bnx2x_main.c revision 452427b015b1b0cbbef7b6207908726837d39d57
1/* bnx2x_main.c: Broadcom Everest network driver.
2 *
3 * Copyright (c) 2007-2012 Broadcom Corporation
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation.
8 *
9 * Maintained by: Eilon Greenstein <eilong@broadcom.com>
10 * Written by: Eliezer Tamir
11 * Based on code from Michael Chan's bnx2 driver
12 * UDP CSUM errata workaround by Arik Gendelman
13 * Slowpath and fastpath rework by Vladislav Zolotarov
14 * Statistics and Link management by Yitchak Gertner
15 *
16 */
17
18#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19
20#include <linux/module.h>
21#include <linux/moduleparam.h>
22#include <linux/kernel.h>
23#include <linux/device.h>  /* for dev_info() */
24#include <linux/timer.h>
25#include <linux/errno.h>
26#include <linux/ioport.h>
27#include <linux/slab.h>
28#include <linux/interrupt.h>
29#include <linux/pci.h>
30#include <linux/init.h>
31#include <linux/netdevice.h>
32#include <linux/etherdevice.h>
33#include <linux/skbuff.h>
34#include <linux/dma-mapping.h>
35#include <linux/bitops.h>
36#include <linux/irq.h>
37#include <linux/delay.h>
38#include <asm/byteorder.h>
39#include <linux/time.h>
40#include <linux/ethtool.h>
41#include <linux/mii.h>
42#include <linux/if.h>
43#include <linux/if_vlan.h>
44#include <net/ip.h>
45#include <net/ipv6.h>
46#include <net/tcp.h>
47#include <net/checksum.h>
48#include <net/ip6_checksum.h>
49#include <linux/workqueue.h>
50#include <linux/crc32.h>
51#include <linux/crc32c.h>
52#include <linux/prefetch.h>
53#include <linux/zlib.h>
54#include <linux/io.h>
55#include <linux/semaphore.h>
56#include <linux/stringify.h>
57#include <linux/vmalloc.h>
58
59#include "bnx2x.h"
60#include "bnx2x_init.h"
61#include "bnx2x_init_ops.h"
62#include "bnx2x_cmn.h"
63#include "bnx2x_dcb.h"
64#include "bnx2x_sp.h"
65
66#include <linux/firmware.h>
67#include "bnx2x_fw_file_hdr.h"
68/* FW files */
69#define FW_FILE_VERSION					\
70	__stringify(BCM_5710_FW_MAJOR_VERSION) "."	\
71	__stringify(BCM_5710_FW_MINOR_VERSION) "."	\
72	__stringify(BCM_5710_FW_REVISION_VERSION) "."	\
73	__stringify(BCM_5710_FW_ENGINEERING_VERSION)
74#define FW_FILE_NAME_E1		"bnx2x/bnx2x-e1-" FW_FILE_VERSION ".fw"
75#define FW_FILE_NAME_E1H	"bnx2x/bnx2x-e1h-" FW_FILE_VERSION ".fw"
76#define FW_FILE_NAME_E2		"bnx2x/bnx2x-e2-" FW_FILE_VERSION ".fw"
77
78/* Time in jiffies before concluding the transmitter is hung */
79#define TX_TIMEOUT		(5*HZ)
80
81static char version[] __devinitdata =
82	"Broadcom NetXtreme II 5771x/578xx 10/20-Gigabit Ethernet Driver "
83	DRV_MODULE_NAME " " DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
84
85MODULE_AUTHOR("Eliezer Tamir");
86MODULE_DESCRIPTION("Broadcom NetXtreme II "
87		   "BCM57710/57711/57711E/"
88		   "57712/57712_MF/57800/57800_MF/57810/57810_MF/"
89		   "57840/57840_MF Driver");
90MODULE_LICENSE("GPL");
91MODULE_VERSION(DRV_MODULE_VERSION);
92MODULE_FIRMWARE(FW_FILE_NAME_E1);
93MODULE_FIRMWARE(FW_FILE_NAME_E1H);
94MODULE_FIRMWARE(FW_FILE_NAME_E2);
95
96static int multi_mode = 1;
97module_param(multi_mode, int, 0);
98MODULE_PARM_DESC(multi_mode, " Multi queue mode "
99			     "(0 Disable; 1 Enable (default))");
100
101int num_queues;
102module_param(num_queues, int, 0);
103MODULE_PARM_DESC(num_queues, " Number of queues for multi_mode=1"
104				" (default is as a number of CPUs)");
105
106static int disable_tpa;
107module_param(disable_tpa, int, 0);
108MODULE_PARM_DESC(disable_tpa, " Disable the TPA (LRO) feature");
109
110#define INT_MODE_INTx			1
111#define INT_MODE_MSI			2
112static int int_mode;
113module_param(int_mode, int, 0);
114MODULE_PARM_DESC(int_mode, " Force interrupt mode other than MSI-X "
115				"(1 INT#x; 2 MSI)");
116
117static int dropless_fc;
118module_param(dropless_fc, int, 0);
119MODULE_PARM_DESC(dropless_fc, " Pause on exhausted host ring");
120
121static int mrrs = -1;
122module_param(mrrs, int, 0);
123MODULE_PARM_DESC(mrrs, " Force Max Read Req Size (0..3) (for debug)");
124
125static int debug;
126module_param(debug, int, 0);
127MODULE_PARM_DESC(debug, " Default debug msglevel");
128
129
130
131struct workqueue_struct *bnx2x_wq;
132
133enum bnx2x_board_type {
134	BCM57710 = 0,
135	BCM57711,
136	BCM57711E,
137	BCM57712,
138	BCM57712_MF,
139	BCM57800,
140	BCM57800_MF,
141	BCM57810,
142	BCM57810_MF,
143	BCM57840,
144	BCM57840_MF
145};
146
147/* indexed by board_type, above */
148static struct {
149	char *name;
150} board_info[] __devinitdata = {
151	{ "Broadcom NetXtreme II BCM57710 10 Gigabit PCIe [Everest]" },
152	{ "Broadcom NetXtreme II BCM57711 10 Gigabit PCIe" },
153	{ "Broadcom NetXtreme II BCM57711E 10 Gigabit PCIe" },
154	{ "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet" },
155	{ "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet Multi Function" },
156	{ "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet" },
157	{ "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet Multi Function" },
158	{ "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet" },
159	{ "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet Multi Function" },
160	{ "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet" },
161	{ "Broadcom NetXtreme II BCM57840 10/20 Gigabit "
162						"Ethernet Multi Function"}
163};
164
165#ifndef PCI_DEVICE_ID_NX2_57710
166#define PCI_DEVICE_ID_NX2_57710		CHIP_NUM_57710
167#endif
168#ifndef PCI_DEVICE_ID_NX2_57711
169#define PCI_DEVICE_ID_NX2_57711		CHIP_NUM_57711
170#endif
171#ifndef PCI_DEVICE_ID_NX2_57711E
172#define PCI_DEVICE_ID_NX2_57711E	CHIP_NUM_57711E
173#endif
174#ifndef PCI_DEVICE_ID_NX2_57712
175#define PCI_DEVICE_ID_NX2_57712		CHIP_NUM_57712
176#endif
177#ifndef PCI_DEVICE_ID_NX2_57712_MF
178#define PCI_DEVICE_ID_NX2_57712_MF	CHIP_NUM_57712_MF
179#endif
180#ifndef PCI_DEVICE_ID_NX2_57800
181#define PCI_DEVICE_ID_NX2_57800		CHIP_NUM_57800
182#endif
183#ifndef PCI_DEVICE_ID_NX2_57800_MF
184#define PCI_DEVICE_ID_NX2_57800_MF	CHIP_NUM_57800_MF
185#endif
186#ifndef PCI_DEVICE_ID_NX2_57810
187#define PCI_DEVICE_ID_NX2_57810		CHIP_NUM_57810
188#endif
189#ifndef PCI_DEVICE_ID_NX2_57810_MF
190#define PCI_DEVICE_ID_NX2_57810_MF	CHIP_NUM_57810_MF
191#endif
192#ifndef PCI_DEVICE_ID_NX2_57840
193#define PCI_DEVICE_ID_NX2_57840		CHIP_NUM_57840
194#endif
195#ifndef PCI_DEVICE_ID_NX2_57840_MF
196#define PCI_DEVICE_ID_NX2_57840_MF	CHIP_NUM_57840_MF
197#endif
198static DEFINE_PCI_DEVICE_TABLE(bnx2x_pci_tbl) = {
199	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57710), BCM57710 },
200	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711), BCM57711 },
201	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711E), BCM57711E },
202	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712), BCM57712 },
203	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_MF), BCM57712_MF },
204	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800), BCM57800 },
205	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_MF), BCM57800_MF },
206	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810), BCM57810 },
207	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_MF), BCM57810_MF },
208	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840), BCM57840 },
209	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MF), BCM57840_MF },
210	{ 0 }
211};
212
213MODULE_DEVICE_TABLE(pci, bnx2x_pci_tbl);
214
215/* Global resources for unloading a previously loaded device */
216#define BNX2X_PREV_WAIT_NEEDED 1
217static DEFINE_SEMAPHORE(bnx2x_prev_sem);
218static LIST_HEAD(bnx2x_prev_list);
219/****************************************************************************
220* General service functions
221****************************************************************************/
222
223static inline void __storm_memset_dma_mapping(struct bnx2x *bp,
224				       u32 addr, dma_addr_t mapping)
225{
226	REG_WR(bp,  addr, U64_LO(mapping));
227	REG_WR(bp,  addr + 4, U64_HI(mapping));
228}
229
230static inline void storm_memset_spq_addr(struct bnx2x *bp,
231					 dma_addr_t mapping, u16 abs_fid)
232{
233	u32 addr = XSEM_REG_FAST_MEMORY +
234			XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid);
235
236	__storm_memset_dma_mapping(bp, addr, mapping);
237}
238
239static inline void storm_memset_vf_to_pf(struct bnx2x *bp, u16 abs_fid,
240					 u16 pf_id)
241{
242	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid),
243		pf_id);
244	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid),
245		pf_id);
246	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid),
247		pf_id);
248	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid),
249		pf_id);
250}
251
252static inline void storm_memset_func_en(struct bnx2x *bp, u16 abs_fid,
253					u8 enable)
254{
255	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid),
256		enable);
257	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid),
258		enable);
259	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid),
260		enable);
261	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid),
262		enable);
263}
264
265static inline void storm_memset_eq_data(struct bnx2x *bp,
266				struct event_ring_data *eq_data,
267				u16 pfid)
268{
269	size_t size = sizeof(struct event_ring_data);
270
271	u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid);
272
273	__storm_memset_struct(bp, addr, size, (u32 *)eq_data);
274}
275
276static inline void storm_memset_eq_prod(struct bnx2x *bp, u16 eq_prod,
277					u16 pfid)
278{
279	u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_PROD_OFFSET(pfid);
280	REG_WR16(bp, addr, eq_prod);
281}
282
283/* used only at init
284 * locking is done by mcp
285 */
286static void bnx2x_reg_wr_ind(struct bnx2x *bp, u32 addr, u32 val)
287{
288	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
289	pci_write_config_dword(bp->pdev, PCICFG_GRC_DATA, val);
290	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
291			       PCICFG_VENDOR_ID_OFFSET);
292}
293
294static u32 bnx2x_reg_rd_ind(struct bnx2x *bp, u32 addr)
295{
296	u32 val;
297
298	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
299	pci_read_config_dword(bp->pdev, PCICFG_GRC_DATA, &val);
300	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
301			       PCICFG_VENDOR_ID_OFFSET);
302
303	return val;
304}
305
306#define DMAE_DP_SRC_GRC		"grc src_addr [%08x]"
307#define DMAE_DP_SRC_PCI		"pci src_addr [%x:%08x]"
308#define DMAE_DP_DST_GRC		"grc dst_addr [%08x]"
309#define DMAE_DP_DST_PCI		"pci dst_addr [%x:%08x]"
310#define DMAE_DP_DST_NONE	"dst_addr [none]"
311
312static void bnx2x_dp_dmae(struct bnx2x *bp, struct dmae_command *dmae,
313			  int msglvl)
314{
315	u32 src_type = dmae->opcode & DMAE_COMMAND_SRC;
316
317	switch (dmae->opcode & DMAE_COMMAND_DST) {
318	case DMAE_CMD_DST_PCI:
319		if (src_type == DMAE_CMD_SRC_PCI)
320			DP(msglvl, "DMAE: opcode 0x%08x\n"
321			   "src [%x:%08x], len [%d*4], dst [%x:%08x]\n"
322			   "comp_addr [%x:%08x], comp_val 0x%08x\n",
323			   dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
324			   dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
325			   dmae->comp_addr_hi, dmae->comp_addr_lo,
326			   dmae->comp_val);
327		else
328			DP(msglvl, "DMAE: opcode 0x%08x\n"
329			   "src [%08x], len [%d*4], dst [%x:%08x]\n"
330			   "comp_addr [%x:%08x], comp_val 0x%08x\n",
331			   dmae->opcode, dmae->src_addr_lo >> 2,
332			   dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
333			   dmae->comp_addr_hi, dmae->comp_addr_lo,
334			   dmae->comp_val);
335		break;
336	case DMAE_CMD_DST_GRC:
337		if (src_type == DMAE_CMD_SRC_PCI)
338			DP(msglvl, "DMAE: opcode 0x%08x\n"
339			   "src [%x:%08x], len [%d*4], dst_addr [%08x]\n"
340			   "comp_addr [%x:%08x], comp_val 0x%08x\n",
341			   dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
342			   dmae->len, dmae->dst_addr_lo >> 2,
343			   dmae->comp_addr_hi, dmae->comp_addr_lo,
344			   dmae->comp_val);
345		else
346			DP(msglvl, "DMAE: opcode 0x%08x\n"
347			   "src [%08x], len [%d*4], dst [%08x]\n"
348			   "comp_addr [%x:%08x], comp_val 0x%08x\n",
349			   dmae->opcode, dmae->src_addr_lo >> 2,
350			   dmae->len, dmae->dst_addr_lo >> 2,
351			   dmae->comp_addr_hi, dmae->comp_addr_lo,
352			   dmae->comp_val);
353		break;
354	default:
355		if (src_type == DMAE_CMD_SRC_PCI)
356			DP(msglvl, "DMAE: opcode 0x%08x\n"
357			   "src_addr [%x:%08x]  len [%d * 4]  dst_addr [none]\n"
358			   "comp_addr [%x:%08x]  comp_val 0x%08x\n",
359			   dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
360			   dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
361			   dmae->comp_val);
362		else
363			DP(msglvl, "DMAE: opcode 0x%08x\n"
364			   "src_addr [%08x]  len [%d * 4]  dst_addr [none]\n"
365			   "comp_addr [%x:%08x]  comp_val 0x%08x\n",
366			   dmae->opcode, dmae->src_addr_lo >> 2,
367			   dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
368			   dmae->comp_val);
369		break;
370	}
371
372}
373
374/* copy command into DMAE command memory and set DMAE command go */
375void bnx2x_post_dmae(struct bnx2x *bp, struct dmae_command *dmae, int idx)
376{
377	u32 cmd_offset;
378	int i;
379
380	cmd_offset = (DMAE_REG_CMD_MEM + sizeof(struct dmae_command) * idx);
381	for (i = 0; i < (sizeof(struct dmae_command)/4); i++) {
382		REG_WR(bp, cmd_offset + i*4, *(((u32 *)dmae) + i));
383	}
384	REG_WR(bp, dmae_reg_go_c[idx], 1);
385}
386
387u32 bnx2x_dmae_opcode_add_comp(u32 opcode, u8 comp_type)
388{
389	return opcode | ((comp_type << DMAE_COMMAND_C_DST_SHIFT) |
390			   DMAE_CMD_C_ENABLE);
391}
392
393u32 bnx2x_dmae_opcode_clr_src_reset(u32 opcode)
394{
395	return opcode & ~DMAE_CMD_SRC_RESET;
396}
397
398u32 bnx2x_dmae_opcode(struct bnx2x *bp, u8 src_type, u8 dst_type,
399			     bool with_comp, u8 comp_type)
400{
401	u32 opcode = 0;
402
403	opcode |= ((src_type << DMAE_COMMAND_SRC_SHIFT) |
404		   (dst_type << DMAE_COMMAND_DST_SHIFT));
405
406	opcode |= (DMAE_CMD_SRC_RESET | DMAE_CMD_DST_RESET);
407
408	opcode |= (BP_PORT(bp) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0);
409	opcode |= ((BP_VN(bp) << DMAE_CMD_E1HVN_SHIFT) |
410		   (BP_VN(bp) << DMAE_COMMAND_DST_VN_SHIFT));
411	opcode |= (DMAE_COM_SET_ERR << DMAE_COMMAND_ERR_POLICY_SHIFT);
412
413#ifdef __BIG_ENDIAN
414	opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP;
415#else
416	opcode |= DMAE_CMD_ENDIANITY_DW_SWAP;
417#endif
418	if (with_comp)
419		opcode = bnx2x_dmae_opcode_add_comp(opcode, comp_type);
420	return opcode;
421}
422
423static void bnx2x_prep_dmae_with_comp(struct bnx2x *bp,
424				      struct dmae_command *dmae,
425				      u8 src_type, u8 dst_type)
426{
427	memset(dmae, 0, sizeof(struct dmae_command));
428
429	/* set the opcode */
430	dmae->opcode = bnx2x_dmae_opcode(bp, src_type, dst_type,
431					 true, DMAE_COMP_PCI);
432
433	/* fill in the completion parameters */
434	dmae->comp_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_comp));
435	dmae->comp_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_comp));
436	dmae->comp_val = DMAE_COMP_VAL;
437}
438
439/* issue a dmae command over the init-channel and wailt for completion */
440static int bnx2x_issue_dmae_with_comp(struct bnx2x *bp,
441				      struct dmae_command *dmae)
442{
443	u32 *wb_comp = bnx2x_sp(bp, wb_comp);
444	int cnt = CHIP_REV_IS_SLOW(bp) ? (400000) : 4000;
445	int rc = 0;
446
447	/*
448	 * Lock the dmae channel. Disable BHs to prevent a dead-lock
449	 * as long as this code is called both from syscall context and
450	 * from ndo_set_rx_mode() flow that may be called from BH.
451	 */
452	spin_lock_bh(&bp->dmae_lock);
453
454	/* reset completion */
455	*wb_comp = 0;
456
457	/* post the command on the channel used for initializations */
458	bnx2x_post_dmae(bp, dmae, INIT_DMAE_C(bp));
459
460	/* wait for completion */
461	udelay(5);
462	while ((*wb_comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) {
463
464		if (!cnt ||
465		    (bp->recovery_state != BNX2X_RECOVERY_DONE &&
466		     bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
467			BNX2X_ERR("DMAE timeout!\n");
468			rc = DMAE_TIMEOUT;
469			goto unlock;
470		}
471		cnt--;
472		udelay(50);
473	}
474	if (*wb_comp & DMAE_PCI_ERR_FLAG) {
475		BNX2X_ERR("DMAE PCI error!\n");
476		rc = DMAE_PCI_ERROR;
477	}
478
479unlock:
480	spin_unlock_bh(&bp->dmae_lock);
481	return rc;
482}
483
484void bnx2x_write_dmae(struct bnx2x *bp, dma_addr_t dma_addr, u32 dst_addr,
485		      u32 len32)
486{
487	struct dmae_command dmae;
488
489	if (!bp->dmae_ready) {
490		u32 *data = bnx2x_sp(bp, wb_data[0]);
491
492		if (CHIP_IS_E1(bp))
493			bnx2x_init_ind_wr(bp, dst_addr, data, len32);
494		else
495			bnx2x_init_str_wr(bp, dst_addr, data, len32);
496		return;
497	}
498
499	/* set opcode and fixed command fields */
500	bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC);
501
502	/* fill in addresses and len */
503	dmae.src_addr_lo = U64_LO(dma_addr);
504	dmae.src_addr_hi = U64_HI(dma_addr);
505	dmae.dst_addr_lo = dst_addr >> 2;
506	dmae.dst_addr_hi = 0;
507	dmae.len = len32;
508
509	bnx2x_dp_dmae(bp, &dmae, BNX2X_MSG_OFF);
510
511	/* issue the command and wait for completion */
512	bnx2x_issue_dmae_with_comp(bp, &dmae);
513}
514
515void bnx2x_read_dmae(struct bnx2x *bp, u32 src_addr, u32 len32)
516{
517	struct dmae_command dmae;
518
519	if (!bp->dmae_ready) {
520		u32 *data = bnx2x_sp(bp, wb_data[0]);
521		int i;
522
523		if (CHIP_IS_E1(bp))
524			for (i = 0; i < len32; i++)
525				data[i] = bnx2x_reg_rd_ind(bp, src_addr + i*4);
526		else
527			for (i = 0; i < len32; i++)
528				data[i] = REG_RD(bp, src_addr + i*4);
529
530		return;
531	}
532
533	/* set opcode and fixed command fields */
534	bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI);
535
536	/* fill in addresses and len */
537	dmae.src_addr_lo = src_addr >> 2;
538	dmae.src_addr_hi = 0;
539	dmae.dst_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_data));
540	dmae.dst_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_data));
541	dmae.len = len32;
542
543	bnx2x_dp_dmae(bp, &dmae, BNX2X_MSG_OFF);
544
545	/* issue the command and wait for completion */
546	bnx2x_issue_dmae_with_comp(bp, &dmae);
547}
548
549static void bnx2x_write_dmae_phys_len(struct bnx2x *bp, dma_addr_t phys_addr,
550				      u32 addr, u32 len)
551{
552	int dmae_wr_max = DMAE_LEN32_WR_MAX(bp);
553	int offset = 0;
554
555	while (len > dmae_wr_max) {
556		bnx2x_write_dmae(bp, phys_addr + offset,
557				 addr + offset, dmae_wr_max);
558		offset += dmae_wr_max * 4;
559		len -= dmae_wr_max;
560	}
561
562	bnx2x_write_dmae(bp, phys_addr + offset, addr + offset, len);
563}
564
565/* used only for slowpath so not inlined */
566static void bnx2x_wb_wr(struct bnx2x *bp, int reg, u32 val_hi, u32 val_lo)
567{
568	u32 wb_write[2];
569
570	wb_write[0] = val_hi;
571	wb_write[1] = val_lo;
572	REG_WR_DMAE(bp, reg, wb_write, 2);
573}
574
575#ifdef USE_WB_RD
576static u64 bnx2x_wb_rd(struct bnx2x *bp, int reg)
577{
578	u32 wb_data[2];
579
580	REG_RD_DMAE(bp, reg, wb_data, 2);
581
582	return HILO_U64(wb_data[0], wb_data[1]);
583}
584#endif
585
586static int bnx2x_mc_assert(struct bnx2x *bp)
587{
588	char last_idx;
589	int i, rc = 0;
590	u32 row0, row1, row2, row3;
591
592	/* XSTORM */
593	last_idx = REG_RD8(bp, BAR_XSTRORM_INTMEM +
594			   XSTORM_ASSERT_LIST_INDEX_OFFSET);
595	if (last_idx)
596		BNX2X_ERR("XSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
597
598	/* print the asserts */
599	for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
600
601		row0 = REG_RD(bp, BAR_XSTRORM_INTMEM +
602			      XSTORM_ASSERT_LIST_OFFSET(i));
603		row1 = REG_RD(bp, BAR_XSTRORM_INTMEM +
604			      XSTORM_ASSERT_LIST_OFFSET(i) + 4);
605		row2 = REG_RD(bp, BAR_XSTRORM_INTMEM +
606			      XSTORM_ASSERT_LIST_OFFSET(i) + 8);
607		row3 = REG_RD(bp, BAR_XSTRORM_INTMEM +
608			      XSTORM_ASSERT_LIST_OFFSET(i) + 12);
609
610		if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
611			BNX2X_ERR("XSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
612				  i, row3, row2, row1, row0);
613			rc++;
614		} else {
615			break;
616		}
617	}
618
619	/* TSTORM */
620	last_idx = REG_RD8(bp, BAR_TSTRORM_INTMEM +
621			   TSTORM_ASSERT_LIST_INDEX_OFFSET);
622	if (last_idx)
623		BNX2X_ERR("TSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
624
625	/* print the asserts */
626	for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
627
628		row0 = REG_RD(bp, BAR_TSTRORM_INTMEM +
629			      TSTORM_ASSERT_LIST_OFFSET(i));
630		row1 = REG_RD(bp, BAR_TSTRORM_INTMEM +
631			      TSTORM_ASSERT_LIST_OFFSET(i) + 4);
632		row2 = REG_RD(bp, BAR_TSTRORM_INTMEM +
633			      TSTORM_ASSERT_LIST_OFFSET(i) + 8);
634		row3 = REG_RD(bp, BAR_TSTRORM_INTMEM +
635			      TSTORM_ASSERT_LIST_OFFSET(i) + 12);
636
637		if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
638			BNX2X_ERR("TSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
639				  i, row3, row2, row1, row0);
640			rc++;
641		} else {
642			break;
643		}
644	}
645
646	/* CSTORM */
647	last_idx = REG_RD8(bp, BAR_CSTRORM_INTMEM +
648			   CSTORM_ASSERT_LIST_INDEX_OFFSET);
649	if (last_idx)
650		BNX2X_ERR("CSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
651
652	/* print the asserts */
653	for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
654
655		row0 = REG_RD(bp, BAR_CSTRORM_INTMEM +
656			      CSTORM_ASSERT_LIST_OFFSET(i));
657		row1 = REG_RD(bp, BAR_CSTRORM_INTMEM +
658			      CSTORM_ASSERT_LIST_OFFSET(i) + 4);
659		row2 = REG_RD(bp, BAR_CSTRORM_INTMEM +
660			      CSTORM_ASSERT_LIST_OFFSET(i) + 8);
661		row3 = REG_RD(bp, BAR_CSTRORM_INTMEM +
662			      CSTORM_ASSERT_LIST_OFFSET(i) + 12);
663
664		if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
665			BNX2X_ERR("CSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
666				  i, row3, row2, row1, row0);
667			rc++;
668		} else {
669			break;
670		}
671	}
672
673	/* USTORM */
674	last_idx = REG_RD8(bp, BAR_USTRORM_INTMEM +
675			   USTORM_ASSERT_LIST_INDEX_OFFSET);
676	if (last_idx)
677		BNX2X_ERR("USTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
678
679	/* print the asserts */
680	for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
681
682		row0 = REG_RD(bp, BAR_USTRORM_INTMEM +
683			      USTORM_ASSERT_LIST_OFFSET(i));
684		row1 = REG_RD(bp, BAR_USTRORM_INTMEM +
685			      USTORM_ASSERT_LIST_OFFSET(i) + 4);
686		row2 = REG_RD(bp, BAR_USTRORM_INTMEM +
687			      USTORM_ASSERT_LIST_OFFSET(i) + 8);
688		row3 = REG_RD(bp, BAR_USTRORM_INTMEM +
689			      USTORM_ASSERT_LIST_OFFSET(i) + 12);
690
691		if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
692			BNX2X_ERR("USTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
693				  i, row3, row2, row1, row0);
694			rc++;
695		} else {
696			break;
697		}
698	}
699
700	return rc;
701}
702
703void bnx2x_fw_dump_lvl(struct bnx2x *bp, const char *lvl)
704{
705	u32 addr, val;
706	u32 mark, offset;
707	__be32 data[9];
708	int word;
709	u32 trace_shmem_base;
710	if (BP_NOMCP(bp)) {
711		BNX2X_ERR("NO MCP - can not dump\n");
712		return;
713	}
714	netdev_printk(lvl, bp->dev, "bc %d.%d.%d\n",
715		(bp->common.bc_ver & 0xff0000) >> 16,
716		(bp->common.bc_ver & 0xff00) >> 8,
717		(bp->common.bc_ver & 0xff));
718
719	val = REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER);
720	if (val == REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER))
721		BNX2X_ERR("%s" "MCP PC at 0x%x\n", lvl, val);
722
723	if (BP_PATH(bp) == 0)
724		trace_shmem_base = bp->common.shmem_base;
725	else
726		trace_shmem_base = SHMEM2_RD(bp, other_shmem_base_addr);
727	addr = trace_shmem_base - 0x800;
728
729	/* validate TRCB signature */
730	mark = REG_RD(bp, addr);
731	if (mark != MFW_TRACE_SIGNATURE) {
732		BNX2X_ERR("Trace buffer signature is missing.");
733		return ;
734	}
735
736	/* read cyclic buffer pointer */
737	addr += 4;
738	mark = REG_RD(bp, addr);
739	mark = (CHIP_IS_E1x(bp) ? MCP_REG_MCPR_SCRATCH : MCP_A_REG_MCPR_SCRATCH)
740			+ ((mark + 0x3) & ~0x3) - 0x08000000;
741	printk("%s" "begin fw dump (mark 0x%x)\n", lvl, mark);
742
743	printk("%s", lvl);
744	for (offset = mark; offset <= trace_shmem_base; offset += 0x8*4) {
745		for (word = 0; word < 8; word++)
746			data[word] = htonl(REG_RD(bp, offset + 4*word));
747		data[8] = 0x0;
748		pr_cont("%s", (char *)data);
749	}
750	for (offset = addr + 4; offset <= mark; offset += 0x8*4) {
751		for (word = 0; word < 8; word++)
752			data[word] = htonl(REG_RD(bp, offset + 4*word));
753		data[8] = 0x0;
754		pr_cont("%s", (char *)data);
755	}
756	printk("%s" "end of fw dump\n", lvl);
757}
758
759static inline void bnx2x_fw_dump(struct bnx2x *bp)
760{
761	bnx2x_fw_dump_lvl(bp, KERN_ERR);
762}
763
764void bnx2x_panic_dump(struct bnx2x *bp)
765{
766	int i;
767	u16 j;
768	struct hc_sp_status_block_data sp_sb_data;
769	int func = BP_FUNC(bp);
770#ifdef BNX2X_STOP_ON_ERROR
771	u16 start = 0, end = 0;
772	u8 cos;
773#endif
774
775	bp->stats_state = STATS_STATE_DISABLED;
776	bp->eth_stats.unrecoverable_error++;
777	DP(BNX2X_MSG_STATS, "stats_state - DISABLED\n");
778
779	BNX2X_ERR("begin crash dump -----------------\n");
780
781	/* Indices */
782	/* Common */
783	BNX2X_ERR("def_idx(0x%x)  def_att_idx(0x%x)  attn_state(0x%x)  spq_prod_idx(0x%x) next_stats_cnt(0x%x)\n",
784		  bp->def_idx, bp->def_att_idx, bp->attn_state,
785		  bp->spq_prod_idx, bp->stats_counter);
786	BNX2X_ERR("DSB: attn bits(0x%x)  ack(0x%x)  id(0x%x)  idx(0x%x)\n",
787		  bp->def_status_blk->atten_status_block.attn_bits,
788		  bp->def_status_blk->atten_status_block.attn_bits_ack,
789		  bp->def_status_blk->atten_status_block.status_block_id,
790		  bp->def_status_blk->atten_status_block.attn_bits_index);
791	BNX2X_ERR("     def (");
792	for (i = 0; i < HC_SP_SB_MAX_INDICES; i++)
793		pr_cont("0x%x%s",
794			bp->def_status_blk->sp_sb.index_values[i],
795			(i == HC_SP_SB_MAX_INDICES - 1) ? ")  " : " ");
796
797	for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++)
798		*((u32 *)&sp_sb_data + i) = REG_RD(bp, BAR_CSTRORM_INTMEM +
799			CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) +
800			i*sizeof(u32));
801
802	pr_cont("igu_sb_id(0x%x)  igu_seg_id(0x%x) pf_id(0x%x)  vnic_id(0x%x)  vf_id(0x%x)  vf_valid (0x%x) state(0x%x)\n",
803	       sp_sb_data.igu_sb_id,
804	       sp_sb_data.igu_seg_id,
805	       sp_sb_data.p_func.pf_id,
806	       sp_sb_data.p_func.vnic_id,
807	       sp_sb_data.p_func.vf_id,
808	       sp_sb_data.p_func.vf_valid,
809	       sp_sb_data.state);
810
811
812	for_each_eth_queue(bp, i) {
813		struct bnx2x_fastpath *fp = &bp->fp[i];
814		int loop;
815		struct hc_status_block_data_e2 sb_data_e2;
816		struct hc_status_block_data_e1x sb_data_e1x;
817		struct hc_status_block_sm  *hc_sm_p =
818			CHIP_IS_E1x(bp) ?
819			sb_data_e1x.common.state_machine :
820			sb_data_e2.common.state_machine;
821		struct hc_index_data *hc_index_p =
822			CHIP_IS_E1x(bp) ?
823			sb_data_e1x.index_data :
824			sb_data_e2.index_data;
825		u8 data_size, cos;
826		u32 *sb_data_p;
827		struct bnx2x_fp_txdata txdata;
828
829		/* Rx */
830		BNX2X_ERR("fp%d: rx_bd_prod(0x%x)  rx_bd_cons(0x%x)  rx_comp_prod(0x%x)  rx_comp_cons(0x%x)  *rx_cons_sb(0x%x)\n",
831			  i, fp->rx_bd_prod, fp->rx_bd_cons,
832			  fp->rx_comp_prod,
833			  fp->rx_comp_cons, le16_to_cpu(*fp->rx_cons_sb));
834		BNX2X_ERR("     rx_sge_prod(0x%x)  last_max_sge(0x%x)  fp_hc_idx(0x%x)\n",
835			  fp->rx_sge_prod, fp->last_max_sge,
836			  le16_to_cpu(fp->fp_hc_idx));
837
838		/* Tx */
839		for_each_cos_in_tx_queue(fp, cos)
840		{
841			txdata = fp->txdata[cos];
842			BNX2X_ERR("fp%d: tx_pkt_prod(0x%x)  tx_pkt_cons(0x%x)  tx_bd_prod(0x%x)  tx_bd_cons(0x%x)  *tx_cons_sb(0x%x)\n",
843				  i, txdata.tx_pkt_prod,
844				  txdata.tx_pkt_cons, txdata.tx_bd_prod,
845				  txdata.tx_bd_cons,
846				  le16_to_cpu(*txdata.tx_cons_sb));
847		}
848
849		loop = CHIP_IS_E1x(bp) ?
850			HC_SB_MAX_INDICES_E1X : HC_SB_MAX_INDICES_E2;
851
852		/* host sb data */
853
854#ifdef BCM_CNIC
855		if (IS_FCOE_FP(fp))
856			continue;
857#endif
858		BNX2X_ERR("     run indexes (");
859		for (j = 0; j < HC_SB_MAX_SM; j++)
860			pr_cont("0x%x%s",
861			       fp->sb_running_index[j],
862			       (j == HC_SB_MAX_SM - 1) ? ")" : " ");
863
864		BNX2X_ERR("     indexes (");
865		for (j = 0; j < loop; j++)
866			pr_cont("0x%x%s",
867			       fp->sb_index_values[j],
868			       (j == loop - 1) ? ")" : " ");
869		/* fw sb data */
870		data_size = CHIP_IS_E1x(bp) ?
871			sizeof(struct hc_status_block_data_e1x) :
872			sizeof(struct hc_status_block_data_e2);
873		data_size /= sizeof(u32);
874		sb_data_p = CHIP_IS_E1x(bp) ?
875			(u32 *)&sb_data_e1x :
876			(u32 *)&sb_data_e2;
877		/* copy sb data in here */
878		for (j = 0; j < data_size; j++)
879			*(sb_data_p + j) = REG_RD(bp, BAR_CSTRORM_INTMEM +
880				CSTORM_STATUS_BLOCK_DATA_OFFSET(fp->fw_sb_id) +
881				j * sizeof(u32));
882
883		if (!CHIP_IS_E1x(bp)) {
884			pr_cont("pf_id(0x%x)  vf_id(0x%x)  vf_valid(0x%x) vnic_id(0x%x)  same_igu_sb_1b(0x%x) state(0x%x)\n",
885				sb_data_e2.common.p_func.pf_id,
886				sb_data_e2.common.p_func.vf_id,
887				sb_data_e2.common.p_func.vf_valid,
888				sb_data_e2.common.p_func.vnic_id,
889				sb_data_e2.common.same_igu_sb_1b,
890				sb_data_e2.common.state);
891		} else {
892			pr_cont("pf_id(0x%x)  vf_id(0x%x)  vf_valid(0x%x) vnic_id(0x%x)  same_igu_sb_1b(0x%x) state(0x%x)\n",
893				sb_data_e1x.common.p_func.pf_id,
894				sb_data_e1x.common.p_func.vf_id,
895				sb_data_e1x.common.p_func.vf_valid,
896				sb_data_e1x.common.p_func.vnic_id,
897				sb_data_e1x.common.same_igu_sb_1b,
898				sb_data_e1x.common.state);
899		}
900
901		/* SB_SMs data */
902		for (j = 0; j < HC_SB_MAX_SM; j++) {
903			pr_cont("SM[%d] __flags (0x%x) igu_sb_id (0x%x)  igu_seg_id(0x%x) time_to_expire (0x%x) timer_value(0x%x)\n",
904				j, hc_sm_p[j].__flags,
905				hc_sm_p[j].igu_sb_id,
906				hc_sm_p[j].igu_seg_id,
907				hc_sm_p[j].time_to_expire,
908				hc_sm_p[j].timer_value);
909		}
910
911		/* Indecies data */
912		for (j = 0; j < loop; j++) {
913			pr_cont("INDEX[%d] flags (0x%x) timeout (0x%x)\n", j,
914			       hc_index_p[j].flags,
915			       hc_index_p[j].timeout);
916		}
917	}
918
919#ifdef BNX2X_STOP_ON_ERROR
920	/* Rings */
921	/* Rx */
922	for_each_rx_queue(bp, i) {
923		struct bnx2x_fastpath *fp = &bp->fp[i];
924
925		start = RX_BD(le16_to_cpu(*fp->rx_cons_sb) - 10);
926		end = RX_BD(le16_to_cpu(*fp->rx_cons_sb) + 503);
927		for (j = start; j != end; j = RX_BD(j + 1)) {
928			u32 *rx_bd = (u32 *)&fp->rx_desc_ring[j];
929			struct sw_rx_bd *sw_bd = &fp->rx_buf_ring[j];
930
931			BNX2X_ERR("fp%d: rx_bd[%x]=[%x:%x]  sw_bd=[%p]\n",
932				  i, j, rx_bd[1], rx_bd[0], sw_bd->data);
933		}
934
935		start = RX_SGE(fp->rx_sge_prod);
936		end = RX_SGE(fp->last_max_sge);
937		for (j = start; j != end; j = RX_SGE(j + 1)) {
938			u32 *rx_sge = (u32 *)&fp->rx_sge_ring[j];
939			struct sw_rx_page *sw_page = &fp->rx_page_ring[j];
940
941			BNX2X_ERR("fp%d: rx_sge[%x]=[%x:%x]  sw_page=[%p]\n",
942				  i, j, rx_sge[1], rx_sge[0], sw_page->page);
943		}
944
945		start = RCQ_BD(fp->rx_comp_cons - 10);
946		end = RCQ_BD(fp->rx_comp_cons + 503);
947		for (j = start; j != end; j = RCQ_BD(j + 1)) {
948			u32 *cqe = (u32 *)&fp->rx_comp_ring[j];
949
950			BNX2X_ERR("fp%d: cqe[%x]=[%x:%x:%x:%x]\n",
951				  i, j, cqe[0], cqe[1], cqe[2], cqe[3]);
952		}
953	}
954
955	/* Tx */
956	for_each_tx_queue(bp, i) {
957		struct bnx2x_fastpath *fp = &bp->fp[i];
958		for_each_cos_in_tx_queue(fp, cos) {
959			struct bnx2x_fp_txdata *txdata = &fp->txdata[cos];
960
961			start = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) - 10);
962			end = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) + 245);
963			for (j = start; j != end; j = TX_BD(j + 1)) {
964				struct sw_tx_bd *sw_bd =
965					&txdata->tx_buf_ring[j];
966
967				BNX2X_ERR("fp%d: txdata %d, packet[%x]=[%p,%x]\n",
968					  i, cos, j, sw_bd->skb,
969					  sw_bd->first_bd);
970			}
971
972			start = TX_BD(txdata->tx_bd_cons - 10);
973			end = TX_BD(txdata->tx_bd_cons + 254);
974			for (j = start; j != end; j = TX_BD(j + 1)) {
975				u32 *tx_bd = (u32 *)&txdata->tx_desc_ring[j];
976
977				BNX2X_ERR("fp%d: txdata %d, tx_bd[%x]=[%x:%x:%x:%x]\n",
978					  i, cos, j, tx_bd[0], tx_bd[1],
979					  tx_bd[2], tx_bd[3]);
980			}
981		}
982	}
983#endif
984	bnx2x_fw_dump(bp);
985	bnx2x_mc_assert(bp);
986	BNX2X_ERR("end crash dump -----------------\n");
987}
988
989/*
990 * FLR Support for E2
991 *
992 * bnx2x_pf_flr_clnup() is called during nic_load in the per function HW
993 * initialization.
994 */
995#define FLR_WAIT_USEC		10000	/* 10 miliseconds */
996#define FLR_WAIT_INTERVAL	50	/* usec */
997#define	FLR_POLL_CNT		(FLR_WAIT_USEC/FLR_WAIT_INTERVAL) /* 200 */
998
999struct pbf_pN_buf_regs {
1000	int pN;
1001	u32 init_crd;
1002	u32 crd;
1003	u32 crd_freed;
1004};
1005
1006struct pbf_pN_cmd_regs {
1007	int pN;
1008	u32 lines_occup;
1009	u32 lines_freed;
1010};
1011
1012static void bnx2x_pbf_pN_buf_flushed(struct bnx2x *bp,
1013				     struct pbf_pN_buf_regs *regs,
1014				     u32 poll_count)
1015{
1016	u32 init_crd, crd, crd_start, crd_freed, crd_freed_start;
1017	u32 cur_cnt = poll_count;
1018
1019	crd_freed = crd_freed_start = REG_RD(bp, regs->crd_freed);
1020	crd = crd_start = REG_RD(bp, regs->crd);
1021	init_crd = REG_RD(bp, regs->init_crd);
1022
1023	DP(BNX2X_MSG_SP, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd);
1024	DP(BNX2X_MSG_SP, "CREDIT[%d]      : s:%x\n", regs->pN, crd);
1025	DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed);
1026
1027	while ((crd != init_crd) && ((u32)SUB_S32(crd_freed, crd_freed_start) <
1028	       (init_crd - crd_start))) {
1029		if (cur_cnt--) {
1030			udelay(FLR_WAIT_INTERVAL);
1031			crd = REG_RD(bp, regs->crd);
1032			crd_freed = REG_RD(bp, regs->crd_freed);
1033		} else {
1034			DP(BNX2X_MSG_SP, "PBF tx buffer[%d] timed out\n",
1035			   regs->pN);
1036			DP(BNX2X_MSG_SP, "CREDIT[%d]      : c:%x\n",
1037			   regs->pN, crd);
1038			DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: c:%x\n",
1039			   regs->pN, crd_freed);
1040			break;
1041		}
1042	}
1043	DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF tx buffer[%d]\n",
1044	   poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
1045}
1046
1047static void bnx2x_pbf_pN_cmd_flushed(struct bnx2x *bp,
1048				     struct pbf_pN_cmd_regs *regs,
1049				     u32 poll_count)
1050{
1051	u32 occup, to_free, freed, freed_start;
1052	u32 cur_cnt = poll_count;
1053
1054	occup = to_free = REG_RD(bp, regs->lines_occup);
1055	freed = freed_start = REG_RD(bp, regs->lines_freed);
1056
1057	DP(BNX2X_MSG_SP, "OCCUPANCY[%d]   : s:%x\n", regs->pN, occup);
1058	DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n", regs->pN, freed);
1059
1060	while (occup && ((u32)SUB_S32(freed, freed_start) < to_free)) {
1061		if (cur_cnt--) {
1062			udelay(FLR_WAIT_INTERVAL);
1063			occup = REG_RD(bp, regs->lines_occup);
1064			freed = REG_RD(bp, regs->lines_freed);
1065		} else {
1066			DP(BNX2X_MSG_SP, "PBF cmd queue[%d] timed out\n",
1067			   regs->pN);
1068			DP(BNX2X_MSG_SP, "OCCUPANCY[%d]   : s:%x\n",
1069			   regs->pN, occup);
1070			DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n",
1071			   regs->pN, freed);
1072			break;
1073		}
1074	}
1075	DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF cmd queue[%d]\n",
1076	   poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
1077}
1078
1079static inline u32 bnx2x_flr_clnup_reg_poll(struct bnx2x *bp, u32 reg,
1080				     u32 expected, u32 poll_count)
1081{
1082	u32 cur_cnt = poll_count;
1083	u32 val;
1084
1085	while ((val = REG_RD(bp, reg)) != expected && cur_cnt--)
1086		udelay(FLR_WAIT_INTERVAL);
1087
1088	return val;
1089}
1090
1091static inline int bnx2x_flr_clnup_poll_hw_counter(struct bnx2x *bp, u32 reg,
1092						  char *msg, u32 poll_cnt)
1093{
1094	u32 val = bnx2x_flr_clnup_reg_poll(bp, reg, 0, poll_cnt);
1095	if (val != 0) {
1096		BNX2X_ERR("%s usage count=%d\n", msg, val);
1097		return 1;
1098	}
1099	return 0;
1100}
1101
1102static u32 bnx2x_flr_clnup_poll_count(struct bnx2x *bp)
1103{
1104	/* adjust polling timeout */
1105	if (CHIP_REV_IS_EMUL(bp))
1106		return FLR_POLL_CNT * 2000;
1107
1108	if (CHIP_REV_IS_FPGA(bp))
1109		return FLR_POLL_CNT * 120;
1110
1111	return FLR_POLL_CNT;
1112}
1113
1114static void bnx2x_tx_hw_flushed(struct bnx2x *bp, u32 poll_count)
1115{
1116	struct pbf_pN_cmd_regs cmd_regs[] = {
1117		{0, (CHIP_IS_E3B0(bp)) ?
1118			PBF_REG_TQ_OCCUPANCY_Q0 :
1119			PBF_REG_P0_TQ_OCCUPANCY,
1120		    (CHIP_IS_E3B0(bp)) ?
1121			PBF_REG_TQ_LINES_FREED_CNT_Q0 :
1122			PBF_REG_P0_TQ_LINES_FREED_CNT},
1123		{1, (CHIP_IS_E3B0(bp)) ?
1124			PBF_REG_TQ_OCCUPANCY_Q1 :
1125			PBF_REG_P1_TQ_OCCUPANCY,
1126		    (CHIP_IS_E3B0(bp)) ?
1127			PBF_REG_TQ_LINES_FREED_CNT_Q1 :
1128			PBF_REG_P1_TQ_LINES_FREED_CNT},
1129		{4, (CHIP_IS_E3B0(bp)) ?
1130			PBF_REG_TQ_OCCUPANCY_LB_Q :
1131			PBF_REG_P4_TQ_OCCUPANCY,
1132		    (CHIP_IS_E3B0(bp)) ?
1133			PBF_REG_TQ_LINES_FREED_CNT_LB_Q :
1134			PBF_REG_P4_TQ_LINES_FREED_CNT}
1135	};
1136
1137	struct pbf_pN_buf_regs buf_regs[] = {
1138		{0, (CHIP_IS_E3B0(bp)) ?
1139			PBF_REG_INIT_CRD_Q0 :
1140			PBF_REG_P0_INIT_CRD ,
1141		    (CHIP_IS_E3B0(bp)) ?
1142			PBF_REG_CREDIT_Q0 :
1143			PBF_REG_P0_CREDIT,
1144		    (CHIP_IS_E3B0(bp)) ?
1145			PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 :
1146			PBF_REG_P0_INTERNAL_CRD_FREED_CNT},
1147		{1, (CHIP_IS_E3B0(bp)) ?
1148			PBF_REG_INIT_CRD_Q1 :
1149			PBF_REG_P1_INIT_CRD,
1150		    (CHIP_IS_E3B0(bp)) ?
1151			PBF_REG_CREDIT_Q1 :
1152			PBF_REG_P1_CREDIT,
1153		    (CHIP_IS_E3B0(bp)) ?
1154			PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 :
1155			PBF_REG_P1_INTERNAL_CRD_FREED_CNT},
1156		{4, (CHIP_IS_E3B0(bp)) ?
1157			PBF_REG_INIT_CRD_LB_Q :
1158			PBF_REG_P4_INIT_CRD,
1159		    (CHIP_IS_E3B0(bp)) ?
1160			PBF_REG_CREDIT_LB_Q :
1161			PBF_REG_P4_CREDIT,
1162		    (CHIP_IS_E3B0(bp)) ?
1163			PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q :
1164			PBF_REG_P4_INTERNAL_CRD_FREED_CNT},
1165	};
1166
1167	int i;
1168
1169	/* Verify the command queues are flushed P0, P1, P4 */
1170	for (i = 0; i < ARRAY_SIZE(cmd_regs); i++)
1171		bnx2x_pbf_pN_cmd_flushed(bp, &cmd_regs[i], poll_count);
1172
1173
1174	/* Verify the transmission buffers are flushed P0, P1, P4 */
1175	for (i = 0; i < ARRAY_SIZE(buf_regs); i++)
1176		bnx2x_pbf_pN_buf_flushed(bp, &buf_regs[i], poll_count);
1177}
1178
1179#define OP_GEN_PARAM(param) \
1180	(((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM)
1181
1182#define OP_GEN_TYPE(type) \
1183	(((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE)
1184
1185#define OP_GEN_AGG_VECT(index) \
1186	(((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX)
1187
1188
1189static inline int bnx2x_send_final_clnup(struct bnx2x *bp, u8 clnup_func,
1190					 u32 poll_cnt)
1191{
1192	struct sdm_op_gen op_gen = {0};
1193
1194	u32 comp_addr = BAR_CSTRORM_INTMEM +
1195			CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func);
1196	int ret = 0;
1197
1198	if (REG_RD(bp, comp_addr)) {
1199		BNX2X_ERR("Cleanup complete was not 0 before sending\n");
1200		return 1;
1201	}
1202
1203	op_gen.command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX);
1204	op_gen.command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE);
1205	op_gen.command |= OP_GEN_AGG_VECT(clnup_func);
1206	op_gen.command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT;
1207
1208	DP(BNX2X_MSG_SP, "sending FW Final cleanup\n");
1209	REG_WR(bp, XSDM_REG_OPERATION_GEN, op_gen.command);
1210
1211	if (bnx2x_flr_clnup_reg_poll(bp, comp_addr, 1, poll_cnt) != 1) {
1212		BNX2X_ERR("FW final cleanup did not succeed\n");
1213		DP(BNX2X_MSG_SP, "At timeout completion address contained %x\n",
1214		   (REG_RD(bp, comp_addr)));
1215		ret = 1;
1216	}
1217	/* Zero completion for nxt FLR */
1218	REG_WR(bp, comp_addr, 0);
1219
1220	return ret;
1221}
1222
1223static inline u8 bnx2x_is_pcie_pending(struct pci_dev *dev)
1224{
1225	int pos;
1226	u16 status;
1227
1228	pos = pci_pcie_cap(dev);
1229	if (!pos)
1230		return false;
1231
1232	pci_read_config_word(dev, pos + PCI_EXP_DEVSTA, &status);
1233	return status & PCI_EXP_DEVSTA_TRPND;
1234}
1235
1236/* PF FLR specific routines
1237*/
1238static int bnx2x_poll_hw_usage_counters(struct bnx2x *bp, u32 poll_cnt)
1239{
1240
1241	/* wait for CFC PF usage-counter to zero (includes all the VFs) */
1242	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1243			CFC_REG_NUM_LCIDS_INSIDE_PF,
1244			"CFC PF usage counter timed out",
1245			poll_cnt))
1246		return 1;
1247
1248
1249	/* Wait for DQ PF usage-counter to zero (until DQ cleanup) */
1250	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1251			DORQ_REG_PF_USAGE_CNT,
1252			"DQ PF usage counter timed out",
1253			poll_cnt))
1254		return 1;
1255
1256	/* Wait for QM PF usage-counter to zero (until DQ cleanup) */
1257	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1258			QM_REG_PF_USG_CNT_0 + 4*BP_FUNC(bp),
1259			"QM PF usage counter timed out",
1260			poll_cnt))
1261		return 1;
1262
1263	/* Wait for Timer PF usage-counters to zero (until DQ cleanup) */
1264	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1265			TM_REG_LIN0_VNIC_UC + 4*BP_PORT(bp),
1266			"Timers VNIC usage counter timed out",
1267			poll_cnt))
1268		return 1;
1269	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1270			TM_REG_LIN0_NUM_SCANS + 4*BP_PORT(bp),
1271			"Timers NUM_SCANS usage counter timed out",
1272			poll_cnt))
1273		return 1;
1274
1275	/* Wait DMAE PF usage counter to zero */
1276	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1277			dmae_reg_go_c[INIT_DMAE_C(bp)],
1278			"DMAE dommand register timed out",
1279			poll_cnt))
1280		return 1;
1281
1282	return 0;
1283}
1284
1285static void bnx2x_hw_enable_status(struct bnx2x *bp)
1286{
1287	u32 val;
1288
1289	val = REG_RD(bp, CFC_REG_WEAK_ENABLE_PF);
1290	DP(BNX2X_MSG_SP, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val);
1291
1292	val = REG_RD(bp, PBF_REG_DISABLE_PF);
1293	DP(BNX2X_MSG_SP, "PBF_REG_DISABLE_PF is 0x%x\n", val);
1294
1295	val = REG_RD(bp, IGU_REG_PCI_PF_MSI_EN);
1296	DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val);
1297
1298	val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_EN);
1299	DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val);
1300
1301	val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_FUNC_MASK);
1302	DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val);
1303
1304	val = REG_RD(bp, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR);
1305	DP(BNX2X_MSG_SP, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val);
1306
1307	val = REG_RD(bp, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR);
1308	DP(BNX2X_MSG_SP, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val);
1309
1310	val = REG_RD(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
1311	DP(BNX2X_MSG_SP, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n",
1312	   val);
1313}
1314
1315static int bnx2x_pf_flr_clnup(struct bnx2x *bp)
1316{
1317	u32 poll_cnt = bnx2x_flr_clnup_poll_count(bp);
1318
1319	DP(BNX2X_MSG_SP, "Cleanup after FLR PF[%d]\n", BP_ABS_FUNC(bp));
1320
1321	/* Re-enable PF target read access */
1322	REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
1323
1324	/* Poll HW usage counters */
1325	DP(BNX2X_MSG_SP, "Polling usage counters\n");
1326	if (bnx2x_poll_hw_usage_counters(bp, poll_cnt))
1327		return -EBUSY;
1328
1329	/* Zero the igu 'trailing edge' and 'leading edge' */
1330
1331	/* Send the FW cleanup command */
1332	if (bnx2x_send_final_clnup(bp, (u8)BP_FUNC(bp), poll_cnt))
1333		return -EBUSY;
1334
1335	/* ATC cleanup */
1336
1337	/* Verify TX hw is flushed */
1338	bnx2x_tx_hw_flushed(bp, poll_cnt);
1339
1340	/* Wait 100ms (not adjusted according to platform) */
1341	msleep(100);
1342
1343	/* Verify no pending pci transactions */
1344	if (bnx2x_is_pcie_pending(bp->pdev))
1345		BNX2X_ERR("PCIE Transactions still pending\n");
1346
1347	/* Debug */
1348	bnx2x_hw_enable_status(bp);
1349
1350	/*
1351	 * Master enable - Due to WB DMAE writes performed before this
1352	 * register is re-initialized as part of the regular function init
1353	 */
1354	REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
1355
1356	return 0;
1357}
1358
1359static void bnx2x_hc_int_enable(struct bnx2x *bp)
1360{
1361	int port = BP_PORT(bp);
1362	u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
1363	u32 val = REG_RD(bp, addr);
1364	int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
1365	int msi = (bp->flags & USING_MSI_FLAG) ? 1 : 0;
1366
1367	if (msix) {
1368		val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1369			 HC_CONFIG_0_REG_INT_LINE_EN_0);
1370		val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1371			HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1372	} else if (msi) {
1373		val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0;
1374		val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1375			HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1376			HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1377	} else {
1378		val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1379			HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1380			HC_CONFIG_0_REG_INT_LINE_EN_0 |
1381			HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1382
1383		if (!CHIP_IS_E1(bp)) {
1384			DP(NETIF_MSG_IFUP,
1385			   "write %x to HC %d (addr 0x%x)\n", val, port, addr);
1386
1387			REG_WR(bp, addr, val);
1388
1389			val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0;
1390		}
1391	}
1392
1393	if (CHIP_IS_E1(bp))
1394		REG_WR(bp, HC_REG_INT_MASK + port*4, 0x1FFFF);
1395
1396	DP(NETIF_MSG_IFUP,
1397	   "write %x to HC %d (addr 0x%x) mode %s\n", val, port, addr,
1398	   (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1399
1400	REG_WR(bp, addr, val);
1401	/*
1402	 * Ensure that HC_CONFIG is written before leading/trailing edge config
1403	 */
1404	mmiowb();
1405	barrier();
1406
1407	if (!CHIP_IS_E1(bp)) {
1408		/* init leading/trailing edge */
1409		if (IS_MF(bp)) {
1410			val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1411			if (bp->port.pmf)
1412				/* enable nig and gpio3 attention */
1413				val |= 0x1100;
1414		} else
1415			val = 0xffff;
1416
1417		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
1418		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
1419	}
1420
1421	/* Make sure that interrupts are indeed enabled from here on */
1422	mmiowb();
1423}
1424
1425static void bnx2x_igu_int_enable(struct bnx2x *bp)
1426{
1427	u32 val;
1428	int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
1429	int msi = (bp->flags & USING_MSI_FLAG) ? 1 : 0;
1430
1431	val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
1432
1433	if (msix) {
1434		val &= ~(IGU_PF_CONF_INT_LINE_EN |
1435			 IGU_PF_CONF_SINGLE_ISR_EN);
1436		val |= (IGU_PF_CONF_FUNC_EN |
1437			IGU_PF_CONF_MSI_MSIX_EN |
1438			IGU_PF_CONF_ATTN_BIT_EN);
1439	} else if (msi) {
1440		val &= ~IGU_PF_CONF_INT_LINE_EN;
1441		val |= (IGU_PF_CONF_FUNC_EN |
1442			IGU_PF_CONF_MSI_MSIX_EN |
1443			IGU_PF_CONF_ATTN_BIT_EN |
1444			IGU_PF_CONF_SINGLE_ISR_EN);
1445	} else {
1446		val &= ~IGU_PF_CONF_MSI_MSIX_EN;
1447		val |= (IGU_PF_CONF_FUNC_EN |
1448			IGU_PF_CONF_INT_LINE_EN |
1449			IGU_PF_CONF_ATTN_BIT_EN |
1450			IGU_PF_CONF_SINGLE_ISR_EN);
1451	}
1452
1453	DP(NETIF_MSG_IFUP, "write 0x%x to IGU  mode %s\n",
1454	   val, (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1455
1456	REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1457
1458	barrier();
1459
1460	/* init leading/trailing edge */
1461	if (IS_MF(bp)) {
1462		val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1463		if (bp->port.pmf)
1464			/* enable nig and gpio3 attention */
1465			val |= 0x1100;
1466	} else
1467		val = 0xffff;
1468
1469	REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
1470	REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
1471
1472	/* Make sure that interrupts are indeed enabled from here on */
1473	mmiowb();
1474}
1475
1476void bnx2x_int_enable(struct bnx2x *bp)
1477{
1478	if (bp->common.int_block == INT_BLOCK_HC)
1479		bnx2x_hc_int_enable(bp);
1480	else
1481		bnx2x_igu_int_enable(bp);
1482}
1483
1484static void bnx2x_hc_int_disable(struct bnx2x *bp)
1485{
1486	int port = BP_PORT(bp);
1487	u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
1488	u32 val = REG_RD(bp, addr);
1489
1490	/*
1491	 * in E1 we must use only PCI configuration space to disable
1492	 * MSI/MSIX capablility
1493	 * It's forbitten to disable IGU_PF_CONF_MSI_MSIX_EN in HC block
1494	 */
1495	if (CHIP_IS_E1(bp)) {
1496		/*  Since IGU_PF_CONF_MSI_MSIX_EN still always on
1497		 *  Use mask register to prevent from HC sending interrupts
1498		 *  after we exit the function
1499		 */
1500		REG_WR(bp, HC_REG_INT_MASK + port*4, 0);
1501
1502		val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1503			 HC_CONFIG_0_REG_INT_LINE_EN_0 |
1504			 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1505	} else
1506		val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1507			 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1508			 HC_CONFIG_0_REG_INT_LINE_EN_0 |
1509			 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1510
1511	DP(NETIF_MSG_IFDOWN,
1512	   "write %x to HC %d (addr 0x%x)\n",
1513	   val, port, addr);
1514
1515	/* flush all outstanding writes */
1516	mmiowb();
1517
1518	REG_WR(bp, addr, val);
1519	if (REG_RD(bp, addr) != val)
1520		BNX2X_ERR("BUG! proper val not read from IGU!\n");
1521}
1522
1523static void bnx2x_igu_int_disable(struct bnx2x *bp)
1524{
1525	u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
1526
1527	val &= ~(IGU_PF_CONF_MSI_MSIX_EN |
1528		 IGU_PF_CONF_INT_LINE_EN |
1529		 IGU_PF_CONF_ATTN_BIT_EN);
1530
1531	DP(NETIF_MSG_IFDOWN, "write %x to IGU\n", val);
1532
1533	/* flush all outstanding writes */
1534	mmiowb();
1535
1536	REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1537	if (REG_RD(bp, IGU_REG_PF_CONFIGURATION) != val)
1538		BNX2X_ERR("BUG! proper val not read from IGU!\n");
1539}
1540
1541void bnx2x_int_disable(struct bnx2x *bp)
1542{
1543	if (bp->common.int_block == INT_BLOCK_HC)
1544		bnx2x_hc_int_disable(bp);
1545	else
1546		bnx2x_igu_int_disable(bp);
1547}
1548
1549void bnx2x_int_disable_sync(struct bnx2x *bp, int disable_hw)
1550{
1551	int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
1552	int i, offset;
1553
1554	if (disable_hw)
1555		/* prevent the HW from sending interrupts */
1556		bnx2x_int_disable(bp);
1557
1558	/* make sure all ISRs are done */
1559	if (msix) {
1560		synchronize_irq(bp->msix_table[0].vector);
1561		offset = 1;
1562#ifdef BCM_CNIC
1563		offset++;
1564#endif
1565		for_each_eth_queue(bp, i)
1566			synchronize_irq(bp->msix_table[offset++].vector);
1567	} else
1568		synchronize_irq(bp->pdev->irq);
1569
1570	/* make sure sp_task is not running */
1571	cancel_delayed_work(&bp->sp_task);
1572	cancel_delayed_work(&bp->period_task);
1573	flush_workqueue(bnx2x_wq);
1574}
1575
1576/* fast path */
1577
1578/*
1579 * General service functions
1580 */
1581
1582/* Return true if succeeded to acquire the lock */
1583static bool bnx2x_trylock_hw_lock(struct bnx2x *bp, u32 resource)
1584{
1585	u32 lock_status;
1586	u32 resource_bit = (1 << resource);
1587	int func = BP_FUNC(bp);
1588	u32 hw_lock_control_reg;
1589
1590	DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1591	   "Trying to take a lock on resource %d\n", resource);
1592
1593	/* Validating that the resource is within range */
1594	if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1595		DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1596		   "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1597		   resource, HW_LOCK_MAX_RESOURCE_VALUE);
1598		return false;
1599	}
1600
1601	if (func <= 5)
1602		hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1603	else
1604		hw_lock_control_reg =
1605				(MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1606
1607	/* Try to acquire the lock */
1608	REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
1609	lock_status = REG_RD(bp, hw_lock_control_reg);
1610	if (lock_status & resource_bit)
1611		return true;
1612
1613	DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1614	   "Failed to get a lock on resource %d\n", resource);
1615	return false;
1616}
1617
1618/**
1619 * bnx2x_get_leader_lock_resource - get the recovery leader resource id
1620 *
1621 * @bp:	driver handle
1622 *
1623 * Returns the recovery leader resource id according to the engine this function
1624 * belongs to. Currently only only 2 engines is supported.
