bnx2x_main.c revision 50f0a562f8cc9ed9d9f7f7380434c3c8646172d5
1/* bnx2x_main.c: Broadcom Everest network driver.
2 *
3 * Copyright (c) 2007-2011 Broadcom Corporation
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation.
8 *
9 * Maintained by: Eilon Greenstein <eilong@broadcom.com>
10 * Written by: Eliezer Tamir
11 * Based on code from Michael Chan's bnx2 driver
12 * UDP CSUM errata workaround by Arik Gendelman
13 * Slowpath and fastpath rework by Vladislav Zolotarov
14 * Statistics and Link management by Yitchak Gertner
15 *
16 */
17
18#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19
20#include <linux/module.h>
21#include <linux/moduleparam.h>
22#include <linux/kernel.h>
23#include <linux/device.h>  /* for dev_info() */
24#include <linux/timer.h>
25#include <linux/errno.h>
26#include <linux/ioport.h>
27#include <linux/slab.h>
28#include <linux/interrupt.h>
29#include <linux/pci.h>
30#include <linux/init.h>
31#include <linux/netdevice.h>
32#include <linux/etherdevice.h>
33#include <linux/skbuff.h>
34#include <linux/dma-mapping.h>
35#include <linux/bitops.h>
36#include <linux/irq.h>
37#include <linux/delay.h>
38#include <asm/byteorder.h>
39#include <linux/time.h>
40#include <linux/ethtool.h>
41#include <linux/mii.h>
42#include <linux/if.h>
43#include <linux/if_vlan.h>
44#include <net/ip.h>
45#include <net/ipv6.h>
46#include <net/tcp.h>
47#include <net/checksum.h>
48#include <net/ip6_checksum.h>
49#include <linux/workqueue.h>
50#include <linux/crc32.h>
51#include <linux/crc32c.h>
52#include <linux/prefetch.h>
53#include <linux/zlib.h>
54#include <linux/io.h>
55#include <linux/stringify.h>
56#include <linux/vmalloc.h>
57
58#include "bnx2x.h"
59#include "bnx2x_init.h"
60#include "bnx2x_init_ops.h"
61#include "bnx2x_cmn.h"
62#include "bnx2x_dcb.h"
63#include "bnx2x_sp.h"
64
65#include <linux/firmware.h>
66#include "bnx2x_fw_file_hdr.h"
67/* FW files */
68#define FW_FILE_VERSION					\
69	__stringify(BCM_5710_FW_MAJOR_VERSION) "."	\
70	__stringify(BCM_5710_FW_MINOR_VERSION) "."	\
71	__stringify(BCM_5710_FW_REVISION_VERSION) "."	\
72	__stringify(BCM_5710_FW_ENGINEERING_VERSION)
73#define FW_FILE_NAME_E1		"bnx2x/bnx2x-e1-" FW_FILE_VERSION ".fw"
74#define FW_FILE_NAME_E1H	"bnx2x/bnx2x-e1h-" FW_FILE_VERSION ".fw"
75#define FW_FILE_NAME_E2		"bnx2x/bnx2x-e2-" FW_FILE_VERSION ".fw"
76
77/* Time in jiffies before concluding the transmitter is hung */
78#define TX_TIMEOUT		(5*HZ)
79
80static char version[] __devinitdata =
81	"Broadcom NetXtreme II 5771x/578xx 10/20-Gigabit Ethernet Driver "
82	DRV_MODULE_NAME " " DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
83
84MODULE_AUTHOR("Eliezer Tamir");
85MODULE_DESCRIPTION("Broadcom NetXtreme II "
86		   "BCM57710/57711/57711E/"
87		   "57712/57712_MF/57800/57800_MF/57810/57810_MF/"
88		   "57840/57840_MF Driver");
89MODULE_LICENSE("GPL");
90MODULE_VERSION(DRV_MODULE_VERSION);
91MODULE_FIRMWARE(FW_FILE_NAME_E1);
92MODULE_FIRMWARE(FW_FILE_NAME_E1H);
93MODULE_FIRMWARE(FW_FILE_NAME_E2);
94
95static int multi_mode = 1;
96module_param(multi_mode, int, 0);
97MODULE_PARM_DESC(multi_mode, " Multi queue mode "
98			     "(0 Disable; 1 Enable (default))");
99
100int num_queues;
101module_param(num_queues, int, 0);
102MODULE_PARM_DESC(num_queues, " Number of queues for multi_mode=1"
103				" (default is as a number of CPUs)");
104
105static int disable_tpa;
106module_param(disable_tpa, int, 0);
107MODULE_PARM_DESC(disable_tpa, " Disable the TPA (LRO) feature");
108
109#define INT_MODE_INTx			1
110#define INT_MODE_MSI			2
111static int int_mode;
112module_param(int_mode, int, 0);
113MODULE_PARM_DESC(int_mode, " Force interrupt mode other than MSI-X "
114				"(1 INT#x; 2 MSI)");
115
116static int dropless_fc;
117module_param(dropless_fc, int, 0);
118MODULE_PARM_DESC(dropless_fc, " Pause on exhausted host ring");
119
120static int poll;
121module_param(poll, int, 0);
122MODULE_PARM_DESC(poll, " Use polling (for debug)");
123
124static int mrrs = -1;
125module_param(mrrs, int, 0);
126MODULE_PARM_DESC(mrrs, " Force Max Read Req Size (0..3) (for debug)");
127
128static int debug;
129module_param(debug, int, 0);
130MODULE_PARM_DESC(debug, " Default debug msglevel");
131
132
133
134struct workqueue_struct *bnx2x_wq;
135
136enum bnx2x_board_type {
137	BCM57710 = 0,
138	BCM57711,
139	BCM57711E,
140	BCM57712,
141	BCM57712_MF,
142	BCM57800,
143	BCM57800_MF,
144	BCM57810,
145	BCM57810_MF,
146	BCM57840,
147	BCM57840_MF
148};
149
150/* indexed by board_type, above */
151static struct {
152	char *name;
153} board_info[] __devinitdata = {
154	{ "Broadcom NetXtreme II BCM57710 10 Gigabit PCIe [Everest]" },
155	{ "Broadcom NetXtreme II BCM57711 10 Gigabit PCIe" },
156	{ "Broadcom NetXtreme II BCM57711E 10 Gigabit PCIe" },
157	{ "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet" },
158	{ "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet Multi Function" },
159	{ "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet" },
160	{ "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet Multi Function" },
161	{ "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet" },
162	{ "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet Multi Function" },
163	{ "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet" },
164	{ "Broadcom NetXtreme II BCM57840 10/20 Gigabit "
165						"Ethernet Multi Function"}
166};
167
168#ifndef PCI_DEVICE_ID_NX2_57710
169#define PCI_DEVICE_ID_NX2_57710		CHIP_NUM_57710
170#endif
171#ifndef PCI_DEVICE_ID_NX2_57711
172#define PCI_DEVICE_ID_NX2_57711		CHIP_NUM_57711
173#endif
174#ifndef PCI_DEVICE_ID_NX2_57711E
175#define PCI_DEVICE_ID_NX2_57711E	CHIP_NUM_57711E
176#endif
177#ifndef PCI_DEVICE_ID_NX2_57712
178#define PCI_DEVICE_ID_NX2_57712		CHIP_NUM_57712
179#endif
180#ifndef PCI_DEVICE_ID_NX2_57712_MF
181#define PCI_DEVICE_ID_NX2_57712_MF	CHIP_NUM_57712_MF
182#endif
183#ifndef PCI_DEVICE_ID_NX2_57800
184#define PCI_DEVICE_ID_NX2_57800		CHIP_NUM_57800
185#endif
186#ifndef PCI_DEVICE_ID_NX2_57800_MF
187#define PCI_DEVICE_ID_NX2_57800_MF	CHIP_NUM_57800_MF
188#endif
189#ifndef PCI_DEVICE_ID_NX2_57810
190#define PCI_DEVICE_ID_NX2_57810		CHIP_NUM_57810
191#endif
192#ifndef PCI_DEVICE_ID_NX2_57810_MF
193#define PCI_DEVICE_ID_NX2_57810_MF	CHIP_NUM_57810_MF
194#endif
195#ifndef PCI_DEVICE_ID_NX2_57840
196#define PCI_DEVICE_ID_NX2_57840		CHIP_NUM_57840
197#endif
198#ifndef PCI_DEVICE_ID_NX2_57840_MF
199#define PCI_DEVICE_ID_NX2_57840_MF	CHIP_NUM_57840_MF
200#endif
201static DEFINE_PCI_DEVICE_TABLE(bnx2x_pci_tbl) = {
202	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57710), BCM57710 },
203	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711), BCM57711 },
204	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711E), BCM57711E },
205	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712), BCM57712 },
206	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_MF), BCM57712_MF },
207	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800), BCM57800 },
208	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_MF), BCM57800_MF },
209	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810), BCM57810 },
210	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_MF), BCM57810_MF },
211	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840), BCM57840 },
212	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MF), BCM57840_MF },
213	{ 0 }
214};
215
216MODULE_DEVICE_TABLE(pci, bnx2x_pci_tbl);
217
218/****************************************************************************
219* General service functions
220****************************************************************************/
221
222static inline void __storm_memset_dma_mapping(struct bnx2x *bp,
223				       u32 addr, dma_addr_t mapping)
224{
225	REG_WR(bp,  addr, U64_LO(mapping));
226	REG_WR(bp,  addr + 4, U64_HI(mapping));
227}
228
229static inline void storm_memset_spq_addr(struct bnx2x *bp,
230					 dma_addr_t mapping, u16 abs_fid)
231{
232	u32 addr = XSEM_REG_FAST_MEMORY +
233			XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid);
234
235	__storm_memset_dma_mapping(bp, addr, mapping);
236}
237
238static inline void storm_memset_vf_to_pf(struct bnx2x *bp, u16 abs_fid,
239					 u16 pf_id)
240{
241	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid),
242		pf_id);
243	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid),
244		pf_id);
245	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid),
246		pf_id);
247	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid),
248		pf_id);
249}
250
251static inline void storm_memset_func_en(struct bnx2x *bp, u16 abs_fid,
252					u8 enable)
253{
254	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid),
255		enable);
256	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid),
257		enable);
258	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid),
259		enable);
260	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid),
261		enable);
262}
263
264static inline void storm_memset_eq_data(struct bnx2x *bp,
265				struct event_ring_data *eq_data,
266				u16 pfid)
267{
268	size_t size = sizeof(struct event_ring_data);
269
270	u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid);
271
272	__storm_memset_struct(bp, addr, size, (u32 *)eq_data);
273}
274
275static inline void storm_memset_eq_prod(struct bnx2x *bp, u16 eq_prod,
276					u16 pfid)
277{
278	u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_PROD_OFFSET(pfid);
279	REG_WR16(bp, addr, eq_prod);
280}
281
282/* used only at init
283 * locking is done by mcp
284 */
285static void bnx2x_reg_wr_ind(struct bnx2x *bp, u32 addr, u32 val)
286{
287	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
288	pci_write_config_dword(bp->pdev, PCICFG_GRC_DATA, val);
289	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
290			       PCICFG_VENDOR_ID_OFFSET);
291}
292
293static u32 bnx2x_reg_rd_ind(struct bnx2x *bp, u32 addr)
294{
295	u32 val;
296
297	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
298	pci_read_config_dword(bp->pdev, PCICFG_GRC_DATA, &val);
299	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
300			       PCICFG_VENDOR_ID_OFFSET);
301
302	return val;
303}
304
305#define DMAE_DP_SRC_GRC		"grc src_addr [%08x]"
306#define DMAE_DP_SRC_PCI		"pci src_addr [%x:%08x]"
307#define DMAE_DP_DST_GRC		"grc dst_addr [%08x]"
308#define DMAE_DP_DST_PCI		"pci dst_addr [%x:%08x]"
309#define DMAE_DP_DST_NONE	"dst_addr [none]"
310
311static void bnx2x_dp_dmae(struct bnx2x *bp, struct dmae_command *dmae,
312			  int msglvl)
313{
314	u32 src_type = dmae->opcode & DMAE_COMMAND_SRC;
315
316	switch (dmae->opcode & DMAE_COMMAND_DST) {
317	case DMAE_CMD_DST_PCI:
318		if (src_type == DMAE_CMD_SRC_PCI)
319			DP(msglvl, "DMAE: opcode 0x%08x\n"
320			   "src [%x:%08x], len [%d*4], dst [%x:%08x]\n"
321			   "comp_addr [%x:%08x], comp_val 0x%08x\n",
322			   dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
323			   dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
324			   dmae->comp_addr_hi, dmae->comp_addr_lo,
325			   dmae->comp_val);
326		else
327			DP(msglvl, "DMAE: opcode 0x%08x\n"
328			   "src [%08x], len [%d*4], dst [%x:%08x]\n"
329			   "comp_addr [%x:%08x], comp_val 0x%08x\n",
330			   dmae->opcode, dmae->src_addr_lo >> 2,
331			   dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
332			   dmae->comp_addr_hi, dmae->comp_addr_lo,
333			   dmae->comp_val);
334		break;
335	case DMAE_CMD_DST_GRC:
336		if (src_type == DMAE_CMD_SRC_PCI)
337			DP(msglvl, "DMAE: opcode 0x%08x\n"
338			   "src [%x:%08x], len [%d*4], dst_addr [%08x]\n"
339			   "comp_addr [%x:%08x], comp_val 0x%08x\n",
340			   dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
341			   dmae->len, dmae->dst_addr_lo >> 2,
342			   dmae->comp_addr_hi, dmae->comp_addr_lo,
343			   dmae->comp_val);
344		else
345			DP(msglvl, "DMAE: opcode 0x%08x\n"
346			   "src [%08x], len [%d*4], dst [%08x]\n"
347			   "comp_addr [%x:%08x], comp_val 0x%08x\n",
348			   dmae->opcode, dmae->src_addr_lo >> 2,
349			   dmae->len, dmae->dst_addr_lo >> 2,
350			   dmae->comp_addr_hi, dmae->comp_addr_lo,
351			   dmae->comp_val);
352		break;
353	default:
354		if (src_type == DMAE_CMD_SRC_PCI)
355			DP(msglvl, "DMAE: opcode 0x%08x\n"
356			   "src_addr [%x:%08x]  len [%d * 4]  dst_addr [none]\n"
357			   "comp_addr [%x:%08x]  comp_val 0x%08x\n",
358			   dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
359			   dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
360			   dmae->comp_val);
361		else
362			DP(msglvl, "DMAE: opcode 0x%08x\n"
363			   "src_addr [%08x]  len [%d * 4]  dst_addr [none]\n"
364			   "comp_addr [%x:%08x]  comp_val 0x%08x\n",
365			   dmae->opcode, dmae->src_addr_lo >> 2,
366			   dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
367			   dmae->comp_val);
368		break;
369	}
370
371}
372
373/* copy command into DMAE command memory and set DMAE command go */
374void bnx2x_post_dmae(struct bnx2x *bp, struct dmae_command *dmae, int idx)
375{
376	u32 cmd_offset;
377	int i;
378
379	cmd_offset = (DMAE_REG_CMD_MEM + sizeof(struct dmae_command) * idx);
380	for (i = 0; i < (sizeof(struct dmae_command)/4); i++) {
381		REG_WR(bp, cmd_offset + i*4, *(((u32 *)dmae) + i));
382
383		DP(BNX2X_MSG_OFF, "DMAE cmd[%d].%d (0x%08x) : 0x%08x\n",
384		   idx, i, cmd_offset + i*4, *(((u32 *)dmae) + i));
385	}
386	REG_WR(bp, dmae_reg_go_c[idx], 1);
387}
388
389u32 bnx2x_dmae_opcode_add_comp(u32 opcode, u8 comp_type)
390{
391	return opcode | ((comp_type << DMAE_COMMAND_C_DST_SHIFT) |
392			   DMAE_CMD_C_ENABLE);
393}
394
395u32 bnx2x_dmae_opcode_clr_src_reset(u32 opcode)
396{
397	return opcode & ~DMAE_CMD_SRC_RESET;
398}
399
400u32 bnx2x_dmae_opcode(struct bnx2x *bp, u8 src_type, u8 dst_type,
401			     bool with_comp, u8 comp_type)
402{
403	u32 opcode = 0;
404
405	opcode |= ((src_type << DMAE_COMMAND_SRC_SHIFT) |
406		   (dst_type << DMAE_COMMAND_DST_SHIFT));
407
408	opcode |= (DMAE_CMD_SRC_RESET | DMAE_CMD_DST_RESET);
409
410	opcode |= (BP_PORT(bp) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0);
411	opcode |= ((BP_VN(bp) << DMAE_CMD_E1HVN_SHIFT) |
412		   (BP_VN(bp) << DMAE_COMMAND_DST_VN_SHIFT));
413	opcode |= (DMAE_COM_SET_ERR << DMAE_COMMAND_ERR_POLICY_SHIFT);
414
415#ifdef __BIG_ENDIAN
416	opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP;
417#else
418	opcode |= DMAE_CMD_ENDIANITY_DW_SWAP;
419#endif
420	if (with_comp)
421		opcode = bnx2x_dmae_opcode_add_comp(opcode, comp_type);
422	return opcode;
423}
424
425static void bnx2x_prep_dmae_with_comp(struct bnx2x *bp,
426				      struct dmae_command *dmae,
427				      u8 src_type, u8 dst_type)
428{
429	memset(dmae, 0, sizeof(struct dmae_command));
430
431	/* set the opcode */
432	dmae->opcode = bnx2x_dmae_opcode(bp, src_type, dst_type,
433					 true, DMAE_COMP_PCI);
434
435	/* fill in the completion parameters */
436	dmae->comp_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_comp));
437	dmae->comp_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_comp));
438	dmae->comp_val = DMAE_COMP_VAL;
439}
440
441/* issue a dmae command over the init-channel and wailt for completion */
442static int bnx2x_issue_dmae_with_comp(struct bnx2x *bp,
443				      struct dmae_command *dmae)
444{
445	u32 *wb_comp = bnx2x_sp(bp, wb_comp);
446	int cnt = CHIP_REV_IS_SLOW(bp) ? (400000) : 4000;
447	int rc = 0;
448
449	DP(BNX2X_MSG_OFF, "data before [0x%08x 0x%08x 0x%08x 0x%08x]\n",
450	   bp->slowpath->wb_data[0], bp->slowpath->wb_data[1],
451	   bp->slowpath->wb_data[2], bp->slowpath->wb_data[3]);
452
453	/*
454	 * Lock the dmae channel. Disable BHs to prevent a dead-lock
455	 * as long as this code is called both from syscall context and
456	 * from ndo_set_rx_mode() flow that may be called from BH.
457	 */
458	spin_lock_bh(&bp->dmae_lock);
459
460	/* reset completion */
461	*wb_comp = 0;
462
463	/* post the command on the channel used for initializations */
464	bnx2x_post_dmae(bp, dmae, INIT_DMAE_C(bp));
465
466	/* wait for completion */
467	udelay(5);
468	while ((*wb_comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) {
469		DP(BNX2X_MSG_OFF, "wb_comp 0x%08x\n", *wb_comp);
470
471		if (!cnt) {
472			BNX2X_ERR("DMAE timeout!\n");
473			rc = DMAE_TIMEOUT;
474			goto unlock;
475		}
476		cnt--;
477		udelay(50);
478	}
479	if (*wb_comp & DMAE_PCI_ERR_FLAG) {
480		BNX2X_ERR("DMAE PCI error!\n");
481		rc = DMAE_PCI_ERROR;
482	}
483
484	DP(BNX2X_MSG_OFF, "data after [0x%08x 0x%08x 0x%08x 0x%08x]\n",
485	   bp->slowpath->wb_data[0], bp->slowpath->wb_data[1],
486	   bp->slowpath->wb_data[2], bp->slowpath->wb_data[3]);
487
488unlock:
489	spin_unlock_bh(&bp->dmae_lock);
490	return rc;
491}
492
493void bnx2x_write_dmae(struct bnx2x *bp, dma_addr_t dma_addr, u32 dst_addr,
494		      u32 len32)
495{
496	struct dmae_command dmae;
497
498	if (!bp->dmae_ready) {
499		u32 *data = bnx2x_sp(bp, wb_data[0]);
500
501		DP(BNX2X_MSG_OFF, "DMAE is not ready (dst_addr %08x  len32 %d)"
502		   "  using indirect\n", dst_addr, len32);
503		bnx2x_init_ind_wr(bp, dst_addr, data, len32);
504		return;
505	}
506
507	/* set opcode and fixed command fields */
508	bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC);
509
510	/* fill in addresses and len */
511	dmae.src_addr_lo = U64_LO(dma_addr);
512	dmae.src_addr_hi = U64_HI(dma_addr);
513	dmae.dst_addr_lo = dst_addr >> 2;
514	dmae.dst_addr_hi = 0;
515	dmae.len = len32;
516
517	bnx2x_dp_dmae(bp, &dmae, BNX2X_MSG_OFF);
518
519	/* issue the command and wait for completion */
520	bnx2x_issue_dmae_with_comp(bp, &dmae);
521}
522
523void bnx2x_read_dmae(struct bnx2x *bp, u32 src_addr, u32 len32)
524{
525	struct dmae_command dmae;
526
527	if (!bp->dmae_ready) {
528		u32 *data = bnx2x_sp(bp, wb_data[0]);
529		int i;
530
531		DP(BNX2X_MSG_OFF, "DMAE is not ready (src_addr %08x  len32 %d)"
532		   "  using indirect\n", src_addr, len32);
533		for (i = 0; i < len32; i++)
534			data[i] = bnx2x_reg_rd_ind(bp, src_addr + i*4);
535		return;
536	}
537
538	/* set opcode and fixed command fields */
539	bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI);
540
541	/* fill in addresses and len */
542	dmae.src_addr_lo = src_addr >> 2;
543	dmae.src_addr_hi = 0;
544	dmae.dst_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_data));
545	dmae.dst_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_data));
546	dmae.len = len32;
547
548	bnx2x_dp_dmae(bp, &dmae, BNX2X_MSG_OFF);
549
550	/* issue the command and wait for completion */
551	bnx2x_issue_dmae_with_comp(bp, &dmae);
552}
553
554static void bnx2x_write_dmae_phys_len(struct bnx2x *bp, dma_addr_t phys_addr,
555				      u32 addr, u32 len)
556{
557	int dmae_wr_max = DMAE_LEN32_WR_MAX(bp);
558	int offset = 0;
559
560	while (len > dmae_wr_max) {
561		bnx2x_write_dmae(bp, phys_addr + offset,
562				 addr + offset, dmae_wr_max);
563		offset += dmae_wr_max * 4;
564		len -= dmae_wr_max;
565	}
566
567	bnx2x_write_dmae(bp, phys_addr + offset, addr + offset, len);
568}
569
570/* used only for slowpath so not inlined */
571static void bnx2x_wb_wr(struct bnx2x *bp, int reg, u32 val_hi, u32 val_lo)
572{
573	u32 wb_write[2];
574
575	wb_write[0] = val_hi;
576	wb_write[1] = val_lo;
577	REG_WR_DMAE(bp, reg, wb_write, 2);
578}
579
580#ifdef USE_WB_RD
581static u64 bnx2x_wb_rd(struct bnx2x *bp, int reg)
582{
583	u32 wb_data[2];
584
585	REG_RD_DMAE(bp, reg, wb_data, 2);
586
587	return HILO_U64(wb_data[0], wb_data[1]);
588}
589#endif
590
591static int bnx2x_mc_assert(struct bnx2x *bp)
592{
593	char last_idx;
594	int i, rc = 0;
595	u32 row0, row1, row2, row3;
596
597	/* XSTORM */
598	last_idx = REG_RD8(bp, BAR_XSTRORM_INTMEM +
599			   XSTORM_ASSERT_LIST_INDEX_OFFSET);
600	if (last_idx)
601		BNX2X_ERR("XSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
602
603	/* print the asserts */
604	for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
605
606		row0 = REG_RD(bp, BAR_XSTRORM_INTMEM +
607			      XSTORM_ASSERT_LIST_OFFSET(i));
608		row1 = REG_RD(bp, BAR_XSTRORM_INTMEM +
609			      XSTORM_ASSERT_LIST_OFFSET(i) + 4);
610		row2 = REG_RD(bp, BAR_XSTRORM_INTMEM +
611			      XSTORM_ASSERT_LIST_OFFSET(i) + 8);
612		row3 = REG_RD(bp, BAR_XSTRORM_INTMEM +
613			      XSTORM_ASSERT_LIST_OFFSET(i) + 12);
614
615		if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
616			BNX2X_ERR("XSTORM_ASSERT_INDEX 0x%x = 0x%08x"
617				  " 0x%08x 0x%08x 0x%08x\n",
618				  i, row3, row2, row1, row0);
619			rc++;
620		} else {
621			break;
622		}
623	}
624
625	/* TSTORM */
626	last_idx = REG_RD8(bp, BAR_TSTRORM_INTMEM +
627			   TSTORM_ASSERT_LIST_INDEX_OFFSET);
628	if (last_idx)
629		BNX2X_ERR("TSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
630
631	/* print the asserts */
632	for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
633
634		row0 = REG_RD(bp, BAR_TSTRORM_INTMEM +
635			      TSTORM_ASSERT_LIST_OFFSET(i));
636		row1 = REG_RD(bp, BAR_TSTRORM_INTMEM +
637			      TSTORM_ASSERT_LIST_OFFSET(i) + 4);
638		row2 = REG_RD(bp, BAR_TSTRORM_INTMEM +
639			      TSTORM_ASSERT_LIST_OFFSET(i) + 8);
640		row3 = REG_RD(bp, BAR_TSTRORM_INTMEM +
641			      TSTORM_ASSERT_LIST_OFFSET(i) + 12);
642
643		if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
644			BNX2X_ERR("TSTORM_ASSERT_INDEX 0x%x = 0x%08x"
645				  " 0x%08x 0x%08x 0x%08x\n",
646				  i, row3, row2, row1, row0);
647			rc++;
648		} else {
649			break;
650		}
651	}
652
653	/* CSTORM */
654	last_idx = REG_RD8(bp, BAR_CSTRORM_INTMEM +
655			   CSTORM_ASSERT_LIST_INDEX_OFFSET);
656	if (last_idx)
657		BNX2X_ERR("CSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
658
659	/* print the asserts */
660	for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
661
662		row0 = REG_RD(bp, BAR_CSTRORM_INTMEM +
663			      CSTORM_ASSERT_LIST_OFFSET(i));
664		row1 = REG_RD(bp, BAR_CSTRORM_INTMEM +
665			      CSTORM_ASSERT_LIST_OFFSET(i) + 4);
666		row2 = REG_RD(bp, BAR_CSTRORM_INTMEM +
667			      CSTORM_ASSERT_LIST_OFFSET(i) + 8);
668		row3 = REG_RD(bp, BAR_CSTRORM_INTMEM +
669			      CSTORM_ASSERT_LIST_OFFSET(i) + 12);
670
671		if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
672			BNX2X_ERR("CSTORM_ASSERT_INDEX 0x%x = 0x%08x"
673				  " 0x%08x 0x%08x 0x%08x\n",
674				  i, row3, row2, row1, row0);
675			rc++;
676		} else {
677			break;
678		}
679	}
680
681	/* USTORM */
682	last_idx = REG_RD8(bp, BAR_USTRORM_INTMEM +
683			   USTORM_ASSERT_LIST_INDEX_OFFSET);
684	if (last_idx)
685		BNX2X_ERR("USTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
686
687	/* print the asserts */
688	for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
689
690		row0 = REG_RD(bp, BAR_USTRORM_INTMEM +
691			      USTORM_ASSERT_LIST_OFFSET(i));
692		row1 = REG_RD(bp, BAR_USTRORM_INTMEM +
693			      USTORM_ASSERT_LIST_OFFSET(i) + 4);
694		row2 = REG_RD(bp, BAR_USTRORM_INTMEM +
695			      USTORM_ASSERT_LIST_OFFSET(i) + 8);
696		row3 = REG_RD(bp, BAR_USTRORM_INTMEM +
697			      USTORM_ASSERT_LIST_OFFSET(i) + 12);
698
699		if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
700			BNX2X_ERR("USTORM_ASSERT_INDEX 0x%x = 0x%08x"
701				  " 0x%08x 0x%08x 0x%08x\n",
702				  i, row3, row2, row1, row0);
703			rc++;
704		} else {
705			break;
706		}
707	}
708
709	return rc;
710}
711
712void bnx2x_fw_dump_lvl(struct bnx2x *bp, const char *lvl)
713{
714	u32 addr, val;
715	u32 mark, offset;
716	__be32 data[9];
717	int word;
718	u32 trace_shmem_base;
719	if (BP_NOMCP(bp)) {
720		BNX2X_ERR("NO MCP - can not dump\n");
721		return;
722	}
723	netdev_printk(lvl, bp->dev, "bc %d.%d.%d\n",
724		(bp->common.bc_ver & 0xff0000) >> 16,
725		(bp->common.bc_ver & 0xff00) >> 8,
726		(bp->common.bc_ver & 0xff));
727
728	val = REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER);
729	if (val == REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER))
730		printk("%s" "MCP PC at 0x%x\n", lvl, val);
731
732	if (BP_PATH(bp) == 0)
733		trace_shmem_base = bp->common.shmem_base;
734	else
735		trace_shmem_base = SHMEM2_RD(bp, other_shmem_base_addr);
736	addr = trace_shmem_base - 0x0800 + 4;
737	mark = REG_RD(bp, addr);
738	mark = (CHIP_IS_E1x(bp) ? MCP_REG_MCPR_SCRATCH : MCP_A_REG_MCPR_SCRATCH)
739			+ ((mark + 0x3) & ~0x3) - 0x08000000;
740	printk("%s" "begin fw dump (mark 0x%x)\n", lvl, mark);
741
742	printk("%s", lvl);
743	for (offset = mark; offset <= trace_shmem_base; offset += 0x8*4) {
744		for (word = 0; word < 8; word++)
745			data[word] = htonl(REG_RD(bp, offset + 4*word));
746		data[8] = 0x0;
747		pr_cont("%s", (char *)data);
748	}
749	for (offset = addr + 4; offset <= mark; offset += 0x8*4) {
750		for (word = 0; word < 8; word++)
751			data[word] = htonl(REG_RD(bp, offset + 4*word));
752		data[8] = 0x0;
753		pr_cont("%s", (char *)data);
754	}
755	printk("%s" "end of fw dump\n", lvl);
756}
757
758static inline void bnx2x_fw_dump(struct bnx2x *bp)
759{
760	bnx2x_fw_dump_lvl(bp, KERN_ERR);
761}
762
763void bnx2x_panic_dump(struct bnx2x *bp)
764{
765	int i;
766	u16 j;
767	struct hc_sp_status_block_data sp_sb_data;
768	int func = BP_FUNC(bp);
769#ifdef BNX2X_STOP_ON_ERROR
770	u16 start = 0, end = 0;
771	u8 cos;
772#endif
773
774	bp->stats_state = STATS_STATE_DISABLED;
775	DP(BNX2X_MSG_STATS, "stats_state - DISABLED\n");
776
777	BNX2X_ERR("begin crash dump -----------------\n");
778
779	/* Indices */
780	/* Common */
781	BNX2X_ERR("def_idx(0x%x)  def_att_idx(0x%x)  attn_state(0x%x)"
782		  "  spq_prod_idx(0x%x) next_stats_cnt(0x%x)\n",
783		  bp->def_idx, bp->def_att_idx, bp->attn_state,
784		  bp->spq_prod_idx, bp->stats_counter);
785	BNX2X_ERR("DSB: attn bits(0x%x)  ack(0x%x)  id(0x%x)  idx(0x%x)\n",
786		  bp->def_status_blk->atten_status_block.attn_bits,
787		  bp->def_status_blk->atten_status_block.attn_bits_ack,
788		  bp->def_status_blk->atten_status_block.status_block_id,
789		  bp->def_status_blk->atten_status_block.attn_bits_index);
790	BNX2X_ERR("     def (");
791	for (i = 0; i < HC_SP_SB_MAX_INDICES; i++)
792		pr_cont("0x%x%s",
793			bp->def_status_blk->sp_sb.index_values[i],
794			(i == HC_SP_SB_MAX_INDICES - 1) ? ")  " : " ");
795
796	for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++)
797		*((u32 *)&sp_sb_data + i) = REG_RD(bp, BAR_CSTRORM_INTMEM +
798			CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) +
799			i*sizeof(u32));
800
801	pr_cont("igu_sb_id(0x%x)  igu_seg_id(0x%x) pf_id(0x%x)  vnic_id(0x%x)  vf_id(0x%x)  vf_valid (0x%x) state(0x%x)\n",
802	       sp_sb_data.igu_sb_id,
803	       sp_sb_data.igu_seg_id,
804	       sp_sb_data.p_func.pf_id,
805	       sp_sb_data.p_func.vnic_id,
806	       sp_sb_data.p_func.vf_id,
807	       sp_sb_data.p_func.vf_valid,
808	       sp_sb_data.state);
809
810
811	for_each_eth_queue(bp, i) {
812		struct bnx2x_fastpath *fp = &bp->fp[i];
813		int loop;
814		struct hc_status_block_data_e2 sb_data_e2;
815		struct hc_status_block_data_e1x sb_data_e1x;
816		struct hc_status_block_sm  *hc_sm_p =
817			CHIP_IS_E1x(bp) ?
818			sb_data_e1x.common.state_machine :
819			sb_data_e2.common.state_machine;
820		struct hc_index_data *hc_index_p =
821			CHIP_IS_E1x(bp) ?
822			sb_data_e1x.index_data :
823			sb_data_e2.index_data;
824		u8 data_size, cos;
825		u32 *sb_data_p;
826		struct bnx2x_fp_txdata txdata;
827
828		/* Rx */
829		BNX2X_ERR("fp%d: rx_bd_prod(0x%x)  rx_bd_cons(0x%x)"
830			  "  rx_comp_prod(0x%x)"
831			  "  rx_comp_cons(0x%x)  *rx_cons_sb(0x%x)\n",
832			  i, fp->rx_bd_prod, fp->rx_bd_cons,
833			  fp->rx_comp_prod,
834			  fp->rx_comp_cons, le16_to_cpu(*fp->rx_cons_sb));
835		BNX2X_ERR("     rx_sge_prod(0x%x)  last_max_sge(0x%x)"
836			  "  fp_hc_idx(0x%x)\n",
837			  fp->rx_sge_prod, fp->last_max_sge,
838			  le16_to_cpu(fp->fp_hc_idx));
839
840		/* Tx */
841		for_each_cos_in_tx_queue(fp, cos)
842		{
843			txdata = fp->txdata[cos];
844			BNX2X_ERR("fp%d: tx_pkt_prod(0x%x)  tx_pkt_cons(0x%x)"
845				  "  tx_bd_prod(0x%x)  tx_bd_cons(0x%x)"
846				  "  *tx_cons_sb(0x%x)\n",
847				  i, txdata.tx_pkt_prod,
848				  txdata.tx_pkt_cons, txdata.tx_bd_prod,
849				  txdata.tx_bd_cons,
850				  le16_to_cpu(*txdata.tx_cons_sb));
851		}
852
853		loop = CHIP_IS_E1x(bp) ?
854			HC_SB_MAX_INDICES_E1X : HC_SB_MAX_INDICES_E2;
855
856		/* host sb data */
857
858#ifdef BCM_CNIC
859		if (IS_FCOE_FP(fp))
860			continue;
861#endif
862		BNX2X_ERR("     run indexes (");
863		for (j = 0; j < HC_SB_MAX_SM; j++)
864			pr_cont("0x%x%s",
865			       fp->sb_running_index[j],
866			       (j == HC_SB_MAX_SM - 1) ? ")" : " ");
867
868		BNX2X_ERR("     indexes (");
869		for (j = 0; j < loop; j++)
870			pr_cont("0x%x%s",
871			       fp->sb_index_values[j],
872			       (j == loop - 1) ? ")" : " ");
873		/* fw sb data */
874		data_size = CHIP_IS_E1x(bp) ?
875			sizeof(struct hc_status_block_data_e1x) :
876			sizeof(struct hc_status_block_data_e2);
877		data_size /= sizeof(u32);
878		sb_data_p = CHIP_IS_E1x(bp) ?
879			(u32 *)&sb_data_e1x :
880			(u32 *)&sb_data_e2;
881		/* copy sb data in here */
882		for (j = 0; j < data_size; j++)
883			*(sb_data_p + j) = REG_RD(bp, BAR_CSTRORM_INTMEM +
884				CSTORM_STATUS_BLOCK_DATA_OFFSET(fp->fw_sb_id) +
885				j * sizeof(u32));
886
887		if (!CHIP_IS_E1x(bp)) {
888			pr_cont("pf_id(0x%x)  vf_id(0x%x)  vf_valid(0x%x) "
889				"vnic_id(0x%x)  same_igu_sb_1b(0x%x) "
890				"state(0x%x)\n",
891				sb_data_e2.common.p_func.pf_id,
892				sb_data_e2.common.p_func.vf_id,
893				sb_data_e2.common.p_func.vf_valid,
894				sb_data_e2.common.p_func.vnic_id,
895				sb_data_e2.common.same_igu_sb_1b,
896				sb_data_e2.common.state);
897		} else {
898			pr_cont("pf_id(0x%x)  vf_id(0x%x)  vf_valid(0x%x) "
899				"vnic_id(0x%x)  same_igu_sb_1b(0x%x) "
900				"state(0x%x)\n",
901				sb_data_e1x.common.p_func.pf_id,
902				sb_data_e1x.common.p_func.vf_id,
903				sb_data_e1x.common.p_func.vf_valid,
904				sb_data_e1x.common.p_func.vnic_id,
905				sb_data_e1x.common.same_igu_sb_1b,
906				sb_data_e1x.common.state);
907		}
908
909		/* SB_SMs data */
910		for (j = 0; j < HC_SB_MAX_SM; j++) {
911			pr_cont("SM[%d] __flags (0x%x) "
912			       "igu_sb_id (0x%x)  igu_seg_id(0x%x) "
913			       "time_to_expire (0x%x) "
914			       "timer_value(0x%x)\n", j,
915			       hc_sm_p[j].__flags,
916			       hc_sm_p[j].igu_sb_id,
917			       hc_sm_p[j].igu_seg_id,
918			       hc_sm_p[j].time_to_expire,
919			       hc_sm_p[j].timer_value);
920		}
921
922		/* Indecies data */
923		for (j = 0; j < loop; j++) {
924			pr_cont("INDEX[%d] flags (0x%x) "
925					 "timeout (0x%x)\n", j,
926			       hc_index_p[j].flags,
927			       hc_index_p[j].timeout);
928		}
929	}
930
931#ifdef BNX2X_STOP_ON_ERROR
932	/* Rings */
933	/* Rx */
934	for_each_rx_queue(bp, i) {
935		struct bnx2x_fastpath *fp = &bp->fp[i];
936
937		start = RX_BD(le16_to_cpu(*fp->rx_cons_sb) - 10);
938		end = RX_BD(le16_to_cpu(*fp->rx_cons_sb) + 503);
939		for (j = start; j != end; j = RX_BD(j + 1)) {
940			u32 *rx_bd = (u32 *)&fp->rx_desc_ring[j];
941			struct sw_rx_bd *sw_bd = &fp->rx_buf_ring[j];
942
943			BNX2X_ERR("fp%d: rx_bd[%x]=[%x:%x]  sw_bd=[%p]\n",
944				  i, j, rx_bd[1], rx_bd[0], sw_bd->skb);
945		}
946
947		start = RX_SGE(fp->rx_sge_prod);
948		end = RX_SGE(fp->last_max_sge);
949		for (j = start; j != end; j = RX_SGE(j + 1)) {
950			u32 *rx_sge = (u32 *)&fp->rx_sge_ring[j];
951			struct sw_rx_page *sw_page = &fp->rx_page_ring[j];
952
953			BNX2X_ERR("fp%d: rx_sge[%x]=[%x:%x]  sw_page=[%p]\n",
954				  i, j, rx_sge[1], rx_sge[0], sw_page->page);
955		}
956
957		start = RCQ_BD(fp->rx_comp_cons - 10);
958		end = RCQ_BD(fp->rx_comp_cons + 503);
959		for (j = start; j != end; j = RCQ_BD(j + 1)) {
960			u32 *cqe = (u32 *)&fp->rx_comp_ring[j];
961
962			BNX2X_ERR("fp%d: cqe[%x]=[%x:%x:%x:%x]\n",
963				  i, j, cqe[0], cqe[1], cqe[2], cqe[3]);
964		}
965	}
966
967	/* Tx */
968	for_each_tx_queue(bp, i) {
969		struct bnx2x_fastpath *fp = &bp->fp[i];
970		for_each_cos_in_tx_queue(fp, cos) {
971			struct bnx2x_fp_txdata *txdata = &fp->txdata[cos];
972
973			start = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) - 10);
974			end = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) + 245);
975			for (j = start; j != end; j = TX_BD(j + 1)) {
976				struct sw_tx_bd *sw_bd =
977					&txdata->tx_buf_ring[j];
978
979				BNX2X_ERR("fp%d: txdata %d, "
980					  "packet[%x]=[%p,%x]\n",
981					  i, cos, j, sw_bd->skb,
982					  sw_bd->first_bd);
983			}
984
985			start = TX_BD(txdata->tx_bd_cons - 10);
986			end = TX_BD(txdata->tx_bd_cons + 254);
987			for (j = start; j != end; j = TX_BD(j + 1)) {
988				u32 *tx_bd = (u32 *)&txdata->tx_desc_ring[j];
989
990				BNX2X_ERR("fp%d: txdata %d, tx_bd[%x]="
991					  "[%x:%x:%x:%x]\n",
992					  i, cos, j, tx_bd[0], tx_bd[1],
993					  tx_bd[2], tx_bd[3]);
994			}
995		}
996	}
997#endif
998	bnx2x_fw_dump(bp);
999	bnx2x_mc_assert(bp);
1000	BNX2X_ERR("end crash dump -----------------\n");
1001}
1002
1003/*
1004 * FLR Support for E2
1005 *
1006 * bnx2x_pf_flr_clnup() is called during nic_load in the per function HW
1007 * initialization.
