287	if (global)
8288		bnx2x_clear_reset_global(bp);
8289
8290exit_leader_reset:
8291	bp->is_leader = 0;
8292	bnx2x_release_leader_lock(bp);
8293	smp_mb();
8294	return rc;
8295}
8296
8297static inline void bnx2x_recovery_failed(struct bnx2x *bp)
8298{
8299	netdev_err(bp->dev, "Recovery has failed. Power cycle is needed.\n");
8300
8301	/* Disconnect this device */
8302	netif_device_detach(bp->dev);
8303
8304	/*
8305	 * Block ifup for all function on this engine until "process kill"
8306	 * or power cycle.
8307	 */
8308	bnx2x_set_reset_in_progress(bp);
8309
8310	/* Shut down the power */
8311	bnx2x_set_power_state(bp, PCI_D3hot);
8312
8313	bp->recovery_state = BNX2X_RECOVERY_FAILED;
8314
8315	smp_mb();
8316}
8317
8318/*
8319 * Assumption: runs under rtnl lock. This together with the fact
8320 * that it's called only from bnx2x_sp_rtnl() ensure that it
8321 * will never be called when netif_running(bp->dev) is false.
8322 */
8323static void bnx2x_parity_recover(struct bnx2x *bp)
8324{
8325	bool global = false;
8326
8327	DP(NETIF_MSG_HW, "Handling parity\n");
8328	while (1) {
8329		switch (bp->recovery_state) {
8330		case BNX2X_RECOVERY_INIT:
8331			DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_INIT\n");
8332			bnx2x_chk_parity_attn(bp, &global, false);
8333
8334			/* Try to get a LEADER_LOCK HW lock */
8335			if (bnx2x_trylock_leader_lock(bp)) {
8336				bnx2x_set_reset_in_progress(bp);
8337				/*
8338				 * Check if there is a global attention and if
8339				 * there was a global attention, set the global
8340				 * reset bit.
8341				 */
8342
8343				if (global)
8344					bnx2x_set_reset_global(bp);
8345
8346				bp->is_leader = 1;
8347			}
8348
8349			/* Stop the driver */
8350			/* If interface has been removed - break */
8351			if (bnx2x_nic_unload(bp, UNLOAD_RECOVERY))
8352				return;
8353
8354			bp->recovery_state = BNX2X_RECOVERY_WAIT;
8355
8356			/*
8357			 * Reset MCP command sequence number and MCP mail box
8358			 * sequence as we are going to reset the MCP.
8359			 */
8360			if (global) {
8361				bp->fw_seq = 0;
8362				bp->fw_drv_pulse_wr_seq = 0;
8363			}
8364
8365			/* Ensure "is_leader", MCP command sequence and
8366			 * "recovery_state" update values are seen on other
8367			 * CPUs.
8368			 */
8369			smp_mb();
8370			break;
8371
8372		case BNX2X_RECOVERY_WAIT:
8373			DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_WAIT\n");
8374			if (bp->is_leader) {
8375				int other_engine = BP_PATH(bp) ? 0 : 1;
8376				u32 other_load_counter =
8377					bnx2x_get_load_cnt(bp, other_engine);
8378				u32 load_counter =
8379					bnx2x_get_load_cnt(bp, BP_PATH(bp));
8380				global = bnx2x_reset_is_global(bp);
8381
8382				/*
8383				 * In case of a parity in a global block, let
8384				 * the first leader that performs a
8385				 * leader_reset() reset the global blocks in
8386				 * order to clear global attentions. Otherwise
8387				 * the the gates will remain closed for that
8388				 * engine.
8389				 */
8390				if (load_counter ||
8391				    (global && other_load_counter)) {
8392					/* Wait until all other functions get
8393					 * down.
8394					 */
8395					schedule_delayed_work(&bp->sp_rtnl_task,
8396								HZ/10);
8397					return;
8398				} else {
8399					/* If all other functions got down -
8400					 * try to bring the chip back to
8401					 * normal. In any case it's an exit
8402					 * point for a leader.
8403					 */
8404					if (bnx2x_leader_reset(bp)) {
8405						bnx2x_recovery_failed(bp);
8406						return;
8407					}
8408
8409					/* If we are here, means that the
8410					 * leader has succeeded and doesn't
8411					 * want to be a leader any more. Try
8412					 * to continue as a none-leader.
8413					 */
8414					break;
8415				}
8416			} else { /* non-leader */
8417				if (!bnx2x_reset_is_done(bp, BP_PATH(bp))) {
8418					/* Try to get a LEADER_LOCK HW lock as
8419					 * long as a former leader may have
8420					 * been unloaded by the user or
8421					 * released a leadership by another
8422					 * reason.
8423					 */
8424					if (bnx2x_trylock_leader_lock(bp)) {
8425						/* I'm a leader now! Restart a
8426						 * switch case.
8427						 */
8428						bp->is_leader = 1;
8429						break;
8430					}
8431
8432					schedule_delayed_work(&bp->sp_rtnl_task,
8433								HZ/10);
8434					return;
8435
8436				} else {
8437					/*
8438					 * If there was a global attention, wait
8439					 * for it to be cleared.
8440					 */
8441					if (bnx2x_reset_is_global(bp)) {
8442						schedule_delayed_work(
8443							&bp->sp_rtnl_task,
8444							HZ/10);
8445						return;
8446					}
8447
8448					if (bnx2x_nic_load(bp, LOAD_NORMAL))
8449						bnx2x_recovery_failed(bp);
8450					else {
8451						bp->recovery_state =
8452							BNX2X_RECOVERY_DONE;
8453						smp_mb();
8454					}
8455
8456					return;
8457				}
8458			}
8459		default:
8460			return;
8461		}
8462	}
8463}
8464
8465/* bnx2x_nic_unload() flushes the bnx2x_wq, thus reset task is
8466 * scheduled on a general queue in order to prevent a dead lock.
8467 */
8468static void bnx2x_sp_rtnl_task(struct work_struct *work)
8469{
8470	struct bnx2x *bp = container_of(work, struct bnx2x, sp_rtnl_task.work);
8471
8472	rtnl_lock();
8473
8474	if (!netif_running(bp->dev))
8475		goto sp_rtnl_exit;
8476
8477	/* if stop on error is defined no recovery flows should be executed */
8478#ifdef BNX2X_STOP_ON_ERROR
8479	BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined "
8480		  "so reset not done to allow debug dump,\n"
8481		  "you will need to reboot when done\n");
8482	goto sp_rtnl_not_reset;
8483#endif
8484
8485	if (unlikely(bp->recovery_state != BNX2X_RECOVERY_DONE)) {
8486		/*
8487		 * Clear all pending SP commands as we are going to reset the
8488		 * function anyway.
8489		 */
8490		bp->sp_rtnl_state = 0;
8491		smp_mb();
8492
8493		bnx2x_parity_recover(bp);
8494
8495		goto sp_rtnl_exit;
8496	}
8497
8498	if (test_and_clear_bit(BNX2X_SP_RTNL_TX_TIMEOUT, &bp->sp_rtnl_state)) {
8499		/*
8500		 * Clear all pending SP commands as we are going to reset the
8501		 * function anyway.
8502		 */
8503		bp->sp_rtnl_state = 0;
8504		smp_mb();
8505
8506		bnx2x_nic_unload(bp, UNLOAD_NORMAL);
8507		bnx2x_nic_load(bp, LOAD_NORMAL);
8508
8509		goto sp_rtnl_exit;
8510	}
8511#ifdef BNX2X_STOP_ON_ERROR
8512sp_rtnl_not_reset:
8513#endif
8514	if (test_and_clear_bit(BNX2X_SP_RTNL_SETUP_TC, &bp->sp_rtnl_state))
8515		bnx2x_setup_tc(bp->dev, bp->dcbx_port_params.ets.num_of_cos);
8516
8517	/*
8518	 * in case of fan failure we need to reset id if the "stop on error"
8519	 * debug flag is set, since we trying to prevent permanent overheating
8520	 * damage
8521	 */
8522	if (test_and_clear_bit(BNX2X_SP_RTNL_FAN_FAILURE, &bp->sp_rtnl_state)) {
8523		DP(BNX2X_MSG_SP, "fan failure detected. Unloading driver\n");
8524		netif_device_detach(bp->dev);
8525		bnx2x_close(bp->dev);
8526	}
8527
8528sp_rtnl_exit:
8529	rtnl_unlock();
8530}
8531
8532/* end of nic load/unload */
8533
8534static void bnx2x_period_task(struct work_struct *work)
8535{
8536	struct bnx2x *bp = container_of(work, struct bnx2x, period_task.work);
8537
8538	if (!netif_running(bp->dev))
8539		goto period_task_exit;
8540
8541	if (CHIP_REV_IS_SLOW(bp)) {
8542		BNX2X_ERR("period task called on emulation, ignoring\n");
8543		goto period_task_exit;
8544	}
8545
8546	bnx2x_acquire_phy_lock(bp);
8547	/*
8548	 * The barrier is needed to ensure the ordering between the writing to
8549	 * the bp->port.pmf in the bnx2x_nic_load() or bnx2x_pmf_update() and
8550	 * the reading here.
8551	 */
8552	smp_mb();
8553	if (bp->port.pmf) {
8554		bnx2x_period_func(&bp->link_params, &bp->link_vars);
8555
8556		/* Re-queue task in 1 sec */
8557		queue_delayed_work(bnx2x_wq, &bp->period_task, 1*HZ);
8558	}
8559
8560	bnx2x_release_phy_lock(bp);
8561period_task_exit:
8562	return;
8563}
8564
8565/*
8566 * Init service functions
8567 */
8568
8569static u32 bnx2x_get_pretend_reg(struct bnx2x *bp)
8570{
8571	u32 base = PXP2_REG_PGL_PRETEND_FUNC_F0;
8572	u32 stride = PXP2_REG_PGL_PRETEND_FUNC_F1 - base;
8573	return base + (BP_ABS_FUNC(bp)) * stride;
8574}
8575
8576static void bnx2x_undi_int_disable_e1h(struct bnx2x *bp)
8577{
8578	u32 reg = bnx2x_get_pretend_reg(bp);
8579
8580	/* Flush all outstanding writes */
8581	mmiowb();
8582
8583	/* Pretend to be function 0 */
8584	REG_WR(bp, reg, 0);
8585	REG_RD(bp, reg);	/* Flush the GRC transaction (in the chip) */
8586
8587	/* From now we are in the "like-E1" mode */
8588	bnx2x_int_disable(bp);
8589
8590	/* Flush all outstanding writes */
8591	mmiowb();
8592
8593	/* Restore the original function */
8594	REG_WR(bp, reg, BP_ABS_FUNC(bp));
8595	REG_RD(bp, reg);
8596}
8597
8598static inline void bnx2x_undi_int_disable(struct bnx2x *bp)
8599{
8600	if (CHIP_IS_E1(bp))
8601		bnx2x_int_disable(bp);
8602	else
8603		bnx2x_undi_int_disable_e1h(bp);
8604}
8605
8606static void __devinit bnx2x_undi_unload(struct bnx2x *bp)
8607{
8608	u32 val;
8609
8610	/* Check if there is any driver already loaded */
8611	val = REG_RD(bp, MISC_REG_UNPREPARED);
8612	if (val == 0x1) {
8613
8614		bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
8615		/*
8616		 * Check if it is the UNDI driver
8617		 * UNDI driver initializes CID offset for normal bell to 0x7
8618		 */
8619		val = REG_RD(bp, DORQ_REG_NORM_CID_OFST);
8620		if (val == 0x7) {
8621			u32 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
8622			/* save our pf_num */
8623			int orig_pf_num = bp->pf_num;
8624			int port;
8625			u32 swap_en, swap_val, value;
8626
8627			/* clear the UNDI indication */
8628			REG_WR(bp, DORQ_REG_NORM_CID_OFST, 0);
8629
8630			BNX2X_DEV_INFO("UNDI is active! reset device\n");
8631
8632			/* try unload UNDI on port 0 */
8633			bp->pf_num = 0;
8634			bp->fw_seq =
8635			      (SHMEM_RD(bp, func_mb[bp->pf_num].drv_mb_header) &
8636				DRV_MSG_SEQ_NUMBER_MASK);
8637			reset_code = bnx2x_fw_command(bp, reset_code, 0);
8638
8639			/* if UNDI is loaded on the other port */
8640			if (reset_code != FW_MSG_CODE_DRV_UNLOAD_COMMON) {
8641
8642				/* send "DONE" for previous unload */
8643				bnx2x_fw_command(bp,
8644						 DRV_MSG_CODE_UNLOAD_DONE, 0);
8645
8646				/* unload UNDI on port 1 */
8647				bp->pf_num = 1;
8648				bp->fw_seq =
8649			      (SHMEM_RD(bp, func_mb[bp->pf_num].drv_mb_header) &
8650					DRV_MSG_SEQ_NUMBER_MASK);
8651				reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
8652
8653				bnx2x_fw_command(bp, reset_code, 0);
8654			}
8655
8656			bnx2x_undi_int_disable(bp);
8657			port = BP_PORT(bp);
8658
8659			/* close input traffic and wait for it */
8660			/* Do not rcv packets to BRB */
8661			REG_WR(bp, (port ? NIG_REG_LLH1_BRB1_DRV_MASK :
8662					   NIG_REG_LLH0_BRB1_DRV_MASK), 0x0);
8663			/* Do not direct rcv packets that are not for MCP to
8664			 * the BRB */
8665			REG_WR(bp, (port ? NIG_REG_LLH1_BRB1_NOT_MCP :
8666					   NIG_REG_LLH0_BRB1_NOT_MCP), 0x0);
8667			/* clear AEU */
8668			REG_WR(bp, (port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
8669					   MISC_REG_AEU_MASK_ATTN_FUNC_0), 0);
8670			msleep(10);
8671
8672			/* save NIG port swap info */
8673			swap_val = REG_RD(bp, NIG_REG_PORT_SWAP);
8674			swap_en = REG_RD(bp, NIG_REG_STRAP_OVERRIDE);
8675			/* reset device */
8676			REG_WR(bp,
8677			       GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
8678			       0xd3ffffff);
8679
8680			value = 0x1400;
8681			if (CHIP_IS_E3(bp)) {
8682				value |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
8683				value |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
8684			}
8685
8686			REG_WR(bp,
8687			       GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
8688			       value);
8689
8690			/* take the NIG out of reset and restore swap values */
8691			REG_WR(bp,
8692			       GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET,
8693			       MISC_REGISTERS_RESET_REG_1_RST_NIG);
8694			REG_WR(bp, NIG_REG_PORT_SWAP, swap_val);
8695			REG_WR(bp, NIG_REG_STRAP_OVERRIDE, swap_en);
8696
8697			/* send unload done to the MCP */
8698			bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0);
8699
8700			/* restore our func and fw_seq */
8701			bp->pf_num = orig_pf_num;
8702			bp->fw_seq =
8703			      (SHMEM_RD(bp, func_mb[bp->pf_num].drv_mb_header) &
8704				DRV_MSG_SEQ_NUMBER_MASK);
8705		}
8706
8707		/* now it's safe to release the lock */
8708		bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
8709	}
8710}
8711
8712static void __devinit bnx2x_get_common_hwinfo(struct bnx2x *bp)
8713{
8714	u32 val, val2, val3, val4, id;
8715	u16 pmc;
8716
8717	/* Get the chip revision id and number. */
8718	/* chip num:16-31, rev:12-15, metal:4-11, bond_id:0-3 */
8719	val = REG_RD(bp, MISC_REG_CHIP_NUM);
8720	id = ((val & 0xffff) << 16);
8721	val = REG_RD(bp, MISC_REG_CHIP_REV);
8722	id |= ((val & 0xf) << 12);
8723	val = REG_RD(bp, MISC_REG_CHIP_METAL);
8724	id |= ((val & 0xff) << 4);
8725	val = REG_RD(bp, MISC_REG_BOND_ID);
8726	id |= (val & 0xf);
8727	bp->common.chip_id = id;
8728
8729	/* Set doorbell size */
8730	bp->db_size = (1 << BNX2X_DB_SHIFT);
8731
8732	if (!CHIP_IS_E1x(bp)) {
8733		val = REG_RD(bp, MISC_REG_PORT4MODE_EN_OVWR);
8734		if ((val & 1) == 0)
8735			val = REG_RD(bp, MISC_REG_PORT4MODE_EN);
8736		else
8737			val = (val >> 1) & 1;
8738		BNX2X_DEV_INFO("chip is in %s\n", val ? "4_PORT_MODE" :
8739						       "2_PORT_MODE");
8740		bp->common.chip_port_mode = val ? CHIP_4_PORT_MODE :
8741						 CHIP_2_PORT_MODE;
8742
8743		if (CHIP_MODE_IS_4_PORT(bp))
8744			bp->pfid = (bp->pf_num >> 1);	/* 0..3 */
8745		else
8746			bp->pfid = (bp->pf_num & 0x6);	/* 0, 2, 4, 6 */
8747	} else {
8748		bp->common.chip_port_mode = CHIP_PORT_MODE_NONE; /* N/A */
8749		bp->pfid = bp->pf_num;			/* 0..7 */
8750	}
8751
8752	bp->link_params.chip_id = bp->common.chip_id;
8753	BNX2X_DEV_INFO("chip ID is 0x%x\n", id);
8754
8755	val = (REG_RD(bp, 0x2874) & 0x55);
8756	if ((bp->common.chip_id & 0x1) ||
8757	    (CHIP_IS_E1(bp) && val) || (CHIP_IS_E1H(bp) && (val == 0x55))) {
8758		bp->flags |= ONE_PORT_FLAG;
8759		BNX2X_DEV_INFO("single port device\n");
8760	}
8761
8762	val = REG_RD(bp, MCP_REG_MCPR_NVM_CFG4);
8763	bp->common.flash_size = (BNX2X_NVRAM_1MB_SIZE <<
8764				 (val & MCPR_NVM_CFG4_FLASH_SIZE));
8765	BNX2X_DEV_INFO("flash_size 0x%x (%d)\n",
8766		       bp->common.flash_size, bp->common.flash_size);
8767
8768	bnx2x_init_shmem(bp);
8769
8770
8771
8772	bp->common.shmem2_base = REG_RD(bp, (BP_PATH(bp) ?