1625 */
1626static inline int bnx2x_get_leader_lock_resource(struct bnx2x *bp)
1627{
1628	if (BP_PATH(bp))
1629		return HW_LOCK_RESOURCE_RECOVERY_LEADER_1;
1630	else
1631		return HW_LOCK_RESOURCE_RECOVERY_LEADER_0;
1632}
1633
1634/**
1635 * bnx2x_trylock_leader_lock- try to aquire a leader lock.
1636 *
1637 * @bp: driver handle
1638 *
1639 * Tries to aquire a leader lock for cuurent engine.
1640 */
1641static inline bool bnx2x_trylock_leader_lock(struct bnx2x *bp)
1642{
1643	return bnx2x_trylock_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
1644}
1645
1646#ifdef BCM_CNIC
1647static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err);
1648#endif
1649
1650void bnx2x_sp_event(struct bnx2x_fastpath *fp, union eth_rx_cqe *rr_cqe)
1651{
1652	struct bnx2x *bp = fp->bp;
1653	int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1654	int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1655	enum bnx2x_queue_cmd drv_cmd = BNX2X_Q_CMD_MAX;
1656	struct bnx2x_queue_sp_obj *q_obj = &fp->q_obj;
1657
1658	DP(BNX2X_MSG_SP,
1659	   "fp %d  cid %d  got ramrod #%d  state is %x  type is %d\n",
1660	   fp->index, cid, command, bp->state,
1661	   rr_cqe->ramrod_cqe.ramrod_type);
1662
1663	switch (command) {
1664	case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE):
1665		DP(BNX2X_MSG_SP, "got UPDATE ramrod. CID %d\n", cid);
1666		drv_cmd = BNX2X_Q_CMD_UPDATE;
1667		break;
1668
1669	case (RAMROD_CMD_ID_ETH_CLIENT_SETUP):
1670		DP(BNX2X_MSG_SP, "got MULTI[%d] setup ramrod\n", cid);
1671		drv_cmd = BNX2X_Q_CMD_SETUP;
1672		break;
1673
1674	case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP):
1675		DP(BNX2X_MSG_SP, "got MULTI[%d] tx-only setup ramrod\n", cid);
1676		drv_cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
1677		break;
1678
1679	case (RAMROD_CMD_ID_ETH_HALT):
1680		DP(BNX2X_MSG_SP, "got MULTI[%d] halt ramrod\n", cid);
1681		drv_cmd = BNX2X_Q_CMD_HALT;
1682		break;
1683
1684	case (RAMROD_CMD_ID_ETH_TERMINATE):
1685		DP(BNX2X_MSG_SP, "got MULTI[%d] teminate ramrod\n", cid);
1686		drv_cmd = BNX2X_Q_CMD_TERMINATE;
1687		break;
1688
1689	case (RAMROD_CMD_ID_ETH_EMPTY):
1690		DP(BNX2X_MSG_SP, "got MULTI[%d] empty ramrod\n", cid);
1691		drv_cmd = BNX2X_Q_CMD_EMPTY;
1692		break;
1693
1694	default:
1695		BNX2X_ERR("unexpected MC reply (%d) on fp[%d]\n",
1696			  command, fp->index);
1697		return;
1698	}
1699
1700	if ((drv_cmd != BNX2X_Q_CMD_MAX) &&
1701	    q_obj->complete_cmd(bp, q_obj, drv_cmd))
1702		/* q_obj->complete_cmd() failure means that this was
1703		 * an unexpected completion.
1704		 *
1705		 * In this case we don't want to increase the bp->spq_left
1706		 * because apparently we haven't sent this command the first
1707		 * place.
1708		 */
1709#ifdef BNX2X_STOP_ON_ERROR
1710		bnx2x_panic();
1711#else
1712		return;
1713#endif
1714
1715	smp_mb__before_atomic_inc();
1716	atomic_inc(&bp->cq_spq_left);
1717	/* push the change in bp->spq_left and towards the memory */
1718	smp_mb__after_atomic_inc();
1719
1720	DP(BNX2X_MSG_SP, "bp->cq_spq_left %x\n", atomic_read(&bp->cq_spq_left));
1721
1722	return;
1723}
1724
1725void bnx2x_update_rx_prod(struct bnx2x *bp, struct bnx2x_fastpath *fp,
1726			u16 bd_prod, u16 rx_comp_prod, u16 rx_sge_prod)
1727{
1728	u32 start = BAR_USTRORM_INTMEM + fp->ustorm_rx_prods_offset;
1729
1730	bnx2x_update_rx_prod_gen(bp, fp, bd_prod, rx_comp_prod, rx_sge_prod,
1731				 start);
1732}
1733
1734irqreturn_t bnx2x_interrupt(int irq, void *dev_instance)
1735{
1736	struct bnx2x *bp = netdev_priv(dev_instance);
1737	u16 status = bnx2x_ack_int(bp);
1738	u16 mask;
1739	int i;
1740	u8 cos;
1741
1742	/* Return here if interrupt is shared and it's not for us */
1743	if (unlikely(status == 0)) {
1744		DP(NETIF_MSG_INTR, "not our interrupt!\n");
1745		return IRQ_NONE;
1746	}
1747	DP(NETIF_MSG_INTR, "got an interrupt  status 0x%x\n", status);
1748
1749#ifdef BNX2X_STOP_ON_ERROR
1750	if (unlikely(bp->panic))
1751		return IRQ_HANDLED;
1752#endif
1753
1754	for_each_eth_queue(bp, i) {
1755		struct bnx2x_fastpath *fp = &bp->fp[i];
1756
1757		mask = 0x2 << (fp->index + CNIC_PRESENT);
1758		if (status & mask) {
1759			/* Handle Rx or Tx according to SB id */
1760			prefetch(fp->rx_cons_sb);
1761			for_each_cos_in_tx_queue(fp, cos)
1762				prefetch(fp->txdata[cos].tx_cons_sb);
1763			prefetch(&fp->sb_running_index[SM_RX_ID]);
1764			napi_schedule(&bnx2x_fp(bp, fp->index, napi));
1765			status &= ~mask;
1766		}
1767	}
1768
1769#ifdef BCM_CNIC
1770	mask = 0x2;
1771	if (status & (mask | 0x1)) {
1772		struct cnic_ops *c_ops = NULL;
1773
1774		if (likely(bp->state == BNX2X_STATE_OPEN)) {
1775			rcu_read_lock();
1776			c_ops = rcu_dereference(bp->cnic_ops);
1777			if (c_ops)
1778				c_ops->cnic_handler(bp->cnic_data, NULL);
1779			rcu_read_unlock();
1780		}
1781
1782		status &= ~mask;
1783	}
1784#endif
1785
1786	if (unlikely(status & 0x1)) {
1787		queue_delayed_work(bnx2x_wq, &bp->sp_task, 0);
1788
1789		status &= ~0x1;
1790		if (!status)
1791			return IRQ_HANDLED;
1792	}
1793
1794	if (unlikely(status))
1795		DP(NETIF_MSG_INTR, "got an unknown interrupt! (status 0x%x)\n",
1796		   status);
1797
1798	return IRQ_HANDLED;
1799}
1800
1801/* Link */
1802
1803/*
1804 * General service functions
1805 */
1806
1807int bnx2x_acquire_hw_lock(struct bnx2x *bp, u32 resource)
1808{
1809	u32 lock_status;
1810	u32 resource_bit = (1 << resource);
1811	int func = BP_FUNC(bp);
1812	u32 hw_lock_control_reg;
1813	int cnt;
1814
1815	/* Validating that the resource is within range */
1816	if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1817		BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1818		   resource, HW_LOCK_MAX_RESOURCE_VALUE);
1819		return -EINVAL;
1820	}
1821
1822	if (func <= 5) {
1823		hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1824	} else {
1825		hw_lock_control_reg =
1826				(MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1827	}
1828
1829	/* Validating that the resource is not already taken */
1830	lock_status = REG_RD(bp, hw_lock_control_reg);
1831	if (lock_status & resource_bit) {
1832		BNX2X_ERR("lock_status 0x%x  resource_bit 0x%x\n",
1833		   lock_status, resource_bit);
1834		return -EEXIST;
1835	}
1836
1837	/* Try for 5 second every 5ms */
1838	for (cnt = 0; cnt < 1000; cnt++) {
1839		/* Try to acquire the lock */
1840		REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
1841		lock_status = REG_RD(bp, hw_lock_control_reg);
1842		if (lock_status & resource_bit)
1843			return 0;
1844
1845		msleep(5);
1846	}
1847	BNX2X_ERR("Timeout\n");
1848	return -EAGAIN;
1849}
1850
1851int bnx2x_release_leader_lock(struct bnx2x *bp)
1852{
1853	return bnx2x_release_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
1854}
1855
1856int bnx2x_release_hw_lock(struct bnx2x *bp, u32 resource)
1857{
1858	u32 lock_status;
1859	u32 resource_bit = (1 << resource);
1860	int func = BP_FUNC(bp);
1861	u32 hw_lock_control_reg;
1862
1863	/* Validating that the resource is within range */
1864	if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1865		BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1866		   resource, HW_LOCK_MAX_RESOURCE_VALUE);
1867		return -EINVAL;
1868	}
1869
1870	if (func <= 5) {
1871		hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1872	} else {
1873		hw_lock_control_reg =
1874				(MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1875	}
1876
1877	/* Validating that the resource is currently taken */
1878	lock_status = REG_RD(bp, hw_lock_control_reg);
1879	if (!(lock_status & resource_bit)) {
1880		BNX2X_ERR("lock_status 0x%x resource_bit 0x%x. unlock was called but lock wasn't taken!\n",
1881		   lock_status, resource_bit);
1882		return -EFAULT;
1883	}
1884
1885	REG_WR(bp, hw_lock_control_reg, resource_bit);
1886	return 0;
1887}
1888
1889
1890int bnx2x_get_gpio(struct bnx2x *bp, int gpio_num, u8 port)
1891{
1892	/* The GPIO should be swapped if swap register is set and active */
1893	int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
1894			 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
1895	int gpio_shift = gpio_num +
1896			(gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
1897	u32 gpio_mask = (1 << gpio_shift);
1898	u32 gpio_reg;
1899	int value;
1900
1901	if (gpio_num > MISC_REGISTERS_GPIO_3) {
1902		BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
1903		return -EINVAL;
1904	}
1905
1906	/* read GPIO value */
1907	gpio_reg = REG_RD(bp, MISC_REG_GPIO);
1908
1909	/* get the requested pin value */
1910	if ((gpio_reg & gpio_mask) == gpio_mask)
1911		value = 1;
1912	else
1913		value = 0;
1914
1915	DP(NETIF_MSG_LINK, "pin %d  value 0x%x\n", gpio_num, value);
1916
1917	return value;
1918}
1919
1920int bnx2x_set_gpio(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
1921{
1922	/* The GPIO should be swapped if swap register is set and active */
1923	int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
1924			 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
1925	int gpio_shift = gpio_num +
1926			(gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
1927	u32 gpio_mask = (1 << gpio_shift);
1928	u32 gpio_reg;
1929
1930	if (gpio_num > MISC_REGISTERS_GPIO_3) {
1931		BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
1932		return -EINVAL;
1933	}
1934
1935	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
1936	/* read GPIO and mask except the float bits */
1937	gpio_reg = (REG_RD(bp, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT);
1938
1939	switch (mode) {
1940	case MISC_REGISTERS_GPIO_OUTPUT_LOW:
1941		DP(NETIF_MSG_LINK,
1942		   "Set GPIO %d (shift %d) -> output low\n",
1943		   gpio_num, gpio_shift);
1944		/* clear FLOAT and set CLR */
1945		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
1946		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS);
1947		break;
1948
1949	case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
1950		DP(NETIF_MSG_LINK,
1951		   "Set GPIO %d (shift %d) -> output high\n",
1952		   gpio_num, gpio_shift);
1953		/* clear FLOAT and set SET */
1954		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
1955		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_SET_POS);
1956		break;
1957
1958	case MISC_REGISTERS_GPIO_INPUT_HI_Z:
1959		DP(NETIF_MSG_LINK,
1960		   "Set GPIO %d (shift %d) -> input\n",
1961		   gpio_num, gpio_shift);
1962		/* set FLOAT */
1963		gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
1964		break;
1965
1966	default:
1967		break;
1968	}
1969
1970	REG_WR(bp, MISC_REG_GPIO, gpio_reg);
1971	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
1972
1973	return 0;
1974}
1975
1976int bnx2x_set_mult_gpio(struct bnx2x *bp, u8 pins, u32 mode)
1977{
1978	u32 gpio_reg = 0;
1979	int rc = 0;
1980
1981	/* Any port swapping should be handled by caller. */
1982
1983	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
1984	/* read GPIO and mask except the float bits */
1985	gpio_reg = REG_RD(bp, MISC_REG_GPIO);
1986	gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS);
1987	gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS);
1988	gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS);
1989
1990	switch (mode) {
1991	case MISC_REGISTERS_GPIO_OUTPUT_LOW:
1992		DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output low\n", pins);
1993		/* set CLR */
1994		gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS);
1995		break;
1996
1997	case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
1998		DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output high\n", pins);
1999		/* set SET */
2000		gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS);
2001		break;
2002
2003	case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2004		DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> input\n", pins);
2005		/* set FLOAT */
2006		gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2007		break;
2008
2009	default:
2010		BNX2X_ERR("Invalid GPIO mode assignment %d\n", mode);
2011		rc = -EINVAL;
2012		break;
2013	}
2014
2015	if (rc == 0)
2016		REG_WR(bp, MISC_REG_GPIO, gpio_reg);
2017
2018	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2019
2020	return rc;
2021}
2022
2023int bnx2x_set_gpio_int(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
2024{
2025	/* The GPIO should be swapped if swap register is set and active */
2026	int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2027			 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2028	int gpio_shift = gpio_num +
2029			(gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2030	u32 gpio_mask = (1 << gpio_shift);
2031	u32 gpio_reg;
2032
2033	if (gpio_num > MISC_REGISTERS_GPIO_3) {
2034		BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2035		return -EINVAL;
2036	}
2037
2038	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2039	/* read GPIO int */
2040	gpio_reg = REG_RD(bp, MISC_REG_GPIO_INT);
2041
2042	switch (mode) {
2043	case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR:
2044		DP(NETIF_MSG_LINK,
2045		   "Clear GPIO INT %d (shift %d) -> output low\n",
2046		   gpio_num, gpio_shift);
2047		/* clear SET and set CLR */
2048		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2049		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2050		break;
2051
2052	case MISC_REGISTERS_GPIO_INT_OUTPUT_SET:
2053		DP(NETIF_MSG_LINK,
2054		   "Set GPIO INT %d (shift %d) -> output high\n",
2055		   gpio_num, gpio_shift);
2056		/* clear CLR and set SET */
2057		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2058		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2059		break;
2060
2061	default:
2062		break;
2063	}
2064
2065	REG_WR(bp, MISC_REG_GPIO_INT, gpio_reg);
2066	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2067
2068	return 0;
2069}
2070
2071static int bnx2x_set_spio(struct bnx2x *bp, int spio_num, u32 mode)
2072{
2073	u32 spio_mask = (1 << spio_num);
2074	u32 spio_reg;
2075
2076	if ((spio_num < MISC_REGISTERS_SPIO_4) ||
2077	    (spio_num > MISC_REGISTERS_SPIO_7)) {
2078		BNX2X_ERR("Invalid SPIO %d\n", spio_num);
2079		return -EINVAL;
2080	}
2081
2082	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2083	/* read SPIO and mask except the float bits */
2084	spio_reg = (REG_RD(bp, MISC_REG_SPIO) & MISC_REGISTERS_SPIO_FLOAT);
2085
2086	switch (mode) {
2087	case MISC_REGISTERS_SPIO_OUTPUT_LOW:
2088		DP(NETIF_MSG_HW, "Set SPIO %d -> output low\n", spio_num);
2089		/* clear FLOAT and set CLR */
2090		spio_reg &= ~(spio_mask << MISC_REGISTERS_SPIO_FLOAT_POS);
2091		spio_reg |=  (spio_mask << MISC_REGISTERS_SPIO_CLR_POS);
2092		break;
2093
2094	case MISC_REGISTERS_SPIO_OUTPUT_HIGH:
2095		DP(NETIF_MSG_HW, "Set SPIO %d -> output high\n", spio_num);
2096		/* clear FLOAT and set SET */
2097		spio_reg &= ~(spio_mask << MISC_REGISTERS_SPIO_FLOAT_POS);
2098		spio_reg |=  (spio_mask << MISC_REGISTERS_SPIO_SET_POS);
2099		break;
2100
2101	case MISC_REGISTERS_SPIO_INPUT_HI_Z:
2102		DP(NETIF_MSG_HW, "Set SPIO %d -> input\n", spio_num);
2103		/* set FLOAT */
2104		spio_reg |= (spio_mask << MISC_REGISTERS_SPIO_FLOAT_POS);
2105		break;
2106
2107	default:
2108		break;
2109	}
2110
2111	REG_WR(bp, MISC_REG_SPIO, spio_reg);
2112	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2113
2114	return 0;
2115}
2116
2117void bnx2x_calc_fc_adv(struct bnx2x *bp)
2118{
2119	u8 cfg_idx = bnx2x_get_link_cfg_idx(bp);
2120	switch (bp->link_vars.ieee_fc &
2121		MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) {
2122	case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_NONE:
2123		bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
2124						   ADVERTISED_Pause);
2125		break;
2126
2127	case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH:
2128		bp->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause |
2129						  ADVERTISED_Pause);
2130		break;
2131
2132	case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC:
2133		bp->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause;
2134		break;
2135
2136	default:
2137		bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
2138						   ADVERTISED_Pause);
2139		break;
2140	}
2141}
2142
2143u8 bnx2x_initial_phy_init(struct bnx2x *bp, int load_mode)
2144{
2145	if (!BP_NOMCP(bp)) {
2146		u8 rc;
2147		int cfx_idx = bnx2x_get_link_cfg_idx(bp);
2148		u16 req_line_speed = bp->link_params.req_line_speed[cfx_idx];
2149		/*
2150		 * Initialize link parameters structure variables
2151		 * It is recommended to turn off RX FC for jumbo frames
2152		 * for better performance
2153		 */
2154		if (CHIP_IS_E1x(bp) && (bp->dev->mtu > 5000))
2155			bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_TX;
2156		else
2157			bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_BOTH;
2158
2159		bnx2x_acquire_phy_lock(bp);
2160
2161		if (load_mode == LOAD_DIAG) {
2162			struct link_params *lp = &bp->link_params;
2163			lp->loopback_mode = LOOPBACK_XGXS;
2164			/* do PHY loopback at 10G speed, if possible */
2165			if (lp->req_line_speed[cfx_idx] < SPEED_10000) {
2166				if (lp->speed_cap_mask[cfx_idx] &
2167				    PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)
2168					lp->req_line_speed[cfx_idx] =
2169					SPEED_10000;
2170				else
2171					lp->req_line_speed[cfx_idx] =
2172					SPEED_1000;
2173			}
2174		}
2175
2176		rc = bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2177
2178		bnx2x_release_phy_lock(bp);
2179
2180		bnx2x_calc_fc_adv(bp);
2181
2182		if (CHIP_REV_IS_SLOW(bp) && bp->link_vars.link_up) {
2183			bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2184			bnx2x_link_report(bp);
2185		} else
2186			queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2187		bp->link_params.req_line_speed[cfx_idx] = req_line_speed;
2188		return rc;
2189	}
2190	BNX2X_ERR("Bootcode is missing - can not initialize link\n");
2191	return -EINVAL;
2192}
2193
2194void bnx2x_link_set(struct bnx2x *bp)
2195{
2196	if (!BP_NOMCP(bp)) {
2197		bnx2x_acquire_phy_lock(bp);
2198		bnx2x_link_reset(&bp->link_params, &bp->link_vars, 1);
2199		bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2200		bnx2x_release_phy_lock(bp);
2201
2202		bnx2x_calc_fc_adv(bp);
2203	} else
2204		BNX2X_ERR("Bootcode is missing - can not set link\n");
2205}
2206
2207static void bnx2x__link_reset(struct bnx2x *bp)
2208{
2209	if (!BP_NOMCP(bp)) {
2210		bnx2x_acquire_phy_lock(bp);
2211		bnx2x_link_reset(&bp->link_params, &bp->link_vars, 1);
2212		bnx2x_release_phy_lock(bp);
2213	} else
2214		BNX2X_ERR("Bootcode is missing - can not reset link\n");
2215}
2216
2217u8 bnx2x_link_test(struct bnx2x *bp, u8 is_serdes)
2218{
2219	u8 rc = 0;
2220
2221	if (!BP_NOMCP(bp)) {
2222		bnx2x_acquire_phy_lock(bp);
2223		rc = bnx2x_test_link(&bp->link_params, &bp->link_vars,
2224				     is_serdes);
2225		bnx2x_release_phy_lock(bp);
2226	} else
2227		BNX2X_ERR("Bootcode is missing - can not test link\n");
2228
2229	return rc;
2230}
2231
2232static void bnx2x_init_port_minmax(struct bnx2x *bp)
2233{
2234	u32 r_param = bp->link_vars.line_speed / 8;
2235	u32 fair_periodic_timeout_usec;
2236	u32 t_fair;
2237
2238	memset(&(bp->cmng.rs_vars), 0,
2239	       sizeof(struct rate_shaping_vars_per_port));
2240	memset(&(bp->cmng.fair_vars), 0, sizeof(struct fairness_vars_per_port));
2241
2242	/* 100 usec in SDM ticks = 25 since each tick is 4 usec */
2243	bp->cmng.rs_vars.rs_periodic_timeout = RS_PERIODIC_TIMEOUT_USEC / 4;
2244
2245	/* this is the threshold below which no timer arming will occur
2246	   1.25 coefficient is for the threshold to be a little bigger
2247	   than the real time, to compensate for timer in-accuracy */
2248	bp->cmng.rs_vars.rs_threshold =
2249				(RS_PERIODIC_TIMEOUT_USEC * r_param * 5) / 4;
2250
2251	/* resolution of fairness timer */
2252	fair_periodic_timeout_usec = QM_ARB_BYTES / r_param;
2253	/* for 10G it is 1000usec. for 1G it is 10000usec. */
2254	t_fair = T_FAIR_COEF / bp->link_vars.line_speed;
2255
2256	/* this is the threshold below which we won't arm the timer anymore */
2257	bp->cmng.fair_vars.fair_threshold = QM_ARB_BYTES;
2258
2259	/* we multiply by 1e3/8 to get bytes/msec.
2260	   We don't want the credits to pass a credit
2261	   of the t_fair*FAIR_MEM (algorithm resolution) */
2262	bp->cmng.fair_vars.upper_bound = r_param * t_fair * FAIR_MEM;
2263	/* since each tick is 4 usec */
2264	bp->cmng.fair_vars.fairness_timeout = fair_periodic_timeout_usec / 4;
2265}
2266
2267/* Calculates the sum of vn_min_rates.
2268   It's needed for further normalizing of the min_rates.
2269   Returns:
2270     sum of vn_min_rates.
2271       or
2272     0 - if all the min_rates are 0.
2273     In the later case fainess algorithm should be deactivated.
2274     If not all min_rates are zero then those that are zeroes will be set to 1.
2275 */
2276static void bnx2x_calc_vn_weight_sum(struct bnx2x *bp)
2277{
2278	int all_zero = 1;
2279	int vn;
2280
2281	bp->vn_weight_sum = 0;
2282	for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2283		u32 vn_cfg = bp->mf_config[vn];
2284		u32 vn_min_rate = ((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
2285				   FUNC_MF_CFG_MIN_BW_SHIFT) * 100;
2286
2287		/* Skip hidden vns */
2288		if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
2289			continue;
2290
2291		/* If min rate is zero - set it to 1 */
2292		if (!vn_min_rate)
2293			vn_min_rate = DEF_MIN_RATE;
2294		else
2295			all_zero = 0;
2296
2297		bp->vn_weight_sum += vn_min_rate;
2298	}
2299
2300	/* if ETS or all min rates are zeros - disable fairness */
2301	if (BNX2X_IS_ETS_ENABLED(bp)) {
2302		bp->cmng.flags.cmng_enables &=
2303					~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2304		DP(NETIF_MSG_IFUP, "Fairness will be disabled due to ETS\n");
2305	} else if (all_zero) {
2306		bp->cmng.flags.cmng_enables &=
2307					~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2308		DP(NETIF_MSG_IFUP, "All MIN values are zeroes"
2309		   "  fairness will be disabled\n");
2310	} else
2311		bp->cmng.flags.cmng_enables |=
2312					CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2313}
2314
2315static void bnx2x_init_vn_minmax(struct bnx2x *bp, int vn)
2316{
2317	struct rate_shaping_vars_per_vn m_rs_vn;
2318	struct fairness_vars_per_vn m_fair_vn;
2319	u32 vn_cfg = bp->mf_config[vn];
2320	int func = func_by_vn(bp, vn);
2321	u16 vn_min_rate, vn_max_rate;
2322	int i;
2323
2324	/* If function is hidden - set min and max to zeroes */
2325	if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) {
2326		vn_min_rate = 0;
2327		vn_max_rate = 0;
2328
2329	} else {
2330		u32 maxCfg = bnx2x_extract_max_cfg(bp, vn_cfg);
2331
2332		vn_min_rate = ((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
2333				FUNC_MF_CFG_MIN_BW_SHIFT) * 100;
2334		/* If fairness is enabled (not all min rates are zeroes) and
2335		   if current min rate is zero - set it to 1.
2336		   This is a requirement of the algorithm. */
2337		if (bp->vn_weight_sum && (vn_min_rate == 0))
2338			vn_min_rate = DEF_MIN_RATE;
2339
2340		if (IS_MF_SI(bp))
2341			/* maxCfg in percents of linkspeed */
2342			vn_max_rate = (bp->link_vars.line_speed * maxCfg) / 100;
2343		else
2344			/* maxCfg is absolute in 100Mb units */
2345			vn_max_rate = maxCfg * 100;
2346	}
2347
2348	DP(NETIF_MSG_IFUP,
2349	   "func %d: vn_min_rate %d  vn_max_rate %d  vn_weight_sum %d\n",
2350	   func, vn_min_rate, vn_max_rate, bp->vn_weight_sum);
2351
2352	memset(&m_rs_vn, 0, sizeof(struct rate_shaping_vars_per_vn));
2353	memset(&m_fair_vn, 0, sizeof(struct fairness_vars_per_vn));
2354
2355	/* global vn counter - maximal Mbps for this vn */
2356	m_rs_vn.vn_counter.rate = vn_max_rate;
2357
2358	/* quota - number of bytes transmitted in this period */
2359	m_rs_vn.vn_counter.quota =
2360				(vn_max_rate * RS_PERIODIC_TIMEOUT_USEC) / 8;
2361
2362	if (bp->vn_weight_sum) {
2363		/* credit for each period of the fairness algorithm:
2364		   number of bytes in T_FAIR (the vn share the port rate).
2365		   vn_weight_sum should not be larger than 10000, thus
2366		   T_FAIR_COEF / (8 * vn_weight_sum) will always be greater
2367		   than zero */
2368		m_fair_vn.vn_credit_delta =
2369			max_t(u32, (vn_min_rate * (T_FAIR_COEF /
2370						   (8 * bp->vn_weight_sum))),
2371			      (bp->cmng.fair_vars.fair_threshold +
2372							MIN_ABOVE_THRESH));
2373		DP(NETIF_MSG_IFUP, "m_fair_vn.vn_credit_delta %d\n",
2374		   m_fair_vn.vn_credit_delta);
2375	}
2376
2377	/* Store it to internal memory */
2378	for (i = 0; i < sizeof(struct rate_shaping_vars_per_vn)/4; i++)
2379		REG_WR(bp, BAR_XSTRORM_INTMEM +
2380		       XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func) + i * 4,
2381		       ((u32 *)(&m_rs_vn))[i]);
2382
2383	for (i = 0; i < sizeof(struct fairness_vars_per_vn)/4; i++)
2384		REG_WR(bp, BAR_XSTRORM_INTMEM +
2385		       XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func) + i * 4,
2386		       ((u32 *)(&m_fair_vn))[i]);
2387}
2388
2389static int bnx2x_get_cmng_fns_mode(struct bnx2x *bp)
2390{
2391	if (CHIP_REV_IS_SLOW(bp))
2392		return CMNG_FNS_NONE;
2393	if (IS_MF(bp))
2394		return CMNG_FNS_MINMAX;
2395
2396	return CMNG_FNS_NONE;
2397}
2398
2399void bnx2x_read_mf_cfg(struct bnx2x *bp)
2400{
2401	int vn, n = (CHIP_MODE_IS_4_PORT(bp) ? 2 : 1);
2402
2403	if (BP_NOMCP(bp))
2404		return; /* what should be the default bvalue in this case */
2405
2406	/* For 2 port configuration the absolute function number formula
2407	 * is:
2408	 *      abs_func = 2 * vn + BP_PORT + BP_PATH
2409	 *
2410	 *      and there are 4 functions per port
2411	 *
2412	 * For 4 port configuration it is
2413	 *      abs_func = 4 * vn + 2 * BP_PORT + BP_PATH
2414	 *
2415	 *      and there are 2 functions per port
2416	 */
2417	for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2418		int /*abs*/func = n * (2 * vn + BP_PORT(bp)) + BP_PATH(bp);
2419
2420		if (func >= E1H_FUNC_MAX)
2421			break;
2422
2423		bp->mf_config[vn] =
2424			MF_CFG_RD(bp, func_mf_config[func].config);
2425	}
2426}
2427
2428static void bnx2x_cmng_fns_init(struct bnx2x *bp, u8 read_cfg, u8 cmng_type)
2429{
2430
2431	if (cmng_type == CMNG_FNS_MINMAX) {
2432		int vn;
2433
2434		/* clear cmng_enables */
2435		bp->cmng.flags.cmng_enables = 0;
2436
2437		/* read mf conf from shmem */
2438		if (read_cfg)
2439			bnx2x_read_mf_cfg(bp);
2440
2441		/* Init rate shaping and fairness contexts */
2442		bnx2x_init_port_minmax(bp);
2443
2444		/* vn_weight_sum and enable fairness if not 0 */
2445		bnx2x_calc_vn_weight_sum(bp);
2446
2447		/* calculate and set min-max rate for each vn */
2448		if (bp->port.pmf)
2449			for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++)
2450				bnx2x_init_vn_minmax(bp, vn);
2451
2452		/* always enable rate shaping and fairness */
2453		bp->cmng.flags.cmng_enables |=
2454					CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN;
2455		if (!bp->vn_weight_sum)
2456			DP(NETIF_MSG_IFUP, "All MIN values are zeroes"
2457				   "  fairness will be disabled\n");
2458		return;
2459	}
2460
2461	/* rate shaping and fairness are disabled */
2462	DP(NETIF_MSG_IFUP,
2463	   "rate shaping and fairness are disabled\n");
2464}
2465
2466/* This function is called upon link interrupt */
2467static void bnx2x_link_attn(struct bnx2x *bp)
2468{
2469	/* Make sure that we are synced with the current statistics */
2470	bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2471
2472	bnx2x_link_update(&bp->link_params, &bp->link_vars);
2473
2474	if (bp->link_vars.link_up) {
2475
2476		/* dropless flow control */
2477		if (!CHIP_IS_E1(bp) && bp->dropless_fc) {
2478			int port = BP_PORT(bp);
2479			u32 pause_enabled = 0;
2480
2481			if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_TX)
2482				pause_enabled = 1;
2483
2484			REG_WR(bp, BAR_USTRORM_INTMEM +
2485			       USTORM_ETH_PAUSE_ENABLED_OFFSET(port),
2486			       pause_enabled);
2487		}
2488
2489		if (bp->link_vars.mac_type != MAC_TYPE_EMAC) {
2490			struct host_port_stats *pstats;
2491
2492			pstats = bnx2x_sp(bp, port_stats);
2493			/* reset old mac stats */
2494			memset(&(pstats->mac_stx[0]), 0,
2495			       sizeof(struct mac_stx));
2496		}
2497		if (bp->state == BNX2X_STATE_OPEN)
2498			bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2499	}
2500
2501	if (bp->link_vars.link_up && bp->link_vars.line_speed) {
2502		int cmng_fns = bnx2x_get_cmng_fns_mode(bp);
2503
2504		if (cmng_fns != CMNG_FNS_NONE) {
2505			bnx2x_cmng_fns_init(bp, false, cmng_fns);
2506			storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
2507		} else
2508			/* rate shaping and fairness are disabled */
2509			DP(NETIF_MSG_IFUP,
2510			   "single function mode without fairness\n");
2511	}
2512
2513	__bnx2x_link_report(bp);
2514
2515	if (IS_MF(bp))
2516		bnx2x_link_sync_notify(bp);
2517}
2518
2519void bnx2x__link_status_update(struct bnx2x *bp)
2520{
2521	if (bp->state != BNX2X_STATE_OPEN)
2522		return;
2523
2524	/* read updated dcb configuration */
2525	bnx2x_dcbx_pmf_update(bp);
2526
2527	bnx2x_link_status_update(&bp->link_params, &bp->link_vars);
2528
2529	if (bp->link_vars.link_up)
2530		bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2531	else
2532		bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2533
2534	/* indicate link status */
2535	bnx2x_link_report(bp);
2536}
2537
2538static void bnx2x_pmf_update(struct bnx2x *bp)
2539{
2540	int port = BP_PORT(bp);
2541	u32 val;
2542
2543	bp->port.pmf = 1;
2544	DP(BNX2X_MSG_MCP, "pmf %d\n", bp->port.pmf);
2545
2546	/*
2547	 * We need the mb() to ensure the ordering between the writing to
2548	 * bp->port.pmf here and reading it from the bnx2x_periodic_task().
2549	 */
2550	smp_mb();
2551
2552	/* queue a periodic task */
2553	queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2554
2555	bnx2x_dcbx_pmf_update(bp);
2556
2557	/* enable nig attention */
2558	val = (0xff0f | (1 << (BP_VN(bp) + 4)));
2559	if (bp->common.int_block == INT_BLOCK_HC) {
2560		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
2561		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
2562	} else if (!CHIP_IS_E1x(bp)) {
2563		REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
2564		REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
2565	}
2566
2567	bnx2x_stats_handle(bp, STATS_EVENT_PMF);
2568}
2569
2570/* end of Link */
2571
2572/* slow path */
2573
2574/*
2575 * General service functions
2576 */
2577
2578/* send the MCP a request, block until there is a reply */
2579u32 bnx2x_fw_command(struct bnx2x *bp, u32 command, u32 param)
2580{
2581	int mb_idx = BP_FW_MB_IDX(bp);
2582	u32 seq;
2583	u32 rc = 0;
2584	u32 cnt = 1;
2585	u8 delay = CHIP_REV_IS_SLOW(bp) ? 100 : 10;
2586
2587	mutex_lock(&bp->fw_mb_mutex);
2588	seq = ++bp->fw_seq;
2589	SHMEM_WR(bp, func_mb[mb_idx].drv_mb_param, param);
2590	SHMEM_WR(bp, func_mb[mb_idx].drv_mb_header, (command | seq));
2591
2592	DP(BNX2X_MSG_MCP, "wrote command (%x) to FW MB param 0x%08x\n",
2593			(command | seq), param);
2594
2595	do {
2596		/* let the FW do it's magic ... */
2597		msleep(delay);
2598
2599		rc = SHMEM_RD(bp, func_mb[mb_idx].fw_mb_header);
2600
2601		/* Give the FW up to 5 second (500*10ms) */
2602	} while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500));
2603
2604	DP(BNX2X_MSG_MCP, "[after %d ms] read (%x) seq is (%x) from FW MB\n",
2605	   cnt*delay, rc, seq);
2606
2607	/* is this a reply to our command? */
2608	if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK))
2609		rc &= FW_MSG_CODE_MASK;
2610	else {
2611		/* FW BUG! */
2612		BNX2X_ERR("FW failed to respond!\n");
2613		bnx2x_fw_dump(bp);
2614		rc = 0;
2615	}
2616	mutex_unlock(&bp->fw_mb_mutex);
2617
2618	return rc;
2619}
2620
2621
2622void bnx2x_func_init(struct bnx2x *bp, struct bnx2x_func_init_params *p)
2623{
2624	if (CHIP_IS_E1x(bp)) {
2625		struct tstorm_eth_function_common_config tcfg = {0};
2626
2627		storm_memset_func_cfg(bp, &tcfg, p->func_id);
2628	}
2629
2630	/* Enable the function in the FW */
2631	storm_memset_vf_to_pf(bp, p->func_id, p->pf_id);
2632	storm_memset_func_en(bp, p->func_id, 1);
2633
2634	/* spq */
2635	if (p->func_flgs & FUNC_FLG_SPQ) {
2636		storm_memset_spq_addr(bp, p->spq_map, p->func_id);
2637		REG_WR(bp, XSEM_REG_FAST_MEMORY +
2638		       XSTORM_SPQ_PROD_OFFSET(p->func_id), p->spq_prod);
2639	}
2640}
2641
2642/**
2643 * bnx2x_get_tx_only_flags - Return common flags
2644 *
2645 * @bp		device handle
2646 * @fp		queue handle
2647 * @zero_stats	TRUE if statistics zeroing is needed
2648 *
2649 * Return the flags that are common for the Tx-only and not normal connections.
2650 */
2651static inline unsigned long bnx2x_get_common_flags(struct bnx2x *bp,
2652						   struct bnx2x_fastpath *fp,
2653						   bool zero_stats)
2654{
2655	unsigned long flags = 0;
2656
2657	/* PF driver will always initialize the Queue to an ACTIVE state */
2658	__set_bit(BNX2X_Q_FLG_ACTIVE, &flags);
2659
2660	/* tx only connections collect statistics (on the same index as the
2661	 *  parent connection). The statistics are zeroed when the parent
2662	 *  connection is initialized.
2663	 */
2664
2665	__set_bit(BNX2X_Q_FLG_STATS, &flags);
2666	if (zero_stats)
2667		__set_bit(BNX2X_Q_FLG_ZERO_STATS, &flags);
2668
2669
2670	return flags;
2671}
2672
2673static inline unsigned long bnx2x_get_q_flags(struct bnx2x *bp,
2674					      struct bnx2x_fastpath *fp,
2675					      bool leading)
2676{
2677	unsigned long flags = 0;
2678
2679	/* calculate other queue flags */
2680	if (IS_MF_SD(bp))
2681		__set_bit(BNX2X_Q_FLG_OV, &flags);
2682
2683	if (IS_FCOE_FP(fp))
2684		__set_bit(BNX2X_Q_FLG_FCOE, &flags);
2685
2686	if (!fp->disable_tpa) {
2687		__set_bit(BNX2X_Q_FLG_TPA, &flags);
2688		__set_bit(BNX2X_Q_FLG_TPA_IPV6, &flags);
2689		if (fp->mode == TPA_MODE_GRO)
2690			__set_bit(BNX2X_Q_FLG_TPA_GRO, &flags);
2691	}
2692
2693	if (leading) {
2694		__set_bit(BNX2X_Q_FLG_LEADING_RSS, &flags);
2695		__set_bit(BNX2X_Q_FLG_MCAST, &flags);
2696	}
2697
2698	/* Always set HW VLAN stripping */
2699	__set_bit(BNX2X_Q_FLG_VLAN, &flags);
2700
2701
2702	return flags | bnx2x_get_common_flags(bp, fp, true);
2703}
2704
2705static void bnx2x_pf_q_prep_general(struct bnx2x *bp,
2706	struct bnx2x_fastpath *fp, struct bnx2x_general_setup_params *gen_init,
2707	u8 cos)
2708{
2709	gen_init->stat_id = bnx2x_stats_id(fp);
2710	gen_init->spcl_id = fp->cl_id;
2711
2712	/* Always use mini-jumbo MTU for FCoE L2 ring */
2713	if (IS_FCOE_FP(fp))
2714		gen_init->mtu = BNX2X_FCOE_MINI_JUMBO_MTU;
2715	else
2716		gen_init->mtu = bp->dev->mtu;
2717
2718	gen_init->cos = cos;
2719}
2720
2721static void bnx2x_pf_rx_q_prep(struct bnx2x *bp,
2722	struct bnx2x_fastpath *fp, struct rxq_pause_params *pause,
2723	struct bnx2x_rxq_setup_params *rxq_init)
2724{
2725	u8 max_sge = 0;
2726	u16 sge_sz = 0;
2727	u16 tpa_agg_size = 0;
2728
2729	if (!fp->disable_tpa) {
2730		pause->sge_th_lo = SGE_TH_LO(bp);
2731		pause->sge_th_hi = SGE_TH_HI(bp);
2732
2733		/* validate SGE ring has enough to cross high threshold */
2734		WARN_ON(bp->dropless_fc &&
2735				pause->sge_th_hi + FW_PREFETCH_CNT >
2736				MAX_RX_SGE_CNT * NUM_RX_SGE_PAGES);
2737
2738		tpa_agg_size = min_t(u32,
2739			(min_t(u32, 8, MAX_SKB_FRAGS) *
2740			SGE_PAGE_SIZE * PAGES_PER_SGE), 0xffff);
2741		max_sge = SGE_PAGE_ALIGN(bp->dev->mtu) >>
2742			SGE_PAGE_SHIFT;
2743		max_sge = ((max_sge + PAGES_PER_SGE - 1) &
2744			  (~(PAGES_PER_SGE-1))) >> PAGES_PER_SGE_SHIFT;
2745		sge_sz = (u16)min_t(u32, SGE_PAGE_SIZE * PAGES_PER_SGE,
2746				    0xffff);
2747	}
2748
2749	/* pause - not for e1 */
2750	if (!CHIP_IS_E1(bp)) {
2751		pause->bd_th_lo = BD_TH_LO(bp);
2752		pause->bd_th_hi = BD_TH_HI(bp);
2753
2754		pause->rcq_th_lo = RCQ_TH_LO(bp);
2755		pause->rcq_th_hi = RCQ_TH_HI(bp);
2756		/*
2757		 * validate that rings have enough entries to cross
2758		 * high thresholds
2759		 */
2760		WARN_ON(bp->dropless_fc &&
2761				pause->bd_th_hi + FW_PREFETCH_CNT >
2762				bp->rx_ring_size);
2763		WARN_ON(bp->dropless_fc &&
2764				pause->rcq_th_hi + FW_PREFETCH_CNT >
2765				NUM_RCQ_RINGS * MAX_RCQ_DESC_CNT);
2766
2767		pause->pri_map = 1;
2768	}
2769
2770	/* rxq setup */
2771	rxq_init->dscr_map = fp->rx_desc_mapping;
2772	rxq_init->sge_map = fp->rx_sge_mapping;
2773	rxq_init->rcq_map = fp->rx_comp_mapping;
2774	rxq_init->rcq_np_map = fp->rx_comp_mapping + BCM_PAGE_SIZE;
2775
2776	/* This should be a maximum number of data bytes that may be
2777	 * placed on the BD (not including paddings).
2778	 */
2779	rxq_init->buf_sz = fp->rx_buf_size - BNX2X_FW_RX_ALIGN_START -
2780		BNX2X_FW_RX_ALIGN_END -	IP_HEADER_ALIGNMENT_PADDING;
2781
2782	rxq_init->cl_qzone_id = fp->cl_qzone_id;
2783	rxq_init->tpa_agg_sz = tpa_agg_size;
2784	rxq_init->sge_buf_sz = sge_sz;
2785	rxq_init->max_sges_pkt = max_sge;
2786	rxq_init->rss_engine_id = BP_FUNC(bp);
2787	rxq_init->mcast_engine_id = BP_FUNC(bp);
2788
2789	/* Maximum number or simultaneous TPA aggregation for this Queue.
2790	 *
2791	 * For PF Clients it should be the maximum avaliable number.
2792	 * VF driver(s) may want to define it to a smaller value.
2793	 */
2794	rxq_init->max_tpa_queues = MAX_AGG_QS(bp);
2795
2796	rxq_init->cache_line_log = BNX2X_RX_ALIGN_SHIFT;
2797	rxq_init->fw_sb_id = fp->fw_sb_id;
2798
2799	if (IS_FCOE_FP(fp))
2800		rxq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS;
2801	else
2802		rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
2803}
2804
2805static void bnx2x_pf_tx_q_prep(struct bnx2x *bp,
2806	struct bnx2x_fastpath *fp, struct bnx2x_txq_setup_params *txq_init,
2807	u8 cos)
2808{
2809	txq_init->dscr_map = fp->txdata[cos].tx_desc_mapping;
2810	txq_init->sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos;
2811	txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW;
2812	txq_init->fw_sb_id = fp->fw_sb_id;
2813
2814	/*
2815	 * set the tss leading client id for TX classfication ==
2816	 * leading RSS client id
2817	 */
2818	txq_init->tss_leading_cl_id = bnx2x_fp(bp, 0, cl_id);
2819
2820	if (IS_FCOE_FP(fp)) {
2821		txq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_TX_CQ_CONS;
2822		txq_init->traffic_type = LLFC_TRAFFIC_TYPE_FCOE;
2823	}
2824}
2825
2826static void bnx2x_pf_init(struct bnx2x *bp)
2827{
2828	struct bnx2x_func_init_params func_init = {0};
2829	struct event_ring_data eq_data = { {0} };
2830	u16 flags;
2831
2832	if (!CHIP_IS_E1x(bp)) {
2833		/* reset IGU PF statistics: MSIX + ATTN */
2834		/* PF */
2835		REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
2836			   BNX2X_IGU_STAS_MSG_VF_CNT*4 +
2837			   (CHIP_MODE_IS_4_PORT(bp) ?
2838				BP_FUNC(bp) : BP_VN(bp))*4, 0);
2839		/* ATTN */
2840		REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
2841			   BNX2X_IGU_STAS_MSG_VF_CNT*4 +
2842			   BNX2X_IGU_STAS_MSG_PF_CNT*4 +
2843			   (CHIP_MODE_IS_4_PORT(bp) ?
2844				BP_FUNC(bp) : BP_VN(bp))*4, 0);
2845	}
2846
2847	/* function setup flags */
2848	flags = (FUNC_FLG_STATS | FUNC_FLG_LEADING | FUNC_FLG_SPQ);
2849
2850	/* This flag is relevant for E1x only.
2851	 * E2 doesn't have a TPA configuration in a function level.
2852	 */
2853	flags |= (bp->flags & TPA_ENABLE_FLAG) ? FUNC_FLG_TPA : 0;
2854
2855	func_init.func_flgs = flags;
2856	func_init.pf_id = BP_FUNC(bp);
2857	func_init.func_id = BP_FUNC(bp);
2858	func_init.spq_map = bp->spq_mapping;
2859	func_init.spq_prod = bp->spq_prod_idx;
2860
2861	bnx2x_func_init(bp, &func_init);
2862
2863	memset(&(bp->cmng), 0, sizeof(struct cmng_struct_per_port));
2864
2865	/*
2866	 * Congestion management values depend on the link rate
2867	 * There is no active link so initial link rate is set to 10 Gbps.
2868	 * When the link comes up The congestion management values are
2869	 * re-calculated according to the actual link rate.
2870	 */
2871	bp->link_vars.line_speed = SPEED_10000;
2872	bnx2x_cmng_fns_init(bp, true, bnx2x_get_cmng_fns_mode(bp));
2873
2874	/* Only the PMF sets the HW */
2875	if (bp->port.pmf)
2876		storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
2877
2878	/* init Event Queue */
2879	eq_data.base_addr.hi = U64_HI(bp->eq_mapping);
2880	eq_data.base_addr.lo = U64_LO(bp->eq_mapping);
2881	eq_data.producer = bp->eq_prod;
2882	eq_data.index_id = HC_SP_INDEX_EQ_CONS;
2883	eq_data.sb_id = DEF_SB_ID;
2884	storm_memset_eq_data(bp, &eq_data, BP_FUNC(bp));
2885}
2886
2887
2888static void bnx2x_e1h_disable(struct bnx2x *bp)
2889{
2890	int port = BP_PORT(bp);
2891
2892	bnx2x_tx_disable(bp);
2893
2894	REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
2895}
2896
2897static void bnx2x_e1h_enable(struct bnx2x *bp)
2898{
2899	int port = BP_PORT(bp);
2900
2901	REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 1);
2902
2903	/* Tx queue should be only reenabled */
2904	netif_tx_wake_all_queues(bp->dev);
2905
2906	/*
2907	 * Should not call netif_carrier_on since it will be called if the link
2908	 * is up when checking for link state
2909	 */
2910}
2911
2912#define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3
2913
2914static void bnx2x_drv_info_ether_stat(struct bnx2x *bp)
2915{
2916	struct eth_stats_info *ether_stat =
2917		&bp->slowpath->drv_info_to_mcp.ether_stat;
2918
2919	/* leave last char as NULL */
2920	memcpy(ether_stat->version, DRV_MODULE_VERSION,
2921	       ETH_STAT_INFO_VERSION_LEN - 1);
2922
2923	bp->fp[0].mac_obj.get_n_elements(bp, &bp->fp[0].mac_obj,
2924					 DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED,
2925					 ether_stat->mac_local);
2926
2927	ether_stat->mtu_size = bp->dev->mtu;
2928
2929	if (bp->dev->features & NETIF_F_RXCSUM)
2930		ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK;
2931	if (bp->dev->features & NETIF_F_TSO)
2932		ether_stat->feature_flags |= FEATURE_ETH_LSO_MASK;
2933	ether_stat->feature_flags |= bp->common.boot_mode;
2934
2935	ether_stat->promiscuous_mode = (bp->dev->flags & IFF_PROMISC) ? 1 : 0;
2936
2937	ether_stat->txq_size = bp->tx_ring_size;
2938	ether_stat->rxq_size = bp->rx_ring_size;
2939}
2940
2941static void bnx2x_drv_info_fcoe_stat(struct bnx2x *bp)
2942{
2943#ifdef BCM_CNIC
2944	struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
2945	struct fcoe_stats_info *fcoe_stat =
2946		&bp->slowpath->drv_info_to_mcp.fcoe_stat;
2947
2948	memcpy(fcoe_stat->mac_local, bp->fip_mac, ETH_ALEN);
2949
2950	fcoe_stat->qos_priority =
2951		app->traffic_type_priority[LLFC_TRAFFIC_TYPE_FCOE];
2952
2953	/* insert FCoE stats from ramrod response */
2954	if (!NO_FCOE(bp)) {
2955		struct tstorm_per_queue_stats *fcoe_q_tstorm_stats =
2956			&bp->fw_stats_data->queue_stats[FCOE_IDX].
2957			tstorm_queue_statistics;
2958
2959		struct xstorm_per_queue_stats *fcoe_q_xstorm_stats =
2960			&bp->fw_stats_data->queue_stats[FCOE_IDX].