1008 */
1009#define FLR_WAIT_USEC		10000	/* 10 miliseconds */
1010#define FLR_WAIT_INTERAVAL	50	/* usec */
1011#define	FLR_POLL_CNT		(FLR_WAIT_USEC/FLR_WAIT_INTERAVAL) /* 200 */
1012
1013struct pbf_pN_buf_regs {
1014	int pN;
1015	u32 init_crd;
1016	u32 crd;
1017	u32 crd_freed;
1018};
1019
1020struct pbf_pN_cmd_regs {
1021	int pN;
1022	u32 lines_occup;
1023	u32 lines_freed;
1024};
1025
1026static void bnx2x_pbf_pN_buf_flushed(struct bnx2x *bp,
1027				     struct pbf_pN_buf_regs *regs,
1028				     u32 poll_count)
1029{
1030	u32 init_crd, crd, crd_start, crd_freed, crd_freed_start;
1031	u32 cur_cnt = poll_count;
1032
1033	crd_freed = crd_freed_start = REG_RD(bp, regs->crd_freed);
1034	crd = crd_start = REG_RD(bp, regs->crd);
1035	init_crd = REG_RD(bp, regs->init_crd);
1036
1037	DP(BNX2X_MSG_SP, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd);
1038	DP(BNX2X_MSG_SP, "CREDIT[%d]      : s:%x\n", regs->pN, crd);
1039	DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed);
1040
1041	while ((crd != init_crd) && ((u32)SUB_S32(crd_freed, crd_freed_start) <
1042	       (init_crd - crd_start))) {
1043		if (cur_cnt--) {
1044			udelay(FLR_WAIT_INTERAVAL);
1045			crd = REG_RD(bp, regs->crd);
1046			crd_freed = REG_RD(bp, regs->crd_freed);
1047		} else {
1048			DP(BNX2X_MSG_SP, "PBF tx buffer[%d] timed out\n",
1049			   regs->pN);
1050			DP(BNX2X_MSG_SP, "CREDIT[%d]      : c:%x\n",
1051			   regs->pN, crd);
1052			DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: c:%x\n",
1053			   regs->pN, crd_freed);
1054			break;
1055		}
1056	}
1057	DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF tx buffer[%d]\n",
1058	   poll_count-cur_cnt, FLR_WAIT_INTERAVAL, regs->pN);
1059}
1060
1061static void bnx2x_pbf_pN_cmd_flushed(struct bnx2x *bp,
1062				     struct pbf_pN_cmd_regs *regs,
1063				     u32 poll_count)
1064{
1065	u32 occup, to_free, freed, freed_start;
1066	u32 cur_cnt = poll_count;
1067
1068	occup = to_free = REG_RD(bp, regs->lines_occup);
1069	freed = freed_start = REG_RD(bp, regs->lines_freed);
1070
1071	DP(BNX2X_MSG_SP, "OCCUPANCY[%d]   : s:%x\n", regs->pN, occup);
1072	DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n", regs->pN, freed);
1073
1074	while (occup && ((u32)SUB_S32(freed, freed_start) < to_free)) {
1075		if (cur_cnt--) {
1076			udelay(FLR_WAIT_INTERAVAL);
1077			occup = REG_RD(bp, regs->lines_occup);
1078			freed = REG_RD(bp, regs->lines_freed);
1079		} else {
1080			DP(BNX2X_MSG_SP, "PBF cmd queue[%d] timed out\n",
1081			   regs->pN);
1082			DP(BNX2X_MSG_SP, "OCCUPANCY[%d]   : s:%x\n",
1083			   regs->pN, occup);
1084			DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n",
1085			   regs->pN, freed);
1086			break;
1087		}
1088	}
1089	DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF cmd queue[%d]\n",
1090	   poll_count-cur_cnt, FLR_WAIT_INTERAVAL, regs->pN);
1091}
1092
1093static inline u32 bnx2x_flr_clnup_reg_poll(struct bnx2x *bp, u32 reg,
1094				     u32 expected, u32 poll_count)
1095{
1096	u32 cur_cnt = poll_count;
1097	u32 val;
1098
1099	while ((val = REG_RD(bp, reg)) != expected && cur_cnt--)
1100		udelay(FLR_WAIT_INTERAVAL);
1101
1102	return val;
1103}
1104
1105static inline int bnx2x_flr_clnup_poll_hw_counter(struct bnx2x *bp, u32 reg,
1106						  char *msg, u32 poll_cnt)
1107{
1108	u32 val = bnx2x_flr_clnup_reg_poll(bp, reg, 0, poll_cnt);
1109	if (val != 0) {
1110		BNX2X_ERR("%s usage count=%d\n", msg, val);
1111		return 1;
1112	}
1113	return 0;
1114}
1115
1116static u32 bnx2x_flr_clnup_poll_count(struct bnx2x *bp)
1117{
1118	/* adjust polling timeout */
1119	if (CHIP_REV_IS_EMUL(bp))
1120		return FLR_POLL_CNT * 2000;
1121
1122	if (CHIP_REV_IS_FPGA(bp))
1123		return FLR_POLL_CNT * 120;
1124
1125	return FLR_POLL_CNT;
1126}
1127
1128static void bnx2x_tx_hw_flushed(struct bnx2x *bp, u32 poll_count)
1129{
1130	struct pbf_pN_cmd_regs cmd_regs[] = {
1131		{0, (CHIP_IS_E3B0(bp)) ?
1132			PBF_REG_TQ_OCCUPANCY_Q0 :
1133			PBF_REG_P0_TQ_OCCUPANCY,
1134		    (CHIP_IS_E3B0(bp)) ?
1135			PBF_REG_TQ_LINES_FREED_CNT_Q0 :
1136			PBF_REG_P0_TQ_LINES_FREED_CNT},
1137		{1, (CHIP_IS_E3B0(bp)) ?
1138			PBF_REG_TQ_OCCUPANCY_Q1 :
1139			PBF_REG_P1_TQ_OCCUPANCY,
1140		    (CHIP_IS_E3B0(bp)) ?
1141			PBF_REG_TQ_LINES_FREED_CNT_Q1 :
1142			PBF_REG_P1_TQ_LINES_FREED_CNT},
1143		{4, (CHIP_IS_E3B0(bp)) ?
1144			PBF_REG_TQ_OCCUPANCY_LB_Q :
1145			PBF_REG_P4_TQ_OCCUPANCY,
1146		    (CHIP_IS_E3B0(bp)) ?
1147			PBF_REG_TQ_LINES_FREED_CNT_LB_Q :
1148			PBF_REG_P4_TQ_LINES_FREED_CNT}
1149	};
1150
1151	struct pbf_pN_buf_regs buf_regs[] = {
1152		{0, (CHIP_IS_E3B0(bp)) ?
1153			PBF_REG_INIT_CRD_Q0 :
1154			PBF_REG_P0_INIT_CRD ,
1155		    (CHIP_IS_E3B0(bp)) ?
1156			PBF_REG_CREDIT_Q0 :
1157			PBF_REG_P0_CREDIT,
1158		    (CHIP_IS_E3B0(bp)) ?
1159			PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 :
1160			PBF_REG_P0_INTERNAL_CRD_FREED_CNT},
1161		{1, (CHIP_IS_E3B0(bp)) ?
1162			PBF_REG_INIT_CRD_Q1 :
1163			PBF_REG_P1_INIT_CRD,
1164		    (CHIP_IS_E3B0(bp)) ?
1165			PBF_REG_CREDIT_Q1 :
1166			PBF_REG_P1_CREDIT,
1167		    (CHIP_IS_E3B0(bp)) ?
1168			PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 :
1169			PBF_REG_P1_INTERNAL_CRD_FREED_CNT},
1170		{4, (CHIP_IS_E3B0(bp)) ?
1171			PBF_REG_INIT_CRD_LB_Q :
1172			PBF_REG_P4_INIT_CRD,
1173		    (CHIP_IS_E3B0(bp)) ?
1174			PBF_REG_CREDIT_LB_Q :
1175			PBF_REG_P4_CREDIT,
1176		    (CHIP_IS_E3B0(bp)) ?
1177			PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q :
1178			PBF_REG_P4_INTERNAL_CRD_FREED_CNT},
1179	};
1180
1181	int i;
1182
1183	/* Verify the command queues are flushed P0, P1, P4 */
1184	for (i = 0; i < ARRAY_SIZE(cmd_regs); i++)
1185		bnx2x_pbf_pN_cmd_flushed(bp, &cmd_regs[i], poll_count);
1186
1187
1188	/* Verify the transmission buffers are flushed P0, P1, P4 */
1189	for (i = 0; i < ARRAY_SIZE(buf_regs); i++)
1190		bnx2x_pbf_pN_buf_flushed(bp, &buf_regs[i], poll_count);
1191}
1192
1193#define OP_GEN_PARAM(param) \
1194	(((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM)
1195
1196#define OP_GEN_TYPE(type) \
1197	(((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE)
1198
1199#define OP_GEN_AGG_VECT(index) \
1200	(((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX)
1201
1202
1203static inline int bnx2x_send_final_clnup(struct bnx2x *bp, u8 clnup_func,
1204					 u32 poll_cnt)
1205{
1206	struct sdm_op_gen op_gen = {0};
1207
1208	u32 comp_addr = BAR_CSTRORM_INTMEM +
1209			CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func);
1210	int ret = 0;
1211
1212	if (REG_RD(bp, comp_addr)) {
1213		BNX2X_ERR("Cleanup complete is not 0\n");
1214		return 1;
1215	}
1216
1217	op_gen.command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX);
1218	op_gen.command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE);
1219	op_gen.command |= OP_GEN_AGG_VECT(clnup_func);
1220	op_gen.command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT;
1221
1222	DP(BNX2X_MSG_SP, "FW Final cleanup\n");
1223	REG_WR(bp, XSDM_REG_OPERATION_GEN, op_gen.command);
1224
1225	if (bnx2x_flr_clnup_reg_poll(bp, comp_addr, 1, poll_cnt) != 1) {
1226		BNX2X_ERR("FW final cleanup did not succeed\n");
1227		ret = 1;
1228	}
1229	/* Zero completion for nxt FLR */
1230	REG_WR(bp, comp_addr, 0);
1231
1232	return ret;
1233}
1234
1235static inline u8 bnx2x_is_pcie_pending(struct pci_dev *dev)
1236{
1237	int pos;
1238	u16 status;
1239
1240	pos = pci_pcie_cap(dev);
1241	if (!pos)
1242		return false;
1243
1244	pci_read_config_word(dev, pos + PCI_EXP_DEVSTA, &status);
1245	return status & PCI_EXP_DEVSTA_TRPND;
1246}
1247
1248/* PF FLR specific routines
1249*/
1250static int bnx2x_poll_hw_usage_counters(struct bnx2x *bp, u32 poll_cnt)
1251{
1252
1253	/* wait for CFC PF usage-counter to zero (includes all the VFs) */
1254	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1255			CFC_REG_NUM_LCIDS_INSIDE_PF,
1256			"CFC PF usage counter timed out",
1257			poll_cnt))
1258		return 1;
1259
1260
1261	/* Wait for DQ PF usage-counter to zero (until DQ cleanup) */
1262	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1263			DORQ_REG_PF_USAGE_CNT,
1264			"DQ PF usage counter timed out",
1265			poll_cnt))
1266		return 1;
1267
1268	/* Wait for QM PF usage-counter to zero (until DQ cleanup) */
1269	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1270			QM_REG_PF_USG_CNT_0 + 4*BP_FUNC(bp),
1271			"QM PF usage counter timed out",
1272			poll_cnt))
1273		return 1;
1274
1275	/* Wait for Timer PF usage-counters to zero (until DQ cleanup) */
1276	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1277			TM_REG_LIN0_VNIC_UC + 4*BP_PORT(bp),
1278			"Timers VNIC usage counter timed out",
1279			poll_cnt))
1280		return 1;
1281	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1282			TM_REG_LIN0_NUM_SCANS + 4*BP_PORT(bp),
1283			"Timers NUM_SCANS usage counter timed out",
1284			poll_cnt))
1285		return 1;
1286
1287	/* Wait DMAE PF usage counter to zero */
1288	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1289			dmae_reg_go_c[INIT_DMAE_C(bp)],
1290			"DMAE dommand register timed out",
1291			poll_cnt))
1292		return 1;
1293
1294	return 0;
1295}
1296
1297static void bnx2x_hw_enable_status(struct bnx2x *bp)
1298{
1299	u32 val;
1300
1301	val = REG_RD(bp, CFC_REG_WEAK_ENABLE_PF);
1302	DP(BNX2X_MSG_SP, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val);
1303
1304	val = REG_RD(bp, PBF_REG_DISABLE_PF);
1305	DP(BNX2X_MSG_SP, "PBF_REG_DISABLE_PF is 0x%x\n", val);
1306
1307	val = REG_RD(bp, IGU_REG_PCI_PF_MSI_EN);
1308	DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val);
1309
1310	val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_EN);
1311	DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val);
1312
1313	val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_FUNC_MASK);
1314	DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val);
1315
1316	val = REG_RD(bp, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR);
1317	DP(BNX2X_MSG_SP, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val);
1318
1319	val = REG_RD(bp, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR);
1320	DP(BNX2X_MSG_SP, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val);
1321
1322	val = REG_RD(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
1323	DP(BNX2X_MSG_SP, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n",
1324	   val);
1325}
1326
1327static int bnx2x_pf_flr_clnup(struct bnx2x *bp)
1328{
1329	u32 poll_cnt = bnx2x_flr_clnup_poll_count(bp);
1330
1331	DP(BNX2X_MSG_SP, "Cleanup after FLR PF[%d]\n", BP_ABS_FUNC(bp));
1332
1333	/* Re-enable PF target read access */
1334	REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
1335
1336	/* Poll HW usage counters */
1337	if (bnx2x_poll_hw_usage_counters(bp, poll_cnt))
1338		return -EBUSY;
1339
1340	/* Zero the igu 'trailing edge' and 'leading edge' */
1341
1342	/* Send the FW cleanup command */
1343	if (bnx2x_send_final_clnup(bp, (u8)BP_FUNC(bp), poll_cnt))
1344		return -EBUSY;
1345
1346	/* ATC cleanup */
1347
1348	/* Verify TX hw is flushed */
1349	bnx2x_tx_hw_flushed(bp, poll_cnt);
1350
1351	/* Wait 100ms (not adjusted according to platform) */
1352	msleep(100);
1353
1354	/* Verify no pending pci transactions */
1355	if (bnx2x_is_pcie_pending(bp->pdev))
1356		BNX2X_ERR("PCIE Transactions still pending\n");
1357
1358	/* Debug */
1359	bnx2x_hw_enable_status(bp);
1360
1361	/*
1362	 * Master enable - Due to WB DMAE writes performed before this
1363	 * register is re-initialized as part of the regular function init
1364	 */
1365	REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
1366
1367	return 0;
1368}
1369
1370static void bnx2x_hc_int_enable(struct bnx2x *bp)
1371{
1372	int port = BP_PORT(bp);
1373	u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
1374	u32 val = REG_RD(bp, addr);
1375	int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
1376	int msi = (bp->flags & USING_MSI_FLAG) ? 1 : 0;
1377
1378	if (msix) {
1379		val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1380			 HC_CONFIG_0_REG_INT_LINE_EN_0);
1381		val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1382			HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1383	} else if (msi) {
1384		val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0;
1385		val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1386			HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1387			HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1388	} else {
1389		val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1390			HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1391			HC_CONFIG_0_REG_INT_LINE_EN_0 |
1392			HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1393
1394		if (!CHIP_IS_E1(bp)) {
1395			DP(NETIF_MSG_INTR, "write %x to HC %d (addr 0x%x)\n",
1396			   val, port, addr);
1397
1398			REG_WR(bp, addr, val);
1399
1400			val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0;
1401		}
1402	}
1403
1404	if (CHIP_IS_E1(bp))
1405		REG_WR(bp, HC_REG_INT_MASK + port*4, 0x1FFFF);
1406
1407	DP(NETIF_MSG_INTR, "write %x to HC %d (addr 0x%x)  mode %s\n",
1408	   val, port, addr, (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1409
1410	REG_WR(bp, addr, val);
1411	/*
1412	 * Ensure that HC_CONFIG is written before leading/trailing edge config
1413	 */
1414	mmiowb();
1415	barrier();
1416
1417	if (!CHIP_IS_E1(bp)) {
1418		/* init leading/trailing edge */
1419		if (IS_MF(bp)) {
1420			val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1421			if (bp->port.pmf)
1422				/* enable nig and gpio3 attention */
1423				val |= 0x1100;
1424		} else
1425			val = 0xffff;
1426
1427		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
1428		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
1429	}
1430
1431	/* Make sure that interrupts are indeed enabled from here on */
1432	mmiowb();
1433}
1434
1435static void bnx2x_igu_int_enable(struct bnx2x *bp)
1436{
1437	u32 val;
1438	int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
1439	int msi = (bp->flags & USING_MSI_FLAG) ? 1 : 0;
1440
1441	val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
1442
1443	if (msix) {
1444		val &= ~(IGU_PF_CONF_INT_LINE_EN |
1445			 IGU_PF_CONF_SINGLE_ISR_EN);
1446		val |= (IGU_PF_CONF_FUNC_EN |
1447			IGU_PF_CONF_MSI_MSIX_EN |
1448			IGU_PF_CONF_ATTN_BIT_EN);
1449	} else if (msi) {
1450		val &= ~IGU_PF_CONF_INT_LINE_EN;
1451		val |= (IGU_PF_CONF_FUNC_EN |
1452			IGU_PF_CONF_MSI_MSIX_EN |
1453			IGU_PF_CONF_ATTN_BIT_EN |
1454			IGU_PF_CONF_SINGLE_ISR_EN);
1455	} else {
1456		val &= ~IGU_PF_CONF_MSI_MSIX_EN;
1457		val |= (IGU_PF_CONF_FUNC_EN |
1458			IGU_PF_CONF_INT_LINE_EN |
1459			IGU_PF_CONF_ATTN_BIT_EN |
1460			IGU_PF_CONF_SINGLE_ISR_EN);
1461	}
1462
1463	DP(NETIF_MSG_INTR, "write 0x%x to IGU  mode %s\n",
1464	   val, (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1465
1466	REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1467
1468	barrier();
1469
1470	/* init leading/trailing edge */
1471	if (IS_MF(bp)) {
1472		val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1473		if (bp->port.pmf)
1474			/* enable nig and gpio3 attention */
1475			val |= 0x1100;
1476	} else
1477		val = 0xffff;
1478
1479	REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
1480	REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
1481
1482	/* Make sure that interrupts are indeed enabled from here on */
1483	mmiowb();
1484}
1485
1486void bnx2x_int_enable(struct bnx2x *bp)
1487{
1488	if (bp->common.int_block == INT_BLOCK_HC)
1489		bnx2x_hc_int_enable(bp);
1490	else
1491		bnx2x_igu_int_enable(bp);
1492}
1493
1494static void bnx2x_hc_int_disable(struct bnx2x *bp)
1495{
1496	int port = BP_PORT(bp);
1497	u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
1498	u32 val = REG_RD(bp, addr);
1499
1500	/*
1501	 * in E1 we must use only PCI configuration space to disable
1502	 * MSI/MSIX capablility
1503	 * It's forbitten to disable IGU_PF_CONF_MSI_MSIX_EN in HC block
1504	 */
1505	if (CHIP_IS_E1(bp)) {
1506		/*  Since IGU_PF_CONF_MSI_MSIX_EN still always on
1507		 *  Use mask register to prevent from HC sending interrupts
1508		 *  after we exit the function
1509		 */
1510		REG_WR(bp, HC_REG_INT_MASK + port*4, 0);
1511
1512		val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1513			 HC_CONFIG_0_REG_INT_LINE_EN_0 |
1514			 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1515	} else
1516		val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1517			 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1518			 HC_CONFIG_0_REG_INT_LINE_EN_0 |
1519			 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1520
1521	DP(NETIF_MSG_INTR, "write %x to HC %d (addr 0x%x)\n",
1522	   val, port, addr);
1523
1524	/* flush all outstanding writes */
1525	mmiowb();
1526
1527	REG_WR(bp, addr, val);
1528	if (REG_RD(bp, addr) != val)
1529		BNX2X_ERR("BUG! proper val not read from IGU!\n");
1530}
1531
1532static void bnx2x_igu_int_disable(struct bnx2x *bp)
1533{
1534	u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
1535
1536	val &= ~(IGU_PF_CONF_MSI_MSIX_EN |
1537		 IGU_PF_CONF_INT_LINE_EN |
1538		 IGU_PF_CONF_ATTN_BIT_EN);
1539
1540	DP(NETIF_MSG_INTR, "write %x to IGU\n", val);
1541
1542	/* flush all outstanding writes */
1543	mmiowb();
1544
1545	REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1546	if (REG_RD(bp, IGU_REG_PF_CONFIGURATION) != val)
1547		BNX2X_ERR("BUG! proper val not read from IGU!\n");
1548}
1549
1550void bnx2x_int_disable(struct bnx2x *bp)
1551{
1552	if (bp->common.int_block == INT_BLOCK_HC)
1553		bnx2x_hc_int_disable(bp);
1554	else
1555		bnx2x_igu_int_disable(bp);
1556}
1557
1558void bnx2x_int_disable_sync(struct bnx2x *bp, int disable_hw)
1559{
1560	int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
1561	int i, offset;
1562
1563	if (disable_hw)
1564		/* prevent the HW from sending interrupts */
1565		bnx2x_int_disable(bp);
1566
1567	/* make sure all ISRs are done */
1568	if (msix) {
1569		synchronize_irq(bp->msix_table[0].vector);
1570		offset = 1;
1571#ifdef BCM_CNIC
1572		offset++;
1573#endif
1574		for_each_eth_queue(bp, i)
1575			synchronize_irq(bp->msix_table[offset++].vector);
1576	} else
1577		synchronize_irq(bp->pdev->irq);
1578
1579	/* make sure sp_task is not running */
1580	cancel_delayed_work(&bp->sp_task);
1581	cancel_delayed_work(&bp->period_task);
1582	flush_workqueue(bnx2x_wq);
1583}
1584
1585/* fast path */
1586
1587/*
1588 * General service functions
1589 */
1590
1591/* Return true if succeeded to acquire the lock */
1592static bool bnx2x_trylock_hw_lock(struct bnx2x *bp, u32 resource)
1593{
1594	u32 lock_status;
1595	u32 resource_bit = (1 << resource);
1596	int func = BP_FUNC(bp);
1597	u32 hw_lock_control_reg;
1598
1599	DP(NETIF_MSG_HW, "Trying to take a lock on resource %d\n", resource);
1600
1601	/* Validating that the resource is within range */
1602	if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1603		DP(NETIF_MSG_HW,
1604		   "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1605		   resource, HW_LOCK_MAX_RESOURCE_VALUE);
1606		return false;
1607	}
1608
1609	if (func <= 5)
1610		hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1611	else
1612		hw_lock_control_reg =
1613				(MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1614
1615	/* Try to acquire the lock */
1616	REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
1617	lock_status = REG_RD(bp, hw_lock_control_reg);
1618	if (lock_status & resource_bit)
1619		return true;
1620
1621	DP(NETIF_MSG_HW, "Failed to get a lock on resource %d\n", resource);
1622	return false;
1623}
1624
1625/**
1626 * bnx2x_get_leader_lock_resource - get the recovery leader resource id
1627 *
1628 * @bp:	driver handle
1629 *
1630 * Returns the recovery leader resource id according to the engine this function
1631 * belongs to. Currently only only 2 engines is supported.
1632 */
1633static inline int bnx2x_get_leader_lock_resource(struct bnx2x *bp)
1634{
1635	if (BP_PATH(bp))
1636		return HW_LOCK_RESOURCE_RECOVERY_LEADER_1;
1637	else
1638		return HW_LOCK_RESOURCE_RECOVERY_LEADER_0;
1639}
1640
1641/**
1642 * bnx2x_trylock_leader_lock- try to aquire a leader lock.
1643 *
1644 * @bp: driver handle
1645 *
1646 * Tries to aquire a leader lock for cuurent engine.
1647 */
1648static inline bool bnx2x_trylock_leader_lock(struct bnx2x *bp)
1649{
1650	return bnx2x_trylock_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
1651}
1652
1653#ifdef BCM_CNIC
1654static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err);
1655#endif
1656
1657void bnx2x_sp_event(struct bnx2x_fastpath *fp, union eth_rx_cqe *rr_cqe)
1658{
1659	struct bnx2x *bp = fp->bp;
1660	int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1661	int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1662	enum bnx2x_queue_cmd drv_cmd = BNX2X_Q_CMD_MAX;
1663	struct bnx2x_queue_sp_obj *q_obj = &fp->q_obj;
1664
1665	DP(BNX2X_MSG_SP,
1666	   "fp %d  cid %d  got ramrod #%d  state is %x  type is %d\n",
1667	   fp->index, cid, command, bp->state,
1668	   rr_cqe->ramrod_cqe.ramrod_type);
1669
1670	switch (command) {
1671	case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE):
1672		DP(BNX2X_MSG_SP, "got UPDATE ramrod. CID %d\n", cid);
1673		drv_cmd = BNX2X_Q_CMD_UPDATE;
1674		break;
1675
1676	case (RAMROD_CMD_ID_ETH_CLIENT_SETUP):
1677		DP(BNX2X_MSG_SP, "got MULTI[%d] setup ramrod\n", cid);
1678		drv_cmd = BNX2X_Q_CMD_SETUP;
1679		break;
1680
1681	case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP):
1682		DP(NETIF_MSG_IFUP, "got MULTI[%d] tx-only setup ramrod\n", cid);
1683		drv_cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
1684		break;
1685
1686	case (RAMROD_CMD_ID_ETH_HALT):
1687		DP(BNX2X_MSG_SP, "got MULTI[%d] halt ramrod\n", cid);
1688		drv_cmd = BNX2X_Q_CMD_HALT;
1689		break;
1690
1691	case (RAMROD_CMD_ID_ETH_TERMINATE):
1692		DP(BNX2X_MSG_SP, "got MULTI[%d] teminate ramrod\n", cid);
1693		drv_cmd = BNX2X_Q_CMD_TERMINATE;
1694		break;
1695
1696	case (RAMROD_CMD_ID_ETH_EMPTY):
1697		DP(BNX2X_MSG_SP, "got MULTI[%d] empty ramrod\n", cid);
1698		drv_cmd = BNX2X_Q_CMD_EMPTY;
1699		break;
1700
1701	default:
1702		BNX2X_ERR("unexpected MC reply (%d) on fp[%d]\n",
1703			  command, fp->index);
1704		return;
1705	}
1706
1707	if ((drv_cmd != BNX2X_Q_CMD_MAX) &&
1708	    q_obj->complete_cmd(bp, q_obj, drv_cmd))
1709		/* q_obj->complete_cmd() failure means that this was
1710		 * an unexpected completion.
1711		 *
1712		 * In this case we don't want to increase the bp->spq_left
1713		 * because apparently we haven't sent this command the first
1714		 * place.
1715		 */
1716#ifdef BNX2X_STOP_ON_ERROR
1717		bnx2x_panic();
1718#else
1719		return;
1720#endif
1721
1722	smp_mb__before_atomic_inc();
1723	atomic_inc(&bp->cq_spq_left);
1724	/* push the change in bp->spq_left and towards the memory */
1725	smp_mb__after_atomic_inc();
1726
1727	DP(BNX2X_MSG_SP, "bp->cq_spq_left %x\n", atomic_read(&bp->cq_spq_left));
1728
1729	return;
1730}
1731
1732void bnx2x_update_rx_prod(struct bnx2x *bp, struct bnx2x_fastpath *fp,
1733			u16 bd_prod, u16 rx_comp_prod, u16 rx_sge_prod)
1734{
1735	u32 start = BAR_USTRORM_INTMEM + fp->ustorm_rx_prods_offset;
1736
1737	bnx2x_update_rx_prod_gen(bp, fp, bd_prod, rx_comp_prod, rx_sge_prod,
1738				 start);
1739}
1740
1741irqreturn_t bnx2x_interrupt(int irq, void *dev_instance)
1742{
1743	struct bnx2x *bp = netdev_priv(dev_instance);
1744	u16 status = bnx2x_ack_int(bp);
1745	u16 mask;
1746	int i;
1747	u8 cos;
1748
1749	/* Return here if interrupt is shared and it's not for us */
1750	if (unlikely(status == 0)) {
1751		DP(NETIF_MSG_INTR, "not our interrupt!\n");
1752		return IRQ_NONE;
1753	}
1754	DP(NETIF_MSG_INTR, "got an interrupt  status 0x%x\n", status);
1755
1756#ifdef BNX2X_STOP_ON_ERROR
1757	if (unlikely(bp->panic))
1758		return IRQ_HANDLED;
1759#endif
1760
1761	for_each_eth_queue(bp, i) {
1762		struct bnx2x_fastpath *fp = &bp->fp[i];
1763
1764		mask = 0x2 << (fp->index + CNIC_PRESENT);
1765		if (status & mask) {
1766			/* Handle Rx or Tx according to SB id */
1767			prefetch(fp->rx_cons_sb);
1768			for_each_cos_in_tx_queue(fp, cos)
1769				prefetch(fp->txdata[cos].tx_cons_sb);
1770			prefetch(&fp->sb_running_index[SM_RX_ID]);
1771			napi_schedule(&bnx2x_fp(bp, fp->index, napi));
1772			status &= ~mask;
1773		}
1774	}
1775
1776#ifdef BCM_CNIC
1777	mask = 0x2;
1778	if (status & (mask | 0x1)) {
1779		struct cnic_ops *c_ops = NULL;
1780
1781		if (likely(bp->state == BNX2X_STATE_OPEN)) {
1782			rcu_read_lock();
1783			c_ops = rcu_dereference(bp->cnic_ops);
1784			if (c_ops)
1785				c_ops->cnic_handler(bp->cnic_data, NULL);
1786			rcu_read_unlock();
1787		}
1788
1789		status &= ~mask;
1790	}
1791#endif
1792
1793	if (unlikely(status & 0x1)) {
1794		queue_delayed_work(bnx2x_wq, &bp->sp_task, 0);
1795
1796		status &= ~0x1;
1797		if (!status)
1798			return IRQ_HANDLED;
1799	}
1800
1801	if (unlikely(status))
1802		DP(NETIF_MSG_INTR, "got an unknown interrupt! (status 0x%x)\n",
1803		   status);
1804
1805	return IRQ_HANDLED;
1806}
1807
1808/* Link */
1809
1810/*
1811 * General service functions
1812 */
1813
1814int bnx2x_acquire_hw_lock(struct bnx2x *bp, u32 resource)
1815{
1816	u32 lock_status;
1817	u32 resource_bit = (1 << resource);
1818	int func = BP_FUNC(bp);
1819	u32 hw_lock_control_reg;
1820	int cnt;
1821
1822	/* Validating that the resource is within range */
1823	if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1824		DP(NETIF_MSG_HW,
1825		   "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1826		   resource, HW_LOCK_MAX_RESOURCE_VALUE);
1827		return -EINVAL;
1828	}
1829
1830	if (func <= 5) {
1831		hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1832	} else {
1833		hw_lock_control_reg =
1834				(MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1835	}
1836
1837	/* Validating that the resource is not already taken */
1838	lock_status = REG_RD(bp, hw_lock_control_reg);
1839	if (lock_status & resource_bit) {
1840		DP(NETIF_MSG_HW, "lock_status 0x%x  resource_bit 0x%x\n",
1841		   lock_status, resource_bit);
1842		return -EEXIST;
1843	}
1844
1845	/* Try for 5 second every 5ms */
1846	for (cnt = 0; cnt < 1000; cnt++) {
1847		/* Try to acquire the lock */
1848		REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
1849		lock_status = REG_RD(bp, hw_lock_control_reg);
1850		if (lock_status & resource_bit)
1851			return 0;
1852
1853		msleep(5);
1854	}
1855	DP(NETIF_MSG_HW, "Timeout\n");
1856	return -EAGAIN;
1857}
1858
1859int bnx2x_release_leader_lock(struct bnx2x *bp)
1860{
1861	return bnx2x_release_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
1862}
1863
1864int bnx2x_release_hw_lock(struct bnx2x *bp, u32 resource)
1865{
1866	u32 lock_status;
1867	u32 resource_bit = (1 << resource);
1868	int func = BP_FUNC(bp);
1869	u32 hw_lock_control_reg;
1870
1871	DP(NETIF_MSG_HW, "Releasing a lock on resource %d\n", resource);
1872
1873	/* Validating that the resource is within range */
1874	if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1875		DP(NETIF_MSG_HW,
1876		   "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1877		   resource, HW_LOCK_MAX_RESOURCE_VALUE);
1878		return -EINVAL;
1879	}
1880
1881	if (func <= 5) {
1882		hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1883	} else {
1884		hw_lock_control_reg =
1885				(MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1886	}
1887
1888	/* Validating that the resource is currently taken */
1889	lock_status = REG_RD(bp, hw_lock_control_reg);
1890	if (!(lock_status & resource_bit)) {
1891		DP(NETIF_MSG_HW, "lock_status 0x%x  resource_bit 0x%x\n",
1892		   lock_status, resource_bit);
1893		return -EFAULT;
1894	}
1895
1896	REG_WR(bp, hw_lock_control_reg, resource_bit);
1897	return 0;
1898}
1899
1900
1901int bnx2x_get_gpio(struct bnx2x *bp, int gpio_num, u8 port)
1902{
1903	/* The GPIO should be swapped if swap register is set and active */
1904	int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
1905			 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
1906	int gpio_shift = gpio_num +
1907			(gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
1908	u32 gpio_mask = (1 << gpio_shift);
1909	u32 gpio_reg;
1910	int value;
1911
1912	if (gpio_num > MISC_REGISTERS_GPIO_3) {
1913		BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
1914		return -EINVAL;
1915	}
1916
1917	/* read GPIO value */
1918	gpio_reg = REG_RD(bp, MISC_REG_GPIO);
1919
1920	/* get the requested pin value */
1921	if ((gpio_reg & gpio_mask) == gpio_mask)
1922		value = 1;
1923	else
1924		value = 0;
1925
1926	DP(NETIF_MSG_LINK, "pin %d  value 0x%x\n", gpio_num, value);
1927
1928	return value;
1929}
1930
1931int bnx2x_set_gpio(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
1932{
1933	/* The GPIO should be swapped if swap register is set and active */
1934	int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
1935			 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
1936	int gpio_shift = gpio_num +
1937			(gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
1938	u32 gpio_mask = (1 << gpio_shift);
1939	u32 gpio_reg;
1940
1941	if (gpio_num > MISC_REGISTERS_GPIO_3) {
1942		BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
1943		return -EINVAL;
1944	}
1945
1946	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
1947	/* read GPIO and mask except the float bits */
1948	gpio_reg = (REG_RD(bp, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT);
1949
1950	switch (mode) {
1951	case MISC_REGISTERS_GPIO_OUTPUT_LOW:
1952		DP(NETIF_MSG_LINK, "Set GPIO %d (shift %d) -> output low\n",
1953		   gpio_num, gpio_shift);
1954		/* clear FLOAT and set CLR */
1955		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
1956		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS);
1957		break;
1958
1959	case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
1960		DP(NETIF_MSG_LINK, "Set GPIO %d (shift %d) -> output high\n",
1961		   gpio_num, gpio_shift);
1962		/* clear FLOAT and set SET */
1963		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
1964		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_SET_POS);
1965		break;
1966
1967	case MISC_REGISTERS_GPIO_INPUT_HI_Z:
1968		DP(NETIF_MSG_LINK, "Set GPIO %d (shift %d) -> input\n",
1969		   gpio_num, gpio_shift);
1970		/* set FLOAT */
1971		gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
1972		break;
1973
1974	default:
1975		break;
1976	}
1977
1978	REG_WR(bp, MISC_REG_GPIO, gpio_reg);
1979	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
1980
1981	return 0;
1982}
1983
1984int bnx2x_set_mult_gpio(struct bnx2x *bp, u8 pins, u32 mode)
1985{
1986	u32 gpio_reg = 0;
1987	int rc = 0;
1988
1989	/* Any port swapping should be handled by caller. */
1990
1991	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
1992	/* read GPIO and mask except the float bits */
1993	gpio_reg = REG_RD(bp, MISC_REG_GPIO);
1994	gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS);
1995	gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS);
1996	gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS);
1997
1998	switch (mode) {
1999	case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2000		DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output low\n", pins);
2001		/* set CLR */
2002		gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS);
2003		break;
2004
2005	case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2006		DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output high\n", pins);
2007		/* set SET */
2008		gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS);
2009		break;
2010
2011	case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2012		DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> input\n", pins);
2013		/* set FLOAT */
2014		gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2015		break;
2016
2017	default:
2018		BNX2X_ERR("Invalid GPIO mode assignment %d\n", mode);
2019		rc = -EINVAL;
2020		break;
2021	}
2022
2023	if (rc == 0)
2024		REG_WR(bp, MISC_REG_GPIO, gpio_reg);
2025
2026	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2027
2028	return rc;
2029}
2030
2031int bnx2x_set_gpio_int(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
2032{
2033	/* The GPIO should be swapped if swap register is set and active */
2034	int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2035			 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2036	int gpio_shift = gpio_num +
2037			(gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2038	u32 gpio_mask = (1 << gpio_shift);
2039	u32 gpio_reg;
2040
2041	if (gpio_num > MISC_REGISTERS_GPIO_3) {
2042		BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2043		return -EINVAL;
2044	}
2045
2046	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2047	/* read GPIO int */
2048	gpio_reg = REG_RD(bp, MISC_REG_GPIO_INT);
2049
2050	switch (mode) {
2051	case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR:
2052		DP(NETIF_MSG_LINK, "Clear GPIO INT %d (shift %d) -> "
2053				   "output low\n", gpio_num, gpio_shift);
2054		/* clear SET and set CLR */
2055		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2056		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2057		break;
2058
2059	case MISC_REGISTERS_GPIO_INT_OUTPUT_SET:
2060		DP(NETIF_MSG_LINK, "Set GPIO INT %d (shift %d) -> "
2061				   "output high\n", gpio_num, gpio_shift);
2062		/* clear CLR and set SET */
2063		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2064		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2065		break;
2066
2067	default:
2068		break;
2069	}
2070
2071	REG_WR(bp, MISC_REG_GPIO_INT, gpio_reg);
2072	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2073
2074	return 0;
2075}
2076
2077static int bnx2x_set_spio(struct bnx2x *bp, int spio_num, u32 mode)
2078{
2079	u32 spio_mask = (1 << spio_num);
2080	u32 spio_reg;
2081
2082	if ((spio_num < MISC_REGISTERS_SPIO_4) ||
2083	    (spio_num > MISC_REGISTERS_SPIO_7)) {
2084		BNX2X_ERR("Invalid SPIO %d\n", spio_num);
2085		return -EINVAL;
2086	}
2087
2088	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2089	/* read SPIO and mask except the float bits */
2090	spio_reg = (REG_RD(bp, MISC_REG_SPIO) & MISC_REGISTERS_SPIO_FLOAT);
2091
2092	switch (mode) {
2093	case MISC_REGISTERS_SPIO_OUTPUT_LOW:
2094		DP(NETIF_MSG_LINK, "Set SPIO %d -> output low\n", spio_num);
2095		/* clear FLOAT and set CLR */
2096		spio_reg &= ~(spio_mask << MISC_REGISTERS_SPIO_FLOAT_POS);
2097		spio_reg |=  (spio_mask << MISC_REGISTERS_SPIO_CLR_POS);
2098		break;
2099
2100	case MISC_REGISTERS_SPIO_OUTPUT_HIGH:
2101		DP(NETIF_MSG_LINK, "Set SPIO %d -> output high\n", spio_num);
2102		/* clear FLOAT and set SET */
2103		spio_reg &= ~(spio_mask << MISC_REGISTERS_SPIO_FLOAT_POS);
2104		spio_reg |=  (spio_mask << MISC_REGISTERS_SPIO_SET_POS);
2105		break;
2106
2107	case MISC_REGISTERS_SPIO_INPUT_HI_Z:
2108		DP(NETIF_MSG_LINK, "Set SPIO %d -> input\n", spio_num);
2109		/* set FLOAT */
2110		spio_reg |= (spio_mask << MISC_REGISTERS_SPIO_FLOAT_POS);
2111		break;
2112
2113	default:
2114		break;
2115	}
2116
2117	REG_WR(bp, MISC_REG_SPIO, spio_reg);
2118	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2119
2120	return 0;
2121}
2122
2123void bnx2x_calc_fc_adv(struct bnx2x *bp)
2124{
2125	u8 cfg_idx = bnx2x_get_link_cfg_idx(bp);
2126	switch (bp->link_vars.ieee_fc &
2127		MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) {
2128	case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_NONE:
2129		bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
2130						   ADVERTISED_Pause);
2131		break;
2132
2133	case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH:
2134		bp->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause |
2135						  ADVERTISED_Pause);
2136		break;
2137
2138	case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC:
2139		bp->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause;
2140		break;
2141
2142	default:
2143		bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
2144						   ADVERTISED_Pause);
2145		break;
2146	}
2147}
2148
2149u8 bnx2x_initial_phy_init(struct bnx2x *bp, int load_mode)
2150{
2151	if (!BP_NOMCP(bp)) {
2152		u8 rc;
2153		int cfx_idx = bnx2x_get_link_cfg_idx(bp);
2154		u16 req_line_speed = bp->link_params.req_line_speed[cfx_idx];
2155		/*
2156		 * Initialize link parameters structure variables
2157		 * It is recommended to turn off RX FC for jumbo frames
2158		 * for better performance
2159		 */
2160		if (CHIP_IS_E1x(bp) && (bp->dev->mtu > 5000))
2161			bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_TX;
2162		else
2163			bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_BOTH;
2164
2165		bnx2x_acquire_phy_lock(bp);
2166
2167		if (load_mode == LOAD_DIAG) {
2168			struct link_params *lp = &bp->link_params;
2169			lp->loopback_mode = LOOPBACK_XGXS;
2170			/* do PHY loopback at 10G speed, if possible */
2171			if (lp->req_line_speed[cfx_idx] < SPEED_10000) {
2172				if (lp->speed_cap_mask[cfx_idx] &
2173				    PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)
2174					lp->req_line_speed[cfx_idx] =
2175					SPEED_10000;
2176				else
2177					lp->req_line_speed[cfx_idx] =
2178					SPEED_1000;
2179			}
2180		}
2181
2182		rc = bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2183
2184		bnx2x_release_phy_lock(bp);
2185
2186		bnx2x_calc_fc_adv(bp);
2187
2188		if (CHIP_REV_IS_SLOW(bp) && bp->link_vars.link_up) {
2189			bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2190			bnx2x_link_report(bp);
2191		} else
2192			queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2193		bp->link_params.req_line_speed[cfx_idx] = req_line_speed;
2194		return rc;
2195	}
2196	BNX2X_ERR("Bootcode is missing - can not initialize link\n");
2197	return -EINVAL;
2198}
2199
2200void bnx2x_link_set(struct bnx2x *bp)
2201{
2202	if (!BP_NOMCP(bp)) {
2203		bnx2x_acquire_phy_lock(bp);
2204		bnx2x_link_reset(&bp->link_params, &bp->link_vars, 1);
2205		bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2206		bnx2x_release_phy_lock(bp);
2207
2208		bnx2x_calc_fc_adv(bp);
2209	} else
2210		BNX2X_ERR("Bootcode is missing - can not set link\n");
2211}
2212
2213static void bnx2x__link_reset(struct bnx2x *bp)
2214{
2215	if (!BP_NOMCP(bp)) {
2216		bnx2x_acquire_phy_lock(bp);
2217		bnx2x_link_reset(&bp->link_params, &bp->link_vars, 1);
2218		bnx2x_release_phy_lock(bp);
2219	} else
2220		BNX2X_ERR("Bootcode is missing - can not reset link\n");
2221}
2222
2223u8 bnx2x_link_test(struct bnx2x *bp, u8 is_serdes)
2224{
2225	u8 rc = 0;
2226
2227	if (!BP_NOMCP(bp)) {
2228		bnx2x_acquire_phy_lock(bp);
2229		rc = bnx2x_test_link(&bp->link_params, &bp->link_vars,
2230				     is_serdes);
2231		bnx2x_release_phy_lock(bp);
2232	} else
2233		BNX2X_ERR("Bootcode is missing - can not test link\n");
2234
2235	return rc;
2236}
2237
2238static void bnx2x_init_port_minmax(struct bnx2x *bp)
2239{
2240	u32 r_param = bp->link_vars.line_speed / 8;
2241	u32 fair_periodic_timeout_usec;
2242	u32 t_fair;
2243
2244	memset(&(bp->cmng.rs_vars), 0,
2245	       sizeof(struct rate_shaping_vars_per_port));
2246	memset(&(bp->cmng.fair_vars), 0, sizeof(struct fairness_vars_per_port));
2247
2248	/* 100 usec in SDM ticks = 25 since each tick is 4 usec */
2249	bp->cmng.rs_vars.rs_periodic_timeout = RS_PERIODIC_TIMEOUT_USEC / 4;
2250
2251	/* this is the threshold below which no timer arming will occur
2252	   1.25 coefficient is for the threshold to be a little bigger
2253	   than the real time, to compensate for timer in-accuracy */
2254	bp->cmng.rs_vars.rs_threshold =
2255				(RS_PERIODIC_TIMEOUT_USEC * r_param * 5) / 4;
2256
2257	/* resolution of fairness timer */
2258	fair_periodic_timeout_usec = QM_ARB_BYTES / r_param;
2259	/* for 10G it is 1000usec. for 1G it is 10000usec. */
2260	t_fair = T_FAIR_COEF / bp->link_vars.line_speed;
2261
2262	/* this is the threshold below which we won't arm the timer anymore */
2263	bp->cmng.fair_vars.fair_threshold = QM_ARB_BYTES;
2264
2265	/* we multiply by 1e3/8 to get bytes/msec.