8773					MISC_REG_GENERIC_CR_1 :
8774					MISC_REG_GENERIC_CR_0));
8775
8776	bp->link_params.shmem_base = bp->common.shmem_base;
8777	bp->link_params.shmem2_base = bp->common.shmem2_base;
8778	BNX2X_DEV_INFO("shmem offset 0x%x  shmem2 offset 0x%x\n",
8779		       bp->common.shmem_base, bp->common.shmem2_base);
8780
8781	if (!bp->common.shmem_base) {
8782		BNX2X_DEV_INFO("MCP not active\n");
8783		bp->flags |= NO_MCP_FLAG;
8784		return;
8785	}
8786
8787	bp->common.hw_config = SHMEM_RD(bp, dev_info.shared_hw_config.config);
8788	BNX2X_DEV_INFO("hw_config 0x%08x\n", bp->common.hw_config);
8789
8790	bp->link_params.hw_led_mode = ((bp->common.hw_config &
8791					SHARED_HW_CFG_LED_MODE_MASK) >>
8792				       SHARED_HW_CFG_LED_MODE_SHIFT);
8793
8794	bp->link_params.feature_config_flags = 0;
8795	val = SHMEM_RD(bp, dev_info.shared_feature_config.config);
8796	if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED)
8797		bp->link_params.feature_config_flags |=
8798				FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
8799	else
8800		bp->link_params.feature_config_flags &=
8801				~FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
8802
8803	val = SHMEM_RD(bp, dev_info.bc_rev) >> 8;
8804	bp->common.bc_ver = val;
8805	BNX2X_DEV_INFO("bc_ver %X\n", val);
8806	if (val < BNX2X_BC_VER) {
8807		/* for now only warn
8808		 * later we might need to enforce this */
8809		BNX2X_ERR("This driver needs bc_ver %X but found %X, "
8810			  "please upgrade BC\n", BNX2X_BC_VER, val);
8811	}
8812	bp->link_params.feature_config_flags |=
8813				(val >= REQ_BC_VER_4_VRFY_FIRST_PHY_OPT_MDL) ?
8814				FEATURE_CONFIG_BC_SUPPORTS_OPT_MDL_VRFY : 0;
8815
8816	bp->link_params.feature_config_flags |=
8817		(val >= REQ_BC_VER_4_VRFY_SPECIFIC_PHY_OPT_MDL) ?
8818		FEATURE_CONFIG_BC_SUPPORTS_DUAL_PHY_OPT_MDL_VRFY : 0;
8819
8820	bp->link_params.feature_config_flags |=
8821		(val >= REQ_BC_VER_4_SFP_TX_DISABLE_SUPPORTED) ?
8822		FEATURE_CONFIG_BC_SUPPORTS_SFP_TX_DISABLED : 0;
8823
8824	pci_read_config_word(bp->pdev, bp->pm_cap + PCI_PM_PMC, &pmc);
8825	bp->flags |= (pmc & PCI_PM_CAP_PME_D3cold) ? 0 : NO_WOL_FLAG;
8826
8827	BNX2X_DEV_INFO("%sWoL capable\n",
8828		       (bp->flags & NO_WOL_FLAG) ? "not " : "");
8829
8830	val = SHMEM_RD(bp, dev_info.shared_hw_config.part_num);
8831	val2 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[4]);
8832	val3 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[8]);
8833	val4 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[12]);
8834
8835	dev_info(&bp->pdev->dev, "part number %X-%X-%X-%X\n",
8836		 val, val2, val3, val4);
8837}
8838
8839#define IGU_FID(val)	GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID)
8840#define IGU_VEC(val)	GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR)
8841
8842static void __devinit bnx2x_get_igu_cam_info(struct bnx2x *bp)
8843{
8844	int pfid = BP_FUNC(bp);
8845	int igu_sb_id;
8846	u32 val;
8847	u8 fid, igu_sb_cnt = 0;
8848
8849	bp->igu_base_sb = 0xff;
8850	if (CHIP_INT_MODE_IS_BC(bp)) {
8851		int vn = BP_VN(bp);
8852		igu_sb_cnt = bp->igu_sb_cnt;
8853		bp->igu_base_sb = (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn) *
8854			FP_SB_MAX_E1x;
8855
8856		bp->igu_dsb_id =  E1HVN_MAX * FP_SB_MAX_E1x +
8857			(CHIP_MODE_IS_4_PORT(bp) ? pfid : vn);
8858
8859		return;
8860	}
8861
8862	/* IGU in normal mode - read CAM */
8863	for (igu_sb_id = 0; igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE;
8864	     igu_sb_id++) {
8865		val = REG_RD(bp, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4);
8866		if (!(val & IGU_REG_MAPPING_MEMORY_VALID))
8867			continue;
8868		fid = IGU_FID(val);
8869		if ((fid & IGU_FID_ENCODE_IS_PF)) {
8870			if ((fid & IGU_FID_PF_NUM_MASK) != pfid)
8871				continue;
8872			if (IGU_VEC(val) == 0)
8873				/* default status block */
8874				bp->igu_dsb_id = igu_sb_id;
8875			else {
8876				if (bp->igu_base_sb == 0xff)
8877					bp->igu_base_sb = igu_sb_id;
8878				igu_sb_cnt++;
8879			}
8880		}
8881	}
8882
8883#ifdef CONFIG_PCI_MSI
8884	/*
8885	 * It's expected that number of CAM entries for this functions is equal
8886	 * to the number evaluated based on the MSI-X table size. We want a
8887	 * harsh warning if these values are different!
8888	 */
8889	WARN_ON(bp->igu_sb_cnt != igu_sb_cnt);
8890#endif
8891
8892	if (igu_sb_cnt == 0)
8893		BNX2X_ERR("CAM configuration error\n");
8894}
8895
8896static void __devinit bnx2x_link_settings_supported(struct bnx2x *bp,
8897						    u32 switch_cfg)
8898{
8899	int cfg_size = 0, idx, port = BP_PORT(bp);
8900
8901	/* Aggregation of supported attributes of all external phys */
8902	bp->port.supported[0] = 0;
8903	bp->port.supported[1] = 0;
8904	switch (bp->link_params.num_phys) {
8905	case 1:
8906		bp->port.supported[0] = bp->link_params.phy[INT_PHY].supported;
8907		cfg_size = 1;
8908		break;
8909	case 2:
8910		bp->port.supported[0] = bp->link_params.phy[EXT_PHY1].supported;
8911		cfg_size = 1;
8912		break;
8913	case 3:
8914		if (bp->link_params.multi_phy_config &
8915		    PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
8916			bp->port.supported[1] =
8917				bp->link_params.phy[EXT_PHY1].supported;
8918			bp->port.supported[0] =
8919				bp->link_params.phy[EXT_PHY2].supported;
8920		} else {
8921			bp->port.supported[0] =
8922				bp->link_params.phy[EXT_PHY1].supported;
8923			bp->port.supported[1] =
8924				bp->link_params.phy[EXT_PHY2].supported;
8925		}
8926		cfg_size = 2;
8927		break;
8928	}
8929
8930	if (!(bp->port.supported[0] || bp->port.supported[1])) {
8931		BNX2X_ERR("NVRAM config error. BAD phy config."
8932			  "PHY1 config 0x%x, PHY2 config 0x%x\n",
8933			   SHMEM_RD(bp,
8934			   dev_info.port_hw_config[port].external_phy_config),
8935			   SHMEM_RD(bp,
8936			   dev_info.port_hw_config[port].external_phy_config2));
8937			return;
8938	}
8939
8940	if (CHIP_IS_E3(bp))
8941		bp->port.phy_addr = REG_RD(bp, MISC_REG_WC0_CTRL_PHY_ADDR);
8942	else {
8943		switch (switch_cfg) {
8944		case SWITCH_CFG_1G:
8945			bp->port.phy_addr = REG_RD(
8946				bp, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10);
8947			break;
8948		case SWITCH_CFG_10G:
8949			bp->port.phy_addr = REG_RD(
8950				bp, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18);
8951			break;
8952		default:
8953			BNX2X_ERR("BAD switch_cfg link_config 0x%x\n",
8954				  bp->port.link_config[0]);
8955			return;
8956		}
8957	}
8958	BNX2X_DEV_INFO("phy_addr 0x%x\n", bp->port.phy_addr);
8959	/* mask what we support according to speed_cap_mask per configuration */
8960	for (idx = 0; idx < cfg_size; idx++) {
8961		if (!(bp->link_params.speed_cap_mask[idx] &
8962				PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF))
8963			bp->port.supported[idx] &= ~SUPPORTED_10baseT_Half;
8964
8965		if (!(bp->link_params.speed_cap_mask[idx] &
8966				PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL))
8967			bp->port.supported[idx] &= ~SUPPORTED_10baseT_Full;
8968
8969		if (!(bp->link_params.speed_cap_mask[idx] &
8970				PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF))
8971			bp->port.supported[idx] &= ~SUPPORTED_100baseT_Half;
8972
8973		if (!(bp->link_params.speed_cap_mask[idx] &
8974				PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL))
8975			bp->port.supported[idx] &= ~SUPPORTED_100baseT_Full;
8976
8977		if (!(bp->link_params.speed_cap_mask[idx] &
8978					PORT_HW_CFG_SPEED_CAPABILITY_D0_1G))
8979			bp->port.supported[idx] &= ~(SUPPORTED_1000baseT_Half |
8980						     SUPPORTED_1000baseT_Full);
8981
8982		if (!(bp->link_params.speed_cap_mask[idx] &
8983					PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G))
8984			bp->port.supported[idx] &= ~SUPPORTED_2500baseX_Full;
8985
8986		if (!(bp->link_params.speed_cap_mask[idx] &
8987					PORT_HW_CFG_SPEED_CAPABILITY_D0_10G))
8988			bp->port.supported[idx] &= ~SUPPORTED_10000baseT_Full;
8989
8990	}
8991
8992	BNX2X_DEV_INFO("supported 0x%x 0x%x\n", bp->port.supported[0],
8993		       bp->port.supported[1]);
8994}
8995
8996static void __devinit bnx2x_link_settings_requested(struct bnx2x *bp)
8997{
8998	u32 link_config, idx, cfg_size = 0;
8999	bp->port.advertising[0] = 0;
9000	bp->port.advertising[1] = 0;
9001	switch (bp->link_params.num_phys) {
9002	case 1:
9003	case 2:
9004		cfg_size = 1;
9005		break;
9006	case 3:
9007		cfg_size = 2;
9008		break;
9009	}
9010	for (idx = 0; idx < cfg_size; idx++) {
9011		bp->link_params.req_duplex[idx] = DUPLEX_FULL;
9012		link_config = bp->port.link_config[idx];
9013		switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) {
9014		case PORT_FEATURE_LINK_SPEED_AUTO:
9015			if (bp->port.supported[idx] & SUPPORTED_Autoneg) {
9016				bp->link_params.req_line_speed[idx] =
9017					SPEED_AUTO_NEG;
9018				bp->port.advertising[idx] |=
9019					bp->port.supported[idx];
9020			} else {
9021				/* force 10G, no AN */
9022				bp->link_params.req_line_speed[idx] =
9023					SPEED_10000;
9024				bp->port.advertising[idx] |=
9025					(ADVERTISED_10000baseT_Full |
9026					 ADVERTISED_FIBRE);
9027				continue;
9028			}
9029			break;
9030
9031		case PORT_FEATURE_LINK_SPEED_10M_FULL:
9032			if (bp->port.supported[idx] & SUPPORTED_10baseT_Full) {
9033				bp->link_params.req_line_speed[idx] =
9034					SPEED_10;
9035				bp->port.advertising[idx] |=
9036					(ADVERTISED_10baseT_Full |
9037					 ADVERTISED_TP);
9038			} else {
9039				BNX2X_ERR("NVRAM config error. "
9040					    "Invalid link_config 0x%x"
9041					    "  speed_cap_mask 0x%x\n",
9042					    link_config,
9043				    bp->link_params.speed_cap_mask[idx]);
9044				return;
9045			}
9046			break;
9047
9048		case PORT_FEATURE_LINK_SPEED_10M_HALF:
9049			if (bp->port.supported[idx] & SUPPORTED_10baseT_Half) {
9050				bp->link_params.req_line_speed[idx] =
9051					SPEED_10;
9052				bp->link_params.req_duplex[idx] =
9053					DUPLEX_HALF;
9054				bp->port.advertising[idx] |=
9055					(ADVERTISED_10baseT_Half |
9056					 ADVERTISED_TP);
9057			} else {
9058				BNX2X_ERR("NVRAM config error. "
9059					    "Invalid link_config 0x%x"
9060					    "  speed_cap_mask 0x%x\n",
9061					    link_config,
9062					  bp->link_params.speed_cap_mask[idx]);
9063				return;
9064			}
9065			break;
9066
9067		case PORT_FEATURE_LINK_SPEED_100M_FULL:
9068			if (bp->port.supported[idx] &
9069			    SUPPORTED_100baseT_Full) {
9070				bp->link_params.req_line_speed[idx] =
9071					SPEED_100;
9072				bp->port.advertising[idx] |=
9073					(ADVERTISED_100baseT_Full |
9074					 ADVERTISED_TP);
9075			} else {
9076				BNX2X_ERR("NVRAM config error. "
9077					    "Invalid link_config 0x%x"
9078					    "  speed_cap_mask 0x%x\n",
9079					    link_config,
9080					  bp->link_params.speed_cap_mask[idx]);
9081				return;
9082			}
9083			break;
9084
9085		case PORT_FEATURE_LINK_SPEED_100M_HALF:
9086			if (bp->port.supported[idx] &
9087			    SUPPORTED_100baseT_Half) {
9088				bp->link_params.req_line_speed[idx] =
9089								SPEED_100;
9090				bp->link_params.req_duplex[idx] =
9091								DUPLEX_HALF;
9092				bp->port.advertising[idx] |=
9093					(ADVERTISED_100baseT_Half |
9094					 ADVERTISED_TP);
9095			} else {
9096				BNX2X_ERR("NVRAM config error. "
9097				    "Invalid link_config 0x%x"
9098				    "  speed_cap_mask 0x%x\n",
9099				    link_config,
9100				    bp->link_params.speed_cap_mask[idx]);
9101				return;
9102			}
9103			break;
9104
9105		case PORT_FEATURE_LINK_SPEED_1G:
9106			if (bp->port.supported[idx] &
9107			    SUPPORTED_1000baseT_Full) {
9108				bp->link_params.req_line_speed[idx] =
9109					SPEED_1000;
9110				bp->port.advertising[idx] |=
9111					(ADVERTISED_1000baseT_Full |
9112					 ADVERTISED_TP);
9113			} else {
9114				BNX2X_ERR("NVRAM config error. "
9115				    "Invalid link_config 0x%x"
9116				    "  speed_cap_mask 0x%x\n",
9117				    link_config,
9118				    bp->link_params.speed_cap_mask[idx]);
9119				return;
9120			}
9121			break;
9122
9123		case PORT_FEATURE_LINK_SPEED_2_5G:
9124			if (bp->port.supported[idx] &
9125			    SUPPORTED_2500baseX_Full) {
9126				bp->link_params.req_line_speed[idx] =
9127					SPEED_2500;
9128				bp->port.advertising[idx] |=
9129					(ADVERTISED_2500baseX_Full |
9130						ADVERTISED_TP);
9131			} else {
9132				BNX2X_ERR("NVRAM config error. "
9133				    "Invalid link_config 0x%x"
9134				    "  speed_cap_mask 0x%x\n",
9135				    link_config,
9136				    bp->link_params.speed_cap_mask[idx]);
9137				return;
9138			}
9139			break;
9140
9141		case PORT_FEATURE_LINK_SPEED_10G_CX4:
9142			if (bp->port.supported[idx] &
9143			    SUPPORTED_10000baseT_Full) {
9144				bp->link_params.req_line_speed[idx] =
9145					SPEED_10000;
9146				bp->port.advertising[idx] |=
9147					(ADVERTISED_10000baseT_Full |
9148						ADVERTISED_FIBRE);
9149			} else {
9150				BNX2X_ERR("NVRAM config error. "
9151				    "Invalid link_config 0x%x"
9152				    "  speed_cap_mask 0x%x\n",
9153				    link_config,
9154				    bp->link_params.speed_cap_mask[idx]);
9155				return;
9156			}
9157			break;
9158		case PORT_FEATURE_LINK_SPEED_20G:
9159			bp->link_params.req_line_speed[idx] = SPEED_20000;
9160
9161			break;
9162		default:
9163			BNX2X_ERR("NVRAM config error. "
9164				  "BAD link speed link_config 0x%x\n",
9165				  link_config);
9166				bp->link_params.req_line_speed[idx] =
9167							SPEED_AUTO_NEG;
9168				bp->port.advertising[idx] =
9169						bp->port.supported[idx];
9170			break;
9171		}
9172
9173		bp->link_params.req_flow_ctrl[idx] = (link_config &
9174					 PORT_FEATURE_FLOW_CONTROL_MASK);
9175		if ((bp->link_params.req_flow_ctrl[idx] ==
9176		     BNX2X_FLOW_CTRL_AUTO) &&
9177		    !(bp->port.supported[idx] & SUPPORTED_Autoneg)) {
9178			bp->link_params.req_flow_ctrl[idx] =
9179				BNX2X_FLOW_CTRL_NONE;
9180		}
9181
9182		BNX2X_DEV_INFO("req_line_speed %d  req_duplex %d req_flow_ctrl"
9183			       " 0x%x advertising 0x%x\n",
9184			       bp->link_params.req_line_speed[idx],
9185			       bp->link_params.req_duplex[idx],
9186			       bp->link_params.req_flow_ctrl[idx],
9187			       bp->port.advertising[idx]);
9188	}
9189}
9190
9191static void __devinit bnx2x_set_mac_buf(u8 *mac_buf, u32 mac_lo, u16 mac_hi)
9192{
9193	mac_hi = cpu_to_be16(mac_hi);
9194	mac_lo = cpu_to_be32(mac_lo);
9195	memcpy(mac_buf, &mac_hi, sizeof(mac_hi));
9196	memcpy(mac_buf + sizeof(mac_hi), &mac_lo, sizeof(mac_lo));
9197}
9198
9199static void __devinit bnx2x_get_port_hwinfo(struct bnx2x *bp)
9200{
9201	int port = BP_PORT(bp);
9202	u32 config;
9203	u32 ext_phy_type, ext_phy_config;
9204
9205	bp->link_params.bp = bp;
9206	bp->link_params.port = port;
9207
9208	bp->link_params.lane_config =
9209		SHMEM_RD(bp, dev_info.port_hw_config[port].lane_config);
9210
9211	bp->link_params.speed_cap_mask[0] =
9212		SHMEM_RD(bp,
9213			 dev_info.port_hw_config[port].speed_capability_mask);
9214	bp->link_params.speed_cap_mask[1] =
9215		SHMEM_RD(bp,
9216			 dev_info.port_hw_config[port].speed_capability_mask2);
9217	bp->port.link_config[0] =
9218		SHMEM_RD(bp, dev_info.port_feature_config[port].link_config);
9219
9220	bp->port.link_config[1] =
9221		SHMEM_RD(bp, dev_info.port_feature_config[port].link_config2);
9222
9223	bp->link_params.multi_phy_config =
9224		SHMEM_RD(bp, dev_info.port_hw_config[port].multi_phy_config);
9225	/* If the device is capable of WoL, set the default state according
9226	 * to the HW
9227	 */
9228	config = SHMEM_RD(bp, dev_info.port_feature_config[port].config);
9229	bp->wol = (!(bp->flags & NO_WOL_FLAG) &&
9230		   (config & PORT_FEATURE_WOL_ENABLED));
9231
9232	BNX2X_DEV_INFO("lane_config 0x%08x  "
9233		       "speed_cap_mask0 0x%08x  link_config0 0x%08x\n",
9234		       bp->link_params.lane_config,
9235		       bp->link_params.speed_cap_mask[0],
9236		       bp->port.link_config[0]);
9237
9238	bp->link_params.switch_cfg = (bp->port.link_config[0] &
9239				      PORT_FEATURE_CONNECTED_SWITCH_MASK);
9240	bnx2x_phy_probe(&bp->link_params);
9241	bnx2x_link_settings_supported(bp, bp->link_params.switch_cfg);
9242
9243	bnx2x_link_settings_requested(bp);
9244
9245	/*
9246	 * If connected directly, work with the internal PHY, otherwise, work
9247	 * with the external PHY
9248	 */
9249	ext_phy_config =
9250		SHMEM_RD(bp,
9251			 dev_info.port_hw_config[port].external_phy_config);
9252	ext_phy_type = XGXS_EXT_PHY_TYPE(ext_phy_config);
9253	if (ext_phy_type == PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT)
9254		bp->mdio.prtad = bp->port.phy_addr;
9255
9256	else if ((ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE) &&
9257		 (ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_NOT_CONN))
9258		bp->mdio.prtad =
9259			XGXS_EXT_PHY_ADDR(ext_phy_config);
9260
9261	/*
9262	 * Check if hw lock is required to access MDC/MDIO bus to the PHY(s)
9263	 * In MF mode, it is set to cover self test cases
9264	 */
9265	if (IS_MF(bp))
9266		bp->port.need_hw_lock = 1;
9267	else
9268		bp->port.need_hw_lock = bnx2x_hw_lock_required(bp,
9269							bp->common.shmem_base,
9270							bp->common.shmem2_base);
9271}
9272
9273#ifdef BCM_CNIC
9274void bnx2x_get_iscsi_info(struct bnx2x *bp)
9275{
9276	int port = BP_PORT(bp);
9277
9278	u32 max_iscsi_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
9279				drv_lic_key[port].max_iscsi_conn);
9280
9281	/* Get the number of maximum allowed iSCSI connections */
9282	bp->cnic_eth_dev.max_iscsi_conn =
9283		(max_iscsi_conn & BNX2X_MAX_ISCSI_INIT_CONN_MASK) >>
9284		BNX2X_MAX_ISCSI_INIT_CONN_SHIFT;
9285
9286	BNX2X_DEV_INFO("max_iscsi_conn 0x%x\n",
9287		       bp->cnic_eth_dev.max_iscsi_conn);
9288
9289	/*
9290	 * If maximum allowed number of connections is zero -
9291	 * disable the feature.
9292	 */
9293	if (!bp->cnic_eth_dev.max_iscsi_conn)
9294		bp->flags |= NO_ISCSI_FLAG;
9295}
9296
9297static void __devinit bnx2x_get_fcoe_info(struct bnx2x *bp)
9298{
9299	int port = BP_PORT(bp);
9300	int func = BP_ABS_FUNC(bp);
9301
9302	u32 max_fcoe_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
9303				drv_lic_key[port].max_fcoe_conn);
9304
9305	/* Get the number of maximum allowed FCoE connections */
9306	bp->cnic_eth_dev.max_fcoe_conn =
9307		(max_fcoe_conn & BNX2X_MAX_FCOE_INIT_CONN_MASK) >>
9308		BNX2X_MAX_FCOE_INIT_CONN_SHIFT;
9309
9310	/* Read the WWN: */
9311	if (!IS_MF(bp)) {
9312		/* Port info */
9313		bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
9314			SHMEM_RD(bp,
9315				dev_info.port_hw_config[port].
9316				 fcoe_wwn_port_name_upper);
9317		bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
9318			SHMEM_RD(bp,
9319				dev_info.port_hw_config[port].
9320				 fcoe_wwn_port_name_lower);
9321
9322		/* Node info */
9323		bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
9324			SHMEM_RD(bp,
9325				dev_info.port_hw_config[port].
9326				 fcoe_wwn_node_name_upper);
9327		bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
9328			SHMEM_RD(bp,
9329				dev_info.port_hw_config[port].
9330				 fcoe_wwn_node_name_lower);
9331	} else if (!IS_MF_SD(bp)) {
9332		u32 cfg = MF_CFG_RD(bp, func_ext_config[func].func_cfg);
9333
9334		/*
9335		 * Read the WWN info only if the FCoE feature is enabled for
9336		 * this function.
9337		 */
9338		if (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) {
9339			/* Port info */
9340			bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
9341				MF_CFG_RD(bp, func_ext_config[func].
9342						fcoe_wwn_port_name_upper);
9343			bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
9344				MF_CFG_RD(bp, func_ext_config[func].
9345						fcoe_wwn_port_name_lower);
9346
9347			/* Node info */
9348			bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
9349				MF_CFG_RD(bp, func_ext_config[func].
9350						fcoe_wwn_node_name_upper);
9351			bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
9352				MF_CFG_RD(bp, func_ext_config[func].
9353						fcoe_wwn_node_name_lower);
9354		}
9355	}
9356
9357	BNX2X_DEV_INFO("max_fcoe_conn 0x%x\n", bp->cnic_eth_dev.max_fcoe_conn);
9358
9359	/*
9360	 * If maximum allowed number of connections is zero -
9361	 * disable the feature.
9362	 */
9363	if (!bp->cnic_eth_dev.max_fcoe_conn)
9364		bp->flags |= NO_FCOE_FLAG;
9365}
9366
9367static void __devinit bnx2x_get_cnic_info(struct bnx2x *bp)
9368{
9369	/*
9370	 * iSCSI may be dynamically disabled but reading
9371	 * info here we will decrease memory usage by driver
9372	 * if the feature is disabled for good
9373	 */
9374	bnx2x_get_iscsi_info(bp);
9375	bnx2x_get_fcoe_info(bp);
9376}
9377#endif
9378
9379static void __devinit bnx2x_get_mac_hwinfo(struct bnx2x *bp)
9380{
9381	u32 val, val2;
9382	int func = BP_ABS_FUNC(bp);
9383	int port = BP_PORT(bp);
9384#ifdef BCM_CNIC
9385	u8 *iscsi_mac = bp->cnic_eth_dev.iscsi_mac;
9386	u8 *fip_mac = bp->fip_mac;
9387#endif
9388
9389	/* Zero primary MAC configuration */
9390	memset(bp->dev->dev_addr, 0, ETH_ALEN);
9391
9392	if (BP_NOMCP(bp)) {
9393		BNX2X_ERROR("warning: random MAC workaround active\n");
9394		random_ether_addr(bp->dev->dev_addr);
9395	} else if (IS_MF(bp)) {
9396		val2 = MF_CFG_RD(bp, func_mf_config[func].mac_upper);
9397		val = MF_CFG_RD(bp, func_mf_config[func].mac_lower);
9398		if ((val2 != FUNC_MF_CFG_UPPERMAC_DEFAULT) &&
9399		    (val != FUNC_MF_CFG_LOWERMAC_DEFAULT))
9400			bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
9401
9402#ifdef BCM_CNIC
9403		/* iSCSI and FCoE NPAR MACs: if there is no either iSCSI or
9404		 * FCoE MAC then the appropriate feature should be disabled.
9405		 */
9406		if (IS_MF_SI(bp)) {
9407			u32 cfg = MF_CFG_RD(bp, func_ext_config[func].func_cfg);
9408			if (cfg & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) {
9409				val2 = MF_CFG_RD(bp, func_ext_config[func].
9410						     iscsi_mac_addr_upper);
9411				val = MF_CFG_RD(bp, func_ext_config[func].
9412						    iscsi_mac_addr_lower);
9413				bnx2x_set_mac_buf(iscsi_mac, val, val2);
9414				BNX2X_DEV_INFO("Read iSCSI MAC: %pM\n",
9415					       iscsi_mac);
9416			} else
9417				bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
9418
9419			if (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) {
9420				val2 = MF_CFG_RD(bp, func_ext_config[func].
9421						     fcoe_mac_addr_upper);
9422				val = MF_CFG_RD(bp, func_ext_config[func].
9423						    fcoe_mac_addr_lower);
9424				bnx2x_set_mac_buf(fip_mac, val, val2);
9425				BNX2X_DEV_INFO("Read FCoE L2 MAC to %pM\n",
9426					       fip_mac);
9427
9428			} else
9429				bp->flags |= NO_FCOE_FLAG;
9430		}
9431#endif
9432	} else {
9433		/* in SF read MACs from port configuration */
9434		val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper);
9435		val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower);
9436		bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
9437
9438#ifdef BCM_CNIC
9439		val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
9440				    iscsi_mac_upper);
9441		val = SHMEM_RD(bp, dev_info.port_hw_config[port].
9442				   iscsi_mac_lower);
9443		bnx2x_set_mac_buf(iscsi_mac, val, val2);
9444
9445		val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
9446				    fcoe_fip_mac_upper);
9447		val = SHMEM_RD(bp, dev_info.port_hw_config[port].
9448				   fcoe_fip_mac_lower);
9449		bnx2x_set_mac_buf(fip_mac, val, val2);
9450#endif
9451	}
9452
9453	memcpy(bp->link_params.mac_addr, bp->dev->dev_addr, ETH_ALEN);
9454	memcpy(bp->dev->perm_addr, bp->dev->dev_addr, ETH_ALEN);
9455
9456#ifdef BCM_CNIC
9457	/* Set the FCoE MAC in MF_SD mode */
9458	if (!CHIP_IS_E1x(bp) && IS_MF_SD(bp))
9459		memcpy(fip_mac, bp->dev->dev_addr, ETH_ALEN);
9460
9461	/* Disable iSCSI if MAC configuration is
9462	 * invalid.
9463	 */
9464	if (!is_valid_ether_addr(iscsi_mac)) {
9465		bp->flags |= NO_ISCSI_FLAG;
9466		memset(iscsi_mac, 0, ETH_ALEN);
9467	}
9468
9469	/* Disable FCoE if MAC configuration is
9470	 * invalid.
9471	 */
9472	if (!is_valid_ether_addr(fip_mac)) {
9473		bp->flags |= NO_FCOE_FLAG;
9474		memset(bp->fip_mac, 0, ETH_ALEN);
9475	}
9476#endif
9477
9478	if (!is_valid_ether_addr(bp->dev->dev_addr))
9479		dev_err(&bp->pdev->dev,
9480			"bad Ethernet MAC address configuration: "
9481			"%pM, change it manually before bringing up "
9482			"the appropriate network interface\n",
9483			bp->dev->dev_addr);
9484}
9485
9486static int __devinit bnx2x_get_hwinfo(struct bnx2x *bp)
9487{
9488	int /*abs*/func = BP_ABS_FUNC(bp);
9489	int vn;
9490	u32 val = 0;
9491	int rc = 0;
9492
9493	bnx2x_get_common_hwinfo(bp);
9494
9495	/*
9496	 * initialize IGU parameters
9497	 */
9498	if (CHIP_IS_E1x(bp)) {
9499		bp->common.int_block = INT_BLOCK_HC;
9500
9501		bp->igu_dsb_id = DEF_SB_IGU_ID;
9502		bp->igu_base_sb = 0;
9503	} else {
9504		bp->common.int_block = INT_BLOCK_IGU;
9505
9506		/* do not allow device reset during IGU info preocessing */
9507		bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
9508
9509		val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
9510
9511		if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
9512			int tout = 5000;
9513
9514			BNX2X_DEV_INFO("FORCING Normal Mode\n");
9515
9516			val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN);
9517			REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION, val);
9518			REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x7f);
9519
9520			while (tout && REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
9521				tout--;
9522				usleep_range(1000, 1000);
9523			}
9524
9525			if (REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
9526				dev_err(&bp->pdev->dev,
9527					"FORCING Normal Mode failed!!!\n");
9528				return -EPERM;
9529			}
9530		}
9531
9532		if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
9533			BNX2X_DEV_INFO("IGU Backward Compatible Mode\n");
9534			bp->common.int_block |= INT_BLOCK_MODE_BW_COMP;
9535		} else
9536			BNX2X_DEV_INFO("IGU Normal Mode\n");
9537
9538		bnx2x_get_igu_cam_info(bp);
9539
9540		bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
9541	}
9542
9543	/*
9544	 * set base FW non-default (fast path) status block id, this value is
9545	 * used to initialize the fw_sb_id saved on the fp/queue structure to
9546	 * determine the id used by the FW.