2961			xstorm_queue_statistics;
2962
2963		struct fcoe_statistics_params *fw_fcoe_stat =
2964			&bp->fw_stats_data->fcoe;
2965
2966		ADD_64(fcoe_stat->rx_bytes_hi, 0, fcoe_stat->rx_bytes_lo,
2967		       fw_fcoe_stat->rx_stat0.fcoe_rx_byte_cnt);
2968
2969		ADD_64(fcoe_stat->rx_bytes_hi,
2970		       fcoe_q_tstorm_stats->rcv_ucast_bytes.hi,
2971		       fcoe_stat->rx_bytes_lo,
2972		       fcoe_q_tstorm_stats->rcv_ucast_bytes.lo);
2973
2974		ADD_64(fcoe_stat->rx_bytes_hi,
2975		       fcoe_q_tstorm_stats->rcv_bcast_bytes.hi,
2976		       fcoe_stat->rx_bytes_lo,
2977		       fcoe_q_tstorm_stats->rcv_bcast_bytes.lo);
2978
2979		ADD_64(fcoe_stat->rx_bytes_hi,
2980		       fcoe_q_tstorm_stats->rcv_mcast_bytes.hi,
2981		       fcoe_stat->rx_bytes_lo,
2982		       fcoe_q_tstorm_stats->rcv_mcast_bytes.lo);
2983
2984		ADD_64(fcoe_stat->rx_frames_hi, 0, fcoe_stat->rx_frames_lo,
2985		       fw_fcoe_stat->rx_stat0.fcoe_rx_pkt_cnt);
2986
2987		ADD_64(fcoe_stat->rx_frames_hi, 0, fcoe_stat->rx_frames_lo,
2988		       fcoe_q_tstorm_stats->rcv_ucast_pkts);
2989
2990		ADD_64(fcoe_stat->rx_frames_hi, 0, fcoe_stat->rx_frames_lo,
2991		       fcoe_q_tstorm_stats->rcv_bcast_pkts);
2992
2993		ADD_64(fcoe_stat->rx_frames_hi, 0, fcoe_stat->rx_frames_lo,
2994		       fcoe_q_tstorm_stats->rcv_mcast_pkts);
2995
2996		ADD_64(fcoe_stat->tx_bytes_hi, 0, fcoe_stat->tx_bytes_lo,
2997		       fw_fcoe_stat->tx_stat.fcoe_tx_byte_cnt);
2998
2999		ADD_64(fcoe_stat->tx_bytes_hi,
3000		       fcoe_q_xstorm_stats->ucast_bytes_sent.hi,
3001		       fcoe_stat->tx_bytes_lo,
3002		       fcoe_q_xstorm_stats->ucast_bytes_sent.lo);
3003
3004		ADD_64(fcoe_stat->tx_bytes_hi,
3005		       fcoe_q_xstorm_stats->bcast_bytes_sent.hi,
3006		       fcoe_stat->tx_bytes_lo,
3007		       fcoe_q_xstorm_stats->bcast_bytes_sent.lo);
3008
3009		ADD_64(fcoe_stat->tx_bytes_hi,
3010		       fcoe_q_xstorm_stats->mcast_bytes_sent.hi,
3011		       fcoe_stat->tx_bytes_lo,
3012		       fcoe_q_xstorm_stats->mcast_bytes_sent.lo);
3013
3014		ADD_64(fcoe_stat->tx_frames_hi, 0, fcoe_stat->tx_frames_lo,
3015		       fw_fcoe_stat->tx_stat.fcoe_tx_pkt_cnt);
3016
3017		ADD_64(fcoe_stat->tx_frames_hi, 0, fcoe_stat->tx_frames_lo,
3018		       fcoe_q_xstorm_stats->ucast_pkts_sent);
3019
3020		ADD_64(fcoe_stat->tx_frames_hi, 0, fcoe_stat->tx_frames_lo,
3021		       fcoe_q_xstorm_stats->bcast_pkts_sent);
3022
3023		ADD_64(fcoe_stat->tx_frames_hi, 0, fcoe_stat->tx_frames_lo,
3024		       fcoe_q_xstorm_stats->mcast_pkts_sent);
3025	}
3026
3027	/* ask L5 driver to add data to the struct */
3028	bnx2x_cnic_notify(bp, CNIC_CTL_FCOE_STATS_GET_CMD);
3029#endif
3030}
3031
3032static void bnx2x_drv_info_iscsi_stat(struct bnx2x *bp)
3033{
3034#ifdef BCM_CNIC
3035	struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
3036	struct iscsi_stats_info *iscsi_stat =
3037		&bp->slowpath->drv_info_to_mcp.iscsi_stat;
3038
3039	memcpy(iscsi_stat->mac_local, bp->cnic_eth_dev.iscsi_mac, ETH_ALEN);
3040
3041	iscsi_stat->qos_priority =
3042		app->traffic_type_priority[LLFC_TRAFFIC_TYPE_ISCSI];
3043
3044	/* ask L5 driver to add data to the struct */
3045	bnx2x_cnic_notify(bp, CNIC_CTL_ISCSI_STATS_GET_CMD);
3046#endif
3047}
3048
3049/* called due to MCP event (on pmf):
3050 *	reread new bandwidth configuration
3051 *	configure FW
3052 *	notify others function about the change
3053 */
3054static inline void bnx2x_config_mf_bw(struct bnx2x *bp)
3055{
3056	if (bp->link_vars.link_up) {
3057		bnx2x_cmng_fns_init(bp, true, CMNG_FNS_MINMAX);
3058		bnx2x_link_sync_notify(bp);
3059	}
3060	storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
3061}
3062
3063static inline void bnx2x_set_mf_bw(struct bnx2x *bp)
3064{
3065	bnx2x_config_mf_bw(bp);
3066	bnx2x_fw_command(bp, DRV_MSG_CODE_SET_MF_BW_ACK, 0);
3067}
3068
3069static void bnx2x_handle_drv_info_req(struct bnx2x *bp)
3070{
3071	enum drv_info_opcode op_code;
3072	u32 drv_info_ctl = SHMEM2_RD(bp, drv_info_control);
3073
3074	/* if drv_info version supported by MFW doesn't match - send NACK */
3075	if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) {
3076		bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3077		return;
3078	}
3079
3080	op_code = (drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >>
3081		  DRV_INFO_CONTROL_OP_CODE_SHIFT;
3082
3083	memset(&bp->slowpath->drv_info_to_mcp, 0,
3084	       sizeof(union drv_info_to_mcp));
3085
3086	switch (op_code) {
3087	case ETH_STATS_OPCODE:
3088		bnx2x_drv_info_ether_stat(bp);
3089		break;
3090	case FCOE_STATS_OPCODE:
3091		bnx2x_drv_info_fcoe_stat(bp);
3092		break;
3093	case ISCSI_STATS_OPCODE:
3094		bnx2x_drv_info_iscsi_stat(bp);
3095		break;
3096	default:
3097		/* if op code isn't supported - send NACK */
3098		bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3099		return;
3100	}
3101
3102	/* if we got drv_info attn from MFW then these fields are defined in
3103	 * shmem2 for sure
3104	 */
3105	SHMEM2_WR(bp, drv_info_host_addr_lo,
3106		U64_LO(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3107	SHMEM2_WR(bp, drv_info_host_addr_hi,
3108		U64_HI(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3109
3110	bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_ACK, 0);
3111}
3112
3113static void bnx2x_dcc_event(struct bnx2x *bp, u32 dcc_event)
3114{
3115	DP(BNX2X_MSG_MCP, "dcc_event 0x%x\n", dcc_event);
3116
3117	if (dcc_event & DRV_STATUS_DCC_DISABLE_ENABLE_PF) {
3118
3119		/*
3120		 * This is the only place besides the function initialization
3121		 * where the bp->flags can change so it is done without any
3122		 * locks
3123		 */
3124		if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
3125			DP(BNX2X_MSG_MCP, "mf_cfg function disabled\n");
3126			bp->flags |= MF_FUNC_DIS;
3127
3128			bnx2x_e1h_disable(bp);
3129		} else {
3130			DP(BNX2X_MSG_MCP, "mf_cfg function enabled\n");
3131			bp->flags &= ~MF_FUNC_DIS;
3132
3133			bnx2x_e1h_enable(bp);
3134		}
3135		dcc_event &= ~DRV_STATUS_DCC_DISABLE_ENABLE_PF;
3136	}
3137	if (dcc_event & DRV_STATUS_DCC_BANDWIDTH_ALLOCATION) {
3138		bnx2x_config_mf_bw(bp);
3139		dcc_event &= ~DRV_STATUS_DCC_BANDWIDTH_ALLOCATION;
3140	}
3141
3142	/* Report results to MCP */
3143	if (dcc_event)
3144		bnx2x_fw_command(bp, DRV_MSG_CODE_DCC_FAILURE, 0);
3145	else
3146		bnx2x_fw_command(bp, DRV_MSG_CODE_DCC_OK, 0);
3147}
3148
3149/* must be called under the spq lock */
3150static inline struct eth_spe *bnx2x_sp_get_next(struct bnx2x *bp)
3151{
3152	struct eth_spe *next_spe = bp->spq_prod_bd;
3153
3154	if (bp->spq_prod_bd == bp->spq_last_bd) {
3155		bp->spq_prod_bd = bp->spq;
3156		bp->spq_prod_idx = 0;
3157		DP(BNX2X_MSG_SP, "end of spq\n");
3158	} else {
3159		bp->spq_prod_bd++;
3160		bp->spq_prod_idx++;
3161	}
3162	return next_spe;
3163}
3164
3165/* must be called under the spq lock */
3166static inline void bnx2x_sp_prod_update(struct bnx2x *bp)
3167{
3168	int func = BP_FUNC(bp);
3169
3170	/*
3171	 * Make sure that BD data is updated before writing the producer:
3172	 * BD data is written to the memory, the producer is read from the
3173	 * memory, thus we need a full memory barrier to ensure the ordering.
3174	 */
3175	mb();
3176
3177	REG_WR16(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func),
3178		 bp->spq_prod_idx);
3179	mmiowb();
3180}
3181
3182/**
3183 * bnx2x_is_contextless_ramrod - check if the current command ends on EQ
3184 *
3185 * @cmd:	command to check
3186 * @cmd_type:	command type
3187 */
3188static inline bool bnx2x_is_contextless_ramrod(int cmd, int cmd_type)
3189{
3190	if ((cmd_type == NONE_CONNECTION_TYPE) ||
3191	    (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) ||
3192	    (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) ||
3193	    (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) ||
3194	    (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) ||
3195	    (cmd == RAMROD_CMD_ID_ETH_SET_MAC) ||
3196	    (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE))
3197		return true;
3198	else
3199		return false;
3200
3201}
3202
3203
3204/**
3205 * bnx2x_sp_post - place a single command on an SP ring
3206 *
3207 * @bp:		driver handle
3208 * @command:	command to place (e.g. SETUP, FILTER_RULES, etc.)
3209 * @cid:	SW CID the command is related to
3210 * @data_hi:	command private data address (high 32 bits)
3211 * @data_lo:	command private data address (low 32 bits)
3212 * @cmd_type:	command type (e.g. NONE, ETH)
3213 *
3214 * SP data is handled as if it's always an address pair, thus data fields are
3215 * not swapped to little endian in upper functions. Instead this function swaps
3216 * data as if it's two u32 fields.
3217 */
3218int bnx2x_sp_post(struct bnx2x *bp, int command, int cid,
3219		  u32 data_hi, u32 data_lo, int cmd_type)
3220{
3221	struct eth_spe *spe;
3222	u16 type;
3223	bool common = bnx2x_is_contextless_ramrod(command, cmd_type);
3224
3225#ifdef BNX2X_STOP_ON_ERROR
3226	if (unlikely(bp->panic)) {
3227		BNX2X_ERR("Can't post SP when there is panic\n");
3228		return -EIO;
3229	}
3230#endif
3231
3232	spin_lock_bh(&bp->spq_lock);
3233
3234	if (common) {
3235		if (!atomic_read(&bp->eq_spq_left)) {
3236			BNX2X_ERR("BUG! EQ ring full!\n");
3237			spin_unlock_bh(&bp->spq_lock);
3238			bnx2x_panic();
3239			return -EBUSY;
3240		}
3241	} else if (!atomic_read(&bp->cq_spq_left)) {
3242			BNX2X_ERR("BUG! SPQ ring full!\n");
3243			spin_unlock_bh(&bp->spq_lock);
3244			bnx2x_panic();
3245			return -EBUSY;
3246	}
3247
3248	spe = bnx2x_sp_get_next(bp);
3249
3250	/* CID needs port number to be encoded int it */
3251	spe->hdr.conn_and_cmd_data =
3252			cpu_to_le32((command << SPE_HDR_CMD_ID_SHIFT) |
3253				    HW_CID(bp, cid));
3254
3255	type = (cmd_type << SPE_HDR_CONN_TYPE_SHIFT) & SPE_HDR_CONN_TYPE;
3256
3257	type |= ((BP_FUNC(bp) << SPE_HDR_FUNCTION_ID_SHIFT) &
3258		 SPE_HDR_FUNCTION_ID);
3259
3260	spe->hdr.type = cpu_to_le16(type);
3261
3262	spe->data.update_data_addr.hi = cpu_to_le32(data_hi);
3263	spe->data.update_data_addr.lo = cpu_to_le32(data_lo);
3264
3265	/*
3266	 * It's ok if the actual decrement is issued towards the memory
3267	 * somewhere between the spin_lock and spin_unlock. Thus no
3268	 * more explict memory barrier is needed.
3269	 */
3270	if (common)
3271		atomic_dec(&bp->eq_spq_left);
3272	else
3273		atomic_dec(&bp->cq_spq_left);
3274
3275
3276	DP(BNX2X_MSG_SP,
3277	   "SPQE[%x] (%x:%x)  (cmd, common?) (%d,%d)  hw_cid %x  data (%x:%x) type(0x%x) left (CQ, EQ) (%x,%x)\n",
3278	   bp->spq_prod_idx, (u32)U64_HI(bp->spq_mapping),
3279	   (u32)(U64_LO(bp->spq_mapping) +
3280	   (void *)bp->spq_prod_bd - (void *)bp->spq), command, common,
3281	   HW_CID(bp, cid), data_hi, data_lo, type,
3282	   atomic_read(&bp->cq_spq_left), atomic_read(&bp->eq_spq_left));
3283
3284	bnx2x_sp_prod_update(bp);
3285	spin_unlock_bh(&bp->spq_lock);
3286	return 0;
3287}
3288
3289/* acquire split MCP access lock register */
3290static int bnx2x_acquire_alr(struct bnx2x *bp)
3291{
3292	u32 j, val;
3293	int rc = 0;
3294
3295	might_sleep();
3296	for (j = 0; j < 1000; j++) {
3297		val = (1UL << 31);
3298		REG_WR(bp, GRCBASE_MCP + 0x9c, val);
3299		val = REG_RD(bp, GRCBASE_MCP + 0x9c);
3300		if (val & (1L << 31))
3301			break;
3302
3303		msleep(5);
3304	}
3305	if (!(val & (1L << 31))) {
3306		BNX2X_ERR("Cannot acquire MCP access lock register\n");
3307		rc = -EBUSY;
3308	}
3309
3310	return rc;
3311}
3312
3313/* release split MCP access lock register */
3314static void bnx2x_release_alr(struct bnx2x *bp)
3315{
3316	REG_WR(bp, GRCBASE_MCP + 0x9c, 0);
3317}
3318
3319#define BNX2X_DEF_SB_ATT_IDX	0x0001
3320#define BNX2X_DEF_SB_IDX	0x0002
3321
3322static inline u16 bnx2x_update_dsb_idx(struct bnx2x *bp)
3323{
3324	struct host_sp_status_block *def_sb = bp->def_status_blk;
3325	u16 rc = 0;
3326
3327	barrier(); /* status block is written to by the chip */
3328	if (bp->def_att_idx != def_sb->atten_status_block.attn_bits_index) {
3329		bp->def_att_idx = def_sb->atten_status_block.attn_bits_index;
3330		rc |= BNX2X_DEF_SB_ATT_IDX;
3331	}
3332
3333	if (bp->def_idx != def_sb->sp_sb.running_index) {
3334		bp->def_idx = def_sb->sp_sb.running_index;
3335		rc |= BNX2X_DEF_SB_IDX;
3336	}
3337
3338	/* Do not reorder: indecies reading should complete before handling */
3339	barrier();
3340	return rc;
3341}
3342
3343/*
3344 * slow path service functions
3345 */
3346
3347static void bnx2x_attn_int_asserted(struct bnx2x *bp, u32 asserted)
3348{
3349	int port = BP_PORT(bp);
3350	u32 aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
3351			      MISC_REG_AEU_MASK_ATTN_FUNC_0;
3352	u32 nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 :
3353				       NIG_REG_MASK_INTERRUPT_PORT0;
3354	u32 aeu_mask;
3355	u32 nig_mask = 0;
3356	u32 reg_addr;
3357
3358	if (bp->attn_state & asserted)
3359		BNX2X_ERR("IGU ERROR\n");
3360
3361	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
3362	aeu_mask = REG_RD(bp, aeu_addr);
3363
3364	DP(NETIF_MSG_HW, "aeu_mask %x  newly asserted %x\n",
3365	   aeu_mask, asserted);
3366	aeu_mask &= ~(asserted & 0x3ff);
3367	DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
3368
3369	REG_WR(bp, aeu_addr, aeu_mask);
3370	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
3371
3372	DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
3373	bp->attn_state |= asserted;
3374	DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
3375
3376	if (asserted & ATTN_HARD_WIRED_MASK) {
3377		if (asserted & ATTN_NIG_FOR_FUNC) {
3378
3379			bnx2x_acquire_phy_lock(bp);
3380
3381			/* save nig interrupt mask */
3382			nig_mask = REG_RD(bp, nig_int_mask_addr);
3383
3384			/* If nig_mask is not set, no need to call the update
3385			 * function.
3386			 */
3387			if (nig_mask) {
3388				REG_WR(bp, nig_int_mask_addr, 0);
3389
3390				bnx2x_link_attn(bp);
3391			}
3392
3393			/* handle unicore attn? */
3394		}
3395		if (asserted & ATTN_SW_TIMER_4_FUNC)
3396			DP(NETIF_MSG_HW, "ATTN_SW_TIMER_4_FUNC!\n");
3397
3398		if (asserted & GPIO_2_FUNC)
3399			DP(NETIF_MSG_HW, "GPIO_2_FUNC!\n");
3400
3401		if (asserted & GPIO_3_FUNC)
3402			DP(NETIF_MSG_HW, "GPIO_3_FUNC!\n");
3403
3404		if (asserted & GPIO_4_FUNC)
3405			DP(NETIF_MSG_HW, "GPIO_4_FUNC!\n");
3406
3407		if (port == 0) {
3408			if (asserted & ATTN_GENERAL_ATTN_1) {
3409				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_1!\n");
3410				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_1, 0x0);
3411			}
3412			if (asserted & ATTN_GENERAL_ATTN_2) {
3413				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_2!\n");
3414				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_2, 0x0);
3415			}
3416			if (asserted & ATTN_GENERAL_ATTN_3) {
3417				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_3!\n");
3418				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_3, 0x0);
3419			}
3420		} else {
3421			if (asserted & ATTN_GENERAL_ATTN_4) {
3422				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_4!\n");
3423				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_4, 0x0);
3424			}
3425			if (asserted & ATTN_GENERAL_ATTN_5) {
3426				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_5!\n");
3427				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_5, 0x0);
3428			}
3429			if (asserted & ATTN_GENERAL_ATTN_6) {
3430				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_6!\n");
3431				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_6, 0x0);
3432			}
3433		}
3434
3435	} /* if hardwired */
3436
3437	if (bp->common.int_block == INT_BLOCK_HC)
3438		reg_addr = (HC_REG_COMMAND_REG + port*32 +
3439			    COMMAND_REG_ATTN_BITS_SET);
3440	else
3441		reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8);
3442
3443	DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", asserted,
3444	   (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
3445	REG_WR(bp, reg_addr, asserted);
3446
3447	/* now set back the mask */
3448	if (asserted & ATTN_NIG_FOR_FUNC) {
3449		REG_WR(bp, nig_int_mask_addr, nig_mask);
3450		bnx2x_release_phy_lock(bp);
3451	}
3452}
3453
3454static inline void bnx2x_fan_failure(struct bnx2x *bp)
3455{
3456	int port = BP_PORT(bp);
3457	u32 ext_phy_config;
3458	/* mark the failure */
3459	ext_phy_config =
3460		SHMEM_RD(bp,
3461			 dev_info.port_hw_config[port].external_phy_config);
3462
3463	ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK;
3464	ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE;
3465	SHMEM_WR(bp, dev_info.port_hw_config[port].external_phy_config,
3466		 ext_phy_config);
3467
3468	/* log the failure */
3469	netdev_err(bp->dev, "Fan Failure on Network Controller has caused the driver to shutdown the card to prevent permanent damage.\n"
3470			    "Please contact OEM Support for assistance\n");
3471
3472	/*
3473	 * Scheudle device reset (unload)
3474	 * This is due to some boards consuming sufficient power when driver is
3475	 * up to overheat if fan fails.
3476	 */
3477	smp_mb__before_clear_bit();
3478	set_bit(BNX2X_SP_RTNL_FAN_FAILURE, &bp->sp_rtnl_state);
3479	smp_mb__after_clear_bit();
3480	schedule_delayed_work(&bp->sp_rtnl_task, 0);
3481
3482}
3483
3484static inline void bnx2x_attn_int_deasserted0(struct bnx2x *bp, u32 attn)
3485{
3486	int port = BP_PORT(bp);
3487	int reg_offset;
3488	u32 val;
3489
3490	reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
3491			     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
3492
3493	if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) {
3494
3495		val = REG_RD(bp, reg_offset);
3496		val &= ~AEU_INPUTS_ATTN_BITS_SPIO5;
3497		REG_WR(bp, reg_offset, val);
3498
3499		BNX2X_ERR("SPIO5 hw attention\n");
3500
3501		/* Fan failure attention */
3502		bnx2x_hw_reset_phy(&bp->link_params);
3503		bnx2x_fan_failure(bp);
3504	}
3505
3506	if ((attn & bp->link_vars.aeu_int_mask) && bp->port.pmf) {
3507		bnx2x_acquire_phy_lock(bp);
3508		bnx2x_handle_module_detect_int(&bp->link_params);
3509		bnx2x_release_phy_lock(bp);
3510	}
3511
3512	if (attn & HW_INTERRUT_ASSERT_SET_0) {
3513
3514		val = REG_RD(bp, reg_offset);
3515		val &= ~(attn & HW_INTERRUT_ASSERT_SET_0);
3516		REG_WR(bp, reg_offset, val);
3517
3518		BNX2X_ERR("FATAL HW block attention set0 0x%x\n",
3519			  (u32)(attn & HW_INTERRUT_ASSERT_SET_0));
3520		bnx2x_panic();
3521	}
3522}
3523
3524static inline void bnx2x_attn_int_deasserted1(struct bnx2x *bp, u32 attn)
3525{
3526	u32 val;
3527
3528	if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) {
3529
3530		val = REG_RD(bp, DORQ_REG_DORQ_INT_STS_CLR);
3531		BNX2X_ERR("DB hw attention 0x%x\n", val);
3532		/* DORQ discard attention */
3533		if (val & 0x2)
3534			BNX2X_ERR("FATAL error from DORQ\n");
3535	}
3536
3537	if (attn & HW_INTERRUT_ASSERT_SET_1) {
3538
3539		int port = BP_PORT(bp);
3540		int reg_offset;
3541
3542		reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 :
3543				     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1);
3544
3545		val = REG_RD(bp, reg_offset);
3546		val &= ~(attn & HW_INTERRUT_ASSERT_SET_1);
3547		REG_WR(bp, reg_offset, val);
3548
3549		BNX2X_ERR("FATAL HW block attention set1 0x%x\n",
3550			  (u32)(attn & HW_INTERRUT_ASSERT_SET_1));
3551		bnx2x_panic();
3552	}
3553}
3554
3555static inline void bnx2x_attn_int_deasserted2(struct bnx2x *bp, u32 attn)
3556{
3557	u32 val;
3558
3559	if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) {
3560
3561		val = REG_RD(bp, CFC_REG_CFC_INT_STS_CLR);
3562		BNX2X_ERR("CFC hw attention 0x%x\n", val);
3563		/* CFC error attention */
3564		if (val & 0x2)
3565			BNX2X_ERR("FATAL error from CFC\n");
3566	}
3567
3568	if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) {
3569		val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_0);
3570		BNX2X_ERR("PXP hw attention-0 0x%x\n", val);
3571		/* RQ_USDMDP_FIFO_OVERFLOW */
3572		if (val & 0x18000)
3573			BNX2X_ERR("FATAL error from PXP\n");
3574
3575		if (!CHIP_IS_E1x(bp)) {
3576			val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_1);
3577			BNX2X_ERR("PXP hw attention-1 0x%x\n", val);
3578		}
3579	}
3580
3581	if (attn & HW_INTERRUT_ASSERT_SET_2) {
3582
3583		int port = BP_PORT(bp);
3584		int reg_offset;
3585
3586		reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 :
3587				     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2);
3588
3589		val = REG_RD(bp, reg_offset);
3590		val &= ~(attn & HW_INTERRUT_ASSERT_SET_2);
3591		REG_WR(bp, reg_offset, val);
3592
3593		BNX2X_ERR("FATAL HW block attention set2 0x%x\n",
3594			  (u32)(attn & HW_INTERRUT_ASSERT_SET_2));
3595		bnx2x_panic();
3596	}
3597}
3598
3599static inline void bnx2x_attn_int_deasserted3(struct bnx2x *bp, u32 attn)
3600{
3601	u32 val;
3602
3603	if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) {
3604
3605		if (attn & BNX2X_PMF_LINK_ASSERT) {
3606			int func = BP_FUNC(bp);
3607
3608			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
3609			bp->mf_config[BP_VN(bp)] = MF_CFG_RD(bp,
3610					func_mf_config[BP_ABS_FUNC(bp)].config);
3611			val = SHMEM_RD(bp,
3612				       func_mb[BP_FW_MB_IDX(bp)].drv_status);
3613			if (val & DRV_STATUS_DCC_EVENT_MASK)
3614				bnx2x_dcc_event(bp,
3615					    (val & DRV_STATUS_DCC_EVENT_MASK));
3616
3617			if (val & DRV_STATUS_SET_MF_BW)
3618				bnx2x_set_mf_bw(bp);
3619
3620			if (val & DRV_STATUS_DRV_INFO_REQ)
3621				bnx2x_handle_drv_info_req(bp);
3622			if ((bp->port.pmf == 0) && (val & DRV_STATUS_PMF))
3623				bnx2x_pmf_update(bp);
3624
3625			if (bp->port.pmf &&
3626			    (val & DRV_STATUS_DCBX_NEGOTIATION_RESULTS) &&
3627				bp->dcbx_enabled > 0)
3628				/* start dcbx state machine */
3629				bnx2x_dcbx_set_params(bp,
3630					BNX2X_DCBX_STATE_NEG_RECEIVED);
3631			if (bp->link_vars.periodic_flags &
3632			    PERIODIC_FLAGS_LINK_EVENT) {
3633				/*  sync with link */
3634				bnx2x_acquire_phy_lock(bp);
3635				bp->link_vars.periodic_flags &=
3636					~PERIODIC_FLAGS_LINK_EVENT;
3637				bnx2x_release_phy_lock(bp);
3638				if (IS_MF(bp))
3639					bnx2x_link_sync_notify(bp);
3640				bnx2x_link_report(bp);
3641			}
3642			/* Always call it here: bnx2x_link_report() will
3643			 * prevent the link indication duplication.
3644			 */
3645			bnx2x__link_status_update(bp);
3646		} else if (attn & BNX2X_MC_ASSERT_BITS) {
3647
3648			BNX2X_ERR("MC assert!\n");
3649			bnx2x_mc_assert(bp);
3650			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_10, 0);
3651			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_9, 0);
3652			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_8, 0);
3653			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_7, 0);
3654			bnx2x_panic();
3655
3656		} else if (attn & BNX2X_MCP_ASSERT) {
3657
3658			BNX2X_ERR("MCP assert!\n");
3659			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_11, 0);
3660			bnx2x_fw_dump(bp);
3661
3662		} else
3663			BNX2X_ERR("Unknown HW assert! (attn 0x%x)\n", attn);
3664	}
3665
3666	if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) {
3667		BNX2X_ERR("LATCHED attention 0x%08x (masked)\n", attn);
3668		if (attn & BNX2X_GRC_TIMEOUT) {
3669			val = CHIP_IS_E1(bp) ? 0 :
3670					REG_RD(bp, MISC_REG_GRC_TIMEOUT_ATTN);
3671			BNX2X_ERR("GRC time-out 0x%08x\n", val);
3672		}
3673		if (attn & BNX2X_GRC_RSV) {
3674			val = CHIP_IS_E1(bp) ? 0 :
3675					REG_RD(bp, MISC_REG_GRC_RSV_ATTN);
3676			BNX2X_ERR("GRC reserved 0x%08x\n", val);
3677		}
3678		REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff);
3679	}
3680}
3681
3682/*
3683 * Bits map:
3684 * 0-7   - Engine0 load counter.
3685 * 8-15  - Engine1 load counter.
3686 * 16    - Engine0 RESET_IN_PROGRESS bit.
3687 * 17    - Engine1 RESET_IN_PROGRESS bit.
3688 * 18    - Engine0 ONE_IS_LOADED. Set when there is at least one active function
3689 *         on the engine
3690 * 19    - Engine1 ONE_IS_LOADED.
3691 * 20    - Chip reset flow bit. When set none-leader must wait for both engines
3692 *         leader to complete (check for both RESET_IN_PROGRESS bits and not for
3693 *         just the one belonging to its engine).
3694 *
3695 */
3696#define BNX2X_RECOVERY_GLOB_REG		MISC_REG_GENERIC_POR_1
3697
3698#define BNX2X_PATH0_LOAD_CNT_MASK	0x000000ff
3699#define BNX2X_PATH0_LOAD_CNT_SHIFT	0
3700#define BNX2X_PATH1_LOAD_CNT_MASK	0x0000ff00
3701#define BNX2X_PATH1_LOAD_CNT_SHIFT	8
3702#define BNX2X_PATH0_RST_IN_PROG_BIT	0x00010000
3703#define BNX2X_PATH1_RST_IN_PROG_BIT	0x00020000
3704#define BNX2X_GLOBAL_RESET_BIT		0x00040000
3705
3706/*
3707 * Set the GLOBAL_RESET bit.
3708 *
3709 * Should be run under rtnl lock
3710 */
3711void bnx2x_set_reset_global(struct bnx2x *bp)
3712{
3713	u32 val;
3714	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3715	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3716	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val | BNX2X_GLOBAL_RESET_BIT);
3717	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3718}
3719
3720/*
3721 * Clear the GLOBAL_RESET bit.
3722 *
3723 * Should be run under rtnl lock
3724 */
3725static inline void bnx2x_clear_reset_global(struct bnx2x *bp)
3726{
3727	u32 val;
3728	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3729	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3730	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val & (~BNX2X_GLOBAL_RESET_BIT));
3731	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3732}
3733
3734/*
3735 * Checks the GLOBAL_RESET bit.
3736 *
3737 * should be run under rtnl lock
3738 */
3739static inline bool bnx2x_reset_is_global(struct bnx2x *bp)
3740{
3741	u32 val	= REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3742
3743	DP(NETIF_MSG_HW, "GEN_REG_VAL=0x%08x\n", val);
3744	return (val & BNX2X_GLOBAL_RESET_BIT) ? true : false;
3745}
3746
3747/*
3748 * Clear RESET_IN_PROGRESS bit for the current engine.
3749 *
3750 * Should be run under rtnl lock
3751 */
3752static inline void bnx2x_set_reset_done(struct bnx2x *bp)
3753{
3754	u32 val;
3755	u32 bit = BP_PATH(bp) ?
3756		BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
3757	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3758	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3759
3760	/* Clear the bit */
3761	val &= ~bit;
3762	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
3763
3764	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3765}
3766
3767/*
3768 * Set RESET_IN_PROGRESS for the current engine.
3769 *
3770 * should be run under rtnl lock
3771 */
3772void bnx2x_set_reset_in_progress(struct bnx2x *bp)
3773{
3774	u32 val;
3775	u32 bit = BP_PATH(bp) ?
3776		BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
3777	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3778	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3779
3780	/* Set the bit */
3781	val |= bit;
3782	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
3783	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3784}
3785
3786/*
3787 * Checks the RESET_IN_PROGRESS bit for the given engine.
3788 * should be run under rtnl lock
3789 */
3790bool bnx2x_reset_is_done(struct bnx2x *bp, int engine)
3791{
3792	u32 val	= REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3793	u32 bit = engine ?
3794		BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
3795
3796	/* return false if bit is set */
3797	return (val & bit) ? false : true;
3798}
3799
3800/*
3801 * set pf load for the current pf.
3802 *
3803 * should be run under rtnl lock
3804 */
3805void bnx2x_set_pf_load(struct bnx2x *bp)
3806{
3807	u32 val1, val;
3808	u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
3809			     BNX2X_PATH0_LOAD_CNT_MASK;
3810	u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
3811			     BNX2X_PATH0_LOAD_CNT_SHIFT;
3812
3813	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3814	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3815
3816	DP(NETIF_MSG_IFUP, "Old GEN_REG_VAL=0x%08x\n", val);
3817
3818	/* get the current counter value */
3819	val1 = (val & mask) >> shift;
3820
3821	/* set bit of that PF */
3822	val1 |= (1 << bp->pf_num);
3823
3824	/* clear the old value */
3825	val &= ~mask;
3826
3827	/* set the new one */
3828	val |= ((val1 << shift) & mask);
3829
3830	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
3831	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3832}
3833
3834/**
3835 * bnx2x_clear_pf_load - clear pf load mark
3836 *
3837 * @bp:		driver handle
3838 *
3839 * Should be run under rtnl lock.
3840 * Decrements the load counter for the current engine. Returns
3841 * whether other functions are still loaded
3842 */
3843bool bnx2x_clear_pf_load(struct bnx2x *bp)
3844{
3845	u32 val1, val;
3846	u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
3847			     BNX2X_PATH0_LOAD_CNT_MASK;
3848	u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
3849			     BNX2X_PATH0_LOAD_CNT_SHIFT;
3850
3851	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3852	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3853	DP(NETIF_MSG_IFDOWN, "Old GEN_REG_VAL=0x%08x\n", val);
3854
3855	/* get the current counter value */
3856	val1 = (val & mask) >> shift;
3857
3858	/* clear bit of that PF */
3859	val1 &= ~(1 << bp->pf_num);
3860
3861	/* clear the old value */
3862	val &= ~mask;
3863
3864	/* set the new one */
3865	val |= ((val1 << shift) & mask);
3866
3867	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
3868	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3869	return val1 != 0;
3870}
3871
3872/*
3873 * Read the load status for the current engine.
3874 *
3875 * should be run under rtnl lock
3876 */
3877static inline bool bnx2x_get_load_status(struct bnx2x *bp, int engine)
3878{
3879	u32 mask = (engine ? BNX2X_PATH1_LOAD_CNT_MASK :
3880			     BNX2X_PATH0_LOAD_CNT_MASK);
3881	u32 shift = (engine ? BNX2X_PATH1_LOAD_CNT_SHIFT :
3882			     BNX2X_PATH0_LOAD_CNT_SHIFT);
3883	u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3884
3885	DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "GLOB_REG=0x%08x\n", val);
3886
3887	val = (val & mask) >> shift;
3888
3889	DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "load mask for engine %d = 0x%x\n",
3890	   engine, val);
3891
3892	return val != 0;
3893}
3894
3895/*
3896 * Reset the load status for the current engine.
3897 */
3898static inline void bnx2x_clear_load_status(struct bnx2x *bp)
3899{
3900	u32 val;
3901	u32 mask = (BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
3902		    BNX2X_PATH0_LOAD_CNT_MASK);
3903	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3904	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3905	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val & (~mask));
3906	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3907}
3908
3909static inline void _print_next_block(int idx, const char *blk)
3910{
3911	pr_cont("%s%s", idx ? ", " : "", blk);
3912}
3913
3914static inline int bnx2x_check_blocks_with_parity0(u32 sig, int par_num,
3915						  bool print)
3916{
3917	int i = 0;
3918	u32 cur_bit = 0;
3919	for (i = 0; sig; i++) {
3920		cur_bit = ((u32)0x1 << i);
3921		if (sig & cur_bit) {
3922			switch (cur_bit) {
3923			case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR:
3924				if (print)
3925					_print_next_block(par_num++, "BRB");
3926				break;
3927			case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR:
3928				if (print)
3929					_print_next_block(par_num++, "PARSER");
3930				break;
3931			case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR:
3932				if (print)
3933					_print_next_block(par_num++, "TSDM");
3934				break;
3935			case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR:
3936				if (print)
3937					_print_next_block(par_num++,
3938							  "SEARCHER");
3939				break;
3940			case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR:
3941				if (print)
3942					_print_next_block(par_num++, "TCM");
3943				break;
3944			case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR:
3945				if (print)
3946					_print_next_block(par_num++, "TSEMI");
3947				break;
3948			case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR:
3949				if (print)
3950					_print_next_block(par_num++, "XPB");
3951				break;
3952			}
3953
3954			/* Clear the bit */
3955			sig &= ~cur_bit;
3956		}
3957	}
3958
3959	return par_num;
3960}
3961
3962static inline int bnx2x_check_blocks_with_parity1(u32 sig, int par_num,
3963						  bool *global, bool print)
3964{
3965	int i = 0;
3966	u32 cur_bit = 0;
3967	for (i = 0; sig; i++) {
3968		cur_bit = ((u32)0x1 << i);
3969		if (sig & cur_bit) {
3970			switch (cur_bit) {
3971			case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR:
3972				if (print)
3973					_print_next_block(par_num++, "PBF");
3974				break;
3975			case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR:
3976				if (print)
3977					_print_next_block(par_num++, "QM");
3978				break;
3979			case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR:
3980				if (print)
3981					_print_next_block(par_num++, "TM");
3982				break;
3983			case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR:
3984				if (print)
3985					_print_next_block(par_num++, "XSDM");
3986				break;
3987			case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR:
3988				if (print)
3989					_print_next_block(par_num++, "XCM");
3990				break;
3991			case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR:
3992				if (print)
3993					_print_next_block(par_num++, "XSEMI");
3994				break;
3995			case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR:
3996				if (print)
3997					_print_next_block(par_num++,
3998							  "DOORBELLQ");
3999				break;
4000			case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR:
4001				if (print)
4002					_print_next_block(par_num++, "NIG");
4003				break;
4004			case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR:
4005				if (print)
4006					_print_next_block(par_num++,
4007							  "VAUX PCI CORE");
4008				*global = true;
4009				break;
4010			case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR:
4011				if (print)
4012					_print_next_block(par_num++, "DEBUG");
4013				break;
4014			case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR:
4015				if (print)
4016					_print_next_block(par_num++, "USDM");
4017				break;
4018			case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR:
4019				if (print)
4020					_print_next_block(par_num++, "UCM");
4021				break;
4022			case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR:
4023				if (print)
4024					_print_next_block(par_num++, "USEMI");
4025				break;
4026			case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR:
4027				if (print)
4028					_print_next_block(par_num++, "UPB");
4029				break;
4030			case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR:
4031				if (print)
4032					_print_next_block(par_num++, "CSDM");
4033				break;
4034			case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR:
4035				if (print)
4036					_print_next_block(par_num++, "CCM");
4037				break;
4038			}
4039
4040			/* Clear the bit */
4041			sig &= ~cur_bit;
4042		}
4043	}
4044
4045	return par_num;
4046}
4047
4048static inline int bnx2x_check_blocks_with_parity2(u32 sig, int par_num,
4049						  bool print)
4050{
4051	int i = 0;
4052	u32 cur_bit = 0;
4053	for (i = 0; sig; i++) {
4054		cur_bit = ((u32)0x1 << i);
4055		if (sig & cur_bit) {
4056			switch (cur_bit) {
4057			case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR:
4058				if (print)
4059					_print_next_block(par_num++, "CSEMI");
4060				break;
4061			case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR:
4062				if (print)
4063					_print_next_block(par_num++, "PXP");
4064				break;
4065			case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR:
4066				if (print)
4067					_print_next_block(par_num++,
4068					"PXPPCICLOCKCLIENT");
4069				break;
4070			case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR:
4071				if (print)
4072					_print_next_block(par_num++, "CFC");
4073				break;
4074			case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR:
4075				if (print)
4076					_print_next_block(par_num++, "CDU");
4077				break;
4078			case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR:
4079				if (print)
4080					_print_next_block(par_num++, "DMAE");
4081				break;
4082			case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR:
4083				if (print)
4084					_print_next_block(par_num++, "IGU");
4085				break;
4086			case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR:
4087				if (print)
4088					_print_next_block(par_num++, "MISC");
4089				break;
4090			}
4091
4092			/* Clear the bit */
4093			sig &= ~cur_bit;
4094		}
4095	}
4096
4097	return par_num;
4098}
4099
4100static inline int bnx2x_check_blocks_with_parity3(u32 sig, int par_num,
4101						  bool *global, bool print)
4102{
4103	int i = 0;
4104	u32 cur_bit = 0;
4105	for (i = 0; sig; i++) {
4106		cur_bit = ((u32)0x1 << i);
4107		if (sig & cur_bit) {
4108			switch (cur_bit) {
4109			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY:
4110				if (print)
4111					_print_next_block(par_num++, "MCP ROM");
4112				*global = true;
4113				break;
4114			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY:
4115				if (print)
4116					_print_next_block(par_num++,
4117							  "MCP UMP RX");
4118				*global = true;
4119				break;
4120			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY:
4121				if (print)
4122					_print_next_block(par_num++,
4123							  "MCP UMP TX");
4124				*global = true;
4125				break;
4126			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY:
4127				if (print)
4128					_print_next_block(par_num++,
4129							  "MCP SCPAD");
4130				*global = true;
4131				break;
4132			}
4133
4134			/* Clear the bit */
4135			sig &= ~cur_bit;
4136		}
4137	}
4138
4139	return par_num;
4140}
4141
4142static inline int bnx2x_check_blocks_with_parity4(u32 sig, int par_num,
4143						  bool print)
4144{
4145	int i = 0;
4146	u32 cur_bit = 0;
4147	for (i = 0; sig; i++) {
4148		cur_bit = ((u32)0x1 << i);
4149		if (sig & cur_bit) {
4150			switch (cur_bit) {
4151			case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR:
4152				if (print)
4153					_print_next_block(par_num++, "PGLUE_B");
4154				break;
4155			case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR:
4156				if (print)
4157					_print_next_block(par_num++, "ATC");
4158				break;
4159			}
4160
4161			/* Clear the bit */
4162			sig &= ~cur_bit;
4163		}
4164	}
4165
4166	return par_num;
4167}
4168
4169static inline bool bnx2x_parity_attn(struct bnx2x *bp, bool *global, bool print,
4170				     u32 *sig)
4171{
4172	if ((sig[0] & HW_PRTY_ASSERT_SET_0) ||
4173	    (sig[1] & HW_PRTY_ASSERT_SET_1) ||
4174	    (sig[2] & HW_PRTY_ASSERT_SET_2) ||
4175	    (sig[3] & HW_PRTY_ASSERT_SET_3) ||
4176	    (sig[4] & HW_PRTY_ASSERT_SET_4)) {
4177		int par_num = 0;
4178		DP(NETIF_MSG_HW, "Was parity error: HW block parity attention:\n"
4179				 "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x\n",
4180			  sig[0] & HW_PRTY_ASSERT_SET_0,
4181			  sig[1] & HW_PRTY_ASSERT_SET_1,
4182			  sig[2] & HW_PRTY_ASSERT_SET_2,
4183			  sig[3] & HW_PRTY_ASSERT_SET_3,
4184			  sig[4] & HW_PRTY_ASSERT_SET_4);
4185		if (print)
4186			netdev_err(bp->dev,
4187				   "Parity errors detected in blocks: ");
4188		par_num = bnx2x_check_blocks_with_parity0(
4189			sig[0] & HW_PRTY_ASSERT_SET_0, par_num, print);
4190		par_num = bnx2x_check_blocks_with_parity1(
4191			sig[1] & HW_PRTY_ASSERT_SET_1, par_num, global, print);
4192		par_num = bnx2x_check_blocks_with_parity2(
4193			sig[2] & HW_PRTY_ASSERT_SET_2, par_num, print);
4194		par_num = bnx2x_check_blocks_with_parity3(
4195			sig[3] & HW_PRTY_ASSERT_SET_3, par_num, global, print);
4196		par_num = bnx2x_check_blocks_with_parity4(
4197			sig[4] & HW_PRTY_ASSERT_SET_4, par_num, print);
4198
4199		if (print)
4200			pr_cont("\n");
4201
4202		return true;
4203	} else
4204		return false;
4205}
4206
4207/**
4208 * bnx2x_chk_parity_attn - checks for parity attentions.
4209 *
4210 * @bp:		driver handle
4211 * @global:	true if there was a global attention
4212 * @print:	show parity attention in syslog
4213 */
4214bool bnx2x_chk_parity_attn(struct bnx2x *bp, bool *global, bool print)
4215{
4216	struct attn_route attn = { {0} };
4217	int port = BP_PORT(bp);
4218
4219	attn.sig[0] = REG_RD(bp,
4220		MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 +
4221			     port*4);
4222	attn.sig[1] = REG_RD(bp,
4223		MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 +
4224			     port*4);
4225	attn.sig[2] = REG_RD(bp,
4226		MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 +
4227			     port*4);
4228	attn.sig[3] = REG_RD(bp,
4229		MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 +
4230			     port*4);
4231
4232	if (!CHIP_IS_E1x(bp))
4233		attn.sig[4] = REG_RD(bp,
4234			MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 +
4235				     port*4);
4236
4237	return bnx2x_parity_attn(bp, global, print, attn.sig);
4238}
4239
4240
4241static inline void bnx2x_attn_int_deasserted4(struct bnx2x *bp, u32 attn)
4242{
4243	u32 val;
4244	if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) {
4245
4246		val = REG_RD(bp, PGLUE_B_REG_PGLUE_B_INT_STS_CLR);
4247		BNX2X_ERR("PGLUE hw attention 0x%x\n", val);
4248		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR)
4249			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR\n");
4250		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR)
4251			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR\n");
4252		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN)
4253			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN\n");
4254		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN)
4255			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN\n");
4256		if (val &
4257		    PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN)
4258			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN\n");
4259		if (val &
4260		    PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN)
4261			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN\n");
4262		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN)
4263			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN\n");
4264		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN)
4265			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN\n");
4266		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW)
4267			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW\n");
4268	}
4269	if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) {
4270		val = REG_RD(bp, ATC_REG_ATC_INT_STS_CLR);
4271		BNX2X_ERR("ATC hw attention 0x%x\n", val);
4272		if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR)
4273			BNX2X_ERR("ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n");
4274		if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND)
4275			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND\n");
4276		if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS)
4277			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS\n");
4278		if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT)
4279			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT\n");
4280		if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR)
4281			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n");
4282		if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU)
4283			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU\n");
4284	}
4285
4286	if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
4287		    AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) {
4288		BNX2X_ERR("FATAL parity attention set4 0x%x\n",
4289		(u32)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
4290		    AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)));
4291	}
4292
4293}
4294
4295static void bnx2x_attn_int_deasserted(struct bnx2x *bp, u32 deasserted)
4296{
4297	struct attn_route attn, *group_mask;
4298	int port = BP_PORT(bp);
4299	int index;
4300	u32 reg_addr;
4301	u32 val;
4302	u32 aeu_mask;
4303	bool global = false;
4304
4305	/* need to take HW lock because MCP or other port might also
4306	   try to handle this event */
4307	bnx2x_acquire_alr(bp);
4308
4309	if (bnx2x_chk_parity_attn(bp, &global, true)) {
4310#ifndef BNX2X_STOP_ON_ERROR
4311		bp->recovery_state = BNX2X_RECOVERY_INIT;
4312		schedule_delayed_work(&bp->sp_rtnl_task, 0);
4313		/* Disable HW interrupts */
4314		bnx2x_int_disable(bp);
4315		/* In case of parity errors don't handle attentions so that
4316		 * other function would "see" parity errors.
4317		 */
4318#else
4319		bnx2x_panic();
4320#endif
4321		bnx2x_release_alr(bp);
4322		return;
4323	}
4324
4325	attn.sig[0] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4);
4326	attn.sig[1] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4);
4327	attn.sig[2] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4);
4328	attn.sig[3] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4);
4329	if (!CHIP_IS_E1x(bp))
4330		attn.sig[4] =
4331		      REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4);
4332	else
4333		attn.sig[4] = 0;
4334
4335	DP(NETIF_MSG_HW, "attn: %08x %08x %08x %08x %08x\n",
4336	   attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]);
4337
4338	for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
4339		if (deasserted & (1 << index)) {
4340			group_mask = &bp->attn_group[index];
4341
4342			DP(NETIF_MSG_HW, "group[%d]: %08x %08x %08x %08x %08x\n",
4343			   index,
4344			   group_mask->sig[0], group_mask->sig[1],
4345			   group_mask->sig[2], group_mask->sig[3],
4346			   group_mask->sig[4]);
4347
4348			bnx2x_attn_int_deasserted4(bp,
4349					attn.sig[4] & group_mask->sig[4]);
4350			bnx2x_attn_int_deasserted3(bp,
4351					attn.sig[3] & group_mask->sig[3]);
4352			bnx2x_attn_int_deasserted1(bp,
4353					attn.sig[1] & group_mask->sig[1]);
4354			bnx2x_attn_int_deasserted2(bp,
4355					attn.sig[2] & group_mask->sig[2]);
4356			bnx2x_attn_int_deasserted0(bp,
4357					attn.sig[0] & group_mask->sig[0]);
4358		}
4359	}
4360
4361	bnx2x_release_alr(bp);
4362
4363	if (bp->common.int_block == INT_BLOCK_HC)
4364		reg_addr = (HC_REG_COMMAND_REG + port*32 +
4365			    COMMAND_REG_ATTN_BITS_CLR);
4366	else
4367		reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8);
4368
4369	val = ~deasserted;
4370	DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", val,
4371	   (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
4372	REG_WR(bp, reg_addr, val);
4373
4374	if (~bp->attn_state & deasserted)
4375		BNX2X_ERR("IGU ERROR\n");
4376
4377	reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
4378			  MISC_REG_AEU_MASK_ATTN_FUNC_0;
4379
4380	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4381	aeu_mask = REG_RD(bp, reg_addr);
4382
4383	DP(NETIF_MSG_HW, "aeu_mask %x  newly deasserted %x\n",
4384	   aeu_mask, deasserted);
4385	aeu_mask |= (deasserted & 0x3ff);
4386	DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
4387
4388	REG_WR(bp, reg_addr, aeu_mask);
4389	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4390
4391	DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
4392	bp->attn_state &= ~deasserted;
4393	DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
4394}
4395
4396static void bnx2x_attn_int(struct bnx2x *bp)
4397{
4398	/* read local copy of bits */
4399	u32 attn_bits = le32_to_cpu(bp->def_status_blk->atten_status_block.
4400								attn_bits);
4401	u32 attn_ack = le32_to_cpu(bp->def_status_blk->atten_status_block.
4402								attn_bits_ack);
4403	u32 attn_state = bp->attn_state;
4404
4405	/* look for changed bits */
4406	u32 asserted   =  attn_bits & ~attn_ack & ~attn_state;
4407	u32 deasserted = ~attn_bits &  attn_ack &  attn_state;
4408
4409	DP(NETIF_MSG_HW,
4410	   "attn_bits %x  attn_ack %x  asserted %x  deasserted %x\n",
4411	   attn_bits, attn_ack, asserted, deasserted);
4412
4413	if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state))
4414		BNX2X_ERR("BAD attention state\n");
4415
4416	/* handle bits that were raised */
4417	if (asserted)
4418		bnx2x_attn_int_asserted(bp, asserted);
4419
4420	if (deasserted)
4421		bnx2x_attn_int_deasserted(bp, deasserted);
4422}
4423
4424void bnx2x_igu_ack_sb(struct bnx2x *bp, u8 igu_sb_id, u8 segment,
4425		      u16 index, u8 op, u8 update)
4426{
4427	u32 igu_addr = BAR_IGU_INTMEM + (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8;
4428
4429	bnx2x_igu_ack_sb_gen(bp, igu_sb_id, segment, index, op, update,
4430			     igu_addr);
4431}
4432
4433static inline void bnx2x_update_eq_prod(struct bnx2x *bp, u16 prod)
4434{
4435	/* No memory barriers */
4436	storm_memset_eq_prod(bp, prod, BP_FUNC(bp));
4437	mmiowb(); /* keep prod updates ordered */
4438}
4439
4440#ifdef BCM_CNIC
4441static int  bnx2x_cnic_handle_cfc_del(struct bnx2x *bp, u32 cid,
4442				      union event_ring_elem *elem)
4443{
4444	u8 err = elem->message.error;
4445
4446	if (!bp->cnic_eth_dev.starting_cid  ||
4447	    (cid < bp->cnic_eth_dev.starting_cid &&
4448	    cid != bp->cnic_eth_dev.iscsi_l2_cid))
4449		return 1;
4450
4451	DP(BNX2X_MSG_SP, "got delete ramrod for CNIC CID %d\n", cid);
4452
4453	if (unlikely(err)) {
4454
4455		BNX2X_ERR("got delete ramrod for CNIC CID %d with error!\n",
4456			  cid);
4457		bnx2x_panic_dump(bp);
4458	}
4459	bnx2x_cnic_cfc_comp(bp, cid, err);
4460	return 0;
4461}
4462#endif
4463
4464static inline void bnx2x_handle_mcast_eqe(struct bnx2x *bp)
4465{
4466	struct bnx2x_mcast_ramrod_params rparam;
4467	int rc;
4468
4469	memset(&rparam, 0, sizeof(rparam));
4470
4471	rparam.mcast_obj = &bp->mcast_obj;
4472
4473	netif_addr_lock_bh(bp->dev);
4474
4475	/* Clear pending state for the last command */
4476	bp->mcast_obj.raw.clear_pending(&bp->mcast_obj.raw);
4477
4478	/* If there are pending mcast commands - send them */
4479	if (bp->mcast_obj.check_pending(&bp->mcast_obj)) {
4480		rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
4481		if (rc < 0)
4482			BNX2X_ERR("Failed to send pending mcast commands: %d\n",
4483				  rc);
4484	}
4485
4486	netif_addr_unlock_bh(bp->dev);
4487}
4488
4489static inline void bnx2x_handle_classification_eqe(struct bnx2x *bp,
4490						   union event_ring_elem *elem)
4491{
4492	unsigned long ramrod_flags = 0;
4493	int rc = 0;
4494	u32 cid = elem->message.data.eth_event.echo & BNX2X_SWCID_MASK;
4495	struct bnx2x_vlan_mac_obj *vlan_mac_obj;
4496
4497	/* Always push next commands out, don't wait here */
4498	__set_bit(RAMROD_CONT, &ramrod_flags);
4499
4500	switch (elem->message.data.eth_event.echo >> BNX2X_SWCID_SHIFT) {
4501	case BNX2X_FILTER_MAC_PENDING:
4502		DP(BNX2X_MSG_SP, "Got SETUP_MAC completions\n");
4503#ifdef BCM_CNIC
4504		if (cid == BNX2X_ISCSI_ETH_CID)
4505			vlan_mac_obj = &bp->iscsi_l2_mac_obj;
4506		else
4507#endif
4508			vlan_mac_obj = &bp->fp[cid].mac_obj;
4509
4510		break;
4511	case BNX2X_FILTER_MCAST_PENDING:
4512		DP(BNX2X_MSG_SP, "Got SETUP_MCAST completions\n");
4513		/* This is only relevant for 57710 where multicast MACs are
4514		 * configured as unicast MACs using the same ramrod.
4515		 */
4516		bnx2x_handle_mcast_eqe(bp);
4517		return;
4518	default:
4519		BNX2X_ERR("Unsupported classification command: %d\n",
4520			  elem->message.data.eth_event.echo);
4521		return;
4522	}
4523
4524	rc = vlan_mac_obj->complete(bp, vlan_mac_obj, elem, &ramrod_flags);
4525
4526	if (rc < 0)
4527		BNX2X_ERR("Failed to schedule new commands: %d\n", rc);
4528	else if (rc > 0)
4529		DP(BNX2X_MSG_SP, "Scheduled next pending commands...\n");
4530
4531}
4532
4533#ifdef BCM_CNIC
4534static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start);
4535#endif
4536
4537static inline void bnx2x_handle_rx_mode_eqe(struct bnx2x *bp)
4538{
4539	netif_addr_lock_bh(bp->dev);
4540
4541	clear_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
4542
4543	/* Send rx_mode command again if was requested */
4544	if (test_and_clear_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state))
4545		bnx2x_set_storm_rx_mode(bp);
4546#ifdef BCM_CNIC
4547	else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED,
4548				    &bp->sp_state))
4549		bnx2x_set_iscsi_eth_rx_mode(bp, true);
4550	else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED,
4551				    &bp->sp_state))
4552		bnx2x_set_iscsi_eth_rx_mode(bp, false);
4553#endif
4554
4555	netif_addr_unlock_bh(bp->dev);
4556}
4557
4558static inline struct bnx2x_queue_sp_obj *bnx2x_cid_to_q_obj(
4559	struct bnx2x *bp, u32 cid)
4560{
4561	DP(BNX2X_MSG_SP, "retrieving fp from cid %d\n", cid);
4562#ifdef BCM_CNIC
4563	if (cid == BNX2X_FCOE_ETH_CID)
4564		return &bnx2x_fcoe(bp, q_obj);
4565	else
4566#endif
4567		return &bnx2x_fp(bp, CID_TO_FP(cid), q_obj);
4568}
4569
4570static void bnx2x_eq_int(struct bnx2x *bp)
4571{
4572	u16 hw_cons, sw_cons, sw_prod;
4573	union event_ring_elem *elem;
4574	u32 cid;
4575	u8 opcode;
4576	int spqe_cnt = 0;
4577	struct bnx2x_queue_sp_obj *q_obj;
4578	struct bnx2x_func_sp_obj *f_obj = &bp->func_obj;
4579	struct bnx2x_raw_obj *rss_raw = &bp->rss_conf_obj.raw;
4580
4581	hw_cons = le16_to_cpu(*bp->eq_cons_sb);
4582
4583	/* The hw_cos range is 1-255, 257 - the sw_cons range is 0-254, 256.
4584	 * when we get the the next-page we nned to adjust so the loop
4585	 * condition below will be met. The next element is the size of a
4586	 * regular element and hence incrementing by 1
4587	 */
4588	if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE)
4589		hw_cons++;
4590
4591	/* This function may never run in parallel with itself for a
4592	 * specific bp, thus there is no need in "paired" read memory
4593	 * barrier here.
4594	 */
4595	sw_cons = bp->eq_cons;
4596	sw_prod = bp->eq_prod;
4597
4598	DP(BNX2X_MSG_SP, "EQ:  hw_cons %u  sw_cons %u bp->eq_spq_left %x\n",
4599			hw_cons, sw_cons, atomic_read(&bp->eq_spq_left));
4600
4601	for (; sw_cons != hw_cons;
4602	      sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) {
4603
4604
4605		elem = &bp->eq_ring[EQ_DESC(sw_cons)];
4606
4607		cid = SW_CID(elem->message.data.cfc_del_event.cid);
4608		opcode = elem->message.opcode;
4609
4610
4611		/* handle eq element */
4612		switch (opcode) {
4613		case EVENT_RING_OPCODE_STAT_QUERY:
4614			DP(BNX2X_MSG_SP | BNX2X_MSG_STATS,
4615			   "got statistics comp event %d\n",
4616			   bp->stats_comp++);
4617			/* nothing to do with stats comp */
4618			goto next_spqe;
4619
4620		case EVENT_RING_OPCODE_CFC_DEL:
4621			/* handle according to cid range */
4622			/*
4623			 * we may want to verify here that the bp state is
4624			 * HALTING
4625			 */
4626			DP(BNX2X_MSG_SP,
4627			   "got delete ramrod for MULTI[%d]\n", cid);
4628#ifdef BCM_CNIC
4629			if (!bnx2x_cnic_handle_cfc_del(bp, cid, elem))
4630				goto next_spqe;
4631#endif
4632			q_obj = bnx2x_cid_to_q_obj(bp, cid);
4633
4634			if (q_obj->complete_cmd(bp, q_obj, BNX2X_Q_CMD_CFC_DEL))
4635				break;
4636
4637
4638
4639			goto next_spqe;
4640
4641		case EVENT_RING_OPCODE_STOP_TRAFFIC:
4642			DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got STOP TRAFFIC\n");
4643			if (f_obj->complete_cmd(bp, f_obj,
4644						BNX2X_F_CMD_TX_STOP))
4645				break;
4646			bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_PAUSED);
4647			goto next_spqe;
4648
4649		case EVENT_RING_OPCODE_START_TRAFFIC:
4650			DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got START TRAFFIC\n");
4651			if (f_obj->complete_cmd(bp, f_obj,
4652						BNX2X_F_CMD_TX_START))
4653				break;
4654			bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_RELEASED);
4655			goto next_spqe;
4656		case EVENT_RING_OPCODE_FUNCTION_START:
4657			DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
4658			   "got FUNC_START ramrod\n");
4659			if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_START))
4660				break;
4661
4662			goto next_spqe;
4663
4664		case EVENT_RING_OPCODE_FUNCTION_STOP:
4665			DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
4666			   "got FUNC_STOP ramrod\n");
4667			if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_STOP))
4668				break;
4669
4670			goto next_spqe;
4671		}
4672
4673		switch (opcode | bp->state) {
4674		case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
4675		      BNX2X_STATE_OPEN):
4676		case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
4677		      BNX2X_STATE_OPENING_WAIT4_PORT):
4678			cid = elem->message.data.eth_event.echo &
4679				BNX2X_SWCID_MASK;
4680			DP(BNX2X_MSG_SP, "got RSS_UPDATE ramrod. CID %d\n",
4681			   cid);
4682			rss_raw->clear_pending(rss_raw);
4683			break;
4684
4685		case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_OPEN):
4686		case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_DIAG):
4687		case (EVENT_RING_OPCODE_SET_MAC |
4688		      BNX2X_STATE_CLOSING_WAIT4_HALT):
4689		case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
4690		      BNX2X_STATE_OPEN):
4691		case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
4692		      BNX2X_STATE_DIAG):
4693		case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
4694		      BNX2X_STATE_CLOSING_WAIT4_HALT):
4695			DP(BNX2X_MSG_SP, "got (un)set mac ramrod\n");
4696			bnx2x_handle_classification_eqe(bp, elem);
4697			break;
4698
4699		case (EVENT_RING_OPCODE_MULTICAST_RULES |
4700		      BNX2X_STATE_OPEN):
4701		case (EVENT_RING_OPCODE_MULTICAST_RULES |
4702		      BNX2X_STATE_DIAG):
4703		case (EVENT_RING_OPCODE_MULTICAST_RULES |
4704		      BNX2X_STATE_CLOSING_WAIT4_HALT):
4705			DP(BNX2X_MSG_SP, "got mcast ramrod\n");
4706			bnx2x_handle_mcast_eqe(bp);
4707			break;
4708
4709		case (EVENT_RING_OPCODE_FILTERS_RULES |
4710		      BNX2X_STATE_OPEN):
4711		case (EVENT_RING_OPCODE_FILTERS_RULES |
4712		      BNX2X_STATE_DIAG):
4713		case (EVENT_RING_OPCODE_FILTERS_RULES |
4714		      BNX2X_STATE_CLOSING_WAIT4_HALT):
4715			DP(BNX2X_MSG_SP, "got rx_mode ramrod\n");
4716			bnx2x_handle_rx_mode_eqe(bp);
4717			break;
4718		default:
4719			/* unknown event log error and continue */
4720			BNX2X_ERR("Unknown EQ event %d, bp->state 0x%x\n",
4721				  elem->message.opcode, bp->state);
4722		}
4723next_spqe:
4724		spqe_cnt++;
4725	} /* for */
4726
4727	smp_mb__before_atomic_inc();
4728	atomic_add(spqe_cnt, &bp->eq_spq_left);
4729
4730	bp->eq_cons = sw_cons;
4731	bp->eq_prod = sw_prod;
4732	/* Make sure that above mem writes were issued towards the memory */
4733	smp_wmb();
4734
4735	/* update producer */
4736	bnx2x_update_eq_prod(bp, bp->eq_prod);
4737}
4738
4739static void bnx2x_sp_task(struct work_struct *work)
4740{
4741	struct bnx2x *bp = container_of(work, struct bnx2x, sp_task.work);
4742	u16 status;
4743
4744	status = bnx2x_update_dsb_idx(bp);
4745/*	if (status == 0)				     */
4746/*		BNX2X_ERR("spurious slowpath interrupt!\n"); */
4747
4748	DP(BNX2X_MSG_SP, "got a slowpath interrupt (status 0x%x)\n", status);
4749
4750	/* HW attentions */
4751	if (status & BNX2X_DEF_SB_ATT_IDX) {
4752		bnx2x_attn_int(bp);
4753		status &= ~BNX2X_DEF_SB_ATT_IDX;
4754	}
4755
4756	/* SP events: STAT_QUERY and others */
4757	if (status & BNX2X_DEF_SB_IDX) {
4758#ifdef BCM_CNIC
4759		struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp);
4760
4761		if ((!NO_FCOE(bp)) &&
4762			(bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) {
4763			/*
4764			 * Prevent local bottom-halves from running as
4765			 * we are going to change the local NAPI list.