2266	   We don't want the credits to pass a credit
2267	   of the t_fair*FAIR_MEM (algorithm resolution) */
2268	bp->cmng.fair_vars.upper_bound = r_param * t_fair * FAIR_MEM;
2269	/* since each tick is 4 usec */
2270	bp->cmng.fair_vars.fairness_timeout = fair_periodic_timeout_usec / 4;
2271}
2272
2273/* Calculates the sum of vn_min_rates.
2274   It's needed for further normalizing of the min_rates.
2275   Returns:
2276     sum of vn_min_rates.
2277       or
2278     0 - if all the min_rates are 0.
2279     In the later case fainess algorithm should be deactivated.
2280     If not all min_rates are zero then those that are zeroes will be set to 1.
2281 */
2282static void bnx2x_calc_vn_weight_sum(struct bnx2x *bp)
2283{
2284	int all_zero = 1;
2285	int vn;
2286
2287	bp->vn_weight_sum = 0;
2288	for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2289		u32 vn_cfg = bp->mf_config[vn];
2290		u32 vn_min_rate = ((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
2291				   FUNC_MF_CFG_MIN_BW_SHIFT) * 100;
2292
2293		/* Skip hidden vns */
2294		if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
2295			continue;
2296
2297		/* If min rate is zero - set it to 1 */
2298		if (!vn_min_rate)
2299			vn_min_rate = DEF_MIN_RATE;
2300		else
2301			all_zero = 0;
2302
2303		bp->vn_weight_sum += vn_min_rate;
2304	}
2305
2306	/* if ETS or all min rates are zeros - disable fairness */
2307	if (BNX2X_IS_ETS_ENABLED(bp)) {
2308		bp->cmng.flags.cmng_enables &=
2309					~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2310		DP(NETIF_MSG_IFUP, "Fairness will be disabled due to ETS\n");
2311	} else if (all_zero) {
2312		bp->cmng.flags.cmng_enables &=
2313					~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2314		DP(NETIF_MSG_IFUP, "All MIN values are zeroes"
2315		   "  fairness will be disabled\n");
2316	} else
2317		bp->cmng.flags.cmng_enables |=
2318					CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2319}
2320
2321static void bnx2x_init_vn_minmax(struct bnx2x *bp, int vn)
2322{
2323	struct rate_shaping_vars_per_vn m_rs_vn;
2324	struct fairness_vars_per_vn m_fair_vn;
2325	u32 vn_cfg = bp->mf_config[vn];
2326	int func = func_by_vn(bp, vn);
2327	u16 vn_min_rate, vn_max_rate;
2328	int i;
2329
2330	/* If function is hidden - set min and max to zeroes */
2331	if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) {
2332		vn_min_rate = 0;
2333		vn_max_rate = 0;
2334
2335	} else {
2336		u32 maxCfg = bnx2x_extract_max_cfg(bp, vn_cfg);
2337
2338		vn_min_rate = ((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
2339				FUNC_MF_CFG_MIN_BW_SHIFT) * 100;
2340		/* If fairness is enabled (not all min rates are zeroes) and
2341		   if current min rate is zero - set it to 1.
2342		   This is a requirement of the algorithm. */
2343		if (bp->vn_weight_sum && (vn_min_rate == 0))
2344			vn_min_rate = DEF_MIN_RATE;
2345
2346		if (IS_MF_SI(bp))
2347			/* maxCfg in percents of linkspeed */
2348			vn_max_rate = (bp->link_vars.line_speed * maxCfg) / 100;
2349		else
2350			/* maxCfg is absolute in 100Mb units */
2351			vn_max_rate = maxCfg * 100;
2352	}
2353
2354	DP(NETIF_MSG_IFUP,
2355	   "func %d: vn_min_rate %d  vn_max_rate %d  vn_weight_sum %d\n",
2356	   func, vn_min_rate, vn_max_rate, bp->vn_weight_sum);
2357
2358	memset(&m_rs_vn, 0, sizeof(struct rate_shaping_vars_per_vn));
2359	memset(&m_fair_vn, 0, sizeof(struct fairness_vars_per_vn));
2360
2361	/* global vn counter - maximal Mbps for this vn */
2362	m_rs_vn.vn_counter.rate = vn_max_rate;
2363
2364	/* quota - number of bytes transmitted in this period */
2365	m_rs_vn.vn_counter.quota =
2366				(vn_max_rate * RS_PERIODIC_TIMEOUT_USEC) / 8;
2367
2368	if (bp->vn_weight_sum) {
2369		/* credit for each period of the fairness algorithm:
2370		   number of bytes in T_FAIR (the vn share the port rate).
2371		   vn_weight_sum should not be larger than 10000, thus
2372		   T_FAIR_COEF / (8 * vn_weight_sum) will always be greater
2373		   than zero */
2374		m_fair_vn.vn_credit_delta =
2375			max_t(u32, (vn_min_rate * (T_FAIR_COEF /
2376						   (8 * bp->vn_weight_sum))),
2377			      (bp->cmng.fair_vars.fair_threshold +
2378							MIN_ABOVE_THRESH));
2379		DP(NETIF_MSG_IFUP, "m_fair_vn.vn_credit_delta %d\n",
2380		   m_fair_vn.vn_credit_delta);
2381	}
2382
2383	/* Store it to internal memory */
2384	for (i = 0; i < sizeof(struct rate_shaping_vars_per_vn)/4; i++)
2385		REG_WR(bp, BAR_XSTRORM_INTMEM +
2386		       XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func) + i * 4,
2387		       ((u32 *)(&m_rs_vn))[i]);
2388
2389	for (i = 0; i < sizeof(struct fairness_vars_per_vn)/4; i++)
2390		REG_WR(bp, BAR_XSTRORM_INTMEM +
2391		       XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func) + i * 4,
2392		       ((u32 *)(&m_fair_vn))[i]);
2393}
2394
2395static int bnx2x_get_cmng_fns_mode(struct bnx2x *bp)
2396{
2397	if (CHIP_REV_IS_SLOW(bp))
2398		return CMNG_FNS_NONE;
2399	if (IS_MF(bp))
2400		return CMNG_FNS_MINMAX;
2401
2402	return CMNG_FNS_NONE;
2403}
2404
2405void bnx2x_read_mf_cfg(struct bnx2x *bp)
2406{
2407	int vn, n = (CHIP_MODE_IS_4_PORT(bp) ? 2 : 1);
2408
2409	if (BP_NOMCP(bp))
2410		return; /* what should be the default bvalue in this case */
2411
2412	/* For 2 port configuration the absolute function number formula
2413	 * is:
2414	 *      abs_func = 2 * vn + BP_PORT + BP_PATH
2415	 *
2416	 *      and there are 4 functions per port
2417	 *
2418	 * For 4 port configuration it is
2419	 *      abs_func = 4 * vn + 2 * BP_PORT + BP_PATH
2420	 *
2421	 *      and there are 2 functions per port
2422	 */
2423	for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2424		int /*abs*/func = n * (2 * vn + BP_PORT(bp)) + BP_PATH(bp);
2425
2426		if (func >= E1H_FUNC_MAX)
2427			break;
2428
2429		bp->mf_config[vn] =
2430			MF_CFG_RD(bp, func_mf_config[func].config);
2431	}
2432}
2433
2434static void bnx2x_cmng_fns_init(struct bnx2x *bp, u8 read_cfg, u8 cmng_type)
2435{
2436
2437	if (cmng_type == CMNG_FNS_MINMAX) {
2438		int vn;
2439
2440		/* clear cmng_enables */
2441		bp->cmng.flags.cmng_enables = 0;
2442
2443		/* read mf conf from shmem */
2444		if (read_cfg)
2445			bnx2x_read_mf_cfg(bp);
2446
2447		/* Init rate shaping and fairness contexts */
2448		bnx2x_init_port_minmax(bp);
2449
2450		/* vn_weight_sum and enable fairness if not 0 */
2451		bnx2x_calc_vn_weight_sum(bp);
2452
2453		/* calculate and set min-max rate for each vn */
2454		if (bp->port.pmf)
2455			for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++)
2456				bnx2x_init_vn_minmax(bp, vn);
2457
2458		/* always enable rate shaping and fairness */
2459		bp->cmng.flags.cmng_enables |=
2460					CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN;
2461		if (!bp->vn_weight_sum)
2462			DP(NETIF_MSG_IFUP, "All MIN values are zeroes"
2463				   "  fairness will be disabled\n");
2464		return;
2465	}
2466
2467	/* rate shaping and fairness are disabled */
2468	DP(NETIF_MSG_IFUP,
2469	   "rate shaping and fairness are disabled\n");
2470}
2471
2472/* This function is called upon link interrupt */
2473static void bnx2x_link_attn(struct bnx2x *bp)
2474{
2475	/* Make sure that we are synced with the current statistics */
2476	bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2477
2478	bnx2x_link_update(&bp->link_params, &bp->link_vars);
2479
2480	if (bp->link_vars.link_up) {
2481
2482		/* dropless flow control */
2483		if (!CHIP_IS_E1(bp) && bp->dropless_fc) {
2484			int port = BP_PORT(bp);
2485			u32 pause_enabled = 0;
2486
2487			if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_TX)
2488				pause_enabled = 1;
2489
2490			REG_WR(bp, BAR_USTRORM_INTMEM +
2491			       USTORM_ETH_PAUSE_ENABLED_OFFSET(port),
2492			       pause_enabled);
2493		}
2494
2495		if (bp->link_vars.mac_type != MAC_TYPE_EMAC) {
2496			struct host_port_stats *pstats;
2497
2498			pstats = bnx2x_sp(bp, port_stats);
2499			/* reset old mac stats */
2500			memset(&(pstats->mac_stx[0]), 0,
2501			       sizeof(struct mac_stx));
2502		}
2503		if (bp->state == BNX2X_STATE_OPEN)
2504			bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2505	}
2506
2507	if (bp->link_vars.link_up && bp->link_vars.line_speed) {
2508		int cmng_fns = bnx2x_get_cmng_fns_mode(bp);
2509
2510		if (cmng_fns != CMNG_FNS_NONE) {
2511			bnx2x_cmng_fns_init(bp, false, cmng_fns);
2512			storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
2513		} else
2514			/* rate shaping and fairness are disabled */
2515			DP(NETIF_MSG_IFUP,
2516			   "single function mode without fairness\n");
2517	}
2518
2519	__bnx2x_link_report(bp);
2520
2521	if (IS_MF(bp))
2522		bnx2x_link_sync_notify(bp);
2523}
2524
2525void bnx2x__link_status_update(struct bnx2x *bp)
2526{
2527	if (bp->state != BNX2X_STATE_OPEN)
2528		return;
2529
2530	/* read updated dcb configuration */
2531	bnx2x_dcbx_pmf_update(bp);
2532
2533	bnx2x_link_status_update(&bp->link_params, &bp->link_vars);
2534
2535	if (bp->link_vars.link_up)
2536		bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2537	else
2538		bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2539
2540	/* indicate link status */
2541	bnx2x_link_report(bp);
2542}
2543
2544static void bnx2x_pmf_update(struct bnx2x *bp)
2545{
2546	int port = BP_PORT(bp);
2547	u32 val;
2548
2549	bp->port.pmf = 1;
2550	DP(NETIF_MSG_LINK, "pmf %d\n", bp->port.pmf);
2551
2552	/*
2553	 * We need the mb() to ensure the ordering between the writing to
2554	 * bp->port.pmf here and reading it from the bnx2x_periodic_task().
2555	 */
2556	smp_mb();
2557
2558	/* queue a periodic task */
2559	queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2560
2561	bnx2x_dcbx_pmf_update(bp);
2562
2563	/* enable nig attention */
2564	val = (0xff0f | (1 << (BP_VN(bp) + 4)));
2565	if (bp->common.int_block == INT_BLOCK_HC) {
2566		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
2567		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
2568	} else if (!CHIP_IS_E1x(bp)) {
2569		REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
2570		REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
2571	}
2572
2573	bnx2x_stats_handle(bp, STATS_EVENT_PMF);
2574}
2575
2576/* end of Link */
2577
2578/* slow path */
2579
2580/*
2581 * General service functions
2582 */
2583
2584/* send the MCP a request, block until there is a reply */
2585u32 bnx2x_fw_command(struct bnx2x *bp, u32 command, u32 param)
2586{
2587	int mb_idx = BP_FW_MB_IDX(bp);
2588	u32 seq;
2589	u32 rc = 0;
2590	u32 cnt = 1;
2591	u8 delay = CHIP_REV_IS_SLOW(bp) ? 100 : 10;
2592
2593	mutex_lock(&bp->fw_mb_mutex);
2594	seq = ++bp->fw_seq;
2595	SHMEM_WR(bp, func_mb[mb_idx].drv_mb_param, param);
2596	SHMEM_WR(bp, func_mb[mb_idx].drv_mb_header, (command | seq));
2597
2598	DP(BNX2X_MSG_MCP, "wrote command (%x) to FW MB param 0x%08x\n",
2599			(command | seq), param);
2600
2601	do {
2602		/* let the FW do it's magic ... */
2603		msleep(delay);
2604
2605		rc = SHMEM_RD(bp, func_mb[mb_idx].fw_mb_header);
2606
2607		/* Give the FW up to 5 second (500*10ms) */
2608	} while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500));
2609
2610	DP(BNX2X_MSG_MCP, "[after %d ms] read (%x) seq is (%x) from FW MB\n",
2611	   cnt*delay, rc, seq);
2612
2613	/* is this a reply to our command? */
2614	if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK))
2615		rc &= FW_MSG_CODE_MASK;
2616	else {
2617		/* FW BUG! */
2618		BNX2X_ERR("FW failed to respond!\n");
2619		bnx2x_fw_dump(bp);
2620		rc = 0;
2621	}
2622	mutex_unlock(&bp->fw_mb_mutex);
2623
2624	return rc;
2625}
2626
2627
2628void bnx2x_func_init(struct bnx2x *bp, struct bnx2x_func_init_params *p)
2629{
2630	if (CHIP_IS_E1x(bp)) {
2631		struct tstorm_eth_function_common_config tcfg = {0};
2632
2633		storm_memset_func_cfg(bp, &tcfg, p->func_id);
2634	}
2635
2636	/* Enable the function in the FW */
2637	storm_memset_vf_to_pf(bp, p->func_id, p->pf_id);
2638	storm_memset_func_en(bp, p->func_id, 1);
2639
2640	/* spq */
2641	if (p->func_flgs & FUNC_FLG_SPQ) {
2642		storm_memset_spq_addr(bp, p->spq_map, p->func_id);
2643		REG_WR(bp, XSEM_REG_FAST_MEMORY +
2644		       XSTORM_SPQ_PROD_OFFSET(p->func_id), p->spq_prod);
2645	}
2646}
2647
2648/**
2649 * bnx2x_get_tx_only_flags - Return common flags
2650 *
2651 * @bp		device handle
2652 * @fp		queue handle
2653 * @zero_stats	TRUE if statistics zeroing is needed
2654 *
2655 * Return the flags that are common for the Tx-only and not normal connections.
2656 */
2657static inline unsigned long bnx2x_get_common_flags(struct bnx2x *bp,
2658						   struct bnx2x_fastpath *fp,
2659						   bool zero_stats)
2660{
2661	unsigned long flags = 0;
2662
2663	/* PF driver will always initialize the Queue to an ACTIVE state */
2664	__set_bit(BNX2X_Q_FLG_ACTIVE, &flags);
2665
2666	/* tx only connections collect statistics (on the same index as the
2667	 *  parent connection). The statistics are zeroed when the parent
2668	 *  connection is initialized.
2669	 */
2670
2671	__set_bit(BNX2X_Q_FLG_STATS, &flags);
2672	if (zero_stats)
2673		__set_bit(BNX2X_Q_FLG_ZERO_STATS, &flags);
2674
2675
2676	return flags;
2677}
2678
2679static inline unsigned long bnx2x_get_q_flags(struct bnx2x *bp,
2680					      struct bnx2x_fastpath *fp,
2681					      bool leading)
2682{
2683	unsigned long flags = 0;
2684
2685	/* calculate other queue flags */
2686	if (IS_MF_SD(bp))
2687		__set_bit(BNX2X_Q_FLG_OV, &flags);
2688
2689	if (IS_FCOE_FP(fp))
2690		__set_bit(BNX2X_Q_FLG_FCOE, &flags);
2691
2692	if (!fp->disable_tpa) {
2693		__set_bit(BNX2X_Q_FLG_TPA, &flags);
2694		__set_bit(BNX2X_Q_FLG_TPA_IPV6, &flags);
2695	}
2696
2697	if (leading) {
2698		__set_bit(BNX2X_Q_FLG_LEADING_RSS, &flags);
2699		__set_bit(BNX2X_Q_FLG_MCAST, &flags);
2700	}
2701
2702	/* Always set HW VLAN stripping */
2703	__set_bit(BNX2X_Q_FLG_VLAN, &flags);
2704
2705
2706	return flags | bnx2x_get_common_flags(bp, fp, true);
2707}
2708
2709static void bnx2x_pf_q_prep_general(struct bnx2x *bp,
2710	struct bnx2x_fastpath *fp, struct bnx2x_general_setup_params *gen_init,
2711	u8 cos)
2712{
2713	gen_init->stat_id = bnx2x_stats_id(fp);
2714	gen_init->spcl_id = fp->cl_id;
2715
2716	/* Always use mini-jumbo MTU for FCoE L2 ring */
2717	if (IS_FCOE_FP(fp))
2718		gen_init->mtu = BNX2X_FCOE_MINI_JUMBO_MTU;
2719	else
2720		gen_init->mtu = bp->dev->mtu;
2721
2722	gen_init->cos = cos;
2723}
2724
2725static void bnx2x_pf_rx_q_prep(struct bnx2x *bp,
2726	struct bnx2x_fastpath *fp, struct rxq_pause_params *pause,
2727	struct bnx2x_rxq_setup_params *rxq_init)
2728{
2729	u8 max_sge = 0;
2730	u16 sge_sz = 0;
2731	u16 tpa_agg_size = 0;
2732
2733	if (!fp->disable_tpa) {
2734		pause->sge_th_lo = SGE_TH_LO(bp);
2735		pause->sge_th_hi = SGE_TH_HI(bp);
2736
2737		/* validate SGE ring has enough to cross high threshold */
2738		WARN_ON(bp->dropless_fc &&
2739				pause->sge_th_hi + FW_PREFETCH_CNT >
2740				MAX_RX_SGE_CNT * NUM_RX_SGE_PAGES);
2741
2742		tpa_agg_size = min_t(u32,
2743			(min_t(u32, 8, MAX_SKB_FRAGS) *
2744			SGE_PAGE_SIZE * PAGES_PER_SGE), 0xffff);
2745		max_sge = SGE_PAGE_ALIGN(bp->dev->mtu) >>
2746			SGE_PAGE_SHIFT;
2747		max_sge = ((max_sge + PAGES_PER_SGE - 1) &
2748			  (~(PAGES_PER_SGE-1))) >> PAGES_PER_SGE_SHIFT;
2749		sge_sz = (u16)min_t(u32, SGE_PAGE_SIZE * PAGES_PER_SGE,
2750				    0xffff);
2751	}
2752
2753	/* pause - not for e1 */
2754	if (!CHIP_IS_E1(bp)) {
2755		pause->bd_th_lo = BD_TH_LO(bp);
2756		pause->bd_th_hi = BD_TH_HI(bp);
2757
2758		pause->rcq_th_lo = RCQ_TH_LO(bp);
2759		pause->rcq_th_hi = RCQ_TH_HI(bp);
2760		/*
2761		 * validate that rings have enough entries to cross
2762		 * high thresholds
2763		 */
2764		WARN_ON(bp->dropless_fc &&
2765				pause->bd_th_hi + FW_PREFETCH_CNT >
2766				bp->rx_ring_size);
2767		WARN_ON(bp->dropless_fc &&
2768				pause->rcq_th_hi + FW_PREFETCH_CNT >
2769				NUM_RCQ_RINGS * MAX_RCQ_DESC_CNT);
2770
2771		pause->pri_map = 1;
2772	}
2773
2774	/* rxq setup */
2775	rxq_init->dscr_map = fp->rx_desc_mapping;
2776	rxq_init->sge_map = fp->rx_sge_mapping;
2777	rxq_init->rcq_map = fp->rx_comp_mapping;
2778	rxq_init->rcq_np_map = fp->rx_comp_mapping + BCM_PAGE_SIZE;
2779
2780	/* This should be a maximum number of data bytes that may be
2781	 * placed on the BD (not including paddings).
2782	 */
2783	rxq_init->buf_sz = fp->rx_buf_size - BNX2X_FW_RX_ALIGN_START -
2784		BNX2X_FW_RX_ALIGN_END -	IP_HEADER_ALIGNMENT_PADDING;
2785
2786	rxq_init->cl_qzone_id = fp->cl_qzone_id;
2787	rxq_init->tpa_agg_sz = tpa_agg_size;
2788	rxq_init->sge_buf_sz = sge_sz;
2789	rxq_init->max_sges_pkt = max_sge;
2790	rxq_init->rss_engine_id = BP_FUNC(bp);
2791
2792	/* Maximum number or simultaneous TPA aggregation for this Queue.
2793	 *
2794	 * For PF Clients it should be the maximum avaliable number.
2795	 * VF driver(s) may want to define it to a smaller value.
2796	 */
2797	rxq_init->max_tpa_queues = MAX_AGG_QS(bp);
2798
2799	rxq_init->cache_line_log = BNX2X_RX_ALIGN_SHIFT;
2800	rxq_init->fw_sb_id = fp->fw_sb_id;
2801
2802	if (IS_FCOE_FP(fp))
2803		rxq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS;
2804	else
2805		rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
2806}
2807
2808static void bnx2x_pf_tx_q_prep(struct bnx2x *bp,
2809	struct bnx2x_fastpath *fp, struct bnx2x_txq_setup_params *txq_init,
2810	u8 cos)
2811{
2812	txq_init->dscr_map = fp->txdata[cos].tx_desc_mapping;
2813	txq_init->sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos;
2814	txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW;
2815	txq_init->fw_sb_id = fp->fw_sb_id;
2816
2817	/*
2818	 * set the tss leading client id for TX classfication ==
2819	 * leading RSS client id
2820	 */
2821	txq_init->tss_leading_cl_id = bnx2x_fp(bp, 0, cl_id);
2822
2823	if (IS_FCOE_FP(fp)) {
2824		txq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_TX_CQ_CONS;
2825		txq_init->traffic_type = LLFC_TRAFFIC_TYPE_FCOE;
2826	}
2827}
2828
2829static void bnx2x_pf_init(struct bnx2x *bp)
2830{
2831	struct bnx2x_func_init_params func_init = {0};
2832	struct event_ring_data eq_data = { {0} };
2833	u16 flags;
2834
2835	if (!CHIP_IS_E1x(bp)) {
2836		/* reset IGU PF statistics: MSIX + ATTN */
2837		/* PF */
2838		REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
2839			   BNX2X_IGU_STAS_MSG_VF_CNT*4 +
2840			   (CHIP_MODE_IS_4_PORT(bp) ?
2841				BP_FUNC(bp) : BP_VN(bp))*4, 0);
2842		/* ATTN */
2843		REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
2844			   BNX2X_IGU_STAS_MSG_VF_CNT*4 +
2845			   BNX2X_IGU_STAS_MSG_PF_CNT*4 +
2846			   (CHIP_MODE_IS_4_PORT(bp) ?
2847				BP_FUNC(bp) : BP_VN(bp))*4, 0);
2848	}
2849
2850	/* function setup flags */
2851	flags = (FUNC_FLG_STATS | FUNC_FLG_LEADING | FUNC_FLG_SPQ);
2852
2853	/* This flag is relevant for E1x only.
2854	 * E2 doesn't have a TPA configuration in a function level.
2855	 */
2856	flags |= (bp->flags & TPA_ENABLE_FLAG) ? FUNC_FLG_TPA : 0;
2857
2858	func_init.func_flgs = flags;
2859	func_init.pf_id = BP_FUNC(bp);
2860	func_init.func_id = BP_FUNC(bp);
2861	func_init.spq_map = bp->spq_mapping;
2862	func_init.spq_prod = bp->spq_prod_idx;
2863
2864	bnx2x_func_init(bp, &func_init);
2865
2866	memset(&(bp->cmng), 0, sizeof(struct cmng_struct_per_port));
2867
2868	/*
2869	 * Congestion management values depend on the link rate
2870	 * There is no active link so initial link rate is set to 10 Gbps.
2871	 * When the link comes up The congestion management values are
2872	 * re-calculated according to the actual link rate.
2873	 */
2874	bp->link_vars.line_speed = SPEED_10000;
2875	bnx2x_cmng_fns_init(bp, true, bnx2x_get_cmng_fns_mode(bp));
2876
2877	/* Only the PMF sets the HW */
2878	if (bp->port.pmf)
2879		storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
2880
2881	/* init Event Queue */
2882	eq_data.base_addr.hi = U64_HI(bp->eq_mapping);
2883	eq_data.base_addr.lo = U64_LO(bp->eq_mapping);
2884	eq_data.producer = bp->eq_prod;
2885	eq_data.index_id = HC_SP_INDEX_EQ_CONS;
2886	eq_data.sb_id = DEF_SB_ID;
2887	storm_memset_eq_data(bp, &eq_data, BP_FUNC(bp));
2888}
2889
2890
2891static void bnx2x_e1h_disable(struct bnx2x *bp)
2892{
2893	int port = BP_PORT(bp);
2894
2895	bnx2x_tx_disable(bp);
2896
2897	REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
2898}
2899
2900static void bnx2x_e1h_enable(struct bnx2x *bp)
2901{
2902	int port = BP_PORT(bp);
2903
2904	REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 1);
2905
2906	/* Tx queue should be only reenabled */
2907	netif_tx_wake_all_queues(bp->dev);
2908
2909	/*
2910	 * Should not call netif_carrier_on since it will be called if the link
2911	 * is up when checking for link state
2912	 */
2913}
2914
2915/* called due to MCP event (on pmf):
2916 *	reread new bandwidth configuration
2917 *	configure FW
2918 *	notify others function about the change
2919 */
2920static inline void bnx2x_config_mf_bw(struct bnx2x *bp)
2921{
2922	if (bp->link_vars.link_up) {
2923		bnx2x_cmng_fns_init(bp, true, CMNG_FNS_MINMAX);
2924		bnx2x_link_sync_notify(bp);
2925	}
2926	storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
2927}
2928
2929static inline void bnx2x_set_mf_bw(struct bnx2x *bp)
2930{
2931	bnx2x_config_mf_bw(bp);
2932	bnx2x_fw_command(bp, DRV_MSG_CODE_SET_MF_BW_ACK, 0);
2933}
2934
2935static void bnx2x_dcc_event(struct bnx2x *bp, u32 dcc_event)
2936{
2937	DP(BNX2X_MSG_MCP, "dcc_event 0x%x\n", dcc_event);
2938
2939	if (dcc_event & DRV_STATUS_DCC_DISABLE_ENABLE_PF) {
2940
2941		/*
2942		 * This is the only place besides the function initialization
2943		 * where the bp->flags can change so it is done without any
2944		 * locks
2945		 */
2946		if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
2947			DP(NETIF_MSG_IFDOWN, "mf_cfg function disabled\n");
2948			bp->flags |= MF_FUNC_DIS;
2949
2950			bnx2x_e1h_disable(bp);
2951		} else {
2952			DP(NETIF_MSG_IFUP, "mf_cfg function enabled\n");
2953			bp->flags &= ~MF_FUNC_DIS;
2954
2955			bnx2x_e1h_enable(bp);
2956		}
2957		dcc_event &= ~DRV_STATUS_DCC_DISABLE_ENABLE_PF;
2958	}
2959	if (dcc_event & DRV_STATUS_DCC_BANDWIDTH_ALLOCATION) {
2960		bnx2x_config_mf_bw(bp);
2961		dcc_event &= ~DRV_STATUS_DCC_BANDWIDTH_ALLOCATION;
2962	}
2963
2964	/* Report results to MCP */
2965	if (dcc_event)
2966		bnx2x_fw_command(bp, DRV_MSG_CODE_DCC_FAILURE, 0);
2967	else
2968		bnx2x_fw_command(bp, DRV_MSG_CODE_DCC_OK, 0);
2969}
2970
2971/* must be called under the spq lock */
2972static inline struct eth_spe *bnx2x_sp_get_next(struct bnx2x *bp)
2973{
2974	struct eth_spe *next_spe = bp->spq_prod_bd;
2975
2976	if (bp->spq_prod_bd == bp->spq_last_bd) {
2977		bp->spq_prod_bd = bp->spq;
2978		bp->spq_prod_idx = 0;
2979		DP(NETIF_MSG_TIMER, "end of spq\n");
2980	} else {
2981		bp->spq_prod_bd++;
2982		bp->spq_prod_idx++;
2983	}
2984	return next_spe;
2985}
2986
2987/* must be called under the spq lock */
2988static inline void bnx2x_sp_prod_update(struct bnx2x *bp)
2989{
2990	int func = BP_FUNC(bp);
2991
2992	/*
2993	 * Make sure that BD data is updated before writing the producer:
2994	 * BD data is written to the memory, the producer is read from the
2995	 * memory, thus we need a full memory barrier to ensure the ordering.
2996	 */
2997	mb();
2998
2999	REG_WR16(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func),
3000		 bp->spq_prod_idx);
3001	mmiowb();
3002}
3003
3004/**
3005 * bnx2x_is_contextless_ramrod - check if the current command ends on EQ
3006 *
3007 * @cmd:	command to check
3008 * @cmd_type:	command type
3009 */
3010static inline bool bnx2x_is_contextless_ramrod(int cmd, int cmd_type)
3011{
3012	if ((cmd_type == NONE_CONNECTION_TYPE) ||
3013	    (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) ||
3014	    (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) ||
3015	    (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) ||
3016	    (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) ||
3017	    (cmd == RAMROD_CMD_ID_ETH_SET_MAC) ||
3018	    (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE))
3019		return true;
3020	else
3021		return false;
3022
3023}
3024
3025
3026/**
3027 * bnx2x_sp_post - place a single command on an SP ring
3028 *
3029 * @bp:		driver handle
3030 * @command:	command to place (e.g. SETUP, FILTER_RULES, etc.)
3031 * @cid:	SW CID the command is related to
3032 * @data_hi:	command private data address (high 32 bits)
3033 * @data_lo:	command private data address (low 32 bits)
3034 * @cmd_type:	command type (e.g. NONE, ETH)
3035 *
3036 * SP data is handled as if it's always an address pair, thus data fields are
3037 * not swapped to little endian in upper functions. Instead this function swaps
3038 * data as if it's two u32 fields.
3039 */
3040int bnx2x_sp_post(struct bnx2x *bp, int command, int cid,
3041		  u32 data_hi, u32 data_lo, int cmd_type)
3042{
3043	struct eth_spe *spe;
3044	u16 type;
3045	bool common = bnx2x_is_contextless_ramrod(command, cmd_type);
3046
3047#ifdef BNX2X_STOP_ON_ERROR
3048	if (unlikely(bp->panic))
3049		return -EIO;
3050#endif
3051
3052	spin_lock_bh(&bp->spq_lock);
3053
3054	if (common) {
3055		if (!atomic_read(&bp->eq_spq_left)) {
3056			BNX2X_ERR("BUG! EQ ring full!\n");
3057			spin_unlock_bh(&bp->spq_lock);
3058			bnx2x_panic();
3059			return -EBUSY;
3060		}
3061	} else if (!atomic_read(&bp->cq_spq_left)) {
3062			BNX2X_ERR("BUG! SPQ ring full!\n");
3063			spin_unlock_bh(&bp->spq_lock);
3064			bnx2x_panic();
3065			return -EBUSY;
3066	}
3067
3068	spe = bnx2x_sp_get_next(bp);
3069
3070	/* CID needs port number to be encoded int it */
3071	spe->hdr.conn_and_cmd_data =
3072			cpu_to_le32((command << SPE_HDR_CMD_ID_SHIFT) |
3073				    HW_CID(bp, cid));
3074
3075	type = (cmd_type << SPE_HDR_CONN_TYPE_SHIFT) & SPE_HDR_CONN_TYPE;
3076
3077	type |= ((BP_FUNC(bp) << SPE_HDR_FUNCTION_ID_SHIFT) &
3078		 SPE_HDR_FUNCTION_ID);
3079
3080	spe->hdr.type = cpu_to_le16(type);
3081
3082	spe->data.update_data_addr.hi = cpu_to_le32(data_hi);
3083	spe->data.update_data_addr.lo = cpu_to_le32(data_lo);
3084
3085	/*
3086	 * It's ok if the actual decrement is issued towards the memory
3087	 * somewhere between the spin_lock and spin_unlock. Thus no
3088	 * more explict memory barrier is needed.
3089	 */
3090	if (common)
3091		atomic_dec(&bp->eq_spq_left);
3092	else
3093		atomic_dec(&bp->cq_spq_left);
3094
3095
3096	DP(BNX2X_MSG_SP/*NETIF_MSG_TIMER*/,
3097	   "SPQE[%x] (%x:%x)  (cmd, common?) (%d,%d)  hw_cid %x  data (%x:%x) "
3098	   "type(0x%x) left (CQ, EQ) (%x,%x)\n",
3099	   bp->spq_prod_idx, (u32)U64_HI(bp->spq_mapping),
3100	   (u32)(U64_LO(bp->spq_mapping) +
3101	   (void *)bp->spq_prod_bd - (void *)bp->spq), command, common,
3102	   HW_CID(bp, cid), data_hi, data_lo, type,
3103	   atomic_read(&bp->cq_spq_left), atomic_read(&bp->eq_spq_left));
3104
3105	bnx2x_sp_prod_update(bp);
3106	spin_unlock_bh(&bp->spq_lock);
3107	return 0;
3108}
3109
3110/* acquire split MCP access lock register */
3111static int bnx2x_acquire_alr(struct bnx2x *bp)
3112{
3113	u32 j, val;
3114	int rc = 0;
3115
3116	might_sleep();
3117	for (j = 0; j < 1000; j++) {
3118		val = (1UL << 31);
3119		REG_WR(bp, GRCBASE_MCP + 0x9c, val);
3120		val = REG_RD(bp, GRCBASE_MCP + 0x9c);
3121		if (val & (1L << 31))
3122			break;
3123
3124		msleep(5);
3125	}
3126	if (!(val & (1L << 31))) {
3127		BNX2X_ERR("Cannot acquire MCP access lock register\n");
3128		rc = -EBUSY;
3129	}
3130
3131	return rc;
3132}
3133
3134/* release split MCP access lock register */
3135static void bnx2x_release_alr(struct bnx2x *bp)
3136{
3137	REG_WR(bp, GRCBASE_MCP + 0x9c, 0);
3138}
3139
3140#define BNX2X_DEF_SB_ATT_IDX	0x0001
3141#define BNX2X_DEF_SB_IDX	0x0002
3142
3143static inline u16 bnx2x_update_dsb_idx(struct bnx2x *bp)
3144{
3145	struct host_sp_status_block *def_sb = bp->def_status_blk;
3146	u16 rc = 0;
3147
3148	barrier(); /* status block is written to by the chip */
3149	if (bp->def_att_idx != def_sb->atten_status_block.attn_bits_index) {
3150		bp->def_att_idx = def_sb->atten_status_block.attn_bits_index;
3151		rc |= BNX2X_DEF_SB_ATT_IDX;
3152	}
3153
3154	if (bp->def_idx != def_sb->sp_sb.running_index) {
3155		bp->def_idx = def_sb->sp_sb.running_index;
3156		rc |= BNX2X_DEF_SB_IDX;
3157	}
3158
3159	/* Do not reorder: indecies reading should complete before handling */
3160	barrier();
3161	return rc;
3162}
3163
3164/*
3165 * slow path service functions
3166 */
3167
3168static void bnx2x_attn_int_asserted(struct bnx2x *bp, u32 asserted)
3169{
3170	int port = BP_PORT(bp);
3171	u32 aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
3172			      MISC_REG_AEU_MASK_ATTN_FUNC_0;
3173	u32 nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 :
3174				       NIG_REG_MASK_INTERRUPT_PORT0;
3175	u32 aeu_mask;
3176	u32 nig_mask = 0;
3177	u32 reg_addr;
3178
3179	if (bp->attn_state & asserted)
3180		BNX2X_ERR("IGU ERROR\n");
3181
3182	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
3183	aeu_mask = REG_RD(bp, aeu_addr);
3184
3185	DP(NETIF_MSG_HW, "aeu_mask %x  newly asserted %x\n",
3186	   aeu_mask, asserted);
3187	aeu_mask &= ~(asserted & 0x3ff);
3188	DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
3189
3190	REG_WR(bp, aeu_addr, aeu_mask);
3191	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
3192
3193	DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
3194	bp->attn_state |= asserted;
3195	DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
3196
3197	if (asserted & ATTN_HARD_WIRED_MASK) {
3198		if (asserted & ATTN_NIG_FOR_FUNC) {
3199
3200			bnx2x_acquire_phy_lock(bp);
3201
3202			/* save nig interrupt mask */
3203			nig_mask = REG_RD(bp, nig_int_mask_addr);
3204
3205			/* If nig_mask is not set, no need to call the update
3206			 * function.
3207			 */
3208			if (nig_mask) {
3209				REG_WR(bp, nig_int_mask_addr, 0);
3210
3211				bnx2x_link_attn(bp);
3212			}
3213
3214			/* handle unicore attn? */
3215		}
3216		if (asserted & ATTN_SW_TIMER_4_FUNC)
3217			DP(NETIF_MSG_HW, "ATTN_SW_TIMER_4_FUNC!\n");
3218
3219		if (asserted & GPIO_2_FUNC)
3220			DP(NETIF_MSG_HW, "GPIO_2_FUNC!\n");
3221
3222		if (asserted & GPIO_3_FUNC)
3223			DP(NETIF_MSG_HW, "GPIO_3_FUNC!\n");
3224
3225		if (asserted & GPIO_4_FUNC)
3226			DP(NETIF_MSG_HW, "GPIO_4_FUNC!\n");
3227
3228		if (port == 0) {
3229			if (asserted & ATTN_GENERAL_ATTN_1) {
3230				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_1!\n");
3231				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_1, 0x0);
3232			}
3233			if (asserted & ATTN_GENERAL_ATTN_2) {
3234				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_2!\n");
3235				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_2, 0x0);
3236			}
3237			if (asserted & ATTN_GENERAL_ATTN_3) {
3238				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_3!\n");
3239				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_3, 0x0);
3240			}
3241		} else {
3242			if (asserted & ATTN_GENERAL_ATTN_4) {
3243				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_4!\n");
3244				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_4, 0x0);
3245			}
3246			if (asserted & ATTN_GENERAL_ATTN_5) {
3247				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_5!\n");
3248				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_5, 0x0);
3249			}
3250			if (asserted & ATTN_GENERAL_ATTN_6) {
3251				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_6!\n");
3252				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_6, 0x0);
3253			}
3254		}
3255
3256	} /* if hardwired */
3257
3258	if (bp->common.int_block == INT_BLOCK_HC)
3259		reg_addr = (HC_REG_COMMAND_REG + port*32 +
3260			    COMMAND_REG_ATTN_BITS_SET);
3261	else
3262		reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8);
3263
3264	DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", asserted,
3265	   (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
3266	REG_WR(bp, reg_addr, asserted);
3267
3268	/* now set back the mask */
3269	if (asserted & ATTN_NIG_FOR_FUNC) {
3270		REG_WR(bp, nig_int_mask_addr, nig_mask);
3271		bnx2x_release_phy_lock(bp);
3272	}
3273}
3274
3275static inline void bnx2x_fan_failure(struct bnx2x *bp)
3276{
3277	int port = BP_PORT(bp);
3278	u32 ext_phy_config;
3279	/* mark the failure */
3280	ext_phy_config =
3281		SHMEM_RD(bp,
3282			 dev_info.port_hw_config[port].external_phy_config);
3283
3284	ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK;
3285	ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE;
3286	SHMEM_WR(bp, dev_info.port_hw_config[port].external_phy_config,
3287		 ext_phy_config);
3288
3289	/* log the failure */
3290	netdev_err(bp->dev, "Fan Failure on Network Controller has caused"
3291	       " the driver to shutdown the card to prevent permanent"
3292	       " damage.  Please contact OEM Support for assistance\n");
3293
3294	/*
3295	 * Scheudle device reset (unload)
3296	 * This is due to some boards consuming sufficient power when driver is
3297	 * up to overheat if fan fails.