9547	 */
9548	if (CHIP_IS_E1x(bp))
9549		bp->base_fw_ndsb = BP_PORT(bp) * FP_SB_MAX_E1x + BP_L_ID(bp);
9550	else /*
9551	      * 57712 - we currently use one FW SB per IGU SB (Rx and Tx of
9552	      * the same queue are indicated on the same IGU SB). So we prefer
9553	      * FW and IGU SBs to be the same value.
9554	      */
9555		bp->base_fw_ndsb = bp->igu_base_sb;
9556
9557	BNX2X_DEV_INFO("igu_dsb_id %d  igu_base_sb %d  igu_sb_cnt %d\n"
9558		       "base_fw_ndsb %d\n", bp->igu_dsb_id, bp->igu_base_sb,
9559		       bp->igu_sb_cnt, bp->base_fw_ndsb);
9560
9561	/*
9562	 * Initialize MF configuration
9563	 */
9564
9565	bp->mf_ov = 0;
9566	bp->mf_mode = 0;
9567	vn = BP_VN(bp);
9568
9569	if (!CHIP_IS_E1(bp) && !BP_NOMCP(bp)) {
9570		BNX2X_DEV_INFO("shmem2base 0x%x, size %d, mfcfg offset %d\n",
9571			       bp->common.shmem2_base, SHMEM2_RD(bp, size),
9572			      (u32)offsetof(struct shmem2_region, mf_cfg_addr));
9573
9574		if (SHMEM2_HAS(bp, mf_cfg_addr))
9575			bp->common.mf_cfg_base = SHMEM2_RD(bp, mf_cfg_addr);
9576		else
9577			bp->common.mf_cfg_base = bp->common.shmem_base +
9578				offsetof(struct shmem_region, func_mb) +
9579				E1H_FUNC_MAX * sizeof(struct drv_func_mb);
9580		/*
9581		 * get mf configuration:
9582		 * 1. existence of MF configuration
9583		 * 2. MAC address must be legal (check only upper bytes)
9584		 *    for  Switch-Independent mode;
9585		 *    OVLAN must be legal for Switch-Dependent mode
9586		 * 3. SF_MODE configures specific MF mode
9587		 */
9588		if (bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
9589			/* get mf configuration */
9590			val = SHMEM_RD(bp,
9591				       dev_info.shared_feature_config.config);
9592			val &= SHARED_FEAT_CFG_FORCE_SF_MODE_MASK;
9593
9594			switch (val) {
9595			case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT:
9596				val = MF_CFG_RD(bp, func_mf_config[func].
9597						mac_upper);
9598				/* check for legal mac (upper bytes)*/
9599				if (val != 0xffff) {
9600					bp->mf_mode = MULTI_FUNCTION_SI;
9601					bp->mf_config[vn] = MF_CFG_RD(bp,
9602						   func_mf_config[func].config);
9603				} else
9604					BNX2X_DEV_INFO("illegal MAC address "
9605						       "for SI\n");
9606				break;
9607			case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED:
9608				/* get OV configuration */
9609				val = MF_CFG_RD(bp,
9610					func_mf_config[FUNC_0].e1hov_tag);
9611				val &= FUNC_MF_CFG_E1HOV_TAG_MASK;
9612
9613				if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
9614					bp->mf_mode = MULTI_FUNCTION_SD;
9615					bp->mf_config[vn] = MF_CFG_RD(bp,
9616						func_mf_config[func].config);
9617				} else
9618					BNX2X_DEV_INFO("illegal OV for SD\n");
9619				break;
9620			default:
9621				/* Unknown configuration: reset mf_config */
9622				bp->mf_config[vn] = 0;
9623				BNX2X_DEV_INFO("unkown MF mode 0x%x\n", val);
9624			}
9625		}
9626
9627		BNX2X_DEV_INFO("%s function mode\n",
9628			       IS_MF(bp) ? "multi" : "single");
9629
9630		switch (bp->mf_mode) {
9631		case MULTI_FUNCTION_SD:
9632			val = MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
9633			      FUNC_MF_CFG_E1HOV_TAG_MASK;
9634			if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
9635				bp->mf_ov = val;
9636				bp->path_has_ovlan = true;
9637
9638				BNX2X_DEV_INFO("MF OV for func %d is %d "
9639					       "(0x%04x)\n", func, bp->mf_ov,
9640					       bp->mf_ov);
9641			} else {
9642				dev_err(&bp->pdev->dev,
9643					"No valid MF OV for func %d, "
9644					"aborting\n", func);
9645				return -EPERM;
9646			}
9647			break;
9648		case MULTI_FUNCTION_SI:
9649			BNX2X_DEV_INFO("func %d is in MF "
9650				       "switch-independent mode\n", func);
9651			break;
9652		default:
9653			if (vn) {
9654				dev_err(&bp->pdev->dev,
9655					"VN %d is in a single function mode, "
9656					"aborting\n", vn);
9657				return -EPERM;
9658			}
9659			break;
9660		}
9661
9662		/* check if other port on the path needs ovlan:
9663		 * Since MF configuration is shared between ports
9664		 * Possible mixed modes are only
9665		 * {SF, SI} {SF, SD} {SD, SF} {SI, SF}
9666		 */
9667		if (CHIP_MODE_IS_4_PORT(bp) &&
9668		    !bp->path_has_ovlan &&
9669		    !IS_MF(bp) &&
9670		    bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
9671			u8 other_port = !BP_PORT(bp);
9672			u8 other_func = BP_PATH(bp) + 2*other_port;
9673			val = MF_CFG_RD(bp,
9674					func_mf_config[other_func].e1hov_tag);
9675			if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT)
9676				bp->path_has_ovlan = true;
9677		}
9678	}
9679
9680	/* adjust igu_sb_cnt to MF for E1x */
9681	if (CHIP_IS_E1x(bp) && IS_MF(bp))
9682		bp->igu_sb_cnt /= E1HVN_MAX;
9683
9684	/* port info */
9685	bnx2x_get_port_hwinfo(bp);
9686
9687	/* Get MAC addresses */
9688	bnx2x_get_mac_hwinfo(bp);
9689
9690#ifdef BCM_CNIC
9691	bnx2x_get_cnic_info(bp);
9692#endif
9693
9694	/* Get current FW pulse sequence */
9695	if (!BP_NOMCP(bp)) {
9696		int mb_idx = BP_FW_MB_IDX(bp);
9697
9698		bp->fw_drv_pulse_wr_seq =
9699				(SHMEM_RD(bp, func_mb[mb_idx].drv_pulse_mb) &
9700				 DRV_PULSE_SEQ_MASK);
9701		BNX2X_DEV_INFO("drv_pulse 0x%x\n", bp->fw_drv_pulse_wr_seq);
9702	}
9703
9704	return rc;
9705}
9706
9707static void __devinit bnx2x_read_fwinfo(struct bnx2x *bp)
9708{
9709	int cnt, i, block_end, rodi;
9710	char vpd_data[BNX2X_VPD_LEN+1];
9711	char str_id_reg[VENDOR_ID_LEN+1];
9712	char str_id_cap[VENDOR_ID_LEN+1];
9713	u8 len;
9714
9715	cnt = pci_read_vpd(bp->pdev, 0, BNX2X_VPD_LEN, vpd_data);
9716	memset(bp->fw_ver, 0, sizeof(bp->fw_ver));
9717
9718	if (cnt < BNX2X_VPD_LEN)
9719		goto out_not_found;
9720
9721	i = pci_vpd_find_tag(vpd_data, 0, BNX2X_VPD_LEN,
9722			     PCI_VPD_LRDT_RO_DATA);
9723	if (i < 0)
9724		goto out_not_found;
9725
9726
9727	block_end = i + PCI_VPD_LRDT_TAG_SIZE +
9728		    pci_vpd_lrdt_size(&vpd_data[i]);
9729
9730	i += PCI_VPD_LRDT_TAG_SIZE;
9731
9732	if (block_end > BNX2X_VPD_LEN)
9733		goto out_not_found;
9734
9735	rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
9736				   PCI_VPD_RO_KEYWORD_MFR_ID);
9737	if (rodi < 0)
9738		goto out_not_found;
9739
9740	len = pci_vpd_info_field_size(&vpd_data[rodi]);
9741
9742	if (len != VENDOR_ID_LEN)
9743		goto out_not_found;
9744
9745	rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
9746
9747	/* vendor specific info */
9748	snprintf(str_id_reg, VENDOR_ID_LEN + 1, "%04x", PCI_VENDOR_ID_DELL);
9749	snprintf(str_id_cap, VENDOR_ID_LEN + 1, "%04X", PCI_VENDOR_ID_DELL);
9750	if (!strncmp(str_id_reg, &vpd_data[rodi], VENDOR_ID_LEN) ||
9751	    !strncmp(str_id_cap, &vpd_data[rodi], VENDOR_ID_LEN)) {
9752
9753		rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
9754						PCI_VPD_RO_KEYWORD_VENDOR0);
9755		if (rodi >= 0) {
9756			len = pci_vpd_info_field_size(&vpd_data[rodi]);
9757
9758			rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
9759
9760			if (len < 32 && (len + rodi) <= BNX2X_VPD_LEN) {
9761				memcpy(bp->fw_ver, &vpd_data[rodi], len);
9762				bp->fw_ver[len] = ' ';
9763			}
9764		}
9765		return;
9766	}
9767out_not_found:
9768	return;
9769}
9770
9771static void __devinit bnx2x_set_modes_bitmap(struct bnx2x *bp)
9772{
9773	u32 flags = 0;
9774
9775	if (CHIP_REV_IS_FPGA(bp))
9776		SET_FLAGS(flags, MODE_FPGA);
9777	else if (CHIP_REV_IS_EMUL(bp))
9778		SET_FLAGS(flags, MODE_EMUL);
9779	else
9780		SET_FLAGS(flags, MODE_ASIC);
9781
9782	if (CHIP_MODE_IS_4_PORT(bp))
9783		SET_FLAGS(flags, MODE_PORT4);
9784	else
9785		SET_FLAGS(flags, MODE_PORT2);
9786
9787	if (CHIP_IS_E2(bp))
9788		SET_FLAGS(flags, MODE_E2);
9789	else if (CHIP_IS_E3(bp)) {
9790		SET_FLAGS(flags, MODE_E3);
9791		if (CHIP_REV(bp) == CHIP_REV_Ax)
9792			SET_FLAGS(flags, MODE_E3_A0);
9793		else /*if (CHIP_REV(bp) == CHIP_REV_Bx)*/
9794			SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3);
9795	}
9796
9797	if (IS_MF(bp)) {
9798		SET_FLAGS(flags, MODE_MF);
9799		switch (bp->mf_mode) {
9800		case MULTI_FUNCTION_SD:
9801			SET_FLAGS(flags, MODE_MF_SD);
9802			break;
9803		case MULTI_FUNCTION_SI:
9804			SET_FLAGS(flags, MODE_MF_SI);
9805			break;
9806		}
9807	} else
9808		SET_FLAGS(flags, MODE_SF);
9809
9810#if defined(__LITTLE_ENDIAN)
9811	SET_FLAGS(flags, MODE_LITTLE_ENDIAN);
9812#else /*(__BIG_ENDIAN)*/
9813	SET_FLAGS(flags, MODE_BIG_ENDIAN);
9814#endif
9815	INIT_MODE_FLAGS(bp) = flags;
9816}
9817
9818static int __devinit bnx2x_init_bp(struct bnx2x *bp)
9819{
9820	int func;
9821	int timer_interval;
9822	int rc;
9823
9824	mutex_init(&bp->port.phy_mutex);
9825	mutex_init(&bp->fw_mb_mutex);
9826	spin_lock_init(&bp->stats_lock);
9827#ifdef BCM_CNIC
9828	mutex_init(&bp->cnic_mutex);
9829#endif
9830
9831	INIT_DELAYED_WORK(&bp->sp_task, bnx2x_sp_task);
9832	INIT_DELAYED_WORK(&bp->sp_rtnl_task, bnx2x_sp_rtnl_task);
9833	INIT_DELAYED_WORK(&bp->period_task, bnx2x_period_task);
9834	rc = bnx2x_get_hwinfo(bp);
9835	if (rc)
9836		return rc;
9837
9838	bnx2x_set_modes_bitmap(bp);
9839
9840	rc = bnx2x_alloc_mem_bp(bp);
9841	if (rc)
9842		return rc;
9843
9844	bnx2x_read_fwinfo(bp);
9845
9846	func = BP_FUNC(bp);
9847
9848	/* need to reset chip if undi was active */
9849	if (!BP_NOMCP(bp))
9850		bnx2x_undi_unload(bp);
9851
9852	/* init fw_seq after undi_unload! */
9853	if (!BP_NOMCP(bp)) {
9854		bp->fw_seq =
9855			(SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
9856			 DRV_MSG_SEQ_NUMBER_MASK);
9857		BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp->fw_seq);
9858	}
9859
9860	if (CHIP_REV_IS_FPGA(bp))
9861		dev_err(&bp->pdev->dev, "FPGA detected\n");
9862
9863	if (BP_NOMCP(bp) && (func == 0))
9864		dev_err(&bp->pdev->dev, "MCP disabled, "
9865					"must load devices in order!\n");
9866
9867	bp->multi_mode = multi_mode;
9868
9869	/* Set TPA flags */
9870	if (disable_tpa) {
9871		bp->flags &= ~TPA_ENABLE_FLAG;
9872		bp->dev->features &= ~NETIF_F_LRO;
9873	} else {
9874		bp->flags |= TPA_ENABLE_FLAG;
9875		bp->dev->features |= NETIF_F_LRO;
9876	}
9877	bp->disable_tpa = disable_tpa;
9878
9879	if (CHIP_IS_E1(bp))
9880		bp->dropless_fc = 0;
9881	else
9882		bp->dropless_fc = dropless_fc;
9883
9884	bp->mrrs = mrrs;
9885
9886	bp->tx_ring_size = MAX_TX_AVAIL;
9887
9888	/* make sure that the numbers are in the right granularity */
9889	bp->tx_ticks = (50 / BNX2X_BTR) * BNX2X_BTR;
9890	bp->rx_ticks = (25 / BNX2X_BTR) * BNX2X_BTR;
9891
9892	timer_interval = (CHIP_REV_IS_SLOW(bp) ? 5*HZ : HZ);
9893	bp->current_interval = (poll ? poll : timer_interval);
9894
9895	init_timer(&bp->timer);
9896	bp->timer.expires = jiffies + bp->current_interval;
9897	bp->timer.data = (unsigned long) bp;
9898	bp->timer.function = bnx2x_timer;
9899
9900	bnx2x_dcbx_set_state(bp, true, BNX2X_DCBX_ENABLED_ON_NEG_ON);
9901	bnx2x_dcbx_init_params(bp);
9902
9903#ifdef BCM_CNIC
9904	if (CHIP_IS_E1x(bp))
9905		bp->cnic_base_cl_id = FP_SB_MAX_E1x;
9906	else
9907		bp->cnic_base_cl_id = FP_SB_MAX_E2;
9908#endif
9909
9910	/* multiple tx priority */
9911	if (CHIP_IS_E1x(bp))
9912		bp->max_cos = BNX2X_MULTI_TX_COS_E1X;
9913	if (CHIP_IS_E2(bp) || CHIP_IS_E3A0(bp))
9914		bp->max_cos = BNX2X_MULTI_TX_COS_E2_E3A0;
9915	if (CHIP_IS_E3B0(bp))
9916		bp->max_cos = BNX2X_MULTI_TX_COS_E3B0;
9917
9918	return rc;
9919}
9920
9921
9922/****************************************************************************
9923* General service functions
9924****************************************************************************/
9925
9926/*
9927 * net_device service functions
9928 */
9929
9930/* called with rtnl_lock */
9931static int bnx2x_open(struct net_device *dev)
9932{
9933	struct bnx2x *bp = netdev_priv(dev);
9934	bool global = false;
9935	int other_engine = BP_PATH(bp) ? 0 : 1;
9936	u32 other_load_counter, load_counter;
9937
9938	netif_carrier_off(dev);
9939
9940	bnx2x_set_power_state(bp, PCI_D0);
9941
9942	other_load_counter = bnx2x_get_load_cnt(bp, other_engine);
9943	load_counter = bnx2x_get_load_cnt(bp, BP_PATH(bp));
9944
9945	/*
9946	 * If parity had happen during the unload, then attentions
9947	 * and/or RECOVERY_IN_PROGRES may still be set. In this case we
9948	 * want the first function loaded on the current engine to
9949	 * complete the recovery.