4766			 */
4767			local_bh_disable();
4768			napi_schedule(&bnx2x_fcoe(bp, napi));
4769			local_bh_enable();
4770		}
4771#endif
4772		/* Handle EQ completions */
4773		bnx2x_eq_int(bp);
4774
4775		bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID,
4776			le16_to_cpu(bp->def_idx), IGU_INT_NOP, 1);
4777
4778		status &= ~BNX2X_DEF_SB_IDX;
4779	}
4780
4781	if (unlikely(status))
4782		DP(BNX2X_MSG_SP, "got an unknown interrupt! (status 0x%x)\n",
4783		   status);
4784
4785	bnx2x_ack_sb(bp, bp->igu_dsb_id, ATTENTION_ID,
4786	     le16_to_cpu(bp->def_att_idx), IGU_INT_ENABLE, 1);
4787}
4788
4789irqreturn_t bnx2x_msix_sp_int(int irq, void *dev_instance)
4790{
4791	struct net_device *dev = dev_instance;
4792	struct bnx2x *bp = netdev_priv(dev);
4793
4794	bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0,
4795		     IGU_INT_DISABLE, 0);
4796
4797#ifdef BNX2X_STOP_ON_ERROR
4798	if (unlikely(bp->panic))
4799		return IRQ_HANDLED;
4800#endif
4801
4802#ifdef BCM_CNIC
4803	{
4804		struct cnic_ops *c_ops;
4805
4806		rcu_read_lock();
4807		c_ops = rcu_dereference(bp->cnic_ops);
4808		if (c_ops)
4809			c_ops->cnic_handler(bp->cnic_data, NULL);
4810		rcu_read_unlock();
4811	}
4812#endif
4813	queue_delayed_work(bnx2x_wq, &bp->sp_task, 0);
4814
4815	return IRQ_HANDLED;
4816}
4817
4818/* end of slow path */
4819
4820
4821void bnx2x_drv_pulse(struct bnx2x *bp)
4822{
4823	SHMEM_WR(bp, func_mb[BP_FW_MB_IDX(bp)].drv_pulse_mb,
4824		 bp->fw_drv_pulse_wr_seq);
4825}
4826
4827
4828static void bnx2x_timer(unsigned long data)
4829{
4830	struct bnx2x *bp = (struct bnx2x *) data;
4831
4832	if (!netif_running(bp->dev))
4833		return;
4834
4835	if (!BP_NOMCP(bp)) {
4836		int mb_idx = BP_FW_MB_IDX(bp);
4837		u32 drv_pulse;
4838		u32 mcp_pulse;
4839
4840		++bp->fw_drv_pulse_wr_seq;
4841		bp->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK;
4842		/* TBD - add SYSTEM_TIME */
4843		drv_pulse = bp->fw_drv_pulse_wr_seq;
4844		bnx2x_drv_pulse(bp);
4845
4846		mcp_pulse = (SHMEM_RD(bp, func_mb[mb_idx].mcp_pulse_mb) &
4847			     MCP_PULSE_SEQ_MASK);
4848		/* The delta between driver pulse and mcp response
4849		 * should be 1 (before mcp response) or 0 (after mcp response)
4850		 */
4851		if ((drv_pulse != mcp_pulse) &&
4852		    (drv_pulse != ((mcp_pulse + 1) & MCP_PULSE_SEQ_MASK))) {
4853			/* someone lost a heartbeat... */
4854			BNX2X_ERR("drv_pulse (0x%x) != mcp_pulse (0x%x)\n",
4855				  drv_pulse, mcp_pulse);
4856		}
4857	}
4858
4859	if (bp->state == BNX2X_STATE_OPEN)
4860		bnx2x_stats_handle(bp, STATS_EVENT_UPDATE);
4861
4862	mod_timer(&bp->timer, jiffies + bp->current_interval);
4863}
4864
4865/* end of Statistics */
4866
4867/* nic init */
4868
4869/*
4870 * nic init service functions
4871 */
4872
4873static inline void bnx2x_fill(struct bnx2x *bp, u32 addr, int fill, u32 len)
4874{
4875	u32 i;
4876	if (!(len%4) && !(addr%4))
4877		for (i = 0; i < len; i += 4)
4878			REG_WR(bp, addr + i, fill);
4879	else
4880		for (i = 0; i < len; i++)
4881			REG_WR8(bp, addr + i, fill);
4882
4883}
4884
4885/* helper: writes FP SP data to FW - data_size in dwords */
4886static inline void bnx2x_wr_fp_sb_data(struct bnx2x *bp,
4887				       int fw_sb_id,
4888				       u32 *sb_data_p,
4889				       u32 data_size)
4890{
4891	int index;
4892	for (index = 0; index < data_size; index++)
4893		REG_WR(bp, BAR_CSTRORM_INTMEM +
4894			CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) +
4895			sizeof(u32)*index,
4896			*(sb_data_p + index));
4897}
4898
4899static inline void bnx2x_zero_fp_sb(struct bnx2x *bp, int fw_sb_id)
4900{
4901	u32 *sb_data_p;
4902	u32 data_size = 0;
4903	struct hc_status_block_data_e2 sb_data_e2;
4904	struct hc_status_block_data_e1x sb_data_e1x;
4905
4906	/* disable the function first */
4907	if (!CHIP_IS_E1x(bp)) {
4908		memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
4909		sb_data_e2.common.state = SB_DISABLED;
4910		sb_data_e2.common.p_func.vf_valid = false;
4911		sb_data_p = (u32 *)&sb_data_e2;
4912		data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
4913	} else {
4914		memset(&sb_data_e1x, 0,
4915		       sizeof(struct hc_status_block_data_e1x));
4916		sb_data_e1x.common.state = SB_DISABLED;
4917		sb_data_e1x.common.p_func.vf_valid = false;
4918		sb_data_p = (u32 *)&sb_data_e1x;
4919		data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
4920	}
4921	bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
4922
4923	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
4924			CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id), 0,
4925			CSTORM_STATUS_BLOCK_SIZE);
4926	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
4927			CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id), 0,
4928			CSTORM_SYNC_BLOCK_SIZE);
4929}
4930
4931/* helper:  writes SP SB data to FW */
4932static inline void bnx2x_wr_sp_sb_data(struct bnx2x *bp,
4933		struct hc_sp_status_block_data *sp_sb_data)
4934{
4935	int func = BP_FUNC(bp);
4936	int i;
4937	for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++)
4938		REG_WR(bp, BAR_CSTRORM_INTMEM +
4939			CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) +
4940			i*sizeof(u32),
4941			*((u32 *)sp_sb_data + i));
4942}
4943
4944static inline void bnx2x_zero_sp_sb(struct bnx2x *bp)
4945{
4946	int func = BP_FUNC(bp);
4947	struct hc_sp_status_block_data sp_sb_data;
4948	memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
4949
4950	sp_sb_data.state = SB_DISABLED;
4951	sp_sb_data.p_func.vf_valid = false;
4952
4953	bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
4954
4955	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
4956			CSTORM_SP_STATUS_BLOCK_OFFSET(func), 0,
4957			CSTORM_SP_STATUS_BLOCK_SIZE);
4958	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
4959			CSTORM_SP_SYNC_BLOCK_OFFSET(func), 0,
4960			CSTORM_SP_SYNC_BLOCK_SIZE);
4961
4962}
4963
4964
4965static inline
4966void bnx2x_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm,
4967					   int igu_sb_id, int igu_seg_id)
4968{
4969	hc_sm->igu_sb_id = igu_sb_id;
4970	hc_sm->igu_seg_id = igu_seg_id;
4971	hc_sm->timer_value = 0xFF;
4972	hc_sm->time_to_expire = 0xFFFFFFFF;
4973}
4974
4975
4976/* allocates state machine ids. */
4977static inline
4978void bnx2x_map_sb_state_machines(struct hc_index_data *index_data)
4979{
4980	/* zero out state machine indices */
4981	/* rx indices */
4982	index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
4983
4984	/* tx indices */
4985	index_data[HC_INDEX_OOO_TX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
4986	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID;
4987	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID;
4988	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID;
4989
4990	/* map indices */
4991	/* rx indices */
4992	index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |=
4993		SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
4994
4995	/* tx indices */
4996	index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |=
4997		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
4998	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |=
4999		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5000	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |=
5001		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5002	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |=
5003		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5004}
5005
5006static void bnx2x_init_sb(struct bnx2x *bp, dma_addr_t mapping, int vfid,
5007			  u8 vf_valid, int fw_sb_id, int igu_sb_id)
5008{
5009	int igu_seg_id;
5010
5011	struct hc_status_block_data_e2 sb_data_e2;
5012	struct hc_status_block_data_e1x sb_data_e1x;
5013	struct hc_status_block_sm  *hc_sm_p;
5014	int data_size;
5015	u32 *sb_data_p;
5016
5017	if (CHIP_INT_MODE_IS_BC(bp))
5018		igu_seg_id = HC_SEG_ACCESS_NORM;
5019	else
5020		igu_seg_id = IGU_SEG_ACCESS_NORM;
5021
5022	bnx2x_zero_fp_sb(bp, fw_sb_id);
5023
5024	if (!CHIP_IS_E1x(bp)) {
5025		memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
5026		sb_data_e2.common.state = SB_ENABLED;
5027		sb_data_e2.common.p_func.pf_id = BP_FUNC(bp);
5028		sb_data_e2.common.p_func.vf_id = vfid;
5029		sb_data_e2.common.p_func.vf_valid = vf_valid;
5030		sb_data_e2.common.p_func.vnic_id = BP_VN(bp);
5031		sb_data_e2.common.same_igu_sb_1b = true;
5032		sb_data_e2.common.host_sb_addr.hi = U64_HI(mapping);
5033		sb_data_e2.common.host_sb_addr.lo = U64_LO(mapping);
5034		hc_sm_p = sb_data_e2.common.state_machine;
5035		sb_data_p = (u32 *)&sb_data_e2;
5036		data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
5037		bnx2x_map_sb_state_machines(sb_data_e2.index_data);
5038	} else {
5039		memset(&sb_data_e1x, 0,
5040		       sizeof(struct hc_status_block_data_e1x));
5041		sb_data_e1x.common.state = SB_ENABLED;
5042		sb_data_e1x.common.p_func.pf_id = BP_FUNC(bp);
5043		sb_data_e1x.common.p_func.vf_id = 0xff;
5044		sb_data_e1x.common.p_func.vf_valid = false;
5045		sb_data_e1x.common.p_func.vnic_id = BP_VN(bp);
5046		sb_data_e1x.common.same_igu_sb_1b = true;
5047		sb_data_e1x.common.host_sb_addr.hi = U64_HI(mapping);
5048		sb_data_e1x.common.host_sb_addr.lo = U64_LO(mapping);
5049		hc_sm_p = sb_data_e1x.common.state_machine;
5050		sb_data_p = (u32 *)&sb_data_e1x;
5051		data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
5052		bnx2x_map_sb_state_machines(sb_data_e1x.index_data);
5053	}
5054
5055	bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID],
5056				       igu_sb_id, igu_seg_id);
5057	bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID],
5058				       igu_sb_id, igu_seg_id);
5059
5060	DP(NETIF_MSG_IFUP, "Init FW SB %d\n", fw_sb_id);
5061
5062	/* write indecies to HW */
5063	bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
5064}
5065
5066static void bnx2x_update_coalesce_sb(struct bnx2x *bp, u8 fw_sb_id,
5067				     u16 tx_usec, u16 rx_usec)
5068{
5069	bnx2x_update_coalesce_sb_index(bp, fw_sb_id, HC_INDEX_ETH_RX_CQ_CONS,
5070				    false, rx_usec);
5071	bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
5072				       HC_INDEX_ETH_TX_CQ_CONS_COS0, false,
5073				       tx_usec);
5074	bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
5075				       HC_INDEX_ETH_TX_CQ_CONS_COS1, false,
5076				       tx_usec);
5077	bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
5078				       HC_INDEX_ETH_TX_CQ_CONS_COS2, false,
5079				       tx_usec);
5080}
5081
5082static void bnx2x_init_def_sb(struct bnx2x *bp)
5083{
5084	struct host_sp_status_block *def_sb = bp->def_status_blk;
5085	dma_addr_t mapping = bp->def_status_blk_mapping;
5086	int igu_sp_sb_index;
5087	int igu_seg_id;
5088	int port = BP_PORT(bp);
5089	int func = BP_FUNC(bp);
5090	int reg_offset, reg_offset_en5;
5091	u64 section;
5092	int index;
5093	struct hc_sp_status_block_data sp_sb_data;
5094	memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
5095
5096	if (CHIP_INT_MODE_IS_BC(bp)) {
5097		igu_sp_sb_index = DEF_SB_IGU_ID;
5098		igu_seg_id = HC_SEG_ACCESS_DEF;
5099	} else {
5100		igu_sp_sb_index = bp->igu_dsb_id;
5101		igu_seg_id = IGU_SEG_ACCESS_DEF;
5102	}
5103
5104	/* ATTN */
5105	section = ((u64)mapping) + offsetof(struct host_sp_status_block,
5106					    atten_status_block);
5107	def_sb->atten_status_block.status_block_id = igu_sp_sb_index;
5108
5109	bp->attn_state = 0;
5110
5111	reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
5112			     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
5113	reg_offset_en5 = (port ? MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 :
5114				 MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0);
5115	for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
5116		int sindex;
5117		/* take care of sig[0]..sig[4] */
5118		for (sindex = 0; sindex < 4; sindex++)
5119			bp->attn_group[index].sig[sindex] =
5120			   REG_RD(bp, reg_offset + sindex*0x4 + 0x10*index);
5121
5122		if (!CHIP_IS_E1x(bp))
5123			/*
5124			 * enable5 is separate from the rest of the registers,
5125			 * and therefore the address skip is 4
5126			 * and not 16 between the different groups
5127			 */
5128			bp->attn_group[index].sig[4] = REG_RD(bp,
5129					reg_offset_en5 + 0x4*index);
5130		else
5131			bp->attn_group[index].sig[4] = 0;
5132	}
5133
5134	if (bp->common.int_block == INT_BLOCK_HC) {
5135		reg_offset = (port ? HC_REG_ATTN_MSG1_ADDR_L :
5136				     HC_REG_ATTN_MSG0_ADDR_L);
5137
5138		REG_WR(bp, reg_offset, U64_LO(section));
5139		REG_WR(bp, reg_offset + 4, U64_HI(section));
5140	} else if (!CHIP_IS_E1x(bp)) {
5141		REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section));
5142		REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section));
5143	}
5144
5145	section = ((u64)mapping) + offsetof(struct host_sp_status_block,
5146					    sp_sb);
5147
5148	bnx2x_zero_sp_sb(bp);
5149
5150	sp_sb_data.state		= SB_ENABLED;
5151	sp_sb_data.host_sb_addr.lo	= U64_LO(section);
5152	sp_sb_data.host_sb_addr.hi	= U64_HI(section);
5153	sp_sb_data.igu_sb_id		= igu_sp_sb_index;
5154	sp_sb_data.igu_seg_id		= igu_seg_id;
5155	sp_sb_data.p_func.pf_id		= func;
5156	sp_sb_data.p_func.vnic_id	= BP_VN(bp);
5157	sp_sb_data.p_func.vf_id		= 0xff;
5158
5159	bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
5160
5161	bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
5162}
5163
5164void bnx2x_update_coalesce(struct bnx2x *bp)
5165{
5166	int i;
5167
5168	for_each_eth_queue(bp, i)
5169		bnx2x_update_coalesce_sb(bp, bp->fp[i].fw_sb_id,
5170					 bp->tx_ticks, bp->rx_ticks);
5171}
5172
5173static void bnx2x_init_sp_ring(struct bnx2x *bp)
5174{
5175	spin_lock_init(&bp->spq_lock);
5176	atomic_set(&bp->cq_spq_left, MAX_SPQ_PENDING);
5177
5178	bp->spq_prod_idx = 0;
5179	bp->dsb_sp_prod = BNX2X_SP_DSB_INDEX;
5180	bp->spq_prod_bd = bp->spq;
5181	bp->spq_last_bd = bp->spq_prod_bd + MAX_SP_DESC_CNT;
5182}
5183
5184static void bnx2x_init_eq_ring(struct bnx2x *bp)
5185{
5186	int i;
5187	for (i = 1; i <= NUM_EQ_PAGES; i++) {
5188		union event_ring_elem *elem =
5189			&bp->eq_ring[EQ_DESC_CNT_PAGE * i - 1];
5190
5191		elem->next_page.addr.hi =
5192			cpu_to_le32(U64_HI(bp->eq_mapping +
5193				   BCM_PAGE_SIZE * (i % NUM_EQ_PAGES)));
5194		elem->next_page.addr.lo =
5195			cpu_to_le32(U64_LO(bp->eq_mapping +
5196				   BCM_PAGE_SIZE*(i % NUM_EQ_PAGES)));
5197	}
5198	bp->eq_cons = 0;
5199	bp->eq_prod = NUM_EQ_DESC;
5200	bp->eq_cons_sb = BNX2X_EQ_INDEX;
5201	/* we want a warning message before it gets rought... */
5202	atomic_set(&bp->eq_spq_left,
5203		min_t(int, MAX_SP_DESC_CNT - MAX_SPQ_PENDING, NUM_EQ_DESC) - 1);
5204}
5205
5206
5207/* called with netif_addr_lock_bh() */
5208void bnx2x_set_q_rx_mode(struct bnx2x *bp, u8 cl_id,
5209			 unsigned long rx_mode_flags,
5210			 unsigned long rx_accept_flags,
5211			 unsigned long tx_accept_flags,
5212			 unsigned long ramrod_flags)
5213{
5214	struct bnx2x_rx_mode_ramrod_params ramrod_param;
5215	int rc;
5216
5217	memset(&ramrod_param, 0, sizeof(ramrod_param));
5218
5219	/* Prepare ramrod parameters */
5220	ramrod_param.cid = 0;
5221	ramrod_param.cl_id = cl_id;
5222	ramrod_param.rx_mode_obj = &bp->rx_mode_obj;
5223	ramrod_param.func_id = BP_FUNC(bp);
5224
5225	ramrod_param.pstate = &bp->sp_state;
5226	ramrod_param.state = BNX2X_FILTER_RX_MODE_PENDING;
5227
5228	ramrod_param.rdata = bnx2x_sp(bp, rx_mode_rdata);
5229	ramrod_param.rdata_mapping = bnx2x_sp_mapping(bp, rx_mode_rdata);
5230
5231	set_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
5232
5233	ramrod_param.ramrod_flags = ramrod_flags;
5234	ramrod_param.rx_mode_flags = rx_mode_flags;
5235
5236	ramrod_param.rx_accept_flags = rx_accept_flags;
5237	ramrod_param.tx_accept_flags = tx_accept_flags;
5238
5239	rc = bnx2x_config_rx_mode(bp, &ramrod_param);
5240	if (rc < 0) {
5241		BNX2X_ERR("Set rx_mode %d failed\n", bp->rx_mode);
5242		return;
5243	}
5244}
5245
5246/* called with netif_addr_lock_bh() */
5247void bnx2x_set_storm_rx_mode(struct bnx2x *bp)
5248{
5249	unsigned long rx_mode_flags = 0, ramrod_flags = 0;
5250	unsigned long rx_accept_flags = 0, tx_accept_flags = 0;
5251
5252#ifdef BCM_CNIC
5253	if (!NO_FCOE(bp))
5254
5255		/* Configure rx_mode of FCoE Queue */
5256		__set_bit(BNX2X_RX_MODE_FCOE_ETH, &rx_mode_flags);
5257#endif
5258
5259	switch (bp->rx_mode) {
5260	case BNX2X_RX_MODE_NONE:
5261		/*
5262		 * 'drop all' supersedes any accept flags that may have been
5263		 * passed to the function.
5264		 */
5265		break;
5266	case BNX2X_RX_MODE_NORMAL:
5267		__set_bit(BNX2X_ACCEPT_UNICAST, &rx_accept_flags);
5268		__set_bit(BNX2X_ACCEPT_MULTICAST, &rx_accept_flags);
5269		__set_bit(BNX2X_ACCEPT_BROADCAST, &rx_accept_flags);
5270
5271		/* internal switching mode */
5272		__set_bit(BNX2X_ACCEPT_UNICAST, &tx_accept_flags);
5273		__set_bit(BNX2X_ACCEPT_MULTICAST, &tx_accept_flags);
5274		__set_bit(BNX2X_ACCEPT_BROADCAST, &tx_accept_flags);
5275
5276		break;
5277	case BNX2X_RX_MODE_ALLMULTI:
5278		__set_bit(BNX2X_ACCEPT_UNICAST, &rx_accept_flags);
5279		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &rx_accept_flags);
5280		__set_bit(BNX2X_ACCEPT_BROADCAST, &rx_accept_flags);
5281
5282		/* internal switching mode */
5283		__set_bit(BNX2X_ACCEPT_UNICAST, &tx_accept_flags);
5284		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &tx_accept_flags);
5285		__set_bit(BNX2X_ACCEPT_BROADCAST, &tx_accept_flags);
5286
5287		break;
5288	case BNX2X_RX_MODE_PROMISC:
5289		/* According to deffinition of SI mode, iface in promisc mode
5290		 * should receive matched and unmatched (in resolution of port)
5291		 * unicast packets.
5292		 */
5293		__set_bit(BNX2X_ACCEPT_UNMATCHED, &rx_accept_flags);
5294		__set_bit(BNX2X_ACCEPT_UNICAST, &rx_accept_flags);
5295		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &rx_accept_flags);
5296		__set_bit(BNX2X_ACCEPT_BROADCAST, &rx_accept_flags);
5297
5298		/* internal switching mode */
5299		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &tx_accept_flags);
5300		__set_bit(BNX2X_ACCEPT_BROADCAST, &tx_accept_flags);
5301
5302		if (IS_MF_SI(bp))
5303			__set_bit(BNX2X_ACCEPT_ALL_UNICAST, &tx_accept_flags);
5304		else
5305			__set_bit(BNX2X_ACCEPT_UNICAST, &tx_accept_flags);
5306
5307		break;
5308	default:
5309		BNX2X_ERR("Unknown rx_mode: %d\n", bp->rx_mode);
5310		return;
5311	}
5312
5313	if (bp->rx_mode != BNX2X_RX_MODE_NONE) {
5314		__set_bit(BNX2X_ACCEPT_ANY_VLAN, &rx_accept_flags);
5315		__set_bit(BNX2X_ACCEPT_ANY_VLAN, &tx_accept_flags);
5316	}
5317
5318	__set_bit(RAMROD_RX, &ramrod_flags);
5319	__set_bit(RAMROD_TX, &ramrod_flags);
5320
5321	bnx2x_set_q_rx_mode(bp, bp->fp->cl_id, rx_mode_flags, rx_accept_flags,
5322			    tx_accept_flags, ramrod_flags);
5323}
5324
5325static void bnx2x_init_internal_common(struct bnx2x *bp)
5326{
5327	int i;
5328
5329	if (IS_MF_SI(bp))
5330		/*
5331		 * In switch independent mode, the TSTORM needs to accept
5332		 * packets that failed classification, since approximate match
5333		 * mac addresses aren't written to NIG LLH
5334		 */
5335		REG_WR8(bp, BAR_TSTRORM_INTMEM +
5336			    TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET, 2);
5337	else if (!CHIP_IS_E1(bp)) /* 57710 doesn't support MF */
5338		REG_WR8(bp, BAR_TSTRORM_INTMEM +
5339			    TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET, 0);
5340
5341	/* Zero this manually as its initialization is
5342	   currently missing in the initTool */
5343	for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++)
5344		REG_WR(bp, BAR_USTRORM_INTMEM +
5345		       USTORM_AGG_DATA_OFFSET + i * 4, 0);
5346	if (!CHIP_IS_E1x(bp)) {
5347		REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET,
5348			CHIP_INT_MODE_IS_BC(bp) ?
5349			HC_IGU_BC_MODE : HC_IGU_NBC_MODE);
5350	}
5351}
5352
5353static void bnx2x_init_internal(struct bnx2x *bp, u32 load_code)
5354{
5355	switch (load_code) {
5356	case FW_MSG_CODE_DRV_LOAD_COMMON:
5357	case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP:
5358		bnx2x_init_internal_common(bp);
5359		/* no break */
5360
5361	case FW_MSG_CODE_DRV_LOAD_PORT:
5362		/* nothing to do */
5363		/* no break */
5364
5365	case FW_MSG_CODE_DRV_LOAD_FUNCTION:
5366		/* internal memory per function is
5367		   initialized inside bnx2x_pf_init */
5368		break;
5369
5370	default:
5371		BNX2X_ERR("Unknown load_code (0x%x) from MCP\n", load_code);
5372		break;
5373	}
5374}
5375
5376static inline u8 bnx2x_fp_igu_sb_id(struct bnx2x_fastpath *fp)
5377{
5378	return fp->bp->igu_base_sb + fp->index + CNIC_PRESENT;
5379}
5380
5381static inline u8 bnx2x_fp_fw_sb_id(struct bnx2x_fastpath *fp)
5382{
5383	return fp->bp->base_fw_ndsb + fp->index + CNIC_PRESENT;
5384}
5385
5386static inline u8 bnx2x_fp_cl_id(struct bnx2x_fastpath *fp)
5387{
5388	if (CHIP_IS_E1x(fp->bp))
5389		return BP_L_ID(fp->bp) + fp->index;
5390	else	/* We want Client ID to be the same as IGU SB ID for 57712 */
5391		return bnx2x_fp_igu_sb_id(fp);
5392}
5393
5394static void bnx2x_init_eth_fp(struct bnx2x *bp, int fp_idx)
5395{
5396	struct bnx2x_fastpath *fp = &bp->fp[fp_idx];
5397	u8 cos;
5398	unsigned long q_type = 0;
5399	u32 cids[BNX2X_MULTI_TX_COS] = { 0 };
5400	fp->rx_queue = fp_idx;
5401	fp->cid = fp_idx;
5402	fp->cl_id = bnx2x_fp_cl_id(fp);
5403	fp->fw_sb_id = bnx2x_fp_fw_sb_id(fp);
5404	fp->igu_sb_id = bnx2x_fp_igu_sb_id(fp);
5405	/* qZone id equals to FW (per path) client id */
5406	fp->cl_qzone_id  = bnx2x_fp_qzone_id(fp);
5407
5408	/* init shortcut */
5409	fp->ustorm_rx_prods_offset = bnx2x_rx_ustorm_prods_offset(fp);
5410
5411	/* Setup SB indicies */
5412	fp->rx_cons_sb = BNX2X_RX_SB_INDEX;
5413
5414	/* Configure Queue State object */
5415	__set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
5416	__set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
5417
5418	BUG_ON(fp->max_cos > BNX2X_MULTI_TX_COS);
5419
5420	/* init tx data */
5421	for_each_cos_in_tx_queue(fp, cos) {
5422		bnx2x_init_txdata(bp, &fp->txdata[cos],
5423				  CID_COS_TO_TX_ONLY_CID(fp->cid, cos),
5424				  FP_COS_TO_TXQ(fp, cos),
5425				  BNX2X_TX_SB_INDEX_BASE + cos);
5426		cids[cos] = fp->txdata[cos].cid;
5427	}
5428
5429	bnx2x_init_queue_obj(bp, &fp->q_obj, fp->cl_id, cids, fp->max_cos,
5430			     BP_FUNC(bp), bnx2x_sp(bp, q_rdata),
5431			     bnx2x_sp_mapping(bp, q_rdata), q_type);
5432
5433	/**
5434	 * Configure classification DBs: Always enable Tx switching
5435	 */
5436	bnx2x_init_vlan_mac_fp_objs(fp, BNX2X_OBJ_TYPE_RX_TX);
5437
5438	DP(NETIF_MSG_IFUP, "queue[%d]:  bnx2x_init_sb(%p,%p)  cl_id %d  fw_sb %d  igu_sb %d\n",
5439		   fp_idx, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id,
5440		   fp->igu_sb_id);
5441	bnx2x_init_sb(bp, fp->status_blk_mapping, BNX2X_VF_ID_INVALID, false,
5442		      fp->fw_sb_id, fp->igu_sb_id);
5443
5444	bnx2x_update_fpsb_idx(fp);
5445}
5446
5447void bnx2x_nic_init(struct bnx2x *bp, u32 load_code)
5448{
5449	int i;
5450
5451	for_each_eth_queue(bp, i)
5452		bnx2x_init_eth_fp(bp, i);
5453#ifdef BCM_CNIC
5454	if (!NO_FCOE(bp))
5455		bnx2x_init_fcoe_fp(bp);
5456
5457	bnx2x_init_sb(bp, bp->cnic_sb_mapping,
5458		      BNX2X_VF_ID_INVALID, false,
5459		      bnx2x_cnic_fw_sb_id(bp), bnx2x_cnic_igu_sb_id(bp));
5460
5461#endif
5462
5463	/* Initialize MOD_ABS interrupts */
5464	bnx2x_init_mod_abs_int(bp, &bp->link_vars, bp->common.chip_id,
5465			       bp->common.shmem_base, bp->common.shmem2_base,
5466			       BP_PORT(bp));
5467	/* ensure status block indices were read */
5468	rmb();
5469
5470	bnx2x_init_def_sb(bp);
5471	bnx2x_update_dsb_idx(bp);
5472	bnx2x_init_rx_rings(bp);
5473	bnx2x_init_tx_rings(bp);
5474	bnx2x_init_sp_ring(bp);
5475	bnx2x_init_eq_ring(bp);
5476	bnx2x_init_internal(bp, load_code);
5477	bnx2x_pf_init(bp);
5478	bnx2x_stats_init(bp);
5479
5480	/* flush all before enabling interrupts */
5481	mb();
5482	mmiowb();
5483
5484	bnx2x_int_enable(bp);
5485
5486	/* Check for SPIO5 */
5487	bnx2x_attn_int_deasserted0(bp,
5488		REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + BP_PORT(bp)*4) &
5489				   AEU_INPUTS_ATTN_BITS_SPIO5);
5490}
5491
5492/* end of nic init */
5493
5494/*
5495 * gzip service functions
5496 */
5497
5498static int bnx2x_gunzip_init(struct bnx2x *bp)
5499{
5500	bp->gunzip_buf = dma_alloc_coherent(&bp->pdev->dev, FW_BUF_SIZE,
5501					    &bp->gunzip_mapping, GFP_KERNEL);
5502	if (bp->gunzip_buf  == NULL)
5503		goto gunzip_nomem1;
5504
5505	bp->strm = kmalloc(sizeof(*bp->strm), GFP_KERNEL);
5506	if (bp->strm  == NULL)
5507		goto gunzip_nomem2;
5508
5509	bp->strm->workspace = vmalloc(zlib_inflate_workspacesize());
5510	if (bp->strm->workspace == NULL)
5511		goto gunzip_nomem3;
5512
5513	return 0;
5514
5515gunzip_nomem3:
5516	kfree(bp->strm);
5517	bp->strm = NULL;
5518
5519gunzip_nomem2:
5520	dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
5521			  bp->gunzip_mapping);
5522	bp->gunzip_buf = NULL;
5523
5524gunzip_nomem1:
5525	BNX2X_ERR("Cannot allocate firmware buffer for un-compression\n");
5526	return -ENOMEM;
5527}
5528
5529static void bnx2x_gunzip_end(struct bnx2x *bp)
5530{
5531	if (bp->strm) {
5532		vfree(bp->strm->workspace);
5533		kfree(bp->strm);
5534		bp->strm = NULL;
5535	}
5536
5537	if (bp->gunzip_buf) {
5538		dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
5539				  bp->gunzip_mapping);
5540		bp->gunzip_buf = NULL;
5541	}
5542}
5543
5544static int bnx2x_gunzip(struct bnx2x *bp, const u8 *zbuf, int len)
5545{
5546	int n, rc;
5547
5548	/* check gzip header */
5549	if ((zbuf[0] != 0x1f) || (zbuf[1] != 0x8b) || (zbuf[2] != Z_DEFLATED)) {
5550		BNX2X_ERR("Bad gzip header\n");
5551		return -EINVAL;
5552	}
5553
5554	n = 10;
5555
5556#define FNAME				0x8
5557
5558	if (zbuf[3] & FNAME)
5559		while ((zbuf[n++] != 0) && (n < len));
5560
5561	bp->strm->next_in = (typeof(bp->strm->next_in))zbuf + n;
5562	bp->strm->avail_in = len - n;
5563	bp->strm->next_out = bp->gunzip_buf;
5564	bp->strm->avail_out = FW_BUF_SIZE;
5565
5566	rc = zlib_inflateInit2(bp->strm, -MAX_WBITS);
5567	if (rc != Z_OK)
5568		return rc;
5569
5570	rc = zlib_inflate(bp->strm, Z_FINISH);
5571	if ((rc != Z_OK) && (rc != Z_STREAM_END))
5572		netdev_err(bp->dev, "Firmware decompression error: %s\n",
5573			   bp->strm->msg);
5574
5575	bp->gunzip_outlen = (FW_BUF_SIZE - bp->strm->avail_out);
5576	if (bp->gunzip_outlen & 0x3)
5577		netdev_err(bp->dev,
5578			   "Firmware decompression error: gunzip_outlen (%d) not aligned\n",
5579				bp->gunzip_outlen);
5580	bp->gunzip_outlen >>= 2;
5581
5582	zlib_inflateEnd(bp->strm);
5583
5584	if (rc == Z_STREAM_END)
5585		return 0;
5586
5587	return rc;
5588}
5589
5590/* nic load/unload */
5591
5592/*
5593 * General service functions
5594 */
5595
5596/* send a NIG loopback debug packet */
5597static void bnx2x_lb_pckt(struct bnx2x *bp)
5598{
5599	u32 wb_write[3];
5600
5601	/* Ethernet source and destination addresses */
5602	wb_write[0] = 0x55555555;
5603	wb_write[1] = 0x55555555;
5604	wb_write[2] = 0x20;		/* SOP */
5605	REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
5606
5607	/* NON-IP protocol */
5608	wb_write[0] = 0x09000000;
5609	wb_write[1] = 0x55555555;
5610	wb_write[2] = 0x10;		/* EOP, eop_bvalid = 0 */
5611	REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
5612}
5613
5614/* some of the internal memories
5615 * are not directly readable from the driver
5616 * to test them we send debug packets
5617 */
5618static int bnx2x_int_mem_test(struct bnx2x *bp)
5619{
5620	int factor;
5621	int count, i;
5622	u32 val = 0;
5623
5624	if (CHIP_REV_IS_FPGA(bp))
5625		factor = 120;
5626	else if (CHIP_REV_IS_EMUL(bp))
5627		factor = 200;
5628	else
5629		factor = 1;
5630
5631	/* Disable inputs of parser neighbor blocks */
5632	REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
5633	REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
5634	REG_WR(bp, CFC_REG_DEBUG0, 0x1);
5635	REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
5636
5637	/*  Write 0 to parser credits for CFC search request */
5638	REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
5639
5640	/* send Ethernet packet */
5641	bnx2x_lb_pckt(bp);
5642
5643	/* TODO do i reset NIG statistic? */
5644	/* Wait until NIG register shows 1 packet of size 0x10 */
5645	count = 1000 * factor;
5646	while (count) {
5647
5648		bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
5649		val = *bnx2x_sp(bp, wb_data[0]);
5650		if (val == 0x10)
5651			break;
5652
5653		msleep(10);
5654		count--;
5655	}
5656	if (val != 0x10) {
5657		BNX2X_ERR("NIG timeout  val = 0x%x\n", val);
5658		return -1;
5659	}
5660
5661	/* Wait until PRS register shows 1 packet */
5662	count = 1000 * factor;
5663	while (count) {
5664		val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
5665		if (val == 1)
5666			break;
5667
5668		msleep(10);
5669		count--;
5670	}
5671	if (val != 0x1) {
5672		BNX2X_ERR("PRS timeout val = 0x%x\n", val);
5673		return -2;
5674	}
5675
5676	/* Reset and init BRB, PRS */
5677	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
5678	msleep(50);
5679	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
5680	msleep(50);
5681	bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
5682	bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
5683
5684	DP(NETIF_MSG_HW, "part2\n");
5685
5686	/* Disable inputs of parser neighbor blocks */
5687	REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
5688	REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
5689	REG_WR(bp, CFC_REG_DEBUG0, 0x1);
5690	REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
5691
5692	/* Write 0 to parser credits for CFC search request */
5693	REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
5694
5695	/* send 10 Ethernet packets */
5696	for (i = 0; i < 10; i++)
5697		bnx2x_lb_pckt(bp);
5698
5699	/* Wait until NIG register shows 10 + 1
5700	   packets of size 11*0x10 = 0xb0 */
5701	count = 1000 * factor;
5702	while (count) {
5703
5704		bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
5705		val = *bnx2x_sp(bp, wb_data[0]);
5706		if (val == 0xb0)
5707			break;
5708
5709		msleep(10);
5710		count--;
5711	}
5712	if (val != 0xb0) {
5713		BNX2X_ERR("NIG timeout  val = 0x%x\n", val);
5714		return -3;
5715	}
5716
5717	/* Wait until PRS register shows 2 packets */
5718	val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
5719	if (val != 2)
5720		BNX2X_ERR("PRS timeout  val = 0x%x\n", val);
5721
5722	/* Write 1 to parser credits for CFC search request */
5723	REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1);
5724
5725	/* Wait until PRS register shows 3 packets */
5726	msleep(10 * factor);
5727	/* Wait until NIG register shows 1 packet of size 0x10 */
5728	val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
5729	if (val != 3)
5730		BNX2X_ERR("PRS timeout  val = 0x%x\n", val);
5731
5732	/* clear NIG EOP FIFO */
5733	for (i = 0; i < 11; i++)
5734		REG_RD(bp, NIG_REG_INGRESS_EOP_LB_FIFO);
5735	val = REG_RD(bp, NIG_REG_INGRESS_EOP_LB_EMPTY);
5736	if (val != 1) {
5737		BNX2X_ERR("clear of NIG failed\n");
5738		return -4;
5739	}
5740
5741	/* Reset and init BRB, PRS, NIG */
5742	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
5743	msleep(50);
5744	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
5745	msleep(50);
5746	bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
5747	bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
5748#ifndef BCM_CNIC
5749	/* set NIC mode */
5750	REG_WR(bp, PRS_REG_NIC_MODE, 1);
5751#endif
5752
5753	/* Enable inputs of parser neighbor blocks */
5754	REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x7fffffff);
5755	REG_WR(bp, TCM_REG_PRS_IFEN, 0x1);
5756	REG_WR(bp, CFC_REG_DEBUG0, 0x0);
5757	REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x1);
5758
5759	DP(NETIF_MSG_HW, "done\n");
5760
5761	return 0; /* OK */
5762}
5763
5764static void bnx2x_enable_blocks_attention(struct bnx2x *bp)
5765{
5766	REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
5767	if (!CHIP_IS_E1x(bp))
5768		REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0x40);
5769	else
5770		REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0);
5771	REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
5772	REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
5773	/*
5774	 * mask read length error interrupts in brb for parser
5775	 * (parsing unit and 'checksum and crc' unit)
5776	 * these errors are legal (PU reads fixed length and CAC can cause
5777	 * read length error on truncated packets)
5778	 */
5779	REG_WR(bp, BRB1_REG_BRB1_INT_MASK, 0xFC00);
5780	REG_WR(bp, QM_REG_QM_INT_MASK, 0);
5781	REG_WR(bp, TM_REG_TM_INT_MASK, 0);
5782	REG_WR(bp, XSDM_REG_XSDM_INT_MASK_0, 0);
5783	REG_WR(bp, XSDM_REG_XSDM_INT_MASK_1, 0);
5784	REG_WR(bp, XCM_REG_XCM_INT_MASK, 0);
5785/*	REG_WR(bp, XSEM_REG_XSEM_INT_MASK_0, 0); */
5786/*	REG_WR(bp, XSEM_REG_XSEM_INT_MASK_1, 0); */
5787	REG_WR(bp, USDM_REG_USDM_INT_MASK_0, 0);
5788	REG_WR(bp, USDM_REG_USDM_INT_MASK_1, 0);
5789	REG_WR(bp, UCM_REG_UCM_INT_MASK, 0);
5790/*	REG_WR(bp, USEM_REG_USEM_INT_MASK_0, 0); */
5791/*	REG_WR(bp, USEM_REG_USEM_INT_MASK_1, 0); */
5792	REG_WR(bp, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0);
5793	REG_WR(bp, CSDM_REG_CSDM_INT_MASK_0, 0);
5794	REG_WR(bp, CSDM_REG_CSDM_INT_MASK_1, 0);
5795	REG_WR(bp, CCM_REG_CCM_INT_MASK, 0);
5796/*	REG_WR(bp, CSEM_REG_CSEM_INT_MASK_0, 0); */
5797/*	REG_WR(bp, CSEM_REG_CSEM_INT_MASK_1, 0); */
5798
5799	if (CHIP_REV_IS_FPGA(bp))
5800		REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0, 0x580000);
5801	else if (!CHIP_IS_E1x(bp))
5802		REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0,
5803			   (PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF
5804				| PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT
5805				| PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN
5806				| PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED
5807				| PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED));
5808	else
5809		REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0, 0x480000);
5810	REG_WR(bp, TSDM_REG_TSDM_INT_MASK_0, 0);
5811	REG_WR(bp, TSDM_REG_TSDM_INT_MASK_1, 0);
5812	REG_WR(bp, TCM_REG_TCM_INT_MASK, 0);
5813/*	REG_WR(bp, TSEM_REG_TSEM_INT_MASK_0, 0); */
5814
5815	if (!CHIP_IS_E1x(bp))
5816		/* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */
5817		REG_WR(bp, TSEM_REG_TSEM_INT_MASK_1, 0x07ff);
5818
5819	REG_WR(bp, CDU_REG_CDU_INT_MASK, 0);
5820	REG_WR(bp, DMAE_REG_DMAE_INT_MASK, 0);
5821/*	REG_WR(bp, MISC_REG_MISC_INT_MASK, 0); */
5822	REG_WR(bp, PBF_REG_PBF_INT_MASK, 0x18);		/* bit 3,4 masked */
5823}
5824
5825static void bnx2x_reset_common(struct bnx2x *bp)
5826{
5827	u32 val = 0x1400;
5828
5829	/* reset_common */
5830	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
5831	       0xd3ffff7f);
5832
5833	if (CHIP_IS_E3(bp)) {
5834		val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
5835		val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
5836	}
5837
5838	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR, val);
5839}
5840
5841static void bnx2x_setup_dmae(struct bnx2x *bp)
5842{
5843	bp->dmae_ready = 0;
5844	spin_lock_init(&bp->dmae_lock);
5845}
5846
5847static void bnx2x_init_pxp(struct bnx2x *bp)
5848{
5849	u16 devctl;
5850	int r_order, w_order;
5851
5852	pci_read_config_word(bp->pdev,
5853			     pci_pcie_cap(bp->pdev) + PCI_EXP_DEVCTL, &devctl);
5854	DP(NETIF_MSG_HW, "read 0x%x from devctl\n", devctl);
5855	w_order = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
5856	if (bp->mrrs == -1)
5857		r_order = ((devctl & PCI_EXP_DEVCTL_READRQ) >> 12);
5858	else {
5859		DP(NETIF_MSG_HW, "force read order to %d\n", bp->mrrs);
5860		r_order = bp->mrrs;
5861	}
5862
5863	bnx2x_init_pxp_arb(bp, r_order, w_order);
5864}
5865
5866static void bnx2x_setup_fan_failure_detection(struct bnx2x *bp)
5867{
5868	int is_required;
5869	u32 val;
5870	int port;
5871
5872	if (BP_NOMCP(bp))
5873		return;
5874
5875	is_required = 0;
5876	val = SHMEM_RD(bp, dev_info.shared_hw_config.config2) &
5877	      SHARED_HW_CFG_FAN_FAILURE_MASK;
5878
5879	if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED)
5880		is_required = 1;
5881
5882	/*
5883	 * The fan failure mechanism is usually related to the PHY type since
5884	 * the power consumption of the board is affected by the PHY. Currently,
5885	 * fan is required for most designs with SFX7101, BCM8727 and BCM8481.
5886	 */
5887	else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE)
5888		for (port = PORT_0; port < PORT_MAX; port++) {
5889			is_required |=
5890				bnx2x_fan_failure_det_req(
5891					bp,
5892					bp->common.shmem_base,
5893					bp->common.shmem2_base,
5894					port);
5895		}
5896
5897	DP(NETIF_MSG_HW, "fan detection setting: %d\n", is_required);
5898
5899	if (is_required == 0)
5900		return;
5901
5902	/* Fan failure is indicated by SPIO 5 */
5903	bnx2x_set_spio(bp, MISC_REGISTERS_SPIO_5,
5904		       MISC_REGISTERS_SPIO_INPUT_HI_Z);
5905
5906	/* set to active low mode */
5907	val = REG_RD(bp, MISC_REG_SPIO_INT);
5908	val |= ((1 << MISC_REGISTERS_SPIO_5) <<
5909					MISC_REGISTERS_SPIO_INT_OLD_SET_POS);
5910	REG_WR(bp, MISC_REG_SPIO_INT, val);
5911
5912	/* enable interrupt to signal the IGU */
5913	val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
5914	val |= (1 << MISC_REGISTERS_SPIO_5);
5915	REG_WR(bp, MISC_REG_SPIO_EVENT_EN, val);
5916}
5917
5918static void bnx2x_pretend_func(struct bnx2x *bp, u8 pretend_func_num)
5919{
5920	u32 offset = 0;
5921
5922	if (CHIP_IS_E1(bp))
5923		return;
5924	if (CHIP_IS_E1H(bp) && (pretend_func_num >= E1H_FUNC_MAX))
5925		return;
5926
5927	switch (BP_ABS_FUNC(bp)) {
5928	case 0:
5929		offset = PXP2_REG_PGL_PRETEND_FUNC_F0;
5930		break;
5931	case 1:
5932		offset = PXP2_REG_PGL_PRETEND_FUNC_F1;
5933		break;
5934	case 2:
5935		offset = PXP2_REG_PGL_PRETEND_FUNC_F2;
5936		break;
5937	case 3:
5938		offset = PXP2_REG_PGL_PRETEND_FUNC_F3;
5939		break;
5940	case 4:
5941		offset = PXP2_REG_PGL_PRETEND_FUNC_F4;
5942		break;
5943	case 5:
5944		offset = PXP2_REG_PGL_PRETEND_FUNC_F5;
5945		break;
5946	case 6:
5947		offset = PXP2_REG_PGL_PRETEND_FUNC_F6;
5948		break;
5949	case 7:
5950		offset = PXP2_REG_PGL_PRETEND_FUNC_F7;
5951		break;
5952	default:
5953		return;
5954	}
5955
5956	REG_WR(bp, offset, pretend_func_num);
5957	REG_RD(bp, offset);
5958	DP(NETIF_MSG_HW, "Pretending to func %d\n", pretend_func_num);
5959}
5960
5961void bnx2x_pf_disable(struct bnx2x *bp)
5962{
5963	u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
5964	val &= ~IGU_PF_CONF_FUNC_EN;
5965
5966	REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
5967	REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
5968	REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 0);
5969}
5970
5971static inline void bnx2x__common_init_phy(struct bnx2x *bp)
5972{
5973	u32 shmem_base[2], shmem2_base[2];
5974	shmem_base[0] =  bp->common.shmem_base;
5975	shmem2_base[0] = bp->common.shmem2_base;
5976	if (!CHIP_IS_E1x(bp)) {
5977		shmem_base[1] =
5978			SHMEM2_RD(bp, other_shmem_base_addr);
5979		shmem2_base[1] =
5980			SHMEM2_RD(bp, other_shmem2_base_addr);
5981	}
5982	bnx2x_acquire_phy_lock(bp);
5983	bnx2x_common_init_phy(bp, shmem_base, shmem2_base,
5984			      bp->common.chip_id);
5985	bnx2x_release_phy_lock(bp);
5986}
5987
5988/**
5989 * bnx2x_init_hw_common - initialize the HW at the COMMON phase.
5990 *
5991 * @bp:		driver handle
5992 */
5993static int bnx2x_init_hw_common(struct bnx2x *bp)
5994{
5995	u32 val;
5996
5997	DP(NETIF_MSG_HW, "starting common init  func %d\n", BP_ABS_FUNC(bp));
5998
5999	/*
6000	 * take the UNDI lock to protect undi_unload flow from accessing
6001	 * registers while we're resetting the chip
6002	 */
6003	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
6004
6005	bnx2x_reset_common(bp);
6006	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0xffffffff);
6007
6008	val = 0xfffc;
6009	if (CHIP_IS_E3(bp)) {
6010		val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
6011		val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
6012	}
6013	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET, val);
6014
6015	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
6016
6017	bnx2x_init_block(bp, BLOCK_MISC, PHASE_COMMON);
6018
6019	if (!CHIP_IS_E1x(bp)) {
6020		u8 abs_func_id;
6021
6022		/**
6023		 * 4-port mode or 2-port mode we need to turn of master-enable
6024		 * for everyone, after that, turn it back on for self.
6025		 * so, we disregard multi-function or not, and always disable
6026		 * for all functions on the given path, this means 0,2,4,6 for
6027		 * path 0 and 1,3,5,7 for path 1
6028		 */
6029		for (abs_func_id = BP_PATH(bp);
6030		     abs_func_id < E2_FUNC_MAX*2; abs_func_id += 2) {
6031			if (abs_func_id == BP_ABS_FUNC(bp)) {
6032				REG_WR(bp,
6033				    PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER,
6034				    1);
6035				continue;
6036			}
6037
6038			bnx2x_pretend_func(bp, abs_func_id);
6039			/* clear pf enable */
6040			bnx2x_pf_disable(bp);
6041			bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
6042		}
6043	}
6044
6045	bnx2x_init_block(bp, BLOCK_PXP, PHASE_COMMON);
6046	if (CHIP_IS_E1(bp)) {
6047		/* enable HW interrupt from PXP on USDM overflow
6048		   bit 16 on INT_MASK_0 */
6049		REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
6050	}
6051
6052	bnx2x_init_block(bp, BLOCK_PXP2, PHASE_COMMON);
6053	bnx2x_init_pxp(bp);
6054
6055#ifdef __BIG_ENDIAN
6056	REG_WR(bp, PXP2_REG_RQ_QM_ENDIAN_M, 1);
6057	REG_WR(bp, PXP2_REG_RQ_TM_ENDIAN_M, 1);
6058	REG_WR(bp, PXP2_REG_RQ_SRC_ENDIAN_M, 1);
6059	REG_WR(bp, PXP2_REG_RQ_CDU_ENDIAN_M, 1);
6060	REG_WR(bp, PXP2_REG_RQ_DBG_ENDIAN_M, 1);
6061	/* make sure this value is 0 */
6062	REG_WR(bp, PXP2_REG_RQ_HC_ENDIAN_M, 0);
6063
6064/*	REG_WR(bp, PXP2_REG_RD_PBF_SWAP_MODE, 1); */
6065	REG_WR(bp, PXP2_REG_RD_QM_SWAP_MODE, 1);
6066	REG_WR(bp, PXP2_REG_RD_TM_SWAP_MODE, 1);
6067	REG_WR(bp, PXP2_REG_RD_SRC_SWAP_MODE, 1);
6068	REG_WR(bp, PXP2_REG_RD_CDURD_SWAP_MODE, 1);
6069#endif
6070
6071	bnx2x_ilt_init_page_size(bp, INITOP_SET);
6072
6073	if (CHIP_REV_IS_FPGA(bp) && CHIP_IS_E1H(bp))
6074		REG_WR(bp, PXP2_REG_PGL_TAGS_LIMIT, 0x1);
6075
6076	/* let the HW do it's magic ... */
6077	msleep(100);
6078	/* finish PXP init */
6079	val = REG_RD(bp, PXP2_REG_RQ_CFG_DONE);
6080	if (val != 1) {
6081		BNX2X_ERR("PXP2 CFG failed\n");
6082		return -EBUSY;
6083	}
6084	val = REG_RD(bp, PXP2_REG_RD_INIT_DONE);
6085	if (val != 1) {
6086		BNX2X_ERR("PXP2 RD_INIT failed\n");
6087		return -EBUSY;
6088	}
6089
6090	/* Timers bug workaround E2 only. We need to set the entire ILT to
6091	 * have entries with value "0" and valid bit on.
6092	 * This needs to be done by the first PF that is loaded in a path
6093	 * (i.e. common phase)
6094	 */
6095	if (!CHIP_IS_E1x(bp)) {
6096/* In E2 there is a bug in the timers block that can cause function 6 / 7
6097 * (i.e. vnic3) to start even if it is marked as "scan-off".
6098 * This occurs when a different function (func2,3) is being marked
6099 * as "scan-off". Real-life scenario for example: if a driver is being
6100 * load-unloaded while func6,7 are down. This will cause the timer to access
6101 * the ilt, translate to a logical address and send a request to read/write.
6102 * Since the ilt for the function that is down is not valid, this will cause
6103 * a translation error which is unrecoverable.
6104 * The Workaround is intended to make sure that when this happens nothing fatal
6105 * will occur. The workaround:
6106 *	1.  First PF driver which loads on a path will:
6107 *		a.  After taking the chip out of reset, by using pretend,
6108 *		    it will write "0" to the following registers of
6109 *		    the other vnics.
6110 *		    REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
6111 *		    REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0);
6112 *		    REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0);
6113 *		    And for itself it will write '1' to
6114 *		    PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable
6115 *		    dmae-operations (writing to pram for example.)
6116 *		    note: can be done for only function 6,7 but cleaner this
6117 *			  way.
6118 *		b.  Write zero+valid to the entire ILT.
6119 *		c.  Init the first_timers_ilt_entry, last_timers_ilt_entry of
6120 *		    VNIC3 (of that port). The range allocated will be the
6121 *		    entire ILT. This is needed to prevent  ILT range error.
6122 *	2.  Any PF driver load flow:
6123 *		a.  ILT update with the physical addresses of the allocated
6124 *		    logical pages.
6125 *		b.  Wait 20msec. - note that this timeout is needed to make
6126 *		    sure there are no requests in one of the PXP internal
6127 *		    queues with "old" ILT addresses.
6128 *		c.  PF enable in the PGLC.
6129 *		d.  Clear the was_error of the PF in the PGLC. (could have
6130 *		    occured while driver was down)
6131 *		e.  PF enable in the CFC (WEAK + STRONG)
6132 *		f.  Timers scan enable
6133 *	3.  PF driver unload flow:
6134 *		a.  Clear the Timers scan_en.
6135 *		b.  Polling for scan_on=0 for that PF.
6136 *		c.  Clear the PF enable bit in the PXP.
6137 *		d.  Clear the PF enable in the CFC (WEAK + STRONG)
6138 *		e.  Write zero+valid to all ILT entries (The valid bit must
6139 *		    stay set)
6140 *		f.  If this is VNIC 3 of a port then also init
6141 *		    first_timers_ilt_entry to zero and last_timers_ilt_entry
6142 *		    to the last enrty in the ILT.
6143 *
6144 *	Notes:
6145 *	Currently the PF error in the PGLC is non recoverable.
6146 *	In the future the there will be a recovery routine for this error.
6147 *	Currently attention is masked.
6148 *	Having an MCP lock on the load/unload process does not guarantee that
6149 *	there is no Timer disable during Func6/7 enable. This is because the
6150 *	Timers scan is currently being cleared by the MCP on FLR.
6151 *	Step 2.d can be done only for PF6/7 and the driver can also check if
6152 *	there is error before clearing it. But the flow above is simpler and
6153 *	more general.
6154 *	All ILT entries are written by zero+valid and not just PF6/7
6155 *	ILT entries since in the future the ILT entries allocation for
6156 *	PF-s might be dynamic.