3298	 */
3299	smp_mb__before_clear_bit();
3300	set_bit(BNX2X_SP_RTNL_FAN_FAILURE, &bp->sp_rtnl_state);
3301	smp_mb__after_clear_bit();
3302	schedule_delayed_work(&bp->sp_rtnl_task, 0);
3303
3304}
3305
3306static inline void bnx2x_attn_int_deasserted0(struct bnx2x *bp, u32 attn)
3307{
3308	int port = BP_PORT(bp);
3309	int reg_offset;
3310	u32 val;
3311
3312	reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
3313			     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
3314
3315	if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) {
3316
3317		val = REG_RD(bp, reg_offset);
3318		val &= ~AEU_INPUTS_ATTN_BITS_SPIO5;
3319		REG_WR(bp, reg_offset, val);
3320
3321		BNX2X_ERR("SPIO5 hw attention\n");
3322
3323		/* Fan failure attention */
3324		bnx2x_hw_reset_phy(&bp->link_params);
3325		bnx2x_fan_failure(bp);
3326	}
3327
3328	if ((attn & bp->link_vars.aeu_int_mask) && bp->port.pmf) {
3329		bnx2x_acquire_phy_lock(bp);
3330		bnx2x_handle_module_detect_int(&bp->link_params);
3331		bnx2x_release_phy_lock(bp);
3332	}
3333
3334	if (attn & HW_INTERRUT_ASSERT_SET_0) {
3335
3336		val = REG_RD(bp, reg_offset);
3337		val &= ~(attn & HW_INTERRUT_ASSERT_SET_0);
3338		REG_WR(bp, reg_offset, val);
3339
3340		BNX2X_ERR("FATAL HW block attention set0 0x%x\n",
3341			  (u32)(attn & HW_INTERRUT_ASSERT_SET_0));
3342		bnx2x_panic();
3343	}
3344}
3345
3346static inline void bnx2x_attn_int_deasserted1(struct bnx2x *bp, u32 attn)
3347{
3348	u32 val;
3349
3350	if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) {
3351
3352		val = REG_RD(bp, DORQ_REG_DORQ_INT_STS_CLR);
3353		BNX2X_ERR("DB hw attention 0x%x\n", val);
3354		/* DORQ discard attention */
3355		if (val & 0x2)
3356			BNX2X_ERR("FATAL error from DORQ\n");
3357	}
3358
3359	if (attn & HW_INTERRUT_ASSERT_SET_1) {
3360
3361		int port = BP_PORT(bp);
3362		int reg_offset;
3363
3364		reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 :
3365				     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1);
3366
3367		val = REG_RD(bp, reg_offset);
3368		val &= ~(attn & HW_INTERRUT_ASSERT_SET_1);
3369		REG_WR(bp, reg_offset, val);
3370
3371		BNX2X_ERR("FATAL HW block attention set1 0x%x\n",
3372			  (u32)(attn & HW_INTERRUT_ASSERT_SET_1));
3373		bnx2x_panic();
3374	}
3375}
3376
3377static inline void bnx2x_attn_int_deasserted2(struct bnx2x *bp, u32 attn)
3378{
3379	u32 val;
3380
3381	if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) {
3382
3383		val = REG_RD(bp, CFC_REG_CFC_INT_STS_CLR);
3384		BNX2X_ERR("CFC hw attention 0x%x\n", val);
3385		/* CFC error attention */
3386		if (val & 0x2)
3387			BNX2X_ERR("FATAL error from CFC\n");
3388	}
3389
3390	if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) {
3391		val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_0);
3392		BNX2X_ERR("PXP hw attention-0 0x%x\n", val);
3393		/* RQ_USDMDP_FIFO_OVERFLOW */
3394		if (val & 0x18000)
3395			BNX2X_ERR("FATAL error from PXP\n");
3396
3397		if (!CHIP_IS_E1x(bp)) {
3398			val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_1);
3399			BNX2X_ERR("PXP hw attention-1 0x%x\n", val);
3400		}
3401	}
3402
3403	if (attn & HW_INTERRUT_ASSERT_SET_2) {
3404
3405		int port = BP_PORT(bp);
3406		int reg_offset;
3407
3408		reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 :
3409				     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2);
3410
3411		val = REG_RD(bp, reg_offset);
3412		val &= ~(attn & HW_INTERRUT_ASSERT_SET_2);
3413		REG_WR(bp, reg_offset, val);
3414
3415		BNX2X_ERR("FATAL HW block attention set2 0x%x\n",
3416			  (u32)(attn & HW_INTERRUT_ASSERT_SET_2));
3417		bnx2x_panic();
3418	}
3419}
3420
3421static inline void bnx2x_attn_int_deasserted3(struct bnx2x *bp, u32 attn)
3422{
3423	u32 val;
3424
3425	if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) {
3426
3427		if (attn & BNX2X_PMF_LINK_ASSERT) {
3428			int func = BP_FUNC(bp);
3429
3430			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
3431			bp->mf_config[BP_VN(bp)] = MF_CFG_RD(bp,
3432					func_mf_config[BP_ABS_FUNC(bp)].config);
3433			val = SHMEM_RD(bp,
3434				       func_mb[BP_FW_MB_IDX(bp)].drv_status);
3435			if (val & DRV_STATUS_DCC_EVENT_MASK)
3436				bnx2x_dcc_event(bp,
3437					    (val & DRV_STATUS_DCC_EVENT_MASK));
3438
3439			if (val & DRV_STATUS_SET_MF_BW)
3440				bnx2x_set_mf_bw(bp);
3441
3442			if ((bp->port.pmf == 0) && (val & DRV_STATUS_PMF))
3443				bnx2x_pmf_update(bp);
3444
3445			if (bp->port.pmf &&
3446			    (val & DRV_STATUS_DCBX_NEGOTIATION_RESULTS) &&
3447				bp->dcbx_enabled > 0)
3448				/* start dcbx state machine */
3449				bnx2x_dcbx_set_params(bp,
3450					BNX2X_DCBX_STATE_NEG_RECEIVED);
3451			if (bp->link_vars.periodic_flags &
3452			    PERIODIC_FLAGS_LINK_EVENT) {
3453				/*  sync with link */
3454				bnx2x_acquire_phy_lock(bp);
3455				bp->link_vars.periodic_flags &=
3456					~PERIODIC_FLAGS_LINK_EVENT;
3457				bnx2x_release_phy_lock(bp);
3458				if (IS_MF(bp))
3459					bnx2x_link_sync_notify(bp);
3460				bnx2x_link_report(bp);
3461			}
3462			/* Always call it here: bnx2x_link_report() will
3463			 * prevent the link indication duplication.
3464			 */
3465			bnx2x__link_status_update(bp);
3466		} else if (attn & BNX2X_MC_ASSERT_BITS) {
3467
3468			BNX2X_ERR("MC assert!\n");
3469			bnx2x_mc_assert(bp);
3470			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_10, 0);
3471			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_9, 0);
3472			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_8, 0);
3473			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_7, 0);
3474			bnx2x_panic();
3475
3476		} else if (attn & BNX2X_MCP_ASSERT) {
3477
3478			BNX2X_ERR("MCP assert!\n");
3479			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_11, 0);
3480			bnx2x_fw_dump(bp);
3481
3482		} else
3483			BNX2X_ERR("Unknown HW assert! (attn 0x%x)\n", attn);
3484	}
3485
3486	if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) {
3487		BNX2X_ERR("LATCHED attention 0x%08x (masked)\n", attn);
3488		if (attn & BNX2X_GRC_TIMEOUT) {
3489			val = CHIP_IS_E1(bp) ? 0 :
3490					REG_RD(bp, MISC_REG_GRC_TIMEOUT_ATTN);
3491			BNX2X_ERR("GRC time-out 0x%08x\n", val);
3492		}
3493		if (attn & BNX2X_GRC_RSV) {
3494			val = CHIP_IS_E1(bp) ? 0 :
3495					REG_RD(bp, MISC_REG_GRC_RSV_ATTN);
3496			BNX2X_ERR("GRC reserved 0x%08x\n", val);
3497		}
3498		REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff);
3499	}
3500}
3501
3502/*
3503 * Bits map:
3504 * 0-7   - Engine0 load counter.
3505 * 8-15  - Engine1 load counter.
3506 * 16    - Engine0 RESET_IN_PROGRESS bit.
3507 * 17    - Engine1 RESET_IN_PROGRESS bit.
3508 * 18    - Engine0 ONE_IS_LOADED. Set when there is at least one active function
3509 *         on the engine
3510 * 19    - Engine1 ONE_IS_LOADED.
3511 * 20    - Chip reset flow bit. When set none-leader must wait for both engines
3512 *         leader to complete (check for both RESET_IN_PROGRESS bits and not for
3513 *         just the one belonging to its engine).
3514 *
3515 */
3516#define BNX2X_RECOVERY_GLOB_REG		MISC_REG_GENERIC_POR_1
3517
3518#define BNX2X_PATH0_LOAD_CNT_MASK	0x000000ff
3519#define BNX2X_PATH0_LOAD_CNT_SHIFT	0
3520#define BNX2X_PATH1_LOAD_CNT_MASK	0x0000ff00
3521#define BNX2X_PATH1_LOAD_CNT_SHIFT	8
3522#define BNX2X_PATH0_RST_IN_PROG_BIT	0x00010000
3523#define BNX2X_PATH1_RST_IN_PROG_BIT	0x00020000
3524#define BNX2X_GLOBAL_RESET_BIT		0x00040000
3525
3526/*
3527 * Set the GLOBAL_RESET bit.
3528 *
3529 * Should be run under rtnl lock
3530 */
3531void bnx2x_set_reset_global(struct bnx2x *bp)
3532{
3533	u32 val	= REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3534
3535	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val | BNX2X_GLOBAL_RESET_BIT);
3536	barrier();
3537	mmiowb();
3538}
3539
3540/*
3541 * Clear the GLOBAL_RESET bit.
3542 *
3543 * Should be run under rtnl lock
3544 */
3545static inline void bnx2x_clear_reset_global(struct bnx2x *bp)
3546{
3547	u32 val	= REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3548
3549	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val & (~BNX2X_GLOBAL_RESET_BIT));
3550	barrier();
3551	mmiowb();
3552}
3553
3554/*
3555 * Checks the GLOBAL_RESET bit.
3556 *
3557 * should be run under rtnl lock
3558 */
3559static inline bool bnx2x_reset_is_global(struct bnx2x *bp)
3560{
3561	u32 val	= REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3562
3563	DP(NETIF_MSG_HW, "GEN_REG_VAL=0x%08x\n", val);
3564	return (val & BNX2X_GLOBAL_RESET_BIT) ? true : false;
3565}
3566
3567/*
3568 * Clear RESET_IN_PROGRESS bit for the current engine.
3569 *
3570 * Should be run under rtnl lock
3571 */
3572static inline void bnx2x_set_reset_done(struct bnx2x *bp)
3573{
3574	u32 val	= REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3575	u32 bit = BP_PATH(bp) ?
3576		BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
3577
3578	/* Clear the bit */
3579	val &= ~bit;
3580	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
3581	barrier();
3582	mmiowb();
3583}
3584
3585/*
3586 * Set RESET_IN_PROGRESS for the current engine.
3587 *
3588 * should be run under rtnl lock
3589 */
3590void bnx2x_set_reset_in_progress(struct bnx2x *bp)
3591{
3592	u32 val	= REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3593	u32 bit = BP_PATH(bp) ?
3594		BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
3595
3596	/* Set the bit */
3597	val |= bit;
3598	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
3599	barrier();
3600	mmiowb();
3601}
3602
3603/*
3604 * Checks the RESET_IN_PROGRESS bit for the given engine.
3605 * should be run under rtnl lock
3606 */
3607bool bnx2x_reset_is_done(struct bnx2x *bp, int engine)
3608{
3609	u32 val	= REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3610	u32 bit = engine ?
3611		BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
3612
3613	/* return false if bit is set */
3614	return (val & bit) ? false : true;
3615}
3616
3617/*
3618 * Increment the load counter for the current engine.
3619 *
3620 * should be run under rtnl lock
3621 */
3622void bnx2x_inc_load_cnt(struct bnx2x *bp)
3623{
3624	u32 val1, val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3625	u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
3626			     BNX2X_PATH0_LOAD_CNT_MASK;
3627	u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
3628			     BNX2X_PATH0_LOAD_CNT_SHIFT;
3629
3630	DP(NETIF_MSG_HW, "Old GEN_REG_VAL=0x%08x\n", val);
3631
3632	/* get the current counter value */
3633	val1 = (val & mask) >> shift;
3634
3635	/* increment... */
3636	val1++;
3637
3638	/* clear the old value */
3639	val &= ~mask;
3640
3641	/* set the new one */
3642	val |= ((val1 << shift) & mask);
3643
3644	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
3645	barrier();
3646	mmiowb();
3647}
3648
3649/**
3650 * bnx2x_dec_load_cnt - decrement the load counter
3651 *
3652 * @bp:		driver handle
3653 *
3654 * Should be run under rtnl lock.
3655 * Decrements the load counter for the current engine. Returns
3656 * the new counter value.
3657 */
3658u32 bnx2x_dec_load_cnt(struct bnx2x *bp)
3659{
3660	u32 val1, val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3661	u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
3662			     BNX2X_PATH0_LOAD_CNT_MASK;
3663	u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
3664			     BNX2X_PATH0_LOAD_CNT_SHIFT;
3665
3666	DP(NETIF_MSG_HW, "Old GEN_REG_VAL=0x%08x\n", val);
3667
3668	/* get the current counter value */
3669	val1 = (val & mask) >> shift;
3670
3671	/* decrement... */
3672	val1--;
3673
3674	/* clear the old value */
3675	val &= ~mask;
3676
3677	/* set the new one */
3678	val |= ((val1 << shift) & mask);
3679
3680	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
3681	barrier();
3682	mmiowb();
3683
3684	return val1;
3685}
3686
3687/*
3688 * Read the load counter for the current engine.
3689 *
3690 * should be run under rtnl lock
3691 */
3692static inline u32 bnx2x_get_load_cnt(struct bnx2x *bp, int engine)
3693{
3694	u32 mask = (engine ? BNX2X_PATH1_LOAD_CNT_MASK :
3695			     BNX2X_PATH0_LOAD_CNT_MASK);
3696	u32 shift = (engine ? BNX2X_PATH1_LOAD_CNT_SHIFT :
3697			     BNX2X_PATH0_LOAD_CNT_SHIFT);
3698	u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3699
3700	DP(NETIF_MSG_HW, "GLOB_REG=0x%08x\n", val);
3701
3702	val = (val & mask) >> shift;
3703
3704	DP(NETIF_MSG_HW, "load_cnt for engine %d = %d\n", engine, val);
3705
3706	return val;
3707}
3708
3709/*
3710 * Reset the load counter for the current engine.
3711 *
3712 * should be run under rtnl lock
3713 */
3714static inline void bnx2x_clear_load_cnt(struct bnx2x *bp)
3715{
3716	u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3717	u32 mask = (BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
3718			     BNX2X_PATH0_LOAD_CNT_MASK);
3719
3720	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val & (~mask));
3721}
3722
3723static inline void _print_next_block(int idx, const char *blk)
3724{
3725	pr_cont("%s%s", idx ? ", " : "", blk);
3726}
3727
3728static inline int bnx2x_check_blocks_with_parity0(u32 sig, int par_num,
3729						  bool print)
3730{
3731	int i = 0;
3732	u32 cur_bit = 0;
3733	for (i = 0; sig; i++) {
3734		cur_bit = ((u32)0x1 << i);
3735		if (sig & cur_bit) {
3736			switch (cur_bit) {
3737			case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR:
3738				if (print)
3739					_print_next_block(par_num++, "BRB");
3740				break;
3741			case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR:
3742				if (print)
3743					_print_next_block(par_num++, "PARSER");
3744				break;
3745			case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR:
3746				if (print)
3747					_print_next_block(par_num++, "TSDM");
3748				break;
3749			case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR:
3750				if (print)
3751					_print_next_block(par_num++,
3752							  "SEARCHER");
3753				break;
3754			case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR:
3755				if (print)
3756					_print_next_block(par_num++, "TCM");
3757				break;
3758			case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR:
3759				if (print)
3760					_print_next_block(par_num++, "TSEMI");
3761				break;
3762			case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR:
3763				if (print)
3764					_print_next_block(par_num++, "XPB");
3765				break;
3766			}
3767
3768			/* Clear the bit */
3769			sig &= ~cur_bit;
3770		}
3771	}
3772
3773	return par_num;
3774}
3775
3776static inline int bnx2x_check_blocks_with_parity1(u32 sig, int par_num,
3777						  bool *global, bool print)
3778{
3779	int i = 0;
3780	u32 cur_bit = 0;
3781	for (i = 0; sig; i++) {
3782		cur_bit = ((u32)0x1 << i);
3783		if (sig & cur_bit) {
3784			switch (cur_bit) {
3785			case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR:
3786				if (print)
3787					_print_next_block(par_num++, "PBF");
3788				break;
3789			case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR:
3790				if (print)
3791					_print_next_block(par_num++, "QM");
3792				break;
3793			case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR:
3794				if (print)
3795					_print_next_block(par_num++, "TM");
3796				break;
3797			case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR:
3798				if (print)
3799					_print_next_block(par_num++, "XSDM");
3800				break;
3801			case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR:
3802				if (print)
3803					_print_next_block(par_num++, "XCM");
3804				break;
3805			case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR:
3806				if (print)
3807					_print_next_block(par_num++, "XSEMI");
3808				break;
3809			case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR:
3810				if (print)
3811					_print_next_block(par_num++,
3812							  "DOORBELLQ");
3813				break;
3814			case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR:
3815				if (print)
3816					_print_next_block(par_num++, "NIG");
3817				break;
3818			case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR:
3819				if (print)
3820					_print_next_block(par_num++,
3821							  "VAUX PCI CORE");
3822				*global = true;
3823				break;
3824			case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR:
3825				if (print)
3826					_print_next_block(par_num++, "DEBUG");
3827				break;
3828			case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR:
3829				if (print)
3830					_print_next_block(par_num++, "USDM");
3831				break;
3832			case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR:
3833				if (print)
3834					_print_next_block(par_num++, "UCM");
3835				break;
3836			case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR:
3837				if (print)
3838					_print_next_block(par_num++, "USEMI");
3839				break;
3840			case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR:
3841				if (print)
3842					_print_next_block(par_num++, "UPB");
3843				break;
3844			case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR:
3845				if (print)
3846					_print_next_block(par_num++, "CSDM");
3847				break;
3848			case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR:
3849				if (print)
3850					_print_next_block(par_num++, "CCM");
3851				break;
3852			}
3853
3854			/* Clear the bit */
3855			sig &= ~cur_bit;
3856		}
3857	}
3858
3859	return par_num;
3860}
3861
3862static inline int bnx2x_check_blocks_with_parity2(u32 sig, int par_num,
3863						  bool print)
3864{
3865	int i = 0;
3866	u32 cur_bit = 0;
3867	for (i = 0; sig; i++) {
3868		cur_bit = ((u32)0x1 << i);
3869		if (sig & cur_bit) {
3870			switch (cur_bit) {
3871			case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR:
3872				if (print)
3873					_print_next_block(par_num++, "CSEMI");
3874				break;
3875			case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR:
3876				if (print)
3877					_print_next_block(par_num++, "PXP");
3878				break;
3879			case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR:
3880				if (print)
3881					_print_next_block(par_num++,
3882					"PXPPCICLOCKCLIENT");
3883				break;
3884			case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR:
3885				if (print)
3886					_print_next_block(par_num++, "CFC");
3887				break;
3888			case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR:
3889				if (print)
3890					_print_next_block(par_num++, "CDU");
3891				break;
3892			case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR:
3893				if (print)
3894					_print_next_block(par_num++, "DMAE");
3895				break;
3896			case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR:
3897				if (print)
3898					_print_next_block(par_num++, "IGU");
3899				break;
3900			case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR:
3901				if (print)
3902					_print_next_block(par_num++, "MISC");
3903				break;
3904			}
3905
3906			/* Clear the bit */
3907			sig &= ~cur_bit;
3908		}
3909	}
3910
3911	return par_num;
3912}
3913
3914static inline int bnx2x_check_blocks_with_parity3(u32 sig, int par_num,
3915						  bool *global, bool print)
3916{
3917	int i = 0;
3918	u32 cur_bit = 0;
3919	for (i = 0; sig; i++) {
3920		cur_bit = ((u32)0x1 << i);
3921		if (sig & cur_bit) {
3922			switch (cur_bit) {
3923			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY:
3924				if (print)
3925					_print_next_block(par_num++, "MCP ROM");
3926				*global = true;
3927				break;
3928			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY:
3929				if (print)
3930					_print_next_block(par_num++,
3931							  "MCP UMP RX");
3932				*global = true;
3933				break;
3934			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY:
3935				if (print)
3936					_print_next_block(par_num++,
3937							  "MCP UMP TX");
3938				*global = true;
3939				break;
3940			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY:
3941				if (print)
3942					_print_next_block(par_num++,
3943							  "MCP SCPAD");
3944				*global = true;
3945				break;
3946			}
3947
3948			/* Clear the bit */
3949			sig &= ~cur_bit;
3950		}
3951	}
3952
3953	return par_num;
3954}
3955
3956static inline int bnx2x_check_blocks_with_parity4(u32 sig, int par_num,
3957						  bool print)
3958{
3959	int i = 0;
3960	u32 cur_bit = 0;
3961	for (i = 0; sig; i++) {
3962		cur_bit = ((u32)0x1 << i);
3963		if (sig & cur_bit) {
3964			switch (cur_bit) {
3965			case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR:
3966				if (print)
3967					_print_next_block(par_num++, "PGLUE_B");
3968				break;
3969			case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR:
3970				if (print)
3971					_print_next_block(par_num++, "ATC");
3972				break;
3973			}
3974
3975			/* Clear the bit */
3976			sig &= ~cur_bit;
3977		}
3978	}
3979
3980	return par_num;
3981}
3982
3983static inline bool bnx2x_parity_attn(struct bnx2x *bp, bool *global, bool print,
3984				     u32 *sig)
3985{
3986	if ((sig[0] & HW_PRTY_ASSERT_SET_0) ||
3987	    (sig[1] & HW_PRTY_ASSERT_SET_1) ||
3988	    (sig[2] & HW_PRTY_ASSERT_SET_2) ||
3989	    (sig[3] & HW_PRTY_ASSERT_SET_3) ||
3990	    (sig[4] & HW_PRTY_ASSERT_SET_4)) {
3991		int par_num = 0;
3992		DP(NETIF_MSG_HW, "Was parity error: HW block parity attention: "
3993			"[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x "
3994			"[4]:0x%08x\n",
3995			  sig[0] & HW_PRTY_ASSERT_SET_0,
3996			  sig[1] & HW_PRTY_ASSERT_SET_1,
3997			  sig[2] & HW_PRTY_ASSERT_SET_2,
3998			  sig[3] & HW_PRTY_ASSERT_SET_3,
3999			  sig[4] & HW_PRTY_ASSERT_SET_4);
4000		if (print)
4001			netdev_err(bp->dev,
4002				   "Parity errors detected in blocks: ");
4003		par_num = bnx2x_check_blocks_with_parity0(
4004			sig[0] & HW_PRTY_ASSERT_SET_0, par_num, print);
4005		par_num = bnx2x_check_blocks_with_parity1(
4006			sig[1] & HW_PRTY_ASSERT_SET_1, par_num, global, print);
4007		par_num = bnx2x_check_blocks_with_parity2(
4008			sig[2] & HW_PRTY_ASSERT_SET_2, par_num, print);
4009		par_num = bnx2x_check_blocks_with_parity3(
4010			sig[3] & HW_PRTY_ASSERT_SET_3, par_num, global, print);
4011		par_num = bnx2x_check_blocks_with_parity4(
4012			sig[4] & HW_PRTY_ASSERT_SET_4, par_num, print);
4013
4014		if (print)
4015			pr_cont("\n");
4016
4017		return true;
4018	} else
4019		return false;
4020}
4021
4022/**
4023 * bnx2x_chk_parity_attn - checks for parity attentions.
4024 *
4025 * @bp:		driver handle
4026 * @global:	true if there was a global attention
4027 * @print:	show parity attention in syslog
4028 */
4029bool bnx2x_chk_parity_attn(struct bnx2x *bp, bool *global, bool print)
4030{
4031	struct attn_route attn = { {0} };
4032	int port = BP_PORT(bp);
4033
4034	attn.sig[0] = REG_RD(bp,
4035		MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 +
4036			     port*4);
4037	attn.sig[1] = REG_RD(bp,
4038		MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 +
4039			     port*4);
4040	attn.sig[2] = REG_RD(bp,
4041		MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 +
4042			     port*4);
4043	attn.sig[3] = REG_RD(bp,
4044		MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 +
4045			     port*4);
4046
4047	if (!CHIP_IS_E1x(bp))
4048		attn.sig[4] = REG_RD(bp,
4049			MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 +
4050				     port*4);
4051
4052	return bnx2x_parity_attn(bp, global, print, attn.sig);
4053}
4054
4055
4056static inline void bnx2x_attn_int_deasserted4(struct bnx2x *bp, u32 attn)
4057{
4058	u32 val;
4059	if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) {
4060
4061		val = REG_RD(bp, PGLUE_B_REG_PGLUE_B_INT_STS_CLR);
4062		BNX2X_ERR("PGLUE hw attention 0x%x\n", val);
4063		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR)
4064			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
4065				  "ADDRESS_ERROR\n");
4066		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR)
4067			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
4068				  "INCORRECT_RCV_BEHAVIOR\n");
4069		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN)
4070			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
4071				  "WAS_ERROR_ATTN\n");
4072		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN)
4073			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
4074				  "VF_LENGTH_VIOLATION_ATTN\n");
4075		if (val &
4076		    PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN)
4077			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
4078				  "VF_GRC_SPACE_VIOLATION_ATTN\n");
4079		if (val &
4080		    PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN)
4081			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
4082				  "VF_MSIX_BAR_VIOLATION_ATTN\n");
4083		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN)
4084			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
4085				  "TCPL_ERROR_ATTN\n");
4086		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN)
4087			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
4088				  "TCPL_IN_TWO_RCBS_ATTN\n");
4089		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW)
4090			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
4091				  "CSSNOOP_FIFO_OVERFLOW\n");
4092	}
4093	if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) {
4094		val = REG_RD(bp, ATC_REG_ATC_INT_STS_CLR);
4095		BNX2X_ERR("ATC hw attention 0x%x\n", val);
4096		if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR)
4097			BNX2X_ERR("ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n");
4098		if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND)
4099			BNX2X_ERR("ATC_ATC_INT_STS_REG"
4100				  "_ATC_TCPL_TO_NOT_PEND\n");
4101		if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS)
4102			BNX2X_ERR("ATC_ATC_INT_STS_REG_"
4103				  "ATC_GPA_MULTIPLE_HITS\n");
4104		if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT)
4105			BNX2X_ERR("ATC_ATC_INT_STS_REG_"
4106				  "ATC_RCPL_TO_EMPTY_CNT\n");
4107		if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR)
4108			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n");
4109		if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU)
4110			BNX2X_ERR("ATC_ATC_INT_STS_REG_"
4111				  "ATC_IREQ_LESS_THAN_STU\n");
4112	}
4113
4114	if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
4115		    AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) {
4116		BNX2X_ERR("FATAL parity attention set4 0x%x\n",
4117		(u32)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
4118		    AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)));
4119	}
4120
4121}
4122
4123static void bnx2x_attn_int_deasserted(struct bnx2x *bp, u32 deasserted)
4124{
4125	struct attn_route attn, *group_mask;
4126	int port = BP_PORT(bp);
4127	int index;
4128	u32 reg_addr;
4129	u32 val;
4130	u32 aeu_mask;
4131	bool global = false;
4132
4133	/* need to take HW lock because MCP or other port might also
4134	   try to handle this event */
4135	bnx2x_acquire_alr(bp);
4136
4137	if (bnx2x_chk_parity_attn(bp, &global, true)) {
4138#ifndef BNX2X_STOP_ON_ERROR
4139		bp->recovery_state = BNX2X_RECOVERY_INIT;
4140		schedule_delayed_work(&bp->sp_rtnl_task, 0);
4141		/* Disable HW interrupts */
4142		bnx2x_int_disable(bp);
4143		/* In case of parity errors don't handle attentions so that
4144		 * other function would "see" parity errors.
4145		 */
4146#else
4147		bnx2x_panic();
4148#endif
4149		bnx2x_release_alr(bp);
4150		return;
4151	}
4152
4153	attn.sig[0] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4);
4154	attn.sig[1] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4);
4155	attn.sig[2] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4);
4156	attn.sig[3] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4);
4157	if (!CHIP_IS_E1x(bp))
4158		attn.sig[4] =
4159		      REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4);
4160	else
4161		attn.sig[4] = 0;
4162
4163	DP(NETIF_MSG_HW, "attn: %08x %08x %08x %08x %08x\n",
4164	   attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]);
4165
4166	for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
4167		if (deasserted & (1 << index)) {
4168			group_mask = &bp->attn_group[index];
4169
4170			DP(NETIF_MSG_HW, "group[%d]: %08x %08x "
4171					 "%08x %08x %08x\n",
4172			   index,
4173			   group_mask->sig[0], group_mask->sig[1],
4174			   group_mask->sig[2], group_mask->sig[3],
4175			   group_mask->sig[4]);
4176
4177			bnx2x_attn_int_deasserted4(bp,
4178					attn.sig[4] & group_mask->sig[4]);
4179			bnx2x_attn_int_deasserted3(bp,
4180					attn.sig[3] & group_mask->sig[3]);
4181			bnx2x_attn_int_deasserted1(bp,
4182					attn.sig[1] & group_mask->sig[1]);
4183			bnx2x_attn_int_deasserted2(bp,
4184					attn.sig[2] & group_mask->sig[2]);
4185			bnx2x_attn_int_deasserted0(bp,
4186					attn.sig[0] & group_mask->sig[0]);
4187		}
4188	}
4189
4190	bnx2x_release_alr(bp);
4191
4192	if (bp->common.int_block == INT_BLOCK_HC)
4193		reg_addr = (HC_REG_COMMAND_REG + port*32 +
4194			    COMMAND_REG_ATTN_BITS_CLR);
4195	else
4196		reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8);
4197
4198	val = ~deasserted;
4199	DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", val,
4200	   (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
4201	REG_WR(bp, reg_addr, val);
4202
4203	if (~bp->attn_state & deasserted)
4204		BNX2X_ERR("IGU ERROR\n");
4205
4206	reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
4207			  MISC_REG_AEU_MASK_ATTN_FUNC_0;
4208
4209	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4210	aeu_mask = REG_RD(bp, reg_addr);
4211
4212	DP(NETIF_MSG_HW, "aeu_mask %x  newly deasserted %x\n",
4213	   aeu_mask, deasserted);
4214	aeu_mask |= (deasserted & 0x3ff);
4215	DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
4216
4217	REG_WR(bp, reg_addr, aeu_mask);
4218	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4219
4220	DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
4221	bp->attn_state &= ~deasserted;
4222	DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
4223}
4224
4225static void bnx2x_attn_int(struct bnx2x *bp)
4226{
4227	/* read local copy of bits */
4228	u32 attn_bits = le32_to_cpu(bp->def_status_blk->atten_status_block.
4229								attn_bits);
4230	u32 attn_ack = le32_to_cpu(bp->def_status_blk->atten_status_block.
4231								attn_bits_ack);
4232	u32 attn_state = bp->attn_state;
4233
4234	/* look for changed bits */
4235	u32 asserted   =  attn_bits & ~attn_ack & ~attn_state;
4236	u32 deasserted = ~attn_bits &  attn_ack &  attn_state;
4237
4238	DP(NETIF_MSG_HW,
4239	   "attn_bits %x  attn_ack %x  asserted %x  deasserted %x\n",
4240	   attn_bits, attn_ack, asserted, deasserted);
4241
4242	if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state))
4243		BNX2X_ERR("BAD attention state\n");
4244
4245	/* handle bits that were raised */
4246	if (asserted)
4247		bnx2x_attn_int_asserted(bp, asserted);
4248
4249	if (deasserted)
4250		bnx2x_attn_int_deasserted(bp, deasserted);
4251}
4252
4253void bnx2x_igu_ack_sb(struct bnx2x *bp, u8 igu_sb_id, u8 segment,
4254		      u16 index, u8 op, u8 update)
4255{
4256	u32 igu_addr = BAR_IGU_INTMEM + (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8;
4257
4258	bnx2x_igu_ack_sb_gen(bp, igu_sb_id, segment, index, op, update,
4259			     igu_addr);
4260}
4261
4262static inline void bnx2x_update_eq_prod(struct bnx2x *bp, u16 prod)
4263{
4264	/* No memory barriers */
4265	storm_memset_eq_prod(bp, prod, BP_FUNC(bp));
4266	mmiowb(); /* keep prod updates ordered */
4267}
4268
4269#ifdef BCM_CNIC
4270static int  bnx2x_cnic_handle_cfc_del(struct bnx2x *bp, u32 cid,
4271				      union event_ring_elem *elem)
4272{
4273	u8 err = elem->message.error;
4274
4275	if (!bp->cnic_eth_dev.starting_cid  ||
4276	    (cid < bp->cnic_eth_dev.starting_cid &&
4277	    cid != bp->cnic_eth_dev.iscsi_l2_cid))
4278		return 1;
4279
4280	DP(BNX2X_MSG_SP, "got delete ramrod for CNIC CID %d\n", cid);
4281
4282	if (unlikely(err)) {
4283
4284		BNX2X_ERR("got delete ramrod for CNIC CID %d with error!\n",
4285			  cid);
4286		bnx2x_panic_dump(bp);
4287	}
4288	bnx2x_cnic_cfc_comp(bp, cid, err);
4289	return 0;
4290}
4291#endif
4292
4293static inline void bnx2x_handle_mcast_eqe(struct bnx2x *bp)
4294{
4295	struct bnx2x_mcast_ramrod_params rparam;
4296	int rc;
4297
4298	memset(&rparam, 0, sizeof(rparam));
4299
4300	rparam.mcast_obj = &bp->mcast_obj;
4301
4302	netif_addr_lock_bh(bp->dev);
4303
4304	/* Clear pending state for the last command */
4305	bp->mcast_obj.raw.clear_pending(&bp->mcast_obj.raw);
4306
4307	/* If there are pending mcast commands - send them */
4308	if (bp->mcast_obj.check_pending(&bp->mcast_obj)) {
4309		rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
4310		if (rc < 0)
4311			BNX2X_ERR("Failed to send pending mcast commands: %d\n",
4312				  rc);
4313	}
4314
4315	netif_addr_unlock_bh(bp->dev);
4316}
4317
4318static inline void bnx2x_handle_classification_eqe(struct bnx2x *bp,
4319						   union event_ring_elem *elem)
4320{
4321	unsigned long ramrod_flags = 0;
4322	int rc = 0;
4323	u32 cid = elem->message.data.eth_event.echo & BNX2X_SWCID_MASK;
4324	struct bnx2x_vlan_mac_obj *vlan_mac_obj;
4325
4326	/* Always push next commands out, don't wait here */
4327	__set_bit(RAMROD_CONT, &ramrod_flags);
4328
4329	switch (elem->message.data.eth_event.echo >> BNX2X_SWCID_SHIFT) {
4330	case BNX2X_FILTER_MAC_PENDING:
4331#ifdef BCM_CNIC
4332		if (cid == BNX2X_ISCSI_ETH_CID)
4333			vlan_mac_obj = &bp->iscsi_l2_mac_obj;
4334		else
4335#endif
4336			vlan_mac_obj = &bp->fp[cid].mac_obj;
4337
4338		break;
4339	case BNX2X_FILTER_MCAST_PENDING:
4340		/* This is only relevant for 57710 where multicast MACs are
4341		 * configured as unicast MACs using the same ramrod.
4342		 */
4343		bnx2x_handle_mcast_eqe(bp);
4344		return;
4345	default:
4346		BNX2X_ERR("Unsupported classification command: %d\n",
4347			  elem->message.data.eth_event.echo);
4348		return;
4349	}
4350
4351	rc = vlan_mac_obj->complete(bp, vlan_mac_obj, elem, &ramrod_flags);
4352
4353	if (rc < 0)
4354		BNX2X_ERR("Failed to schedule new commands: %d\n", rc);
4355	else if (rc > 0)
4356		DP(BNX2X_MSG_SP, "Scheduled next pending commands...\n");
4357
4358}
4359
4360#ifdef BCM_CNIC
4361static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start);
4362#endif
4363
4364static inline void bnx2x_handle_rx_mode_eqe(struct bnx2x *bp)
4365{
4366	netif_addr_lock_bh(bp->dev);
4367
4368	clear_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
4369
4370	/* Send rx_mode command again if was requested */
4371	if (test_and_clear_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state))
4372		bnx2x_set_storm_rx_mode(bp);
4373#ifdef BCM_CNIC
4374	else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED,
4375				    &bp->sp_state))
4376		bnx2x_set_iscsi_eth_rx_mode(bp, true);
4377	else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED,
4378				    &bp->sp_state))
4379		bnx2x_set_iscsi_eth_rx_mode(bp, false);
4380#endif
4381
4382	netif_addr_unlock_bh(bp->dev);
4383}
4384
4385static inline struct bnx2x_queue_sp_obj *bnx2x_cid_to_q_obj(
4386	struct bnx2x *bp, u32 cid)
4387{
4388	DP(BNX2X_MSG_SP, "retrieving fp from cid %d\n", cid);
4389#ifdef BCM_CNIC
4390	if (cid == BNX2X_FCOE_ETH_CID)
4391		return &bnx2x_fcoe(bp, q_obj);
4392	else
4393#endif
4394		return &bnx2x_fp(bp, CID_TO_FP(cid), q_obj);
4395}
4396
4397static void bnx2x_eq_int(struct bnx2x *bp)
4398{
4399	u16 hw_cons, sw_cons, sw_prod;
4400	union event_ring_elem *elem;
4401	u32 cid;
4402	u8 opcode;
4403	int spqe_cnt = 0;
4404	struct bnx2x_queue_sp_obj *q_obj;
4405	struct bnx2x_func_sp_obj *f_obj = &bp->func_obj;
4406	struct bnx2x_raw_obj *rss_raw = &bp->rss_conf_obj.raw;
4407
4408	hw_cons = le16_to_cpu(*bp->eq_cons_sb);
4409
4410	/* The hw_cos range is 1-255, 257 - the sw_cons range is 0-254, 256.
4411	 * when we get the the next-page we nned to adjust so the loop
4412	 * condition below will be met. The next element is the size of a
4413	 * regular element and hence incrementing by 1
4414	 */
4415	if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE)
4416		hw_cons++;
4417
4418	/* This function may never run in parallel with itself for a
4419	 * specific bp, thus there is no need in "paired" read memory
4420	 * barrier here.