9950	 */
9951	if (!bnx2x_reset_is_done(bp, BP_PATH(bp)) ||
9952	    bnx2x_chk_parity_attn(bp, &global, true))
9953		do {
9954			/*
9955			 * If there are attentions and they are in a global
9956			 * blocks, set the GLOBAL_RESET bit regardless whether
9957			 * it will be this function that will complete the
9958			 * recovery or not.
9959			 */
9960			if (global)
9961				bnx2x_set_reset_global(bp);
9962
9963			/*
9964			 * Only the first function on the current engine should
9965			 * try to recover in open. In case of attentions in
9966			 * global blocks only the first in the chip should try
9967			 * to recover.
9968			 */
9969			if ((!load_counter &&
9970			     (!global || !other_load_counter)) &&
9971			    bnx2x_trylock_leader_lock(bp) &&
9972			    !bnx2x_leader_reset(bp)) {
9973				netdev_info(bp->dev, "Recovered in open\n");
9974				break;
9975			}
9976
9977			/* recovery has failed... */
9978			bnx2x_set_power_state(bp, PCI_D3hot);
9979			bp->recovery_state = BNX2X_RECOVERY_FAILED;
9980
9981			netdev_err(bp->dev, "Recovery flow hasn't been properly"
9982			" completed yet. Try again later. If u still see this"
9983			" message after a few retries then power cycle is"
9984			" required.\n");
9985
9986			return -EAGAIN;
9987		} while (0);
9988
9989	bp->recovery_state = BNX2X_RECOVERY_DONE;
9990	return bnx2x_nic_load(bp, LOAD_OPEN);
9991}
9992
9993/* called with rtnl_lock */
9994int bnx2x_close(struct net_device *dev)
9995{
9996	struct bnx2x *bp = netdev_priv(dev);
9997
9998	/* Unload the driver, release IRQs */
9999	bnx2x_nic_unload(bp, UNLOAD_CLOSE);
10000
10001	/* Power off */
10002	bnx2x_set_power_state(bp, PCI_D3hot);
10003
10004	return 0;
10005}
10006
10007static inline int bnx2x_init_mcast_macs_list(struct bnx2x *bp,
10008					 struct bnx2x_mcast_ramrod_params *p)
10009{
10010	int mc_count = netdev_mc_count(bp->dev);
10011	struct bnx2x_mcast_list_elem *mc_mac =
10012		kzalloc(sizeof(*mc_mac) * mc_count, GFP_ATOMIC);
10013	struct netdev_hw_addr *ha;
10014
10015	if (!mc_mac)
10016		return -ENOMEM;
10017
10018	INIT_LIST_HEAD(&p->mcast_list);
10019
10020	netdev_for_each_mc_addr(ha, bp->dev) {
10021		mc_mac->mac = bnx2x_mc_addr(ha);
10022		list_add_tail(&mc_mac->link, &p->mcast_list);
10023		mc_mac++;
10024	}
10025
10026	p->mcast_list_len = mc_count;
10027
10028	return 0;
10029}
10030
10031static inline void bnx2x_free_mcast_macs_list(
10032	struct bnx2x_mcast_ramrod_params *p)
10033{
10034	struct bnx2x_mcast_list_elem *mc_mac =
10035		list_first_entry(&p->mcast_list, struct bnx2x_mcast_list_elem,
10036				 link);
10037
10038	WARN_ON(!mc_mac);
10039	kfree(mc_mac);
10040}
10041
10042/**
10043 * bnx2x_set_uc_list - configure a new unicast MACs list.
10044 *
10045 * @bp: driver handle
10046 *
10047 * We will use zero (0) as a MAC type for these MACs.
10048 */
10049static inline int bnx2x_set_uc_list(struct bnx2x *bp)
10050{
10051	int rc;
10052	struct net_device *dev = bp->dev;
10053	struct netdev_hw_addr *ha;
10054	struct bnx2x_vlan_mac_obj *mac_obj = &bp->fp->mac_obj;
10055	unsigned long ramrod_flags = 0;
10056
10057	/* First schedule a cleanup up of old configuration */
10058	rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_UC_LIST_MAC, false);
10059	if (rc < 0) {
10060		BNX2X_ERR("Failed to schedule DELETE operations: %d\n", rc);
10061		return rc;
10062	}
10063
10064	netdev_for_each_uc_addr(ha, dev) {
10065		rc = bnx2x_set_mac_one(bp, bnx2x_uc_addr(ha), mac_obj, true,
10066				       BNX2X_UC_LIST_MAC, &ramrod_flags);
10067		if (rc < 0) {
10068			BNX2X_ERR("Failed to schedule ADD operations: %d\n",
10069				  rc);
10070			return rc;
10071		}
10072	}
10073
10074	/* Execute the pending commands */
10075	__set_bit(RAMROD_CONT, &ramrod_flags);
10076	return bnx2x_set_mac_one(bp, NULL, mac_obj, false /* don't care */,
10077				 BNX2X_UC_LIST_MAC, &ramrod_flags);
10078}
10079
10080static inline int bnx2x_set_mc_list(struct bnx2x *bp)
10081{
10082	struct net_device *dev = bp->dev;
10083	struct bnx2x_mcast_ramrod_params rparam = {0};
10084	int rc = 0;
10085
10086	rparam.mcast_obj = &bp->mcast_obj;
10087
10088	/* first, clear all configured multicast MACs */
10089	rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
10090	if (rc < 0) {
10091		BNX2X_ERR("Failed to clear multicast "
10092			  "configuration: %d\n", rc);
10093		return rc;
10094	}
10095
10096	/* then, configure a new MACs list */
10097	if (netdev_mc_count(dev)) {
10098		rc = bnx2x_init_mcast_macs_list(bp, &rparam);
10099		if (rc) {
10100			BNX2X_ERR("Failed to create multicast MACs "
10101				  "list: %d\n", rc);
10102			return rc;
10103		}
10104
10105		/* Now add the new MACs */
10106		rc = bnx2x_config_mcast(bp, &rparam,
10107					BNX2X_MCAST_CMD_ADD);
10108		if (rc < 0)
10109			BNX2X_ERR("Failed to set a new multicast "
10110				  "configuration: %d\n", rc);
10111
10112		bnx2x_free_mcast_macs_list(&rparam);
10113	}
10114
10115	return rc;
10116}
10117
10118
10119/* If bp->state is OPEN, should be called with netif_addr_lock_bh() */
10120void bnx2x_set_rx_mode(struct net_device *dev)
10121{
10122	struct bnx2x *bp = netdev_priv(dev);
10123	u32 rx_mode = BNX2X_RX_MODE_NORMAL;
10124
10125	if (bp->state != BNX2X_STATE_OPEN) {
10126		DP(NETIF_MSG_IFUP, "state is %x, returning\n", bp->state);
10127		return;
10128	}
10129
10130	DP(NETIF_MSG_IFUP, "dev->flags = %x\n", bp->dev->flags);
10131
10132	if (dev->flags & IFF_PROMISC)
10133		rx_mode = BNX2X_RX_MODE_PROMISC;
10134	else if ((dev->flags & IFF_ALLMULTI) ||
10135		 ((netdev_mc_count(dev) > BNX2X_MAX_MULTICAST) &&
10136		  CHIP_IS_E1(bp)))
10137		rx_mode = BNX2X_RX_MODE_ALLMULTI;
10138	else {
10139		/* some multicasts */
10140		if (bnx2x_set_mc_list(bp) < 0)
10141			rx_mode = BNX2X_RX_MODE_ALLMULTI;
10142
10143		if (bnx2x_set_uc_list(bp) < 0)
10144			rx_mode = BNX2X_RX_MODE_PROMISC;
10145	}
10146
10147	bp->rx_mode = rx_mode;
10148
10149	/* Schedule the rx_mode command */
10150	if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state)) {
10151		set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
10152		return;
10153	}
10154
10155	bnx2x_set_storm_rx_mode(bp);
10156}
10157
10158/* called with rtnl_lock */
10159static int bnx2x_mdio_read(struct net_device *netdev, int prtad,
10160			   int devad, u16 addr)
10161{
10162	struct bnx2x *bp = netdev_priv(netdev);
10163	u16 value;
10164	int rc;
10165
10166	DP(NETIF_MSG_LINK, "mdio_read: prtad 0x%x, devad 0x%x, addr 0x%x\n",
10167	   prtad, devad, addr);
10168
10169	/* The HW expects different devad if CL22 is used */
10170	devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
10171
10172	bnx2x_acquire_phy_lock(bp);
10173	rc = bnx2x_phy_read(&bp->link_params, prtad, devad, addr, &value);
10174	bnx2x_release_phy_lock(bp);
10175	DP(NETIF_MSG_LINK, "mdio_read_val 0x%x rc = 0x%x\n", value, rc);
10176
10177	if (!rc)
10178		rc = value;
10179	return rc;
10180}
10181
10182/* called with rtnl_lock */
10183static int bnx2x_mdio_write(struct net_device *netdev, int prtad, int devad,
10184			    u16 addr, u16 value)
10185{
10186	struct bnx2x *bp = netdev_priv(netdev);
10187	int rc;
10188
10189	DP(NETIF_MSG_LINK, "mdio_write: prtad 0x%x, devad 0x%x, addr 0x%x,"
10190			   " value 0x%x\n", prtad, devad, addr, value);
10191
10192	/* The HW expects different devad if CL22 is used */
10193	devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
10194
10195	bnx2x_acquire_phy_lock(bp);
10196	rc = bnx2x_phy_write(&bp->link_params, prtad, devad, addr, value);
10197	bnx2x_release_phy_lock(bp);
10198	return rc;
10199}
10200
10201/* called with rtnl_lock */
10202static int bnx2x_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
10203{
10204	struct bnx2x *bp = netdev_priv(dev);
10205	struct mii_ioctl_data *mdio = if_mii(ifr);
10206
10207	DP(NETIF_MSG_LINK, "ioctl: phy id 0x%x, reg 0x%x, val_in 0x%x\n",
10208	   mdio->phy_id, mdio->reg_num, mdio->val_in);
10209
10210	if (!netif_running(dev))
10211		return -EAGAIN;
10212
10213	return mdio_mii_ioctl(&bp->mdio, mdio, cmd);
10214}
10215
10216#ifdef CONFIG_NET_POLL_CONTROLLER
10217static void poll_bnx2x(struct net_device *dev)
10218{
10219	struct bnx2x *bp = netdev_priv(dev);
10220
10221	disable_irq(bp->pdev->irq);
10222	bnx2x_interrupt(bp->pdev->irq, dev);
10223	enable_irq(bp->pdev->irq);
10224}
10225#endif
10226
10227static const struct net_device_ops bnx2x_netdev_ops = {
10228	.ndo_open		= bnx2x_open,
10229	.ndo_stop		= bnx2x_close,
10230	.ndo_start_xmit		= bnx2x_start_xmit,
10231	.ndo_select_queue	= bnx2x_select_queue,
10232	.ndo_set_rx_mode	= bnx2x_set_rx_mode,
10233	.ndo_set_mac_address	= bnx2x_change_mac_addr,
10234	.ndo_validate_addr	= eth_validate_addr,
10235	.ndo_do_ioctl		= bnx2x_ioctl,
10236	.ndo_change_mtu		= bnx2x_change_mtu,
10237	.ndo_fix_features	= bnx2x_fix_features,
10238	.ndo_set_features	= bnx2x_set_features,
10239	.ndo_tx_timeout		= bnx2x_tx_timeout,
10240#ifdef CONFIG_NET_POLL_CONTROLLER
10241	.ndo_poll_controller	= poll_bnx2x,
10242#endif
10243	.ndo_setup_tc		= bnx2x_setup_tc,
10244
10245#if defined(NETDEV_FCOE_WWNN) && defined(BCM_CNIC)
10246	.ndo_fcoe_get_wwn	= bnx2x_fcoe_get_wwn,
10247#endif
10248};
10249
10250static inline int bnx2x_set_coherency_mask(struct bnx2x *bp)
10251{
10252	struct device *dev = &bp->pdev->dev;
10253
10254	if (dma_set_mask(dev, DMA_BIT_MASK(64)) == 0) {
10255		bp->flags |= USING_DAC_FLAG;
10256		if (dma_set_coherent_mask(dev, DMA_BIT_MASK(64)) != 0) {
10257			dev_err(dev, "dma_set_coherent_mask failed, "
10258				     "aborting\n");
10259			return -EIO;
10260		}
10261	} else if (dma_set_mask(dev, DMA_BIT_MASK(32)) != 0) {
10262		dev_err(dev, "System does not support DMA, aborting\n");
10263		return -EIO;
10264	}
10265
10266	return 0;
10267}
10268
10269static int __devinit bnx2x_init_dev(struct pci_dev *pdev,
10270				    struct net_device *dev,
10271				    unsigned long board_type)
10272{
10273	struct bnx2x *bp;
10274	int rc;
10275
10276	SET_NETDEV_DEV(dev, &pdev->dev);
10277	bp = netdev_priv(dev);
10278
10279	bp->dev = dev;
10280	bp->pdev = pdev;
10281	bp->flags = 0;
10282	bp->pf_num = PCI_FUNC(pdev->devfn);
10283
10284	rc = pci_enable_device(pdev);
10285	if (rc) {
10286		dev_err(&bp->pdev->dev,
10287			"Cannot enable PCI device, aborting\n");
10288		goto err_out;
10289	}
10290
10291	if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
10292		dev_err(&bp->pdev->dev,
10293			"Cannot find PCI device base address, aborting\n");
10294		rc = -ENODEV;
10295		goto err_out_disable;
10296	}
10297
10298	if (!(pci_resource_flags(pdev, 2) & IORESOURCE_MEM)) {
10299		dev_err(&bp->pdev->dev, "Cannot find second PCI device"
10300		       " base address, aborting\n");
10301		rc = -ENODEV;
10302		goto err_out_disable;
10303	}
10304
10305	if (atomic_read(&pdev->enable_cnt) == 1) {
10306		rc = pci_request_regions(pdev, DRV_MODULE_NAME);
10307		if (rc) {
10308			dev_err(&bp->pdev->dev,
10309				"Cannot obtain PCI resources, aborting\n");
10310			goto err_out_disable;
10311		}
10312
10313		pci_set_master(pdev);
10314		pci_save_state(pdev);
10315	}
10316
10317	bp->pm_cap = pci_find_capability(pdev, PCI_CAP_ID_PM);
10318	if (bp->pm_cap == 0) {
10319		dev_err(&bp->pdev->dev,
10320			"Cannot find power management capability, aborting\n");
10321		rc = -EIO;
10322		goto err_out_release;
10323	}
10324
10325	if (!pci_is_pcie(pdev)) {
10326		dev_err(&bp->pdev->dev,	"Not PCI Express, aborting\n");
10327		rc = -EIO;
10328		goto err_out_release;
10329	}
10330
10331	rc = bnx2x_set_coherency_mask(bp);
10332	if (rc)
10333		goto err_out_release;
10334
10335	dev->mem_start = pci_resource_start(pdev, 0);
10336	dev->base_addr = dev->mem_start;
10337	dev->mem_end = pci_resource_end(pdev, 0);
10338
10339	dev->irq = pdev->irq;
10340
10341	bp->regview = pci_ioremap_bar(pdev, 0);
10342	if (!bp->regview) {
10343		dev_err(&bp->pdev->dev,
10344			"Cannot map register space, aborting\n");
10345		rc = -ENOMEM;
10346		goto err_out_release;
10347	}
10348
10349	bnx2x_set_power_state(bp, PCI_D0);
10350
10351	/* clean indirect addresses */
10352	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
10353			       PCICFG_VENDOR_ID_OFFSET);
10354	/*
10355	 * Clean the following indirect addresses for all functions since it
10356	 * is not used by the driver.