6157 */
6158		struct ilt_client_info ilt_cli;
6159		struct bnx2x_ilt ilt;
6160		memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
6161		memset(&ilt, 0, sizeof(struct bnx2x_ilt));
6162
6163		/* initialize dummy TM client */
6164		ilt_cli.start = 0;
6165		ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
6166		ilt_cli.client_num = ILT_CLIENT_TM;
6167
6168		/* Step 1: set zeroes to all ilt page entries with valid bit on
6169		 * Step 2: set the timers first/last ilt entry to point
6170		 * to the entire range to prevent ILT range error for 3rd/4th
6171		 * vnic	(this code assumes existance of the vnic)
6172		 *
6173		 * both steps performed by call to bnx2x_ilt_client_init_op()
6174		 * with dummy TM client
6175		 *
6176		 * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT
6177		 * and his brother are split registers
6178		 */
6179		bnx2x_pretend_func(bp, (BP_PATH(bp) + 6));
6180		bnx2x_ilt_client_init_op_ilt(bp, &ilt, &ilt_cli, INITOP_CLEAR);
6181		bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
6182
6183		REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN, BNX2X_PXP_DRAM_ALIGN);
6184		REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_RD, BNX2X_PXP_DRAM_ALIGN);
6185		REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1);
6186	}
6187
6188
6189	REG_WR(bp, PXP2_REG_RQ_DISABLE_INPUTS, 0);
6190	REG_WR(bp, PXP2_REG_RD_DISABLE_INPUTS, 0);
6191
6192	if (!CHIP_IS_E1x(bp)) {
6193		int factor = CHIP_REV_IS_EMUL(bp) ? 1000 :
6194				(CHIP_REV_IS_FPGA(bp) ? 400 : 0);
6195		bnx2x_init_block(bp, BLOCK_PGLUE_B, PHASE_COMMON);
6196
6197		bnx2x_init_block(bp, BLOCK_ATC, PHASE_COMMON);
6198
6199		/* let the HW do it's magic ... */
6200		do {
6201			msleep(200);
6202			val = REG_RD(bp, ATC_REG_ATC_INIT_DONE);
6203		} while (factor-- && (val != 1));
6204
6205		if (val != 1) {
6206			BNX2X_ERR("ATC_INIT failed\n");
6207			return -EBUSY;
6208		}
6209	}
6210
6211	bnx2x_init_block(bp, BLOCK_DMAE, PHASE_COMMON);
6212
6213	/* clean the DMAE memory */
6214	bp->dmae_ready = 1;
6215	bnx2x_init_fill(bp, TSEM_REG_PRAM, 0, 8, 1);
6216
6217	bnx2x_init_block(bp, BLOCK_TCM, PHASE_COMMON);
6218
6219	bnx2x_init_block(bp, BLOCK_UCM, PHASE_COMMON);
6220
6221	bnx2x_init_block(bp, BLOCK_CCM, PHASE_COMMON);
6222
6223	bnx2x_init_block(bp, BLOCK_XCM, PHASE_COMMON);
6224
6225	bnx2x_read_dmae(bp, XSEM_REG_PASSIVE_BUFFER, 3);
6226	bnx2x_read_dmae(bp, CSEM_REG_PASSIVE_BUFFER, 3);
6227	bnx2x_read_dmae(bp, TSEM_REG_PASSIVE_BUFFER, 3);
6228	bnx2x_read_dmae(bp, USEM_REG_PASSIVE_BUFFER, 3);
6229
6230	bnx2x_init_block(bp, BLOCK_QM, PHASE_COMMON);
6231
6232
6233	/* QM queues pointers table */
6234	bnx2x_qm_init_ptr_table(bp, bp->qm_cid_count, INITOP_SET);
6235
6236	/* soft reset pulse */
6237	REG_WR(bp, QM_REG_SOFT_RESET, 1);
6238	REG_WR(bp, QM_REG_SOFT_RESET, 0);
6239
6240#ifdef BCM_CNIC
6241	bnx2x_init_block(bp, BLOCK_TM, PHASE_COMMON);
6242#endif
6243
6244	bnx2x_init_block(bp, BLOCK_DORQ, PHASE_COMMON);
6245	REG_WR(bp, DORQ_REG_DPM_CID_OFST, BNX2X_DB_SHIFT);
6246	if (!CHIP_REV_IS_SLOW(bp))
6247		/* enable hw interrupt from doorbell Q */
6248		REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
6249
6250	bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6251
6252	bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6253	REG_WR(bp, PRS_REG_A_PRSU_20, 0xf);
6254
6255	if (!CHIP_IS_E1(bp))
6256		REG_WR(bp, PRS_REG_E1HOV_MODE, bp->path_has_ovlan);
6257
6258	if (!CHIP_IS_E1x(bp) && !CHIP_IS_E3B0(bp))
6259		/* Bit-map indicating which L2 hdrs may appear
6260		 * after the basic Ethernet header
6261		 */
6262		REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC,
6263		       bp->path_has_ovlan ? 7 : 6);
6264
6265	bnx2x_init_block(bp, BLOCK_TSDM, PHASE_COMMON);
6266	bnx2x_init_block(bp, BLOCK_CSDM, PHASE_COMMON);
6267	bnx2x_init_block(bp, BLOCK_USDM, PHASE_COMMON);
6268	bnx2x_init_block(bp, BLOCK_XSDM, PHASE_COMMON);
6269
6270	if (!CHIP_IS_E1x(bp)) {
6271		/* reset VFC memories */
6272		REG_WR(bp, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
6273			   VFC_MEMORIES_RST_REG_CAM_RST |
6274			   VFC_MEMORIES_RST_REG_RAM_RST);
6275		REG_WR(bp, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
6276			   VFC_MEMORIES_RST_REG_CAM_RST |
6277			   VFC_MEMORIES_RST_REG_RAM_RST);
6278
6279		msleep(20);
6280	}
6281
6282	bnx2x_init_block(bp, BLOCK_TSEM, PHASE_COMMON);
6283	bnx2x_init_block(bp, BLOCK_USEM, PHASE_COMMON);
6284	bnx2x_init_block(bp, BLOCK_CSEM, PHASE_COMMON);
6285	bnx2x_init_block(bp, BLOCK_XSEM, PHASE_COMMON);
6286
6287	/* sync semi rtc */
6288	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
6289	       0x80000000);
6290	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET,
6291	       0x80000000);
6292
6293	bnx2x_init_block(bp, BLOCK_UPB, PHASE_COMMON);
6294	bnx2x_init_block(bp, BLOCK_XPB, PHASE_COMMON);
6295	bnx2x_init_block(bp, BLOCK_PBF, PHASE_COMMON);
6296
6297	if (!CHIP_IS_E1x(bp))
6298		REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC,
6299		       bp->path_has_ovlan ? 7 : 6);
6300
6301	REG_WR(bp, SRC_REG_SOFT_RST, 1);
6302
6303	bnx2x_init_block(bp, BLOCK_SRC, PHASE_COMMON);
6304
6305#ifdef BCM_CNIC
6306	REG_WR(bp, SRC_REG_KEYSEARCH_0, 0x63285672);
6307	REG_WR(bp, SRC_REG_KEYSEARCH_1, 0x24b8f2cc);
6308	REG_WR(bp, SRC_REG_KEYSEARCH_2, 0x223aef9b);
6309	REG_WR(bp, SRC_REG_KEYSEARCH_3, 0x26001e3a);
6310	REG_WR(bp, SRC_REG_KEYSEARCH_4, 0x7ae91116);
6311	REG_WR(bp, SRC_REG_KEYSEARCH_5, 0x5ce5230b);
6312	REG_WR(bp, SRC_REG_KEYSEARCH_6, 0x298d8adf);
6313	REG_WR(bp, SRC_REG_KEYSEARCH_7, 0x6eb0ff09);
6314	REG_WR(bp, SRC_REG_KEYSEARCH_8, 0x1830f82f);
6315	REG_WR(bp, SRC_REG_KEYSEARCH_9, 0x01e46be7);
6316#endif
6317	REG_WR(bp, SRC_REG_SOFT_RST, 0);
6318
6319	if (sizeof(union cdu_context) != 1024)
6320		/* we currently assume that a context is 1024 bytes */
6321		dev_alert(&bp->pdev->dev,
6322			  "please adjust the size of cdu_context(%ld)\n",
6323			  (long)sizeof(union cdu_context));
6324
6325	bnx2x_init_block(bp, BLOCK_CDU, PHASE_COMMON);
6326	val = (4 << 24) + (0 << 12) + 1024;
6327	REG_WR(bp, CDU_REG_CDU_GLOBAL_PARAMS, val);
6328
6329	bnx2x_init_block(bp, BLOCK_CFC, PHASE_COMMON);
6330	REG_WR(bp, CFC_REG_INIT_REG, 0x7FF);
6331	/* enable context validation interrupt from CFC */
6332	REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
6333
6334	/* set the thresholds to prevent CFC/CDU race */
6335	REG_WR(bp, CFC_REG_DEBUG0, 0x20020000);
6336
6337	bnx2x_init_block(bp, BLOCK_HC, PHASE_COMMON);
6338
6339	if (!CHIP_IS_E1x(bp) && BP_NOMCP(bp))
6340		REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x36);
6341
6342	bnx2x_init_block(bp, BLOCK_IGU, PHASE_COMMON);
6343	bnx2x_init_block(bp, BLOCK_MISC_AEU, PHASE_COMMON);
6344
6345	/* Reset PCIE errors for debug */
6346	REG_WR(bp, 0x2814, 0xffffffff);
6347	REG_WR(bp, 0x3820, 0xffffffff);
6348
6349	if (!CHIP_IS_E1x(bp)) {
6350		REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_CONTROL_5,
6351			   (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 |
6352				PXPCS_TL_CONTROL_5_ERR_UNSPPORT));
6353		REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT,
6354			   (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 |
6355				PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 |
6356				PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2));
6357		REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT,
6358			   (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 |
6359				PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 |
6360				PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5));
6361	}
6362
6363	bnx2x_init_block(bp, BLOCK_NIG, PHASE_COMMON);
6364	if (!CHIP_IS_E1(bp)) {
6365		/* in E3 this done in per-port section */
6366		if (!CHIP_IS_E3(bp))
6367			REG_WR(bp, NIG_REG_LLH_MF_MODE, IS_MF(bp));
6368	}
6369	if (CHIP_IS_E1H(bp))
6370		/* not applicable for E2 (and above ...) */
6371		REG_WR(bp, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(bp));
6372
6373	if (CHIP_REV_IS_SLOW(bp))
6374		msleep(200);
6375
6376	/* finish CFC init */
6377	val = reg_poll(bp, CFC_REG_LL_INIT_DONE, 1, 100, 10);
6378	if (val != 1) {
6379		BNX2X_ERR("CFC LL_INIT failed\n");
6380		return -EBUSY;
6381	}
6382	val = reg_poll(bp, CFC_REG_AC_INIT_DONE, 1, 100, 10);
6383	if (val != 1) {
6384		BNX2X_ERR("CFC AC_INIT failed\n");
6385		return -EBUSY;
6386	}
6387	val = reg_poll(bp, CFC_REG_CAM_INIT_DONE, 1, 100, 10);
6388	if (val != 1) {
6389		BNX2X_ERR("CFC CAM_INIT failed\n");
6390		return -EBUSY;
6391	}
6392	REG_WR(bp, CFC_REG_DEBUG0, 0);
6393
6394	if (CHIP_IS_E1(bp)) {
6395		/* read NIG statistic
6396		   to see if this is our first up since powerup */
6397		bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
6398		val = *bnx2x_sp(bp, wb_data[0]);
6399
6400		/* do internal memory self test */
6401		if ((val == 0) && bnx2x_int_mem_test(bp)) {
6402			BNX2X_ERR("internal mem self test failed\n");
6403			return -EBUSY;
6404		}
6405	}
6406
6407	bnx2x_setup_fan_failure_detection(bp);
6408
6409	/* clear PXP2 attentions */
6410	REG_RD(bp, PXP2_REG_PXP2_INT_STS_CLR_0);
6411
6412	bnx2x_enable_blocks_attention(bp);
6413	bnx2x_enable_blocks_parity(bp);
6414
6415	if (!BP_NOMCP(bp)) {
6416		if (CHIP_IS_E1x(bp))
6417			bnx2x__common_init_phy(bp);
6418	} else
6419		BNX2X_ERR("Bootcode is missing - can not initialize link\n");
6420
6421	return 0;
6422}
6423
6424/**
6425 * bnx2x_init_hw_common_chip - init HW at the COMMON_CHIP phase.
6426 *
6427 * @bp:		driver handle
6428 */
6429static int bnx2x_init_hw_common_chip(struct bnx2x *bp)
6430{
6431	int rc = bnx2x_init_hw_common(bp);
6432
6433	if (rc)
6434		return rc;
6435
6436	/* In E2 2-PORT mode, same ext phy is used for the two paths */
6437	if (!BP_NOMCP(bp))
6438		bnx2x__common_init_phy(bp);
6439
6440	return 0;
6441}
6442
6443static int bnx2x_init_hw_port(struct bnx2x *bp)
6444{
6445	int port = BP_PORT(bp);
6446	int init_phase = port ? PHASE_PORT1 : PHASE_PORT0;
6447	u32 low, high;
6448	u32 val;
6449
6450	bnx2x__link_reset(bp);
6451
6452	DP(NETIF_MSG_HW, "starting port init  port %d\n", port);
6453
6454	REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
6455
6456	bnx2x_init_block(bp, BLOCK_MISC, init_phase);
6457	bnx2x_init_block(bp, BLOCK_PXP, init_phase);
6458	bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
6459
6460	/* Timers bug workaround: disables the pf_master bit in pglue at
6461	 * common phase, we need to enable it here before any dmae access are
6462	 * attempted. Therefore we manually added the enable-master to the
6463	 * port phase (it also happens in the function phase)
6464	 */
6465	if (!CHIP_IS_E1x(bp))
6466		REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
6467
6468	bnx2x_init_block(bp, BLOCK_ATC, init_phase);
6469	bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
6470	bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
6471	bnx2x_init_block(bp, BLOCK_QM, init_phase);
6472
6473	bnx2x_init_block(bp, BLOCK_TCM, init_phase);
6474	bnx2x_init_block(bp, BLOCK_UCM, init_phase);
6475	bnx2x_init_block(bp, BLOCK_CCM, init_phase);
6476	bnx2x_init_block(bp, BLOCK_XCM, init_phase);
6477
6478	/* QM cid (connection) count */
6479	bnx2x_qm_init_cid_count(bp, bp->qm_cid_count, INITOP_SET);
6480
6481#ifdef BCM_CNIC
6482	bnx2x_init_block(bp, BLOCK_TM, init_phase);
6483	REG_WR(bp, TM_REG_LIN0_SCAN_TIME + port*4, 20);
6484	REG_WR(bp, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31);
6485#endif
6486
6487	bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
6488
6489	if (CHIP_IS_E1(bp) || CHIP_IS_E1H(bp)) {
6490		bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
6491
6492		if (IS_MF(bp))
6493			low = ((bp->flags & ONE_PORT_FLAG) ? 160 : 246);
6494		else if (bp->dev->mtu > 4096) {
6495			if (bp->flags & ONE_PORT_FLAG)
6496				low = 160;
6497			else {
6498				val = bp->dev->mtu;
6499				/* (24*1024 + val*4)/256 */
6500				low = 96 + (val/64) +
6501						((val % 64) ? 1 : 0);
6502			}
6503		} else
6504			low = ((bp->flags & ONE_PORT_FLAG) ? 80 : 160);
6505		high = low + 56;	/* 14*1024/256 */
6506		REG_WR(bp, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low);
6507		REG_WR(bp, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high);
6508	}
6509
6510	if (CHIP_MODE_IS_4_PORT(bp))
6511		REG_WR(bp, (BP_PORT(bp) ?
6512			    BRB1_REG_MAC_GUARANTIED_1 :
6513			    BRB1_REG_MAC_GUARANTIED_0), 40);
6514
6515
6516	bnx2x_init_block(bp, BLOCK_PRS, init_phase);
6517	if (CHIP_IS_E3B0(bp))
6518		/* Ovlan exists only if we are in multi-function +
6519		 * switch-dependent mode, in switch-independent there
6520		 * is no ovlan headers
6521		 */
6522		REG_WR(bp, BP_PORT(bp) ?
6523		       PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
6524		       PRS_REG_HDRS_AFTER_BASIC_PORT_0,
6525		       (bp->path_has_ovlan ? 7 : 6));
6526
6527	bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
6528	bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
6529	bnx2x_init_block(bp, BLOCK_USDM, init_phase);
6530	bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
6531
6532	bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
6533	bnx2x_init_block(bp, BLOCK_USEM, init_phase);
6534	bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
6535	bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
6536
6537	bnx2x_init_block(bp, BLOCK_UPB, init_phase);
6538	bnx2x_init_block(bp, BLOCK_XPB, init_phase);
6539
6540	bnx2x_init_block(bp, BLOCK_PBF, init_phase);
6541
6542	if (CHIP_IS_E1x(bp)) {
6543		/* configure PBF to work without PAUSE mtu 9000 */
6544		REG_WR(bp, PBF_REG_P0_PAUSE_ENABLE + port*4, 0);
6545
6546		/* update threshold */
6547		REG_WR(bp, PBF_REG_P0_ARB_THRSH + port*4, (9040/16));
6548		/* update init credit */
6549		REG_WR(bp, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22);
6550
6551		/* probe changes */
6552		REG_WR(bp, PBF_REG_INIT_P0 + port*4, 1);
6553		udelay(50);
6554		REG_WR(bp, PBF_REG_INIT_P0 + port*4, 0);
6555	}
6556
6557#ifdef BCM_CNIC
6558	bnx2x_init_block(bp, BLOCK_SRC, init_phase);
6559#endif
6560	bnx2x_init_block(bp, BLOCK_CDU, init_phase);
6561	bnx2x_init_block(bp, BLOCK_CFC, init_phase);
6562
6563	if (CHIP_IS_E1(bp)) {
6564		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
6565		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
6566	}
6567	bnx2x_init_block(bp, BLOCK_HC, init_phase);
6568
6569	bnx2x_init_block(bp, BLOCK_IGU, init_phase);
6570
6571	bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
6572	/* init aeu_mask_attn_func_0/1:
6573	 *  - SF mode: bits 3-7 are masked. only bits 0-2 are in use
6574	 *  - MF mode: bit 3 is masked. bits 0-2 are in use as in SF
6575	 *             bits 4-7 are used for "per vn group attention" */
6576	val = IS_MF(bp) ? 0xF7 : 0x7;
6577	/* Enable DCBX attention for all but E1 */
6578	val |= CHIP_IS_E1(bp) ? 0 : 0x10;
6579	REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val);
6580
6581	bnx2x_init_block(bp, BLOCK_NIG, init_phase);
6582
6583	if (!CHIP_IS_E1x(bp)) {
6584		/* Bit-map indicating which L2 hdrs may appear after the
6585		 * basic Ethernet header
6586		 */
6587		REG_WR(bp, BP_PORT(bp) ?
6588			   NIG_REG_P1_HDRS_AFTER_BASIC :
6589			   NIG_REG_P0_HDRS_AFTER_BASIC,
6590			   IS_MF_SD(bp) ? 7 : 6);
6591
6592		if (CHIP_IS_E3(bp))
6593			REG_WR(bp, BP_PORT(bp) ?
6594				   NIG_REG_LLH1_MF_MODE :
6595				   NIG_REG_LLH_MF_MODE, IS_MF(bp));
6596	}
6597	if (!CHIP_IS_E3(bp))
6598		REG_WR(bp, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1);
6599
6600	if (!CHIP_IS_E1(bp)) {
6601		/* 0x2 disable mf_ov, 0x1 enable */
6602		REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4,
6603		       (IS_MF_SD(bp) ? 0x1 : 0x2));
6604
6605		if (!CHIP_IS_E1x(bp)) {
6606			val = 0;
6607			switch (bp->mf_mode) {
6608			case MULTI_FUNCTION_SD:
6609				val = 1;
6610				break;
6611			case MULTI_FUNCTION_SI:
6612				val = 2;
6613				break;
6614			}
6615
6616			REG_WR(bp, (BP_PORT(bp) ? NIG_REG_LLH1_CLS_TYPE :
6617						  NIG_REG_LLH0_CLS_TYPE), val);
6618		}
6619		{
6620			REG_WR(bp, NIG_REG_LLFC_ENABLE_0 + port*4, 0);
6621			REG_WR(bp, NIG_REG_LLFC_OUT_EN_0 + port*4, 0);
6622			REG_WR(bp, NIG_REG_PAUSE_ENABLE_0 + port*4, 1);
6623		}
6624	}
6625
6626
6627	/* If SPIO5 is set to generate interrupts, enable it for this port */
6628	val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
6629	if (val & (1 << MISC_REGISTERS_SPIO_5)) {
6630		u32 reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
6631				       MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
6632		val = REG_RD(bp, reg_addr);
6633		val |= AEU_INPUTS_ATTN_BITS_SPIO5;
6634		REG_WR(bp, reg_addr, val);
6635	}
6636
6637	return 0;
6638}
6639
6640static void bnx2x_ilt_wr(struct bnx2x *bp, u32 index, dma_addr_t addr)
6641{
6642	int reg;
6643
6644	if (CHIP_IS_E1(bp))
6645		reg = PXP2_REG_RQ_ONCHIP_AT + index*8;
6646	else
6647		reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8;
6648
6649	bnx2x_wb_wr(bp, reg, ONCHIP_ADDR1(addr), ONCHIP_ADDR2(addr));
6650}
6651
6652static inline void bnx2x_igu_clear_sb(struct bnx2x *bp, u8 idu_sb_id)
6653{
6654	bnx2x_igu_clear_sb_gen(bp, BP_FUNC(bp), idu_sb_id, true /*PF*/);
6655}
6656
6657static inline void bnx2x_clear_func_ilt(struct bnx2x *bp, u32 func)
6658{
6659	u32 i, base = FUNC_ILT_BASE(func);
6660	for (i = base; i < base + ILT_PER_FUNC; i++)
6661		bnx2x_ilt_wr(bp, i, 0);
6662}
6663
6664static int bnx2x_init_hw_func(struct bnx2x *bp)
6665{
6666	int port = BP_PORT(bp);
6667	int func = BP_FUNC(bp);
6668	int init_phase = PHASE_PF0 + func;
6669	struct bnx2x_ilt *ilt = BP_ILT(bp);
6670	u16 cdu_ilt_start;
6671	u32 addr, val;
6672	u32 main_mem_base, main_mem_size, main_mem_prty_clr;
6673	int i, main_mem_width, rc;
6674
6675	DP(NETIF_MSG_HW, "starting func init  func %d\n", func);
6676
6677	/* FLR cleanup - hmmm */
6678	if (!CHIP_IS_E1x(bp)) {
6679		rc = bnx2x_pf_flr_clnup(bp);
6680		if (rc)
6681			return rc;
6682	}
6683
6684	/* set MSI reconfigure capability */
6685	if (bp->common.int_block == INT_BLOCK_HC) {
6686		addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0);
6687		val = REG_RD(bp, addr);
6688		val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0;
6689		REG_WR(bp, addr, val);
6690	}
6691
6692	bnx2x_init_block(bp, BLOCK_PXP, init_phase);
6693	bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
6694
6695	ilt = BP_ILT(bp);
6696	cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
6697
6698	for (i = 0; i < L2_ILT_LINES(bp); i++) {
6699		ilt->lines[cdu_ilt_start + i].page =
6700			bp->context.vcxt + (ILT_PAGE_CIDS * i);
6701		ilt->lines[cdu_ilt_start + i].page_mapping =
6702			bp->context.cxt_mapping + (CDU_ILT_PAGE_SZ * i);
6703		/* cdu ilt pages are allocated manually so there's no need to
6704		set the size */
6705	}
6706	bnx2x_ilt_init_op(bp, INITOP_SET);
6707
6708#ifdef BCM_CNIC
6709	bnx2x_src_init_t2(bp, bp->t2, bp->t2_mapping, SRC_CONN_NUM);
6710
6711	/* T1 hash bits value determines the T1 number of entries */
6712	REG_WR(bp, SRC_REG_NUMBER_HASH_BITS0 + port*4, SRC_HASH_BITS);
6713#endif
6714
6715#ifndef BCM_CNIC
6716	/* set NIC mode */
6717	REG_WR(bp, PRS_REG_NIC_MODE, 1);
6718#endif  /* BCM_CNIC */
6719
6720	if (!CHIP_IS_E1x(bp)) {
6721		u32 pf_conf = IGU_PF_CONF_FUNC_EN;
6722
6723		/* Turn on a single ISR mode in IGU if driver is going to use
6724		 * INT#x or MSI
6725		 */
6726		if (!(bp->flags & USING_MSIX_FLAG))
6727			pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
6728		/*
6729		 * Timers workaround bug: function init part.
6730		 * Need to wait 20msec after initializing ILT,
6731		 * needed to make sure there are no requests in
6732		 * one of the PXP internal queues with "old" ILT addresses
6733		 */
6734		msleep(20);
6735		/*
6736		 * Master enable - Due to WB DMAE writes performed before this
6737		 * register is re-initialized as part of the regular function
6738		 * init
6739		 */
6740		REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
6741		/* Enable the function in IGU */
6742		REG_WR(bp, IGU_REG_PF_CONFIGURATION, pf_conf);
6743	}
6744
6745	bp->dmae_ready = 1;
6746
6747	bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
6748
6749	if (!CHIP_IS_E1x(bp))
6750		REG_WR(bp, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, func);
6751
6752	bnx2x_init_block(bp, BLOCK_ATC, init_phase);
6753	bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
6754	bnx2x_init_block(bp, BLOCK_NIG, init_phase);
6755	bnx2x_init_block(bp, BLOCK_SRC, init_phase);
6756	bnx2x_init_block(bp, BLOCK_MISC, init_phase);
6757	bnx2x_init_block(bp, BLOCK_TCM, init_phase);
6758	bnx2x_init_block(bp, BLOCK_UCM, init_phase);
6759	bnx2x_init_block(bp, BLOCK_CCM, init_phase);
6760	bnx2x_init_block(bp, BLOCK_XCM, init_phase);
6761	bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
6762	bnx2x_init_block(bp, BLOCK_USEM, init_phase);
6763	bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
6764	bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
6765
6766	if (!CHIP_IS_E1x(bp))
6767		REG_WR(bp, QM_REG_PF_EN, 1);
6768
6769	if (!CHIP_IS_E1x(bp)) {
6770		REG_WR(bp, TSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
6771		REG_WR(bp, USEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
6772		REG_WR(bp, CSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
6773		REG_WR(bp, XSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
6774	}
6775	bnx2x_init_block(bp, BLOCK_QM, init_phase);
6776
6777	bnx2x_init_block(bp, BLOCK_TM, init_phase);
6778	bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
6779	bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
6780	bnx2x_init_block(bp, BLOCK_PRS, init_phase);
6781	bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
6782	bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
6783	bnx2x_init_block(bp, BLOCK_USDM, init_phase);
6784	bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
6785	bnx2x_init_block(bp, BLOCK_UPB, init_phase);
6786	bnx2x_init_block(bp, BLOCK_XPB, init_phase);
6787	bnx2x_init_block(bp, BLOCK_PBF, init_phase);
6788	if (!CHIP_IS_E1x(bp))
6789		REG_WR(bp, PBF_REG_DISABLE_PF, 0);
6790
6791	bnx2x_init_block(bp, BLOCK_CDU, init_phase);
6792
6793	bnx2x_init_block(bp, BLOCK_CFC, init_phase);
6794
6795	if (!CHIP_IS_E1x(bp))
6796		REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 1);
6797
6798	if (IS_MF(bp)) {
6799		REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 1);
6800		REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + port*8, bp->mf_ov);
6801	}
6802
6803	bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
6804
6805	/* HC init per function */
6806	if (bp->common.int_block == INT_BLOCK_HC) {
6807		if (CHIP_IS_E1H(bp)) {
6808			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
6809
6810			REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
6811			REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
6812		}
6813		bnx2x_init_block(bp, BLOCK_HC, init_phase);
6814
6815	} else {
6816		int num_segs, sb_idx, prod_offset;
6817
6818		REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
6819
6820		if (!CHIP_IS_E1x(bp)) {
6821			REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
6822			REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
6823		}
6824
6825		bnx2x_init_block(bp, BLOCK_IGU, init_phase);
6826
6827		if (!CHIP_IS_E1x(bp)) {
6828			int dsb_idx = 0;
6829			/**
6830			 * Producer memory:
6831			 * E2 mode: address 0-135 match to the mapping memory;
6832			 * 136 - PF0 default prod; 137 - PF1 default prod;
6833			 * 138 - PF2 default prod; 139 - PF3 default prod;
6834			 * 140 - PF0 attn prod;    141 - PF1 attn prod;
6835			 * 142 - PF2 attn prod;    143 - PF3 attn prod;
6836			 * 144-147 reserved.
6837			 *
6838			 * E1.5 mode - In backward compatible mode;
6839			 * for non default SB; each even line in the memory
6840			 * holds the U producer and each odd line hold
6841			 * the C producer. The first 128 producers are for
6842			 * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20
6843			 * producers are for the DSB for each PF.
6844			 * Each PF has five segments: (the order inside each
6845			 * segment is PF0; PF1; PF2; PF3) - 128-131 U prods;
6846			 * 132-135 C prods; 136-139 X prods; 140-143 T prods;
6847			 * 144-147 attn prods;
6848			 */
6849			/* non-default-status-blocks */
6850			num_segs = CHIP_INT_MODE_IS_BC(bp) ?
6851				IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS;
6852			for (sb_idx = 0; sb_idx < bp->igu_sb_cnt; sb_idx++) {
6853				prod_offset = (bp->igu_base_sb + sb_idx) *
6854					num_segs;
6855
6856				for (i = 0; i < num_segs; i++) {
6857					addr = IGU_REG_PROD_CONS_MEMORY +
6858							(prod_offset + i) * 4;
6859					REG_WR(bp, addr, 0);
6860				}
6861				/* send consumer update with value 0 */
6862				bnx2x_ack_sb(bp, bp->igu_base_sb + sb_idx,
6863					     USTORM_ID, 0, IGU_INT_NOP, 1);
6864				bnx2x_igu_clear_sb(bp,
6865						   bp->igu_base_sb + sb_idx);
6866			}
6867
6868			/* default-status-blocks */
6869			num_segs = CHIP_INT_MODE_IS_BC(bp) ?
6870				IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS;
6871
6872			if (CHIP_MODE_IS_4_PORT(bp))
6873				dsb_idx = BP_FUNC(bp);
6874			else
6875				dsb_idx = BP_VN(bp);
6876
6877			prod_offset = (CHIP_INT_MODE_IS_BC(bp) ?
6878				       IGU_BC_BASE_DSB_PROD + dsb_idx :
6879				       IGU_NORM_BASE_DSB_PROD + dsb_idx);
6880
6881			/*
6882			 * igu prods come in chunks of E1HVN_MAX (4) -
6883			 * does not matters what is the current chip mode
6884			 */
6885			for (i = 0; i < (num_segs * E1HVN_MAX);
6886			     i += E1HVN_MAX) {
6887				addr = IGU_REG_PROD_CONS_MEMORY +
6888							(prod_offset + i)*4;
6889				REG_WR(bp, addr, 0);
6890			}
6891			/* send consumer update with 0 */
6892			if (CHIP_INT_MODE_IS_BC(bp)) {
6893				bnx2x_ack_sb(bp, bp->igu_dsb_id,
6894					     USTORM_ID, 0, IGU_INT_NOP, 1);
6895				bnx2x_ack_sb(bp, bp->igu_dsb_id,
6896					     CSTORM_ID, 0, IGU_INT_NOP, 1);
6897				bnx2x_ack_sb(bp, bp->igu_dsb_id,
6898					     XSTORM_ID, 0, IGU_INT_NOP, 1);
6899				bnx2x_ack_sb(bp, bp->igu_dsb_id,
6900					     TSTORM_ID, 0, IGU_INT_NOP, 1);
6901				bnx2x_ack_sb(bp, bp->igu_dsb_id,
6902					     ATTENTION_ID, 0, IGU_INT_NOP, 1);
6903			} else {
6904				bnx2x_ack_sb(bp, bp->igu_dsb_id,
6905					     USTORM_ID, 0, IGU_INT_NOP, 1);
6906				bnx2x_ack_sb(bp, bp->igu_dsb_id,
6907					     ATTENTION_ID, 0, IGU_INT_NOP, 1);
6908			}
6909			bnx2x_igu_clear_sb(bp, bp->igu_dsb_id);
6910
6911			/* !!! these should become driver const once
6912			   rf-tool supports split-68 const */
6913			REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
6914			REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
6915			REG_WR(bp, IGU_REG_SB_MASK_LSB, 0);
6916			REG_WR(bp, IGU_REG_SB_MASK_MSB, 0);
6917			REG_WR(bp, IGU_REG_PBA_STATUS_LSB, 0);
6918			REG_WR(bp, IGU_REG_PBA_STATUS_MSB, 0);
6919		}
6920	}
6921
6922	/* Reset PCIE errors for debug */
6923	REG_WR(bp, 0x2114, 0xffffffff);
6924	REG_WR(bp, 0x2120, 0xffffffff);
6925
6926	if (CHIP_IS_E1x(bp)) {
6927		main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/
6928		main_mem_base = HC_REG_MAIN_MEMORY +
6929				BP_PORT(bp) * (main_mem_size * 4);
6930		main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR;
6931		main_mem_width = 8;
6932
6933		val = REG_RD(bp, main_mem_prty_clr);
6934		if (val)
6935			DP(NETIF_MSG_HW,
6936			   "Hmmm... Parity errors in HC block during function init (0x%x)!\n",
6937			   val);
6938
6939		/* Clear "false" parity errors in MSI-X table */
6940		for (i = main_mem_base;
6941		     i < main_mem_base + main_mem_size * 4;
6942		     i += main_mem_width) {
6943			bnx2x_read_dmae(bp, i, main_mem_width / 4);
6944			bnx2x_write_dmae(bp, bnx2x_sp_mapping(bp, wb_data),
6945					 i, main_mem_width / 4);
6946		}
6947		/* Clear HC parity attention */
6948		REG_RD(bp, main_mem_prty_clr);
6949	}
6950
6951#ifdef BNX2X_STOP_ON_ERROR
6952	/* Enable STORMs SP logging */
6953	REG_WR8(bp, BAR_USTRORM_INTMEM +
6954	       USTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
6955	REG_WR8(bp, BAR_TSTRORM_INTMEM +
6956	       TSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
6957	REG_WR8(bp, BAR_CSTRORM_INTMEM +
6958	       CSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
6959	REG_WR8(bp, BAR_XSTRORM_INTMEM +
6960	       XSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
6961#endif
6962
6963	bnx2x_phy_probe(&bp->link_params);
6964
6965	return 0;
6966}
6967
6968
6969void bnx2x_free_mem(struct bnx2x *bp)
6970{
6971	/* fastpath */
6972	bnx2x_free_fp_mem(bp);
6973	/* end of fastpath */
6974
6975	BNX2X_PCI_FREE(bp->def_status_blk, bp->def_status_blk_mapping,
6976		       sizeof(struct host_sp_status_block));
6977
6978	BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping,
6979		       bp->fw_stats_data_sz + bp->fw_stats_req_sz);
6980
6981	BNX2X_PCI_FREE(bp->slowpath, bp->slowpath_mapping,
6982		       sizeof(struct bnx2x_slowpath));
6983
6984	BNX2X_PCI_FREE(bp->context.vcxt, bp->context.cxt_mapping,
6985		       bp->context.size);
6986
6987	bnx2x_ilt_mem_op(bp, ILT_MEMOP_FREE);
6988
6989	BNX2X_FREE(bp->ilt->lines);
6990
6991#ifdef BCM_CNIC
6992	if (!CHIP_IS_E1x(bp))
6993		BNX2X_PCI_FREE(bp->cnic_sb.e2_sb, bp->cnic_sb_mapping,
6994			       sizeof(struct host_hc_status_block_e2));
6995	else
6996		BNX2X_PCI_FREE(bp->cnic_sb.e1x_sb, bp->cnic_sb_mapping,
6997			       sizeof(struct host_hc_status_block_e1x));
6998
6999	BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ);
7000#endif
7001
7002	BNX2X_PCI_FREE(bp->spq, bp->spq_mapping, BCM_PAGE_SIZE);
7003
7004	BNX2X_PCI_FREE(bp->eq_ring, bp->eq_mapping,
7005		       BCM_PAGE_SIZE * NUM_EQ_PAGES);
7006}
7007
7008static inline int bnx2x_alloc_fw_stats_mem(struct bnx2x *bp)
7009{
7010	int num_groups;
7011	int is_fcoe_stats = NO_FCOE(bp) ? 0 : 1;
7012
7013	/* number of queues for statistics is number of eth queues + FCoE */
7014	u8 num_queue_stats = BNX2X_NUM_ETH_QUEUES(bp) + is_fcoe_stats;
7015
7016	/* Total number of FW statistics requests =
7017	 * 1 for port stats + 1 for PF stats + potential 1 for FCoE stats +
7018	 * num of queues
7019	 */
7020	bp->fw_stats_num = 2 + is_fcoe_stats + num_queue_stats;
7021
7022
7023	/* Request is built from stats_query_header and an array of
7024	 * stats_query_cmd_group each of which contains
7025	 * STATS_QUERY_CMD_COUNT rules. The real number or requests is
7026	 * configured in the stats_query_header.
7027	 */
7028	num_groups = ((bp->fw_stats_num) / STATS_QUERY_CMD_COUNT) +
7029		     (((bp->fw_stats_num) % STATS_QUERY_CMD_COUNT) ? 1 : 0);
7030
7031	bp->fw_stats_req_sz = sizeof(struct stats_query_header) +
7032			num_groups * sizeof(struct stats_query_cmd_group);
7033
7034	/* Data for statistics requests + stats_conter
7035	 *
7036	 * stats_counter holds per-STORM counters that are incremented
7037	 * when STORM has finished with the current request.
7038	 *
7039	 * memory for FCoE offloaded statistics are counted anyway,
7040	 * even if they will not be sent.
7041	 */
7042	bp->fw_stats_data_sz = sizeof(struct per_port_stats) +
7043		sizeof(struct per_pf_stats) +
7044		sizeof(struct fcoe_statistics_params) +
7045		sizeof(struct per_queue_stats) * num_queue_stats +
7046		sizeof(struct stats_counter);
7047
7048	BNX2X_PCI_ALLOC(bp->fw_stats, &bp->fw_stats_mapping,
7049			bp->fw_stats_data_sz + bp->fw_stats_req_sz);
7050
7051	/* Set shortcuts */
7052	bp->fw_stats_req = (struct bnx2x_fw_stats_req *)bp->fw_stats;
7053	bp->fw_stats_req_mapping = bp->fw_stats_mapping;
7054
7055	bp->fw_stats_data = (struct bnx2x_fw_stats_data *)
7056		((u8 *)bp->fw_stats + bp->fw_stats_req_sz);
7057
7058	bp->fw_stats_data_mapping = bp->fw_stats_mapping +
7059				   bp->fw_stats_req_sz;
7060	return 0;
7061
7062alloc_mem_err:
7063	BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping,
7064		       bp->fw_stats_data_sz + bp->fw_stats_req_sz);
7065	BNX2X_ERR("Can't allocate memory\n");
7066	return -ENOMEM;
7067}
7068
7069
7070int bnx2x_alloc_mem(struct bnx2x *bp)
7071{
7072#ifdef BCM_CNIC
7073	if (!CHIP_IS_E1x(bp))
7074		/* size = the status block + ramrod buffers */
7075		BNX2X_PCI_ALLOC(bp->cnic_sb.e2_sb, &bp->cnic_sb_mapping,
7076				sizeof(struct host_hc_status_block_e2));
7077	else
7078		BNX2X_PCI_ALLOC(bp->cnic_sb.e1x_sb, &bp->cnic_sb_mapping,
7079				sizeof(struct host_hc_status_block_e1x));
7080
7081	/* allocate searcher T2 table */
7082	BNX2X_PCI_ALLOC(bp->t2, &bp->t2_mapping, SRC_T2_SZ);
7083#endif
7084
7085
7086	BNX2X_PCI_ALLOC(bp->def_status_blk, &bp->def_status_blk_mapping,
7087			sizeof(struct host_sp_status_block));
7088
7089	BNX2X_PCI_ALLOC(bp->slowpath, &bp->slowpath_mapping,
7090			sizeof(struct bnx2x_slowpath));
7091
7092#ifdef BCM_CNIC
7093	/* write address to which L5 should insert its values */
7094	bp->cnic_eth_dev.addr_drv_info_to_mcp = &bp->slowpath->drv_info_to_mcp;
7095#endif
7096
7097	/* Allocated memory for FW statistics  */
7098	if (bnx2x_alloc_fw_stats_mem(bp))
7099		goto alloc_mem_err;
7100
7101	bp->context.size = sizeof(union cdu_context) * BNX2X_L2_CID_COUNT(bp);
7102
7103	BNX2X_PCI_ALLOC(bp->context.vcxt, &bp->context.cxt_mapping,
7104			bp->context.size);
7105
7106	BNX2X_ALLOC(bp->ilt->lines, sizeof(struct ilt_line) * ILT_MAX_LINES);
7107
7108	if (bnx2x_ilt_mem_op(bp, ILT_MEMOP_ALLOC))
7109		goto alloc_mem_err;
7110
7111	/* Slow path ring */
7112	BNX2X_PCI_ALLOC(bp->spq, &bp->spq_mapping, BCM_PAGE_SIZE);
7113
7114	/* EQ */
7115	BNX2X_PCI_ALLOC(bp->eq_ring, &bp->eq_mapping,
7116			BCM_PAGE_SIZE * NUM_EQ_PAGES);
7117
7118
7119	/* fastpath */
7120	/* need to be done at the end, since it's self adjusting to amount
7121	 * of memory available for RSS queues
7122	 */
7123	if (bnx2x_alloc_fp_mem(bp))
7124		goto alloc_mem_err;
7125	return 0;
7126
7127alloc_mem_err:
7128	bnx2x_free_mem(bp);
7129	BNX2X_ERR("Can't allocate memory\n");
7130	return -ENOMEM;
7131}
7132
7133/*
7134 * Init service functions
7135 */
7136
7137int bnx2x_set_mac_one(struct bnx2x *bp, u8 *mac,
7138		      struct bnx2x_vlan_mac_obj *obj, bool set,
7139		      int mac_type, unsigned long *ramrod_flags)
7140{
7141	int rc;
7142	struct bnx2x_vlan_mac_ramrod_params ramrod_param;
7143
7144	memset(&ramrod_param, 0, sizeof(ramrod_param));
7145
7146	/* Fill general parameters */
7147	ramrod_param.vlan_mac_obj = obj;
7148	ramrod_param.ramrod_flags = *ramrod_flags;
7149
7150	/* Fill a user request section if needed */
7151	if (!test_bit(RAMROD_CONT, ramrod_flags)) {
7152		memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN);
7153
7154		__set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags);
7155
7156		/* Set the command: ADD or DEL */
7157		if (set)
7158			ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_ADD;
7159		else
7160			ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_DEL;
7161	}
7162
7163	rc = bnx2x_config_vlan_mac(bp, &ramrod_param);
7164	if (rc < 0)
7165		BNX2X_ERR("%s MAC failed\n", (set ? "Set" : "Del"));
7166	return rc;
7167}
7168
7169int bnx2x_del_all_macs(struct bnx2x *bp,
7170		       struct bnx2x_vlan_mac_obj *mac_obj,
7171		       int mac_type, bool wait_for_comp)
7172{
7173	int rc;
7174	unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
7175
7176	/* Wait for completion of requested */
7177	if (wait_for_comp)
7178		__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
7179
7180	/* Set the mac type of addresses we want to clear */
7181	__set_bit(mac_type, &vlan_mac_flags);
7182
7183	rc = mac_obj->delete_all(bp, mac_obj, &vlan_mac_flags, &ramrod_flags);
7184	if (rc < 0)
7185		BNX2X_ERR("Failed to delete MACs: %d\n", rc);
7186
7187	return rc;
7188}
7189
7190int bnx2x_set_eth_mac(struct bnx2x *bp, bool set)
7191{
7192	unsigned long ramrod_flags = 0;
7193
7194#ifdef BCM_CNIC
7195	if (is_zero_ether_addr(bp->dev->dev_addr) && IS_MF_STORAGE_SD(bp)) {
7196		DP(NETIF_MSG_IFUP | NETIF_MSG_IFDOWN,
7197		   "Ignoring Zero MAC for STORAGE SD mode\n");
7198		return 0;
7199	}
7200#endif
7201
7202	DP(NETIF_MSG_IFUP, "Adding Eth MAC\n");
7203
7204	__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
7205	/* Eth MAC is set on RSS leading client (fp[0]) */
7206	return bnx2x_set_mac_one(bp, bp->dev->dev_addr, &bp->fp->mac_obj, set,
7207				 BNX2X_ETH_MAC, &ramrod_flags);
7208}
7209
7210int bnx2x_setup_leading(struct bnx2x *bp)
7211{
7212	return bnx2x_setup_queue(bp, &bp->fp[0], 1);
7213}
7214
7215/**
7216 * bnx2x_set_int_mode - configure interrupt mode
7217 *
7218 * @bp:		driver handle
7219 *
7220 * In case of MSI-X it will also try to enable MSI-X.
7221 */
7222static void __devinit bnx2x_set_int_mode(struct bnx2x *bp)
7223{
7224	switch (int_mode) {
7225	case INT_MODE_MSI:
7226		bnx2x_enable_msi(bp);
7227		/* falling through... */
7228	case INT_MODE_INTx:
7229		bp->num_queues = 1 + NON_ETH_CONTEXT_USE;
7230		BNX2X_DEV_INFO("set number of queues to 1\n");
7231		break;
7232	default:
7233		/* Set number of queues according to bp->multi_mode value */
7234		bnx2x_set_num_queues(bp);
7235
7236		BNX2X_DEV_INFO("set number of queues to %d\n", bp->num_queues);
7237
7238		/* if we can't use MSI-X we only need one fp,
7239		 * so try to enable MSI-X with the requested number of fp's
7240		 * and fallback to MSI or legacy INTx with one fp
7241		 */
7242		if (bnx2x_enable_msix(bp)) {
7243			/* failed to enable MSI-X */
7244			BNX2X_DEV_INFO("Failed to enable MSI-X (%d), set number of queues to %d\n",
7245				       bp->num_queues, 1 + NON_ETH_CONTEXT_USE);
7246
7247			bp->num_queues = 1 + NON_ETH_CONTEXT_USE;
7248
7249			/* Try to enable MSI */
7250			if (!(bp->flags & DISABLE_MSI_FLAG))
7251				bnx2x_enable_msi(bp);
7252		}
7253		break;
7254	}
7255}
7256
7257/* must be called prioir to any HW initializations */
7258static inline u16 bnx2x_cid_ilt_lines(struct bnx2x *bp)
7259{
7260	return L2_ILT_LINES(bp);
7261}
7262
7263void bnx2x_ilt_set_info(struct bnx2x *bp)
7264{
7265	struct ilt_client_info *ilt_client;
7266	struct bnx2x_ilt *ilt = BP_ILT(bp);
7267	u16 line = 0;
7268
7269	ilt->start_line = FUNC_ILT_BASE(BP_FUNC(bp));
7270	DP(BNX2X_MSG_SP, "ilt starts at line %d\n", ilt->start_line);
7271
7272	/* CDU */
7273	ilt_client = &ilt->clients[ILT_CLIENT_CDU];
7274	ilt_client->client_num = ILT_CLIENT_CDU;
7275	ilt_client->page_size = CDU_ILT_PAGE_SZ;
7276	ilt_client->flags = ILT_CLIENT_SKIP_MEM;
7277	ilt_client->start = line;
7278	line += bnx2x_cid_ilt_lines(bp);
7279#ifdef BCM_CNIC
7280	line += CNIC_ILT_LINES;
7281#endif
7282	ilt_client->end = line - 1;
7283
7284	DP(NETIF_MSG_IFUP, "ilt client[CDU]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
7285	   ilt_client->start,
7286	   ilt_client->end,
7287	   ilt_client->page_size,
7288	   ilt_client->flags,
7289	   ilog2(ilt_client->page_size >> 12));
7290
7291	/* QM */
7292	if (QM_INIT(bp->qm_cid_count)) {
7293		ilt_client = &ilt->clients[ILT_CLIENT_QM];
7294		ilt_client->client_num = ILT_CLIENT_QM;
7295		ilt_client->page_size = QM_ILT_PAGE_SZ;
7296		ilt_client->flags = 0;
7297		ilt_client->start = line;
7298
7299		/* 4 bytes for each cid */
7300		line += DIV_ROUND_UP(bp->qm_cid_count * QM_QUEUES_PER_FUNC * 4,
7301							 QM_ILT_PAGE_SZ);
7302
7303		ilt_client->end = line - 1;
7304
7305		DP(NETIF_MSG_IFUP,
7306		   "ilt client[QM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
7307		   ilt_client->start,
7308		   ilt_client->end,
7309		   ilt_client->page_size,
7310		   ilt_client->flags,
7311		   ilog2(ilt_client->page_size >> 12));
7312
7313	}
7314	/* SRC */
7315	ilt_client = &ilt->clients[ILT_CLIENT_SRC];
7316#ifdef BCM_CNIC
7317	ilt_client->client_num = ILT_CLIENT_SRC;
7318	ilt_client->page_size = SRC_ILT_PAGE_SZ;
7319	ilt_client->flags = 0;
7320	ilt_client->start = line;
7321	line += SRC_ILT_LINES;
7322	ilt_client->end = line - 1;
7323
7324	DP(NETIF_MSG_IFUP,
7325	   "ilt client[SRC]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
7326	   ilt_client->start,
7327	   ilt_client->end,
7328	   ilt_client->page_size,
7329	   ilt_client->flags,
7330	   ilog2(ilt_client->page_size >> 12));
7331
7332#else
7333	ilt_client->flags = (ILT_CLIENT_SKIP_INIT | ILT_CLIENT_SKIP_MEM);
7334#endif
7335
7336	/* TM */
7337	ilt_client = &ilt->clients[ILT_CLIENT_TM];
7338#ifdef BCM_CNIC
7339	ilt_client->client_num = ILT_CLIENT_TM;
7340	ilt_client->page_size = TM_ILT_PAGE_SZ;
7341	ilt_client->flags = 0;
7342	ilt_client->start = line;
7343	line += TM_ILT_LINES;
7344	ilt_client->end = line - 1;
7345
7346	DP(NETIF_MSG_IFUP,
7347	   "ilt client[TM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
7348	   ilt_client->start,
7349	   ilt_client->end,
7350	   ilt_client->page_size,
7351	   ilt_client->flags,
7352	   ilog2(ilt_client->page_size >> 12));
7353
7354#else
7355	ilt_client->flags = (ILT_CLIENT_SKIP_INIT | ILT_CLIENT_SKIP_MEM);
7356#endif
7357	BUG_ON(line > ILT_MAX_LINES);
7358}
7359
7360/**
7361 * bnx2x_pf_q_prep_init - prepare INIT transition parameters
7362 *
7363 * @bp:			driver handle
7364 * @fp:			pointer to fastpath
7365 * @init_params:	pointer to parameters structure
7366 *
7367 * parameters configured:
7368 *      - HC configuration
7369 *      - Queue's CDU context
7370 */
7371static inline void bnx2x_pf_q_prep_init(struct bnx2x *bp,
7372	struct bnx2x_fastpath *fp, struct bnx2x_queue_init_params *init_params)
7373{
7374
7375	u8 cos;
7376	/* FCoE Queue uses Default SB, thus has no HC capabilities */
7377	if (!IS_FCOE_FP(fp)) {
7378		__set_bit(BNX2X_Q_FLG_HC, &init_params->rx.flags);
7379		__set_bit(BNX2X_Q_FLG_HC, &init_params->tx.flags);
7380
7381		/* If HC is supporterd, enable host coalescing in the transition
7382		 * to INIT state.
7383		 */
7384		__set_bit(BNX2X_Q_FLG_HC_EN, &init_params->rx.flags);
7385		__set_bit(BNX2X_Q_FLG_HC_EN, &init_params->tx.flags);
7386
7387		/* HC rate */
7388		init_params->rx.hc_rate = bp->rx_ticks ?
7389			(1000000 / bp->rx_ticks) : 0;
7390		init_params->tx.hc_rate = bp->tx_ticks ?
7391			(1000000 / bp->tx_ticks) : 0;
7392
7393		/* FW SB ID */
7394		init_params->rx.fw_sb_id = init_params->tx.fw_sb_id =
7395			fp->fw_sb_id;
7396
7397		/*
7398		 * CQ index among the SB indices: FCoE clients uses the default
7399		 * SB, therefore it's different.
7400		 */
7401		init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
7402		init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS;
7403	}
7404
7405	/* set maximum number of COSs supported by this queue */
7406	init_params->max_cos = fp->max_cos;
7407
7408	DP(NETIF_MSG_IFUP, "fp: %d setting queue params max cos to: %d\n",
7409	    fp->index, init_params->max_cos);
7410
7411	/* set the context pointers queue object */
7412	for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++)
7413		init_params->cxts[cos] =
7414			&bp->context.vcxt[fp->txdata[cos].cid].eth;
7415}
7416
7417int bnx2x_setup_tx_only(struct bnx2x *bp, struct bnx2x_fastpath *fp,
7418			struct bnx2x_queue_state_params *q_params,
7419			struct bnx2x_queue_setup_tx_only_params *tx_only_params,
7420			int tx_index, bool leading)
7421{
7422	memset(tx_only_params, 0, sizeof(*tx_only_params));
7423
7424	/* Set the command */
7425	q_params->cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
7426
7427	/* Set tx-only QUEUE flags: don't zero statistics */
7428	tx_only_params->flags = bnx2x_get_common_flags(bp, fp, false);
7429
7430	/* choose the index of the cid to send the slow path on */
7431	tx_only_params->cid_index = tx_index;
7432
7433	/* Set general TX_ONLY_SETUP parameters */
7434	bnx2x_pf_q_prep_general(bp, fp, &tx_only_params->gen_params, tx_index);
7435
7436	/* Set Tx TX_ONLY_SETUP parameters */
7437	bnx2x_pf_tx_q_prep(bp, fp, &tx_only_params->txq_params, tx_index);
7438
7439	DP(NETIF_MSG_IFUP,
7440	   "preparing to send tx-only ramrod for connection: cos %d, primary cid %d, cid %d, client id %d, sp-client id %d, flags %lx\n",
7441	   tx_index, q_params->q_obj->cids[FIRST_TX_COS_INDEX],
7442	   q_params->q_obj->cids[tx_index], q_params->q_obj->cl_id,
7443	   tx_only_params->gen_params.spcl_id, tx_only_params->flags);
7444
7445	/* send the ramrod */
7446	return bnx2x_queue_state_change(bp, q_params);
7447}
7448
7449
7450/**
7451 * bnx2x_setup_queue - setup queue
7452 *
7453 * @bp:		driver handle
7454 * @fp:		pointer to fastpath
7455 * @leading:	is leading
7456 *
7457 * This function performs 2 steps in a Queue state machine
7458 *      actually: 1) RESET->INIT 2) INIT->SETUP
7459 */
7460
7461int bnx2x_setup_queue(struct bnx2x *bp, struct bnx2x_fastpath *fp,
7462		       bool leading)
7463{
7464	struct bnx2x_queue_state_params q_params = {NULL};
7465	struct bnx2x_queue_setup_params *setup_params =
7466						&q_params.params.setup;
7467	struct bnx2x_queue_setup_tx_only_params *tx_only_params =
7468						&q_params.params.tx_only;
7469	int rc;
7470	u8 tx_index;
7471
7472	DP(NETIF_MSG_IFUP, "setting up queue %d\n", fp->index);
7473
7474	/* reset IGU state skip FCoE L2 queue */
7475	if (!IS_FCOE_FP(fp))
7476		bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, 0,
7477			     IGU_INT_ENABLE, 0);
7478
7479	q_params.q_obj = &fp->q_obj;
7480	/* We want to wait for completion in this context */
7481	__set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
7482
7483	/* Prepare the INIT parameters */
7484	bnx2x_pf_q_prep_init(bp, fp, &q_params.params.init);
7485
7486	/* Set the command */
7487	q_params.cmd = BNX2X_Q_CMD_INIT;
7488
7489	/* Change the state to INIT */
7490	rc = bnx2x_queue_state_change(bp, &q_params);
7491	if (rc) {
7492		BNX2X_ERR("Queue(%d) INIT failed\n", fp->index);
7493		return rc;
7494	}
7495
7496	DP(NETIF_MSG_IFUP, "init complete\n");
7497
7498
7499	/* Now move the Queue to the SETUP state... */
7500	memset(setup_params, 0, sizeof(*setup_params));
7501
7502	/* Set QUEUE flags */
7503	setup_params->flags = bnx2x_get_q_flags(bp, fp, leading);
7504
7505	/* Set general SETUP parameters */
7506	bnx2x_pf_q_prep_general(bp, fp, &setup_params->gen_params,
7507				FIRST_TX_COS_INDEX);
7508
7509	bnx2x_pf_rx_q_prep(bp, fp, &setup_params->pause_params,
7510			    &setup_params->rxq_params);
7511
7512	bnx2x_pf_tx_q_prep(bp, fp, &setup_params->txq_params,
7513			   FIRST_TX_COS_INDEX);
7514
7515	/* Set the command */
7516	q_params.cmd = BNX2X_Q_CMD_SETUP;
7517
7518	/* Change the state to SETUP */
7519	rc = bnx2x_queue_state_change(bp, &q_params);
7520	if (rc) {
7521		BNX2X_ERR("Queue(%d) SETUP failed\n", fp->index);
7522		return rc;
7523	}
7524
7525	/* loop through the relevant tx-only indices */
7526	for (tx_index = FIRST_TX_ONLY_COS_INDEX;
7527	      tx_index < fp->max_cos;
7528	      tx_index++) {
7529
7530		/* prepare and send tx-only ramrod*/
7531		rc = bnx2x_setup_tx_only(bp, fp, &q_params,
7532					  tx_only_params, tx_index, leading);
7533		if (rc) {
7534			BNX2X_ERR("Queue(%d.%d) TX_ONLY_SETUP failed\n",
7535				  fp->index, tx_index);
7536			return rc;
7537		}
7538	}
7539
7540	return rc;
7541}
7542
7543static int bnx2x_stop_queue(struct bnx2x *bp, int index)
7544{
7545	struct bnx2x_fastpath *fp = &bp->fp[index];
7546	struct bnx2x_fp_txdata *txdata;
7547	struct bnx2x_queue_state_params q_params = {NULL};
7548	int rc, tx_index;
7549
7550	DP(NETIF_MSG_IFDOWN, "stopping queue %d cid %d\n", index, fp->cid);
7551
7552	q_params.q_obj = &fp->q_obj;
7553	/* We want to wait for completion in this context */
7554	__set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
7555
7556
7557	/* close tx-only connections */
7558	for (tx_index = FIRST_TX_ONLY_COS_INDEX;
7559	     tx_index < fp->max_cos;
7560	     tx_index++){
7561
7562		/* ascertain this is a normal queue*/
7563		txdata = &fp->txdata[tx_index];
7564
7565		DP(NETIF_MSG_IFDOWN, "stopping tx-only queue %d\n",
7566							txdata->txq_index);
7567
7568		/* send halt terminate on tx-only connection */
7569		q_params.cmd = BNX2X_Q_CMD_TERMINATE;
7570		memset(&q_params.params.terminate, 0,
7571		       sizeof(q_params.params.terminate));
7572		q_params.params.terminate.cid_index = tx_index;
7573
7574		rc = bnx2x_queue_state_change(bp, &q_params);
7575		if (rc)
7576			return rc;
7577
7578		/* send halt terminate on tx-only connection */
7579		q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
7580		memset(&q_params.params.cfc_del, 0,
7581		       sizeof(q_params.params.cfc_del));
7582		q_params.params.cfc_del.cid_index = tx_index;
7583		rc = bnx2x_queue_state_change(bp, &q_params);
7584		if (rc)
7585			return rc;
7586	}
7587	/* Stop the primary connection: */
7588	/* ...halt the connection */
7589	q_params.cmd = BNX2X_Q_CMD_HALT;
7590	rc = bnx2x_queue_state_change(bp, &q_params);
7591	if (rc)
7592		return rc;
7593
7594	/* ...terminate the connection */
7595	q_params.cmd = BNX2X_Q_CMD_TERMINATE;
7596	memset(&q_params.params.terminate, 0,
7597	       sizeof(q_params.params.terminate));
7598	q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX;
7599	rc = bnx2x_queue_state_change(bp, &q_params);
7600	if (rc)
7601		return rc;
7602	/* ...delete cfc entry */
7603	q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
7604	memset(&q_params.params.cfc_del, 0,
7605	       sizeof(q_params.params.cfc_del));
7606	q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX;
7607	return bnx2x_queue_state_change(bp, &q_params);
7608}
7609
7610
7611static void bnx2x_reset_func(struct bnx2x *bp)
7612{
7613	int port = BP_PORT(bp);
7614	int func = BP_FUNC(bp);
7615	int i;
7616
7617	/* Disable the function in the FW */
7618	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0);
7619	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0);
7620	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0);
7621	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0);
7622
7623	/* FP SBs */
7624	for_each_eth_queue(bp, i) {
7625		struct bnx2x_fastpath *fp = &bp->fp[i];
7626		REG_WR8(bp, BAR_CSTRORM_INTMEM +
7627			   CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id),
7628			   SB_DISABLED);
7629	}
7630
7631#ifdef BCM_CNIC
7632	/* CNIC SB */
7633	REG_WR8(bp, BAR_CSTRORM_INTMEM +
7634		CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(bnx2x_cnic_fw_sb_id(bp)),
7635		SB_DISABLED);
7636#endif
7637	/* SP SB */
7638	REG_WR8(bp, BAR_CSTRORM_INTMEM +
7639		   CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func),
7640		   SB_DISABLED);
7641
7642	for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++)
7643		REG_WR(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func),
7644		       0);
7645
7646	/* Configure IGU */
7647	if (bp->common.int_block == INT_BLOCK_HC) {
7648		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
7649		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
7650	} else {
7651		REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
7652		REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
7653	}
7654
7655#ifdef BCM_CNIC
7656	/* Disable Timer scan */
7657	REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 0);
7658	/*
7659	 * Wait for at least 10ms and up to 2 second for the timers scan to
7660	 * complete
7661	 */
7662	for (i = 0; i < 200; i++) {
7663		msleep(10);
7664		if (!REG_RD(bp, TM_REG_LIN0_SCAN_ON + port*4))
7665			break;
7666	}
7667#endif
7668	/* Clear ILT */
7669	bnx2x_clear_func_ilt(bp, func);
7670
7671	/* Timers workaround bug for E2: if this is vnic-3,
7672	 * we need to set the entire ilt range for this timers.