4421	 */
4422	sw_cons = bp->eq_cons;
4423	sw_prod = bp->eq_prod;
4424
4425	DP(BNX2X_MSG_SP, "EQ:  hw_cons %u  sw_cons %u bp->eq_spq_left %x\n",
4426			hw_cons, sw_cons, atomic_read(&bp->eq_spq_left));
4427
4428	for (; sw_cons != hw_cons;
4429	      sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) {
4430
4431
4432		elem = &bp->eq_ring[EQ_DESC(sw_cons)];
4433
4434		cid = SW_CID(elem->message.data.cfc_del_event.cid);
4435		opcode = elem->message.opcode;
4436
4437
4438		/* handle eq element */
4439		switch (opcode) {
4440		case EVENT_RING_OPCODE_STAT_QUERY:
4441			DP(NETIF_MSG_TIMER, "got statistics comp event %d\n",
4442			   bp->stats_comp++);
4443			/* nothing to do with stats comp */
4444			goto next_spqe;
4445
4446		case EVENT_RING_OPCODE_CFC_DEL:
4447			/* handle according to cid range */
4448			/*
4449			 * we may want to verify here that the bp state is
4450			 * HALTING
4451			 */
4452			DP(BNX2X_MSG_SP,
4453			   "got delete ramrod for MULTI[%d]\n", cid);
4454#ifdef BCM_CNIC
4455			if (!bnx2x_cnic_handle_cfc_del(bp, cid, elem))
4456				goto next_spqe;
4457#endif
4458			q_obj = bnx2x_cid_to_q_obj(bp, cid);
4459
4460			if (q_obj->complete_cmd(bp, q_obj, BNX2X_Q_CMD_CFC_DEL))
4461				break;
4462
4463
4464
4465			goto next_spqe;
4466
4467		case EVENT_RING_OPCODE_STOP_TRAFFIC:
4468			DP(BNX2X_MSG_SP, "got STOP TRAFFIC\n");
4469			if (f_obj->complete_cmd(bp, f_obj,
4470						BNX2X_F_CMD_TX_STOP))
4471				break;
4472			bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_PAUSED);
4473			goto next_spqe;
4474
4475		case EVENT_RING_OPCODE_START_TRAFFIC:
4476			DP(BNX2X_MSG_SP, "got START TRAFFIC\n");
4477			if (f_obj->complete_cmd(bp, f_obj,
4478						BNX2X_F_CMD_TX_START))
4479				break;
4480			bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_RELEASED);
4481			goto next_spqe;
4482		case EVENT_RING_OPCODE_FUNCTION_START:
4483			DP(BNX2X_MSG_SP, "got FUNC_START ramrod\n");
4484			if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_START))
4485				break;
4486
4487			goto next_spqe;
4488
4489		case EVENT_RING_OPCODE_FUNCTION_STOP:
4490			DP(BNX2X_MSG_SP, "got FUNC_STOP ramrod\n");
4491			if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_STOP))
4492				break;
4493
4494			goto next_spqe;
4495		}
4496
4497		switch (opcode | bp->state) {
4498		case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
4499		      BNX2X_STATE_OPEN):
4500		case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
4501		      BNX2X_STATE_OPENING_WAIT4_PORT):
4502			cid = elem->message.data.eth_event.echo &
4503				BNX2X_SWCID_MASK;
4504			DP(BNX2X_MSG_SP, "got RSS_UPDATE ramrod. CID %d\n",
4505			   cid);
4506			rss_raw->clear_pending(rss_raw);
4507			break;
4508
4509		case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_OPEN):
4510		case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_DIAG):
4511		case (EVENT_RING_OPCODE_SET_MAC |
4512		      BNX2X_STATE_CLOSING_WAIT4_HALT):
4513		case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
4514		      BNX2X_STATE_OPEN):
4515		case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
4516		      BNX2X_STATE_DIAG):
4517		case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
4518		      BNX2X_STATE_CLOSING_WAIT4_HALT):
4519			DP(BNX2X_MSG_SP, "got (un)set mac ramrod\n");
4520			bnx2x_handle_classification_eqe(bp, elem);
4521			break;
4522
4523		case (EVENT_RING_OPCODE_MULTICAST_RULES |
4524		      BNX2X_STATE_OPEN):
4525		case (EVENT_RING_OPCODE_MULTICAST_RULES |
4526		      BNX2X_STATE_DIAG):
4527		case (EVENT_RING_OPCODE_MULTICAST_RULES |
4528		      BNX2X_STATE_CLOSING_WAIT4_HALT):
4529			DP(BNX2X_MSG_SP, "got mcast ramrod\n");
4530			bnx2x_handle_mcast_eqe(bp);
4531			break;
4532
4533		case (EVENT_RING_OPCODE_FILTERS_RULES |
4534		      BNX2X_STATE_OPEN):
4535		case (EVENT_RING_OPCODE_FILTERS_RULES |
4536		      BNX2X_STATE_DIAG):
4537		case (EVENT_RING_OPCODE_FILTERS_RULES |
4538		      BNX2X_STATE_CLOSING_WAIT4_HALT):
4539			DP(BNX2X_MSG_SP, "got rx_mode ramrod\n");
4540			bnx2x_handle_rx_mode_eqe(bp);
4541			break;
4542		default:
4543			/* unknown event log error and continue */
4544			BNX2X_ERR("Unknown EQ event %d, bp->state 0x%x\n",
4545				  elem->message.opcode, bp->state);
4546		}
4547next_spqe:
4548		spqe_cnt++;
4549	} /* for */
4550
4551	smp_mb__before_atomic_inc();
4552	atomic_add(spqe_cnt, &bp->eq_spq_left);
4553
4554	bp->eq_cons = sw_cons;
4555	bp->eq_prod = sw_prod;
4556	/* Make sure that above mem writes were issued towards the memory */
4557	smp_wmb();
4558
4559	/* update producer */
4560	bnx2x_update_eq_prod(bp, bp->eq_prod);
4561}
4562
4563static void bnx2x_sp_task(struct work_struct *work)
4564{
4565	struct bnx2x *bp = container_of(work, struct bnx2x, sp_task.work);
4566	u16 status;
4567
4568	status = bnx2x_update_dsb_idx(bp);
4569/*	if (status == 0)				     */
4570/*		BNX2X_ERR("spurious slowpath interrupt!\n"); */
4571
4572	DP(NETIF_MSG_INTR, "got a slowpath interrupt (status 0x%x)\n", status);
4573
4574	/* HW attentions */
4575	if (status & BNX2X_DEF_SB_ATT_IDX) {
4576		bnx2x_attn_int(bp);
4577		status &= ~BNX2X_DEF_SB_ATT_IDX;
4578	}
4579
4580	/* SP events: STAT_QUERY and others */
4581	if (status & BNX2X_DEF_SB_IDX) {
4582#ifdef BCM_CNIC
4583		struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp);
4584
4585		if ((!NO_FCOE(bp)) &&
4586			(bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) {
4587			/*
4588			 * Prevent local bottom-halves from running as
4589			 * we are going to change the local NAPI list.
4590			 */
4591			local_bh_disable();
4592			napi_schedule(&bnx2x_fcoe(bp, napi));
4593			local_bh_enable();
4594		}
4595#endif
4596		/* Handle EQ completions */
4597		bnx2x_eq_int(bp);
4598
4599		bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID,
4600			le16_to_cpu(bp->def_idx), IGU_INT_NOP, 1);
4601
4602		status &= ~BNX2X_DEF_SB_IDX;
4603	}
4604
4605	if (unlikely(status))
4606		DP(NETIF_MSG_INTR, "got an unknown interrupt! (status 0x%x)\n",
4607		   status);
4608
4609	bnx2x_ack_sb(bp, bp->igu_dsb_id, ATTENTION_ID,
4610	     le16_to_cpu(bp->def_att_idx), IGU_INT_ENABLE, 1);
4611}
4612
4613irqreturn_t bnx2x_msix_sp_int(int irq, void *dev_instance)
4614{
4615	struct net_device *dev = dev_instance;
4616	struct bnx2x *bp = netdev_priv(dev);
4617
4618	bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0,
4619		     IGU_INT_DISABLE, 0);
4620
4621#ifdef BNX2X_STOP_ON_ERROR
4622	if (unlikely(bp->panic))
4623		return IRQ_HANDLED;
4624#endif
4625
4626#ifdef BCM_CNIC
4627	{
4628		struct cnic_ops *c_ops;
4629
4630		rcu_read_lock();
4631		c_ops = rcu_dereference(bp->cnic_ops);
4632		if (c_ops)
4633			c_ops->cnic_handler(bp->cnic_data, NULL);
4634		rcu_read_unlock();
4635	}
4636#endif
4637	queue_delayed_work(bnx2x_wq, &bp->sp_task, 0);
4638
4639	return IRQ_HANDLED;
4640}
4641
4642/* end of slow path */
4643
4644
4645void bnx2x_drv_pulse(struct bnx2x *bp)
4646{
4647	SHMEM_WR(bp, func_mb[BP_FW_MB_IDX(bp)].drv_pulse_mb,
4648		 bp->fw_drv_pulse_wr_seq);
4649}
4650
4651
4652static void bnx2x_timer(unsigned long data)
4653{
4654	u8 cos;
4655	struct bnx2x *bp = (struct bnx2x *) data;
4656
4657	if (!netif_running(bp->dev))
4658		return;
4659
4660	if (poll) {
4661		struct bnx2x_fastpath *fp = &bp->fp[0];
4662
4663		for_each_cos_in_tx_queue(fp, cos)
4664			bnx2x_tx_int(bp, &fp->txdata[cos]);
4665		bnx2x_rx_int(fp, 1000);
4666	}
4667
4668	if (!BP_NOMCP(bp)) {
4669		int mb_idx = BP_FW_MB_IDX(bp);
4670		u32 drv_pulse;
4671		u32 mcp_pulse;
4672
4673		++bp->fw_drv_pulse_wr_seq;
4674		bp->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK;
4675		/* TBD - add SYSTEM_TIME */
4676		drv_pulse = bp->fw_drv_pulse_wr_seq;
4677		bnx2x_drv_pulse(bp);
4678
4679		mcp_pulse = (SHMEM_RD(bp, func_mb[mb_idx].mcp_pulse_mb) &
4680			     MCP_PULSE_SEQ_MASK);
4681		/* The delta between driver pulse and mcp response
4682		 * should be 1 (before mcp response) or 0 (after mcp response)
4683		 */
4684		if ((drv_pulse != mcp_pulse) &&
4685		    (drv_pulse != ((mcp_pulse + 1) & MCP_PULSE_SEQ_MASK))) {
4686			/* someone lost a heartbeat... */
4687			BNX2X_ERR("drv_pulse (0x%x) != mcp_pulse (0x%x)\n",
4688				  drv_pulse, mcp_pulse);
4689		}
4690	}
4691
4692	if (bp->state == BNX2X_STATE_OPEN)
4693		bnx2x_stats_handle(bp, STATS_EVENT_UPDATE);
4694
4695	mod_timer(&bp->timer, jiffies + bp->current_interval);
4696}
4697
4698/* end of Statistics */
4699
4700/* nic init */
4701
4702/*
4703 * nic init service functions
4704 */
4705
4706static inline void bnx2x_fill(struct bnx2x *bp, u32 addr, int fill, u32 len)
4707{
4708	u32 i;
4709	if (!(len%4) && !(addr%4))
4710		for (i = 0; i < len; i += 4)
4711			REG_WR(bp, addr + i, fill);
4712	else
4713		for (i = 0; i < len; i++)
4714			REG_WR8(bp, addr + i, fill);
4715
4716}
4717
4718/* helper: writes FP SP data to FW - data_size in dwords */
4719static inline void bnx2x_wr_fp_sb_data(struct bnx2x *bp,
4720				       int fw_sb_id,
4721				       u32 *sb_data_p,
4722				       u32 data_size)
4723{
4724	int index;
4725	for (index = 0; index < data_size; index++)
4726		REG_WR(bp, BAR_CSTRORM_INTMEM +
4727			CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) +
4728			sizeof(u32)*index,
4729			*(sb_data_p + index));
4730}
4731
4732static inline void bnx2x_zero_fp_sb(struct bnx2x *bp, int fw_sb_id)
4733{
4734	u32 *sb_data_p;
4735	u32 data_size = 0;
4736	struct hc_status_block_data_e2 sb_data_e2;
4737	struct hc_status_block_data_e1x sb_data_e1x;
4738
4739	/* disable the function first */
4740	if (!CHIP_IS_E1x(bp)) {
4741		memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
4742		sb_data_e2.common.state = SB_DISABLED;
4743		sb_data_e2.common.p_func.vf_valid = false;
4744		sb_data_p = (u32 *)&sb_data_e2;
4745		data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
4746	} else {
4747		memset(&sb_data_e1x, 0,
4748		       sizeof(struct hc_status_block_data_e1x));
4749		sb_data_e1x.common.state = SB_DISABLED;
4750		sb_data_e1x.common.p_func.vf_valid = false;
4751		sb_data_p = (u32 *)&sb_data_e1x;
4752		data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
4753	}
4754	bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
4755
4756	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
4757			CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id), 0,
4758			CSTORM_STATUS_BLOCK_SIZE);
4759	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
4760			CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id), 0,
4761			CSTORM_SYNC_BLOCK_SIZE);
4762}
4763
4764/* helper:  writes SP SB data to FW */
4765static inline void bnx2x_wr_sp_sb_data(struct bnx2x *bp,
4766		struct hc_sp_status_block_data *sp_sb_data)
4767{
4768	int func = BP_FUNC(bp);
4769	int i;
4770	for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++)
4771		REG_WR(bp, BAR_CSTRORM_INTMEM +
4772			CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) +
4773			i*sizeof(u32),
4774			*((u32 *)sp_sb_data + i));
4775}
4776
4777static inline void bnx2x_zero_sp_sb(struct bnx2x *bp)
4778{
4779	int func = BP_FUNC(bp);
4780	struct hc_sp_status_block_data sp_sb_data;
4781	memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
4782
4783	sp_sb_data.state = SB_DISABLED;
4784	sp_sb_data.p_func.vf_valid = false;
4785
4786	bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
4787
4788	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
4789			CSTORM_SP_STATUS_BLOCK_OFFSET(func), 0,
4790			CSTORM_SP_STATUS_BLOCK_SIZE);
4791	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
4792			CSTORM_SP_SYNC_BLOCK_OFFSET(func), 0,
4793			CSTORM_SP_SYNC_BLOCK_SIZE);
4794
4795}
4796
4797
4798static inline
4799void bnx2x_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm,
4800					   int igu_sb_id, int igu_seg_id)
4801{
4802	hc_sm->igu_sb_id = igu_sb_id;
4803	hc_sm->igu_seg_id = igu_seg_id;
4804	hc_sm->timer_value = 0xFF;
4805	hc_sm->time_to_expire = 0xFFFFFFFF;
4806}
4807
4808
4809/* allocates state machine ids. */
4810static inline
4811void bnx2x_map_sb_state_machines(struct hc_index_data *index_data)
4812{
4813	/* zero out state machine indices */
4814	/* rx indices */
4815	index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
4816
4817	/* tx indices */
4818	index_data[HC_INDEX_OOO_TX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
4819	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID;
4820	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID;
4821	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID;
4822
4823	/* map indices */
4824	/* rx indices */
4825	index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |=
4826		SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
4827
4828	/* tx indices */
4829	index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |=
4830		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
4831	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |=
4832		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
4833	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |=
4834		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
4835	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |=
4836		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
4837}
4838
4839static void bnx2x_init_sb(struct bnx2x *bp, dma_addr_t mapping, int vfid,
4840			  u8 vf_valid, int fw_sb_id, int igu_sb_id)
4841{
4842	int igu_seg_id;
4843
4844	struct hc_status_block_data_e2 sb_data_e2;
4845	struct hc_status_block_data_e1x sb_data_e1x;
4846	struct hc_status_block_sm  *hc_sm_p;
4847	int data_size;
4848	u32 *sb_data_p;
4849
4850	if (CHIP_INT_MODE_IS_BC(bp))
4851		igu_seg_id = HC_SEG_ACCESS_NORM;
4852	else
4853		igu_seg_id = IGU_SEG_ACCESS_NORM;
4854
4855	bnx2x_zero_fp_sb(bp, fw_sb_id);
4856
4857	if (!CHIP_IS_E1x(bp)) {
4858		memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
4859		sb_data_e2.common.state = SB_ENABLED;
4860		sb_data_e2.common.p_func.pf_id = BP_FUNC(bp);
4861		sb_data_e2.common.p_func.vf_id = vfid;
4862		sb_data_e2.common.p_func.vf_valid = vf_valid;
4863		sb_data_e2.common.p_func.vnic_id = BP_VN(bp);
4864		sb_data_e2.common.same_igu_sb_1b = true;
4865		sb_data_e2.common.host_sb_addr.hi = U64_HI(mapping);
4866		sb_data_e2.common.host_sb_addr.lo = U64_LO(mapping);
4867		hc_sm_p = sb_data_e2.common.state_machine;
4868		sb_data_p = (u32 *)&sb_data_e2;
4869		data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
4870		bnx2x_map_sb_state_machines(sb_data_e2.index_data);
4871	} else {
4872		memset(&sb_data_e1x, 0,
4873		       sizeof(struct hc_status_block_data_e1x));
4874		sb_data_e1x.common.state = SB_ENABLED;
4875		sb_data_e1x.common.p_func.pf_id = BP_FUNC(bp);
4876		sb_data_e1x.common.p_func.vf_id = 0xff;
4877		sb_data_e1x.common.p_func.vf_valid = false;
4878		sb_data_e1x.common.p_func.vnic_id = BP_VN(bp);
4879		sb_data_e1x.common.same_igu_sb_1b = true;
4880		sb_data_e1x.common.host_sb_addr.hi = U64_HI(mapping);
4881		sb_data_e1x.common.host_sb_addr.lo = U64_LO(mapping);
4882		hc_sm_p = sb_data_e1x.common.state_machine;
4883		sb_data_p = (u32 *)&sb_data_e1x;
4884		data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
4885		bnx2x_map_sb_state_machines(sb_data_e1x.index_data);
4886	}
4887
4888	bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID],
4889				       igu_sb_id, igu_seg_id);
4890	bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID],
4891				       igu_sb_id, igu_seg_id);
4892
4893	DP(NETIF_MSG_HW, "Init FW SB %d\n", fw_sb_id);
4894
4895	/* write indecies to HW */
4896	bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
4897}
4898
4899static void bnx2x_update_coalesce_sb(struct bnx2x *bp, u8 fw_sb_id,
4900				     u16 tx_usec, u16 rx_usec)
4901{
4902	bnx2x_update_coalesce_sb_index(bp, fw_sb_id, HC_INDEX_ETH_RX_CQ_CONS,
4903				    false, rx_usec);
4904	bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
4905				       HC_INDEX_ETH_TX_CQ_CONS_COS0, false,
4906				       tx_usec);
4907	bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
4908				       HC_INDEX_ETH_TX_CQ_CONS_COS1, false,
4909				       tx_usec);
4910	bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
4911				       HC_INDEX_ETH_TX_CQ_CONS_COS2, false,
4912				       tx_usec);
4913}
4914
4915static void bnx2x_init_def_sb(struct bnx2x *bp)
4916{
4917	struct host_sp_status_block *def_sb = bp->def_status_blk;
4918	dma_addr_t mapping = bp->def_status_blk_mapping;
4919	int igu_sp_sb_index;
4920	int igu_seg_id;
4921	int port = BP_PORT(bp);
4922	int func = BP_FUNC(bp);
4923	int reg_offset, reg_offset_en5;
4924	u64 section;
4925	int index;
4926	struct hc_sp_status_block_data sp_sb_data;
4927	memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
4928
4929	if (CHIP_INT_MODE_IS_BC(bp)) {
4930		igu_sp_sb_index = DEF_SB_IGU_ID;
4931		igu_seg_id = HC_SEG_ACCESS_DEF;
4932	} else {
4933		igu_sp_sb_index = bp->igu_dsb_id;
4934		igu_seg_id = IGU_SEG_ACCESS_DEF;
4935	}
4936
4937	/* ATTN */
4938	section = ((u64)mapping) + offsetof(struct host_sp_status_block,
4939					    atten_status_block);
4940	def_sb->atten_status_block.status_block_id = igu_sp_sb_index;
4941
4942	bp->attn_state = 0;
4943
4944	reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
4945			     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
4946	reg_offset_en5 = (port ? MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 :
4947				 MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0);
4948	for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
4949		int sindex;
4950		/* take care of sig[0]..sig[4] */
4951		for (sindex = 0; sindex < 4; sindex++)
4952			bp->attn_group[index].sig[sindex] =
4953			   REG_RD(bp, reg_offset + sindex*0x4 + 0x10*index);
4954
4955		if (!CHIP_IS_E1x(bp))
4956			/*
4957			 * enable5 is separate from the rest of the registers,
4958			 * and therefore the address skip is 4
4959			 * and not 16 between the different groups
4960			 */
4961			bp->attn_group[index].sig[4] = REG_RD(bp,
4962					reg_offset_en5 + 0x4*index);
4963		else
4964			bp->attn_group[index].sig[4] = 0;
4965	}
4966
4967	if (bp->common.int_block == INT_BLOCK_HC) {
4968		reg_offset = (port ? HC_REG_ATTN_MSG1_ADDR_L :
4969				     HC_REG_ATTN_MSG0_ADDR_L);
4970
4971		REG_WR(bp, reg_offset, U64_LO(section));
4972		REG_WR(bp, reg_offset + 4, U64_HI(section));
4973	} else if (!CHIP_IS_E1x(bp)) {
4974		REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section));
4975		REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section));
4976	}
4977
4978	section = ((u64)mapping) + offsetof(struct host_sp_status_block,
4979					    sp_sb);
4980
4981	bnx2x_zero_sp_sb(bp);
4982
4983	sp_sb_data.state		= SB_ENABLED;
4984	sp_sb_data.host_sb_addr.lo	= U64_LO(section);
4985	sp_sb_data.host_sb_addr.hi	= U64_HI(section);
4986	sp_sb_data.igu_sb_id		= igu_sp_sb_index;
4987	sp_sb_data.igu_seg_id		= igu_seg_id;
4988	sp_sb_data.p_func.pf_id		= func;
4989	sp_sb_data.p_func.vnic_id	= BP_VN(bp);
4990	sp_sb_data.p_func.vf_id		= 0xff;
4991
4992	bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
4993
4994	bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
4995}
4996
4997void bnx2x_update_coalesce(struct bnx2x *bp)
4998{
4999	int i;
5000
5001	for_each_eth_queue(bp, i)
5002		bnx2x_update_coalesce_sb(bp, bp->fp[i].fw_sb_id,
5003					 bp->tx_ticks, bp->rx_ticks);
5004}
5005
5006static void bnx2x_init_sp_ring(struct bnx2x *bp)
5007{
5008	spin_lock_init(&bp->spq_lock);
5009	atomic_set(&bp->cq_spq_left, MAX_SPQ_PENDING);
5010
5011	bp->spq_prod_idx = 0;
5012	bp->dsb_sp_prod = BNX2X_SP_DSB_INDEX;
5013	bp->spq_prod_bd = bp->spq;
5014	bp->spq_last_bd = bp->spq_prod_bd + MAX_SP_DESC_CNT;
5015}
5016
5017static void bnx2x_init_eq_ring(struct bnx2x *bp)
5018{
5019	int i;
5020	for (i = 1; i <= NUM_EQ_PAGES; i++) {
5021		union event_ring_elem *elem =
5022			&bp->eq_ring[EQ_DESC_CNT_PAGE * i - 1];
5023
5024		elem->next_page.addr.hi =
5025			cpu_to_le32(U64_HI(bp->eq_mapping +
5026				   BCM_PAGE_SIZE * (i % NUM_EQ_PAGES)));
5027		elem->next_page.addr.lo =
5028			cpu_to_le32(U64_LO(bp->eq_mapping +
5029				   BCM_PAGE_SIZE*(i % NUM_EQ_PAGES)));
5030	}
5031	bp->eq_cons = 0;
5032	bp->eq_prod = NUM_EQ_DESC;
5033	bp->eq_cons_sb = BNX2X_EQ_INDEX;
5034	/* we want a warning message before it gets rought... */
5035	atomic_set(&bp->eq_spq_left,
5036		min_t(int, MAX_SP_DESC_CNT - MAX_SPQ_PENDING, NUM_EQ_DESC) - 1);
5037}
5038
5039
5040/* called with netif_addr_lock_bh() */
5041void bnx2x_set_q_rx_mode(struct bnx2x *bp, u8 cl_id,
5042			 unsigned long rx_mode_flags,
5043			 unsigned long rx_accept_flags,
5044			 unsigned long tx_accept_flags,
5045			 unsigned long ramrod_flags)
5046{
5047	struct bnx2x_rx_mode_ramrod_params ramrod_param;
5048	int rc;
5049
5050	memset(&ramrod_param, 0, sizeof(ramrod_param));
5051
5052	/* Prepare ramrod parameters */
5053	ramrod_param.cid = 0;
5054	ramrod_param.cl_id = cl_id;
5055	ramrod_param.rx_mode_obj = &bp->rx_mode_obj;
5056	ramrod_param.func_id = BP_FUNC(bp);
5057
5058	ramrod_param.pstate = &bp->sp_state;
5059	ramrod_param.state = BNX2X_FILTER_RX_MODE_PENDING;
5060
5061	ramrod_param.rdata = bnx2x_sp(bp, rx_mode_rdata);
5062	ramrod_param.rdata_mapping = bnx2x_sp_mapping(bp, rx_mode_rdata);
5063
5064	set_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
5065
5066	ramrod_param.ramrod_flags = ramrod_flags;
5067	ramrod_param.rx_mode_flags = rx_mode_flags;
5068
5069	ramrod_param.rx_accept_flags = rx_accept_flags;
5070	ramrod_param.tx_accept_flags = tx_accept_flags;
5071
5072	rc = bnx2x_config_rx_mode(bp, &ramrod_param);
5073	if (rc < 0) {
5074		BNX2X_ERR("Set rx_mode %d failed\n", bp->rx_mode);
5075		return;
5076	}
5077}
5078
5079/* called with netif_addr_lock_bh() */
5080void bnx2x_set_storm_rx_mode(struct bnx2x *bp)
5081{
5082	unsigned long rx_mode_flags = 0, ramrod_flags = 0;
5083	unsigned long rx_accept_flags = 0, tx_accept_flags = 0;
5084
5085#ifdef BCM_CNIC
5086	if (!NO_FCOE(bp))
5087
5088		/* Configure rx_mode of FCoE Queue */
5089		__set_bit(BNX2X_RX_MODE_FCOE_ETH, &rx_mode_flags);
5090#endif
5091
5092	switch (bp->rx_mode) {
5093	case BNX2X_RX_MODE_NONE:
5094		/*
5095		 * 'drop all' supersedes any accept flags that may have been
5096		 * passed to the function.
5097		 */
5098		break;
5099	case BNX2X_RX_MODE_NORMAL:
5100		__set_bit(BNX2X_ACCEPT_UNICAST, &rx_accept_flags);
5101		__set_bit(BNX2X_ACCEPT_MULTICAST, &rx_accept_flags);
5102		__set_bit(BNX2X_ACCEPT_BROADCAST, &rx_accept_flags);
5103
5104		/* internal switching mode */
5105		__set_bit(BNX2X_ACCEPT_UNICAST, &tx_accept_flags);
5106		__set_bit(BNX2X_ACCEPT_MULTICAST, &tx_accept_flags);
5107		__set_bit(BNX2X_ACCEPT_BROADCAST, &tx_accept_flags);
5108
5109		break;
5110	case BNX2X_RX_MODE_ALLMULTI:
5111		__set_bit(BNX2X_ACCEPT_UNICAST, &rx_accept_flags);
5112		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &rx_accept_flags);
5113		__set_bit(BNX2X_ACCEPT_BROADCAST, &rx_accept_flags);
5114
5115		/* internal switching mode */
5116		__set_bit(BNX2X_ACCEPT_UNICAST, &tx_accept_flags);
5117		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &tx_accept_flags);
5118		__set_bit(BNX2X_ACCEPT_BROADCAST, &tx_accept_flags);
5119
5120		break;
5121	case BNX2X_RX_MODE_PROMISC:
5122		/* According to deffinition of SI mode, iface in promisc mode
5123		 * should receive matched and unmatched (in resolution of port)
5124		 * unicast packets.
5125		 */
5126		__set_bit(BNX2X_ACCEPT_UNMATCHED, &rx_accept_flags);
5127		__set_bit(BNX2X_ACCEPT_UNICAST, &rx_accept_flags);
5128		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &rx_accept_flags);
5129		__set_bit(BNX2X_ACCEPT_BROADCAST, &rx_accept_flags);
5130
5131		/* internal switching mode */
5132		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &tx_accept_flags);
5133		__set_bit(BNX2X_ACCEPT_BROADCAST, &tx_accept_flags);
5134
5135		if (IS_MF_SI(bp))
5136			__set_bit(BNX2X_ACCEPT_ALL_UNICAST, &tx_accept_flags);
5137		else
5138			__set_bit(BNX2X_ACCEPT_UNICAST, &tx_accept_flags);
5139
5140		break;
5141	default:
5142		BNX2X_ERR("Unknown rx_mode: %d\n", bp->rx_mode);
5143		return;
5144	}
5145
5146	if (bp->rx_mode != BNX2X_RX_MODE_NONE) {
5147		__set_bit(BNX2X_ACCEPT_ANY_VLAN, &rx_accept_flags);
5148		__set_bit(BNX2X_ACCEPT_ANY_VLAN, &tx_accept_flags);
5149	}
5150
5151	__set_bit(RAMROD_RX, &ramrod_flags);
5152	__set_bit(RAMROD_TX, &ramrod_flags);
5153
5154	bnx2x_set_q_rx_mode(bp, bp->fp->cl_id, rx_mode_flags, rx_accept_flags,
5155			    tx_accept_flags, ramrod_flags);
5156}
5157
5158static void bnx2x_init_internal_common(struct bnx2x *bp)
5159{
5160	int i;
5161
5162	if (IS_MF_SI(bp))
5163		/*
5164		 * In switch independent mode, the TSTORM needs to accept
5165		 * packets that failed classification, since approximate match
5166		 * mac addresses aren't written to NIG LLH
5167		 */
5168		REG_WR8(bp, BAR_TSTRORM_INTMEM +
5169			    TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET, 2);
5170	else if (!CHIP_IS_E1(bp)) /* 57710 doesn't support MF */
5171		REG_WR8(bp, BAR_TSTRORM_INTMEM +
5172			    TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET, 0);
5173
5174	/* Zero this manually as its initialization is
5175	   currently missing in the initTool */
5176	for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++)
5177		REG_WR(bp, BAR_USTRORM_INTMEM +
5178		       USTORM_AGG_DATA_OFFSET + i * 4, 0);
5179	if (!CHIP_IS_E1x(bp)) {
5180		REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET,
5181			CHIP_INT_MODE_IS_BC(bp) ?
5182			HC_IGU_BC_MODE : HC_IGU_NBC_MODE);
5183	}
5184}
5185
5186static void bnx2x_init_internal(struct bnx2x *bp, u32 load_code)
5187{
5188	switch (load_code) {
5189	case FW_MSG_CODE_DRV_LOAD_COMMON:
5190	case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP:
5191		bnx2x_init_internal_common(bp);
5192		/* no break */
5193
5194	case FW_MSG_CODE_DRV_LOAD_PORT:
5195		/* nothing to do */
5196		/* no break */
5197
5198	case FW_MSG_CODE_DRV_LOAD_FUNCTION:
5199		/* internal memory per function is
5200		   initialized inside bnx2x_pf_init */
5201		break;
5202
5203	default:
5204		BNX2X_ERR("Unknown load_code (0x%x) from MCP\n", load_code);
5205		break;
5206	}
5207}
5208
5209static inline u8 bnx2x_fp_igu_sb_id(struct bnx2x_fastpath *fp)
5210{
5211	return fp->bp->igu_base_sb + fp->index + CNIC_PRESENT;
5212}
5213
5214static inline u8 bnx2x_fp_fw_sb_id(struct bnx2x_fastpath *fp)
5215{
5216	return fp->bp->base_fw_ndsb + fp->index + CNIC_PRESENT;
5217}
5218
5219static inline u8 bnx2x_fp_cl_id(struct bnx2x_fastpath *fp)
5220{
5221	if (CHIP_IS_E1x(fp->bp))
5222		return BP_L_ID(fp->bp) + fp->index;
5223	else	/* We want Client ID to be the same as IGU SB ID for 57712 */
5224		return bnx2x_fp_igu_sb_id(fp);
5225}
5226
5227static void bnx2x_init_eth_fp(struct bnx2x *bp, int fp_idx)
5228{
5229	struct bnx2x_fastpath *fp = &bp->fp[fp_idx];
5230	u8 cos;
5231	unsigned long q_type = 0;
5232	u32 cids[BNX2X_MULTI_TX_COS] = { 0 };
5233	fp->rx_queue = fp_idx;
5234	fp->cid = fp_idx;
5235	fp->cl_id = bnx2x_fp_cl_id(fp);
5236	fp->fw_sb_id = bnx2x_fp_fw_sb_id(fp);
5237	fp->igu_sb_id = bnx2x_fp_igu_sb_id(fp);
5238	/* qZone id equals to FW (per path) client id */
5239	fp->cl_qzone_id  = bnx2x_fp_qzone_id(fp);
5240
5241	/* init shortcut */
5242	fp->ustorm_rx_prods_offset = bnx2x_rx_ustorm_prods_offset(fp);
5243	/* Setup SB indicies */
5244	fp->rx_cons_sb = BNX2X_RX_SB_INDEX;
5245
5246	/* Configure Queue State object */
5247	__set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
5248	__set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
5249
5250	BUG_ON(fp->max_cos > BNX2X_MULTI_TX_COS);
5251
5252	/* init tx data */
5253	for_each_cos_in_tx_queue(fp, cos) {
5254		bnx2x_init_txdata(bp, &fp->txdata[cos],
5255				  CID_COS_TO_TX_ONLY_CID(fp->cid, cos),
5256				  FP_COS_TO_TXQ(fp, cos),
5257				  BNX2X_TX_SB_INDEX_BASE + cos);
5258		cids[cos] = fp->txdata[cos].cid;
5259	}
5260
5261	bnx2x_init_queue_obj(bp, &fp->q_obj, fp->cl_id, cids, fp->max_cos,
5262			     BP_FUNC(bp), bnx2x_sp(bp, q_rdata),
5263			     bnx2x_sp_mapping(bp, q_rdata), q_type);
5264
5265	/**
5266	 * Configure classification DBs: Always enable Tx switching
5267	 */
5268	bnx2x_init_vlan_mac_fp_objs(fp, BNX2X_OBJ_TYPE_RX_TX);
5269
5270	DP(NETIF_MSG_IFUP, "queue[%d]:  bnx2x_init_sb(%p,%p)  "
5271				   "cl_id %d  fw_sb %d  igu_sb %d\n",
5272		   fp_idx, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id,
5273		   fp->igu_sb_id);
5274	bnx2x_init_sb(bp, fp->status_blk_mapping, BNX2X_VF_ID_INVALID, false,
5275		      fp->fw_sb_id, fp->igu_sb_id);
5276
5277	bnx2x_update_fpsb_idx(fp);
5278}
5279
5280void bnx2x_nic_init(struct bnx2x *bp, u32 load_code)
5281{
5282	int i;
5283
5284	for_each_eth_queue(bp, i)
5285		bnx2x_init_eth_fp(bp, i);
5286#ifdef BCM_CNIC
5287	if (!NO_FCOE(bp))
5288		bnx2x_init_fcoe_fp(bp);
5289
5290	bnx2x_init_sb(bp, bp->cnic_sb_mapping,
5291		      BNX2X_VF_ID_INVALID, false,
5292		      bnx2x_cnic_fw_sb_id(bp), bnx2x_cnic_igu_sb_id(bp));
5293
5294#endif
5295
5296	/* Initialize MOD_ABS interrupts */
5297	bnx2x_init_mod_abs_int(bp, &bp->link_vars, bp->common.chip_id,
5298			       bp->common.shmem_base, bp->common.shmem2_base,
5299			       BP_PORT(bp));
5300	/* ensure status block indices were read */
5301	rmb();
5302
5303	bnx2x_init_def_sb(bp);
5304	bnx2x_update_dsb_idx(bp);
5305	bnx2x_init_rx_rings(bp);
5306	bnx2x_init_tx_rings(bp);
5307	bnx2x_init_sp_ring(bp);
5308	bnx2x_init_eq_ring(bp);
5309	bnx2x_init_internal(bp, load_code);
5310	bnx2x_pf_init(bp);
5311	bnx2x_stats_init(bp);
5312
5313	/* flush all before enabling interrupts */
5314	mb();
5315	mmiowb();
5316
5317	bnx2x_int_enable(bp);
5318
5319	/* Check for SPIO5 */
5320	bnx2x_attn_int_deasserted0(bp,
5321		REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + BP_PORT(bp)*4) &
5322				   AEU_INPUTS_ATTN_BITS_SPIO5);
5323}
5324
5325/* end of nic init */
5326
5327/*
5328 * gzip service functions
5329 */
5330
5331static int bnx2x_gunzip_init(struct bnx2x *bp)
5332{
5333	bp->gunzip_buf = dma_alloc_coherent(&bp->pdev->dev, FW_BUF_SIZE,
5334					    &bp->gunzip_mapping, GFP_KERNEL);
5335	if (bp->gunzip_buf  == NULL)
5336		goto gunzip_nomem1;
5337
5338	bp->strm = kmalloc(sizeof(*bp->strm), GFP_KERNEL);
5339	if (bp->strm  == NULL)
5340		goto gunzip_nomem2;
5341
5342	bp->strm->workspace = vmalloc(zlib_inflate_workspacesize());
5343	if (bp->strm->workspace == NULL)
5344		goto gunzip_nomem3;
5345
5346	return 0;
5347
5348gunzip_nomem3:
5349	kfree(bp->strm);
5350	bp->strm = NULL;
5351
5352gunzip_nomem2:
5353	dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
5354			  bp->gunzip_mapping);
5355	bp->gunzip_buf = NULL;
5356
5357gunzip_nomem1:
5358	netdev_err(bp->dev, "Cannot allocate firmware buffer for"
5359	       " un-compression\n");
5360	return -ENOMEM;
5361}
5362
5363static void bnx2x_gunzip_end(struct bnx2x *bp)
5364{
5365	if (bp->strm) {
5366		vfree(bp->strm->workspace);
5367		kfree(bp->strm);
5368		bp->strm = NULL;
5369	}
5370
5371	if (bp->gunzip_buf) {
5372		dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
5373				  bp->gunzip_mapping);
5374		bp->gunzip_buf = NULL;
5375	}
5376}
5377
5378static int bnx2x_gunzip(struct bnx2x *bp, const u8 *zbuf, int len)
5379{
5380	int n, rc;
5381
5382	/* check gzip header */
5383	if ((zbuf[0] != 0x1f) || (zbuf[1] != 0x8b) || (zbuf[2] != Z_DEFLATED)) {
5384		BNX2X_ERR("Bad gzip header\n");
5385		return -EINVAL;
5386	}
5387
5388	n = 10;
5389
5390#define FNAME				0x8
5391
5392	if (zbuf[3] & FNAME)
5393		while ((zbuf[n++] != 0) && (n < len));
5394
5395	bp->strm->next_in = (typeof(bp->strm->next_in))zbuf + n;
5396	bp->strm->avail_in = len - n;
5397	bp->strm->next_out = bp->gunzip_buf;
5398	bp->strm->avail_out = FW_BUF_SIZE;
5399
5400	rc = zlib_inflateInit2(bp->strm, -MAX_WBITS);
5401	if (rc != Z_OK)
5402		return rc;
5403
5404	rc = zlib_inflate(bp->strm, Z_FINISH);
5405	if ((rc != Z_OK) && (rc != Z_STREAM_END))
5406		netdev_err(bp->dev, "Firmware decompression error: %s\n",
5407			   bp->strm->msg);
5408
5409	bp->gunzip_outlen = (FW_BUF_SIZE - bp->strm->avail_out);
5410	if (bp->gunzip_outlen & 0x3)
5411		netdev_err(bp->dev, "Firmware decompression error:"
5412				    " gunzip_outlen (%d) not aligned\n",
5413				bp->gunzip_outlen);
5414	bp->gunzip_outlen >>= 2;
5415
5416	zlib_inflateEnd(bp->strm);
5417
5418	if (rc == Z_STREAM_END)
5419		return 0;
5420
5421	return rc;
5422}
5423
5424/* nic load/unload */
5425
5426/*
5427 * General service functions
5428 */
5429
5430/* send a NIG loopback debug packet */
5431static void bnx2x_lb_pckt(struct bnx2x *bp)
5432{
5433	u32 wb_write[3];
5434
5435	/* Ethernet source and destination addresses */
5436	wb_write[0] = 0x55555555;
5437	wb_write[1] = 0x55555555;
5438	wb_write[2] = 0x20;		/* SOP */
5439	REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
5440
5441	/* NON-IP protocol */
5442	wb_write[0] = 0x09000000;
5443	wb_write[1] = 0x55555555;
5444	wb_write[2] = 0x10;		/* EOP, eop_bvalid = 0 */
5445	REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
5446}
5447
5448/* some of the internal memories
5449 * are not directly readable from the driver
5450 * to test them we send debug packets
5451 */
5452static int bnx2x_int_mem_test(struct bnx2x *bp)
5453{
5454	int factor;
5455	int count, i;
5456	u32 val = 0;
5457
5458	if (CHIP_REV_IS_FPGA(bp))
5459		factor = 120;
5460	else if (CHIP_REV_IS_EMUL(bp))
5461		factor = 200;
5462	else
5463		factor = 1;
5464
5465	/* Disable inputs of parser neighbor blocks */
5466	REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
5467	REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
5468	REG_WR(bp, CFC_REG_DEBUG0, 0x1);
5469	REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
5470
5471	/*  Write 0 to parser credits for CFC search request */
5472	REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
5473
5474	/* send Ethernet packet */
5475	bnx2x_lb_pckt(bp);
5476
5477	/* TODO do i reset NIG statistic? */
5478	/* Wait until NIG register shows 1 packet of size 0x10 */
5479	count = 1000 * factor;
5480	while (count) {
5481
5482		bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
5483		val = *bnx2x_sp(bp, wb_data[0]);
5484		if (val == 0x10)
5485			break;
5486
5487		msleep(10);
5488		count--;
5489	}
5490	if (val != 0x10) {
5491		BNX2X_ERR("NIG timeout  val = 0x%x\n", val);
5492		return -1;
5493	}
5494
5495	/* Wait until PRS register shows 1 packet */
5496	count = 1000 * factor;
5497	while (count) {
5498		val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
5499		if (val == 1)
5500			break;
5501
5502		msleep(10);
5503		count--;
5504	}
5505	if (val != 0x1) {
5506		BNX2X_ERR("PRS timeout val = 0x%x\n", val);
5507		return -2;
5508	}
5509
5510	/* Reset and init BRB, PRS */
5511	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
5512	msleep(50);
5513	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
5514	msleep(50);
5515	bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
5516	bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
5517
5518	DP(NETIF_MSG_HW, "part2\n");
5519
5520	/* Disable inputs of parser neighbor blocks */
5521	REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
5522	REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
5523	REG_WR(bp, CFC_REG_DEBUG0, 0x1);
5524	REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
5525
5526	/* Write 0 to parser credits for CFC search request */
5527	REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
5528
5529	/* send 10 Ethernet packets */
5530	for (i = 0; i < 10; i++)
5531		bnx2x_lb_pckt(bp);
5532
5533	/* Wait until NIG register shows 10 + 1
5534	   packets of size 11*0x10 = 0xb0 */
5535	count = 1000 * factor;
5536	while (count) {
5537
5538		bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
5539		val = *bnx2x_sp(bp, wb_data[0]);
5540		if (val == 0xb0)
5541			break;
5542
5543		msleep(10);
5544		count--;
5545	}
5546	if (val != 0xb0) {
5547		BNX2X_ERR("NIG timeout  val = 0x%x\n", val);
5548		return -3;
5549	}
5550
5551	/* Wait until PRS register shows 2 packets */
5552	val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
5553	if (val != 2)
5554		BNX2X_ERR("PRS timeout  val = 0x%x\n", val);
5555
5556	/* Write 1 to parser credits for CFC search request */
5557	REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1);
5558
5559	/* Wait until PRS register shows 3 packets */
5560	msleep(10 * factor);
5561	/* Wait until NIG register shows 1 packet of size 0x10 */
5562	val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
5563	if (val != 3)
5564		BNX2X_ERR("PRS timeout  val = 0x%x\n", val);
5565
5566	/* clear NIG EOP FIFO */
5567	for (i = 0; i < 11; i++)
5568		REG_RD(bp, NIG_REG_INGRESS_EOP_LB_FIFO);
5569	val = REG_RD(bp, NIG_REG_INGRESS_EOP_LB_EMPTY);
5570	if (val != 1) {
5571		BNX2X_ERR("clear of NIG failed\n");
5572		return -4;
5573	}
5574
5575	/* Reset and init BRB, PRS, NIG */
5576	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
5577	msleep(50);
5578	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
5579	msleep(50);
5580	bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
5581	bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
5582#ifndef BCM_CNIC
5583	/* set NIC mode */
5584	REG_WR(bp, PRS_REG_NIC_MODE, 1);
5585#endif
5586
5587	/* Enable inputs of parser neighbor blocks */
5588	REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x7fffffff);
5589	REG_WR(bp, TCM_REG_PRS_IFEN, 0x1);
5590	REG_WR(bp, CFC_REG_DEBUG0, 0x0);
5591	REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x1);
5592
5593	DP(NETIF_MSG_HW, "done\n");
5594
5595	return 0; /* OK */
5596}
5597
5598static void bnx2x_enable_blocks_attention(struct bnx2x *bp)
5599{
5600	REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
5601	if (!CHIP_IS_E1x(bp))
5602		REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0x40);
5603	else
5604		REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0);
5605	REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
5606	REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
5607	/*
5608	 * mask read length error interrupts in brb for parser
5609	 * (parsing unit and 'checksum and crc' unit)
5610	 * these errors are legal (PU reads fixed length and CAC can cause
5611	 * read length error on truncated packets)
5612	 */
5613	REG_WR(bp, BRB1_REG_BRB1_INT_MASK, 0xFC00);
5614	REG_WR(bp, QM_REG_QM_INT_MASK, 0);
5615	REG_WR(bp, TM_REG_TM_INT_MASK, 0);
5616	REG_WR(bp, XSDM_REG_XSDM_INT_MASK_0, 0);
5617	REG_WR(bp, XSDM_REG_XSDM_INT_MASK_1, 0);
5618	REG_WR(bp, XCM_REG_XCM_INT_MASK, 0);
5619/*	REG_WR(bp, XSEM_REG_XSEM_INT_MASK_0, 0); */
5620/*	REG_WR(bp, XSEM_REG_XSEM_INT_MASK_1, 0); */
5621	REG_WR(bp, USDM_REG_USDM_INT_MASK_0, 0);
5622	REG_WR(bp, USDM_REG_USDM_INT_MASK_1, 0);
5623	REG_WR(bp, UCM_REG_UCM_INT_MASK, 0);
5624/*	REG_WR(bp, USEM_REG_USEM_INT_MASK_0, 0); */
5625/*	REG_WR(bp, USEM_REG_USEM_INT_MASK_1, 0); */
5626	REG_WR(bp, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0);
5627	REG_WR(bp, CSDM_REG_CSDM_INT_MASK_0, 0);
5628	REG_WR(bp, CSDM_REG_CSDM_INT_MASK_1, 0);
5629	REG_WR(bp, CCM_REG_CCM_INT_MASK, 0);
5630/*	REG_WR(bp, CSEM_REG_CSEM_INT_MASK_0, 0); */
5631/*	REG_WR(bp, CSEM_REG_CSEM_INT_MASK_1, 0); */
5632
5633	if (CHIP_REV_IS_FPGA(bp))
5634		REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0, 0x580000);
5635	else if (!CHIP_IS_E1x(bp))
5636		REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0,
5637			   (PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF
5638				| PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT
5639				| PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN
5640				| PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED
5641				| PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED));
5642	else
5643		REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0, 0x480000);
5644	REG_WR(bp, TSDM_REG_TSDM_INT_MASK_0, 0);
5645	REG_WR(bp, TSDM_REG_TSDM_INT_MASK_1, 0);
5646	REG_WR(bp, TCM_REG_TCM_INT_MASK, 0);
5647/*	REG_WR(bp, TSEM_REG_TSEM_INT_MASK_0, 0); */
5648
5649	if (!CHIP_IS_E1x(bp))
5650		/* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */
5651		REG_WR(bp, TSEM_REG_TSEM_INT_MASK_1, 0x07ff);
5652
5653	REG_WR(bp, CDU_REG_CDU_INT_MASK, 0);
5654	REG_WR(bp, DMAE_REG_DMAE_INT_MASK, 0);
5655/*	REG_WR(bp, MISC_REG_MISC_INT_MASK, 0); */
5656	REG_WR(bp, PBF_REG_PBF_INT_MASK, 0x18);		/* bit 3,4 masked */
5657}
5658
5659static void bnx2x_reset_common(struct bnx2x *bp)
5660{
5661	u32 val = 0x1400;
5662
5663	/* reset_common */
5664	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
5665	       0xd3ffff7f);
5666
5667	if (CHIP_IS_E3(bp)) {
5668		val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
5669		val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
5670	}
5671
5672	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR, val);
5673}
5674
5675static void bnx2x_setup_dmae(struct bnx2x *bp)
5676{
5677	bp->dmae_ready = 0;
5678	spin_lock_init(&bp->dmae_lock);
5679}
5680
5681static void bnx2x_init_pxp(struct bnx2x *bp)
5682{
5683	u16 devctl;
5684	int r_order, w_order;
5685
5686	pci_read_config_word(bp->pdev,
5687			     pci_pcie_cap(bp->pdev) + PCI_EXP_DEVCTL, &devctl);
5688	DP(NETIF_MSG_HW, "read 0x%x from devctl\n", devctl);
5689	w_order = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
5690	if (bp->mrrs == -1)
5691		r_order = ((devctl & PCI_EXP_DEVCTL_READRQ) >> 12);
5692	else {
5693		DP(NETIF_MSG_HW, "force read order to %d\n", bp->mrrs);
5694		r_order = bp->mrrs;
5695	}
5696
5697	bnx2x_init_pxp_arb(bp, r_order, w_order);
5698}
5699
5700static void bnx2x_setup_fan_failure_detection(struct bnx2x *bp)
5701{
5702	int is_required;
5703	u32 val;
5704	int port;
5705
5706	if (BP_NOMCP(bp))
5707		return;
5708
5709	is_required = 0;
5710	val = SHMEM_RD(bp, dev_info.shared_hw_config.config2) &
5711	      SHARED_HW_CFG_FAN_FAILURE_MASK;
5712
5713	if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED)
5714		is_required = 1;
5715
5716	/*
5717	 * The fan failure mechanism is usually related to the PHY type since
5718	 * the power consumption of the board is affected by the PHY. Currently,
5719	 * fan is required for most designs with SFX7101, BCM8727 and BCM8481.