10357	 */
10358	REG_WR(bp, PXP2_REG_PGL_ADDR_88_F0, 0);
10359	REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F0, 0);
10360	REG_WR(bp, PXP2_REG_PGL_ADDR_90_F0, 0);
10361	REG_WR(bp, PXP2_REG_PGL_ADDR_94_F0, 0);
10362
10363	if (CHIP_IS_E1x(bp)) {
10364		REG_WR(bp, PXP2_REG_PGL_ADDR_88_F1, 0);
10365		REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F1, 0);
10366		REG_WR(bp, PXP2_REG_PGL_ADDR_90_F1, 0);
10367		REG_WR(bp, PXP2_REG_PGL_ADDR_94_F1, 0);
10368	}
10369
10370	/*
10371	 * Enable internal target-read (in case we are probed after PF FLR).
10372	 * Must be done prior to any BAR read access. Only for 57712 and up
10373	 */
10374	if (board_type != BCM57710 &&
10375	    board_type != BCM57711 &&
10376	    board_type != BCM57711E)
10377		REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
10378
10379	/* Reset the load counter */
10380	bnx2x_clear_load_cnt(bp);
10381
10382	dev->watchdog_timeo = TX_TIMEOUT;
10383
10384	dev->netdev_ops = &bnx2x_netdev_ops;
10385	bnx2x_set_ethtool_ops(dev);
10386
10387	dev->priv_flags |= IFF_UNICAST_FLT;
10388
10389	dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
10390		NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 | NETIF_F_LRO |
10391		NETIF_F_RXCSUM | NETIF_F_RXHASH | NETIF_F_HW_VLAN_TX;
10392
10393	dev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
10394		NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 | NETIF_F_HIGHDMA;
10395
10396	dev->features |= dev->hw_features | NETIF_F_HW_VLAN_RX;
10397	if (bp->flags & USING_DAC_FLAG)
10398		dev->features |= NETIF_F_HIGHDMA;
10399
10400	/* Add Loopback capability to the device */
10401	dev->hw_features |= NETIF_F_LOOPBACK;
10402
10403#ifdef BCM_DCBNL
10404	dev->dcbnl_ops = &bnx2x_dcbnl_ops;
10405#endif
10406
10407	/* get_port_hwinfo() will set prtad and mmds properly */
10408	bp->mdio.prtad = MDIO_PRTAD_NONE;
10409	bp->mdio.mmds = 0;
10410	bp->mdio.mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22;
10411	bp->mdio.dev = dev;
10412	bp->mdio.mdio_read = bnx2x_mdio_read;
10413	bp->mdio.mdio_write = bnx2x_mdio_write;
10414
10415	return 0;
10416
10417err_out_release:
10418	if (atomic_read(&pdev->enable_cnt) == 1)
10419		pci_release_regions(pdev);
10420
10421err_out_disable:
10422	pci_disable_device(pdev);
10423	pci_set_drvdata(pdev, NULL);
10424
10425err_out:
10426	return rc;
10427}
10428
10429static void __devinit bnx2x_get_pcie_width_speed(struct bnx2x *bp,
10430						 int *width, int *speed)
10431{
10432	u32 val = REG_RD(bp, PCICFG_OFFSET + PCICFG_LINK_CONTROL);
10433
10434	*width = (val & PCICFG_LINK_WIDTH) >> PCICFG_LINK_WIDTH_SHIFT;
10435
10436	/* return value of 1=2.5GHz 2=5GHz */
10437	*speed = (val & PCICFG_LINK_SPEED) >> PCICFG_LINK_SPEED_SHIFT;
10438}
10439
10440static int bnx2x_check_firmware(struct bnx2x *bp)
10441{
10442	const struct firmware *firmware = bp->firmware;
10443	struct bnx2x_fw_file_hdr *fw_hdr;
10444	struct bnx2x_fw_file_section *sections;
10445	u32 offset, len, num_ops;
10446	u16 *ops_offsets;
10447	int i;
10448	const u8 *fw_ver;
10449
10450	if (firmware->size < sizeof(struct bnx2x_fw_file_hdr))
10451		return -EINVAL;
10452
10453	fw_hdr = (struct bnx2x_fw_file_hdr *)firmware->data;
10454	sections = (struct bnx2x_fw_file_section *)fw_hdr;
10455
10456	/* Make sure none of the offsets and sizes make us read beyond
10457	 * the end of the firmware data */
10458	for (i = 0; i < sizeof(*fw_hdr) / sizeof(*sections); i++) {
10459		offset = be32_to_cpu(sections[i].offset);
10460		len = be32_to_cpu(sections[i].len);
10461		if (offset + len > firmware->size) {
10462			dev_err(&bp->pdev->dev,
10463				"Section %d length is out of bounds\n", i);
10464			return -EINVAL;
10465		}
10466	}
10467
10468	/* Likewise for the init_ops offsets */
10469	offset = be32_to_cpu(fw_hdr->init_ops_offsets.offset);
10470	ops_offsets = (u16 *)(firmware->data + offset);
10471	num_ops = be32_to_cpu(fw_hdr->init_ops.len) / sizeof(struct raw_op);
10472
10473	for (i = 0; i < be32_to_cpu(fw_hdr->init_ops_offsets.len) / 2; i++) {
10474		if (be16_to_cpu(ops_offsets[i]) > num_ops) {
10475			dev_err(&bp->pdev->dev,
10476				"Section offset %d is out of bounds\n", i);
10477			return -EINVAL;
10478		}
10479	}
10480
10481	/* Check FW version */
10482	offset = be32_to_cpu(fw_hdr->fw_version.offset);
10483	fw_ver = firmware->data + offset;
10484	if ((fw_ver[0] != BCM_5710_FW_MAJOR_VERSION) ||
10485	    (fw_ver[1] != BCM_5710_FW_MINOR_VERSION) ||
10486	    (fw_ver[2] != BCM_5710_FW_REVISION_VERSION) ||
10487	    (fw_ver[3] != BCM_5710_FW_ENGINEERING_VERSION)) {
10488		dev_err(&bp->pdev->dev,
10489			"Bad FW version:%d.%d.%d.%d. Should be %d.%d.%d.%d\n",
10490		       fw_ver[0], fw_ver[1], fw_ver[2],
10491		       fw_ver[3], BCM_5710_FW_MAJOR_VERSION,
10492		       BCM_5710_FW_MINOR_VERSION,
10493		       BCM_5710_FW_REVISION_VERSION,
10494		       BCM_5710_FW_ENGINEERING_VERSION);
10495		return -EINVAL;
10496	}
10497
10498	return 0;
10499}
10500
10501static inline void be32_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
10502{
10503	const __be32 *source = (const __be32 *)_source;
10504	u32 *target = (u32 *)_target;
10505	u32 i;
10506
10507	for (i = 0; i < n/4; i++)
10508		target[i] = be32_to_cpu(source[i]);
10509}
10510
10511/*
10512   Ops array is stored in the following format:
10513   {op(8bit), offset(24bit, big endian), data(32bit, big endian)}
10514 */
10515static inline void bnx2x_prep_ops(const u8 *_source, u8 *_target, u32 n)
10516{
10517	const __be32 *source = (const __be32 *)_source;
10518	struct raw_op *target = (struct raw_op *)_target;
10519	u32 i, j, tmp;
10520
10521	for (i = 0, j = 0; i < n/8; i++, j += 2) {
10522		tmp = be32_to_cpu(source[j]);
10523		target[i].op = (tmp >> 24) & 0xff;
10524		target[i].offset = tmp & 0xffffff;
10525		target[i].raw_data = be32_to_cpu(source[j + 1]);
10526	}
10527}
10528
10529/**
10530 * IRO array is stored in the following format:
10531 * {base(24bit), m1(16bit), m2(16bit), m3(16bit), size(16bit) }
10532 */
10533static inline void bnx2x_prep_iro(const u8 *_source, u8 *_target, u32 n)
10534{
10535	const __be32 *source = (const __be32 *)_source;
10536	struct iro *target = (struct iro *)_target;
10537	u32 i, j, tmp;
10538
10539	for (i = 0, j = 0; i < n/sizeof(struct iro); i++) {
10540		target[i].base = be32_to_cpu(source[j]);
10541		j++;
10542		tmp = be32_to_cpu(source[j]);
10543		target[i].m1 = (tmp >> 16) & 0xffff;
10544		target[i].m2 = tmp & 0xffff;
10545		j++;
10546		tmp = be32_to_cpu(source[j]);
10547		target[i].m3 = (tmp >> 16) & 0xffff;
10548		target[i].size = tmp & 0xffff;
10549		j++;
10550	}
10551}
10552
10553static inline void be16_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
10554{
10555	const __be16 *source = (const __be16 *)_source;
10556	u16 *target = (u16 *)_target;
10557	u32 i;
10558
10559	for (i = 0; i < n/2; i++)
10560		target[i] = be16_to_cpu(source[i]);
10561}
10562
10563#define BNX2X_ALLOC_AND_SET(arr, lbl, func)				\
10564do {									\
10565	u32 len = be32_to_cpu(fw_hdr->arr.len);				\
10566	bp->arr = kmalloc(len, GFP_KERNEL);				\
10567	if (!bp->arr) {							\
10568		pr_err("Failed to allocate %d bytes for "#arr"\n", len); \
10569		goto lbl;						\
10570	}								\
10571	func(bp->firmware->data + be32_to_cpu(fw_hdr->arr.offset),	\
10572	     (u8 *)bp->arr, len);					\
10573} while (0)
10574
10575int bnx2x_init_firmware(struct bnx2x *bp)
10576{
10577	struct bnx2x_fw_file_hdr *fw_hdr;
10578	int rc;
10579
10580
10581	if (!bp->firmware) {
10582		const char *fw_file_name;
10583
10584		if (CHIP_IS_E1(bp))
10585			fw_file_name = FW_FILE_NAME_E1;
10586		else if (CHIP_IS_E1H(bp))
10587			fw_file_name = FW_FILE_NAME_E1H;
10588		else if (!CHIP_IS_E1x(bp))
10589			fw_file_name = FW_FILE_NAME_E2;
10590		else {
10591			BNX2X_ERR("Unsupported chip revision\n");
10592			return -EINVAL;
10593		}
10594		BNX2X_DEV_INFO("Loading %s\n", fw_file_name);
10595
10596		rc = request_firmware(&bp->firmware, fw_file_name,
10597				      &bp->pdev->dev);
10598		if (rc) {
10599			BNX2X_ERR("Can't load firmware file %s\n",
10600				  fw_file_name);
10601			goto request_firmware_exit;
10602		}
10603
10604		rc = bnx2x_check_firmware(bp);
10605		if (rc) {
10606			BNX2X_ERR("Corrupt firmware file %s\n", fw_file_name);
10607			goto request_firmware_exit;
10608		}
10609	}
10610
10611	fw_hdr = (struct bnx2x_fw_file_hdr *)bp->firmware->data;
10612
10613	/* Initialize the pointers to the init arrays */
10614	/* Blob */
10615	BNX2X_ALLOC_AND_SET(init_data, request_firmware_exit, be32_to_cpu_n);
10616
10617	/* Opcodes */
10618	BNX2X_ALLOC_AND_SET(init_ops, init_ops_alloc_err, bnx2x_prep_ops);
10619
10620	/* Offsets */
10621	BNX2X_ALLOC_AND_SET(init_ops_offsets, init_offsets_alloc_err,
10622			    be16_to_cpu_n);
10623
10624	/* STORMs firmware */
10625	INIT_TSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
10626			be32_to_cpu(fw_hdr->tsem_int_table_data.offset);
10627	INIT_TSEM_PRAM_DATA(bp)      = bp->firmware->data +
10628			be32_to_cpu(fw_hdr->tsem_pram_data.offset);
10629	INIT_USEM_INT_TABLE_DATA(bp) = bp->firmware->data +
10630			be32_to_cpu(fw_hdr->usem_int_table_data.offset);
10631	INIT_USEM_PRAM_DATA(bp)      = bp->firmware->data +
10632			be32_to_cpu(fw_hdr->usem_pram_data.offset);
10633	INIT_XSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
10634			be32_to_cpu(fw_hdr->xsem_int_table_data.offset);
10635	INIT_XSEM_PRAM_DATA(bp)      = bp->firmware->data +
10636			be32_to_cpu(fw_hdr->xsem_pram_data.offset);
10637	INIT_CSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
10638			be32_to_cpu(fw_hdr->csem_int_table_data.offset);
10639	INIT_CSEM_PRAM_DATA(bp)      = bp->firmware->data +
10640			be32_to_cpu(fw_hdr->csem_pram_data.offset);
10641	/* IRO */
10642	BNX2X_ALLOC_AND_SET(iro_arr, iro_alloc_err, bnx2x_prep_iro);
10643
10644	return 0;
10645
10646iro_alloc_err:
10647	kfree(bp->init_ops_offsets);
10648init_offsets_alloc_err:
10649	kfree(bp->init_ops);
10650init_ops_alloc_err:
10651	kfree(bp->init_data);
10652request_firmware_exit:
10653	release_firmware(bp->firmware);
10654
10655	return rc;
10656}
10657
10658static void bnx2x_release_firmware(struct bnx2x *bp)
10659{
10660	kfree(bp->init_ops_offsets);
10661	kfree(bp->init_ops);
10662	kfree(bp->init_data);
10663	release_firmware(bp->firmware);
10664	bp->firmware = NULL;
10665}
10666
10667
10668static struct bnx2x_func_sp_drv_ops bnx2x_func_sp_drv = {
10669	.init_hw_cmn_chip = bnx2x_init_hw_common_chip,
10670	.init_hw_cmn      = bnx2x_init_hw_common,
10671	.init_hw_port     = bnx2x_init_hw_port,
10672	.init_hw_func     = bnx2x_init_hw_func,
10673
10674	.reset_hw_cmn     = bnx2x_reset_common,
10675	.reset_hw_port    = bnx2x_reset_port,
10676	.reset_hw_func    = bnx2x_reset_func,
10677
10678	.gunzip_init      = bnx2x_gunzip_init,
10679	.gunzip_end       = bnx2x_gunzip_end,
10680
10681	.init_fw          = bnx2x_init_firmware,
10682	.release_fw       = bnx2x_release_firmware,
10683};
10684
10685void bnx2x__init_func_obj(struct bnx2x *bp)
10686{
10687	/* Prepare DMAE related driver resources */
10688	bnx2x_setup_dmae(bp);
10689
10690	bnx2x_init_func_obj(bp, &bp->func_obj,
10691			    bnx2x_sp(bp, func_rdata),
10692			    bnx2x_sp_mapping(bp, func_rdata),
10693			    &bnx2x_func_sp_drv);
10694}
10695
10696/* must be called after sriov-enable */
10697static inline int bnx2x_set_qm_cid_count(struct bnx2x *bp)
10698{
10699	int cid_count = BNX2X_L2_CID_COUNT(bp);
10700
10701#ifdef BCM_CNIC
10702	cid_count += CNIC_CID_MAX;
10703#endif
10704	return roundup(cid_count, QM_CID_ROUND);
10705}
10706
10707/**
10708 * bnx2x_get_num_none_def_sbs - return the number of none default SBs
10709 *
10710 * @dev:	pci device
10711 *
10712 */
10713static inline int bnx2x_get_num_non_def_sbs(struct pci_dev *pdev)
10714{
10715	int pos;
10716	u16 control;
10717
10718	pos = pci_find_capability(pdev, PCI_CAP_ID_MSIX);
10719
10720	/*
10721	 * If MSI-X is not supported - return number of SBs needed to support
10722	 * one fast path queue: one FP queue + SB for CNIC
10723	 */
10724	if (!pos)
10725		return 1 + CNIC_PRESENT;
10726
10727	/*
10728	 * The value in the PCI configuration space is the index of the last
10729	 * entry, namely one less than the actual size of the table, which is
10730	 * exactly what we want to return from this function: number of all SBs
10731	 * without the default SB.
10732	 */
10733	pci_read_config_word(pdev, pos  + PCI_MSI_FLAGS, &control);
10734	return control & PCI_MSIX_FLAGS_QSIZE;
10735}
10736
10737static int __devinit bnx2x_init_one(struct pci_dev *pdev,
10738				    const struct pci_device_id *ent)
10739{
10740	struct net_device *dev = NULL;
10741	struct bnx2x *bp;
10742	int pcie_width, pcie_speed;
10743	int rc, max_non_def_sbs;
10744	int rx_count, tx_count, rss_count;
10745	/*
10746	 * An estimated maximum supported CoS number according to the chip
10747	 * version.
10748	 * We will try to roughly estimate the maximum number of CoSes this chip
10749	 * may support in order to minimize the memory allocated for Tx
10750	 * netdev_queue's. This number will be accurately calculated during the
10751	 * initialization of bp->max_cos based on the chip versions AND chip
10752	 * revision in the bnx2x_init_bp().