7673	 */
7674	if (!CHIP_IS_E1x(bp) && BP_VN(bp) == 3) {
7675		struct ilt_client_info ilt_cli;
7676		/* use dummy TM client */
7677		memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
7678		ilt_cli.start = 0;
7679		ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
7680		ilt_cli.client_num = ILT_CLIENT_TM;
7681
7682		bnx2x_ilt_boundry_init_op(bp, &ilt_cli, 0, INITOP_CLEAR);
7683	}
7684
7685	/* this assumes that reset_port() called before reset_func()*/
7686	if (!CHIP_IS_E1x(bp))
7687		bnx2x_pf_disable(bp);
7688
7689	bp->dmae_ready = 0;
7690}
7691
7692static void bnx2x_reset_port(struct bnx2x *bp)
7693{
7694	int port = BP_PORT(bp);
7695	u32 val;
7696
7697	/* Reset physical Link */
7698	bnx2x__link_reset(bp);
7699
7700	REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
7701
7702	/* Do not rcv packets to BRB */
7703	REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0);
7704	/* Do not direct rcv packets that are not for MCP to the BRB */
7705	REG_WR(bp, (port ? NIG_REG_LLH1_BRB1_NOT_MCP :
7706			   NIG_REG_LLH0_BRB1_NOT_MCP), 0x0);
7707
7708	/* Configure AEU */
7709	REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0);
7710
7711	msleep(100);
7712	/* Check for BRB port occupancy */
7713	val = REG_RD(bp, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4);
7714	if (val)
7715		DP(NETIF_MSG_IFDOWN,
7716		   "BRB1 is not empty  %d blocks are occupied\n", val);
7717
7718	/* TODO: Close Doorbell port? */
7719}
7720
7721static inline int bnx2x_reset_hw(struct bnx2x *bp, u32 load_code)
7722{
7723	struct bnx2x_func_state_params func_params = {NULL};
7724
7725	/* Prepare parameters for function state transitions */
7726	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
7727
7728	func_params.f_obj = &bp->func_obj;
7729	func_params.cmd = BNX2X_F_CMD_HW_RESET;
7730
7731	func_params.params.hw_init.load_phase = load_code;
7732
7733	return bnx2x_func_state_change(bp, &func_params);
7734}
7735
7736static inline int bnx2x_func_stop(struct bnx2x *bp)
7737{
7738	struct bnx2x_func_state_params func_params = {NULL};
7739	int rc;
7740
7741	/* Prepare parameters for function state transitions */
7742	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
7743	func_params.f_obj = &bp->func_obj;
7744	func_params.cmd = BNX2X_F_CMD_STOP;
7745
7746	/*
7747	 * Try to stop the function the 'good way'. If fails (in case
7748	 * of a parity error during bnx2x_chip_cleanup()) and we are
7749	 * not in a debug mode, perform a state transaction in order to
7750	 * enable further HW_RESET transaction.
7751	 */
7752	rc = bnx2x_func_state_change(bp, &func_params);
7753	if (rc) {
7754#ifdef BNX2X_STOP_ON_ERROR
7755		return rc;
7756#else
7757		BNX2X_ERR("FUNC_STOP ramrod failed. Running a dry transaction\n");
7758		__set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
7759		return bnx2x_func_state_change(bp, &func_params);
7760#endif
7761	}
7762
7763	return 0;
7764}
7765
7766/**
7767 * bnx2x_send_unload_req - request unload mode from the MCP.
7768 *
7769 * @bp:			driver handle
7770 * @unload_mode:	requested function's unload mode
7771 *
7772 * Return unload mode returned by the MCP: COMMON, PORT or FUNC.
7773 */
7774u32 bnx2x_send_unload_req(struct bnx2x *bp, int unload_mode)
7775{
7776	u32 reset_code = 0;
7777	int port = BP_PORT(bp);
7778
7779	/* Select the UNLOAD request mode */
7780	if (unload_mode == UNLOAD_NORMAL)
7781		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
7782
7783	else if (bp->flags & NO_WOL_FLAG)
7784		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP;
7785
7786	else if (bp->wol) {
7787		u32 emac_base = port ? GRCBASE_EMAC1 : GRCBASE_EMAC0;
7788		u8 *mac_addr = bp->dev->dev_addr;
7789		u32 val;
7790		u16 pmc;
7791
7792		/* The mac address is written to entries 1-4 to
7793		 * preserve entry 0 which is used by the PMF
7794		 */
7795		u8 entry = (BP_VN(bp) + 1)*8;
7796
7797		val = (mac_addr[0] << 8) | mac_addr[1];
7798		EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry, val);
7799
7800		val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
7801		      (mac_addr[4] << 8) | mac_addr[5];
7802		EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry + 4, val);
7803
7804		/* Enable the PME and clear the status */
7805		pci_read_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, &pmc);
7806		pmc |= PCI_PM_CTRL_PME_ENABLE | PCI_PM_CTRL_PME_STATUS;
7807		pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, pmc);
7808
7809		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_EN;
7810
7811	} else
7812		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
7813
7814	/* Send the request to the MCP */
7815	if (!BP_NOMCP(bp))
7816		reset_code = bnx2x_fw_command(bp, reset_code, 0);
7817	else {
7818		int path = BP_PATH(bp);
7819
7820		DP(NETIF_MSG_IFDOWN, "NO MCP - load counts[%d]      %d, %d, %d\n",
7821		   path, load_count[path][0], load_count[path][1],
7822		   load_count[path][2]);
7823		load_count[path][0]--;
7824		load_count[path][1 + port]--;
7825		DP(NETIF_MSG_IFDOWN, "NO MCP - new load counts[%d]  %d, %d, %d\n",
7826		   path, load_count[path][0], load_count[path][1],
7827		   load_count[path][2]);
7828		if (load_count[path][0] == 0)
7829			reset_code = FW_MSG_CODE_DRV_UNLOAD_COMMON;
7830		else if (load_count[path][1 + port] == 0)
7831			reset_code = FW_MSG_CODE_DRV_UNLOAD_PORT;
7832		else
7833			reset_code = FW_MSG_CODE_DRV_UNLOAD_FUNCTION;
7834	}
7835
7836	return reset_code;
7837}
7838
7839/**
7840 * bnx2x_send_unload_done - send UNLOAD_DONE command to the MCP.
7841 *
7842 * @bp:		driver handle
7843 */
7844void bnx2x_send_unload_done(struct bnx2x *bp)
7845{
7846	/* Report UNLOAD_DONE to MCP */
7847	if (!BP_NOMCP(bp))
7848		bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0);
7849}
7850
7851static inline int bnx2x_func_wait_started(struct bnx2x *bp)
7852{
7853	int tout = 50;
7854	int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
7855
7856	if (!bp->port.pmf)
7857		return 0;
7858
7859	/*
7860	 * (assumption: No Attention from MCP at this stage)
7861	 * PMF probably in the middle of TXdisable/enable transaction
7862	 * 1. Sync IRS for default SB
7863	 * 2. Sync SP queue - this guarantes us that attention handling started
7864	 * 3. Wait, that TXdisable/enable transaction completes
7865	 *
7866	 * 1+2 guranty that if DCBx attention was scheduled it already changed
7867	 * pending bit of transaction from STARTED-->TX_STOPPED, if we alredy
7868	 * received complettion for the transaction the state is TX_STOPPED.
7869	 * State will return to STARTED after completion of TX_STOPPED-->STARTED
7870	 * transaction.
7871	 */
7872
7873	/* make sure default SB ISR is done */
7874	if (msix)
7875		synchronize_irq(bp->msix_table[0].vector);
7876	else
7877		synchronize_irq(bp->pdev->irq);
7878
7879	flush_workqueue(bnx2x_wq);
7880
7881	while (bnx2x_func_get_state(bp, &bp->func_obj) !=
7882				BNX2X_F_STATE_STARTED && tout--)
7883		msleep(20);
7884
7885	if (bnx2x_func_get_state(bp, &bp->func_obj) !=
7886						BNX2X_F_STATE_STARTED) {
7887#ifdef BNX2X_STOP_ON_ERROR
7888		BNX2X_ERR("Wrong function state\n");
7889		return -EBUSY;
7890#else
7891		/*
7892		 * Failed to complete the transaction in a "good way"
7893		 * Force both transactions with CLR bit
7894		 */
7895		struct bnx2x_func_state_params func_params = {NULL};
7896
7897		DP(NETIF_MSG_IFDOWN,
7898		   "Hmmm... unexpected function state! Forcing STARTED-->TX_ST0PPED-->STARTED\n");
7899
7900		func_params.f_obj = &bp->func_obj;
7901		__set_bit(RAMROD_DRV_CLR_ONLY,
7902					&func_params.ramrod_flags);
7903
7904		/* STARTED-->TX_ST0PPED */
7905		func_params.cmd = BNX2X_F_CMD_TX_STOP;
7906		bnx2x_func_state_change(bp, &func_params);
7907
7908		/* TX_ST0PPED-->STARTED */
7909		func_params.cmd = BNX2X_F_CMD_TX_START;
7910		return bnx2x_func_state_change(bp, &func_params);
7911#endif
7912	}
7913
7914	return 0;
7915}
7916
7917void bnx2x_chip_cleanup(struct bnx2x *bp, int unload_mode)
7918{
7919	int port = BP_PORT(bp);
7920	int i, rc = 0;
7921	u8 cos;
7922	struct bnx2x_mcast_ramrod_params rparam = {NULL};
7923	u32 reset_code;
7924
7925	/* Wait until tx fastpath tasks complete */
7926	for_each_tx_queue(bp, i) {
7927		struct bnx2x_fastpath *fp = &bp->fp[i];
7928
7929		for_each_cos_in_tx_queue(fp, cos)
7930			rc = bnx2x_clean_tx_queue(bp, &fp->txdata[cos]);
7931#ifdef BNX2X_STOP_ON_ERROR
7932		if (rc)
7933			return;
7934#endif
7935	}
7936
7937	/* Give HW time to discard old tx messages */
7938	usleep_range(1000, 1000);
7939
7940	/* Clean all ETH MACs */
7941	rc = bnx2x_del_all_macs(bp, &bp->fp[0].mac_obj, BNX2X_ETH_MAC, false);
7942	if (rc < 0)
7943		BNX2X_ERR("Failed to delete all ETH macs: %d\n", rc);
7944
7945	/* Clean up UC list  */
7946	rc = bnx2x_del_all_macs(bp, &bp->fp[0].mac_obj, BNX2X_UC_LIST_MAC,
7947				true);
7948	if (rc < 0)
7949		BNX2X_ERR("Failed to schedule DEL commands for UC MACs list: %d\n",
7950			  rc);
7951
7952	/* Disable LLH */
7953	if (!CHIP_IS_E1(bp))
7954		REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
7955
7956	/* Set "drop all" (stop Rx).
7957	 * We need to take a netif_addr_lock() here in order to prevent
7958	 * a race between the completion code and this code.
7959	 */
7960	netif_addr_lock_bh(bp->dev);
7961	/* Schedule the rx_mode command */
7962	if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
7963		set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
7964	else
7965		bnx2x_set_storm_rx_mode(bp);
7966
7967	/* Cleanup multicast configuration */
7968	rparam.mcast_obj = &bp->mcast_obj;
7969	rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
7970	if (rc < 0)
7971		BNX2X_ERR("Failed to send DEL multicast command: %d\n", rc);
7972
7973	netif_addr_unlock_bh(bp->dev);
7974
7975
7976
7977	/*
7978	 * Send the UNLOAD_REQUEST to the MCP. This will return if
7979	 * this function should perform FUNC, PORT or COMMON HW
7980	 * reset.
7981	 */
7982	reset_code = bnx2x_send_unload_req(bp, unload_mode);
7983
7984	/*
7985	 * (assumption: No Attention from MCP at this stage)
7986	 * PMF probably in the middle of TXdisable/enable transaction
7987	 */
7988	rc = bnx2x_func_wait_started(bp);
7989	if (rc) {
7990		BNX2X_ERR("bnx2x_func_wait_started failed\n");
7991#ifdef BNX2X_STOP_ON_ERROR
7992		return;
7993#endif
7994	}
7995
7996	/* Close multi and leading connections
7997	 * Completions for ramrods are collected in a synchronous way
7998	 */
7999	for_each_queue(bp, i)
8000		if (bnx2x_stop_queue(bp, i))
8001#ifdef BNX2X_STOP_ON_ERROR
8002			return;
8003#else
8004			goto unload_error;
8005#endif
8006	/* If SP settings didn't get completed so far - something
8007	 * very wrong has happen.
8008	 */
8009	if (!bnx2x_wait_sp_comp(bp, ~0x0UL))
8010		BNX2X_ERR("Hmmm... Common slow path ramrods got stuck!\n");
8011
8012#ifndef BNX2X_STOP_ON_ERROR
8013unload_error:
8014#endif
8015	rc = bnx2x_func_stop(bp);
8016	if (rc) {
8017		BNX2X_ERR("Function stop failed!\n");
8018#ifdef BNX2X_STOP_ON_ERROR
8019		return;
8020#endif
8021	}
8022
8023	/* Disable HW interrupts, NAPI */
8024	bnx2x_netif_stop(bp, 1);
8025
8026	/* Release IRQs */
8027	bnx2x_free_irq(bp);
8028
8029	/* Reset the chip */
8030	rc = bnx2x_reset_hw(bp, reset_code);
8031	if (rc)
8032		BNX2X_ERR("HW_RESET failed\n");
8033
8034
8035	/* Report UNLOAD_DONE to MCP */
8036	bnx2x_send_unload_done(bp);
8037}
8038
8039void bnx2x_disable_close_the_gate(struct bnx2x *bp)
8040{
8041	u32 val;
8042
8043	DP(NETIF_MSG_IFDOWN, "Disabling \"close the gates\"\n");
8044
8045	if (CHIP_IS_E1(bp)) {
8046		int port = BP_PORT(bp);
8047		u32 addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
8048			MISC_REG_AEU_MASK_ATTN_FUNC_0;
8049
8050		val = REG_RD(bp, addr);
8051		val &= ~(0x300);
8052		REG_WR(bp, addr, val);
8053	} else {
8054		val = REG_RD(bp, MISC_REG_AEU_GENERAL_MASK);
8055		val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK |
8056			 MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK);
8057		REG_WR(bp, MISC_REG_AEU_GENERAL_MASK, val);
8058	}
8059}
8060
8061/* Close gates #2, #3 and #4: */
8062static void bnx2x_set_234_gates(struct bnx2x *bp, bool close)
8063{
8064	u32 val;
8065
8066	/* Gates #2 and #4a are closed/opened for "not E1" only */
8067	if (!CHIP_IS_E1(bp)) {
8068		/* #4 */
8069		REG_WR(bp, PXP_REG_HST_DISCARD_DOORBELLS, !!close);
8070		/* #2 */
8071		REG_WR(bp, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close);
8072	}
8073
8074	/* #3 */
8075	if (CHIP_IS_E1x(bp)) {
8076		/* Prevent interrupts from HC on both ports */
8077		val = REG_RD(bp, HC_REG_CONFIG_1);
8078		REG_WR(bp, HC_REG_CONFIG_1,
8079		       (!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) :
8080		       (val & ~(u32)HC_CONFIG_1_REG_BLOCK_DISABLE_1));
8081
8082		val = REG_RD(bp, HC_REG_CONFIG_0);
8083		REG_WR(bp, HC_REG_CONFIG_0,
8084		       (!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) :
8085		       (val & ~(u32)HC_CONFIG_0_REG_BLOCK_DISABLE_0));
8086	} else {
8087		/* Prevent incomming interrupts in IGU */
8088		val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
8089
8090		REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION,
8091		       (!close) ?
8092		       (val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) :
8093		       (val & ~(u32)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE));
8094	}
8095
8096	DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "%s gates #2, #3 and #4\n",
8097		close ? "closing" : "opening");
8098	mmiowb();
8099}
8100
8101#define SHARED_MF_CLP_MAGIC  0x80000000 /* `magic' bit */
8102
8103static void bnx2x_clp_reset_prep(struct bnx2x *bp, u32 *magic_val)
8104{
8105	/* Do some magic... */
8106	u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
8107	*magic_val = val & SHARED_MF_CLP_MAGIC;
8108	MF_CFG_WR(bp, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC);
8109}
8110
8111/**
8112 * bnx2x_clp_reset_done - restore the value of the `magic' bit.
8113 *
8114 * @bp:		driver handle
8115 * @magic_val:	old value of the `magic' bit.
8116 */
8117static void bnx2x_clp_reset_done(struct bnx2x *bp, u32 magic_val)
8118{
8119	/* Restore the `magic' bit value... */
8120	u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
8121	MF_CFG_WR(bp, shared_mf_config.clp_mb,
8122		(val & (~SHARED_MF_CLP_MAGIC)) | magic_val);
8123}
8124
8125/**
8126 * bnx2x_reset_mcp_prep - prepare for MCP reset.
8127 *
8128 * @bp:		driver handle
8129 * @magic_val:	old value of 'magic' bit.
8130 *
8131 * Takes care of CLP configurations.
8132 */
8133static void bnx2x_reset_mcp_prep(struct bnx2x *bp, u32 *magic_val)
8134{
8135	u32 shmem;
8136	u32 validity_offset;
8137
8138	DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "Starting\n");
8139
8140	/* Set `magic' bit in order to save MF config */
8141	if (!CHIP_IS_E1(bp))
8142		bnx2x_clp_reset_prep(bp, magic_val);
8143
8144	/* Get shmem offset */
8145	shmem = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
8146	validity_offset = offsetof(struct shmem_region, validity_map[0]);
8147
8148	/* Clear validity map flags */
8149	if (shmem > 0)
8150		REG_WR(bp, shmem + validity_offset, 0);
8151}
8152
8153#define MCP_TIMEOUT      5000   /* 5 seconds (in ms) */
8154#define MCP_ONE_TIMEOUT  100    /* 100 ms */
8155
8156/**
8157 * bnx2x_mcp_wait_one - wait for MCP_ONE_TIMEOUT
8158 *
8159 * @bp:	driver handle
8160 */
8161static inline void bnx2x_mcp_wait_one(struct bnx2x *bp)
8162{
8163	/* special handling for emulation and FPGA,
8164	   wait 10 times longer */
8165	if (CHIP_REV_IS_SLOW(bp))
8166		msleep(MCP_ONE_TIMEOUT*10);
8167	else
8168		msleep(MCP_ONE_TIMEOUT);
8169}
8170
8171/*
8172 * initializes bp->common.shmem_base and waits for validity signature to appear
8173 */
8174static int bnx2x_init_shmem(struct bnx2x *bp)
8175{
8176	int cnt = 0;
8177	u32 val = 0;
8178
8179	do {
8180		bp->common.shmem_base = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
8181		if (bp->common.shmem_base) {
8182			val = SHMEM_RD(bp, validity_map[BP_PORT(bp)]);
8183			if (val & SHR_MEM_VALIDITY_MB)
8184				return 0;
8185		}
8186
8187		bnx2x_mcp_wait_one(bp);
8188
8189	} while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT));
8190
8191	BNX2X_ERR("BAD MCP validity signature\n");
8192
8193	return -ENODEV;
8194}
8195
8196static int bnx2x_reset_mcp_comp(struct bnx2x *bp, u32 magic_val)
8197{
8198	int rc = bnx2x_init_shmem(bp);
8199
8200	/* Restore the `magic' bit value */
8201	if (!CHIP_IS_E1(bp))
8202		bnx2x_clp_reset_done(bp, magic_val);
8203
8204	return rc;
8205}
8206
8207static void bnx2x_pxp_prep(struct bnx2x *bp)
8208{
8209	if (!CHIP_IS_E1(bp)) {
8210		REG_WR(bp, PXP2_REG_RD_START_INIT, 0);
8211		REG_WR(bp, PXP2_REG_RQ_RBC_DONE, 0);
8212		mmiowb();
8213	}
8214}
8215
8216/*
8217 * Reset the whole chip except for:
8218 *      - PCIE core
8219 *      - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by
8220 *              one reset bit)
8221 *      - IGU
8222 *      - MISC (including AEU)
8223 *      - GRC
8224 *      - RBCN, RBCP
8225 */
8226static void bnx2x_process_kill_chip_reset(struct bnx2x *bp, bool global)
8227{
8228	u32 not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2;
8229	u32 global_bits2, stay_reset2;
8230
8231	/*
8232	 * Bits that have to be set in reset_mask2 if we want to reset 'global'
8233	 * (per chip) blocks.
8234	 */
8235	global_bits2 =
8236		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU |
8237		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE;
8238
8239	/* Don't reset the following blocks */
8240	not_reset_mask1 =
8241		MISC_REGISTERS_RESET_REG_1_RST_HC |
8242		MISC_REGISTERS_RESET_REG_1_RST_PXPV |
8243		MISC_REGISTERS_RESET_REG_1_RST_PXP;
8244
8245	not_reset_mask2 =
8246		MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO |
8247		MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE |
8248		MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE |
8249		MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE |
8250		MISC_REGISTERS_RESET_REG_2_RST_RBCN |
8251		MISC_REGISTERS_RESET_REG_2_RST_GRC  |
8252		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE |
8253		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B |
8254		MISC_REGISTERS_RESET_REG_2_RST_ATC |
8255		MISC_REGISTERS_RESET_REG_2_PGLC;
8256
8257	/*
8258	 * Keep the following blocks in reset:
8259	 *  - all xxMACs are handled by the bnx2x_link code.
8260	 */
8261	stay_reset2 =
8262		MISC_REGISTERS_RESET_REG_2_RST_BMAC0 |
8263		MISC_REGISTERS_RESET_REG_2_RST_BMAC1 |
8264		MISC_REGISTERS_RESET_REG_2_RST_EMAC0 |
8265		MISC_REGISTERS_RESET_REG_2_RST_EMAC1 |
8266		MISC_REGISTERS_RESET_REG_2_UMAC0 |
8267		MISC_REGISTERS_RESET_REG_2_UMAC1 |
8268		MISC_REGISTERS_RESET_REG_2_XMAC |
8269		MISC_REGISTERS_RESET_REG_2_XMAC_SOFT;
8270
8271	/* Full reset masks according to the chip */
8272	reset_mask1 = 0xffffffff;
8273
8274	if (CHIP_IS_E1(bp))
8275		reset_mask2 = 0xffff;
8276	else if (CHIP_IS_E1H(bp))
8277		reset_mask2 = 0x1ffff;
8278	else if (CHIP_IS_E2(bp))
8279		reset_mask2 = 0xfffff;
8280	else /* CHIP_IS_E3 */
8281		reset_mask2 = 0x3ffffff;
8282
8283	/* Don't reset global blocks unless we need to */
8284	if (!global)
8285		reset_mask2 &= ~global_bits2;
8286
8287	/*
8288	 * In case of attention in the QM, we need to reset PXP
8289	 * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM
8290	 * because otherwise QM reset would release 'close the gates' shortly
8291	 * before resetting the PXP, then the PSWRQ would send a write
8292	 * request to PGLUE. Then when PXP is reset, PGLUE would try to
8293	 * read the payload data from PSWWR, but PSWWR would not
8294	 * respond. The write queue in PGLUE would stuck, dmae commands
8295	 * would not return. Therefore it's important to reset the second
8296	 * reset register (containing the
8297	 * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the
8298	 * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM
8299	 * bit).
8300	 */
8301	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
8302	       reset_mask2 & (~not_reset_mask2));
8303
8304	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
8305	       reset_mask1 & (~not_reset_mask1));
8306
8307	barrier();
8308	mmiowb();
8309
8310	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET,
8311	       reset_mask2 & (~stay_reset2));
8312
8313	barrier();
8314	mmiowb();
8315
8316	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1);
8317	mmiowb();
8318}
8319
8320/**
8321 * bnx2x_er_poll_igu_vq - poll for pending writes bit.
8322 * It should get cleared in no more than 1s.
8323 *
8324 * @bp:	driver handle
8325 *
8326 * It should get cleared in no more than 1s. Returns 0 if
8327 * pending writes bit gets cleared.
8328 */
8329static int bnx2x_er_poll_igu_vq(struct bnx2x *bp)
8330{
8331	u32 cnt = 1000;
8332	u32 pend_bits = 0;
8333
8334	do {
8335		pend_bits  = REG_RD(bp, IGU_REG_PENDING_BITS_STATUS);
8336
8337		if (pend_bits == 0)
8338			break;
8339
8340		usleep_range(1000, 1000);
8341	} while (cnt-- > 0);
8342
8343	if (cnt <= 0) {
8344		BNX2X_ERR("Still pending IGU requests pend_bits=%x!\n",
8345			  pend_bits);
8346		return -EBUSY;
8347	}
8348
8349	return 0;
8350}
8351
8352static int bnx2x_process_kill(struct bnx2x *bp, bool global)
8353{
8354	int cnt = 1000;
8355	u32 val = 0;
8356	u32 sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2;
8357
8358
8359	/* Empty the Tetris buffer, wait for 1s */
8360	do {
8361		sr_cnt  = REG_RD(bp, PXP2_REG_RD_SR_CNT);
8362		blk_cnt = REG_RD(bp, PXP2_REG_RD_BLK_CNT);
8363		port_is_idle_0 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_0);
8364		port_is_idle_1 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_1);
8365		pgl_exp_rom2 = REG_RD(bp, PXP2_REG_PGL_EXP_ROM2);
8366		if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) &&
8367		    ((port_is_idle_0 & 0x1) == 0x1) &&
8368		    ((port_is_idle_1 & 0x1) == 0x1) &&
8369		    (pgl_exp_rom2 == 0xffffffff))
8370			break;
8371		usleep_range(1000, 1000);
8372	} while (cnt-- > 0);
8373
8374	if (cnt <= 0) {
8375		BNX2X_ERR("Tetris buffer didn't get empty or there are still outstanding read requests after 1s!\n");
8376		BNX2X_ERR("sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n",
8377			  sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1,
8378			  pgl_exp_rom2);
8379		return -EAGAIN;
8380	}
8381
8382	barrier();
8383
8384	/* Close gates #2, #3 and #4 */
8385	bnx2x_set_234_gates(bp, true);
8386
8387	/* Poll for IGU VQs for 57712 and newer chips */
8388	if (!CHIP_IS_E1x(bp) && bnx2x_er_poll_igu_vq(bp))
8389		return -EAGAIN;
8390
8391
8392	/* TBD: Indicate that "process kill" is in progress to MCP */
8393
8394	/* Clear "unprepared" bit */
8395	REG_WR(bp, MISC_REG_UNPREPARED, 0);
8396	barrier();
8397
8398	/* Make sure all is written to the chip before the reset */
8399	mmiowb();
8400
8401	/* Wait for 1ms to empty GLUE and PCI-E core queues,
8402	 * PSWHST, GRC and PSWRD Tetris buffer.
8403	 */
8404	usleep_range(1000, 1000);
8405
8406	/* Prepare to chip reset: */
8407	/* MCP */
8408	if (global)
8409		bnx2x_reset_mcp_prep(bp, &val);
8410
8411	/* PXP */
8412	bnx2x_pxp_prep(bp);
8413	barrier();
8414
8415	/* reset the chip */
8416	bnx2x_process_kill_chip_reset(bp, global);
8417	barrier();
8418
8419	/* Recover after reset: */
8420	/* MCP */
8421	if (global && bnx2x_reset_mcp_comp(bp, val))
8422		return -EAGAIN;
8423
8424	/* TBD: Add resetting the NO_MCP mode DB here */
8425
8426	/* PXP */
8427	bnx2x_pxp_prep(bp);
8428
8429	/* Open the gates #2, #3 and #4 */
8430	bnx2x_set_234_gates(bp, false);
8431
8432	/* TBD: IGU/AEU preparation bring back the AEU/IGU to a
8433	 * reset state, re-enable attentions. */
8434
8435	return 0;
8436}
8437
8438int bnx2x_leader_reset(struct bnx2x *bp)
8439{
8440	int rc = 0;
8441	bool global = bnx2x_reset_is_global(bp);
8442	u32 load_code;
8443
8444	/* if not going to reset MCP - load "fake" driver to reset HW while
8445	 * driver is owner of the HW
8446	 */
8447	if (!global && !BP_NOMCP(bp)) {
8448		load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_REQ, 0);
8449		if (!load_code) {
8450			BNX2X_ERR("MCP response failure, aborting\n");
8451			rc = -EAGAIN;
8452			goto exit_leader_reset;
8453		}
8454		if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
8455		    (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
8456			BNX2X_ERR("MCP unexpected resp, aborting\n");
8457			rc = -EAGAIN;
8458			goto exit_leader_reset2;
8459		}
8460		load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
8461		if (!load_code) {
8462			BNX2X_ERR("MCP response failure, aborting\n");
8463			rc = -EAGAIN;
8464			goto exit_leader_reset2;
8465		}
8466	}
8467
8468	/* Try to recover after the failure */
8469	if (bnx2x_process_kill(bp, global)) {
8470		BNX2X_ERR("Something bad had happen on engine %d! Aii!\n",
8471			  BP_PATH(bp));
8472		rc = -EAGAIN;
8473		goto exit_leader_reset2;
8474	}
8475
8476	/*
8477	 * Clear RESET_IN_PROGRES and RESET_GLOBAL bits and update the driver
8478	 * state.
8479	 */
8480	bnx2x_set_reset_done(bp);
8481	if (global)
8482		bnx2x_clear_reset_global(bp);
8483
8484exit_leader_reset2:
8485	/* unload "fake driver" if it was loaded */
8486	if (!global && !BP_NOMCP(bp)) {
8487		bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
8488		bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0);
8489	}
8490exit_leader_reset:
8491	bp->is_leader = 0;
8492	bnx2x_release_leader_lock(bp);
8493	smp_mb();
8494	return rc;
8495}
8496
8497static inline void bnx2x_recovery_failed(struct bnx2x *bp)
8498{
8499	netdev_err(bp->dev, "Recovery has failed. Power cycle is needed.\n");
8500
8501	/* Disconnect this device */
8502	netif_device_detach(bp->dev);
8503
8504	/*
8505	 * Block ifup for all function on this engine until "process kill"
8506	 * or power cycle.
8507	 */
8508	bnx2x_set_reset_in_progress(bp);
8509
8510	/* Shut down the power */
8511	bnx2x_set_power_state(bp, PCI_D3hot);
8512
8513	bp->recovery_state = BNX2X_RECOVERY_FAILED;
8514
8515	smp_mb();
8516}
8517
8518/*
8519 * Assumption: runs under rtnl lock. This together with the fact
8520 * that it's called only from bnx2x_sp_rtnl() ensure that it
8521 * will never be called when netif_running(bp->dev) is false.
8522 */
8523static void bnx2x_parity_recover(struct bnx2x *bp)
8524{
8525	bool global = false;
8526	u32 error_recovered, error_unrecovered;
8527	bool is_parity;
8528
8529	DP(NETIF_MSG_HW, "Handling parity\n");
8530	while (1) {
8531		switch (bp->recovery_state) {
8532		case BNX2X_RECOVERY_INIT:
8533			DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_INIT\n");
8534			is_parity = bnx2x_chk_parity_attn(bp, &global, false);
8535			WARN_ON(!is_parity);
8536
8537			/* Try to get a LEADER_LOCK HW lock */
8538			if (bnx2x_trylock_leader_lock(bp)) {
8539				bnx2x_set_reset_in_progress(bp);
8540				/*
8541				 * Check if there is a global attention and if
8542				 * there was a global attention, set the global
8543				 * reset bit.
8544				 */
8545
8546				if (global)
8547					bnx2x_set_reset_global(bp);
8548
8549				bp->is_leader = 1;
8550			}
8551
8552			/* Stop the driver */
8553			/* If interface has been removed - break */
8554			if (bnx2x_nic_unload(bp, UNLOAD_RECOVERY))
8555				return;
8556
8557			bp->recovery_state = BNX2X_RECOVERY_WAIT;
8558
8559			/* Ensure "is_leader", MCP command sequence and
8560			 * "recovery_state" update values are seen on other
8561			 * CPUs.
8562			 */
8563			smp_mb();
8564			break;
8565
8566		case BNX2X_RECOVERY_WAIT:
8567			DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_WAIT\n");
8568			if (bp->is_leader) {
8569				int other_engine = BP_PATH(bp) ? 0 : 1;
8570				bool other_load_status =
8571					bnx2x_get_load_status(bp, other_engine);
8572				bool load_status =
8573					bnx2x_get_load_status(bp, BP_PATH(bp));
8574				global = bnx2x_reset_is_global(bp);
8575
8576				/*
8577				 * In case of a parity in a global block, let
8578				 * the first leader that performs a
8579				 * leader_reset() reset the global blocks in
8580				 * order to clear global attentions. Otherwise
8581				 * the the gates will remain closed for that
8582				 * engine.
8583				 */
8584				if (load_status ||
8585				    (global && other_load_status)) {
8586					/* Wait until all other functions get
8587					 * down.
8588					 */
8589					schedule_delayed_work(&bp->sp_rtnl_task,
8590								HZ/10);
8591					return;
8592				} else {
8593					/* If all other functions got down -
8594					 * try to bring the chip back to
8595					 * normal. In any case it's an exit
8596					 * point for a leader.
8597					 */
8598					if (bnx2x_leader_reset(bp)) {
8599						bnx2x_recovery_failed(bp);
8600						return;
8601					}
8602
8603					/* If we are here, means that the
8604					 * leader has succeeded and doesn't
8605					 * want to be a leader any more. Try
8606					 * to continue as a none-leader.
8607					 */
8608					break;
8609				}
8610			} else { /* non-leader */
8611				if (!bnx2x_reset_is_done(bp, BP_PATH(bp))) {
8612					/* Try to get a LEADER_LOCK HW lock as
8613					 * long as a former leader may have
8614					 * been unloaded by the user or
8615					 * released a leadership by another
8616					 * reason.
8617					 */
8618					if (bnx2x_trylock_leader_lock(bp)) {
8619						/* I'm a leader now! Restart a
8620						 * switch case.
8621						 */
8622						bp->is_leader = 1;
8623						break;
8624					}
8625
8626					schedule_delayed_work(&bp->sp_rtnl_task,
8627								HZ/10);
8628					return;
8629
8630				} else {
8631					/*
8632					 * If there was a global attention, wait
8633					 * for it to be cleared.
8634					 */
8635					if (bnx2x_reset_is_global(bp)) {
8636						schedule_delayed_work(
8637							&bp->sp_rtnl_task,
8638							HZ/10);
8639						return;
8640					}
8641
8642					error_recovered =
8643					  bp->eth_stats.recoverable_error;
8644					error_unrecovered =
8645					  bp->eth_stats.unrecoverable_error;
8646					bp->recovery_state =
8647						BNX2X_RECOVERY_NIC_LOADING;
8648					if (bnx2x_nic_load(bp, LOAD_NORMAL)) {
8649						error_unrecovered++;
8650						netdev_err(bp->dev,
8651							   "Recovery failed. Power cycle needed\n");
8652						/* Disconnect this device */
8653						netif_device_detach(bp->dev);
8654						/* Shut down the power */
8655						bnx2x_set_power_state(
8656							bp, PCI_D3hot);
8657						smp_mb();
8658					} else {
8659						bp->recovery_state =
8660							BNX2X_RECOVERY_DONE;
8661						error_recovered++;
8662						smp_mb();
8663					}
8664					bp->eth_stats.recoverable_error =
8665						error_recovered;
8666					bp->eth_stats.unrecoverable_error =
8667						error_unrecovered;
8668
8669					return;
8670				}
8671			}
8672		default:
8673			return;
8674		}
8675	}
8676}
8677
8678static int bnx2x_close(struct net_device *dev);
8679
8680/* bnx2x_nic_unload() flushes the bnx2x_wq, thus reset task is
8681 * scheduled on a general queue in order to prevent a dead lock.
8682 */
8683static void bnx2x_sp_rtnl_task(struct work_struct *work)
8684{
8685	struct bnx2x *bp = container_of(work, struct bnx2x, sp_rtnl_task.work);
8686
8687	rtnl_lock();
8688
8689	if (!netif_running(bp->dev))
8690		goto sp_rtnl_exit;
8691
8692	/* if stop on error is defined no recovery flows should be executed */
8693#ifdef BNX2X_STOP_ON_ERROR
8694	BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n"
8695		  "you will need to reboot when done\n");
8696	goto sp_rtnl_not_reset;
8697#endif
8698
8699	if (unlikely(bp->recovery_state != BNX2X_RECOVERY_DONE)) {
8700		/*
8701		 * Clear all pending SP commands as we are going to reset the
8702		 * function anyway.
8703		 */
8704		bp->sp_rtnl_state = 0;
8705		smp_mb();
8706
8707		bnx2x_parity_recover(bp);
8708
8709		goto sp_rtnl_exit;
8710	}
8711
8712	if (test_and_clear_bit(BNX2X_SP_RTNL_TX_TIMEOUT, &bp->sp_rtnl_state)) {
8713		/*
8714		 * Clear all pending SP commands as we are going to reset the
8715		 * function anyway.
8716		 */
8717		bp->sp_rtnl_state = 0;
8718		smp_mb();
8719
8720		bnx2x_nic_unload(bp, UNLOAD_NORMAL);
8721		bnx2x_nic_load(bp, LOAD_NORMAL);
8722
8723		goto sp_rtnl_exit;
8724	}
8725#ifdef BNX2X_STOP_ON_ERROR
8726sp_rtnl_not_reset:
8727#endif
8728	if (test_and_clear_bit(BNX2X_SP_RTNL_SETUP_TC, &bp->sp_rtnl_state))
8729		bnx2x_setup_tc(bp->dev, bp->dcbx_port_params.ets.num_of_cos);
8730
8731	/*
8732	 * in case of fan failure we need to reset id if the "stop on error"
8733	 * debug flag is set, since we trying to prevent permanent overheating
8734	 * damage
8735	 */
8736	if (test_and_clear_bit(BNX2X_SP_RTNL_FAN_FAILURE, &bp->sp_rtnl_state)) {
8737		DP(NETIF_MSG_HW, "fan failure detected. Unloading driver\n");
8738		netif_device_detach(bp->dev);
8739		bnx2x_close(bp->dev);
8740	}
8741
8742sp_rtnl_exit:
8743	rtnl_unlock();
8744}
8745
8746/* end of nic load/unload */
8747
8748static void bnx2x_period_task(struct work_struct *work)
8749{
8750	struct bnx2x *bp = container_of(work, struct bnx2x, period_task.work);
8751
8752	if (!netif_running(bp->dev))
8753		goto period_task_exit;
8754
8755	if (CHIP_REV_IS_SLOW(bp)) {
8756		BNX2X_ERR("period task called on emulation, ignoring\n");
8757		goto period_task_exit;
8758	}
8759
8760	bnx2x_acquire_phy_lock(bp);
8761	/*
8762	 * The barrier is needed to ensure the ordering between the writing to
8763	 * the bp->port.pmf in the bnx2x_nic_load() or bnx2x_pmf_update() and
8764	 * the reading here.
8765	 */
8766	smp_mb();
8767	if (bp->port.pmf) {
8768		bnx2x_period_func(&bp->link_params, &bp->link_vars);
8769
8770		/* Re-queue task in 1 sec */
8771		queue_delayed_work(bnx2x_wq, &bp->period_task, 1*HZ);
8772	}
8773
8774	bnx2x_release_phy_lock(bp);
8775period_task_exit:
8776	return;
8777}
8778
8779/*
8780 * Init service functions
8781 */
8782
8783static u32 bnx2x_get_pretend_reg(struct bnx2x *bp)
8784{
8785	u32 base = PXP2_REG_PGL_PRETEND_FUNC_F0;
8786	u32 stride = PXP2_REG_PGL_PRETEND_FUNC_F1 - base;
8787	return base + (BP_ABS_FUNC(bp)) * stride;
8788}
8789
8790static void bnx2x_undi_int_disable_e1h(struct bnx2x *bp)
8791{
8792	u32 reg = bnx2x_get_pretend_reg(bp);
8793
8794	/* Flush all outstanding writes */
8795	mmiowb();
8796
8797	/* Pretend to be function 0 */
8798	REG_WR(bp, reg, 0);
8799	REG_RD(bp, reg);	/* Flush the GRC transaction (in the chip) */
8800
8801	/* From now we are in the "like-E1" mode */
8802	bnx2x_int_disable(bp);
8803
8804	/* Flush all outstanding writes */
8805	mmiowb();
8806
8807	/* Restore the original function */
8808	REG_WR(bp, reg, BP_ABS_FUNC(bp));
8809	REG_RD(bp, reg);
8810}
8811
8812static inline void bnx2x_undi_int_disable(struct bnx2x *bp)
8813{
8814	if (CHIP_IS_E1(bp))
8815		bnx2x_int_disable(bp);
8816	else
8817		bnx2x_undi_int_disable_e1h(bp);
8818}
8819
8820static void __devinit bnx2x_prev_unload_close_mac(struct bnx2x *bp)
8821{
8822	u32 val, base_addr, offset, mask, reset_reg;
8823	bool mac_stopped = false;
8824	u8 port = BP_PORT(bp);
8825
8826	reset_reg = REG_RD(bp, MISC_REG_RESET_REG_2);
8827
8828	if (!CHIP_IS_E3(bp)) {
8829		val = REG_RD(bp, NIG_REG_BMAC0_REGS_OUT_EN + port * 4);
8830		mask = MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port;
8831		if ((mask & reset_reg) && val) {
8832			u32 wb_data[2];
8833			BNX2X_DEV_INFO("Disable bmac Rx\n");
8834			base_addr = BP_PORT(bp) ? NIG_REG_INGRESS_BMAC1_MEM
8835						: NIG_REG_INGRESS_BMAC0_MEM;
8836			offset = CHIP_IS_E2(bp) ? BIGMAC2_REGISTER_BMAC_CONTROL
8837						: BIGMAC_REGISTER_BMAC_CONTROL;
8838
8839			/*
8840			 * use rd/wr since we cannot use dmae. This is safe
8841			 * since MCP won't access the bus due to the request
8842			 * to unload, and no function on the path can be
8843			 * loaded at this time.
8844			 */
8845			wb_data[0] = REG_RD(bp, base_addr + offset);
8846			wb_data[1] = REG_RD(bp, base_addr + offset + 0x4);
8847			wb_data[0] &= ~BMAC_CONTROL_RX_ENABLE;
8848			REG_WR(bp, base_addr + offset, wb_data[0]);
8849			REG_WR(bp, base_addr + offset + 0x4, wb_data[1]);
8850
8851		}
8852		BNX2X_DEV_INFO("Disable emac Rx\n");
8853		REG_WR(bp, NIG_REG_NIG_EMAC0_EN + BP_PORT(bp)*4, 0);
8854
8855		mac_stopped = true;
8856	} else {
8857		if (reset_reg & MISC_REGISTERS_RESET_REG_2_XMAC) {
8858			BNX2X_DEV_INFO("Disable xmac Rx\n");
8859			base_addr = BP_PORT(bp) ? GRCBASE_XMAC1 : GRCBASE_XMAC0;
8860			val = REG_RD(bp, base_addr + XMAC_REG_PFC_CTRL_HI);
8861			REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI,
8862			       val & ~(1 << 1));
8863			REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI,
8864			       val | (1 << 1));
8865			REG_WR(bp, base_addr + XMAC_REG_CTRL, 0);
8866			mac_stopped = true;
8867		}
8868		mask = MISC_REGISTERS_RESET_REG_2_UMAC0 << port;
8869		if (mask & reset_reg) {
8870			BNX2X_DEV_INFO("Disable umac Rx\n");
8871			base_addr = BP_PORT(bp) ? GRCBASE_UMAC1 : GRCBASE_UMAC0;
8872			REG_WR(bp, base_addr + UMAC_REG_COMMAND_CONFIG, 0);
8873			mac_stopped = true;
8874		}
8875	}
8876
8877	if (mac_stopped)
8878		msleep(20);
8879
8880}
8881
8882#define BNX2X_PREV_UNDI_PROD_ADDR(p) (BAR_TSTRORM_INTMEM + 0x1508 + ((p) << 4))
8883#define BNX2X_PREV_UNDI_RCQ(val)	((val) & 0xffff)
8884#define BNX2X_PREV_UNDI_BD(val)		((val) >> 16 & 0xffff)
8885#define BNX2X_PREV_UNDI_PROD(rcq, bd)	((bd) << 16 | (rcq))
8886
8887static void __devinit bnx2x_prev_unload_undi_inc(struct bnx2x *bp, u8 port,
8888						 u8 inc)
8889{
8890	u16 rcq, bd;
8891	u32 tmp_reg = REG_RD(bp, BNX2X_PREV_UNDI_PROD_ADDR(port));
8892
8893	rcq = BNX2X_PREV_UNDI_RCQ(tmp_reg) + inc;
8894	bd = BNX2X_PREV_UNDI_BD(tmp_reg) + inc;
8895
8896	tmp_reg = BNX2X_PREV_UNDI_PROD(rcq, bd);
8897	REG_WR(bp, BNX2X_PREV_UNDI_PROD_ADDR(port), tmp_reg);
8898
8899	BNX2X_DEV_INFO("UNDI producer [%d] rings bd -> 0x%04x, rcq -> 0x%04x\n",
8900		       port, bd, rcq);
8901}
8902
8903static int __devinit bnx2x_prev_mcp_done(struct bnx2x *bp)
8904{
8905	u32 rc = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0);
8906	if (!rc) {
8907		BNX2X_ERR("MCP response failure, aborting\n");
8908		return -EBUSY;
8909	}
8910
8911	return 0;
8912}
8913
8914static bool __devinit bnx2x_prev_is_path_marked(struct bnx2x *bp)
8915{
8916	struct bnx2x_prev_path_list *tmp_list;
8917	int rc = false;
8918
8919	if (down_trylock(&bnx2x_prev_sem))
8920		return false;
8921
8922	list_for_each_entry(tmp_list, &bnx2x_prev_list, list) {
8923		if (PCI_SLOT(bp->pdev->devfn) == tmp_list->slot &&
8924		    bp->pdev->bus->number == tmp_list->bus &&
8925		    BP_PATH(bp) == tmp_list->path) {
8926			rc = true;
8927			BNX2X_DEV_INFO("Path %d was already cleaned from previous drivers\n",
8928				       BP_PATH(bp));
8929			break;
8930		}
8931	}
8932
8933	up(&bnx2x_prev_sem);
8934
8935	return rc;
8936}
8937
8938static int __devinit bnx2x_prev_mark_path(struct bnx2x *bp)
8939{
8940	struct bnx2x_prev_path_list *tmp_list;
8941	int rc;
8942
8943	tmp_list = (struct bnx2x_prev_path_list *)
8944		    kmalloc(sizeof(struct bnx2x_prev_path_list), GFP_KERNEL);
8945	if (!tmp_list) {
8946		BNX2X_ERR("Failed to allocate 'bnx2x_prev_path_list'\n");
8947		return -ENOMEM;
8948	}
8949
8950	tmp_list->bus = bp->pdev->bus->number;
8951	tmp_list->slot = PCI_SLOT(bp->pdev->devfn);
8952	tmp_list->path = BP_PATH(bp);
8953
8954	rc = down_interruptible(&bnx2x_prev_sem);
8955	if (rc) {
8956		BNX2X_ERR("Received %d when tried to take lock\n", rc);
8957		kfree(tmp_list);
8958	} else {
8959		BNX2X_DEV_INFO("Marked path [%d] - finished previous unload\n",
8960				BP_PATH(bp));
8961		list_add(&tmp_list->list, &bnx2x_prev_list);
8962		up(&bnx2x_prev_sem);
8963	}
8964
8965	return rc;
8966}
8967
8968static bool __devinit bnx2x_can_flr(struct bnx2x *bp)
8969{
8970	int pos;
8971	u32 cap;
8972	struct pci_dev *dev = bp->pdev;
8973
8974	pos = pci_pcie_cap(dev);
8975	if (!pos)
8976		return false;
8977
8978	pci_read_config_dword(dev, pos + PCI_EXP_DEVCAP, &cap);
8979	if (!(cap & PCI_EXP_DEVCAP_FLR))
8980		return false;
8981
8982	return true;
8983}
8984
8985static int __devinit bnx2x_do_flr(struct bnx2x *bp)
8986{
8987	int i, pos;
8988	u16 status;
8989	struct pci_dev *dev = bp->pdev;
8990
8991	/* probe the capability first */
8992	if (bnx2x_can_flr(bp))
8993		return -ENOTTY;
8994
8995	pos = pci_pcie_cap(dev);
8996	if (!pos)
8997		return -ENOTTY;
8998
8999	/* Wait for Transaction Pending bit clean */
9000	for (i = 0; i < 4; i++) {
9001		if (i)
9002			msleep((1 << (i - 1)) * 100);
9003
9004		pci_read_config_word(dev, pos + PCI_EXP_DEVSTA, &status);
9005		if (!(status & PCI_EXP_DEVSTA_TRPND))
9006			goto clear;
9007	}
9008
9009	dev_err(&dev->dev,
9010		"transaction is not cleared; proceeding with reset anyway\n");
9011
9012clear:
9013	if (bp->common.bc_ver < REQ_BC_VER_4_INITIATE_FLR) {
9014		BNX2X_ERR("FLR not supported by BC_VER: 0x%x\n",
9015			  bp->common.bc_ver);
9016		return -EINVAL;
9017	}
9018
9019	bnx2x_fw_command(bp, DRV_MSG_CODE_INITIATE_FLR, 0);
9020
9021	return 0;
9022}
9023
9024static int __devinit bnx2x_prev_unload_uncommon(struct bnx2x *bp)
9025{
9026	int rc;
9027
9028	BNX2X_DEV_INFO("Uncommon unload Flow\n");
9029
9030	/* Test if previous unload process was already finished for this path */
9031	if (bnx2x_prev_is_path_marked(bp))
9032		return bnx2x_prev_mcp_done(bp);
9033
9034	/* If function has FLR capabilities, and existing FW version matches
9035	 * the one required, then FLR will be sufficient to clean any residue
9036	 * left by previous driver
9037	 */
9038	if (bnx2x_test_firmware_version(bp, false) && bnx2x_can_flr(bp))
9039		return bnx2x_do_flr(bp);
9040
9041	/* Close the MCP request, return failure*/
9042	rc = bnx2x_prev_mcp_done(bp);
9043	if (!rc)
9044		rc = BNX2X_PREV_WAIT_NEEDED;
9045
9046	return rc;
9047}
9048
9049static int __devinit bnx2x_prev_unload_common(struct bnx2x *bp)
9050{
9051	u32 reset_reg, tmp_reg = 0, rc;
9052	/* It is possible a previous function received 'common' answer,
9053	 * but hasn't loaded yet, therefore creating a scenario of
9054	 * multiple functions receiving 'common' on the same path.
9055	 */
9056	BNX2X_DEV_INFO("Common unload Flow\n");
9057
9058	if (bnx2x_prev_is_path_marked(bp))
9059		return bnx2x_prev_mcp_done(bp);
9060
9061	reset_reg = REG_RD(bp, MISC_REG_RESET_REG_1);
9062
9063	/* Reset should be performed after BRB is emptied */
9064	if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_BRB1) {
9065		u32 timer_count = 1000;
9066		bool prev_undi = false;
9067
9068		/* Close the MAC Rx to prevent BRB from filling up */
9069		bnx2x_prev_unload_close_mac(bp);
9070
9071		/* Check if the UNDI driver was previously loaded
9072		 * UNDI driver initializes CID offset for normal bell to 0x7
9073		 */
9074		reset_reg = REG_RD(bp, MISC_REG_RESET_REG_1);
9075		if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_DORQ) {
9076			tmp_reg = REG_RD(bp, DORQ_REG_NORM_CID_OFST);
9077			if (tmp_reg == 0x7) {
9078				BNX2X_DEV_INFO("UNDI previously loaded\n");
9079				prev_undi = true;
9080				/* clear the UNDI indication */
9081				REG_WR(bp, DORQ_REG_NORM_CID_OFST, 0);
9082			}
9083		}
9084		/* wait until BRB is empty */
9085		tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS);
9086		while (timer_count) {
9087			u32 prev_brb = tmp_reg;
9088
9089			tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS);
9090			if (!tmp_reg)
9091				break;
9092
9093			BNX2X_DEV_INFO("BRB still has 0x%08x\n", tmp_reg);
9094
9095			/* reset timer as long as BRB actually gets emptied */
9096			if (prev_brb > tmp_reg)
9097				timer_count = 1000;
9098			else
9099				timer_count--;
9100
9101			/* If UNDI resides in memory, manually increment it */
9102			if (prev_undi)
9103				bnx2x_prev_unload_undi_inc(bp, BP_PORT(bp), 1);
9104
9105			udelay(10);
9106		}
9107
9108		if (!timer_count)
9109			BNX2X_ERR("Failed to empty BRB, hope for the best\n");
9110
9111	}
9112
9113	/* No packets are in the pipeline, path is ready for reset */
9114	bnx2x_reset_common(bp);
9115
9116	rc = bnx2x_prev_mark_path(bp);
9117	if (rc) {
9118		bnx2x_prev_mcp_done(bp);
9119		return rc;
9120	}
9121
9122	return bnx2x_prev_mcp_done(bp);
9123}
9124
9125static int __devinit bnx2x_prev_unload(struct bnx2x *bp)
9126{
9127	int time_counter = 10;
9128	u32 rc, fw, hw_lock_reg, hw_lock_val;
9129	BNX2X_DEV_INFO("Entering Previous Unload Flow\n");
9130
9131       /* Release previously held locks */
9132	hw_lock_reg = (BP_FUNC(bp) <= 5) ?
9133		      (MISC_REG_DRIVER_CONTROL_1 + BP_FUNC(bp) * 8) :
9134		      (MISC_REG_DRIVER_CONTROL_7 + (BP_FUNC(bp) - 6) * 8);
9135
9136	hw_lock_val = (REG_RD(bp, hw_lock_reg));
9137	if (hw_lock_val) {
9138		if (hw_lock_val & HW_LOCK_RESOURCE_NVRAM) {
9139			BNX2X_DEV_INFO("Release Previously held NVRAM lock\n");
9140			REG_WR(bp, MCP_REG_MCPR_NVM_SW_ARB,
9141			       (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << BP_PORT(bp)));
9142		}
9143
9144		BNX2X_DEV_INFO("Release Previously held hw lock\n");
9145		REG_WR(bp, hw_lock_reg, 0xffffffff);
9146	} else
9147		BNX2X_DEV_INFO("No need to release hw/nvram locks\n");
9148
9149	if (MCPR_ACCESS_LOCK_LOCK & REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK)) {
9150		BNX2X_DEV_INFO("Release previously held alr\n");
9151		REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, 0);
9152	}
9153
9154
9155	do {
9156		/* Lock MCP using an unload request */
9157		fw = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS, 0);
9158		if (!fw) {
9159			BNX2X_ERR("MCP response failure, aborting\n");
9160			rc = -EBUSY;
9161			break;
9162		}
9163
9164		if (fw == FW_MSG_CODE_DRV_UNLOAD_COMMON) {
9165			rc = bnx2x_prev_unload_common(bp);
9166			break;
9167		}
9168
9169		/* non-common reply from MCP night require looping */
9170		rc = bnx2x_prev_unload_uncommon(bp);
9171		if (rc != BNX2X_PREV_WAIT_NEEDED)
9172			break;
9173
9174		msleep(20);
9175	} while (--time_counter);
9176
9177	if (!time_counter || rc) {
9178		BNX2X_ERR("Failed unloading previous driver, aborting\n");
9179		rc = -EBUSY;
9180	}
9181
9182	BNX2X_DEV_INFO("Finished Previous Unload Flow [%d]\n", rc);
9183
9184	return rc;
9185}
9186
9187static void __devinit bnx2x_get_common_hwinfo(struct bnx2x *bp)
9188{
9189	u32 val, val2, val3, val4, id, boot_mode;
9190	u16 pmc;
9191
9192	/* Get the chip revision id and number. */
9193	/* chip num:16-31, rev:12-15, metal:4-11, bond_id:0-3 */
9194	val = REG_RD(bp, MISC_REG_CHIP_NUM);
9195	id = ((val & 0xffff) << 16);
9196	val = REG_RD(bp, MISC_REG_CHIP_REV);
9197	id |= ((val & 0xf) << 12);
9198	val = REG_RD(bp, MISC_REG_CHIP_METAL);
9199	id |= ((val & 0xff) << 4);
9200	val = REG_RD(bp, MISC_REG_BOND_ID);
9201	id |= (val & 0xf);
9202	bp->common.chip_id = id;
9203
9204	/* Set doorbell size */
9205	bp->db_size = (1 << BNX2X_DB_SHIFT);
9206
9207	if (!CHIP_IS_E1x(bp)) {
9208		val = REG_RD(bp, MISC_REG_PORT4MODE_EN_OVWR);
9209		if ((val & 1) == 0)
9210			val = REG_RD(bp, MISC_REG_PORT4MODE_EN);
9211		else
9212			val = (val >> 1) & 1;
9213		BNX2X_DEV_INFO("chip is in %s\n", val ? "4_PORT_MODE" :
9214						       "2_PORT_MODE");
9215		bp->common.chip_port_mode = val ? CHIP_4_PORT_MODE :
9216						 CHIP_2_PORT_MODE;
9217
9218		if (CHIP_MODE_IS_4_PORT(bp))
9219			bp->pfid = (bp->pf_num >> 1);	/* 0..3 */
9220		else
9221			bp->pfid = (bp->pf_num & 0x6);	/* 0, 2, 4, 6 */
9222	} else {
9223		bp->common.chip_port_mode = CHIP_PORT_MODE_NONE; /* N/A */
9224		bp->pfid = bp->pf_num;			/* 0..7 */
9225	}
9226
9227	BNX2X_DEV_INFO("pf_id: %x", bp->pfid);
9228
9229	bp->link_params.chip_id = bp->common.chip_id;
9230	BNX2X_DEV_INFO("chip ID is 0x%x\n", id);
9231
9232	val = (REG_RD(bp, 0x2874) & 0x55);
9233	if ((bp->common.chip_id & 0x1) ||
9234	    (CHIP_IS_E1(bp) && val) || (CHIP_IS_E1H(bp) && (val == 0x55))) {
9235		bp->flags |= ONE_PORT_FLAG;
9236		BNX2X_DEV_INFO("single port device\n");
9237	}
9238
9239	val = REG_RD(bp, MCP_REG_MCPR_NVM_CFG4);
9240	bp->common.flash_size = (BNX2X_NVRAM_1MB_SIZE <<
9241				 (val & MCPR_NVM_CFG4_FLASH_SIZE));
9242	BNX2X_DEV_INFO("flash_size 0x%x (%d)\n",
9243		       bp->common.flash_size, bp->common.flash_size);
9244
9245	bnx2x_init_shmem(bp);
9246
9247
9248
9249	bp->common.shmem2_base = REG_RD(bp, (BP_PATH(bp) ?