5720	 */
5721	else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE)
5722		for (port = PORT_0; port < PORT_MAX; port++) {
5723			is_required |=
5724				bnx2x_fan_failure_det_req(
5725					bp,
5726					bp->common.shmem_base,
5727					bp->common.shmem2_base,
5728					port);
5729		}
5730
5731	DP(NETIF_MSG_HW, "fan detection setting: %d\n", is_required);
5732
5733	if (is_required == 0)
5734		return;
5735
5736	/* Fan failure is indicated by SPIO 5 */
5737	bnx2x_set_spio(bp, MISC_REGISTERS_SPIO_5,
5738		       MISC_REGISTERS_SPIO_INPUT_HI_Z);
5739
5740	/* set to active low mode */
5741	val = REG_RD(bp, MISC_REG_SPIO_INT);
5742	val |= ((1 << MISC_REGISTERS_SPIO_5) <<
5743					MISC_REGISTERS_SPIO_INT_OLD_SET_POS);
5744	REG_WR(bp, MISC_REG_SPIO_INT, val);
5745
5746	/* enable interrupt to signal the IGU */
5747	val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
5748	val |= (1 << MISC_REGISTERS_SPIO_5);
5749	REG_WR(bp, MISC_REG_SPIO_EVENT_EN, val);
5750}
5751
5752static void bnx2x_pretend_func(struct bnx2x *bp, u8 pretend_func_num)
5753{
5754	u32 offset = 0;
5755
5756	if (CHIP_IS_E1(bp))
5757		return;
5758	if (CHIP_IS_E1H(bp) && (pretend_func_num >= E1H_FUNC_MAX))
5759		return;
5760
5761	switch (BP_ABS_FUNC(bp)) {
5762	case 0:
5763		offset = PXP2_REG_PGL_PRETEND_FUNC_F0;
5764		break;
5765	case 1:
5766		offset = PXP2_REG_PGL_PRETEND_FUNC_F1;
5767		break;
5768	case 2:
5769		offset = PXP2_REG_PGL_PRETEND_FUNC_F2;
5770		break;
5771	case 3:
5772		offset = PXP2_REG_PGL_PRETEND_FUNC_F3;
5773		break;
5774	case 4:
5775		offset = PXP2_REG_PGL_PRETEND_FUNC_F4;
5776		break;
5777	case 5:
5778		offset = PXP2_REG_PGL_PRETEND_FUNC_F5;
5779		break;
5780	case 6:
5781		offset = PXP2_REG_PGL_PRETEND_FUNC_F6;
5782		break;
5783	case 7:
5784		offset = PXP2_REG_PGL_PRETEND_FUNC_F7;
5785		break;
5786	default:
5787		return;
5788	}
5789
5790	REG_WR(bp, offset, pretend_func_num);
5791	REG_RD(bp, offset);
5792	DP(NETIF_MSG_HW, "Pretending to func %d\n", pretend_func_num);
5793}
5794
5795void bnx2x_pf_disable(struct bnx2x *bp)
5796{
5797	u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
5798	val &= ~IGU_PF_CONF_FUNC_EN;
5799
5800	REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
5801	REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
5802	REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 0);
5803}
5804
5805static inline void bnx2x__common_init_phy(struct bnx2x *bp)
5806{
5807	u32 shmem_base[2], shmem2_base[2];
5808	shmem_base[0] =  bp->common.shmem_base;
5809	shmem2_base[0] = bp->common.shmem2_base;
5810	if (!CHIP_IS_E1x(bp)) {
5811		shmem_base[1] =
5812			SHMEM2_RD(bp, other_shmem_base_addr);
5813		shmem2_base[1] =
5814			SHMEM2_RD(bp, other_shmem2_base_addr);
5815	}
5816	bnx2x_acquire_phy_lock(bp);
5817	bnx2x_common_init_phy(bp, shmem_base, shmem2_base,
5818			      bp->common.chip_id);
5819	bnx2x_release_phy_lock(bp);
5820}
5821
5822/**
5823 * bnx2x_init_hw_common - initialize the HW at the COMMON phase.
5824 *
5825 * @bp:		driver handle
5826 */
5827static int bnx2x_init_hw_common(struct bnx2x *bp)
5828{
5829	u32 val;
5830
5831	DP(BNX2X_MSG_MCP, "starting common init  func %d\n", BP_ABS_FUNC(bp));
5832
5833	/*
5834	 * take the UNDI lock to protect undi_unload flow from accessing
5835	 * registers while we're resetting the chip
5836	 */
5837	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
5838
5839	bnx2x_reset_common(bp);
5840	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0xffffffff);
5841
5842	val = 0xfffc;
5843	if (CHIP_IS_E3(bp)) {
5844		val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
5845		val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
5846	}
5847	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET, val);
5848
5849	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
5850
5851	bnx2x_init_block(bp, BLOCK_MISC, PHASE_COMMON);
5852
5853	if (!CHIP_IS_E1x(bp)) {
5854		u8 abs_func_id;
5855
5856		/**
5857		 * 4-port mode or 2-port mode we need to turn of master-enable
5858		 * for everyone, after that, turn it back on for self.
5859		 * so, we disregard multi-function or not, and always disable
5860		 * for all functions on the given path, this means 0,2,4,6 for
5861		 * path 0 and 1,3,5,7 for path 1
5862		 */
5863		for (abs_func_id = BP_PATH(bp);
5864		     abs_func_id < E2_FUNC_MAX*2; abs_func_id += 2) {
5865			if (abs_func_id == BP_ABS_FUNC(bp)) {
5866				REG_WR(bp,
5867				    PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER,
5868				    1);
5869				continue;
5870			}
5871
5872			bnx2x_pretend_func(bp, abs_func_id);
5873			/* clear pf enable */
5874			bnx2x_pf_disable(bp);
5875			bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
5876		}
5877	}
5878
5879	bnx2x_init_block(bp, BLOCK_PXP, PHASE_COMMON);
5880	if (CHIP_IS_E1(bp)) {
5881		/* enable HW interrupt from PXP on USDM overflow
5882		   bit 16 on INT_MASK_0 */
5883		REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
5884	}
5885
5886	bnx2x_init_block(bp, BLOCK_PXP2, PHASE_COMMON);
5887	bnx2x_init_pxp(bp);
5888
5889#ifdef __BIG_ENDIAN
5890	REG_WR(bp, PXP2_REG_RQ_QM_ENDIAN_M, 1);
5891	REG_WR(bp, PXP2_REG_RQ_TM_ENDIAN_M, 1);
5892	REG_WR(bp, PXP2_REG_RQ_SRC_ENDIAN_M, 1);
5893	REG_WR(bp, PXP2_REG_RQ_CDU_ENDIAN_M, 1);
5894	REG_WR(bp, PXP2_REG_RQ_DBG_ENDIAN_M, 1);
5895	/* make sure this value is 0 */
5896	REG_WR(bp, PXP2_REG_RQ_HC_ENDIAN_M, 0);
5897
5898/*	REG_WR(bp, PXP2_REG_RD_PBF_SWAP_MODE, 1); */
5899	REG_WR(bp, PXP2_REG_RD_QM_SWAP_MODE, 1);
5900	REG_WR(bp, PXP2_REG_RD_TM_SWAP_MODE, 1);
5901	REG_WR(bp, PXP2_REG_RD_SRC_SWAP_MODE, 1);
5902	REG_WR(bp, PXP2_REG_RD_CDURD_SWAP_MODE, 1);
5903#endif
5904
5905	bnx2x_ilt_init_page_size(bp, INITOP_SET);
5906
5907	if (CHIP_REV_IS_FPGA(bp) && CHIP_IS_E1H(bp))
5908		REG_WR(bp, PXP2_REG_PGL_TAGS_LIMIT, 0x1);
5909
5910	/* let the HW do it's magic ... */
5911	msleep(100);
5912	/* finish PXP init */
5913	val = REG_RD(bp, PXP2_REG_RQ_CFG_DONE);
5914	if (val != 1) {
5915		BNX2X_ERR("PXP2 CFG failed\n");
5916		return -EBUSY;
5917	}
5918	val = REG_RD(bp, PXP2_REG_RD_INIT_DONE);
5919	if (val != 1) {
5920		BNX2X_ERR("PXP2 RD_INIT failed\n");
5921		return -EBUSY;
5922	}
5923
5924	/* Timers bug workaround E2 only. We need to set the entire ILT to
5925	 * have entries with value "0" and valid bit on.
5926	 * This needs to be done by the first PF that is loaded in a path
5927	 * (i.e. common phase)
5928	 */
5929	if (!CHIP_IS_E1x(bp)) {
5930/* In E2 there is a bug in the timers block that can cause function 6 / 7
5931 * (i.e. vnic3) to start even if it is marked as "scan-off".
5932 * This occurs when a different function (func2,3) is being marked
5933 * as "scan-off". Real-life scenario for example: if a driver is being
5934 * load-unloaded while func6,7 are down. This will cause the timer to access
5935 * the ilt, translate to a logical address and send a request to read/write.
5936 * Since the ilt for the function that is down is not valid, this will cause
5937 * a translation error which is unrecoverable.
5938 * The Workaround is intended to make sure that when this happens nothing fatal
5939 * will occur. The workaround:
5940 *	1.  First PF driver which loads on a path will:
5941 *		a.  After taking the chip out of reset, by using pretend,
5942 *		    it will write "0" to the following registers of
5943 *		    the other vnics.
5944 *		    REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
5945 *		    REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0);
5946 *		    REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0);
5947 *		    And for itself it will write '1' to
5948 *		    PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable
5949 *		    dmae-operations (writing to pram for example.)
5950 *		    note: can be done for only function 6,7 but cleaner this
5951 *			  way.
5952 *		b.  Write zero+valid to the entire ILT.
5953 *		c.  Init the first_timers_ilt_entry, last_timers_ilt_entry of
5954 *		    VNIC3 (of that port). The range allocated will be the
5955 *		    entire ILT. This is needed to prevent  ILT range error.
5956 *	2.  Any PF driver load flow:
5957 *		a.  ILT update with the physical addresses of the allocated
5958 *		    logical pages.
5959 *		b.  Wait 20msec. - note that this timeout is needed to make
5960 *		    sure there are no requests in one of the PXP internal
5961 *		    queues with "old" ILT addresses.
5962 *		c.  PF enable in the PGLC.
5963 *		d.  Clear the was_error of the PF in the PGLC. (could have
5964 *		    occured while driver was down)
5965 *		e.  PF enable in the CFC (WEAK + STRONG)
5966 *		f.  Timers scan enable
5967 *	3.  PF driver unload flow:
5968 *		a.  Clear the Timers scan_en.
5969 *		b.  Polling for scan_on=0 for that PF.
5970 *		c.  Clear the PF enable bit in the PXP.
5971 *		d.  Clear the PF enable in the CFC (WEAK + STRONG)
5972 *		e.  Write zero+valid to all ILT entries (The valid bit must
5973 *		    stay set)
5974 *		f.  If this is VNIC 3 of a port then also init
5975 *		    first_timers_ilt_entry to zero and last_timers_ilt_entry
5976 *		    to the last enrty in the ILT.
5977 *
5978 *	Notes:
5979 *	Currently the PF error in the PGLC is non recoverable.
5980 *	In the future the there will be a recovery routine for this error.
5981 *	Currently attention is masked.
5982 *	Having an MCP lock on the load/unload process does not guarantee that
5983 *	there is no Timer disable during Func6/7 enable. This is because the
5984 *	Timers scan is currently being cleared by the MCP on FLR.
5985 *	Step 2.d can be done only for PF6/7 and the driver can also check if
5986 *	there is error before clearing it. But the flow above is simpler and
5987 *	more general.
5988 *	All ILT entries are written by zero+valid and not just PF6/7
5989 *	ILT entries since in the future the ILT entries allocation for
5990 *	PF-s might be dynamic.
5991 */
5992		struct ilt_client_info ilt_cli;
5993		struct bnx2x_ilt ilt;
5994		memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
5995		memset(&ilt, 0, sizeof(struct bnx2x_ilt));
5996
5997		/* initialize dummy TM client */
5998		ilt_cli.start = 0;
5999		ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
6000		ilt_cli.client_num = ILT_CLIENT_TM;
6001
6002		/* Step 1: set zeroes to all ilt page entries with valid bit on
6003		 * Step 2: set the timers first/last ilt entry to point
6004		 * to the entire range to prevent ILT range error for 3rd/4th
6005		 * vnic	(this code assumes existance of the vnic)
6006		 *
6007		 * both steps performed by call to bnx2x_ilt_client_init_op()
6008		 * with dummy TM client
6009		 *
6010		 * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT
6011		 * and his brother are split registers
6012		 */
6013		bnx2x_pretend_func(bp, (BP_PATH(bp) + 6));
6014		bnx2x_ilt_client_init_op_ilt(bp, &ilt, &ilt_cli, INITOP_CLEAR);
6015		bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
6016
6017		REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN, BNX2X_PXP_DRAM_ALIGN);
6018		REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_RD, BNX2X_PXP_DRAM_ALIGN);
6019		REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1);
6020	}
6021
6022
6023	REG_WR(bp, PXP2_REG_RQ_DISABLE_INPUTS, 0);
6024	REG_WR(bp, PXP2_REG_RD_DISABLE_INPUTS, 0);
6025
6026	if (!CHIP_IS_E1x(bp)) {
6027		int factor = CHIP_REV_IS_EMUL(bp) ? 1000 :
6028				(CHIP_REV_IS_FPGA(bp) ? 400 : 0);
6029		bnx2x_init_block(bp, BLOCK_PGLUE_B, PHASE_COMMON);
6030
6031		bnx2x_init_block(bp, BLOCK_ATC, PHASE_COMMON);
6032
6033		/* let the HW do it's magic ... */
6034		do {
6035			msleep(200);
6036			val = REG_RD(bp, ATC_REG_ATC_INIT_DONE);
6037		} while (factor-- && (val != 1));
6038
6039		if (val != 1) {
6040			BNX2X_ERR("ATC_INIT failed\n");
6041			return -EBUSY;
6042		}
6043	}
6044
6045	bnx2x_init_block(bp, BLOCK_DMAE, PHASE_COMMON);
6046
6047	/* clean the DMAE memory */
6048	bp->dmae_ready = 1;
6049	bnx2x_init_fill(bp, TSEM_REG_PRAM, 0, 8, 1);
6050
6051	bnx2x_init_block(bp, BLOCK_TCM, PHASE_COMMON);
6052
6053	bnx2x_init_block(bp, BLOCK_UCM, PHASE_COMMON);
6054
6055	bnx2x_init_block(bp, BLOCK_CCM, PHASE_COMMON);
6056
6057	bnx2x_init_block(bp, BLOCK_XCM, PHASE_COMMON);
6058
6059	bnx2x_read_dmae(bp, XSEM_REG_PASSIVE_BUFFER, 3);
6060	bnx2x_read_dmae(bp, CSEM_REG_PASSIVE_BUFFER, 3);
6061	bnx2x_read_dmae(bp, TSEM_REG_PASSIVE_BUFFER, 3);
6062	bnx2x_read_dmae(bp, USEM_REG_PASSIVE_BUFFER, 3);
6063
6064	bnx2x_init_block(bp, BLOCK_QM, PHASE_COMMON);
6065
6066
6067	/* QM queues pointers table */
6068	bnx2x_qm_init_ptr_table(bp, bp->qm_cid_count, INITOP_SET);
6069
6070	/* soft reset pulse */
6071	REG_WR(bp, QM_REG_SOFT_RESET, 1);
6072	REG_WR(bp, QM_REG_SOFT_RESET, 0);
6073
6074#ifdef BCM_CNIC
6075	bnx2x_init_block(bp, BLOCK_TM, PHASE_COMMON);
6076#endif
6077
6078	bnx2x_init_block(bp, BLOCK_DORQ, PHASE_COMMON);
6079	REG_WR(bp, DORQ_REG_DPM_CID_OFST, BNX2X_DB_SHIFT);
6080	if (!CHIP_REV_IS_SLOW(bp))
6081		/* enable hw interrupt from doorbell Q */
6082		REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
6083
6084	bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6085
6086	bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6087	REG_WR(bp, PRS_REG_A_PRSU_20, 0xf);
6088
6089	if (!CHIP_IS_E1(bp))
6090		REG_WR(bp, PRS_REG_E1HOV_MODE, bp->path_has_ovlan);
6091
6092	if (!CHIP_IS_E1x(bp) && !CHIP_IS_E3B0(bp))
6093		/* Bit-map indicating which L2 hdrs may appear
6094		 * after the basic Ethernet header
6095		 */
6096		REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC,
6097		       bp->path_has_ovlan ? 7 : 6);
6098
6099	bnx2x_init_block(bp, BLOCK_TSDM, PHASE_COMMON);
6100	bnx2x_init_block(bp, BLOCK_CSDM, PHASE_COMMON);
6101	bnx2x_init_block(bp, BLOCK_USDM, PHASE_COMMON);
6102	bnx2x_init_block(bp, BLOCK_XSDM, PHASE_COMMON);
6103
6104	if (!CHIP_IS_E1x(bp)) {
6105		/* reset VFC memories */
6106		REG_WR(bp, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
6107			   VFC_MEMORIES_RST_REG_CAM_RST |
6108			   VFC_MEMORIES_RST_REG_RAM_RST);
6109		REG_WR(bp, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
6110			   VFC_MEMORIES_RST_REG_CAM_RST |
6111			   VFC_MEMORIES_RST_REG_RAM_RST);
6112
6113		msleep(20);
6114	}
6115
6116	bnx2x_init_block(bp, BLOCK_TSEM, PHASE_COMMON);
6117	bnx2x_init_block(bp, BLOCK_USEM, PHASE_COMMON);
6118	bnx2x_init_block(bp, BLOCK_CSEM, PHASE_COMMON);
6119	bnx2x_init_block(bp, BLOCK_XSEM, PHASE_COMMON);
6120
6121	/* sync semi rtc */
6122	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
6123	       0x80000000);
6124	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET,
6125	       0x80000000);
6126
6127	bnx2x_init_block(bp, BLOCK_UPB, PHASE_COMMON);
6128	bnx2x_init_block(bp, BLOCK_XPB, PHASE_COMMON);
6129	bnx2x_init_block(bp, BLOCK_PBF, PHASE_COMMON);
6130
6131	if (!CHIP_IS_E1x(bp))
6132		REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC,
6133		       bp->path_has_ovlan ? 7 : 6);
6134
6135	REG_WR(bp, SRC_REG_SOFT_RST, 1);
6136
6137	bnx2x_init_block(bp, BLOCK_SRC, PHASE_COMMON);
6138
6139#ifdef BCM_CNIC
6140	REG_WR(bp, SRC_REG_KEYSEARCH_0, 0x63285672);
6141	REG_WR(bp, SRC_REG_KEYSEARCH_1, 0x24b8f2cc);
6142	REG_WR(bp, SRC_REG_KEYSEARCH_2, 0x223aef9b);
6143	REG_WR(bp, SRC_REG_KEYSEARCH_3, 0x26001e3a);
6144	REG_WR(bp, SRC_REG_KEYSEARCH_4, 0x7ae91116);
6145	REG_WR(bp, SRC_REG_KEYSEARCH_5, 0x5ce5230b);
6146	REG_WR(bp, SRC_REG_KEYSEARCH_6, 0x298d8adf);
6147	REG_WR(bp, SRC_REG_KEYSEARCH_7, 0x6eb0ff09);
6148	REG_WR(bp, SRC_REG_KEYSEARCH_8, 0x1830f82f);
6149	REG_WR(bp, SRC_REG_KEYSEARCH_9, 0x01e46be7);
6150#endif
6151	REG_WR(bp, SRC_REG_SOFT_RST, 0);
6152
6153	if (sizeof(union cdu_context) != 1024)
6154		/* we currently assume that a context is 1024 bytes */
6155		dev_alert(&bp->pdev->dev, "please adjust the size "
6156					  "of cdu_context(%ld)\n",
6157			 (long)sizeof(union cdu_context));
6158
6159	bnx2x_init_block(bp, BLOCK_CDU, PHASE_COMMON);
6160	val = (4 << 24) + (0 << 12) + 1024;
6161	REG_WR(bp, CDU_REG_CDU_GLOBAL_PARAMS, val);
6162
6163	bnx2x_init_block(bp, BLOCK_CFC, PHASE_COMMON);
6164	REG_WR(bp, CFC_REG_INIT_REG, 0x7FF);
6165	/* enable context validation interrupt from CFC */
6166	REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
6167
6168	/* set the thresholds to prevent CFC/CDU race */
6169	REG_WR(bp, CFC_REG_DEBUG0, 0x20020000);
6170
6171	bnx2x_init_block(bp, BLOCK_HC, PHASE_COMMON);
6172
6173	if (!CHIP_IS_E1x(bp) && BP_NOMCP(bp))
6174		REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x36);
6175
6176	bnx2x_init_block(bp, BLOCK_IGU, PHASE_COMMON);
6177	bnx2x_init_block(bp, BLOCK_MISC_AEU, PHASE_COMMON);
6178
6179	/* Reset PCIE errors for debug */
6180	REG_WR(bp, 0x2814, 0xffffffff);
6181	REG_WR(bp, 0x3820, 0xffffffff);
6182
6183	if (!CHIP_IS_E1x(bp)) {
6184		REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_CONTROL_5,
6185			   (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 |
6186				PXPCS_TL_CONTROL_5_ERR_UNSPPORT));
6187		REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT,
6188			   (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 |
6189				PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 |
6190				PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2));
6191		REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT,
6192			   (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 |
6193				PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 |
6194				PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5));
6195	}
6196
6197	bnx2x_init_block(bp, BLOCK_NIG, PHASE_COMMON);
6198	if (!CHIP_IS_E1(bp)) {
6199		/* in E3 this done in per-port section */
6200		if (!CHIP_IS_E3(bp))
6201			REG_WR(bp, NIG_REG_LLH_MF_MODE, IS_MF(bp));
6202	}
6203	if (CHIP_IS_E1H(bp))
6204		/* not applicable for E2 (and above ...) */
6205		REG_WR(bp, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(bp));
6206
6207	if (CHIP_REV_IS_SLOW(bp))
6208		msleep(200);
6209
6210	/* finish CFC init */
6211	val = reg_poll(bp, CFC_REG_LL_INIT_DONE, 1, 100, 10);
6212	if (val != 1) {
6213		BNX2X_ERR("CFC LL_INIT failed\n");
6214		return -EBUSY;
6215	}
6216	val = reg_poll(bp, CFC_REG_AC_INIT_DONE, 1, 100, 10);
6217	if (val != 1) {
6218		BNX2X_ERR("CFC AC_INIT failed\n");
6219		return -EBUSY;
6220	}
6221	val = reg_poll(bp, CFC_REG_CAM_INIT_DONE, 1, 100, 10);
6222	if (val != 1) {
6223		BNX2X_ERR("CFC CAM_INIT failed\n");
6224		return -EBUSY;
6225	}
6226	REG_WR(bp, CFC_REG_DEBUG0, 0);
6227
6228	if (CHIP_IS_E1(bp)) {
6229		/* read NIG statistic
6230		   to see if this is our first up since powerup */
6231		bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
6232		val = *bnx2x_sp(bp, wb_data[0]);
6233
6234		/* do internal memory self test */
6235		if ((val == 0) && bnx2x_int_mem_test(bp)) {
6236			BNX2X_ERR("internal mem self test failed\n");
6237			return -EBUSY;
6238		}
6239	}
6240
6241	bnx2x_setup_fan_failure_detection(bp);
6242
6243	/* clear PXP2 attentions */
6244	REG_RD(bp, PXP2_REG_PXP2_INT_STS_CLR_0);
6245
6246	bnx2x_enable_blocks_attention(bp);
6247	bnx2x_enable_blocks_parity(bp);
6248
6249	if (!BP_NOMCP(bp)) {
6250		if (CHIP_IS_E1x(bp))
6251			bnx2x__common_init_phy(bp);
6252	} else
6253		BNX2X_ERR("Bootcode is missing - can not initialize link\n");
6254
6255	return 0;
6256}
6257
6258/**
6259 * bnx2x_init_hw_common_chip - init HW at the COMMON_CHIP phase.
6260 *
6261 * @bp:		driver handle
6262 */
6263static int bnx2x_init_hw_common_chip(struct bnx2x *bp)
6264{
6265	int rc = bnx2x_init_hw_common(bp);
6266
6267	if (rc)
6268		return rc;
6269
6270	/* In E2 2-PORT mode, same ext phy is used for the two paths */
6271	if (!BP_NOMCP(bp))
6272		bnx2x__common_init_phy(bp);
6273
6274	return 0;
6275}
6276
6277static int bnx2x_init_hw_port(struct bnx2x *bp)
6278{
6279	int port = BP_PORT(bp);
6280	int init_phase = port ? PHASE_PORT1 : PHASE_PORT0;
6281	u32 low, high;
6282	u32 val;
6283
6284	bnx2x__link_reset(bp);
6285
6286	DP(BNX2X_MSG_MCP, "starting port init  port %d\n", port);
6287
6288	REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
6289
6290	bnx2x_init_block(bp, BLOCK_MISC, init_phase);
6291	bnx2x_init_block(bp, BLOCK_PXP, init_phase);
6292	bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
6293
6294	/* Timers bug workaround: disables the pf_master bit in pglue at
6295	 * common phase, we need to enable it here before any dmae access are
6296	 * attempted. Therefore we manually added the enable-master to the
6297	 * port phase (it also happens in the function phase)
6298	 */
6299	if (!CHIP_IS_E1x(bp))
6300		REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
6301
6302	bnx2x_init_block(bp, BLOCK_ATC, init_phase);
6303	bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
6304	bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
6305	bnx2x_init_block(bp, BLOCK_QM, init_phase);
6306
6307	bnx2x_init_block(bp, BLOCK_TCM, init_phase);
6308	bnx2x_init_block(bp, BLOCK_UCM, init_phase);
6309	bnx2x_init_block(bp, BLOCK_CCM, init_phase);
6310	bnx2x_init_block(bp, BLOCK_XCM, init_phase);
6311
6312	/* QM cid (connection) count */
6313	bnx2x_qm_init_cid_count(bp, bp->qm_cid_count, INITOP_SET);
6314
6315#ifdef BCM_CNIC
6316	bnx2x_init_block(bp, BLOCK_TM, init_phase);
6317	REG_WR(bp, TM_REG_LIN0_SCAN_TIME + port*4, 20);
6318	REG_WR(bp, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31);
6319#endif
6320
6321	bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
6322
6323	if (CHIP_IS_E1(bp) || CHIP_IS_E1H(bp)) {
6324		bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
6325
6326		if (IS_MF(bp))
6327			low = ((bp->flags & ONE_PORT_FLAG) ? 160 : 246);
6328		else if (bp->dev->mtu > 4096) {
6329			if (bp->flags & ONE_PORT_FLAG)
6330				low = 160;
6331			else {
6332				val = bp->dev->mtu;
6333				/* (24*1024 + val*4)/256 */
6334				low = 96 + (val/64) +
6335						((val % 64) ? 1 : 0);
6336			}
6337		} else
6338			low = ((bp->flags & ONE_PORT_FLAG) ? 80 : 160);
6339		high = low + 56;	/* 14*1024/256 */
6340		REG_WR(bp, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low);
6341		REG_WR(bp, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high);
6342	}
6343
6344	if (CHIP_MODE_IS_4_PORT(bp))
6345		REG_WR(bp, (BP_PORT(bp) ?
6346			    BRB1_REG_MAC_GUARANTIED_1 :
6347			    BRB1_REG_MAC_GUARANTIED_0), 40);
6348
6349
6350	bnx2x_init_block(bp, BLOCK_PRS, init_phase);
6351	if (CHIP_IS_E3B0(bp))
6352		/* Ovlan exists only if we are in multi-function +
6353		 * switch-dependent mode, in switch-independent there
6354		 * is no ovlan headers
6355		 */
6356		REG_WR(bp, BP_PORT(bp) ?
6357		       PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
6358		       PRS_REG_HDRS_AFTER_BASIC_PORT_0,
6359		       (bp->path_has_ovlan ? 7 : 6));
6360
6361	bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
6362	bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
6363	bnx2x_init_block(bp, BLOCK_USDM, init_phase);
6364	bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
6365
6366	bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
6367	bnx2x_init_block(bp, BLOCK_USEM, init_phase);
6368	bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
6369	bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
6370
6371	bnx2x_init_block(bp, BLOCK_UPB, init_phase);
6372	bnx2x_init_block(bp, BLOCK_XPB, init_phase);
6373
6374	bnx2x_init_block(bp, BLOCK_PBF, init_phase);
6375
6376	if (CHIP_IS_E1x(bp)) {
6377		/* configure PBF to work without PAUSE mtu 9000 */
6378		REG_WR(bp, PBF_REG_P0_PAUSE_ENABLE + port*4, 0);
6379
6380		/* update threshold */
6381		REG_WR(bp, PBF_REG_P0_ARB_THRSH + port*4, (9040/16));
6382		/* update init credit */
6383		REG_WR(bp, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22);
6384
6385		/* probe changes */
6386		REG_WR(bp, PBF_REG_INIT_P0 + port*4, 1);
6387		udelay(50);
6388		REG_WR(bp, PBF_REG_INIT_P0 + port*4, 0);
6389	}
6390
6391#ifdef BCM_CNIC
6392	bnx2x_init_block(bp, BLOCK_SRC, init_phase);
6393#endif
6394	bnx2x_init_block(bp, BLOCK_CDU, init_phase);
6395	bnx2x_init_block(bp, BLOCK_CFC, init_phase);
6396
6397	if (CHIP_IS_E1(bp)) {
6398		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
6399		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
6400	}
6401	bnx2x_init_block(bp, BLOCK_HC, init_phase);
6402
6403	bnx2x_init_block(bp, BLOCK_IGU, init_phase);
6404
6405	bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
6406	/* init aeu_mask_attn_func_0/1:
6407	 *  - SF mode: bits 3-7 are masked. only bits 0-2 are in use
6408	 *  - MF mode: bit 3 is masked. bits 0-2 are in use as in SF
6409	 *             bits 4-7 are used for "per vn group attention" */
6410	val = IS_MF(bp) ? 0xF7 : 0x7;
6411	/* Enable DCBX attention for all but E1 */
6412	val |= CHIP_IS_E1(bp) ? 0 : 0x10;
6413	REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val);
6414
6415	bnx2x_init_block(bp, BLOCK_NIG, init_phase);
6416
6417	if (!CHIP_IS_E1x(bp)) {
6418		/* Bit-map indicating which L2 hdrs may appear after the
6419		 * basic Ethernet header
6420		 */
6421		REG_WR(bp, BP_PORT(bp) ?
6422			   NIG_REG_P1_HDRS_AFTER_BASIC :
6423			   NIG_REG_P0_HDRS_AFTER_BASIC,
6424			   IS_MF_SD(bp) ? 7 : 6);
6425
6426		if (CHIP_IS_E3(bp))
6427			REG_WR(bp, BP_PORT(bp) ?
6428				   NIG_REG_LLH1_MF_MODE :
6429				   NIG_REG_LLH_MF_MODE, IS_MF(bp));
6430	}
6431	if (!CHIP_IS_E3(bp))
6432		REG_WR(bp, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1);
6433
6434	if (!CHIP_IS_E1(bp)) {
6435		/* 0x2 disable mf_ov, 0x1 enable */
6436		REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4,
6437		       (IS_MF_SD(bp) ? 0x1 : 0x2));
6438
6439		if (!CHIP_IS_E1x(bp)) {
6440			val = 0;
6441			switch (bp->mf_mode) {
6442			case MULTI_FUNCTION_SD:
6443				val = 1;
6444				break;
6445			case MULTI_FUNCTION_SI:
6446				val = 2;
6447				break;
6448			}
6449
6450			REG_WR(bp, (BP_PORT(bp) ? NIG_REG_LLH1_CLS_TYPE :
6451						  NIG_REG_LLH0_CLS_TYPE), val);
6452		}
6453		{
6454			REG_WR(bp, NIG_REG_LLFC_ENABLE_0 + port*4, 0);
6455			REG_WR(bp, NIG_REG_LLFC_OUT_EN_0 + port*4, 0);
6456			REG_WR(bp, NIG_REG_PAUSE_ENABLE_0 + port*4, 1);
6457		}
6458	}
6459
6460
6461	/* If SPIO5 is set to generate interrupts, enable it for this port */
6462	val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
6463	if (val & (1 << MISC_REGISTERS_SPIO_5)) {
6464		u32 reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
6465				       MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
6466		val = REG_RD(bp, reg_addr);
6467		val |= AEU_INPUTS_ATTN_BITS_SPIO5;
6468		REG_WR(bp, reg_addr, val);
6469	}
6470
6471	return 0;
6472}
6473
6474static void bnx2x_ilt_wr(struct bnx2x *bp, u32 index, dma_addr_t addr)
6475{
6476	int reg;
6477
6478	if (CHIP_IS_E1(bp))
6479		reg = PXP2_REG_RQ_ONCHIP_AT + index*8;
6480	else
6481		reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8;
6482
6483	bnx2x_wb_wr(bp, reg, ONCHIP_ADDR1(addr), ONCHIP_ADDR2(addr));
6484}
6485
6486static inline void bnx2x_igu_clear_sb(struct bnx2x *bp, u8 idu_sb_id)
6487{
6488	bnx2x_igu_clear_sb_gen(bp, BP_FUNC(bp), idu_sb_id, true /*PF*/);
6489}
6490
6491static inline void bnx2x_clear_func_ilt(struct bnx2x *bp, u32 func)
6492{
6493	u32 i, base = FUNC_ILT_BASE(func);
6494	for (i = base; i < base + ILT_PER_FUNC; i++)
6495		bnx2x_ilt_wr(bp, i, 0);
6496}
6497
6498static int bnx2x_init_hw_func(struct bnx2x *bp)
6499{
6500	int port = BP_PORT(bp);
6501	int func = BP_FUNC(bp);
6502	int init_phase = PHASE_PF0 + func;
6503	struct bnx2x_ilt *ilt = BP_ILT(bp);
6504	u16 cdu_ilt_start;
6505	u32 addr, val;
6506	u32 main_mem_base, main_mem_size, main_mem_prty_clr;
6507	int i, main_mem_width;
6508
6509	DP(BNX2X_MSG_MCP, "starting func init  func %d\n", func);
6510
6511	/* FLR cleanup - hmmm */
6512	if (!CHIP_IS_E1x(bp))
6513		bnx2x_pf_flr_clnup(bp);
6514
6515	/* set MSI reconfigure capability */
6516	if (bp->common.int_block == INT_BLOCK_HC) {
6517		addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0);
6518		val = REG_RD(bp, addr);
6519		val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0;
6520		REG_WR(bp, addr, val);
6521	}
6522
6523	bnx2x_init_block(bp, BLOCK_PXP, init_phase);
6524	bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
6525
6526	ilt = BP_ILT(bp);
6527	cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
6528
6529	for (i = 0; i < L2_ILT_LINES(bp); i++) {
6530		ilt->lines[cdu_ilt_start + i].page =
6531			bp->context.vcxt + (ILT_PAGE_CIDS * i);
6532		ilt->lines[cdu_ilt_start + i].page_mapping =
6533			bp->context.cxt_mapping + (CDU_ILT_PAGE_SZ * i);
6534		/* cdu ilt pages are allocated manually so there's no need to
6535		set the size */
6536	}
6537	bnx2x_ilt_init_op(bp, INITOP_SET);
6538
6539#ifdef BCM_CNIC
6540	bnx2x_src_init_t2(bp, bp->t2, bp->t2_mapping, SRC_CONN_NUM);
6541
6542	/* T1 hash bits value determines the T1 number of entries */
6543	REG_WR(bp, SRC_REG_NUMBER_HASH_BITS0 + port*4, SRC_HASH_BITS);
6544#endif
6545
6546#ifndef BCM_CNIC
6547	/* set NIC mode */
6548	REG_WR(bp, PRS_REG_NIC_MODE, 1);
6549#endif  /* BCM_CNIC */
6550
6551	if (!CHIP_IS_E1x(bp)) {
6552		u32 pf_conf = IGU_PF_CONF_FUNC_EN;
6553
6554		/* Turn on a single ISR mode in IGU if driver is going to use
6555		 * INT#x or MSI
6556		 */
6557		if (!(bp->flags & USING_MSIX_FLAG))
6558			pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
6559		/*
6560		 * Timers workaround bug: function init part.