10753	 */
10754	u8 max_cos_est = 0;
10755
10756	switch (ent->driver_data) {
10757	case BCM57710:
10758	case BCM57711:
10759	case BCM57711E:
10760		max_cos_est = BNX2X_MULTI_TX_COS_E1X;
10761		break;
10762
10763	case BCM57712:
10764	case BCM57712_MF:
10765		max_cos_est = BNX2X_MULTI_TX_COS_E2_E3A0;
10766		break;
10767
10768	case BCM57800:
10769	case BCM57800_MF:
10770	case BCM57810:
10771	case BCM57810_MF:
10772	case BCM57840:
10773	case BCM57840_MF:
10774		max_cos_est = BNX2X_MULTI_TX_COS_E3B0;
10775		break;
10776
10777	default:
10778		pr_err("Unknown board_type (%ld), aborting\n",
10779			   ent->driver_data);
10780		return -ENODEV;
10781	}
10782
10783	max_non_def_sbs = bnx2x_get_num_non_def_sbs(pdev);
10784
10785	/* !!! FIXME !!!
10786	 * Do not allow the maximum SB count to grow above 16
10787	 * since Special CIDs starts from 16*BNX2X_MULTI_TX_COS=48.
10788	 * We will use the FP_SB_MAX_E1x macro for this matter.
10789	 */
10790	max_non_def_sbs = min_t(int, FP_SB_MAX_E1x, max_non_def_sbs);
10791
10792	WARN_ON(!max_non_def_sbs);
10793
10794	/* Maximum number of RSS queues: one IGU SB goes to CNIC */
10795	rss_count = max_non_def_sbs - CNIC_PRESENT;
10796
10797	/* Maximum number of netdev Rx queues: RSS + FCoE L2 */
10798	rx_count = rss_count + FCOE_PRESENT;
10799
10800	/*
10801	 * Maximum number of netdev Tx queues:
10802	 *      Maximum TSS queues * Maximum supported number of CoS  + FCoE L2
10803	 */
10804	tx_count = MAX_TXQS_PER_COS * max_cos_est + FCOE_PRESENT;
10805
10806	/* dev zeroed in init_etherdev */
10807	dev = alloc_etherdev_mqs(sizeof(*bp), tx_count, rx_count);
10808	if (!dev) {
10809		dev_err(&pdev->dev, "Cannot allocate net device\n");
10810		return -ENOMEM;
10811	}
10812
10813	bp = netdev_priv(dev);
10814
10815	DP(NETIF_MSG_DRV, "Allocated netdev with %d tx and %d rx queues\n",
10816			  tx_count, rx_count);
10817
10818	bp->igu_sb_cnt = max_non_def_sbs;
10819	bp->msg_enable = debug;
10820	pci_set_drvdata(pdev, dev);
10821
10822	rc = bnx2x_init_dev(pdev, dev, ent->driver_data);
10823	if (rc < 0) {
10824		free_netdev(dev);
10825		return rc;
10826	}
10827
10828	DP(NETIF_MSG_DRV, "max_non_def_sbs %d\n", max_non_def_sbs);
10829
10830	rc = bnx2x_init_bp(bp);
10831	if (rc)
10832		goto init_one_exit;
10833
10834	/*
10835	 * Map doorbels here as we need the real value of bp->max_cos which
10836	 * is initialized in bnx2x_init_bp().
10837	 */
10838	bp->doorbells = ioremap_nocache(pci_resource_start(pdev, 2),
10839					min_t(u64, BNX2X_DB_SIZE(bp),
10840					      pci_resource_len(pdev, 2)));
10841	if (!bp->doorbells) {
10842		dev_err(&bp->pdev->dev,
10843			"Cannot map doorbell space, aborting\n");
10844		rc = -ENOMEM;
10845		goto init_one_exit;
10846	}
10847
10848	/* calc qm_cid_count */
10849	bp->qm_cid_count = bnx2x_set_qm_cid_count(bp);
10850
10851#ifdef BCM_CNIC
10852	/* disable FCOE L2 queue for E1x */
10853	if (CHIP_IS_E1x(bp))
10854		bp->flags |= NO_FCOE_FLAG;
10855
10856#endif
10857
10858	/* Configure interrupt mode: try to enable MSI-X/MSI if
10859	 * needed, set bp->num_queues appropriately.
10860	 */
10861	bnx2x_set_int_mode(bp);
10862
10863	/* Add all NAPI objects */
10864	bnx2x_add_all_napi(bp);
10865
10866	rc = register_netdev(dev);
10867	if (rc) {
10868		dev_err(&pdev->dev, "Cannot register net device\n");
10869		goto init_one_exit;
10870	}
10871
10872#ifdef BCM_CNIC
10873	if (!NO_FCOE(bp)) {
10874		/* Add storage MAC address */
10875		rtnl_lock();
10876		dev_addr_add(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
10877		rtnl_unlock();
10878	}
10879#endif
10880
10881	bnx2x_get_pcie_width_speed(bp, &pcie_width, &pcie_speed);
10882
10883	netdev_info(dev, "%s (%c%d) PCI-E x%d %s found at mem %lx, IRQ %d, node addr %pM\n",
10884		    board_info[ent->driver_data].name,
10885		    (CHIP_REV(bp) >> 12) + 'A', (CHIP_METAL(bp) >> 4),
10886		    pcie_width,
10887		    ((!CHIP_IS_E2(bp) && pcie_speed == 2) ||
10888		     (CHIP_IS_E2(bp) && pcie_speed == 1)) ?
10889		    "5GHz (Gen2)" : "2.5GHz",
10890		    dev->base_addr, bp->pdev->irq, dev->dev_addr);
10891
10892	return 0;
10893
10894init_one_exit:
10895	if (bp->regview)
10896		iounmap(bp->regview);
10897
10898	if (bp->doorbells)
10899		iounmap(bp->doorbells);
10900
10901	free_netdev(dev);
10902
10903	if (atomic_read(&pdev->enable_cnt) == 1)
10904		pci_release_regions(pdev);
10905
10906	pci_disable_device(pdev);
10907	pci_set_drvdata(pdev, NULL);
10908
10909	return rc;
10910}
10911
10912static void __devexit bnx2x_remove_one(struct pci_dev *pdev)
10913{
10914	struct net_device *dev = pci_get_drvdata(pdev);
10915	struct bnx2x *bp;
10916
10917	if (!dev) {
10918		dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n");
10919		return;
10920	}
10921	bp = netdev_priv(dev);
10922
10923#ifdef BCM_CNIC
10924	/* Delete storage MAC address */
10925	if (!NO_FCOE(bp)) {
10926		rtnl_lock();
10927		dev_addr_del(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
10928		rtnl_unlock();
10929	}
10930#endif
10931
10932#ifdef BCM_DCBNL
10933	/* Delete app tlvs from dcbnl */
10934	bnx2x_dcbnl_update_applist(bp, true);
10935#endif
10936
10937	unregister_netdev(dev);
10938
10939	/* Delete all NAPI objects */
10940	bnx2x_del_all_napi(bp);
10941
10942	/* Power on: we can't let PCI layer write to us while we are in D3 */
10943	bnx2x_set_power_state(bp, PCI_D0);
10944
10945	/* Disable MSI/MSI-X */
10946	bnx2x_disable_msi(bp);
10947
10948	/* Power off */
10949	bnx2x_set_power_state(bp, PCI_D3hot);
10950
10951	/* Make sure RESET task is not scheduled before continuing */
10952	cancel_delayed_work_sync(&bp->sp_rtnl_task);
10953
10954	if (bp->regview)
10955		iounmap(bp->regview);
10956
10957	if (bp->doorbells)
10958		iounmap(bp->doorbells);
10959
10960	bnx2x_release_firmware(bp);
10961
10962	bnx2x_free_mem_bp(bp);
10963
10964	free_netdev(dev);
10965
10966	if (atomic_read(&pdev->enable_cnt) == 1)
10967		pci_release_regions(pdev);
10968
10969	pci_disable_device(pdev);
10970	pci_set_drvdata(pdev, NULL);
10971}
10972
10973static int bnx2x_eeh_nic_unload(struct bnx2x *bp)
10974{
10975	int i;
10976
10977	bp->state = BNX2X_STATE_ERROR;
10978
10979	bp->rx_mode = BNX2X_RX_MODE_NONE;
10980
10981#ifdef BCM_CNIC
10982	bnx2x_cnic_notify(bp, CNIC_CTL_STOP_CMD);
10983#endif
10984	/* Stop Tx */
10985	bnx2x_tx_disable(bp);
10986
10987	bnx2x_netif_stop(bp, 0);
10988
10989	del_timer_sync(&bp->timer);
10990
10991	bnx2x_stats_handle(bp, STATS_EVENT_STOP);
10992
10993	/* Release IRQs */
10994	bnx2x_free_irq(bp);
10995
10996	/* Free SKBs, SGEs, TPA pool and driver internals */
10997	bnx2x_free_skbs(bp);
10998
10999	for_each_rx_queue(bp, i)
11000		bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE);
11001
11002	bnx2x_free_mem(bp);
11003
11004	bp->state = BNX2X_STATE_CLOSED;
11005
11006	netif_carrier_off(bp->dev);
11007
11008	return 0;
11009}
11010
11011static void bnx2x_eeh_recover(struct bnx2x *bp)
11012{
11013	u32 val;
11014
11015	mutex_init(&bp->port.phy_mutex);
11016
11017	bp->common.shmem_base = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
11018	bp->link_params.shmem_base = bp->common.shmem_base;
11019	BNX2X_DEV_INFO("shmem offset is 0x%x\n", bp->common.shmem_base);
11020
11021	if (!bp->common.shmem_base ||
11022	    (bp->common.shmem_base < 0xA0000) ||
11023	    (bp->common.shmem_base >= 0xC0000)) {
11024		BNX2X_DEV_INFO("MCP not active\n");
11025		bp->flags |= NO_MCP_FLAG;
11026		return;
11027	}
11028
11029	val = SHMEM_RD(bp, validity_map[BP_PORT(bp)]);
11030	if ((val & (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB))
11031		!= (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB))
11032		BNX2X_ERR("BAD MCP validity signature\n");
11033
11034	if (!BP_NOMCP(bp)) {
11035		bp->fw_seq =
11036		    (SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
11037		    DRV_MSG_SEQ_NUMBER_MASK);
11038		BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp->fw_seq);
11039	}
11040}
11041
11042/**
11043 * bnx2x_io_error_detected - called when PCI error is detected
11044 * @pdev: Pointer to PCI device
11045 * @state: The current pci connection state
11046 *
11047 * This function is called after a PCI bus error affecting
11048 * this device has been detected.
11049 */
11050static pci_ers_result_t bnx2x_io_error_detected(struct pci_dev *pdev,
11051						pci_channel_state_t state)
11052{
11053	struct net_device *dev = pci_get_drvdata(pdev);
11054	struct bnx2x *bp = netdev_priv(dev);
11055
11056	rtnl_lock();
11057
11058	netif_device_detach(dev);
11059
11060	if (state == pci_channel_io_perm_failure) {
11061		rtnl_unlock();
11062		return PCI_ERS_RESULT_DISCONNECT;
11063	}
11064
11065	if (netif_running(dev))
11066		bnx2x_eeh_nic_unload(bp);
11067
11068	pci_disable_device(pdev);
11069
11070	rtnl_unlock();
11071
11072	/* Request a slot reset */
11073	return PCI_ERS_RESULT_NEED_RESET;
11074}
11075
11076/**
11077 * bnx2x_io_slot_reset - called after the PCI bus has been reset
11078 * @pdev: Pointer to PCI device
11079 *
11080 * Restart the card from scratch, as if from a cold-boot.
11081 */
11082static pci_ers_result_t bnx2x_io_slot_reset(struct pci_dev *pdev)
11083{
11084	struct net_device *dev = pci_get_drvdata(pdev);
11085	struct bnx2x *bp = netdev_priv(dev);
11086
11087	rtnl_lock();
11088
11089	if (pci_enable_device(pdev)) {
11090		dev_err(&pdev->dev,
11091			"Cannot re-enable PCI device after reset\n");
11092		rtnl_unlock();
11093		return PCI_ERS_RESULT_DISCONNECT;
11094	}
11095
11096	pci_set_master(pdev);
11097	pci_restore_state(pdev);
11098
11099	if (netif_running(dev))
11100		bnx2x_set_power_state(bp, PCI_D0);
11101
11102	rtnl_unlock();
11103
11104	return PCI_ERS_RESULT_RECOVERED;
11105}
11106
11107/**
11108 * bnx2x_io_resume - called when traffic can start flowing again
11109 * @pdev: Pointer to PCI device
11110 *
11111 * This callback is called when the error recovery driver tells us that
11112 * its OK to resume normal operation.
11113 */
11114static void bnx2x_io_resume(struct pci_dev *pdev)
11115{
11116	struct net_device *dev = pci_get_drvdata(pdev);
11117	struct bnx2x *bp = netdev_priv(dev);
11118
11119	if (bp->recovery_state != BNX2X_RECOVERY_DONE) {
11120		netdev_err(bp->dev, "Handling parity error recovery. "
11121				    "Try again later\n");
11122		return;
11123	}
11124
11125	rtnl_lock();
11126
11127	bnx2x_eeh_recover(bp);
11128
11129	if (netif_running(dev))
11130		bnx2x_nic_load(bp, LOAD_NORMAL);
11131
11132	netif_device_attach(dev);
11133
11134	rtnl_unlock();
11135}
11136
11137static struct pci_error_handlers bnx2x_err_handler = {
11138	.error_detected = bnx2x_io_error_detected,
11139	.slot_reset     = bnx2x_io_slot_reset,
11140	.resume         = bnx2x_io_resume,
11141};
11142
11143static struct pci_driver bnx2x_pci_driver = {
11144	.name        = DRV_MODULE_NAME,
11145	.id_table    = bnx2x_pci_tbl,
11146	.probe       = bnx2x_init_one,
11147	.remove      = __devexit_p(bnx2x_remove_one),
11148	.suspend     = bnx2x_suspend,
11149	.resume      = bnx2x_resume,
11150	.err_handler = &bnx2x_err_handler,
11151};
11152
11153static int __init bnx2x_init(void)
11154{
11155	int ret;
11156
11157	pr_info("%s", version);
11158
11159	bnx2x_wq = create_singlethread_workqueue("bnx2x");
11160	if (bnx2x_wq == NULL) {
11161		pr_err("Cannot create workqueue\n");
11162		return -ENOMEM;
11163	}
11164
11165	ret = pci_register_driver(&bnx2x_pci_driver);
11166	if (ret) {
11167		pr_err("Cannot register driver\n");
11168		destroy_workqueue(bnx2x_wq);
11169	}
11170	return ret;
11171}
11172
11173static void __exit bnx2x_cleanup(void)
11174{
11175	pci_unregister_driver(&bnx2x_pci_driver);
11176
11177	destroy_workqueue(bnx2x_wq);
11178}
11179
11180void bnx2x_notify_link_changed(struct bnx2x *bp)
11181{
11182	REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + BP_FUNC(bp)*sizeof(u32), 1);
11183}
11184
11185module_init(bnx2x_init);
11186module_exit(bnx2x_cleanup);
11187
11188#ifdef BCM_CNIC
11189/**
11190 * bnx2x_set_iscsi_eth_mac_addr - set iSCSI MAC(s).
11191 *
11192 * @bp:		driver handle
11193 * @set:	set or clear the CAM entry
11194 *
11195 * This function will wait until the ramdord completion returns.
11196 * Return 0 if success, -ENODEV if ramrod doesn't return.
11197 */
11198static inline int bnx2x_set_iscsi_eth_mac_addr(struct bnx2x *bp)
11199{
11200	unsigned long ramrod_flags = 0;
11201
11202	__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
11203	return bnx2x_set_mac_one(bp, bp->cnic_eth_dev.iscsi_mac,
11204				 &bp->iscsi_l2_mac_obj, true,
11205				 BNX2X_ISCSI_ETH_MAC, &ramrod_flags);
11206}
11207
11208/* count denotes the number of new completions we have seen */
11209static void bnx2x_cnic_sp_post(struct bnx2x *bp, int count)
11210{
11211	struct eth_spe *spe;
11212
11213#ifdef BNX2X_STOP_ON_ERROR
11214	if (unlikely(bp->panic))
11215		return;
11216#endif
11217
11218	spin_lock_bh(&bp->spq_lock);
11219	BUG_ON(bp->cnic_spq_pending < count);
11220	bp->cnic_spq_pending -= count;
11221
11222
11223	for (; bp->cnic_kwq_pending; bp->cnic_kwq_pending--) {
11224		u16 type =  (le16_to_cpu(bp->cnic_kwq_cons->hdr.type)
11225				& SPE_HDR_CONN_TYPE) >>
11226				SPE_HDR_CONN_TYPE_SHIFT;
11227		u8 cmd = (le32_to_cpu(bp->cnic_kwq_cons->hdr.conn_and_cmd_data)
11228				>> SPE_HDR_CMD_ID_SHIFT) & 0xff;
11229
11230		/* Set validation for iSCSI L2 client before sending SETUP
11231		 *  ramrod
11232		 */
11233		if (type == ETH_CONNECTION_TYPE) {
11234			if (cmd == RAMROD_CMD_ID_ETH_CLIENT_SETUP)
11235				bnx2x_set_ctx_validation(bp, &bp->context.