9250					MISC_REG_GENERIC_CR_1 :
9251					MISC_REG_GENERIC_CR_0));
9252
9253	bp->link_params.shmem_base = bp->common.shmem_base;
9254	bp->link_params.shmem2_base = bp->common.shmem2_base;
9255	BNX2X_DEV_INFO("shmem offset 0x%x  shmem2 offset 0x%x\n",
9256		       bp->common.shmem_base, bp->common.shmem2_base);
9257
9258	if (!bp->common.shmem_base) {
9259		BNX2X_DEV_INFO("MCP not active\n");
9260		bp->flags |= NO_MCP_FLAG;
9261		return;
9262	}
9263
9264	bp->common.hw_config = SHMEM_RD(bp, dev_info.shared_hw_config.config);
9265	BNX2X_DEV_INFO("hw_config 0x%08x\n", bp->common.hw_config);
9266
9267	bp->link_params.hw_led_mode = ((bp->common.hw_config &
9268					SHARED_HW_CFG_LED_MODE_MASK) >>
9269				       SHARED_HW_CFG_LED_MODE_SHIFT);
9270
9271	bp->link_params.feature_config_flags = 0;
9272	val = SHMEM_RD(bp, dev_info.shared_feature_config.config);
9273	if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED)
9274		bp->link_params.feature_config_flags |=
9275				FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
9276	else
9277		bp->link_params.feature_config_flags &=
9278				~FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
9279
9280	val = SHMEM_RD(bp, dev_info.bc_rev) >> 8;
9281	bp->common.bc_ver = val;
9282	BNX2X_DEV_INFO("bc_ver %X\n", val);
9283	if (val < BNX2X_BC_VER) {
9284		/* for now only warn
9285		 * later we might need to enforce this */
9286		BNX2X_ERR("This driver needs bc_ver %X but found %X, please upgrade BC\n",
9287			  BNX2X_BC_VER, val);
9288	}
9289	bp->link_params.feature_config_flags |=
9290				(val >= REQ_BC_VER_4_VRFY_FIRST_PHY_OPT_MDL) ?
9291				FEATURE_CONFIG_BC_SUPPORTS_OPT_MDL_VRFY : 0;
9292
9293	bp->link_params.feature_config_flags |=
9294		(val >= REQ_BC_VER_4_VRFY_SPECIFIC_PHY_OPT_MDL) ?
9295		FEATURE_CONFIG_BC_SUPPORTS_DUAL_PHY_OPT_MDL_VRFY : 0;
9296
9297	bp->link_params.feature_config_flags |=
9298		(val >= REQ_BC_VER_4_SFP_TX_DISABLE_SUPPORTED) ?
9299		FEATURE_CONFIG_BC_SUPPORTS_SFP_TX_DISABLED : 0;
9300	bp->flags |= (val >= REQ_BC_VER_4_PFC_STATS_SUPPORTED) ?
9301			BC_SUPPORTS_PFC_STATS : 0;
9302
9303	boot_mode = SHMEM_RD(bp,
9304			dev_info.port_feature_config[BP_PORT(bp)].mba_config) &
9305			PORT_FEATURE_MBA_BOOT_AGENT_TYPE_MASK;
9306	switch (boot_mode) {
9307	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_PXE:
9308		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_PXE;
9309		break;
9310	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_ISCSIB:
9311		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_ISCSI;
9312		break;
9313	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_FCOE_BOOT:
9314		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_FCOE;
9315		break;
9316	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_NONE:
9317		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_NONE;
9318		break;
9319	}
9320
9321	pci_read_config_word(bp->pdev, bp->pm_cap + PCI_PM_PMC, &pmc);
9322	bp->flags |= (pmc & PCI_PM_CAP_PME_D3cold) ? 0 : NO_WOL_FLAG;
9323
9324	BNX2X_DEV_INFO("%sWoL capable\n",
9325		       (bp->flags & NO_WOL_FLAG) ? "not " : "");
9326
9327	val = SHMEM_RD(bp, dev_info.shared_hw_config.part_num);
9328	val2 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[4]);
9329	val3 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[8]);
9330	val4 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[12]);
9331
9332	dev_info(&bp->pdev->dev, "part number %X-%X-%X-%X\n",
9333		 val, val2, val3, val4);
9334}
9335
9336#define IGU_FID(val)	GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID)
9337#define IGU_VEC(val)	GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR)
9338
9339static void __devinit bnx2x_get_igu_cam_info(struct bnx2x *bp)
9340{
9341	int pfid = BP_FUNC(bp);
9342	int igu_sb_id;
9343	u32 val;
9344	u8 fid, igu_sb_cnt = 0;
9345
9346	bp->igu_base_sb = 0xff;
9347	if (CHIP_INT_MODE_IS_BC(bp)) {
9348		int vn = BP_VN(bp);
9349		igu_sb_cnt = bp->igu_sb_cnt;
9350		bp->igu_base_sb = (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn) *
9351			FP_SB_MAX_E1x;
9352
9353		bp->igu_dsb_id =  E1HVN_MAX * FP_SB_MAX_E1x +
9354			(CHIP_MODE_IS_4_PORT(bp) ? pfid : vn);
9355
9356		return;
9357	}
9358
9359	/* IGU in normal mode - read CAM */
9360	for (igu_sb_id = 0; igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE;
9361	     igu_sb_id++) {
9362		val = REG_RD(bp, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4);
9363		if (!(val & IGU_REG_MAPPING_MEMORY_VALID))
9364			continue;
9365		fid = IGU_FID(val);
9366		if ((fid & IGU_FID_ENCODE_IS_PF)) {
9367			if ((fid & IGU_FID_PF_NUM_MASK) != pfid)
9368				continue;
9369			if (IGU_VEC(val) == 0)
9370				/* default status block */
9371				bp->igu_dsb_id = igu_sb_id;
9372			else {
9373				if (bp->igu_base_sb == 0xff)
9374					bp->igu_base_sb = igu_sb_id;
9375				igu_sb_cnt++;
9376			}
9377		}
9378	}
9379
9380#ifdef CONFIG_PCI_MSI
9381	/*
9382	 * It's expected that number of CAM entries for this functions is equal
9383	 * to the number evaluated based on the MSI-X table size. We want a
9384	 * harsh warning if these values are different!
9385	 */
9386	WARN_ON(bp->igu_sb_cnt != igu_sb_cnt);
9387#endif
9388
9389	if (igu_sb_cnt == 0)
9390		BNX2X_ERR("CAM configuration error\n");
9391}
9392
9393static void __devinit bnx2x_link_settings_supported(struct bnx2x *bp,
9394						    u32 switch_cfg)
9395{
9396	int cfg_size = 0, idx, port = BP_PORT(bp);
9397
9398	/* Aggregation of supported attributes of all external phys */
9399	bp->port.supported[0] = 0;
9400	bp->port.supported[1] = 0;
9401	switch (bp->link_params.num_phys) {
9402	case 1:
9403		bp->port.supported[0] = bp->link_params.phy[INT_PHY].supported;
9404		cfg_size = 1;
9405		break;
9406	case 2:
9407		bp->port.supported[0] = bp->link_params.phy[EXT_PHY1].supported;
9408		cfg_size = 1;
9409		break;
9410	case 3:
9411		if (bp->link_params.multi_phy_config &
9412		    PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
9413			bp->port.supported[1] =
9414				bp->link_params.phy[EXT_PHY1].supported;
9415			bp->port.supported[0] =
9416				bp->link_params.phy[EXT_PHY2].supported;
9417		} else {
9418			bp->port.supported[0] =
9419				bp->link_params.phy[EXT_PHY1].supported;
9420			bp->port.supported[1] =
9421				bp->link_params.phy[EXT_PHY2].supported;
9422		}
9423		cfg_size = 2;
9424		break;
9425	}
9426
9427	if (!(bp->port.supported[0] || bp->port.supported[1])) {
9428		BNX2X_ERR("NVRAM config error. BAD phy config. PHY1 config 0x%x, PHY2 config 0x%x\n",
9429			   SHMEM_RD(bp,
9430			   dev_info.port_hw_config[port].external_phy_config),
9431			   SHMEM_RD(bp,
9432			   dev_info.port_hw_config[port].external_phy_config2));
9433			return;
9434	}
9435
9436	if (CHIP_IS_E3(bp))
9437		bp->port.phy_addr = REG_RD(bp, MISC_REG_WC0_CTRL_PHY_ADDR);
9438	else {
9439		switch (switch_cfg) {
9440		case SWITCH_CFG_1G:
9441			bp->port.phy_addr = REG_RD(
9442				bp, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10);
9443			break;
9444		case SWITCH_CFG_10G:
9445			bp->port.phy_addr = REG_RD(
9446				bp, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18);
9447			break;
9448		default:
9449			BNX2X_ERR("BAD switch_cfg link_config 0x%x\n",
9450				  bp->port.link_config[0]);
9451			return;
9452		}
9453	}
9454	BNX2X_DEV_INFO("phy_addr 0x%x\n", bp->port.phy_addr);
9455	/* mask what we support according to speed_cap_mask per configuration */
9456	for (idx = 0; idx < cfg_size; idx++) {
9457		if (!(bp->link_params.speed_cap_mask[idx] &
9458				PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF))
9459			bp->port.supported[idx] &= ~SUPPORTED_10baseT_Half;
9460
9461		if (!(bp->link_params.speed_cap_mask[idx] &
9462				PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL))
9463			bp->port.supported[idx] &= ~SUPPORTED_10baseT_Full;
9464
9465		if (!(bp->link_params.speed_cap_mask[idx] &
9466				PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF))
9467			bp->port.supported[idx] &= ~SUPPORTED_100baseT_Half;
9468
9469		if (!(bp->link_params.speed_cap_mask[idx] &
9470				PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL))
9471			bp->port.supported[idx] &= ~SUPPORTED_100baseT_Full;
9472
9473		if (!(bp->link_params.speed_cap_mask[idx] &
9474					PORT_HW_CFG_SPEED_CAPABILITY_D0_1G))
9475			bp->port.supported[idx] &= ~(SUPPORTED_1000baseT_Half |
9476						     SUPPORTED_1000baseT_Full);
9477
9478		if (!(bp->link_params.speed_cap_mask[idx] &
9479					PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G))
9480			bp->port.supported[idx] &= ~SUPPORTED_2500baseX_Full;
9481
9482		if (!(bp->link_params.speed_cap_mask[idx] &
9483					PORT_HW_CFG_SPEED_CAPABILITY_D0_10G))
9484			bp->port.supported[idx] &= ~SUPPORTED_10000baseT_Full;
9485
9486	}
9487
9488	BNX2X_DEV_INFO("supported 0x%x 0x%x\n", bp->port.supported[0],
9489		       bp->port.supported[1]);
9490}
9491
9492static void __devinit bnx2x_link_settings_requested(struct bnx2x *bp)
9493{
9494	u32 link_config, idx, cfg_size = 0;
9495	bp->port.advertising[0] = 0;
9496	bp->port.advertising[1] = 0;
9497	switch (bp->link_params.num_phys) {
9498	case 1:
9499	case 2:
9500		cfg_size = 1;
9501		break;
9502	case 3:
9503		cfg_size = 2;
9504		break;
9505	}
9506	for (idx = 0; idx < cfg_size; idx++) {
9507		bp->link_params.req_duplex[idx] = DUPLEX_FULL;
9508		link_config = bp->port.link_config[idx];
9509		switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) {
9510		case PORT_FEATURE_LINK_SPEED_AUTO:
9511			if (bp->port.supported[idx] & SUPPORTED_Autoneg) {
9512				bp->link_params.req_line_speed[idx] =
9513					SPEED_AUTO_NEG;
9514				bp->port.advertising[idx] |=
9515					bp->port.supported[idx];
9516				if (bp->link_params.phy[EXT_PHY1].type ==
9517				    PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84833)
9518					bp->port.advertising[idx] |=
9519					(SUPPORTED_100baseT_Half |
9520					 SUPPORTED_100baseT_Full);
9521			} else {
9522				/* force 10G, no AN */
9523				bp->link_params.req_line_speed[idx] =
9524					SPEED_10000;
9525				bp->port.advertising[idx] |=
9526					(ADVERTISED_10000baseT_Full |
9527					 ADVERTISED_FIBRE);
9528				continue;
9529			}
9530			break;
9531
9532		case PORT_FEATURE_LINK_SPEED_10M_FULL:
9533			if (bp->port.supported[idx] & SUPPORTED_10baseT_Full) {
9534				bp->link_params.req_line_speed[idx] =
9535					SPEED_10;
9536				bp->port.advertising[idx] |=
9537					(ADVERTISED_10baseT_Full |
9538					 ADVERTISED_TP);
9539			} else {
9540				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
9541					    link_config,
9542				    bp->link_params.speed_cap_mask[idx]);
9543				return;
9544			}
9545			break;
9546
9547		case PORT_FEATURE_LINK_SPEED_10M_HALF:
9548			if (bp->port.supported[idx] & SUPPORTED_10baseT_Half) {
9549				bp->link_params.req_line_speed[idx] =
9550					SPEED_10;
9551				bp->link_params.req_duplex[idx] =
9552					DUPLEX_HALF;
9553				bp->port.advertising[idx] |=
9554					(ADVERTISED_10baseT_Half |
9555					 ADVERTISED_TP);
9556			} else {
9557				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
9558					    link_config,
9559					  bp->link_params.speed_cap_mask[idx]);
9560				return;
9561			}
9562			break;
9563
9564		case PORT_FEATURE_LINK_SPEED_100M_FULL:
9565			if (bp->port.supported[idx] &
9566			    SUPPORTED_100baseT_Full) {
9567				bp->link_params.req_line_speed[idx] =
9568					SPEED_100;
9569				bp->port.advertising[idx] |=
9570					(ADVERTISED_100baseT_Full |
9571					 ADVERTISED_TP);
9572			} else {
9573				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
9574					    link_config,
9575					  bp->link_params.speed_cap_mask[idx]);
9576				return;
9577			}
9578			break;
9579
9580		case PORT_FEATURE_LINK_SPEED_100M_HALF:
9581			if (bp->port.supported[idx] &
9582			    SUPPORTED_100baseT_Half) {
9583				bp->link_params.req_line_speed[idx] =
9584								SPEED_100;
9585				bp->link_params.req_duplex[idx] =
9586								DUPLEX_HALF;
9587				bp->port.advertising[idx] |=
9588					(ADVERTISED_100baseT_Half |
9589					 ADVERTISED_TP);
9590			} else {
9591				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
9592				    link_config,
9593				    bp->link_params.speed_cap_mask[idx]);
9594				return;
9595			}
9596			break;
9597
9598		case PORT_FEATURE_LINK_SPEED_1G:
9599			if (bp->port.supported[idx] &
9600			    SUPPORTED_1000baseT_Full) {
9601				bp->link_params.req_line_speed[idx] =
9602					SPEED_1000;
9603				bp->port.advertising[idx] |=
9604					(ADVERTISED_1000baseT_Full |
9605					 ADVERTISED_TP);
9606			} else {
9607				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
9608				    link_config,
9609				    bp->link_params.speed_cap_mask[idx]);
9610				return;
9611			}
9612			break;
9613
9614		case PORT_FEATURE_LINK_SPEED_2_5G:
9615			if (bp->port.supported[idx] &
9616			    SUPPORTED_2500baseX_Full) {
9617				bp->link_params.req_line_speed[idx] =
9618					SPEED_2500;
9619				bp->port.advertising[idx] |=
9620					(ADVERTISED_2500baseX_Full |
9621						ADVERTISED_TP);
9622			} else {
9623				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
9624				    link_config,
9625				    bp->link_params.speed_cap_mask[idx]);
9626				return;
9627			}
9628			break;
9629
9630		case PORT_FEATURE_LINK_SPEED_10G_CX4:
9631			if (bp->port.supported[idx] &
9632			    SUPPORTED_10000baseT_Full) {
9633				bp->link_params.req_line_speed[idx] =
9634					SPEED_10000;
9635				bp->port.advertising[idx] |=
9636					(ADVERTISED_10000baseT_Full |
9637						ADVERTISED_FIBRE);
9638			} else {
9639				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
9640				    link_config,
9641				    bp->link_params.speed_cap_mask[idx]);
9642				return;
9643			}
9644			break;
9645		case PORT_FEATURE_LINK_SPEED_20G:
9646			bp->link_params.req_line_speed[idx] = SPEED_20000;
9647
9648			break;
9649		default:
9650			BNX2X_ERR("NVRAM config error. BAD link speed link_config 0x%x\n",
9651				  link_config);
9652				bp->link_params.req_line_speed[idx] =
9653							SPEED_AUTO_NEG;
9654				bp->port.advertising[idx] =
9655						bp->port.supported[idx];
9656			break;
9657		}
9658
9659		bp->link_params.req_flow_ctrl[idx] = (link_config &
9660					 PORT_FEATURE_FLOW_CONTROL_MASK);
9661		if ((bp->link_params.req_flow_ctrl[idx] ==
9662		     BNX2X_FLOW_CTRL_AUTO) &&
9663		    !(bp->port.supported[idx] & SUPPORTED_Autoneg)) {
9664			bp->link_params.req_flow_ctrl[idx] =
9665				BNX2X_FLOW_CTRL_NONE;
9666		}
9667
9668		BNX2X_DEV_INFO("req_line_speed %d  req_duplex %d req_flow_ctrl 0x%x advertising 0x%x\n",
9669			       bp->link_params.req_line_speed[idx],
9670			       bp->link_params.req_duplex[idx],
9671			       bp->link_params.req_flow_ctrl[idx],
9672			       bp->port.advertising[idx]);
9673	}
9674}
9675
9676static void __devinit bnx2x_set_mac_buf(u8 *mac_buf, u32 mac_lo, u16 mac_hi)
9677{
9678	mac_hi = cpu_to_be16(mac_hi);
9679	mac_lo = cpu_to_be32(mac_lo);
9680	memcpy(mac_buf, &mac_hi, sizeof(mac_hi));
9681	memcpy(mac_buf + sizeof(mac_hi), &mac_lo, sizeof(mac_lo));
9682}
9683
9684static void __devinit bnx2x_get_port_hwinfo(struct bnx2x *bp)
9685{
9686	int port = BP_PORT(bp);
9687	u32 config;
9688	u32 ext_phy_type, ext_phy_config;
9689
9690	bp->link_params.bp = bp;
9691	bp->link_params.port = port;
9692
9693	bp->link_params.lane_config =
9694		SHMEM_RD(bp, dev_info.port_hw_config[port].lane_config);
9695
9696	bp->link_params.speed_cap_mask[0] =
9697		SHMEM_RD(bp,
9698			 dev_info.port_hw_config[port].speed_capability_mask);
9699	bp->link_params.speed_cap_mask[1] =
9700		SHMEM_RD(bp,
9701			 dev_info.port_hw_config[port].speed_capability_mask2);
9702	bp->port.link_config[0] =
9703		SHMEM_RD(bp, dev_info.port_feature_config[port].link_config);
9704
9705	bp->port.link_config[1] =
9706		SHMEM_RD(bp, dev_info.port_feature_config[port].link_config2);
9707
9708	bp->link_params.multi_phy_config =
9709		SHMEM_RD(bp, dev_info.port_hw_config[port].multi_phy_config);
9710	/* If the device is capable of WoL, set the default state according
9711	 * to the HW
9712	 */
9713	config = SHMEM_RD(bp, dev_info.port_feature_config[port].config);
9714	bp->wol = (!(bp->flags & NO_WOL_FLAG) &&
9715		   (config & PORT_FEATURE_WOL_ENABLED));
9716
9717	BNX2X_DEV_INFO("lane_config 0x%08x  speed_cap_mask0 0x%08x  link_config0 0x%08x\n",
9718		       bp->link_params.lane_config,
9719		       bp->link_params.speed_cap_mask[0],
9720		       bp->port.link_config[0]);
9721
9722	bp->link_params.switch_cfg = (bp->port.link_config[0] &
9723				      PORT_FEATURE_CONNECTED_SWITCH_MASK);
9724	bnx2x_phy_probe(&bp->link_params);
9725	bnx2x_link_settings_supported(bp, bp->link_params.switch_cfg);
9726
9727	bnx2x_link_settings_requested(bp);
9728
9729	/*
9730	 * If connected directly, work with the internal PHY, otherwise, work
9731	 * with the external PHY
9732	 */
9733	ext_phy_config =
9734		SHMEM_RD(bp,
9735			 dev_info.port_hw_config[port].external_phy_config);
9736	ext_phy_type = XGXS_EXT_PHY_TYPE(ext_phy_config);
9737	if (ext_phy_type == PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT)
9738		bp->mdio.prtad = bp->port.phy_addr;
9739
9740	else if ((ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE) &&
9741		 (ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_NOT_CONN))
9742		bp->mdio.prtad =
9743			XGXS_EXT_PHY_ADDR(ext_phy_config);
9744
9745	/*
9746	 * Check if hw lock is required to access MDC/MDIO bus to the PHY(s)
9747	 * In MF mode, it is set to cover self test cases
9748	 */
9749	if (IS_MF(bp))
9750		bp->port.need_hw_lock = 1;
9751	else
9752		bp->port.need_hw_lock = bnx2x_hw_lock_required(bp,
9753							bp->common.shmem_base,
9754							bp->common.shmem2_base);
9755}
9756
9757void bnx2x_get_iscsi_info(struct bnx2x *bp)
9758{
9759	u32 no_flags = NO_ISCSI_FLAG;
9760#ifdef BCM_CNIC
9761	int port = BP_PORT(bp);
9762
9763	u32 max_iscsi_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
9764				drv_lic_key[port].max_iscsi_conn);
9765
9766	/* Get the number of maximum allowed iSCSI connections */
9767	bp->cnic_eth_dev.max_iscsi_conn =
9768		(max_iscsi_conn & BNX2X_MAX_ISCSI_INIT_CONN_MASK) >>
9769		BNX2X_MAX_ISCSI_INIT_CONN_SHIFT;
9770
9771	BNX2X_DEV_INFO("max_iscsi_conn 0x%x\n",
9772		       bp->cnic_eth_dev.max_iscsi_conn);
9773
9774	/*
9775	 * If maximum allowed number of connections is zero -
9776	 * disable the feature.
9777	 */
9778	if (!bp->cnic_eth_dev.max_iscsi_conn)
9779		bp->flags |= no_flags;
9780#else
9781	bp->flags |= no_flags;
9782#endif
9783}
9784
9785#ifdef BCM_CNIC
9786static void __devinit bnx2x_get_ext_wwn_info(struct bnx2x *bp, int func)
9787{
9788	/* Port info */
9789	bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
9790		MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_upper);
9791	bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
9792		MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_lower);
9793
9794	/* Node info */
9795	bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
9796		MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_upper);
9797	bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
9798		MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_lower);
9799}
9800#endif
9801static void __devinit bnx2x_get_fcoe_info(struct bnx2x *bp)
9802{
9803#ifdef BCM_CNIC
9804	int port = BP_PORT(bp);
9805	int func = BP_ABS_FUNC(bp);
9806
9807	u32 max_fcoe_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
9808				drv_lic_key[port].max_fcoe_conn);
9809
9810	/* Get the number of maximum allowed FCoE connections */
9811	bp->cnic_eth_dev.max_fcoe_conn =
9812		(max_fcoe_conn & BNX2X_MAX_FCOE_INIT_CONN_MASK) >>
9813		BNX2X_MAX_FCOE_INIT_CONN_SHIFT;
9814
9815	/* Read the WWN: */
9816	if (!IS_MF(bp)) {
9817		/* Port info */
9818		bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
9819			SHMEM_RD(bp,
9820				dev_info.port_hw_config[port].
9821				 fcoe_wwn_port_name_upper);
9822		bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
9823			SHMEM_RD(bp,
9824				dev_info.port_hw_config[port].
9825				 fcoe_wwn_port_name_lower);
9826
9827		/* Node info */
9828		bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
9829			SHMEM_RD(bp,
9830				dev_info.port_hw_config[port].
9831				 fcoe_wwn_node_name_upper);
9832		bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
9833			SHMEM_RD(bp,
9834				dev_info.port_hw_config[port].
9835				 fcoe_wwn_node_name_lower);
9836	} else if (!IS_MF_SD(bp)) {
9837		u32 cfg = MF_CFG_RD(bp, func_ext_config[func].func_cfg);
9838
9839		/*
9840		 * Read the WWN info only if the FCoE feature is enabled for
9841		 * this function.
9842		 */
9843		if (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD)
9844			bnx2x_get_ext_wwn_info(bp, func);
9845
9846	} else if (IS_MF_FCOE_SD(bp))
9847		bnx2x_get_ext_wwn_info(bp, func);
9848
9849	BNX2X_DEV_INFO("max_fcoe_conn 0x%x\n", bp->cnic_eth_dev.max_fcoe_conn);
9850
9851	/*
9852	 * If maximum allowed number of connections is zero -
9853	 * disable the feature.
9854	 */
9855	if (!bp->cnic_eth_dev.max_fcoe_conn)
9856		bp->flags |= NO_FCOE_FLAG;
9857#else
9858	bp->flags |= NO_FCOE_FLAG;
9859#endif
9860}
9861
9862static void __devinit bnx2x_get_cnic_info(struct bnx2x *bp)
9863{
9864	/*
9865	 * iSCSI may be dynamically disabled but reading
9866	 * info here we will decrease memory usage by driver
9867	 * if the feature is disabled for good
9868	 */
9869	bnx2x_get_iscsi_info(bp);
9870	bnx2x_get_fcoe_info(bp);
9871}
9872
9873static void __devinit bnx2x_get_mac_hwinfo(struct bnx2x *bp)
9874{
9875	u32 val, val2;
9876	int func = BP_ABS_FUNC(bp);
9877	int port = BP_PORT(bp);
9878#ifdef BCM_CNIC
9879	u8 *iscsi_mac = bp->cnic_eth_dev.iscsi_mac;
9880	u8 *fip_mac = bp->fip_mac;
9881#endif
9882
9883	/* Zero primary MAC configuration */
9884	memset(bp->dev->dev_addr, 0, ETH_ALEN);
9885
9886	if (BP_NOMCP(bp)) {
9887		BNX2X_ERROR("warning: random MAC workaround active\n");
9888		eth_hw_addr_random(bp->dev);
9889	} else if (IS_MF(bp)) {
9890		val2 = MF_CFG_RD(bp, func_mf_config[func].mac_upper);
9891		val = MF_CFG_RD(bp, func_mf_config[func].mac_lower);
9892		if ((val2 != FUNC_MF_CFG_UPPERMAC_DEFAULT) &&
9893		    (val != FUNC_MF_CFG_LOWERMAC_DEFAULT))
9894			bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
9895
9896#ifdef BCM_CNIC
9897		/*
9898		 * iSCSI and FCoE NPAR MACs: if there is no either iSCSI or
9899		 * FCoE MAC then the appropriate feature should be disabled.
9900		 *
9901		 * In non SD mode features configuration comes from
9902		 * struct func_ext_config.
9903		 */
9904		if (!IS_MF_SD(bp)) {
9905			u32 cfg = MF_CFG_RD(bp, func_ext_config[func].func_cfg);
9906			if (cfg & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) {
9907				val2 = MF_CFG_RD(bp, func_ext_config[func].
9908						     iscsi_mac_addr_upper);
9909				val = MF_CFG_RD(bp, func_ext_config[func].
9910						    iscsi_mac_addr_lower);
9911				bnx2x_set_mac_buf(iscsi_mac, val, val2);
9912				BNX2X_DEV_INFO("Read iSCSI MAC: %pM\n",
9913					       iscsi_mac);
9914			} else
9915				bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
9916
9917			if (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) {
9918				val2 = MF_CFG_RD(bp, func_ext_config[func].
9919						     fcoe_mac_addr_upper);
9920				val = MF_CFG_RD(bp, func_ext_config[func].
9921						    fcoe_mac_addr_lower);
9922				bnx2x_set_mac_buf(fip_mac, val, val2);
9923				BNX2X_DEV_INFO("Read FCoE L2 MAC: %pM\n",
9924					       fip_mac);
9925
9926			} else
9927				bp->flags |= NO_FCOE_FLAG;
9928		} else { /* SD MODE */
9929			if (IS_MF_STORAGE_SD(bp)) {
9930				if (BNX2X_IS_MF_SD_PROTOCOL_ISCSI(bp)) {
9931					/* use primary mac as iscsi mac */
9932					memcpy(iscsi_mac, bp->dev->dev_addr,
9933					       ETH_ALEN);
9934
9935					BNX2X_DEV_INFO("SD ISCSI MODE\n");
9936					BNX2X_DEV_INFO("Read iSCSI MAC: %pM\n",
9937						       iscsi_mac);
9938				} else { /* FCoE */
9939					memcpy(fip_mac, bp->dev->dev_addr,
9940					       ETH_ALEN);
9941					BNX2X_DEV_INFO("SD FCoE MODE\n");
9942					BNX2X_DEV_INFO("Read FIP MAC: %pM\n",
9943						       fip_mac);
9944				}
9945				/* Zero primary MAC configuration */
9946				memset(bp->dev->dev_addr, 0, ETH_ALEN);
9947			}
9948		}
9949#endif
9950	} else {
9951		/* in SF read MACs from port configuration */
9952		val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper);
9953		val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower);
9954		bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
9955
9956#ifdef BCM_CNIC
9957		val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
9958				    iscsi_mac_upper);
9959		val = SHMEM_RD(bp, dev_info.port_hw_config[port].
9960				   iscsi_mac_lower);
9961		bnx2x_set_mac_buf(iscsi_mac, val, val2);
9962
9963		val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
9964				    fcoe_fip_mac_upper);
9965		val = SHMEM_RD(bp, dev_info.port_hw_config[port].
9966				   fcoe_fip_mac_lower);
9967		bnx2x_set_mac_buf(fip_mac, val, val2);
9968#endif
9969	}
9970
9971	memcpy(bp->link_params.mac_addr, bp->dev->dev_addr, ETH_ALEN);
9972	memcpy(bp->dev->perm_addr, bp->dev->dev_addr, ETH_ALEN);
9973
9974#ifdef BCM_CNIC
9975	/* Disable iSCSI if MAC configuration is
9976	 * invalid.
9977	 */
9978	if (!is_valid_ether_addr(iscsi_mac)) {
9979		bp->flags |= NO_ISCSI_FLAG;
9980		memset(iscsi_mac, 0, ETH_ALEN);
9981	}
9982
9983	/* Disable FCoE if MAC configuration is
9984	 * invalid.
9985	 */
9986	if (!is_valid_ether_addr(fip_mac)) {
9987		bp->flags |= NO_FCOE_FLAG;
9988		memset(bp->fip_mac, 0, ETH_ALEN);
9989	}
9990#endif
9991
9992	if (!bnx2x_is_valid_ether_addr(bp, bp->dev->dev_addr))
9993		dev_err(&bp->pdev->dev,
9994			"bad Ethernet MAC address configuration: %pM\n"
9995			"change it manually before bringing up the appropriate network interface\n",
9996			bp->dev->dev_addr);
9997
9998
9999}
10000
10001static int __devinit bnx2x_get_hwinfo(struct bnx2x *bp)
10002{
10003	int /*abs*/func = BP_ABS_FUNC(bp);
10004	int vn;
10005	u32 val = 0;
10006	int rc = 0;
10007
10008	bnx2x_get_common_hwinfo(bp);
10009
10010	/*
10011	 * initialize IGU parameters
10012	 */
10013	if (CHIP_IS_E1x(bp)) {
10014		bp->common.int_block = INT_BLOCK_HC;
10015
10016		bp->igu_dsb_id = DEF_SB_IGU_ID;
10017		bp->igu_base_sb = 0;
10018	} else {
10019		bp->common.int_block = INT_BLOCK_IGU;
10020
10021		/* do not allow device reset during IGU info preocessing */
10022		bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
10023
10024		val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
10025
10026		if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
10027			int tout = 5000;
10028
10029			BNX2X_DEV_INFO("FORCING Normal Mode\n");
10030
10031			val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN);
10032			REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION, val);
10033			REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x7f);
10034
10035			while (tout && REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
10036				tout--;
10037				usleep_range(1000, 1000);
10038			}
10039
10040			if (REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
10041				dev_err(&bp->pdev->dev,
10042					"FORCING Normal Mode failed!!!\n");
10043				return -EPERM;
10044			}
10045		}
10046
10047		if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
10048			BNX2X_DEV_INFO("IGU Backward Compatible Mode\n");
10049			bp->common.int_block |= INT_BLOCK_MODE_BW_COMP;
10050		} else
10051			BNX2X_DEV_INFO("IGU Normal Mode\n");
10052
10053		bnx2x_get_igu_cam_info(bp);
10054
10055		bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
10056	}
10057
10058	/*
10059	 * set base FW non-default (fast path) status block id, this value is
10060	 * used to initialize the fw_sb_id saved on the fp/queue structure to
10061	 * determine the id used by the FW.
10062	 */
10063	if (CHIP_IS_E1x(bp))
10064		bp->base_fw_ndsb = BP_PORT(bp) * FP_SB_MAX_E1x + BP_L_ID(bp);
10065	else /*
10066	      * 57712 - we currently use one FW SB per IGU SB (Rx and Tx of
10067	      * the same queue are indicated on the same IGU SB). So we prefer
10068	      * FW and IGU SBs to be the same value.
10069	      */
10070		bp->base_fw_ndsb = bp->igu_base_sb;
10071
10072	BNX2X_DEV_INFO("igu_dsb_id %d  igu_base_sb %d  igu_sb_cnt %d\n"
10073		       "base_fw_ndsb %d\n", bp->igu_dsb_id, bp->igu_base_sb,
10074		       bp->igu_sb_cnt, bp->base_fw_ndsb);
10075
10076	/*
10077	 * Initialize MF configuration
10078	 */
10079
10080	bp->mf_ov = 0;
10081	bp->mf_mode = 0;
10082	vn = BP_VN(bp);
10083
10084	if (!CHIP_IS_E1(bp) && !BP_NOMCP(bp)) {
10085		BNX2X_DEV_INFO("shmem2base 0x%x, size %d, mfcfg offset %d\n",
10086			       bp->common.shmem2_base, SHMEM2_RD(bp, size),
10087			      (u32)offsetof(struct shmem2_region, mf_cfg_addr));
10088
10089		if (SHMEM2_HAS(bp, mf_cfg_addr))
10090			bp->common.mf_cfg_base = SHMEM2_RD(bp, mf_cfg_addr);
10091		else
10092			bp->common.mf_cfg_base = bp->common.shmem_base +
10093				offsetof(struct shmem_region, func_mb) +
10094				E1H_FUNC_MAX * sizeof(struct drv_func_mb);
10095		/*
10096		 * get mf configuration:
10097		 * 1. existence of MF configuration
10098		 * 2. MAC address must be legal (check only upper bytes)
10099		 *    for  Switch-Independent mode;
10100		 *    OVLAN must be legal for Switch-Dependent mode
10101		 * 3. SF_MODE configures specific MF mode
10102		 */
10103		if (bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
10104			/* get mf configuration */
10105			val = SHMEM_RD(bp,
10106				       dev_info.shared_feature_config.config);
10107			val &= SHARED_FEAT_CFG_FORCE_SF_MODE_MASK;
10108
10109			switch (val) {
10110			case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT:
10111				val = MF_CFG_RD(bp, func_mf_config[func].
10112						mac_upper);
10113				/* check for legal mac (upper bytes)*/
10114				if (val != 0xffff) {
10115					bp->mf_mode = MULTI_FUNCTION_SI;
10116					bp->mf_config[vn] = MF_CFG_RD(bp,
10117						   func_mf_config[func].config);
10118				} else
10119					BNX2X_DEV_INFO("illegal MAC address for SI\n");
10120				break;
10121			case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED:
10122				/* get OV configuration */
10123				val = MF_CFG_RD(bp,
10124					func_mf_config[FUNC_0].e1hov_tag);
10125				val &= FUNC_MF_CFG_E1HOV_TAG_MASK;
10126
10127				if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
10128					bp->mf_mode = MULTI_FUNCTION_SD;
10129					bp->mf_config[vn] = MF_CFG_RD(bp,
10130						func_mf_config[func].config);
10131				} else
10132					BNX2X_DEV_INFO("illegal OV for SD\n");
10133				break;
10134			default:
10135				/* Unknown configuration: reset mf_config */
10136				bp->mf_config[vn] = 0;
10137				BNX2X_DEV_INFO("unknown MF mode 0x%x\n", val);
10138			}
10139		}
10140
10141		BNX2X_DEV_INFO("%s function mode\n",
10142			       IS_MF(bp) ? "multi" : "single");
10143
10144		switch (bp->mf_mode) {
10145		case MULTI_FUNCTION_SD:
10146			val = MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
10147			      FUNC_MF_CFG_E1HOV_TAG_MASK;
10148			if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
10149				bp->mf_ov = val;
10150				bp->path_has_ovlan = true;
10151
10152				BNX2X_DEV_INFO("MF OV for func %d is %d (0x%04x)\n",
10153					       func, bp->mf_ov, bp->mf_ov);
10154			} else {
10155				dev_err(&bp->pdev->dev,
10156					"No valid MF OV for func %d, aborting\n",
10157					func);
10158				return -EPERM;
10159			}
10160			break;
10161		case MULTI_FUNCTION_SI:
10162			BNX2X_DEV_INFO("func %d is in MF switch-independent mode\n",
10163				       func);
10164			break;
10165		default:
10166			if (vn) {
10167				dev_err(&bp->pdev->dev,
10168					"VN %d is in a single function mode, aborting\n",
10169					vn);
10170				return -EPERM;
10171			}
10172			break;
10173		}
10174
10175		/* check if other port on the path needs ovlan:
10176		 * Since MF configuration is shared between ports
10177		 * Possible mixed modes are only
10178		 * {SF, SI} {SF, SD} {SD, SF} {SI, SF}
10179		 */
10180		if (CHIP_MODE_IS_4_PORT(bp) &&
10181		    !bp->path_has_ovlan &&
10182		    !IS_MF(bp) &&
10183		    bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
10184			u8 other_port = !BP_PORT(bp);
10185			u8 other_func = BP_PATH(bp) + 2*other_port;
10186			val = MF_CFG_RD(bp,
10187					func_mf_config[other_func].e1hov_tag);
10188			if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT)
10189				bp->path_has_ovlan = true;
10190		}
10191	}
10192
10193	/* adjust igu_sb_cnt to MF for E1x */
10194	if (CHIP_IS_E1x(bp) && IS_MF(bp))
10195		bp->igu_sb_cnt /= E1HVN_MAX;
10196
10197	/* port info */
10198	bnx2x_get_port_hwinfo(bp);
10199
10200	/* Get MAC addresses */
10201	bnx2x_get_mac_hwinfo(bp);
10202
10203	bnx2x_get_cnic_info(bp);
10204
10205	return rc;
10206}
10207
10208static void __devinit bnx2x_read_fwinfo(struct bnx2x *bp)
10209{
10210	int cnt, i, block_end, rodi;
10211	char vpd_start[BNX2X_VPD_LEN+1];
10212	char str_id_reg[VENDOR_ID_LEN+1];
10213	char str_id_cap[VENDOR_ID_LEN+1];
10214	char *vpd_data;
10215	char *vpd_extended_data = NULL;
10216	u8 len;
10217
10218	cnt = pci_read_vpd(bp->pdev, 0, BNX2X_VPD_LEN, vpd_start);
10219	memset(bp->fw_ver, 0, sizeof(bp->fw_ver));
10220
10221	if (cnt < BNX2X_VPD_LEN)
10222		goto out_not_found;
10223
10224	/* VPD RO tag should be first tag after identifier string, hence
10225	 * we should be able to find it in first BNX2X_VPD_LEN chars
10226	 */
10227	i = pci_vpd_find_tag(vpd_start, 0, BNX2X_VPD_LEN,
10228			     PCI_VPD_LRDT_RO_DATA);
10229	if (i < 0)
10230		goto out_not_found;
10231
10232	block_end = i + PCI_VPD_LRDT_TAG_SIZE +
10233		    pci_vpd_lrdt_size(&vpd_start[i]);
10234
10235	i += PCI_VPD_LRDT_TAG_SIZE;
10236
10237	if (block_end > BNX2X_VPD_LEN) {
10238		vpd_extended_data = kmalloc(block_end, GFP_KERNEL);
10239		if (vpd_extended_data  == NULL)
10240			goto out_not_found;
10241
10242		/* read rest of vpd image into vpd_extended_data */
10243		memcpy(vpd_extended_data, vpd_start, BNX2X_VPD_LEN);
10244		cnt = pci_read_vpd(bp->pdev, BNX2X_VPD_LEN,
10245				   block_end - BNX2X_VPD_LEN,
10246				   vpd_extended_data + BNX2X_VPD_LEN);
10247		if (cnt < (block_end - BNX2X_VPD_LEN))
10248			goto out_not_found;
10249		vpd_data = vpd_extended_data;
10250	} else
10251		vpd_data = vpd_start;
10252
10253	/* now vpd_data holds full vpd content in both cases */
10254
10255	rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
10256				   PCI_VPD_RO_KEYWORD_MFR_ID);
10257	if (rodi < 0)
10258		goto out_not_found;
10259
10260	len = pci_vpd_info_field_size(&vpd_data[rodi]);
10261
10262	if (len != VENDOR_ID_LEN)
10263		goto out_not_found;
10264
10265	rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
10266
10267	/* vendor specific info */
10268	snprintf(str_id_reg, VENDOR_ID_LEN + 1, "%04x", PCI_VENDOR_ID_DELL);
10269	snprintf(str_id_cap, VENDOR_ID_LEN + 1, "%04X", PCI_VENDOR_ID_DELL);
10270	if (!strncmp(str_id_reg, &vpd_data[rodi], VENDOR_ID_LEN) ||
10271	    !strncmp(str_id_cap, &vpd_data[rodi], VENDOR_ID_LEN)) {
10272
10273		rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
10274						PCI_VPD_RO_KEYWORD_VENDOR0);
10275		if (rodi >= 0) {
10276			len = pci_vpd_info_field_size(&vpd_data[rodi]);
10277
10278			rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
10279
10280			if (len < 32 && (len + rodi) <= BNX2X_VPD_LEN) {
10281				memcpy(bp->fw_ver, &vpd_data[rodi], len);
10282				bp->fw_ver[len] = ' ';
10283			}
10284		}
10285		kfree(vpd_extended_data);
10286		return;
10287	}
10288out_not_found:
10289	kfree(vpd_extended_data);
10290	return;
10291}
10292
10293static void __devinit bnx2x_set_modes_bitmap(struct bnx2x *bp)
10294{
10295	u32 flags = 0;
10296
10297	if (CHIP_REV_IS_FPGA(bp))
10298		SET_FLAGS(flags, MODE_FPGA);
10299	else if (CHIP_REV_IS_EMUL(bp))
10300		SET_FLAGS(flags, MODE_EMUL);
10301	else
10302		SET_FLAGS(flags, MODE_ASIC);
10303
10304	if (CHIP_MODE_IS_4_PORT(bp))
10305		SET_FLAGS(flags, MODE_PORT4);
10306	else
10307		SET_FLAGS(flags, MODE_PORT2);
10308
10309	if (CHIP_IS_E2(bp))
10310		SET_FLAGS(flags, MODE_E2);
10311	else if (CHIP_IS_E3(bp)) {
10312		SET_FLAGS(flags, MODE_E3);
10313		if (CHIP_REV(bp) == CHIP_REV_Ax)
10314			SET_FLAGS(flags, MODE_E3_A0);
10315		else /*if (CHIP_REV(bp) == CHIP_REV_Bx)*/
10316			SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3);
10317	}
10318
10319	if (IS_MF(bp)) {
10320		SET_FLAGS(flags, MODE_MF);
10321		switch (bp->mf_mode) {
10322		case MULTI_FUNCTION_SD:
10323			SET_FLAGS(flags, MODE_MF_SD);
10324			break;
10325		case MULTI_FUNCTION_SI:
10326			SET_FLAGS(flags, MODE_MF_SI);
10327			break;
10328		}
10329	} else
10330		SET_FLAGS(flags, MODE_SF);
10331
10332#if defined(__LITTLE_ENDIAN)
10333	SET_FLAGS(flags, MODE_LITTLE_ENDIAN);
10334#else /*(__BIG_ENDIAN)*/
10335	SET_FLAGS(flags, MODE_BIG_ENDIAN);
10336#endif
10337	INIT_MODE_FLAGS(bp) = flags;
10338}
10339
10340static int __devinit bnx2x_init_bp(struct bnx2x *bp)
10341{
10342	int func;
10343	int rc;
10344
10345	mutex_init(&bp->port.phy_mutex);
10346	mutex_init(&bp->fw_mb_mutex);
10347	spin_lock_init(&bp->stats_lock);
10348#ifdef BCM_CNIC
10349	mutex_init(&bp->cnic_mutex);
10350#endif
10351
10352	INIT_DELAYED_WORK(&bp->sp_task, bnx2x_sp_task);
10353	INIT_DELAYED_WORK(&bp->sp_rtnl_task, bnx2x_sp_rtnl_task);
10354	INIT_DELAYED_WORK(&bp->period_task, bnx2x_period_task);
10355	rc = bnx2x_get_hwinfo(bp);
10356	if (rc)
10357		return rc;
10358
10359	bnx2x_set_modes_bitmap(bp);
10360
10361	rc = bnx2x_alloc_mem_bp(bp);
10362	if (rc)
10363		return rc;
10364
10365	bnx2x_read_fwinfo(bp);
10366
10367	func = BP_FUNC(bp);
10368
10369	/* need to reset chip if undi was active */
10370	if (!BP_NOMCP(bp)) {
10371		/* init fw_seq */
10372		bp->fw_seq =
10373			SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
10374							DRV_MSG_SEQ_NUMBER_MASK;
10375		BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp->fw_seq);
10376
10377		bnx2x_prev_unload(bp);
10378	}
10379
10380
10381	if (CHIP_REV_IS_FPGA(bp))
10382		dev_err(&bp->pdev->dev, "FPGA detected\n");
10383
10384	if (BP_NOMCP(bp) && (func == 0))
10385		dev_err(&bp->pdev->dev, "MCP disabled, must load devices in order!\n");
10386
10387	bp->multi_mode = multi_mode;
10388
10389	bp->disable_tpa = disable_tpa;
10390
10391#ifdef BCM_CNIC
10392	bp->disable_tpa |= IS_MF_STORAGE_SD(bp);
10393#endif
10394
10395	/* Set TPA flags */
10396	if (bp->disable_tpa) {
10397		bp->flags &= ~(TPA_ENABLE_FLAG | GRO_ENABLE_FLAG);
10398		bp->dev->features &= ~NETIF_F_LRO;
10399	} else {
10400		bp->flags |= (TPA_ENABLE_FLAG | GRO_ENABLE_FLAG);
10401		bp->dev->features |= NETIF_F_LRO;
10402	}
10403
10404	if (CHIP_IS_E1(bp))
10405		bp->dropless_fc = 0;
10406	else
10407		bp->dropless_fc = dropless_fc;
10408
10409	bp->mrrs = mrrs;
10410
10411	bp->tx_ring_size = MAX_TX_AVAIL;
10412
10413	/* make sure that the numbers are in the right granularity */
10414	bp->tx_ticks = (50 / BNX2X_BTR) * BNX2X_BTR;
10415	bp->rx_ticks = (25 / BNX2X_BTR) * BNX2X_BTR;
10416
10417	bp->current_interval = CHIP_REV_IS_SLOW(bp) ? 5*HZ : HZ;
10418
10419	init_timer(&bp->timer);
10420	bp->timer.expires = jiffies + bp->current_interval;
10421	bp->timer.data = (unsigned long) bp;
10422	bp->timer.function = bnx2x_timer;
10423
10424	bnx2x_dcbx_set_state(bp, true, BNX2X_DCBX_ENABLED_ON_NEG_ON);
10425	bnx2x_dcbx_init_params(bp);
10426
10427#ifdef BCM_CNIC
10428	if (CHIP_IS_E1x(bp))
10429		bp->cnic_base_cl_id = FP_SB_MAX_E1x;
10430	else
10431		bp->cnic_base_cl_id = FP_SB_MAX_E2;
10432#endif
10433
10434	/* multiple tx priority */
10435	if (CHIP_IS_E1x(bp))
10436		bp->max_cos = BNX2X_MULTI_TX_COS_E1X;
10437	if (CHIP_IS_E2(bp) || CHIP_IS_E3A0(bp))
10438		bp->max_cos = BNX2X_MULTI_TX_COS_E2_E3A0;
10439	if (CHIP_IS_E3B0(bp))
10440		bp->max_cos = BNX2X_MULTI_TX_COS_E3B0;
10441
10442	bp->gro_check = bnx2x_need_gro_check(bp->dev->mtu);
10443
10444	return rc;
10445}
10446
10447
10448/****************************************************************************
10449* General service functions
10450****************************************************************************/
10451
10452/*
10453 * net_device service functions
10454 */
10455
10456/* called with rtnl_lock */
10457static int bnx2x_open(struct net_device *dev)
10458{
10459	struct bnx2x *bp = netdev_priv(dev);
10460	bool global = false;
10461	int other_engine = BP_PATH(bp) ? 0 : 1;
10462	bool other_load_status, load_status;
10463
10464	bp->stats_init = true;
10465
10466	netif_carrier_off(dev);
10467
10468	bnx2x_set_power_state(bp, PCI_D0);
10469
10470	other_load_status = bnx2x_get_load_status(bp, other_engine);
10471	load_status = bnx2x_get_load_status(bp, BP_PATH(bp));
10472
10473	/*
10474	 * If parity had happen during the unload, then attentions
10475	 * and/or RECOVERY_IN_PROGRES may still be set. In this case we
10476	 * want the first function loaded on the current engine to
10477	 * complete the recovery.
10478	 */
10479	if (!bnx2x_reset_is_done(bp, BP_PATH(bp)) ||
10480	    bnx2x_chk_parity_attn(bp, &global, true))
10481		do {
10482			/*
10483			 * If there are attentions and they are in a global
10484			 * blocks, set the GLOBAL_RESET bit regardless whether
10485			 * it will be this function that will complete the
10486			 * recovery or not.
10487			 */
10488			if (global)
10489				bnx2x_set_reset_global(bp);
10490
10491			/*
10492			 * Only the first function on the current engine should
10493			 * try to recover in open. In case of attentions in
10494			 * global blocks only the first in the chip should try
10495			 * to recover.
10496			 */
10497			if ((!load_status &&
10498			     (!global || !other_load_status)) &&
10499			    bnx2x_trylock_leader_lock(bp) &&
10500			    !bnx2x_leader_reset(bp)) {
10501				netdev_info(bp->dev, "Recovered in open\n");
10502				break;
10503			}
10504
10505			/* recovery has failed... */
10506			bnx2x_set_power_state(bp, PCI_D3hot);
10507			bp->recovery_state = BNX2X_RECOVERY_FAILED;
10508
10509			BNX2X_ERR("Recovery flow hasn't been properly completed yet. Try again later.\n"
10510				  "If you still see this message after a few retries then power cycle is required.\n");
10511
10512			return -EAGAIN;
10513		} while (0);
10514
10515	bp->recovery_state = BNX2X_RECOVERY_DONE;
10516	return bnx2x_nic_load(bp, LOAD_OPEN);
10517}
10518
10519/* called with rtnl_lock */
10520static int bnx2x_close(struct net_device *dev)
10521{
10522	struct bnx2x *bp = netdev_priv(dev);
10523
10524	/* Unload the driver, release IRQs */
10525	bnx2x_nic_unload(bp, UNLOAD_CLOSE);
10526
10527	/* Power off */
10528	bnx2x_set_power_state(bp, PCI_D3hot);
10529
10530	return 0;
10531}
10532
10533static inline int bnx2x_init_mcast_macs_list(struct bnx2x *bp,
10534					 struct bnx2x_mcast_ramrod_params *p)
10535{
10536	int mc_count = netdev_mc_count(bp->dev);
10537	struct bnx2x_mcast_list_elem *mc_mac =
10538		kzalloc(sizeof(*mc_mac) * mc_count, GFP_ATOMIC);
10539	struct netdev_hw_addr *ha;
10540
10541	if (!mc_mac)
10542		return -ENOMEM;
10543
10544	INIT_LIST_HEAD(&p->mcast_list);
10545
10546	netdev_for_each_mc_addr(ha, bp->dev) {
10547		mc_mac->mac = bnx2x_mc_addr(ha);
10548		list_add_tail(&mc_mac->link, &p->mcast_list);
10549		mc_mac++;
10550	}
10551
10552	p->mcast_list_len = mc_count;
10553
10554	return 0;
10555}
10556
10557static inline void bnx2x_free_mcast_macs_list(
10558	struct bnx2x_mcast_ramrod_params *p)
10559{
10560	struct bnx2x_mcast_list_elem *mc_mac =
10561		list_first_entry(&p->mcast_list, struct bnx2x_mcast_list_elem,
10562				 link);
10563
10564	WARN_ON(!mc_mac);
10565	kfree(mc_mac);
10566}
10567
10568/**
10569 * bnx2x_set_uc_list - configure a new unicast MACs list.
10570 *
10571 * @bp: driver handle
10572 *
10573 * We will use zero (0) as a MAC type for these MACs.