6561		 * Need to wait 20msec after initializing ILT,
6562		 * needed to make sure there are no requests in
6563		 * one of the PXP internal queues with "old" ILT addresses
6564		 */
6565		msleep(20);
6566		/*
6567		 * Master enable - Due to WB DMAE writes performed before this
6568		 * register is re-initialized as part of the regular function
6569		 * init
6570		 */
6571		REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
6572		/* Enable the function in IGU */
6573		REG_WR(bp, IGU_REG_PF_CONFIGURATION, pf_conf);
6574	}
6575
6576	bp->dmae_ready = 1;
6577
6578	bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
6579
6580	if (!CHIP_IS_E1x(bp))
6581		REG_WR(bp, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, func);
6582
6583	bnx2x_init_block(bp, BLOCK_ATC, init_phase);
6584	bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
6585	bnx2x_init_block(bp, BLOCK_NIG, init_phase);
6586	bnx2x_init_block(bp, BLOCK_SRC, init_phase);
6587	bnx2x_init_block(bp, BLOCK_MISC, init_phase);
6588	bnx2x_init_block(bp, BLOCK_TCM, init_phase);
6589	bnx2x_init_block(bp, BLOCK_UCM, init_phase);
6590	bnx2x_init_block(bp, BLOCK_CCM, init_phase);
6591	bnx2x_init_block(bp, BLOCK_XCM, init_phase);
6592	bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
6593	bnx2x_init_block(bp, BLOCK_USEM, init_phase);
6594	bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
6595	bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
6596
6597	if (!CHIP_IS_E1x(bp))
6598		REG_WR(bp, QM_REG_PF_EN, 1);
6599
6600	if (!CHIP_IS_E1x(bp)) {
6601		REG_WR(bp, TSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
6602		REG_WR(bp, USEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
6603		REG_WR(bp, CSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
6604		REG_WR(bp, XSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
6605	}
6606	bnx2x_init_block(bp, BLOCK_QM, init_phase);
6607
6608	bnx2x_init_block(bp, BLOCK_TM, init_phase);
6609	bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
6610	bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
6611	bnx2x_init_block(bp, BLOCK_PRS, init_phase);
6612	bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
6613	bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
6614	bnx2x_init_block(bp, BLOCK_USDM, init_phase);
6615	bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
6616	bnx2x_init_block(bp, BLOCK_UPB, init_phase);
6617	bnx2x_init_block(bp, BLOCK_XPB, init_phase);
6618	bnx2x_init_block(bp, BLOCK_PBF, init_phase);
6619	if (!CHIP_IS_E1x(bp))
6620		REG_WR(bp, PBF_REG_DISABLE_PF, 0);
6621
6622	bnx2x_init_block(bp, BLOCK_CDU, init_phase);
6623
6624	bnx2x_init_block(bp, BLOCK_CFC, init_phase);
6625
6626	if (!CHIP_IS_E1x(bp))
6627		REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 1);
6628
6629	if (IS_MF(bp)) {
6630		REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 1);
6631		REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + port*8, bp->mf_ov);
6632	}
6633
6634	bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
6635
6636	/* HC init per function */
6637	if (bp->common.int_block == INT_BLOCK_HC) {
6638		if (CHIP_IS_E1H(bp)) {
6639			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
6640
6641			REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
6642			REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
6643		}
6644		bnx2x_init_block(bp, BLOCK_HC, init_phase);
6645
6646	} else {
6647		int num_segs, sb_idx, prod_offset;
6648
6649		REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
6650
6651		if (!CHIP_IS_E1x(bp)) {
6652			REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
6653			REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
6654		}
6655
6656		bnx2x_init_block(bp, BLOCK_IGU, init_phase);
6657
6658		if (!CHIP_IS_E1x(bp)) {
6659			int dsb_idx = 0;
6660			/**
6661			 * Producer memory:
6662			 * E2 mode: address 0-135 match to the mapping memory;
6663			 * 136 - PF0 default prod; 137 - PF1 default prod;
6664			 * 138 - PF2 default prod; 139 - PF3 default prod;
6665			 * 140 - PF0 attn prod;    141 - PF1 attn prod;
6666			 * 142 - PF2 attn prod;    143 - PF3 attn prod;
6667			 * 144-147 reserved.
6668			 *
6669			 * E1.5 mode - In backward compatible mode;
6670			 * for non default SB; each even line in the memory
6671			 * holds the U producer and each odd line hold
6672			 * the C producer. The first 128 producers are for
6673			 * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20
6674			 * producers are for the DSB for each PF.
6675			 * Each PF has five segments: (the order inside each
6676			 * segment is PF0; PF1; PF2; PF3) - 128-131 U prods;
6677			 * 132-135 C prods; 136-139 X prods; 140-143 T prods;
6678			 * 144-147 attn prods;
6679			 */
6680			/* non-default-status-blocks */
6681			num_segs = CHIP_INT_MODE_IS_BC(bp) ?
6682				IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS;
6683			for (sb_idx = 0; sb_idx < bp->igu_sb_cnt; sb_idx++) {
6684				prod_offset = (bp->igu_base_sb + sb_idx) *
6685					num_segs;
6686
6687				for (i = 0; i < num_segs; i++) {
6688					addr = IGU_REG_PROD_CONS_MEMORY +
6689							(prod_offset + i) * 4;
6690					REG_WR(bp, addr, 0);
6691				}
6692				/* send consumer update with value 0 */
6693				bnx2x_ack_sb(bp, bp->igu_base_sb + sb_idx,
6694					     USTORM_ID, 0, IGU_INT_NOP, 1);
6695				bnx2x_igu_clear_sb(bp,
6696						   bp->igu_base_sb + sb_idx);
6697			}
6698
6699			/* default-status-blocks */
6700			num_segs = CHIP_INT_MODE_IS_BC(bp) ?
6701				IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS;
6702
6703			if (CHIP_MODE_IS_4_PORT(bp))
6704				dsb_idx = BP_FUNC(bp);
6705			else
6706				dsb_idx = BP_VN(bp);
6707
6708			prod_offset = (CHIP_INT_MODE_IS_BC(bp) ?
6709				       IGU_BC_BASE_DSB_PROD + dsb_idx :
6710				       IGU_NORM_BASE_DSB_PROD + dsb_idx);
6711
6712			/*
6713			 * igu prods come in chunks of E1HVN_MAX (4) -
6714			 * does not matters what is the current chip mode
6715			 */
6716			for (i = 0; i < (num_segs * E1HVN_MAX);
6717			     i += E1HVN_MAX) {
6718				addr = IGU_REG_PROD_CONS_MEMORY +
6719							(prod_offset + i)*4;
6720				REG_WR(bp, addr, 0);
6721			}
6722			/* send consumer update with 0 */
6723			if (CHIP_INT_MODE_IS_BC(bp)) {
6724				bnx2x_ack_sb(bp, bp->igu_dsb_id,
6725					     USTORM_ID, 0, IGU_INT_NOP, 1);
6726				bnx2x_ack_sb(bp, bp->igu_dsb_id,
6727					     CSTORM_ID, 0, IGU_INT_NOP, 1);
6728				bnx2x_ack_sb(bp, bp->igu_dsb_id,
6729					     XSTORM_ID, 0, IGU_INT_NOP, 1);
6730				bnx2x_ack_sb(bp, bp->igu_dsb_id,
6731					     TSTORM_ID, 0, IGU_INT_NOP, 1);
6732				bnx2x_ack_sb(bp, bp->igu_dsb_id,
6733					     ATTENTION_ID, 0, IGU_INT_NOP, 1);
6734			} else {
6735				bnx2x_ack_sb(bp, bp->igu_dsb_id,
6736					     USTORM_ID, 0, IGU_INT_NOP, 1);
6737				bnx2x_ack_sb(bp, bp->igu_dsb_id,
6738					     ATTENTION_ID, 0, IGU_INT_NOP, 1);
6739			}
6740			bnx2x_igu_clear_sb(bp, bp->igu_dsb_id);
6741
6742			/* !!! these should become driver const once
6743			   rf-tool supports split-68 const */
6744			REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
6745			REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
6746			REG_WR(bp, IGU_REG_SB_MASK_LSB, 0);
6747			REG_WR(bp, IGU_REG_SB_MASK_MSB, 0);
6748			REG_WR(bp, IGU_REG_PBA_STATUS_LSB, 0);
6749			REG_WR(bp, IGU_REG_PBA_STATUS_MSB, 0);
6750		}
6751	}
6752
6753	/* Reset PCIE errors for debug */
6754	REG_WR(bp, 0x2114, 0xffffffff);
6755	REG_WR(bp, 0x2120, 0xffffffff);
6756
6757	if (CHIP_IS_E1x(bp)) {
6758		main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/
6759		main_mem_base = HC_REG_MAIN_MEMORY +
6760				BP_PORT(bp) * (main_mem_size * 4);
6761		main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR;
6762		main_mem_width = 8;
6763
6764		val = REG_RD(bp, main_mem_prty_clr);
6765		if (val)
6766			DP(BNX2X_MSG_MCP, "Hmmm... Parity errors in HC "
6767					  "block during "
6768					  "function init (0x%x)!\n", val);
6769
6770		/* Clear "false" parity errors in MSI-X table */
6771		for (i = main_mem_base;
6772		     i < main_mem_base + main_mem_size * 4;
6773		     i += main_mem_width) {
6774			bnx2x_read_dmae(bp, i, main_mem_width / 4);
6775			bnx2x_write_dmae(bp, bnx2x_sp_mapping(bp, wb_data),
6776					 i, main_mem_width / 4);
6777		}
6778		/* Clear HC parity attention */
6779		REG_RD(bp, main_mem_prty_clr);
6780	}
6781
6782#ifdef BNX2X_STOP_ON_ERROR
6783	/* Enable STORMs SP logging */
6784	REG_WR8(bp, BAR_USTRORM_INTMEM +
6785	       USTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
6786	REG_WR8(bp, BAR_TSTRORM_INTMEM +
6787	       TSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
6788	REG_WR8(bp, BAR_CSTRORM_INTMEM +
6789	       CSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
6790	REG_WR8(bp, BAR_XSTRORM_INTMEM +
6791	       XSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
6792#endif
6793
6794	bnx2x_phy_probe(&bp->link_params);
6795
6796	return 0;
6797}
6798
6799
6800void bnx2x_free_mem(struct bnx2x *bp)
6801{
6802	/* fastpath */
6803	bnx2x_free_fp_mem(bp);
6804	/* end of fastpath */
6805
6806	BNX2X_PCI_FREE(bp->def_status_blk, bp->def_status_blk_mapping,
6807		       sizeof(struct host_sp_status_block));
6808
6809	BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping,
6810		       bp->fw_stats_data_sz + bp->fw_stats_req_sz);
6811
6812	BNX2X_PCI_FREE(bp->slowpath, bp->slowpath_mapping,
6813		       sizeof(struct bnx2x_slowpath));
6814
6815	BNX2X_PCI_FREE(bp->context.vcxt, bp->context.cxt_mapping,
6816		       bp->context.size);
6817
6818	bnx2x_ilt_mem_op(bp, ILT_MEMOP_FREE);
6819
6820	BNX2X_FREE(bp->ilt->lines);
6821
6822#ifdef BCM_CNIC
6823	if (!CHIP_IS_E1x(bp))
6824		BNX2X_PCI_FREE(bp->cnic_sb.e2_sb, bp->cnic_sb_mapping,
6825			       sizeof(struct host_hc_status_block_e2));
6826	else
6827		BNX2X_PCI_FREE(bp->cnic_sb.e1x_sb, bp->cnic_sb_mapping,
6828			       sizeof(struct host_hc_status_block_e1x));
6829
6830	BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ);
6831#endif
6832
6833	BNX2X_PCI_FREE(bp->spq, bp->spq_mapping, BCM_PAGE_SIZE);
6834
6835	BNX2X_PCI_FREE(bp->eq_ring, bp->eq_mapping,
6836		       BCM_PAGE_SIZE * NUM_EQ_PAGES);
6837}
6838
6839static inline int bnx2x_alloc_fw_stats_mem(struct bnx2x *bp)
6840{
6841	int num_groups;
6842	int is_fcoe_stats = NO_FCOE(bp) ? 0 : 1;
6843
6844	/* number of queues for statistics is number of eth queues + FCoE */
6845	u8 num_queue_stats = BNX2X_NUM_ETH_QUEUES(bp) + is_fcoe_stats;
6846
6847	/* Total number of FW statistics requests =
6848	 * 1 for port stats + 1 for PF stats + potential 1 for FCoE stats +
6849	 * num of queues
6850	 */
6851	bp->fw_stats_num = 2 + is_fcoe_stats + num_queue_stats;
6852
6853
6854	/* Request is built from stats_query_header and an array of
6855	 * stats_query_cmd_group each of which contains
6856	 * STATS_QUERY_CMD_COUNT rules. The real number or requests is
6857	 * configured in the stats_query_header.
6858	 */
6859	num_groups = ((bp->fw_stats_num) / STATS_QUERY_CMD_COUNT) +
6860		     (((bp->fw_stats_num) % STATS_QUERY_CMD_COUNT) ? 1 : 0);
6861
6862	bp->fw_stats_req_sz = sizeof(struct stats_query_header) +
6863			num_groups * sizeof(struct stats_query_cmd_group);
6864
6865	/* Data for statistics requests + stats_conter
6866	 *
6867	 * stats_counter holds per-STORM counters that are incremented
6868	 * when STORM has finished with the current request.
6869	 *
6870	 * memory for FCoE offloaded statistics are counted anyway,
6871	 * even if they will not be sent.
6872	 */
6873	bp->fw_stats_data_sz = sizeof(struct per_port_stats) +
6874		sizeof(struct per_pf_stats) +
6875		sizeof(struct fcoe_statistics_params) +
6876		sizeof(struct per_queue_stats) * num_queue_stats +
6877		sizeof(struct stats_counter);
6878
6879	BNX2X_PCI_ALLOC(bp->fw_stats, &bp->fw_stats_mapping,
6880			bp->fw_stats_data_sz + bp->fw_stats_req_sz);
6881
6882	/* Set shortcuts */
6883	bp->fw_stats_req = (struct bnx2x_fw_stats_req *)bp->fw_stats;
6884	bp->fw_stats_req_mapping = bp->fw_stats_mapping;
6885
6886	bp->fw_stats_data = (struct bnx2x_fw_stats_data *)
6887		((u8 *)bp->fw_stats + bp->fw_stats_req_sz);
6888
6889	bp->fw_stats_data_mapping = bp->fw_stats_mapping +
6890				   bp->fw_stats_req_sz;
6891	return 0;
6892
6893alloc_mem_err:
6894	BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping,
6895		       bp->fw_stats_data_sz + bp->fw_stats_req_sz);
6896	return -ENOMEM;
6897}
6898
6899
6900int bnx2x_alloc_mem(struct bnx2x *bp)
6901{
6902#ifdef BCM_CNIC
6903	if (!CHIP_IS_E1x(bp))
6904		/* size = the status block + ramrod buffers */
6905		BNX2X_PCI_ALLOC(bp->cnic_sb.e2_sb, &bp->cnic_sb_mapping,
6906				sizeof(struct host_hc_status_block_e2));
6907	else
6908		BNX2X_PCI_ALLOC(bp->cnic_sb.e1x_sb, &bp->cnic_sb_mapping,
6909				sizeof(struct host_hc_status_block_e1x));
6910
6911	/* allocate searcher T2 table */
6912	BNX2X_PCI_ALLOC(bp->t2, &bp->t2_mapping, SRC_T2_SZ);
6913#endif
6914
6915
6916	BNX2X_PCI_ALLOC(bp->def_status_blk, &bp->def_status_blk_mapping,
6917			sizeof(struct host_sp_status_block));
6918
6919	BNX2X_PCI_ALLOC(bp->slowpath, &bp->slowpath_mapping,
6920			sizeof(struct bnx2x_slowpath));
6921
6922	/* Allocated memory for FW statistics  */
6923	if (bnx2x_alloc_fw_stats_mem(bp))
6924		goto alloc_mem_err;
6925
6926	bp->context.size = sizeof(union cdu_context) * BNX2X_L2_CID_COUNT(bp);
6927
6928	BNX2X_PCI_ALLOC(bp->context.vcxt, &bp->context.cxt_mapping,
6929			bp->context.size);
6930
6931	BNX2X_ALLOC(bp->ilt->lines, sizeof(struct ilt_line) * ILT_MAX_LINES);
6932
6933	if (bnx2x_ilt_mem_op(bp, ILT_MEMOP_ALLOC))
6934		goto alloc_mem_err;
6935
6936	/* Slow path ring */
6937	BNX2X_PCI_ALLOC(bp->spq, &bp->spq_mapping, BCM_PAGE_SIZE);
6938
6939	/* EQ */
6940	BNX2X_PCI_ALLOC(bp->eq_ring, &bp->eq_mapping,
6941			BCM_PAGE_SIZE * NUM_EQ_PAGES);
6942
6943
6944	/* fastpath */
6945	/* need to be done at the end, since it's self adjusting to amount
6946	 * of memory available for RSS queues
6947	 */
6948	if (bnx2x_alloc_fp_mem(bp))
6949		goto alloc_mem_err;
6950	return 0;
6951
6952alloc_mem_err:
6953	bnx2x_free_mem(bp);
6954	return -ENOMEM;
6955}
6956
6957/*
6958 * Init service functions
6959 */
6960
6961int bnx2x_set_mac_one(struct bnx2x *bp, u8 *mac,
6962		      struct bnx2x_vlan_mac_obj *obj, bool set,
6963		      int mac_type, unsigned long *ramrod_flags)
6964{
6965	int rc;
6966	struct bnx2x_vlan_mac_ramrod_params ramrod_param;
6967
6968	memset(&ramrod_param, 0, sizeof(ramrod_param));
6969
6970	/* Fill general parameters */
6971	ramrod_param.vlan_mac_obj = obj;
6972	ramrod_param.ramrod_flags = *ramrod_flags;
6973
6974	/* Fill a user request section if needed */
6975	if (!test_bit(RAMROD_CONT, ramrod_flags)) {
6976		memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN);
6977
6978		__set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags);
6979
6980		/* Set the command: ADD or DEL */
6981		if (set)
6982			ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_ADD;
6983		else
6984			ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_DEL;
6985	}
6986
6987	rc = bnx2x_config_vlan_mac(bp, &ramrod_param);
6988	if (rc < 0)
6989		BNX2X_ERR("%s MAC failed\n", (set ? "Set" : "Del"));
6990	return rc;
6991}
6992
6993int bnx2x_del_all_macs(struct bnx2x *bp,
6994		       struct bnx2x_vlan_mac_obj *mac_obj,
6995		       int mac_type, bool wait_for_comp)
6996{
6997	int rc;
6998	unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
6999
7000	/* Wait for completion of requested */
7001	if (wait_for_comp)
7002		__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
7003
7004	/* Set the mac type of addresses we want to clear */
7005	__set_bit(mac_type, &vlan_mac_flags);
7006
7007	rc = mac_obj->delete_all(bp, mac_obj, &vlan_mac_flags, &ramrod_flags);
7008	if (rc < 0)
7009		BNX2X_ERR("Failed to delete MACs: %d\n", rc);
7010
7011	return rc;
7012}
7013
7014int bnx2x_set_eth_mac(struct bnx2x *bp, bool set)
7015{
7016	unsigned long ramrod_flags = 0;
7017
7018#ifdef BCM_CNIC
7019	if (is_zero_ether_addr(bp->dev->dev_addr) && IS_MF_ISCSI_SD(bp)) {
7020		DP(NETIF_MSG_IFUP, "Ignoring Zero MAC for iSCSI SD mode\n");
7021		return 0;
7022	}
7023#endif
7024
7025	DP(NETIF_MSG_IFUP, "Adding Eth MAC\n");
7026
7027	__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
7028	/* Eth MAC is set on RSS leading client (fp[0]) */
7029	return bnx2x_set_mac_one(bp, bp->dev->dev_addr, &bp->fp->mac_obj, set,
7030				 BNX2X_ETH_MAC, &ramrod_flags);
7031}
7032
7033int bnx2x_setup_leading(struct bnx2x *bp)
7034{
7035	return bnx2x_setup_queue(bp, &bp->fp[0], 1);
7036}
7037
7038/**
7039 * bnx2x_set_int_mode - configure interrupt mode
7040 *
7041 * @bp:		driver handle
7042 *
7043 * In case of MSI-X it will also try to enable MSI-X.
7044 */
7045static void __devinit bnx2x_set_int_mode(struct bnx2x *bp)
7046{
7047	switch (int_mode) {
7048	case INT_MODE_MSI:
7049		bnx2x_enable_msi(bp);
7050		/* falling through... */
7051	case INT_MODE_INTx:
7052		bp->num_queues = 1 + NON_ETH_CONTEXT_USE;
7053		DP(NETIF_MSG_IFUP, "set number of queues to 1\n");
7054		break;
7055	default:
7056		/* Set number of queues according to bp->multi_mode value */
7057		bnx2x_set_num_queues(bp);
7058
7059		DP(NETIF_MSG_IFUP, "set number of queues to %d\n",
7060		   bp->num_queues);
7061
7062		/* if we can't use MSI-X we only need one fp,
7063		 * so try to enable MSI-X with the requested number of fp's
7064		 * and fallback to MSI or legacy INTx with one fp
7065		 */
7066		if (bnx2x_enable_msix(bp)) {
7067			/* failed to enable MSI-X */
7068			if (bp->multi_mode)
7069				DP(NETIF_MSG_IFUP,
7070					  "Multi requested but failed to "
7071					  "enable MSI-X (%d), "
7072					  "set number of queues to %d\n",
7073				   bp->num_queues,
7074				   1 + NON_ETH_CONTEXT_USE);
7075			bp->num_queues = 1 + NON_ETH_CONTEXT_USE;
7076
7077			/* Try to enable MSI */
7078			if (!(bp->flags & DISABLE_MSI_FLAG))
7079				bnx2x_enable_msi(bp);
7080		}
7081		break;
7082	}
7083}
7084
7085/* must be called prioir to any HW initializations */
7086static inline u16 bnx2x_cid_ilt_lines(struct bnx2x *bp)
7087{
7088	return L2_ILT_LINES(bp);
7089}
7090
7091void bnx2x_ilt_set_info(struct bnx2x *bp)
7092{
7093	struct ilt_client_info *ilt_client;
7094	struct bnx2x_ilt *ilt = BP_ILT(bp);
7095	u16 line = 0;
7096
7097	ilt->start_line = FUNC_ILT_BASE(BP_FUNC(bp));
7098	DP(BNX2X_MSG_SP, "ilt starts at line %d\n", ilt->start_line);
7099
7100	/* CDU */
7101	ilt_client = &ilt->clients[ILT_CLIENT_CDU];
7102	ilt_client->client_num = ILT_CLIENT_CDU;
7103	ilt_client->page_size = CDU_ILT_PAGE_SZ;
7104	ilt_client->flags = ILT_CLIENT_SKIP_MEM;
7105	ilt_client->start = line;
7106	line += bnx2x_cid_ilt_lines(bp);
7107#ifdef BCM_CNIC
7108	line += CNIC_ILT_LINES;
7109#endif
7110	ilt_client->end = line - 1;
7111
7112	DP(BNX2X_MSG_SP, "ilt client[CDU]: start %d, end %d, psz 0x%x, "
7113					 "flags 0x%x, hw psz %d\n",
7114	   ilt_client->start,
7115	   ilt_client->end,
7116	   ilt_client->page_size,
7117	   ilt_client->flags,
7118	   ilog2(ilt_client->page_size >> 12));
7119
7120	/* QM */
7121	if (QM_INIT(bp->qm_cid_count)) {
7122		ilt_client = &ilt->clients[ILT_CLIENT_QM];
7123		ilt_client->client_num = ILT_CLIENT_QM;
7124		ilt_client->page_size = QM_ILT_PAGE_SZ;
7125		ilt_client->flags = 0;
7126		ilt_client->start = line;
7127
7128		/* 4 bytes for each cid */
7129		line += DIV_ROUND_UP(bp->qm_cid_count * QM_QUEUES_PER_FUNC * 4,
7130							 QM_ILT_PAGE_SZ);
7131
7132		ilt_client->end = line - 1;
7133
7134		DP(BNX2X_MSG_SP, "ilt client[QM]: start %d, end %d, psz 0x%x, "
7135						 "flags 0x%x, hw psz %d\n",
7136		   ilt_client->start,
7137		   ilt_client->end,
7138		   ilt_client->page_size,
7139		   ilt_client->flags,
7140		   ilog2(ilt_client->page_size >> 12));
7141
7142	}
7143	/* SRC */
7144	ilt_client = &ilt->clients[ILT_CLIENT_SRC];
7145#ifdef BCM_CNIC
7146	ilt_client->client_num = ILT_CLIENT_SRC;
7147	ilt_client->page_size = SRC_ILT_PAGE_SZ;
7148	ilt_client->flags = 0;
7149	ilt_client->start = line;
7150	line += SRC_ILT_LINES;
7151	ilt_client->end = line - 1;
7152
7153	DP(BNX2X_MSG_SP, "ilt client[SRC]: start %d, end %d, psz 0x%x, "
7154					 "flags 0x%x, hw psz %d\n",
7155	   ilt_client->start,
7156	   ilt_client->end,
7157	   ilt_client->page_size,
7158	   ilt_client->flags,
7159	   ilog2(ilt_client->page_size >> 12));
7160
7161#else
7162	ilt_client->flags = (ILT_CLIENT_SKIP_INIT | ILT_CLIENT_SKIP_MEM);
7163#endif
7164
7165	/* TM */
7166	ilt_client = &ilt->clients[ILT_CLIENT_TM];
7167#ifdef BCM_CNIC
7168	ilt_client->client_num = ILT_CLIENT_TM;
7169	ilt_client->page_size = TM_ILT_PAGE_SZ;
7170	ilt_client->flags = 0;
7171	ilt_client->start = line;
7172	line += TM_ILT_LINES;
7173	ilt_client->end = line - 1;
7174
7175	DP(BNX2X_MSG_SP, "ilt client[TM]: start %d, end %d, psz 0x%x, "
7176					 "flags 0x%x, hw psz %d\n",
7177	   ilt_client->start,
7178	   ilt_client->end,
7179	   ilt_client->page_size,
7180	   ilt_client->flags,
7181	   ilog2(ilt_client->page_size >> 12));
7182
7183#else
7184	ilt_client->flags = (ILT_CLIENT_SKIP_INIT | ILT_CLIENT_SKIP_MEM);
7185#endif
7186	BUG_ON(line > ILT_MAX_LINES);
7187}
7188
7189/**
7190 * bnx2x_pf_q_prep_init - prepare INIT transition parameters
7191 *
7192 * @bp:			driver handle
7193 * @fp:			pointer to fastpath
7194 * @init_params:	pointer to parameters structure
7195 *
7196 * parameters configured:
7197 *      - HC configuration
7198 *      - Queue's CDU context
7199 */
7200static inline void bnx2x_pf_q_prep_init(struct bnx2x *bp,
7201	struct bnx2x_fastpath *fp, struct bnx2x_queue_init_params *init_params)
7202{
7203
7204	u8 cos;
7205	/* FCoE Queue uses Default SB, thus has no HC capabilities */
7206	if (!IS_FCOE_FP(fp)) {
7207		__set_bit(BNX2X_Q_FLG_HC, &init_params->rx.flags);
7208		__set_bit(BNX2X_Q_FLG_HC, &init_params->tx.flags);
7209
7210		/* If HC is supporterd, enable host coalescing in the transition
7211		 * to INIT state.
7212		 */
7213		__set_bit(BNX2X_Q_FLG_HC_EN, &init_params->rx.flags);
7214		__set_bit(BNX2X_Q_FLG_HC_EN, &init_params->tx.flags);
7215
7216		/* HC rate */
7217		init_params->rx.hc_rate = bp->rx_ticks ?
7218			(1000000 / bp->rx_ticks) : 0;
7219		init_params->tx.hc_rate = bp->tx_ticks ?
7220			(1000000 / bp->tx_ticks) : 0;
7221
7222		/* FW SB ID */
7223		init_params->rx.fw_sb_id = init_params->tx.fw_sb_id =
7224			fp->fw_sb_id;
7225
7226		/*
7227		 * CQ index among the SB indices: FCoE clients uses the default
7228		 * SB, therefore it's different.
7229		 */
7230		init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
7231		init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS;
7232	}
7233
7234	/* set maximum number of COSs supported by this queue */
7235	init_params->max_cos = fp->max_cos;
7236
7237	DP(BNX2X_MSG_SP, "fp: %d setting queue params max cos to: %d\n",
7238	    fp->index, init_params->max_cos);
7239
7240	/* set the context pointers queue object */
7241	for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++)
7242		init_params->cxts[cos] =
7243			&bp->context.vcxt[fp->txdata[cos].cid].eth;
7244}
7245
7246int bnx2x_setup_tx_only(struct bnx2x *bp, struct bnx2x_fastpath *fp,
7247			struct bnx2x_queue_state_params *q_params,
7248			struct bnx2x_queue_setup_tx_only_params *tx_only_params,
7249			int tx_index, bool leading)
7250{
7251	memset(tx_only_params, 0, sizeof(*tx_only_params));
7252
7253	/* Set the command */
7254	q_params->cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
7255
7256	/* Set tx-only QUEUE flags: don't zero statistics */
7257	tx_only_params->flags = bnx2x_get_common_flags(bp, fp, false);
7258
7259	/* choose the index of the cid to send the slow path on */
7260	tx_only_params->cid_index = tx_index;
7261
7262	/* Set general TX_ONLY_SETUP parameters */
7263	bnx2x_pf_q_prep_general(bp, fp, &tx_only_params->gen_params, tx_index);
7264
7265	/* Set Tx TX_ONLY_SETUP parameters */
7266	bnx2x_pf_tx_q_prep(bp, fp, &tx_only_params->txq_params, tx_index);
7267
7268	DP(BNX2X_MSG_SP, "preparing to send tx-only ramrod for connection:"
7269			 "cos %d, primary cid %d, cid %d, "
7270			 "client id %d, sp-client id %d, flags %lx\n",
7271	   tx_index, q_params->q_obj->cids[FIRST_TX_COS_INDEX],
7272	   q_params->q_obj->cids[tx_index], q_params->q_obj->cl_id,
7273	   tx_only_params->gen_params.spcl_id, tx_only_params->flags);
7274
7275	/* send the ramrod */
7276	return bnx2x_queue_state_change(bp, q_params);
7277}
7278
7279
7280/**
7281 * bnx2x_setup_queue - setup queue
7282 *
7283 * @bp:		driver handle
7284 * @fp:		pointer to fastpath
7285 * @leading:	is leading
7286 *
7287 * This function performs 2 steps in a Queue state machine
7288 *      actually: 1) RESET->INIT 2) INIT->SETUP
7289 */
7290
7291int bnx2x_setup_queue(struct bnx2x *bp, struct bnx2x_fastpath *fp,
7292		       bool leading)
7293{
7294	struct bnx2x_queue_state_params q_params = {0};
7295	struct bnx2x_queue_setup_params *setup_params =
7296						&q_params.params.setup;
7297	struct bnx2x_queue_setup_tx_only_params *tx_only_params =
7298						&q_params.params.tx_only;
7299	int rc;
7300	u8 tx_index;
7301
7302	DP(BNX2X_MSG_SP, "setting up queue %d\n", fp->index);
7303
7304	/* reset IGU state skip FCoE L2 queue */
7305	if (!IS_FCOE_FP(fp))
7306		bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, 0,
7307			     IGU_INT_ENABLE, 0);
7308
7309	q_params.q_obj = &fp->q_obj;
7310	/* We want to wait for completion in this context */
7311	__set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
7312
7313	/* Prepare the INIT parameters */
7314	bnx2x_pf_q_prep_init(bp, fp, &q_params.params.init);
7315
7316	/* Set the command */
7317	q_params.cmd = BNX2X_Q_CMD_INIT;
7318
7319	/* Change the state to INIT */
7320	rc = bnx2x_queue_state_change(bp, &q_params);
7321	if (rc) {
7322		BNX2X_ERR("Queue(%d) INIT failed\n", fp->index);
7323		return rc;
7324	}
7325
7326	DP(BNX2X_MSG_SP, "init complete\n");
7327
7328
7329	/* Now move the Queue to the SETUP state... */
7330	memset(setup_params, 0, sizeof(*setup_params));
7331
7332	/* Set QUEUE flags */
7333	setup_params->flags = bnx2x_get_q_flags(bp, fp, leading);
7334
7335	/* Set general SETUP parameters */
7336	bnx2x_pf_q_prep_general(bp, fp, &setup_params->gen_params,
7337				FIRST_TX_COS_INDEX);
7338
7339	bnx2x_pf_rx_q_prep(bp, fp, &setup_params->pause_params,
7340			    &setup_params->rxq_params);
7341
7342	bnx2x_pf_tx_q_prep(bp, fp, &setup_params->txq_params,
7343			   FIRST_TX_COS_INDEX);
7344
7345	/* Set the command */
7346	q_params.cmd = BNX2X_Q_CMD_SETUP;
7347
7348	/* Change the state to SETUP */
7349	rc = bnx2x_queue_state_change(bp, &q_params);
7350	if (rc) {
7351		BNX2X_ERR("Queue(%d) SETUP failed\n", fp->index);
7352		return rc;
7353	}
7354
7355	/* loop through the relevant tx-only indices */
7356	for (tx_index = FIRST_TX_ONLY_COS_INDEX;
7357	      tx_index < fp->max_cos;
7358	      tx_index++) {
7359
7360		/* prepare and send tx-only ramrod*/
7361		rc = bnx2x_setup_tx_only(bp, fp, &q_params,
7362					  tx_only_params, tx_index, leading);
7363		if (rc) {
7364			BNX2X_ERR("Queue(%d.%d) TX_ONLY_SETUP failed\n",
7365				  fp->index, tx_index);
7366			return rc;
7367		}
7368	}
7369
7370	return rc;
7371}
7372
7373static int bnx2x_stop_queue(struct bnx2x *bp, int index)
7374{
7375	struct bnx2x_fastpath *fp = &bp->fp[index];
7376	struct bnx2x_fp_txdata *txdata;
7377	struct bnx2x_queue_state_params q_params = {0};
7378	int rc, tx_index;
7379
7380	DP(BNX2X_MSG_SP, "stopping queue %d cid %d\n", index, fp->cid);
7381
7382	q_params.q_obj = &fp->q_obj;
7383	/* We want to wait for completion in this context */
7384	__set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
7385
7386
7387	/* close tx-only connections */
7388	for (tx_index = FIRST_TX_ONLY_COS_INDEX;
7389	     tx_index < fp->max_cos;
7390	     tx_index++){
7391
7392		/* ascertain this is a normal queue*/
7393		txdata = &fp->txdata[tx_index];
7394
7395		DP(BNX2X_MSG_SP, "stopping tx-only queue %d\n",
7396							txdata->txq_index);
7397
7398		/* send halt terminate on tx-only connection */
7399		q_params.cmd = BNX2X_Q_CMD_TERMINATE;
7400		memset(&q_params.params.terminate, 0,
7401		       sizeof(q_params.params.terminate));
7402		q_params.params.terminate.cid_index = tx_index;
7403
7404		rc = bnx2x_queue_state_change(bp, &q_params);
7405		if (rc)
7406			return rc;
7407
7408		/* send halt terminate on tx-only connection */
7409		q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
7410		memset(&q_params.params.cfc_del, 0,
7411		       sizeof(q_params.params.cfc_del));
7412		q_params.params.cfc_del.cid_index = tx_index;
7413		rc = bnx2x_queue_state_change(bp, &q_params);
7414		if (rc)
7415			return rc;
7416	}
7417	/* Stop the primary connection: */
7418	/* ...halt the connection */
7419	q_params.cmd = BNX2X_Q_CMD_HALT;
7420	rc = bnx2x_queue_state_change(bp, &q_params);
7421	if (rc)
7422		return rc;
7423
7424	/* ...terminate the connection */
7425	q_params.cmd = BNX2X_Q_CMD_TERMINATE;
7426	memset(&q_params.params.terminate, 0,
7427	       sizeof(q_params.params.terminate));
7428	q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX;
7429	rc = bnx2x_queue_state_change(bp, &q_params);
7430	if (rc)
7431		return rc;
7432	/* ...delete cfc entry */
7433	q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
7434	memset(&q_params.params.cfc_del, 0,
7435	       sizeof(q_params.params.cfc_del));
7436	q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX;
7437	return bnx2x_queue_state_change(bp, &q_params);
7438}
7439
7440
7441static void bnx2x_reset_func(struct bnx2x *bp)
7442{
7443	int port = BP_PORT(bp);
7444	int func = BP_FUNC(bp);
7445	int i;
7446
7447	/* Disable the function in the FW */
7448	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0);
7449	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0);
7450	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0);
7451	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0);
7452
7453	/* FP SBs */
7454	for_each_eth_queue(bp, i) {
7455		struct bnx2x_fastpath *fp = &bp->fp[i];
7456		REG_WR8(bp, BAR_CSTRORM_INTMEM +
7457			   CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id),
7458			   SB_DISABLED);
7459	}
7460
7461#ifdef BCM_CNIC
7462	/* CNIC SB */
7463	REG_WR8(bp, BAR_CSTRORM_INTMEM +
7464		CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(bnx2x_cnic_fw_sb_id(bp)),
7465		SB_DISABLED);
7466#endif
7467	/* SP SB */
7468	REG_WR8(bp, BAR_CSTRORM_INTMEM +
7469		   CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func),
7470		   SB_DISABLED);
7471
7472	for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++)
7473		REG_WR(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func),
7474		       0);
7475
7476	/* Configure IGU */
7477	if (bp->common.int_block == INT_BLOCK_HC) {
7478		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
7479		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
7480	} else {
7481		REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
7482		REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
7483	}
7484
7485#ifdef BCM_CNIC
7486	/* Disable Timer scan */
7487	REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 0);
7488	/*
7489	 * Wait for at least 10ms and up to 2 second for the timers scan to
7490	 * complete
7491	 */
7492	for (i = 0; i < 200; i++) {
7493		msleep(10);
7494		if (!REG_RD(bp, TM_REG_LIN0_SCAN_ON + port*4))
7495			break;
7496	}
7497#endif
7498	/* Clear ILT */
7499	bnx2x_clear_func_ilt(bp, func);
7500
7501	/* Timers workaround bug for E2: if this is vnic-3,
7502	 * we need to set the entire ilt range for this timers.
7503	 */
7504	if (!CHIP_IS_E1x(bp) && BP_VN(bp) == 3) {
7505		struct ilt_client_info ilt_cli;
7506		/* use dummy TM client */
7507		memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
7508		ilt_cli.start = 0;
7509		ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
7510		ilt_cli.client_num = ILT_CLIENT_TM;
7511
7512		bnx2x_ilt_boundry_init_op(bp, &ilt_cli, 0, INITOP_CLEAR);
7513	}
7514
7515	/* this assumes that reset_port() called before reset_func()*/
7516	if (!CHIP_IS_E1x(bp))
7517		bnx2x_pf_disable(bp);
7518
7519	bp->dmae_ready = 0;
7520}
7521
7522static void bnx2x_reset_port(struct bnx2x *bp)
7523{
7524	int port = BP_PORT(bp);
7525	u32 val;
7526
7527	/* Reset physical Link */
7528	bnx2x__link_reset(bp);
7529
7530	REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
7531
7532	/* Do not rcv packets to BRB */
7533	REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0);
7534	/* Do not direct rcv packets that are not for MCP to the BRB */
7535	REG_WR(bp, (port ? NIG_REG_LLH1_BRB1_NOT_MCP :
7536			   NIG_REG_LLH0_BRB1_NOT_MCP), 0x0);
7537
7538	/* Configure AEU */
7539	REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0);
7540
7541	msleep(100);
7542	/* Check for BRB port occupancy */
7543	val = REG_RD(bp, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4);
7544	if (val)
7545		DP(NETIF_MSG_IFDOWN,
7546		   "BRB1 is not empty  %d blocks are occupied\n", val);
7547
7548	/* TODO: Close Doorbell port? */
7549}
7550
7551static inline int bnx2x_reset_hw(struct bnx2x *bp, u32 load_code)
7552{
7553	struct bnx2x_func_state_params func_params = {0};
7554
7555	/* Prepare parameters for function state transitions */
7556	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
7557
7558	func_params.f_obj = &bp->func_obj;
7559	func_params.cmd = BNX2X_F_CMD_HW_RESET;
7560
7561	func_params.params.hw_init.load_phase = load_code;
7562
7563	return bnx2x_func_state_change(bp, &func_params);
7564}
7565
7566static inline int bnx2x_func_stop(struct bnx2x *bp)
7567{
7568	struct bnx2x_func_state_params func_params = {0};
7569	int rc;
7570
7571	/* Prepare parameters for function state transitions */
7572	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
7573	func_params.f_obj = &bp->func_obj;
7574	func_params.cmd = BNX2X_F_CMD_STOP;
7575
7576	/*
7577	 * Try to stop the function the 'good way'. If fails (in case
7578	 * of a parity error during bnx2x_chip_cleanup()) and we are
7579	 * not in a debug mode, perform a state transaction in order to
7580	 * enable further HW_RESET transaction.