11236					vcxt[BNX2X_ISCSI_ETH_CID].eth,
11237					BNX2X_ISCSI_ETH_CID);
11238		}
11239
11240		/*
11241		 * There may be not more than 8 L2, not more than 8 L5 SPEs
11242		 * and in the air. We also check that number of outstanding
11243		 * COMMON ramrods is not more than the EQ and SPQ can
11244		 * accommodate.
11245		 */
11246		if (type == ETH_CONNECTION_TYPE) {
11247			if (!atomic_read(&bp->cq_spq_left))
11248				break;
11249			else
11250				atomic_dec(&bp->cq_spq_left);
11251		} else if (type == NONE_CONNECTION_TYPE) {
11252			if (!atomic_read(&bp->eq_spq_left))
11253				break;
11254			else
11255				atomic_dec(&bp->eq_spq_left);
11256		} else if ((type == ISCSI_CONNECTION_TYPE) ||
11257			   (type == FCOE_CONNECTION_TYPE)) {
11258			if (bp->cnic_spq_pending >=
11259			    bp->cnic_eth_dev.max_kwqe_pending)
11260				break;
11261			else
11262				bp->cnic_spq_pending++;
11263		} else {
11264			BNX2X_ERR("Unknown SPE type: %d\n", type);
11265			bnx2x_panic();
11266			break;
11267		}
11268
11269		spe = bnx2x_sp_get_next(bp);
11270		*spe = *bp->cnic_kwq_cons;
11271
11272		DP(NETIF_MSG_TIMER, "pending on SPQ %d, on KWQ %d count %d\n",
11273		   bp->cnic_spq_pending, bp->cnic_kwq_pending, count);
11274
11275		if (bp->cnic_kwq_cons == bp->cnic_kwq_last)
11276			bp->cnic_kwq_cons = bp->cnic_kwq;
11277		else
11278			bp->cnic_kwq_cons++;
11279	}
11280	bnx2x_sp_prod_update(bp);
11281	spin_unlock_bh(&bp->spq_lock);
11282}
11283
11284static int bnx2x_cnic_sp_queue(struct net_device *dev,
11285			       struct kwqe_16 *kwqes[], u32 count)
11286{
11287	struct bnx2x *bp = netdev_priv(dev);
11288	int i;
11289
11290#ifdef BNX2X_STOP_ON_ERROR
11291	if (unlikely(bp->panic))
11292		return -EIO;
11293#endif
11294
11295	spin_lock_bh(&bp->spq_lock);
11296
11297	for (i = 0; i < count; i++) {
11298		struct eth_spe *spe = (struct eth_spe *)kwqes[i];
11299
11300		if (bp->cnic_kwq_pending == MAX_SP_DESC_CNT)
11301			break;
11302
11303		*bp->cnic_kwq_prod = *spe;
11304
11305		bp->cnic_kwq_pending++;
11306
11307		DP(NETIF_MSG_TIMER, "L5 SPQE %x %x %x:%x pos %d\n",
11308		   spe->hdr.conn_and_cmd_data, spe->hdr.type,
11309		   spe->data.update_data_addr.hi,
11310		   spe->data.update_data_addr.lo,
11311		   bp->cnic_kwq_pending);
11312
11313		if (bp->cnic_kwq_prod == bp->cnic_kwq_last)
11314			bp->cnic_kwq_prod = bp->cnic_kwq;
11315		else
11316			bp->cnic_kwq_prod++;
11317	}
11318
11319	spin_unlock_bh(&bp->spq_lock);
11320
11321	if (bp->cnic_spq_pending < bp->cnic_eth_dev.max_kwqe_pending)
11322		bnx2x_cnic_sp_post(bp, 0);
11323
11324	return i;
11325}
11326
11327static int bnx2x_cnic_ctl_send(struct bnx2x *bp, struct cnic_ctl_info *ctl)
11328{
11329	struct cnic_ops *c_ops;
11330	int rc = 0;
11331
11332	mutex_lock(&bp->cnic_mutex);
11333	c_ops = rcu_dereference_protected(bp->cnic_ops,
11334					  lockdep_is_held(&bp->cnic_mutex));
11335	if (c_ops)
11336		rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
11337	mutex_unlock(&bp->cnic_mutex);
11338
11339	return rc;
11340}
11341
11342static int bnx2x_cnic_ctl_send_bh(struct bnx2x *bp, struct cnic_ctl_info *ctl)
11343{
11344	struct cnic_ops *c_ops;
11345	int rc = 0;
11346
11347	rcu_read_lock();
11348	c_ops = rcu_dereference(bp->cnic_ops);
11349	if (c_ops)
11350		rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
11351	rcu_read_unlock();
11352
11353	return rc;
11354}
11355
11356/*
11357 * for commands that have no data
11358 */
11359int bnx2x_cnic_notify(struct bnx2x *bp, int cmd)
11360{
11361	struct cnic_ctl_info ctl = {0};
11362
11363	ctl.cmd = cmd;
11364
11365	return bnx2x_cnic_ctl_send(bp, &ctl);
11366}
11367
11368static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err)
11369{
11370	struct cnic_ctl_info ctl = {0};
11371
11372	/* first we tell CNIC and only then we count this as a completion */
11373	ctl.cmd = CNIC_CTL_COMPLETION_CMD;
11374	ctl.data.comp.cid = cid;
11375	ctl.data.comp.error = err;
11376
11377	bnx2x_cnic_ctl_send_bh(bp, &ctl);
11378	bnx2x_cnic_sp_post(bp, 0);
11379}
11380
11381
11382/* Called with netif_addr_lock_bh() taken.
11383 * Sets an rx_mode config for an iSCSI ETH client.
11384 * Doesn't block.
11385 * Completion should be checked outside.
11386 */
11387static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start)
11388{
11389	unsigned long accept_flags = 0, ramrod_flags = 0;
11390	u8 cl_id = bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
11391	int sched_state = BNX2X_FILTER_ISCSI_ETH_STOP_SCHED;
11392
11393	if (start) {
11394		/* Start accepting on iSCSI L2 ring. Accept all multicasts
11395		 * because it's the only way for UIO Queue to accept
11396		 * multicasts (in non-promiscuous mode only one Queue per
11397		 * function will receive multicast packets (leading in our
11398		 * case).
11399		 */
11400		__set_bit(BNX2X_ACCEPT_UNICAST, &accept_flags);
11401		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &accept_flags);
11402		__set_bit(BNX2X_ACCEPT_BROADCAST, &accept_flags);
11403		__set_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags);
11404
11405		/* Clear STOP_PENDING bit if START is requested */
11406		clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &bp->sp_state);
11407
11408		sched_state = BNX2X_FILTER_ISCSI_ETH_START_SCHED;
11409	} else
11410		/* Clear START_PENDING bit if STOP is requested */
11411		clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &bp->sp_state);
11412
11413	if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
11414		set_bit(sched_state, &bp->sp_state);
11415	else {
11416		__set_bit(RAMROD_RX, &ramrod_flags);
11417		bnx2x_set_q_rx_mode(bp, cl_id, 0, accept_flags, 0,
11418				    ramrod_flags);
11419	}
11420}
11421
11422
11423static int bnx2x_drv_ctl(struct net_device *dev, struct drv_ctl_info *ctl)
11424{
11425	struct bnx2x *bp = netdev_priv(dev);
11426	int rc = 0;
11427
11428	switch (ctl->cmd) {
11429	case DRV_CTL_CTXTBL_WR_CMD: {
11430		u32 index = ctl->data.io.offset;
11431		dma_addr_t addr = ctl->data.io.dma_addr;
11432
11433		bnx2x_ilt_wr(bp, index, addr);
11434		break;
11435	}
11436
11437	case DRV_CTL_RET_L5_SPQ_CREDIT_CMD: {
11438		int count = ctl->data.credit.credit_count;
11439
11440		bnx2x_cnic_sp_post(bp, count);
11441		break;
11442	}
11443
11444	/* rtnl_lock is held.  */
11445	case DRV_CTL_START_L2_CMD: {
11446		struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
11447		unsigned long sp_bits = 0;
11448
11449		/* Configure the iSCSI classification object */
11450		bnx2x_init_mac_obj(bp, &bp->iscsi_l2_mac_obj,
11451				   cp->iscsi_l2_client_id,
11452				   cp->iscsi_l2_cid, BP_FUNC(bp),
11453				   bnx2x_sp(bp, mac_rdata),
11454				   bnx2x_sp_mapping(bp, mac_rdata),
11455				   BNX2X_FILTER_MAC_PENDING,
11456				   &bp->sp_state, BNX2X_OBJ_TYPE_RX,
11457				   &bp->macs_pool);
11458
11459		/* Set iSCSI MAC address */
11460		rc = bnx2x_set_iscsi_eth_mac_addr(bp);
11461		if (rc)
11462			break;
11463
11464		mmiowb();
11465		barrier();
11466
11467		/* Start accepting on iSCSI L2 ring */
11468
11469		netif_addr_lock_bh(dev);
11470		bnx2x_set_iscsi_eth_rx_mode(bp, true);
11471		netif_addr_unlock_bh(dev);
11472
11473		/* bits to wait on */
11474		__set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
11475		__set_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &sp_bits);
11476
11477		if (!bnx2x_wait_sp_comp(bp, sp_bits))
11478			BNX2X_ERR("rx_mode completion timed out!\n");
11479
11480		break;
11481	}
11482
11483	/* rtnl_lock is held.  */
11484	case DRV_CTL_STOP_L2_CMD: {
11485		unsigned long sp_bits = 0;
11486
11487		/* Stop accepting on iSCSI L2 ring */
11488		netif_addr_lock_bh(dev);
11489		bnx2x_set_iscsi_eth_rx_mode(bp, false);
11490		netif_addr_unlock_bh(dev);
11491
11492		/* bits to wait on */
11493		__set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
11494		__set_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &sp_bits);
11495
11496		if (!bnx2x_wait_sp_comp(bp, sp_bits))
11497			BNX2X_ERR("rx_mode completion timed out!\n");
11498
11499		mmiowb();
11500		barrier();
11501
11502		/* Unset iSCSI L2 MAC */
11503		rc = bnx2x_del_all_macs(bp, &bp->iscsi_l2_mac_obj,
11504					BNX2X_ISCSI_ETH_MAC, true);
11505		break;
11506	}
11507	case DRV_CTL_RET_L2_SPQ_CREDIT_CMD: {
11508		int count = ctl->data.credit.credit_count;
11509
11510		smp_mb__before_atomic_inc();
11511		atomic_add(count, &bp->cq_spq_left);
11512		smp_mb__after_atomic_inc();
11513		break;
11514	}
11515
11516	default:
11517		BNX2X_ERR("unknown command %x\n", ctl->cmd);
11518		rc = -EINVAL;
11519	}
11520
11521	return rc;
11522}
11523
11524void bnx2x_setup_cnic_irq_info(struct bnx2x *bp)
11525{
11526	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
11527
11528	if (bp->flags & USING_MSIX_FLAG) {
11529		cp->drv_state |= CNIC_DRV_STATE_USING_MSIX;
11530		cp->irq_arr[0].irq_flags |= CNIC_IRQ_FL_MSIX;
11531		cp->irq_arr[0].vector = bp->msix_table[1].vector;
11532	} else {
11533		cp->drv_state &= ~CNIC_DRV_STATE_USING_MSIX;
11534		cp->irq_arr[0].irq_flags &= ~CNIC_IRQ_FL_MSIX;
11535	}
11536	if (!CHIP_IS_E1x(bp))
11537		cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e2_sb;
11538	else
11539		cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e1x_sb;
11540
11541	cp->irq_arr[0].status_blk_num =  bnx2x_cnic_fw_sb_id(bp);
11542	cp->irq_arr[0].status_blk_num2 = bnx2x_cnic_igu_sb_id(bp);
11543	cp->irq_arr[1].status_blk = bp->def_status_blk;
11544	cp->irq_arr[1].status_blk_num = DEF_SB_ID;
11545	cp->irq_arr[1].status_blk_num2 = DEF_SB_IGU_ID;
11546
11547	cp->num_irq = 2;
11548}
11549
11550static int bnx2x_register_cnic(struct net_device *dev, struct cnic_ops *ops,
11551			       void *data)
11552{
11553	struct bnx2x *bp = netdev_priv(dev);
11554	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
11555
11556	if (ops == NULL)
11557		return -EINVAL;
11558
11559	bp->cnic_kwq = kzalloc(PAGE_SIZE, GFP_KERNEL);
11560	if (!bp->cnic_kwq)
11561		return -ENOMEM;
11562
11563	bp->cnic_kwq_cons = bp->cnic_kwq;
11564	bp->cnic_kwq_prod = bp->cnic_kwq;
11565	bp->cnic_kwq_last = bp->cnic_kwq + MAX_SP_DESC_CNT;
11566
11567	bp->cnic_spq_pending = 0;
11568	bp->cnic_kwq_pending = 0;
11569
11570	bp->cnic_data = data;
11571
11572	cp->num_irq = 0;
11573	cp->drv_state |= CNIC_DRV_STATE_REGD;
11574	cp->iro_arr = bp->iro_arr;
11575
11576	bnx2x_setup_cnic_irq_info(bp);
11577
11578	rcu_assign_pointer(bp->cnic_ops, ops);
11579
11580	return 0;
11581}
11582
11583static int bnx2x_unregister_cnic(struct net_device *dev)
11584{
11585	struct bnx2x *bp = netdev_priv(dev);
11586	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
11587
11588	mutex_lock(&bp->cnic_mutex);
11589	cp->drv_state = 0;
11590	RCU_INIT_POINTER(bp->cnic_ops, NULL);
11591	mutex_unlock(&bp->cnic_mutex);
11592	synchronize_rcu();
11593	kfree(bp->cnic_kwq);
11594	bp->cnic_kwq = NULL;
11595
11596	return 0;
11597}
11598
11599struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev)
11600{
11601	struct bnx2x *bp = netdev_priv(dev);
11602	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
11603
11604	/* If both iSCSI and FCoE are disabled - return NULL in
11605	 * order to indicate CNIC that it should not try to work
11606	 * with this device.
11607	 */
11608	if (NO_ISCSI(bp) && NO_FCOE(bp))
11609		return NULL;
11610
11611	cp->drv_owner = THIS_MODULE;
11612	cp->chip_id = CHIP_ID(bp);
11613	cp->pdev = bp->pdev;
11614	cp->io_base = bp->regview;
11615	cp->io_base2 = bp->doorbells;
11616	cp->max_kwqe_pending = 8;
11617	cp->ctx_blk_size = CDU_ILT_PAGE_SZ;
11618	cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
11619			     bnx2x_cid_ilt_lines(bp);
11620	cp->ctx_tbl_len = CNIC_ILT_LINES;
11621	cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
11622	cp->drv_submit_kwqes_16 = bnx2x_cnic_sp_queue;
11623	cp->drv_ctl = bnx2x_drv_ctl;
11624	cp->drv_register_cnic = bnx2x_register_cnic;
11625	cp->drv_unregister_cnic = bnx2x_unregister_cnic;
11626	cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID;
11627	cp->iscsi_l2_client_id =
11628		bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
11629	cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID;
11630
11631	if (NO_ISCSI_OOO(bp))
11632		cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
11633
11634	if (NO_ISCSI(bp))
11635		cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI;
11636
11637	if (NO_FCOE(bp))
11638		cp->drv_state |= CNIC_DRV_STATE_NO_FCOE;
11639
11640	DP(BNX2X_MSG_SP, "page_size %d, tbl_offset %d, tbl_lines %d, "
11641			 "starting cid %d\n",
11642	   cp->ctx_blk_size,
11643	   cp->ctx_tbl_offset,
11644	   cp->ctx_tbl_len,
11645	   cp->starting_cid);
11646	return cp;
11647}
11648EXPORT_SYMBOL(bnx2x_cnic_probe);
11649
11650#endif /* BCM_CNIC */
11651
11652