10574 */
10575static inline int bnx2x_set_uc_list(struct bnx2x *bp)
10576{
10577	int rc;
10578	struct net_device *dev = bp->dev;
10579	struct netdev_hw_addr *ha;
10580	struct bnx2x_vlan_mac_obj *mac_obj = &bp->fp->mac_obj;
10581	unsigned long ramrod_flags = 0;
10582
10583	/* First schedule a cleanup up of old configuration */
10584	rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_UC_LIST_MAC, false);
10585	if (rc < 0) {
10586		BNX2X_ERR("Failed to schedule DELETE operations: %d\n", rc);
10587		return rc;
10588	}
10589
10590	netdev_for_each_uc_addr(ha, dev) {
10591		rc = bnx2x_set_mac_one(bp, bnx2x_uc_addr(ha), mac_obj, true,
10592				       BNX2X_UC_LIST_MAC, &ramrod_flags);
10593		if (rc < 0) {
10594			BNX2X_ERR("Failed to schedule ADD operations: %d\n",
10595				  rc);
10596			return rc;
10597		}
10598	}
10599
10600	/* Execute the pending commands */
10601	__set_bit(RAMROD_CONT, &ramrod_flags);
10602	return bnx2x_set_mac_one(bp, NULL, mac_obj, false /* don't care */,
10603				 BNX2X_UC_LIST_MAC, &ramrod_flags);
10604}
10605
10606static inline int bnx2x_set_mc_list(struct bnx2x *bp)
10607{
10608	struct net_device *dev = bp->dev;
10609	struct bnx2x_mcast_ramrod_params rparam = {NULL};
10610	int rc = 0;
10611
10612	rparam.mcast_obj = &bp->mcast_obj;
10613
10614	/* first, clear all configured multicast MACs */
10615	rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
10616	if (rc < 0) {
10617		BNX2X_ERR("Failed to clear multicast configuration: %d\n", rc);
10618		return rc;
10619	}
10620
10621	/* then, configure a new MACs list */
10622	if (netdev_mc_count(dev)) {
10623		rc = bnx2x_init_mcast_macs_list(bp, &rparam);
10624		if (rc) {
10625			BNX2X_ERR("Failed to create multicast MACs list: %d\n",
10626				  rc);
10627			return rc;
10628		}
10629
10630		/* Now add the new MACs */
10631		rc = bnx2x_config_mcast(bp, &rparam,
10632					BNX2X_MCAST_CMD_ADD);
10633		if (rc < 0)
10634			BNX2X_ERR("Failed to set a new multicast configuration: %d\n",
10635				  rc);
10636
10637		bnx2x_free_mcast_macs_list(&rparam);
10638	}
10639
10640	return rc;
10641}
10642
10643
10644/* If bp->state is OPEN, should be called with netif_addr_lock_bh() */
10645void bnx2x_set_rx_mode(struct net_device *dev)
10646{
10647	struct bnx2x *bp = netdev_priv(dev);
10648	u32 rx_mode = BNX2X_RX_MODE_NORMAL;
10649
10650	if (bp->state != BNX2X_STATE_OPEN) {
10651		DP(NETIF_MSG_IFUP, "state is %x, returning\n", bp->state);
10652		return;
10653	}
10654
10655	DP(NETIF_MSG_IFUP, "dev->flags = %x\n", bp->dev->flags);
10656
10657	if (dev->flags & IFF_PROMISC)
10658		rx_mode = BNX2X_RX_MODE_PROMISC;
10659	else if ((dev->flags & IFF_ALLMULTI) ||
10660		 ((netdev_mc_count(dev) > BNX2X_MAX_MULTICAST) &&
10661		  CHIP_IS_E1(bp)))
10662		rx_mode = BNX2X_RX_MODE_ALLMULTI;
10663	else {
10664		/* some multicasts */
10665		if (bnx2x_set_mc_list(bp) < 0)
10666			rx_mode = BNX2X_RX_MODE_ALLMULTI;
10667
10668		if (bnx2x_set_uc_list(bp) < 0)
10669			rx_mode = BNX2X_RX_MODE_PROMISC;
10670	}
10671
10672	bp->rx_mode = rx_mode;
10673#ifdef BCM_CNIC
10674	/* handle ISCSI SD mode */
10675	if (IS_MF_ISCSI_SD(bp))
10676		bp->rx_mode = BNX2X_RX_MODE_NONE;
10677#endif
10678
10679	/* Schedule the rx_mode command */
10680	if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state)) {
10681		set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
10682		return;
10683	}
10684
10685	bnx2x_set_storm_rx_mode(bp);
10686}
10687
10688/* called with rtnl_lock */
10689static int bnx2x_mdio_read(struct net_device *netdev, int prtad,
10690			   int devad, u16 addr)
10691{
10692	struct bnx2x *bp = netdev_priv(netdev);
10693	u16 value;
10694	int rc;
10695
10696	DP(NETIF_MSG_LINK, "mdio_read: prtad 0x%x, devad 0x%x, addr 0x%x\n",
10697	   prtad, devad, addr);
10698
10699	/* The HW expects different devad if CL22 is used */
10700	devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
10701
10702	bnx2x_acquire_phy_lock(bp);
10703	rc = bnx2x_phy_read(&bp->link_params, prtad, devad, addr, &value);
10704	bnx2x_release_phy_lock(bp);
10705	DP(NETIF_MSG_LINK, "mdio_read_val 0x%x rc = 0x%x\n", value, rc);
10706
10707	if (!rc)
10708		rc = value;
10709	return rc;
10710}
10711
10712/* called with rtnl_lock */
10713static int bnx2x_mdio_write(struct net_device *netdev, int prtad, int devad,
10714			    u16 addr, u16 value)
10715{
10716	struct bnx2x *bp = netdev_priv(netdev);
10717	int rc;
10718
10719	DP(NETIF_MSG_LINK,
10720	   "mdio_write: prtad 0x%x, devad 0x%x, addr 0x%x, value 0x%x\n",
10721	   prtad, devad, addr, value);
10722
10723	/* The HW expects different devad if CL22 is used */
10724	devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
10725
10726	bnx2x_acquire_phy_lock(bp);
10727	rc = bnx2x_phy_write(&bp->link_params, prtad, devad, addr, value);
10728	bnx2x_release_phy_lock(bp);
10729	return rc;
10730}
10731
10732/* called with rtnl_lock */
10733static int bnx2x_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
10734{
10735	struct bnx2x *bp = netdev_priv(dev);
10736	struct mii_ioctl_data *mdio = if_mii(ifr);
10737
10738	DP(NETIF_MSG_LINK, "ioctl: phy id 0x%x, reg 0x%x, val_in 0x%x\n",
10739	   mdio->phy_id, mdio->reg_num, mdio->val_in);
10740
10741	if (!netif_running(dev))
10742		return -EAGAIN;
10743
10744	return mdio_mii_ioctl(&bp->mdio, mdio, cmd);
10745}
10746
10747#ifdef CONFIG_NET_POLL_CONTROLLER
10748static void poll_bnx2x(struct net_device *dev)
10749{
10750	struct bnx2x *bp = netdev_priv(dev);
10751
10752	disable_irq(bp->pdev->irq);
10753	bnx2x_interrupt(bp->pdev->irq, dev);
10754	enable_irq(bp->pdev->irq);
10755}
10756#endif
10757
10758static int bnx2x_validate_addr(struct net_device *dev)
10759{
10760	struct bnx2x *bp = netdev_priv(dev);
10761
10762	if (!bnx2x_is_valid_ether_addr(bp, dev->dev_addr)) {
10763		BNX2X_ERR("Non-valid Ethernet address\n");
10764		return -EADDRNOTAVAIL;
10765	}
10766	return 0;
10767}
10768
10769static const struct net_device_ops bnx2x_netdev_ops = {
10770	.ndo_open		= bnx2x_open,
10771	.ndo_stop		= bnx2x_close,
10772	.ndo_start_xmit		= bnx2x_start_xmit,
10773	.ndo_select_queue	= bnx2x_select_queue,
10774	.ndo_set_rx_mode	= bnx2x_set_rx_mode,
10775	.ndo_set_mac_address	= bnx2x_change_mac_addr,
10776	.ndo_validate_addr	= bnx2x_validate_addr,
10777	.ndo_do_ioctl		= bnx2x_ioctl,
10778	.ndo_change_mtu		= bnx2x_change_mtu,
10779	.ndo_fix_features	= bnx2x_fix_features,
10780	.ndo_set_features	= bnx2x_set_features,
10781	.ndo_tx_timeout		= bnx2x_tx_timeout,
10782#ifdef CONFIG_NET_POLL_CONTROLLER
10783	.ndo_poll_controller	= poll_bnx2x,
10784#endif
10785	.ndo_setup_tc		= bnx2x_setup_tc,
10786
10787#if defined(NETDEV_FCOE_WWNN) && defined(BCM_CNIC)
10788	.ndo_fcoe_get_wwn	= bnx2x_fcoe_get_wwn,
10789#endif
10790};
10791
10792static inline int bnx2x_set_coherency_mask(struct bnx2x *bp)
10793{
10794	struct device *dev = &bp->pdev->dev;
10795
10796	if (dma_set_mask(dev, DMA_BIT_MASK(64)) == 0) {
10797		bp->flags |= USING_DAC_FLAG;
10798		if (dma_set_coherent_mask(dev, DMA_BIT_MASK(64)) != 0) {
10799			dev_err(dev, "dma_set_coherent_mask failed, aborting\n");
10800			return -EIO;
10801		}
10802	} else if (dma_set_mask(dev, DMA_BIT_MASK(32)) != 0) {
10803		dev_err(dev, "System does not support DMA, aborting\n");
10804		return -EIO;
10805	}
10806
10807	return 0;
10808}
10809
10810static int __devinit bnx2x_init_dev(struct pci_dev *pdev,
10811				    struct net_device *dev,
10812				    unsigned long board_type)
10813{
10814	struct bnx2x *bp;
10815	int rc;
10816	u32 pci_cfg_dword;
10817	bool chip_is_e1x = (board_type == BCM57710 ||
10818			    board_type == BCM57711 ||
10819			    board_type == BCM57711E);
10820
10821	SET_NETDEV_DEV(dev, &pdev->dev);
10822	bp = netdev_priv(dev);
10823
10824	bp->dev = dev;
10825	bp->pdev = pdev;
10826	bp->flags = 0;
10827
10828	rc = pci_enable_device(pdev);
10829	if (rc) {
10830		dev_err(&bp->pdev->dev,
10831			"Cannot enable PCI device, aborting\n");
10832		goto err_out;
10833	}
10834
10835	if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
10836		dev_err(&bp->pdev->dev,
10837			"Cannot find PCI device base address, aborting\n");
10838		rc = -ENODEV;
10839		goto err_out_disable;
10840	}
10841
10842	if (!(pci_resource_flags(pdev, 2) & IORESOURCE_MEM)) {
10843		dev_err(&bp->pdev->dev, "Cannot find second PCI device"
10844		       " base address, aborting\n");
10845		rc = -ENODEV;
10846		goto err_out_disable;
10847	}
10848
10849	if (atomic_read(&pdev->enable_cnt) == 1) {
10850		rc = pci_request_regions(pdev, DRV_MODULE_NAME);
10851		if (rc) {
10852			dev_err(&bp->pdev->dev,
10853				"Cannot obtain PCI resources, aborting\n");
10854			goto err_out_disable;
10855		}
10856
10857		pci_set_master(pdev);
10858		pci_save_state(pdev);
10859	}
10860
10861	bp->pm_cap = pci_find_capability(pdev, PCI_CAP_ID_PM);
10862	if (bp->pm_cap == 0) {
10863		dev_err(&bp->pdev->dev,
10864			"Cannot find power management capability, aborting\n");
10865		rc = -EIO;
10866		goto err_out_release;
10867	}
10868
10869	if (!pci_is_pcie(pdev)) {
10870		dev_err(&bp->pdev->dev, "Not PCI Express, aborting\n");
10871		rc = -EIO;
10872		goto err_out_release;
10873	}
10874
10875	rc = bnx2x_set_coherency_mask(bp);
10876	if (rc)
10877		goto err_out_release;
10878
10879	dev->mem_start = pci_resource_start(pdev, 0);
10880	dev->base_addr = dev->mem_start;
10881	dev->mem_end = pci_resource_end(pdev, 0);
10882
10883	dev->irq = pdev->irq;
10884
10885	bp->regview = pci_ioremap_bar(pdev, 0);
10886	if (!bp->regview) {
10887		dev_err(&bp->pdev->dev,
10888			"Cannot map register space, aborting\n");
10889		rc = -ENOMEM;
10890		goto err_out_release;
10891	}
10892
10893	/* In E1/E1H use pci device function given by kernel.
10894	 * In E2/E3 read physical function from ME register since these chips
10895	 * support Physical Device Assignment where kernel BDF maybe arbitrary
10896	 * (depending on hypervisor).
10897	 */
10898	if (chip_is_e1x)
10899		bp->pf_num = PCI_FUNC(pdev->devfn);
10900	else {/* chip is E2/3*/
10901		pci_read_config_dword(bp->pdev,
10902				      PCICFG_ME_REGISTER, &pci_cfg_dword);
10903		bp->pf_num = (u8)((pci_cfg_dword & ME_REG_ABS_PF_NUM) >>
10904		    ME_REG_ABS_PF_NUM_SHIFT);
10905	}
10906	BNX2X_DEV_INFO("me reg PF num: %d\n", bp->pf_num);
10907
10908	bnx2x_set_power_state(bp, PCI_D0);
10909
10910	/* clean indirect addresses */
10911	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
10912			       PCICFG_VENDOR_ID_OFFSET);
10913	/*
10914	 * Clean the following indirect addresses for all functions since it
10915	 * is not used by the driver.
10916	 */
10917	REG_WR(bp, PXP2_REG_PGL_ADDR_88_F0, 0);
10918	REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F0, 0);
10919	REG_WR(bp, PXP2_REG_PGL_ADDR_90_F0, 0);
10920	REG_WR(bp, PXP2_REG_PGL_ADDR_94_F0, 0);
10921
10922	if (chip_is_e1x) {
10923		REG_WR(bp, PXP2_REG_PGL_ADDR_88_F1, 0);
10924		REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F1, 0);
10925		REG_WR(bp, PXP2_REG_PGL_ADDR_90_F1, 0);
10926		REG_WR(bp, PXP2_REG_PGL_ADDR_94_F1, 0);
10927	}
10928
10929	/*
10930	 * Enable internal target-read (in case we are probed after PF FLR).
10931	 * Must be done prior to any BAR read access. Only for 57712 and up
10932	 */
10933	if (!chip_is_e1x)
10934		REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
10935
10936	/* Reset the load counter */
10937	bnx2x_clear_load_status(bp);
10938
10939	dev->watchdog_timeo = TX_TIMEOUT;
10940
10941	dev->netdev_ops = &bnx2x_netdev_ops;
10942	bnx2x_set_ethtool_ops(dev);
10943
10944	dev->priv_flags |= IFF_UNICAST_FLT;
10945
10946	dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
10947		NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 |
10948		NETIF_F_RXCSUM | NETIF_F_LRO | NETIF_F_GRO |
10949		NETIF_F_RXHASH | NETIF_F_HW_VLAN_TX;
10950
10951	dev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
10952		NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 | NETIF_F_HIGHDMA;
10953
10954	dev->features |= dev->hw_features | NETIF_F_HW_VLAN_RX;
10955	if (bp->flags & USING_DAC_FLAG)
10956		dev->features |= NETIF_F_HIGHDMA;
10957
10958	/* Add Loopback capability to the device */
10959	dev->hw_features |= NETIF_F_LOOPBACK;
10960
10961#ifdef BCM_DCBNL
10962	dev->dcbnl_ops = &bnx2x_dcbnl_ops;
10963#endif
10964
10965	/* get_port_hwinfo() will set prtad and mmds properly */
10966	bp->mdio.prtad = MDIO_PRTAD_NONE;
10967	bp->mdio.mmds = 0;
10968	bp->mdio.mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22;
10969	bp->mdio.dev = dev;
10970	bp->mdio.mdio_read = bnx2x_mdio_read;
10971	bp->mdio.mdio_write = bnx2x_mdio_write;
10972
10973	return 0;
10974
10975err_out_release:
10976	if (atomic_read(&pdev->enable_cnt) == 1)
10977		pci_release_regions(pdev);
10978
10979err_out_disable:
10980	pci_disable_device(pdev);
10981	pci_set_drvdata(pdev, NULL);
10982
10983err_out:
10984	return rc;
10985}
10986
10987static void __devinit bnx2x_get_pcie_width_speed(struct bnx2x *bp,
10988						 int *width, int *speed)
10989{
10990	u32 val = REG_RD(bp, PCICFG_OFFSET + PCICFG_LINK_CONTROL);
10991
10992	*width = (val & PCICFG_LINK_WIDTH) >> PCICFG_LINK_WIDTH_SHIFT;
10993
10994	/* return value of 1=2.5GHz 2=5GHz */
10995	*speed = (val & PCICFG_LINK_SPEED) >> PCICFG_LINK_SPEED_SHIFT;
10996}
10997
10998static int bnx2x_check_firmware(struct bnx2x *bp)
10999{
11000	const struct firmware *firmware = bp->firmware;
11001	struct bnx2x_fw_file_hdr *fw_hdr;
11002	struct bnx2x_fw_file_section *sections;
11003	u32 offset, len, num_ops;
11004	u16 *ops_offsets;
11005	int i;
11006	const u8 *fw_ver;
11007
11008	if (firmware->size < sizeof(struct bnx2x_fw_file_hdr)) {
11009		BNX2X_ERR("Wrong FW size\n");
11010		return -EINVAL;
11011	}
11012
11013	fw_hdr = (struct bnx2x_fw_file_hdr *)firmware->data;
11014	sections = (struct bnx2x_fw_file_section *)fw_hdr;
11015
11016	/* Make sure none of the offsets and sizes make us read beyond
11017	 * the end of the firmware data */
11018	for (i = 0; i < sizeof(*fw_hdr) / sizeof(*sections); i++) {
11019		offset = be32_to_cpu(sections[i].offset);
11020		len = be32_to_cpu(sections[i].len);
11021		if (offset + len > firmware->size) {
11022			BNX2X_ERR("Section %d length is out of bounds\n", i);
11023			return -EINVAL;
11024		}
11025	}
11026
11027	/* Likewise for the init_ops offsets */
11028	offset = be32_to_cpu(fw_hdr->init_ops_offsets.offset);
11029	ops_offsets = (u16 *)(firmware->data + offset);
11030	num_ops = be32_to_cpu(fw_hdr->init_ops.len) / sizeof(struct raw_op);
11031
11032	for (i = 0; i < be32_to_cpu(fw_hdr->init_ops_offsets.len) / 2; i++) {
11033		if (be16_to_cpu(ops_offsets[i]) > num_ops) {
11034			BNX2X_ERR("Section offset %d is out of bounds\n", i);
11035			return -EINVAL;
11036		}
11037	}
11038
11039	/* Check FW version */
11040	offset = be32_to_cpu(fw_hdr->fw_version.offset);
11041	fw_ver = firmware->data + offset;
11042	if ((fw_ver[0] != BCM_5710_FW_MAJOR_VERSION) ||
11043	    (fw_ver[1] != BCM_5710_FW_MINOR_VERSION) ||
11044	    (fw_ver[2] != BCM_5710_FW_REVISION_VERSION) ||
11045	    (fw_ver[3] != BCM_5710_FW_ENGINEERING_VERSION)) {
11046		BNX2X_ERR("Bad FW version:%d.%d.%d.%d. Should be %d.%d.%d.%d\n",
11047		       fw_ver[0], fw_ver[1], fw_ver[2], fw_ver[3],
11048		       BCM_5710_FW_MAJOR_VERSION,
11049		       BCM_5710_FW_MINOR_VERSION,
11050		       BCM_5710_FW_REVISION_VERSION,
11051		       BCM_5710_FW_ENGINEERING_VERSION);
11052		return -EINVAL;
11053	}
11054
11055	return 0;
11056}
11057
11058static inline void be32_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
11059{
11060	const __be32 *source = (const __be32 *)_source;
11061	u32 *target = (u32 *)_target;
11062	u32 i;
11063
11064	for (i = 0; i < n/4; i++)
11065		target[i] = be32_to_cpu(source[i]);
11066}
11067
11068/*
11069   Ops array is stored in the following format:
11070   {op(8bit), offset(24bit, big endian), data(32bit, big endian)}
11071 */
11072static inline void bnx2x_prep_ops(const u8 *_source, u8 *_target, u32 n)
11073{
11074	const __be32 *source = (const __be32 *)_source;
11075	struct raw_op *target = (struct raw_op *)_target;
11076	u32 i, j, tmp;
11077
11078	for (i = 0, j = 0; i < n/8; i++, j += 2) {
11079		tmp = be32_to_cpu(source[j]);
11080		target[i].op = (tmp >> 24) & 0xff;
11081		target[i].offset = tmp & 0xffffff;
11082		target[i].raw_data = be32_to_cpu(source[j + 1]);
11083	}
11084}
11085
11086/**
11087 * IRO array is stored in the following format:
11088 * {base(24bit), m1(16bit), m2(16bit), m3(16bit), size(16bit) }
11089 */
11090static inline void bnx2x_prep_iro(const u8 *_source, u8 *_target, u32 n)
11091{
11092	const __be32 *source = (const __be32 *)_source;
11093	struct iro *target = (struct iro *)_target;
11094	u32 i, j, tmp;
11095
11096	for (i = 0, j = 0; i < n/sizeof(struct iro); i++) {
11097		target[i].base = be32_to_cpu(source[j]);
11098		j++;
11099		tmp = be32_to_cpu(source[j]);
11100		target[i].m1 = (tmp >> 16) & 0xffff;
11101		target[i].m2 = tmp & 0xffff;
11102		j++;
11103		tmp = be32_to_cpu(source[j]);
11104		target[i].m3 = (tmp >> 16) & 0xffff;
11105		target[i].size = tmp & 0xffff;
11106		j++;
11107	}
11108}
11109
11110static inline void be16_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
11111{
11112	const __be16 *source = (const __be16 *)_source;
11113	u16 *target = (u16 *)_target;
11114	u32 i;
11115
11116	for (i = 0; i < n/2; i++)
11117		target[i] = be16_to_cpu(source[i]);
11118}
11119
11120#define BNX2X_ALLOC_AND_SET(arr, lbl, func)				\
11121do {									\
11122	u32 len = be32_to_cpu(fw_hdr->arr.len);				\
11123	bp->arr = kmalloc(len, GFP_KERNEL);				\
11124	if (!bp->arr)							\
11125		goto lbl;						\
11126	func(bp->firmware->data + be32_to_cpu(fw_hdr->arr.offset),	\
11127	     (u8 *)bp->arr, len);					\
11128} while (0)
11129
11130static int bnx2x_init_firmware(struct bnx2x *bp)
11131{
11132	const char *fw_file_name;
11133	struct bnx2x_fw_file_hdr *fw_hdr;
11134	int rc;
11135
11136	if (bp->firmware)
11137		return 0;
11138
11139	if (CHIP_IS_E1(bp))
11140		fw_file_name = FW_FILE_NAME_E1;
11141	else if (CHIP_IS_E1H(bp))
11142		fw_file_name = FW_FILE_NAME_E1H;
11143	else if (!CHIP_IS_E1x(bp))
11144		fw_file_name = FW_FILE_NAME_E2;
11145	else {
11146		BNX2X_ERR("Unsupported chip revision\n");
11147		return -EINVAL;
11148	}
11149	BNX2X_DEV_INFO("Loading %s\n", fw_file_name);
11150
11151	rc = request_firmware(&bp->firmware, fw_file_name, &bp->pdev->dev);
11152	if (rc) {
11153		BNX2X_ERR("Can't load firmware file %s\n",
11154			  fw_file_name);
11155		goto request_firmware_exit;
11156	}
11157
11158	rc = bnx2x_check_firmware(bp);
11159	if (rc) {
11160		BNX2X_ERR("Corrupt firmware file %s\n", fw_file_name);
11161		goto request_firmware_exit;
11162	}
11163
11164	fw_hdr = (struct bnx2x_fw_file_hdr *)bp->firmware->data;
11165
11166	/* Initialize the pointers to the init arrays */
11167	/* Blob */
11168	BNX2X_ALLOC_AND_SET(init_data, request_firmware_exit, be32_to_cpu_n);
11169
11170	/* Opcodes */
11171	BNX2X_ALLOC_AND_SET(init_ops, init_ops_alloc_err, bnx2x_prep_ops);
11172
11173	/* Offsets */
11174	BNX2X_ALLOC_AND_SET(init_ops_offsets, init_offsets_alloc_err,
11175			    be16_to_cpu_n);
11176
11177	/* STORMs firmware */
11178	INIT_TSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
11179			be32_to_cpu(fw_hdr->tsem_int_table_data.offset);
11180	INIT_TSEM_PRAM_DATA(bp)      = bp->firmware->data +
11181			be32_to_cpu(fw_hdr->tsem_pram_data.offset);
11182	INIT_USEM_INT_TABLE_DATA(bp) = bp->firmware->data +
11183			be32_to_cpu(fw_hdr->usem_int_table_data.offset);
11184	INIT_USEM_PRAM_DATA(bp)      = bp->firmware->data +
11185			be32_to_cpu(fw_hdr->usem_pram_data.offset);
11186	INIT_XSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
11187			be32_to_cpu(fw_hdr->xsem_int_table_data.offset);
11188	INIT_XSEM_PRAM_DATA(bp)      = bp->firmware->data +
11189			be32_to_cpu(fw_hdr->xsem_pram_data.offset);
11190	INIT_CSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
11191			be32_to_cpu(fw_hdr->csem_int_table_data.offset);
11192	INIT_CSEM_PRAM_DATA(bp)      = bp->firmware->data +
11193			be32_to_cpu(fw_hdr->csem_pram_data.offset);
11194	/* IRO */
11195	BNX2X_ALLOC_AND_SET(iro_arr, iro_alloc_err, bnx2x_prep_iro);
11196
11197	return 0;
11198
11199iro_alloc_err:
11200	kfree(bp->init_ops_offsets);
11201init_offsets_alloc_err:
11202	kfree(bp->init_ops);
11203init_ops_alloc_err:
11204	kfree(bp->init_data);
11205request_firmware_exit:
11206	release_firmware(bp->firmware);
11207	bp->firmware = NULL;
11208
11209	return rc;
11210}
11211
11212static void bnx2x_release_firmware(struct bnx2x *bp)
11213{
11214	kfree(bp->init_ops_offsets);
11215	kfree(bp->init_ops);
11216	kfree(bp->init_data);
11217	release_firmware(bp->firmware);
11218	bp->firmware = NULL;
11219}
11220
11221
11222static struct bnx2x_func_sp_drv_ops bnx2x_func_sp_drv = {
11223	.init_hw_cmn_chip = bnx2x_init_hw_common_chip,
11224	.init_hw_cmn      = bnx2x_init_hw_common,
11225	.init_hw_port     = bnx2x_init_hw_port,
11226	.init_hw_func     = bnx2x_init_hw_func,
11227
11228	.reset_hw_cmn     = bnx2x_reset_common,
11229	.reset_hw_port    = bnx2x_reset_port,
11230	.reset_hw_func    = bnx2x_reset_func,
11231
11232	.gunzip_init      = bnx2x_gunzip_init,
11233	.gunzip_end       = bnx2x_gunzip_end,
11234
11235	.init_fw          = bnx2x_init_firmware,
11236	.release_fw       = bnx2x_release_firmware,
11237};
11238
11239void bnx2x__init_func_obj(struct bnx2x *bp)
11240{
11241	/* Prepare DMAE related driver resources */
11242	bnx2x_setup_dmae(bp);
11243
11244	bnx2x_init_func_obj(bp, &bp->func_obj,
11245			    bnx2x_sp(bp, func_rdata),
11246			    bnx2x_sp_mapping(bp, func_rdata),
11247			    &bnx2x_func_sp_drv);
11248}
11249
11250/* must be called after sriov-enable */
11251static inline int bnx2x_set_qm_cid_count(struct bnx2x *bp)
11252{
11253	int cid_count = BNX2X_L2_CID_COUNT(bp);
11254
11255#ifdef BCM_CNIC
11256	cid_count += CNIC_CID_MAX;
11257#endif
11258	return roundup(cid_count, QM_CID_ROUND);
11259}
11260
11261/**
11262 * bnx2x_get_num_none_def_sbs - return the number of none default SBs
11263 *
11264 * @dev:	pci device
11265 *
11266 */
11267static inline int bnx2x_get_num_non_def_sbs(struct pci_dev *pdev)
11268{
11269	int pos;
11270	u16 control;
11271
11272	pos = pci_find_capability(pdev, PCI_CAP_ID_MSIX);
11273
11274	/*
11275	 * If MSI-X is not supported - return number of SBs needed to support
11276	 * one fast path queue: one FP queue + SB for CNIC
11277	 */
11278	if (!pos)
11279		return 1 + CNIC_PRESENT;
11280
11281	/*
11282	 * The value in the PCI configuration space is the index of the last
11283	 * entry, namely one less than the actual size of the table, which is
11284	 * exactly what we want to return from this function: number of all SBs
11285	 * without the default SB.
11286	 */
11287	pci_read_config_word(pdev, pos  + PCI_MSI_FLAGS, &control);
11288	return control & PCI_MSIX_FLAGS_QSIZE;
11289}
11290
11291static int __devinit bnx2x_init_one(struct pci_dev *pdev,
11292				    const struct pci_device_id *ent)
11293{
11294	struct net_device *dev = NULL;
11295	struct bnx2x *bp;
11296	int pcie_width, pcie_speed;
11297	int rc, max_non_def_sbs;
11298	int rx_count, tx_count, rss_count;
11299	/*
11300	 * An estimated maximum supported CoS number according to the chip
11301	 * version.
11302	 * We will try to roughly estimate the maximum number of CoSes this chip
11303	 * may support in order to minimize the memory allocated for Tx
11304	 * netdev_queue's. This number will be accurately calculated during the
11305	 * initialization of bp->max_cos based on the chip versions AND chip
11306	 * revision in the bnx2x_init_bp().
11307	 */
11308	u8 max_cos_est = 0;
11309
11310	switch (ent->driver_data) {
11311	case BCM57710:
11312	case BCM57711:
11313	case BCM57711E:
11314		max_cos_est = BNX2X_MULTI_TX_COS_E1X;
11315		break;
11316
11317	case BCM57712:
11318	case BCM57712_MF:
11319		max_cos_est = BNX2X_MULTI_TX_COS_E2_E3A0;
11320		break;
11321
11322	case BCM57800:
11323	case BCM57800_MF:
11324	case BCM57810:
11325	case BCM57810_MF:
11326	case BCM57840:
11327	case BCM57840_MF:
11328		max_cos_est = BNX2X_MULTI_TX_COS_E3B0;
11329		break;
11330
11331	default:
11332		pr_err("Unknown board_type (%ld), aborting\n",
11333			   ent->driver_data);
11334		return -ENODEV;
11335	}
11336
11337	max_non_def_sbs = bnx2x_get_num_non_def_sbs(pdev);
11338
11339	/* !!! FIXME !!!
11340	 * Do not allow the maximum SB count to grow above 16
11341	 * since Special CIDs starts from 16*BNX2X_MULTI_TX_COS=48.
11342	 * We will use the FP_SB_MAX_E1x macro for this matter.
11343	 */
11344	max_non_def_sbs = min_t(int, FP_SB_MAX_E1x, max_non_def_sbs);
11345
11346	WARN_ON(!max_non_def_sbs);
11347
11348	/* Maximum number of RSS queues: one IGU SB goes to CNIC */
11349	rss_count = max_non_def_sbs - CNIC_PRESENT;
11350
11351	/* Maximum number of netdev Rx queues: RSS + FCoE L2 */
11352	rx_count = rss_count + FCOE_PRESENT;
11353
11354	/*
11355	 * Maximum number of netdev Tx queues:
11356	 *      Maximum TSS queues * Maximum supported number of CoS  + FCoE L2
11357	 */
11358	tx_count = MAX_TXQS_PER_COS * max_cos_est + FCOE_PRESENT;
11359
11360	/* dev zeroed in init_etherdev */
11361	dev = alloc_etherdev_mqs(sizeof(*bp), tx_count, rx_count);
11362	if (!dev)
11363		return -ENOMEM;
11364
11365	bp = netdev_priv(dev);
11366
11367	BNX2X_DEV_INFO("Allocated netdev with %d tx and %d rx queues\n",
11368			  tx_count, rx_count);
11369
11370	bp->igu_sb_cnt = max_non_def_sbs;
11371	bp->msg_enable = debug;
11372	pci_set_drvdata(pdev, dev);
11373
11374	rc = bnx2x_init_dev(pdev, dev, ent->driver_data);
11375	if (rc < 0) {
11376		free_netdev(dev);
11377		return rc;
11378	}
11379
11380	BNX2X_DEV_INFO("max_non_def_sbs %d\n", max_non_def_sbs);
11381
11382	rc = bnx2x_init_bp(bp);
11383	if (rc)
11384		goto init_one_exit;
11385
11386	/*
11387	 * Map doorbels here as we need the real value of bp->max_cos which
11388	 * is initialized in bnx2x_init_bp().
11389	 */
11390	bp->doorbells = ioremap_nocache(pci_resource_start(pdev, 2),
11391					min_t(u64, BNX2X_DB_SIZE(bp),
11392					      pci_resource_len(pdev, 2)));
11393	if (!bp->doorbells) {
11394		dev_err(&bp->pdev->dev,
11395			"Cannot map doorbell space, aborting\n");
11396		rc = -ENOMEM;
11397		goto init_one_exit;
11398	}
11399
11400	/* calc qm_cid_count */
11401	bp->qm_cid_count = bnx2x_set_qm_cid_count(bp);
11402
11403#ifdef BCM_CNIC
11404	/* disable FCOE L2 queue for E1x */
11405	if (CHIP_IS_E1x(bp))
11406		bp->flags |= NO_FCOE_FLAG;
11407
11408#endif
11409
11410	/* Configure interrupt mode: try to enable MSI-X/MSI if
11411	 * needed, set bp->num_queues appropriately.
11412	 */
11413	bnx2x_set_int_mode(bp);
11414
11415	/* Add all NAPI objects */
11416	bnx2x_add_all_napi(bp);
11417
11418	rc = register_netdev(dev);
11419	if (rc) {
11420		dev_err(&pdev->dev, "Cannot register net device\n");
11421		goto init_one_exit;
11422	}
11423
11424#ifdef BCM_CNIC
11425	if (!NO_FCOE(bp)) {
11426		/* Add storage MAC address */
11427		rtnl_lock();
11428		dev_addr_add(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
11429		rtnl_unlock();
11430	}
11431#endif
11432
11433	bnx2x_get_pcie_width_speed(bp, &pcie_width, &pcie_speed);
11434
11435	BNX2X_DEV_INFO(
11436		"%s (%c%d) PCI-E x%d %s found at mem %lx, IRQ %d, node addr %pM\n",
11437		    board_info[ent->driver_data].name,
11438		    (CHIP_REV(bp) >> 12) + 'A', (CHIP_METAL(bp) >> 4),
11439		    pcie_width,
11440		    ((!CHIP_IS_E2(bp) && pcie_speed == 2) ||
11441		     (CHIP_IS_E2(bp) && pcie_speed == 1)) ?
11442		    "5GHz (Gen2)" : "2.5GHz",
11443		    dev->base_addr, bp->pdev->irq, dev->dev_addr);
11444
11445	return 0;
11446
11447init_one_exit:
11448	if (bp->regview)
11449		iounmap(bp->regview);
11450
11451	if (bp->doorbells)
11452		iounmap(bp->doorbells);
11453
11454	free_netdev(dev);
11455
11456	if (atomic_read(&pdev->enable_cnt) == 1)
11457		pci_release_regions(pdev);
11458
11459	pci_disable_device(pdev);
11460	pci_set_drvdata(pdev, NULL);
11461
11462	return rc;
11463}
11464
11465static void __devexit bnx2x_remove_one(struct pci_dev *pdev)
11466{
11467	struct net_device *dev = pci_get_drvdata(pdev);
11468	struct bnx2x *bp;
11469
11470	if (!dev) {
11471		dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n");
11472		return;
11473	}
11474	bp = netdev_priv(dev);
11475
11476#ifdef BCM_CNIC
11477	/* Delete storage MAC address */
11478	if (!NO_FCOE(bp)) {
11479		rtnl_lock();
11480		dev_addr_del(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
11481		rtnl_unlock();
11482	}
11483#endif
11484
11485#ifdef BCM_DCBNL
11486	/* Delete app tlvs from dcbnl */
11487	bnx2x_dcbnl_update_applist(bp, true);
11488#endif
11489
11490	unregister_netdev(dev);
11491
11492	/* Delete all NAPI objects */
11493	bnx2x_del_all_napi(bp);
11494
11495	/* Power on: we can't let PCI layer write to us while we are in D3 */
11496	bnx2x_set_power_state(bp, PCI_D0);
11497
11498	/* Disable MSI/MSI-X */
11499	bnx2x_disable_msi(bp);
11500
11501	/* Power off */
11502	bnx2x_set_power_state(bp, PCI_D3hot);
11503
11504	/* Make sure RESET task is not scheduled before continuing */
11505	cancel_delayed_work_sync(&bp->sp_rtnl_task);
11506
11507	if (bp->regview)
11508		iounmap(bp->regview);
11509
11510	if (bp->doorbells)
11511		iounmap(bp->doorbells);
11512
11513	bnx2x_release_firmware(bp);
11514
11515	bnx2x_free_mem_bp(bp);
11516
11517	free_netdev(dev);
11518
11519	if (atomic_read(&pdev->enable_cnt) == 1)
11520		pci_release_regions(pdev);
11521
11522	pci_disable_device(pdev);
11523	pci_set_drvdata(pdev, NULL);
11524}
11525
11526static int bnx2x_eeh_nic_unload(struct bnx2x *bp)
11527{
11528	int i;
11529
11530	bp->state = BNX2X_STATE_ERROR;
11531
11532	bp->rx_mode = BNX2X_RX_MODE_NONE;
11533
11534#ifdef BCM_CNIC
11535	bnx2x_cnic_notify(bp, CNIC_CTL_STOP_CMD);
11536#endif
11537	/* Stop Tx */
11538	bnx2x_tx_disable(bp);
11539
11540	bnx2x_netif_stop(bp, 0);
11541
11542	del_timer_sync(&bp->timer);
11543
11544	bnx2x_stats_handle(bp, STATS_EVENT_STOP);
11545
11546	/* Release IRQs */
11547	bnx2x_free_irq(bp);
11548
11549	/* Free SKBs, SGEs, TPA pool and driver internals */
11550	bnx2x_free_skbs(bp);
11551
11552	for_each_rx_queue(bp, i)
11553		bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE);
11554
11555	bnx2x_free_mem(bp);
11556
11557	bp->state = BNX2X_STATE_CLOSED;
11558
11559	netif_carrier_off(bp->dev);
11560
11561	return 0;
11562}
11563
11564static void bnx2x_eeh_recover(struct bnx2x *bp)
11565{
11566	u32 val;
11567
11568	mutex_init(&bp->port.phy_mutex);
11569
11570
11571	val = SHMEM_RD(bp, validity_map[BP_PORT(bp)]);
11572	if ((val & (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB))
11573		!= (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB))
11574		BNX2X_ERR("BAD MCP validity signature\n");
11575}
11576
11577/**
11578 * bnx2x_io_error_detected - called when PCI error is detected
11579 * @pdev: Pointer to PCI device
11580 * @state: The current pci connection state
11581 *
11582 * This function is called after a PCI bus error affecting
11583 * this device has been detected.
11584 */
11585static pci_ers_result_t bnx2x_io_error_detected(struct pci_dev *pdev,
11586						pci_channel_state_t state)
11587{
11588	struct net_device *dev = pci_get_drvdata(pdev);
11589	struct bnx2x *bp = netdev_priv(dev);
11590
11591	rtnl_lock();
11592
11593	netif_device_detach(dev);
11594
11595	if (state == pci_channel_io_perm_failure) {
11596		rtnl_unlock();
11597		return PCI_ERS_RESULT_DISCONNECT;
11598	}
11599
11600	if (netif_running(dev))
11601		bnx2x_eeh_nic_unload(bp);
11602
11603	pci_disable_device(pdev);
11604
11605	rtnl_unlock();
11606
11607	/* Request a slot reset */
11608	return PCI_ERS_RESULT_NEED_RESET;
11609}
11610
11611/**
11612 * bnx2x_io_slot_reset - called after the PCI bus has been reset
11613 * @pdev: Pointer to PCI device
11614 *
11615 * Restart the card from scratch, as if from a cold-boot.
11616 */
11617static pci_ers_result_t bnx2x_io_slot_reset(struct pci_dev *pdev)
11618{
11619	struct net_device *dev = pci_get_drvdata(pdev);
11620	struct bnx2x *bp = netdev_priv(dev);
11621
11622	rtnl_lock();
11623
11624	if (pci_enable_device(pdev)) {
11625		dev_err(&pdev->dev,
11626			"Cannot re-enable PCI device after reset\n");
11627		rtnl_unlock();
11628		return PCI_ERS_RESULT_DISCONNECT;
11629	}
11630
11631	pci_set_master(pdev);
11632	pci_restore_state(pdev);
11633
11634	if (netif_running(dev))
11635		bnx2x_set_power_state(bp, PCI_D0);
11636
11637	rtnl_unlock();
11638
11639	return PCI_ERS_RESULT_RECOVERED;
11640}
11641
11642/**
11643 * bnx2x_io_resume - called when traffic can start flowing again
11644 * @pdev: Pointer to PCI device
11645 *
11646 * This callback is called when the error recovery driver tells us that
11647 * its OK to resume normal operation.
11648 */
11649static void bnx2x_io_resume(struct pci_dev *pdev)
11650{
11651	struct net_device *dev = pci_get_drvdata(pdev);
11652	struct bnx2x *bp = netdev_priv(dev);
11653
11654	if (bp->recovery_state != BNX2X_RECOVERY_DONE) {
11655		netdev_err(bp->dev, "Handling parity error recovery. Try again later\n");
11656		return;
11657	}
11658
11659	rtnl_lock();
11660
11661	bnx2x_eeh_recover(bp);
11662
11663	if (netif_running(dev))
11664		bnx2x_nic_load(bp, LOAD_NORMAL);
11665
11666	netif_device_attach(dev);
11667
11668	rtnl_unlock();
11669}
11670
11671static struct pci_error_handlers bnx2x_err_handler = {
11672	.error_detected = bnx2x_io_error_detected,
11673	.slot_reset     = bnx2x_io_slot_reset,
11674	.resume         = bnx2x_io_resume,
11675};
11676
11677static struct pci_driver bnx2x_pci_driver = {
11678	.name        = DRV_MODULE_NAME,
11679	.id_table    = bnx2x_pci_tbl,
11680	.probe       = bnx2x_init_one,
11681	.remove      = __devexit_p(bnx2x_remove_one),
11682	.suspend     = bnx2x_suspend,
11683	.resume      = bnx2x_resume,
11684	.err_handler = &bnx2x_err_handler,
11685};
11686
11687static int __init bnx2x_init(void)
11688{
11689	int ret;
11690
11691	pr_info("%s", version);
11692
11693	bnx2x_wq = create_singlethread_workqueue("bnx2x");
11694	if (bnx2x_wq == NULL) {
11695		pr_err("Cannot create workqueue\n");
11696		return -ENOMEM;
11697	}
11698
11699	ret = pci_register_driver(&bnx2x_pci_driver);
11700	if (ret) {
11701		pr_err("Cannot register driver\n");
11702		destroy_workqueue(bnx2x_wq);
11703	}
11704	return ret;
11705}
11706
11707static void __exit bnx2x_cleanup(void)
11708{
11709	struct list_head *pos, *q;
11710	pci_unregister_driver(&bnx2x_pci_driver);
11711
11712	destroy_workqueue(bnx2x_wq);
11713
11714	/* Free globablly allocated resources */
11715	list_for_each_safe(pos, q, &bnx2x_prev_list) {
11716		struct bnx2x_prev_path_list *tmp =
11717			list_entry(pos, struct bnx2x_prev_path_list, list);
11718		list_del(pos);
11719		kfree(tmp);
11720	}
11721}
11722
11723void bnx2x_notify_link_changed(struct bnx2x *bp)
11724{
11725	REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + BP_FUNC(bp)*sizeof(u32), 1);
11726}
11727
11728module_init(bnx2x_init);
11729module_exit(bnx2x_cleanup);
11730
11731#ifdef BCM_CNIC
11732/**
11733 * bnx2x_set_iscsi_eth_mac_addr - set iSCSI MAC(s).
11734 *
11735 * @bp:		driver handle
11736 * @set:	set or clear the CAM entry
11737 *
11738 * This function will wait until the ramdord completion returns.
11739 * Return 0 if success, -ENODEV if ramrod doesn't return.
11740 */
11741static inline int bnx2x_set_iscsi_eth_mac_addr(struct bnx2x *bp)
11742{
11743	unsigned long ramrod_flags = 0;
11744
11745	__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
11746	return bnx2x_set_mac_one(bp, bp->cnic_eth_dev.iscsi_mac,
11747				 &bp->iscsi_l2_mac_obj, true,
11748				 BNX2X_ISCSI_ETH_MAC, &ramrod_flags);
11749}
11750
11751/* count denotes the number of new completions we have seen */
11752static void bnx2x_cnic_sp_post(struct bnx2x *bp, int count)
11753{
11754	struct eth_spe *spe;
11755
11756#ifdef BNX2X_STOP_ON_ERROR
11757	if (unlikely(bp->panic))
11758		return;
11759#endif
11760
11761	spin_lock_bh(&bp->spq_lock);
11762	BUG_ON(bp->cnic_spq_pending < count);
11763	bp->cnic_spq_pending -= count;
11764
11765
11766	for (; bp->cnic_kwq_pending; bp->cnic_kwq_pending--) {
11767		u16 type =  (le16_to_cpu(bp->cnic_kwq_cons->hdr.type)
11768				& SPE_HDR_CONN_TYPE) >>
11769				SPE_HDR_CONN_TYPE_SHIFT;
11770		u8 cmd = (le32_to_cpu(bp->cnic_kwq_cons->hdr.conn_and_cmd_data)
11771				>> SPE_HDR_CMD_ID_SHIFT) & 0xff;
11772
11773		/* Set validation for iSCSI L2 client before sending SETUP
11774		 *  ramrod
11775		 */
11776		if (type == ETH_CONNECTION_TYPE) {
11777			if (cmd == RAMROD_CMD_ID_ETH_CLIENT_SETUP)
11778				bnx2x_set_ctx_validation(bp, &bp->context.
11779					vcxt[BNX2X_ISCSI_ETH_CID].eth,
11780					BNX2X_ISCSI_ETH_CID);
11781		}
11782
11783		/*
11784		 * There may be not more than 8 L2, not more than 8 L5 SPEs
11785		 * and in the air. We also check that number of outstanding
11786		 * COMMON ramrods is not more than the EQ and SPQ can
11787		 * accommodate.
11788		 */
11789		if (type == ETH_CONNECTION_TYPE) {
11790			if (!atomic_read(&bp->cq_spq_left))
11791				break;
11792			else
11793				atomic_dec(&bp->cq_spq_left);
11794		} else if (type == NONE_CONNECTION_TYPE) {
11795			if (!atomic_read(&bp->eq_spq_left))
11796				break;
11797			else
11798				atomic_dec(&bp->eq_spq_left);
11799		} else if ((type == ISCSI_CONNECTION_TYPE) ||
11800			   (type == FCOE_CONNECTION_TYPE)) {
11801			if (bp->cnic_spq_pending >=
11802			    bp->cnic_eth_dev.max_kwqe_pending)
11803				break;
11804			else
11805				bp->cnic_spq_pending++;
11806		} else {
11807			BNX2X_ERR("Unknown SPE type: %d\n", type);
11808			bnx2x_panic();
11809			break;
11810		}
11811
11812		spe = bnx2x_sp_get_next(bp);
11813		*spe = *bp->cnic_kwq_cons;
11814
11815		DP(BNX2X_MSG_SP, "pending on SPQ %d, on KWQ %d count %d\n",
11816		   bp->cnic_spq_pending, bp->cnic_kwq_pending, count);
11817
11818		if (bp->cnic_kwq_cons == bp->cnic_kwq_last)
11819			bp->cnic_kwq_cons = bp->cnic_kwq;
11820		else
11821			bp->cnic_kwq_cons++;
11822	}
11823	bnx2x_sp_prod_update(bp);
11824	spin_unlock_bh(&bp->spq_lock);
11825}
11826
11827static int bnx2x_cnic_sp_queue(struct net_device *dev,
11828			       struct kwqe_16 *kwqes[], u32 count)
11829{
11830	struct bnx2x *bp = netdev_priv(dev);
11831	int i;
11832
11833#ifdef BNX2X_STOP_ON_ERROR
11834	if (unlikely(bp->panic)) {
11835		BNX2X_ERR("Can't post to SP queue while panic\n");
11836		return -EIO;
11837	}
11838#endif
11839
11840	if ((bp->recovery_state != BNX2X_RECOVERY_DONE) &&
11841	    (bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
11842		BNX2X_ERR("Handling parity error recovery. Try again later\n");
11843		return -EAGAIN;
11844	}
11845
11846	spin_lock_bh(&bp->spq_lock);
11847
11848	for (i = 0; i < count; i++) {
11849		struct eth_spe *spe = (struct eth_spe *)kwqes[i];
11850
11851		if (bp->cnic_kwq_pending == MAX_SP_DESC_CNT)
11852			break;
11853
11854		*bp->cnic_kwq_prod = *spe;
11855
11856		bp->cnic_kwq_pending++;
11857
11858		DP(BNX2X_MSG_SP, "L5 SPQE %x %x %x:%x pos %d\n",
11859		   spe->hdr.conn_and_cmd_data, spe->hdr.type,
11860		   spe->data.update_data_addr.hi,
11861		   spe->data.update_data_addr.lo,
11862		   bp->cnic_kwq_pending);
11863
11864		if (bp->cnic_kwq_prod == bp->cnic_kwq_last)
11865			bp->cnic_kwq_prod = bp->cnic_kwq;
11866		else
11867			bp->cnic_kwq_prod++;
11868	}
11869
11870	spin_unlock_bh(&bp->spq_lock);
11871
11872	if (bp->cnic_spq_pending < bp->cnic_eth_dev.max_kwqe_pending)
11873		bnx2x_cnic_sp_post(bp, 0);
11874
11875	return i;
11876}
11877
11878static int bnx2x_cnic_ctl_send(struct bnx2x *bp, struct cnic_ctl_info *ctl)
11879{
11880	struct cnic_ops *c_ops;
11881	int rc = 0;
11882
11883	mutex_lock(&bp->cnic_mutex);
11884	c_ops = rcu_dereference_protected(bp->cnic_ops,
11885					  lockdep_is_held(&bp->cnic_mutex));
11886	if (c_ops)
11887		rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
11888	mutex_unlock(&bp->cnic_mutex);
11889
11890	return rc;
11891}
11892
11893static int bnx2x_cnic_ctl_send_bh(struct bnx2x *bp, struct cnic_ctl_info *ctl)
11894{
11895	struct cnic_ops *c_ops;
11896	int rc = 0;
11897
11898	rcu_read_lock();
11899	c_ops = rcu_dereference(bp->cnic_ops);
11900	if (c_ops)
11901		rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
11902	rcu_read_unlock();
11903
11904	return rc;
11905}
11906
11907/*
11908 * for commands that have no data
11909 */
11910int bnx2x_cnic_notify(struct bnx2x *bp, int cmd)
11911{
11912	struct cnic_ctl_info ctl = {0};
11913
11914	ctl.cmd = cmd;
11915
11916	return bnx2x_cnic_ctl_send(bp, &ctl);
11917}
11918
11919static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err)
11920{
11921	struct cnic_ctl_info ctl = {0};
11922
11923	/* first we tell CNIC and only then we count this as a completion */
11924	ctl.cmd = CNIC_CTL_COMPLETION_CMD;
11925	ctl.data.comp.cid = cid;
11926	ctl.data.comp.error = err;
11927
11928	bnx2x_cnic_ctl_send_bh(bp, &ctl);
11929	bnx2x_cnic_sp_post(bp, 0);
11930}
11931
11932
11933/* Called with netif_addr_lock_bh() taken.
11934 * Sets an rx_mode config for an iSCSI ETH client.
11935 * Doesn't block.
11936 * Completion should be checked outside.
11937 */
11938static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start)
11939{
11940	unsigned long accept_flags = 0, ramrod_flags = 0;
11941	u8 cl_id = bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
11942	int sched_state = BNX2X_FILTER_ISCSI_ETH_STOP_SCHED;
11943
11944	if (start) {
11945		/* Start accepting on iSCSI L2 ring. Accept all multicasts
11946		 * because it's the only way for UIO Queue to accept
11947		 * multicasts (in non-promiscuous mode only one Queue per
11948		 * function will receive multicast packets (leading in our
11949		 * case).
11950		 */
11951		__set_bit(BNX2X_ACCEPT_UNICAST, &accept_flags);
11952		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &accept_flags);
11953		__set_bit(BNX2X_ACCEPT_BROADCAST, &accept_flags);
11954		__set_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags);
11955
11956		/* Clear STOP_PENDING bit if START is requested */
11957		clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &bp->sp_state);
11958
11959		sched_state = BNX2X_FILTER_ISCSI_ETH_START_SCHED;
11960	} else
11961		/* Clear START_PENDING bit if STOP is requested */
11962		clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &bp->sp_state);
11963
11964	if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
11965		set_bit(sched_state, &bp->sp_state);
11966	else {
11967		__set_bit(RAMROD_RX, &ramrod_flags);
11968		bnx2x_set_q_rx_mode(bp, cl_id, 0, accept_flags, 0,
11969				    ramrod_flags);
11970	}
11971}
11972
11973
11974static int bnx2x_drv_ctl(struct net_device *dev, struct drv_ctl_info *ctl)
11975{
11976	struct bnx2x *bp = netdev_priv(dev);
11977	int rc = 0;
11978
11979	switch (ctl->cmd) {
11980	case DRV_CTL_CTXTBL_WR_CMD: {
11981		u32 index = ctl->data.io.offset;
11982		dma_addr_t addr = ctl->data.io.dma_addr;
11983
11984		bnx2x_ilt_wr(bp, index, addr);
11985		break;
11986	}
11987
11988	case DRV_CTL_RET_L5_SPQ_CREDIT_CMD: {
11989		int count = ctl->data.credit.credit_count;
11990
11991		bnx2x_cnic_sp_post(bp, count);
11992		break;
11993	}
11994
11995	/* rtnl_lock is held.  */
11996	case DRV_CTL_START_L2_CMD: {
11997		struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
11998		unsigned long sp_bits = 0;
11999
12000		/* Configure the iSCSI classification object */
12001		bnx2x_init_mac_obj(bp, &bp->iscsi_l2_mac_obj,
12002				   cp->iscsi_l2_client_id,
12003				   cp->iscsi_l2_cid, BP_FUNC(bp),
12004				   bnx2x_sp(bp, mac_rdata),
12005				   bnx2x_sp_mapping(bp, mac_rdata),
12006				   BNX2X_FILTER_MAC_PENDING,
12007				   &bp->sp_state, BNX2X_OBJ_TYPE_RX,
12008				   &bp->macs_pool);
12009
12010		/* Set iSCSI MAC address */
12011		rc = bnx2x_set_iscsi_eth_mac_addr(bp);
12012		if (rc)
12013			break;
12014
12015		mmiowb();
12016		barrier();
12017
12018		/* Start accepting on iSCSI L2 ring */
12019
12020		netif_addr_lock_bh(dev);
12021		bnx2x_set_iscsi_eth_rx_mode(bp, true);
12022		netif_addr_unlock_bh(dev);
12023
12024		/* bits to wait on */
12025		__set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
12026		__set_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &sp_bits);
12027
12028		if (!bnx2x_wait_sp_comp(bp, sp_bits))
12029			BNX2X_ERR("rx_mode completion timed out!\n");
12030
12031		break;
12032	}
12033
12034	/* rtnl_lock is held.  */
12035	case DRV_CTL_STOP_L2_CMD: {
12036		unsigned long sp_bits = 0;
12037
12038		/* Stop accepting on iSCSI L2 ring */
12039		netif_addr_lock_bh(dev);
12040		bnx2x_set_iscsi_eth_rx_mode(bp, false);
12041		netif_addr_unlock_bh(dev);
12042
12043		/* bits to wait on */
12044		__set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
12045		__set_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &sp_bits);
12046
12047		if (!bnx2x_wait_sp_comp(bp, sp_bits))
12048			BNX2X_ERR("rx_mode completion timed out!\n");
12049
12050		mmiowb();
12051		barrier();
12052
12053		/* Unset iSCSI L2 MAC */
12054		rc = bnx2x_del_all_macs(bp, &bp->iscsi_l2_mac_obj,
12055					BNX2X_ISCSI_ETH_MAC, true);
12056		break;
12057	}
12058	case DRV_CTL_RET_L2_SPQ_CREDIT_CMD: {
12059		int count = ctl->data.credit.credit_count;
12060
12061		smp_mb__before_atomic_inc();
12062		atomic_add(count, &bp->cq_spq_left);
12063		smp_mb__after_atomic_inc();
12064		break;
12065	}
12066	case DRV_CTL_ULP_REGISTER_CMD: {
12067		int ulp_type = ctl->data.ulp_type;
12068
12069		if (CHIP_IS_E3(bp)) {
12070			int idx = BP_FW_MB_IDX(bp);
12071			u32 cap;
12072
12073			cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
12074			if (ulp_type == CNIC_ULP_ISCSI)
12075				cap |= DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
12076			else if (ulp_type == CNIC_ULP_FCOE)
12077				cap |= DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
12078			SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
12079		}
12080		break;
12081	}
12082	case DRV_CTL_ULP_UNREGISTER_CMD: {
12083		int ulp_type = ctl->data.ulp_type;
12084
12085		if (CHIP_IS_E3(bp)) {
12086			int idx = BP_FW_MB_IDX(bp);
12087			u32 cap;
12088
12089			cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
12090			if (ulp_type == CNIC_ULP_ISCSI)
12091				cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
12092			else if (ulp_type == CNIC_ULP_FCOE)
12093				cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
12094			SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
12095		}
12096		break;
12097	}
12098
12099	default:
12100		BNX2X_ERR("unknown command %x\n", ctl->cmd);
12101		rc = -EINVAL;
12102	}
12103
12104	return rc;
12105}
12106
12107void bnx2x_setup_cnic_irq_info(struct bnx2x *bp)
12108{
12109	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
12110
12111	if (bp->flags & USING_MSIX_FLAG) {
12112		cp->drv_state |= CNIC_DRV_STATE_USING_MSIX;
12113		cp->irq_arr[0].irq_flags |= CNIC_IRQ_FL_MSIX;
12114		cp->irq_arr[0].vector = bp->msix_table[1].vector;
12115	} else {
12116		cp->drv_state &= ~CNIC_DRV_STATE_USING_MSIX;
12117		cp->irq_arr[0].irq_flags &= ~CNIC_IRQ_FL_MSIX;
12118	}
12119	if (!CHIP_IS_E1x(bp))
12120		cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e2_sb;
12121	else
12122		cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e1x_sb;
12123
12124	cp->irq_arr[0].status_blk_num =  bnx2x_cnic_fw_sb_id(bp);
12125	cp->irq_arr[0].status_blk_num2 = bnx2x_cnic_igu_sb_id(bp);
12126	cp->irq_arr[1].status_blk = bp->def_status_blk;
12127	cp->irq_arr[1].status_blk_num = DEF_SB_ID;
12128	cp->irq_arr[1].status_blk_num2 = DEF_SB_IGU_ID;
12129
12130	cp->num_irq = 2;
12131}
12132
12133static int bnx2x_register_cnic(struct net_device *dev, struct cnic_ops *ops,
12134			       void *data)
12135{
12136	struct bnx2x *bp = netdev_priv(dev);
12137	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
12138
12139	if (ops == NULL) {
12140		BNX2X_ERR("NULL ops received\n");
12141		return -EINVAL;
12142	}
12143
12144	bp->cnic_kwq = kzalloc(PAGE_SIZE, GFP_KERNEL);
12145	if (!bp->cnic_kwq)
12146		return -ENOMEM;
12147
12148	bp->cnic_kwq_cons = bp->cnic_kwq;
12149	bp->cnic_kwq_prod = bp->cnic_kwq;
12150	bp->cnic_kwq_last = bp->cnic_kwq + MAX_SP_DESC_CNT;
12151
12152	bp->cnic_spq_pending = 0;
12153	bp->cnic_kwq_pending = 0;
12154
12155	bp->cnic_data = data;
12156
12157	cp->num_irq = 0;
12158	cp->drv_state |= CNIC_DRV_STATE_REGD;
12159	cp->iro_arr = bp->iro_arr;
12160
12161	bnx2x_setup_cnic_irq_info(bp);
12162
12163	rcu_assign_pointer(bp->cnic_ops, ops);
12164
12165	return 0;
12166}
12167
12168static int bnx2x_unregister_cnic(struct net_device *dev)
12169{
12170	struct bnx2x *bp = netdev_priv(dev);
12171	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
12172
12173	mutex_lock(&bp->cnic_mutex);
12174	cp->drv_state = 0;
12175	RCU_INIT_POINTER(bp->cnic_ops, NULL);
12176	mutex_unlock(&bp->cnic_mutex);
12177	synchronize_rcu();
12178	kfree(bp->cnic_kwq);
12179	bp->cnic_kwq = NULL;
12180
12181	return 0;
12182}
12183
12184struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev)
12185{
12186	struct bnx2x *bp = netdev_priv(dev);
12187	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
12188
12189	/* If both iSCSI and FCoE are disabled - return NULL in
12190	 * order to indicate CNIC that it should not try to work
12191	 * with this device.
12192	 */
12193	if (NO_ISCSI(bp) && NO_FCOE(bp))
12194		return NULL;
12195
12196	cp->drv_owner = THIS_MODULE;
12197	cp->chip_id = CHIP_ID(bp);
12198	cp->pdev = bp->pdev;
12199	cp->io_base = bp->regview;
12200	cp->io_base2 = bp->doorbells;
12201	cp->max_kwqe_pending = 8;
12202	cp->ctx_blk_size = CDU_ILT_PAGE_SZ;
12203	cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
12204			     bnx2x_cid_ilt_lines(bp);
12205	cp->ctx_tbl_len = CNIC_ILT_LINES;
12206	cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
12207	cp->drv_submit_kwqes_16 = bnx2x_cnic_sp_queue;
12208	cp->drv_ctl = bnx2x_drv_ctl;
12209	cp->drv_register_cnic = bnx2x_register_cnic;
12210	cp->drv_unregister_cnic = bnx2x_unregister_cnic;
12211	cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID;
12212	cp->iscsi_l2_client_id =
12213		bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
12214	cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID;
12215
12216	if (NO_ISCSI_OOO(bp))
12217		cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
12218
12219	if (NO_ISCSI(bp))
12220		cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI;
12221
12222	if (NO_FCOE(bp))
12223		cp->drv_state |= CNIC_DRV_STATE_NO_FCOE;
12224
12225	BNX2X_DEV_INFO(
12226		"page_size %d, tbl_offset %d, tbl_lines %d, starting cid %d\n",
12227	   cp->ctx_blk_size,
12228	   cp->ctx_tbl_offset,
12229	   cp->ctx_tbl_len,
12230	   cp->starting_cid);
12231	return cp;
12232}
12233EXPORT_SYMBOL(bnx2x_cnic_probe);
12234
12235#endif /* BCM_CNIC */
12236
12237