7581	 */
7582	rc = bnx2x_func_state_change(bp, &func_params);
7583	if (rc) {
7584#ifdef BNX2X_STOP_ON_ERROR
7585		return rc;
7586#else
7587		BNX2X_ERR("FUNC_STOP ramrod failed. Running a dry "
7588			  "transaction\n");
7589		__set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
7590		return bnx2x_func_state_change(bp, &func_params);
7591#endif
7592	}
7593
7594	return 0;
7595}
7596
7597/**
7598 * bnx2x_send_unload_req - request unload mode from the MCP.
7599 *
7600 * @bp:			driver handle
7601 * @unload_mode:	requested function's unload mode
7602 *
7603 * Return unload mode returned by the MCP: COMMON, PORT or FUNC.
7604 */
7605u32 bnx2x_send_unload_req(struct bnx2x *bp, int unload_mode)
7606{
7607	u32 reset_code = 0;
7608	int port = BP_PORT(bp);
7609
7610	/* Select the UNLOAD request mode */
7611	if (unload_mode == UNLOAD_NORMAL)
7612		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
7613
7614	else if (bp->flags & NO_WOL_FLAG)
7615		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP;
7616
7617	else if (bp->wol) {
7618		u32 emac_base = port ? GRCBASE_EMAC1 : GRCBASE_EMAC0;
7619		u8 *mac_addr = bp->dev->dev_addr;
7620		u32 val;
7621		u16 pmc;
7622
7623		/* The mac address is written to entries 1-4 to
7624		 * preserve entry 0 which is used by the PMF
7625		 */
7626		u8 entry = (BP_VN(bp) + 1)*8;
7627
7628		val = (mac_addr[0] << 8) | mac_addr[1];
7629		EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry, val);
7630
7631		val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
7632		      (mac_addr[4] << 8) | mac_addr[5];
7633		EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry + 4, val);
7634
7635		/* Enable the PME and clear the status */
7636		pci_read_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, &pmc);
7637		pmc |= PCI_PM_CTRL_PME_ENABLE | PCI_PM_CTRL_PME_STATUS;
7638		pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, pmc);
7639
7640		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_EN;
7641
7642	} else
7643		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
7644
7645	/* Send the request to the MCP */
7646	if (!BP_NOMCP(bp))
7647		reset_code = bnx2x_fw_command(bp, reset_code, 0);
7648	else {
7649		int path = BP_PATH(bp);
7650
7651		DP(NETIF_MSG_IFDOWN, "NO MCP - load counts[%d]      "
7652				     "%d, %d, %d\n",
7653		   path, load_count[path][0], load_count[path][1],
7654		   load_count[path][2]);
7655		load_count[path][0]--;
7656		load_count[path][1 + port]--;
7657		DP(NETIF_MSG_IFDOWN, "NO MCP - new load counts[%d]  "
7658				     "%d, %d, %d\n",
7659		   path, load_count[path][0], load_count[path][1],
7660		   load_count[path][2]);
7661		if (load_count[path][0] == 0)
7662			reset_code = FW_MSG_CODE_DRV_UNLOAD_COMMON;
7663		else if (load_count[path][1 + port] == 0)
7664			reset_code = FW_MSG_CODE_DRV_UNLOAD_PORT;
7665		else
7666			reset_code = FW_MSG_CODE_DRV_UNLOAD_FUNCTION;
7667	}
7668
7669	return reset_code;
7670}
7671
7672/**
7673 * bnx2x_send_unload_done - send UNLOAD_DONE command to the MCP.
7674 *
7675 * @bp:		driver handle
7676 */
7677void bnx2x_send_unload_done(struct bnx2x *bp)
7678{
7679	/* Report UNLOAD_DONE to MCP */
7680	if (!BP_NOMCP(bp))
7681		bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0);
7682}
7683
7684static inline int bnx2x_func_wait_started(struct bnx2x *bp)
7685{
7686	int tout = 50;
7687	int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
7688
7689	if (!bp->port.pmf)
7690		return 0;
7691
7692	/*
7693	 * (assumption: No Attention from MCP at this stage)
7694	 * PMF probably in the middle of TXdisable/enable transaction
7695	 * 1. Sync IRS for default SB
7696	 * 2. Sync SP queue - this guarantes us that attention handling started
7697	 * 3. Wait, that TXdisable/enable transaction completes
7698	 *
7699	 * 1+2 guranty that if DCBx attention was scheduled it already changed
7700	 * pending bit of transaction from STARTED-->TX_STOPPED, if we alredy
7701	 * received complettion for the transaction the state is TX_STOPPED.
7702	 * State will return to STARTED after completion of TX_STOPPED-->STARTED
7703	 * transaction.
7704	 */
7705
7706	/* make sure default SB ISR is done */
7707	if (msix)
7708		synchronize_irq(bp->msix_table[0].vector);
7709	else
7710		synchronize_irq(bp->pdev->irq);
7711
7712	flush_workqueue(bnx2x_wq);
7713
7714	while (bnx2x_func_get_state(bp, &bp->func_obj) !=
7715				BNX2X_F_STATE_STARTED && tout--)
7716		msleep(20);
7717
7718	if (bnx2x_func_get_state(bp, &bp->func_obj) !=
7719						BNX2X_F_STATE_STARTED) {
7720#ifdef BNX2X_STOP_ON_ERROR
7721		return -EBUSY;
7722#else
7723		/*
7724		 * Failed to complete the transaction in a "good way"
7725		 * Force both transactions with CLR bit
7726		 */
7727		struct bnx2x_func_state_params func_params = {0};
7728
7729		DP(BNX2X_MSG_SP, "Hmmm... unexpected function state! "
7730			  "Forcing STARTED-->TX_ST0PPED-->STARTED\n");
7731
7732		func_params.f_obj = &bp->func_obj;
7733		__set_bit(RAMROD_DRV_CLR_ONLY,
7734					&func_params.ramrod_flags);
7735
7736		/* STARTED-->TX_ST0PPED */
7737		func_params.cmd = BNX2X_F_CMD_TX_STOP;
7738		bnx2x_func_state_change(bp, &func_params);
7739
7740		/* TX_ST0PPED-->STARTED */
7741		func_params.cmd = BNX2X_F_CMD_TX_START;
7742		return bnx2x_func_state_change(bp, &func_params);
7743#endif
7744	}
7745
7746	return 0;
7747}
7748
7749void bnx2x_chip_cleanup(struct bnx2x *bp, int unload_mode)
7750{
7751	int port = BP_PORT(bp);
7752	int i, rc = 0;
7753	u8 cos;
7754	struct bnx2x_mcast_ramrod_params rparam = {0};
7755	u32 reset_code;
7756
7757	/* Wait until tx fastpath tasks complete */
7758	for_each_tx_queue(bp, i) {
7759		struct bnx2x_fastpath *fp = &bp->fp[i];
7760
7761		for_each_cos_in_tx_queue(fp, cos)
7762			rc = bnx2x_clean_tx_queue(bp, &fp->txdata[cos]);
7763#ifdef BNX2X_STOP_ON_ERROR
7764		if (rc)
7765			return;
7766#endif
7767	}
7768
7769	/* Give HW time to discard old tx messages */
7770	usleep_range(1000, 1000);
7771
7772	/* Clean all ETH MACs */
7773	rc = bnx2x_del_all_macs(bp, &bp->fp[0].mac_obj, BNX2X_ETH_MAC, false);
7774	if (rc < 0)
7775		BNX2X_ERR("Failed to delete all ETH macs: %d\n", rc);
7776
7777	/* Clean up UC list  */
7778	rc = bnx2x_del_all_macs(bp, &bp->fp[0].mac_obj, BNX2X_UC_LIST_MAC,
7779				true);
7780	if (rc < 0)
7781		BNX2X_ERR("Failed to schedule DEL commands for UC MACs list: "
7782			  "%d\n", rc);
7783
7784	/* Disable LLH */
7785	if (!CHIP_IS_E1(bp))
7786		REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
7787
7788	/* Set "drop all" (stop Rx).
7789	 * We need to take a netif_addr_lock() here in order to prevent
7790	 * a race between the completion code and this code.
7791	 */
7792	netif_addr_lock_bh(bp->dev);
7793	/* Schedule the rx_mode command */
7794	if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
7795		set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
7796	else
7797		bnx2x_set_storm_rx_mode(bp);
7798
7799	/* Cleanup multicast configuration */
7800	rparam.mcast_obj = &bp->mcast_obj;
7801	rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
7802	if (rc < 0)
7803		BNX2X_ERR("Failed to send DEL multicast command: %d\n", rc);
7804
7805	netif_addr_unlock_bh(bp->dev);
7806
7807
7808
7809	/*
7810	 * Send the UNLOAD_REQUEST to the MCP. This will return if
7811	 * this function should perform FUNC, PORT or COMMON HW
7812	 * reset.
7813	 */
7814	reset_code = bnx2x_send_unload_req(bp, unload_mode);
7815
7816	/*
7817	 * (assumption: No Attention from MCP at this stage)
7818	 * PMF probably in the middle of TXdisable/enable transaction
7819	 */
7820	rc = bnx2x_func_wait_started(bp);
7821	if (rc) {
7822		BNX2X_ERR("bnx2x_func_wait_started failed\n");
7823#ifdef BNX2X_STOP_ON_ERROR
7824		return;
7825#endif
7826	}
7827
7828	/* Close multi and leading connections
7829	 * Completions for ramrods are collected in a synchronous way
7830	 */
7831	for_each_queue(bp, i)
7832		if (bnx2x_stop_queue(bp, i))
7833#ifdef BNX2X_STOP_ON_ERROR
7834			return;
7835#else
7836			goto unload_error;
7837#endif
7838	/* If SP settings didn't get completed so far - something
7839	 * very wrong has happen.
7840	 */
7841	if (!bnx2x_wait_sp_comp(bp, ~0x0UL))
7842		BNX2X_ERR("Hmmm... Common slow path ramrods got stuck!\n");
7843
7844#ifndef BNX2X_STOP_ON_ERROR
7845unload_error:
7846#endif
7847	rc = bnx2x_func_stop(bp);
7848	if (rc) {
7849		BNX2X_ERR("Function stop failed!\n");
7850#ifdef BNX2X_STOP_ON_ERROR
7851		return;
7852#endif
7853	}
7854
7855	/* Disable HW interrupts, NAPI */
7856	bnx2x_netif_stop(bp, 1);
7857
7858	/* Release IRQs */
7859	bnx2x_free_irq(bp);
7860
7861	/* Reset the chip */
7862	rc = bnx2x_reset_hw(bp, reset_code);
7863	if (rc)
7864		BNX2X_ERR("HW_RESET failed\n");
7865
7866
7867	/* Report UNLOAD_DONE to MCP */
7868	bnx2x_send_unload_done(bp);
7869}
7870
7871void bnx2x_disable_close_the_gate(struct bnx2x *bp)
7872{
7873	u32 val;
7874
7875	DP(NETIF_MSG_HW, "Disabling \"close the gates\"\n");
7876
7877	if (CHIP_IS_E1(bp)) {
7878		int port = BP_PORT(bp);
7879		u32 addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
7880			MISC_REG_AEU_MASK_ATTN_FUNC_0;
7881
7882		val = REG_RD(bp, addr);
7883		val &= ~(0x300);
7884		REG_WR(bp, addr, val);
7885	} else {
7886		val = REG_RD(bp, MISC_REG_AEU_GENERAL_MASK);
7887		val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK |
7888			 MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK);
7889		REG_WR(bp, MISC_REG_AEU_GENERAL_MASK, val);
7890	}
7891}
7892
7893/* Close gates #2, #3 and #4: */
7894static void bnx2x_set_234_gates(struct bnx2x *bp, bool close)
7895{
7896	u32 val;
7897
7898	/* Gates #2 and #4a are closed/opened for "not E1" only */
7899	if (!CHIP_IS_E1(bp)) {
7900		/* #4 */
7901		REG_WR(bp, PXP_REG_HST_DISCARD_DOORBELLS, !!close);
7902		/* #2 */
7903		REG_WR(bp, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close);
7904	}
7905
7906	/* #3 */
7907	if (CHIP_IS_E1x(bp)) {
7908		/* Prevent interrupts from HC on both ports */
7909		val = REG_RD(bp, HC_REG_CONFIG_1);
7910		REG_WR(bp, HC_REG_CONFIG_1,
7911		       (!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) :
7912		       (val & ~(u32)HC_CONFIG_1_REG_BLOCK_DISABLE_1));
7913
7914		val = REG_RD(bp, HC_REG_CONFIG_0);
7915		REG_WR(bp, HC_REG_CONFIG_0,
7916		       (!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) :
7917		       (val & ~(u32)HC_CONFIG_0_REG_BLOCK_DISABLE_0));
7918	} else {
7919		/* Prevent incomming interrupts in IGU */
7920		val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
7921
7922		REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION,
7923		       (!close) ?
7924		       (val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) :
7925		       (val & ~(u32)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE));
7926	}
7927
7928	DP(NETIF_MSG_HW, "%s gates #2, #3 and #4\n",
7929		close ? "closing" : "opening");
7930	mmiowb();
7931}
7932
7933#define SHARED_MF_CLP_MAGIC  0x80000000 /* `magic' bit */
7934
7935static void bnx2x_clp_reset_prep(struct bnx2x *bp, u32 *magic_val)
7936{
7937	/* Do some magic... */
7938	u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
7939	*magic_val = val & SHARED_MF_CLP_MAGIC;
7940	MF_CFG_WR(bp, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC);
7941}
7942
7943/**
7944 * bnx2x_clp_reset_done - restore the value of the `magic' bit.
7945 *
7946 * @bp:		driver handle
7947 * @magic_val:	old value of the `magic' bit.
7948 */
7949static void bnx2x_clp_reset_done(struct bnx2x *bp, u32 magic_val)
7950{
7951	/* Restore the `magic' bit value... */
7952	u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
7953	MF_CFG_WR(bp, shared_mf_config.clp_mb,
7954		(val & (~SHARED_MF_CLP_MAGIC)) | magic_val);
7955}
7956
7957/**
7958 * bnx2x_reset_mcp_prep - prepare for MCP reset.
7959 *
7960 * @bp:		driver handle
7961 * @magic_val:	old value of 'magic' bit.
7962 *
7963 * Takes care of CLP configurations.
7964 */
7965static void bnx2x_reset_mcp_prep(struct bnx2x *bp, u32 *magic_val)
7966{
7967	u32 shmem;
7968	u32 validity_offset;
7969
7970	DP(NETIF_MSG_HW, "Starting\n");
7971
7972	/* Set `magic' bit in order to save MF config */
7973	if (!CHIP_IS_E1(bp))
7974		bnx2x_clp_reset_prep(bp, magic_val);
7975
7976	/* Get shmem offset */
7977	shmem = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
7978	validity_offset = offsetof(struct shmem_region, validity_map[0]);
7979
7980	/* Clear validity map flags */
7981	if (shmem > 0)
7982		REG_WR(bp, shmem + validity_offset, 0);
7983}
7984
7985#define MCP_TIMEOUT      5000   /* 5 seconds (in ms) */
7986#define MCP_ONE_TIMEOUT  100    /* 100 ms */
7987
7988/**
7989 * bnx2x_mcp_wait_one - wait for MCP_ONE_TIMEOUT
7990 *
7991 * @bp:	driver handle
7992 */
7993static inline void bnx2x_mcp_wait_one(struct bnx2x *bp)
7994{
7995	/* special handling for emulation and FPGA,
7996	   wait 10 times longer */
7997	if (CHIP_REV_IS_SLOW(bp))
7998		msleep(MCP_ONE_TIMEOUT*10);
7999	else
8000		msleep(MCP_ONE_TIMEOUT);
8001}
8002
8003/*
8004 * initializes bp->common.shmem_base and waits for validity signature to appear
8005 */
8006static int bnx2x_init_shmem(struct bnx2x *bp)
8007{
8008	int cnt = 0;
8009	u32 val = 0;
8010
8011	do {
8012		bp->common.shmem_base = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
8013		if (bp->common.shmem_base) {
8014			val = SHMEM_RD(bp, validity_map[BP_PORT(bp)]);
8015			if (val & SHR_MEM_VALIDITY_MB)
8016				return 0;
8017		}
8018
8019		bnx2x_mcp_wait_one(bp);
8020
8021	} while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT));
8022
8023	BNX2X_ERR("BAD MCP validity signature\n");
8024
8025	return -ENODEV;
8026}
8027
8028static int bnx2x_reset_mcp_comp(struct bnx2x *bp, u32 magic_val)
8029{
8030	int rc = bnx2x_init_shmem(bp);
8031
8032	/* Restore the `magic' bit value */
8033	if (!CHIP_IS_E1(bp))
8034		bnx2x_clp_reset_done(bp, magic_val);
8035
8036	return rc;
8037}
8038
8039static void bnx2x_pxp_prep(struct bnx2x *bp)
8040{
8041	if (!CHIP_IS_E1(bp)) {
8042		REG_WR(bp, PXP2_REG_RD_START_INIT, 0);
8043		REG_WR(bp, PXP2_REG_RQ_RBC_DONE, 0);
8044		mmiowb();
8045	}
8046}
8047
8048/*
8049 * Reset the whole chip except for:
8050 *      - PCIE core
8051 *      - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by
8052 *              one reset bit)
8053 *      - IGU
8054 *      - MISC (including AEU)
8055 *      - GRC
8056 *      - RBCN, RBCP
8057 */
8058static void bnx2x_process_kill_chip_reset(struct bnx2x *bp, bool global)
8059{
8060	u32 not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2;
8061	u32 global_bits2, stay_reset2;
8062
8063	/*
8064	 * Bits that have to be set in reset_mask2 if we want to reset 'global'
8065	 * (per chip) blocks.
8066	 */
8067	global_bits2 =
8068		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU |
8069		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE;
8070
8071	/* Don't reset the following blocks */
8072	not_reset_mask1 =
8073		MISC_REGISTERS_RESET_REG_1_RST_HC |
8074		MISC_REGISTERS_RESET_REG_1_RST_PXPV |
8075		MISC_REGISTERS_RESET_REG_1_RST_PXP;
8076
8077	not_reset_mask2 =
8078		MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO |
8079		MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE |
8080		MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE |
8081		MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE |
8082		MISC_REGISTERS_RESET_REG_2_RST_RBCN |
8083		MISC_REGISTERS_RESET_REG_2_RST_GRC  |
8084		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE |
8085		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B |
8086		MISC_REGISTERS_RESET_REG_2_RST_ATC |
8087		MISC_REGISTERS_RESET_REG_2_PGLC;
8088
8089	/*
8090	 * Keep the following blocks in reset:
8091	 *  - all xxMACs are handled by the bnx2x_link code.
8092	 */
8093	stay_reset2 =
8094		MISC_REGISTERS_RESET_REG_2_RST_BMAC0 |
8095		MISC_REGISTERS_RESET_REG_2_RST_BMAC1 |
8096		MISC_REGISTERS_RESET_REG_2_RST_EMAC0 |
8097		MISC_REGISTERS_RESET_REG_2_RST_EMAC1 |
8098		MISC_REGISTERS_RESET_REG_2_UMAC0 |
8099		MISC_REGISTERS_RESET_REG_2_UMAC1 |
8100		MISC_REGISTERS_RESET_REG_2_XMAC |
8101		MISC_REGISTERS_RESET_REG_2_XMAC_SOFT;
8102
8103	/* Full reset masks according to the chip */
8104	reset_mask1 = 0xffffffff;
8105
8106	if (CHIP_IS_E1(bp))
8107		reset_mask2 = 0xffff;
8108	else if (CHIP_IS_E1H(bp))
8109		reset_mask2 = 0x1ffff;
8110	else if (CHIP_IS_E2(bp))
8111		reset_mask2 = 0xfffff;
8112	else /* CHIP_IS_E3 */
8113		reset_mask2 = 0x3ffffff;
8114
8115	/* Don't reset global blocks unless we need to */
8116	if (!global)
8117		reset_mask2 &= ~global_bits2;
8118
8119	/*
8120	 * In case of attention in the QM, we need to reset PXP
8121	 * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM
8122	 * because otherwise QM reset would release 'close the gates' shortly
8123	 * before resetting the PXP, then the PSWRQ would send a write
8124	 * request to PGLUE. Then when PXP is reset, PGLUE would try to
8125	 * read the payload data from PSWWR, but PSWWR would not
8126	 * respond. The write queue in PGLUE would stuck, dmae commands
8127	 * would not return. Therefore it's important to reset the second
8128	 * reset register (containing the
8129	 * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the
8130	 * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM
8131	 * bit).
8132	 */
8133	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
8134	       reset_mask2 & (~not_reset_mask2));
8135
8136	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
8137	       reset_mask1 & (~not_reset_mask1));
8138
8139	barrier();
8140	mmiowb();
8141
8142	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET,
8143	       reset_mask2 & (~stay_reset2));
8144
8145	barrier();
8146	mmiowb();
8147
8148	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1);
8149	mmiowb();
8150}
8151
8152/**
8153 * bnx2x_er_poll_igu_vq - poll for pending writes bit.
8154 * It should get cleared in no more than 1s.
8155 *
8156 * @bp:	driver handle
8157 *
8158 * It should get cleared in no more than 1s. Returns 0 if
8159 * pending writes bit gets cleared.
8160 */
8161static int bnx2x_er_poll_igu_vq(struct bnx2x *bp)
8162{
8163	u32 cnt = 1000;
8164	u32 pend_bits = 0;
8165
8166	do {
8167		pend_bits  = REG_RD(bp, IGU_REG_PENDING_BITS_STATUS);
8168
8169		if (pend_bits == 0)
8170			break;
8171
8172		usleep_range(1000, 1000);
8173	} while (cnt-- > 0);
8174
8175	if (cnt <= 0) {
8176		BNX2X_ERR("Still pending IGU requests pend_bits=%x!\n",
8177			  pend_bits);
8178		return -EBUSY;
8179	}
8180
8181	return 0;
8182}
8183
8184static int bnx2x_process_kill(struct bnx2x *bp, bool global)
8185{
8186	int cnt = 1000;
8187	u32 val = 0;
8188	u32 sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2;
8189
8190
8191	/* Empty the Tetris buffer, wait for 1s */
8192	do {
8193		sr_cnt  = REG_RD(bp, PXP2_REG_RD_SR_CNT);
8194		blk_cnt = REG_RD(bp, PXP2_REG_RD_BLK_CNT);
8195		port_is_idle_0 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_0);
8196		port_is_idle_1 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_1);
8197		pgl_exp_rom2 = REG_RD(bp, PXP2_REG_PGL_EXP_ROM2);
8198		if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) &&
8199		    ((port_is_idle_0 & 0x1) == 0x1) &&
8200		    ((port_is_idle_1 & 0x1) == 0x1) &&
8201		    (pgl_exp_rom2 == 0xffffffff))
8202			break;
8203		usleep_range(1000, 1000);
8204	} while (cnt-- > 0);
8205
8206	if (cnt <= 0) {
8207		DP(NETIF_MSG_HW, "Tetris buffer didn't get empty or there"
8208			  " are still"
8209			  " outstanding read requests after 1s!\n");
8210		DP(NETIF_MSG_HW, "sr_cnt=0x%08x, blk_cnt=0x%08x,"
8211			  " port_is_idle_0=0x%08x,"
8212			  " port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n",
8213			  sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1,
8214			  pgl_exp_rom2);
8215		return -EAGAIN;
8216	}
8217
8218	barrier();
8219
8220	/* Close gates #2, #3 and #4 */
8221	bnx2x_set_234_gates(bp, true);
8222
8223	/* Poll for IGU VQs for 57712 and newer chips */
8224	if (!CHIP_IS_E1x(bp) && bnx2x_er_poll_igu_vq(bp))
8225		return -EAGAIN;
8226
8227
8228	/* TBD: Indicate that "process kill" is in progress to MCP */
8229
8230	/* Clear "unprepared" bit */
8231	REG_WR(bp, MISC_REG_UNPREPARED, 0);
8232	barrier();
8233
8234	/* Make sure all is written to the chip before the reset */
8235	mmiowb();
8236
8237	/* Wait for 1ms to empty GLUE and PCI-E core queues,
8238	 * PSWHST, GRC and PSWRD Tetris buffer.
8239	 */
8240	usleep_range(1000, 1000);
8241
8242	/* Prepare to chip reset: */
8243	/* MCP */
8244	if (global)
8245		bnx2x_reset_mcp_prep(bp, &val);
8246
8247	/* PXP */
8248	bnx2x_pxp_prep(bp);
8249	barrier();
8250
8251	/* reset the chip */
8252	bnx2x_process_kill_chip_reset(bp, global);
8253	barrier();
8254
8255	/* Recover after reset: */
8256	/* MCP */
8257	if (global && bnx2x_reset_mcp_comp(bp, val))
8258		return -EAGAIN;
8259
8260	/* TBD: Add resetting the NO_MCP mode DB here */
8261
8262	/* PXP */
8263	bnx2x_pxp_prep(bp);
8264
8265	/* Open the gates #2, #3 and #4 */
8266	bnx2x_set_234_gates(bp, false);
8267
8268	/* TBD: IGU/AEU preparation bring back the AEU/IGU to a
8269	 * reset state, re-enable attentions. */
8270
8271	return 0;
8272}
8273
8274int bnx2x_leader_reset(struct bnx2x *bp)
8275{
8276	int rc = 0;
8277	bool global = bnx2x_reset_is_global(bp);
8278
8279	/* Try to recover after the failure */
8280	if (bnx2x_process_kill(bp, global)) {
8281		netdev_err(bp->dev, "Something bad had happen on engine %d! "
8282				    "Aii!\n", BP_PATH(bp));
8283		rc = -EAGAIN;
8284		goto exit_leader_reset;
8285	}
8286
8287	/*
8288	 * Clear RESET_IN_PROGRES and RESET_GLOBAL bits and update the driver
8289	 * state.
8290	 */
8291	bnx2x_set_reset_done(bp);
8292	if (global)
8293		bnx2x_clear_reset_global(bp);
8294
8295exit_leader_reset:
8296	bp->is_leader = 0;
8297	bnx2x_release_leader_lock(bp);
8298	smp_mb();
8299	return rc;
8300}
8301
8302static inline void bnx2x_recovery_failed(struct bnx2x *bp)
8303{
8304	netdev_err(bp->dev, "Recovery has failed. Power cycle is needed.\n");
8305
8306	/* Disconnect this device */
8307	netif_device_detach(bp->dev);
8308
8309	/*
8310	 * Block ifup for all function on this engine until "process kill"
8311	 * or power cycle.
8312	 */
8313	bnx2x_set_reset_in_progress(bp);
8314
8315	/* Shut down the power */
8316	bnx2x_set_power_state(bp, PCI_D3hot);
8317
8318	bp->recovery_state = BNX2X_RECOVERY_FAILED;
8319
8320	smp_mb();
8321}
8322
8323/*
8324 * Assumption: runs under rtnl lock. This together with the fact
8325 * that it's called only from bnx2x_sp_rtnl() ensure that it
8326 * will never be called when netif_running(bp->dev) is false.
8327 */
8328static void bnx2x_parity_recover(struct bnx2x *bp)
8329{
8330	bool global = false;
8331
8332	DP(NETIF_MSG_HW, "Handling parity\n");
8333	while (1) {
8334		switch (bp->recovery_state) {
8335		case BNX2X_RECOVERY_INIT:
8336			DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_INIT\n");
8337			bnx2x_chk_parity_attn(bp, &global, false);
8338
8339			/* Try to get a LEADER_LOCK HW lock */
8340			if (bnx2x_trylock_leader_lock(bp)) {
8341				bnx2x_set_reset_in_progress(bp);
8342				/*
8343				 * Check if there is a global attention and if
8344				 * there was a global attention, set the global
8345				 * reset bit.
8346				 */
8347
8348				if (global)
8349					bnx2x_set_reset_global(bp);
8350
8351				bp->is_leader = 1;
8352			}
8353
8354			/* Stop the driver */
8355			/* If interface has been removed - break */
8356			if (bnx2x_nic_unload(bp, UNLOAD_RECOVERY))
8357				return;
8358
8359			bp->recovery_state = BNX2X_RECOVERY_WAIT;
8360
8361			/*
8362			 * Reset MCP command sequence number and MCP mail box
8363			 * sequence as we are going to reset the MCP.
8364			 */
8365			if (global) {
8366				bp->fw_seq = 0;
8367				bp->fw_drv_pulse_wr_seq = 0;
8368			}
8369
8370			/* Ensure "is_leader", MCP command sequence and
8371			 * "recovery_state" update values are seen on other
8372			 * CPUs.
8373			 */
8374			smp_mb();
8375			break;
8376
8377		case BNX2X_RECOVERY_WAIT:
8378			DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_WAIT\n");
8379			if (bp->is_leader) {
8380				int other_engine = BP_PATH(bp) ? 0 : 1;
8381				u32 other_load_counter =
8382					bnx2x_get_load_cnt(bp, other_engine);
8383				u32 load_counter =
8384					bnx2x_get_load_cnt(bp, BP_PATH(bp));
8385				global = bnx2x_reset_is_global(bp);
8386
8387				/*
8388				 * In case of a parity in a global block, let
8389				 * the first leader that performs a
8390				 * leader_reset() reset the global blocks in
8391				 * order to clear global attentions. Otherwise
8392				 * the the gates will remain closed for that
8393				 * engine.
8394				 */
8395				if (load_counter ||
8396				    (global && other_load_counter)) {
8397					/* Wait until all other functions get
8398					 * down.
8399					 */
8400					schedule_delayed_work(&bp->sp_rtnl_task,
8401								HZ/10);
8402					return;
8403				} else {
8404					/* If all other functions got down -
8405					 * try to bring the chip back to
8406					 * normal. In any case it's an exit
8407					 * point for a leader.
8408					 */
8409					if (bnx2x_leader_reset(bp)) {
8410						bnx2x_recovery_failed(bp);
8411						return;
8412					}
8413
8414					/* If we are here, means that the
8415					 * leader has succeeded and doesn't
8416					 * want to be a leader any more. Try
8417					 * to continue as a none-leader.
8418					 */
8419					break;
8420				}
8421			} else { /* non-leader */
8422				if (!bnx2x_reset_is_done(bp, BP_PATH(bp))) {
8423					/* Try to get a LEADER_LOCK HW lock as
8424					 * long as a former leader may have
8425					 * been unloaded by the user or
8426					 * released a leadership by another
8427					 * reason.
8428					 */
8429					if (bnx2x_trylock_leader_lock(bp)) {
8430						/* I'm a leader now! Restart a
8431						 * switch case.
8432						 */
8433						bp->is_leader = 1;
8434						break;
8435					}
8436
8437					schedule_delayed_work(&bp->sp_rtnl_task,
8438								HZ/10);
8439					return;
8440
8441				} else {
8442					/*
8443					 * If there was a global attention, wait
8444					 * for it to be cleared.
8445					 */
8446					if (bnx2x_reset_is_global(bp)) {
8447						schedule_delayed_work(
8448							&bp->sp_rtnl_task,
8449							HZ/10);
8450						return;
8451					}
8452
8453					if (bnx2x_nic_load(bp, LOAD_NORMAL))
8454						bnx2x_recovery_failed(bp);
8455					else {
8456						bp->recovery_state =
8457							BNX2X_RECOVERY_DONE;
8458						smp_mb();
8459					}
8460
8461					return;
8462				}
8463			}
8464		default:
8465			return;
8466		}
8467	}
8468}
8469
8470/* bnx2x_nic_unload() flushes the bnx2x_wq, thus reset task is
8471 * scheduled on a general queue in order to prevent a dead lock.
8472 */
8473static void bnx2x_sp_rtnl_task(struct work_struct *work)
8474{
8475	struct bnx2x *bp = container_of(work, struct bnx2x, sp_rtnl_task.work);
8476
8477	rtnl_lock();
8478
8479	if (!netif_running(bp->dev))
8480		goto sp_rtnl_exit;
8481
8482	/* if stop on error is defined no recovery flows should be executed */
8483#ifdef BNX2X_STOP_ON_ERROR
8484	BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined "
8485		  "so reset not done to allow debug dump,\n"
8486		  "you will need to reboot when done\n");
8487	goto sp_rtnl_not_reset;
8488#endif
8489
8490	if (unlikely(bp->recovery_state != BNX2X_RECOVERY_DONE)) {
8491		/*
8492		 * Clear all pending SP commands as we are going to reset the
8493		 * function anyway.
8494		 */
8495		bp->sp_rtnl_state = 0;
8496		smp_mb();
8497
8498		bnx2x_parity_recover(bp);
8499
8500		goto sp_rtnl_exit;
8501	}
8502
8503	if (test_and_clear_bit(BNX2X_SP_RTNL_TX_TIMEOUT, &bp->sp_rtnl_state)) {
8504		/*
8505		 * Clear all pending SP commands as we are going to reset the
8506		 * function anyway.
8507		 */
8508		bp->sp_rtnl_state = 0;
8509		smp_mb();
8510
8511		bnx2x_nic_unload(bp, UNLOAD_NORMAL);
8512		bnx2x_nic_load(bp, LOAD_NORMAL);
8513
8514		goto sp_rtnl_exit;
8515	}
8516#ifdef BNX2X_STOP_ON_ERROR
8517sp_rtnl_not_reset:
8518#endif
8519	if (test_and_clear_bit(BNX2X_SP_RTNL_SETUP_TC, &bp->sp_rtnl_state))
8520		bnx2x_setup_tc(bp->dev, bp->dcbx_port_params.ets.num_of_cos);
8521
8522	/*
8523	 * in case of fan failure we need to reset id if the "stop on error"
8524	 * debug flag is set, since we trying to prevent permanent overheating
8525	 * damage
8526	 */
8527	if (test_and_clear_bit(BNX2X_SP_RTNL_FAN_FAILURE, &bp->sp_rtnl_state)) {
8528		DP(BNX2X_MSG_SP, "fan failure detected. Unloading driver\n");
8529		netif_device_detach(bp->dev);
8530		bnx2x_close(bp->dev);
8531	}
8532
8533sp_rtnl_exit:
8534	rtnl_unlock();
8535}
8536
8537/* end of nic load/unload */
8538
8539static void bnx2x_period_task(struct work_struct *work)
8540{
8541	struct bnx2x *bp = container_of(work, struct bnx2x, period_task.work);
8542
8543	if (!netif_running(bp->dev))
8544		goto period_task_exit;
8545
8546	if (CHIP_REV_IS_SLOW(bp)) {
8547		BNX2X_ERR("period task called on emulation, ignoring\n");
8548		goto period_task_exit;
8549	}
8550
8551	bnx2x_acquire_phy_lock(bp);
8552	/*
8553	 * The barrier is needed to ensure the ordering between the writing to
8554	 * the bp->port.pmf in the bnx2x_nic_load() or bnx2x_pmf_update() and
8555	 * the reading here.
8556	 */
8557	smp_mb();
8558	if (bp->port.pmf) {
8559		bnx2x_period_func(&bp->link_params, &bp->link_vars);
8560
8561		/* Re-queue task in 1 sec */
8562		queue_delayed_work(bnx2x_wq, &bp->period_task, 1*HZ);
8563	}
8564
8565	bnx2x_release_phy_lock(bp);
8566period_task_exit:
8567	return;
8568}
8569
8570/*
8571 * Init service functions
8572 */
8573
8574static u32 bnx2x_get_pretend_reg(struct bnx2x *bp)
8575{
8576	u32 base = PXP2_REG_PGL_PRETEND_FUNC_F0;
8577	u32 stride = PXP2_REG_PGL_PRETEND_FUNC_F1 - base;
8578	return base + (BP_ABS_FUNC(bp)) * stride;
8579}
8580
8581static void bnx2x_undi_int_disable_e1h(struct bnx2x *bp)
8582{
8583	u32 reg = bnx2x_get_pretend_reg(bp);
8584
8585	/* Flush all outstanding writes */
8586	mmiowb();
8587
8588	/* Pretend to be function 0 */
8589	REG_WR(bp, reg, 0);
8590	REG_RD(bp, reg);	/* Flush the GRC transaction (in the chip) */
8591
8592	/* From now we are in the "like-E1" mode */
8593	bnx2x_int_disable(bp);
8594
8595	/* Flush all outstanding writes */
8596	mmiowb();
8597
8598	/* Restore the original function */
8599	REG_WR(bp, reg, BP_ABS_FUNC(bp));
8600	REG_RD(bp, reg);
8601}
8602
8603static inline void bnx2x_undi_int_disable(struct bnx2x *bp)
8604{
8605	if (CHIP_IS_E1(bp))
8606		bnx2x_int_disable(bp);
8607	else
8608		bnx2x_undi_int_disable_e1h(bp);
8609}
8610
8611static void __devinit bnx2x_undi_unload(struct bnx2x *bp)
8612{
8613	u32 val;
8614
8615	/* Check if there is any driver already loaded */
8616	val = REG_RD(bp, MISC_REG_UNPREPARED);
8617	if (val == 0x1) {
8618
8619		bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
8620		/*
8621		 * Check if it is the UNDI driver
8622		 * UNDI driver initializes CID offset for normal bell to 0x7
8623		 */
8624		val = REG_RD(bp, DORQ_REG_NORM_CID_OFST);
8625		if (val == 0x7) {
8626			u32 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
8627			/* save our pf_num */
8628			int orig_pf_num = bp->pf_num;
8629			int port;
8630			u32 swap_en, swap_val, value;
8631
8632			/* clear the UNDI indication */
8633			REG_WR(bp, DORQ_REG_NORM_CID_OFST, 0);
8634
8635			BNX2X_DEV_INFO("UNDI is active! reset device\n");
8636
8637			/* try unload UNDI on port 0 */
8638			bp->pf_num = 0;
8639			bp->fw_seq =
8640			      (SHMEM_RD(bp, func_mb[bp->pf_num].drv_mb_header) &
8641				DRV_MSG_SEQ_NUMBER_MASK);
8642			reset_code = bnx2x_fw_command(bp, reset_code, 0);
8643
8644			/* if UNDI is loaded on the other port */
8645			if (reset_code != FW_MSG_CODE_DRV_UNLOAD_COMMON) {
8646
8647				/* send "DONE" for previous unload */
8648				bnx2x_fw_command(bp,
8649						 DRV_MSG_CODE_UNLOAD_DONE, 0);
8650
8651				/* unload UNDI on port 1 */
8652				bp->pf_num = 1;
8653				bp->fw_seq =
8654			      (SHMEM_RD(bp, func_mb[bp->pf_num].drv_mb_header) &
8655					DRV_MSG_SEQ_NUMBER_MASK);
8656				reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
8657
8658				bnx2x_fw_command(bp, reset_code, 0);
8659			}
8660
8661			bnx2x_undi_int_disable(bp);
8662			port = BP_PORT(bp);
8663
8664			/* close input traffic and wait for it */
8665			/* Do not rcv packets to BRB */
8666			REG_WR(bp, (port ? NIG_REG_LLH1_BRB1_DRV_MASK :
8667					   NIG_REG_LLH0_BRB1_DRV_MASK), 0x0);
8668			/* Do not direct rcv packets that are not for MCP to
8669			 * the BRB */
8670			REG_WR(bp, (port ? NIG_REG_LLH1_BRB1_NOT_MCP :
8671					   NIG_REG_LLH0_BRB1_NOT_MCP), 0x0);
8672			/* clear AEU */
8673			REG_WR(bp, (port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
8674					   MISC_REG_AEU_MASK_ATTN_FUNC_0), 0);
8675			msleep(10);
8676
8677			/* save NIG port swap info */
8678			swap_val = REG_RD(bp, NIG_REG_PORT_SWAP);
8679			swap_en = REG_RD(bp, NIG_REG_STRAP_OVERRIDE);
8680			/* reset device */
8681			REG_WR(bp,
8682			       GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
8683			       0xd3ffffff);
8684
8685			value = 0x1400;
8686			if (CHIP_IS_E3(bp)) {
8687				value |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
8688				value |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
8689			}
8690
8691			REG_WR(bp,
8692			       GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
8693			       value);
8694
8695			/* take the NIG out of reset and restore swap values */
8696			REG_WR(bp,
8697			       GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET,
8698			       MISC_REGISTERS_RESET_REG_1_RST_NIG);
8699			REG_WR(bp, NIG_REG_PORT_SWAP, swap_val);
8700			REG_WR(bp, NIG_REG_STRAP_OVERRIDE, swap_en);
8701
8702			/* send unload done to the MCP */
8703			bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0);
8704
8705			/* restore our func and fw_seq */
8706			bp->pf_num = orig_pf_num;
8707			bp->fw_seq =
8708			      (SHMEM_RD(bp, func_mb[bp->pf_num].drv_mb_header) &
8709				DRV_MSG_SEQ_NUMBER_MASK);
8710		}
8711
8712		/* now it's safe to release the lock */
8713		bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
8714	}
8715}
8716
8717static void __devinit bnx2x_get_common_hwinfo(struct bnx2x *bp)
8718{
8719	u32 val, val2, val3, val4, id;
8720	u16 pmc;
8721
8722	/* Get the chip revision id and number. */
8723	/* chip num:16-31, rev:12-15, metal:4-11, bond_id:0-3 */
8724	val = REG_RD(bp, MISC_REG_CHIP_NUM);
8725	id = ((val & 0xffff) << 16);
8726	val = REG_RD(bp, MISC_REG_CHIP_REV);
8727	id |= ((val & 0xf) << 12);
8728	val = REG_RD(bp, MISC_REG_CHIP_METAL);
8729	id |= ((val & 0xff) << 4);
8730	val = REG_RD(bp, MISC_REG_BOND_ID);
8731	id |= (val & 0xf);
8732	bp->common.chip_id = id;
8733
8734	/* Set doorbell size */
8735	bp->db_size = (1 << BNX2X_DB_SHIFT);
8736
8737	if (!CHIP_IS_E1x(bp)) {
8738		val = REG_RD(bp, MISC_REG_PORT4MODE_EN_OVWR);
8739		if ((val & 1) == 0)
8740			val = REG_RD(bp, MISC_REG_PORT4MODE_EN);
8741		else
8742			val = (val >> 1) & 1;
8743		BNX2X_DEV_INFO("chip is in %s\n", val ? "4_PORT_MODE" :
8744						       "2_PORT_MODE");
8745		bp->common.chip_port_mode = val ? CHIP_4_PORT_MODE :
8746						 CHIP_2_PORT_MODE;
8747
8748		if (CHIP_MODE_IS_4_PORT(bp))
8749			bp->pfid = (bp->pf_num >> 1);	/* 0..3 */
8750		else
8751			bp->pfid = (bp->pf_num & 0x6);	/* 0, 2, 4, 6 */
8752	} else {
8753		bp->common.chip_port_mode = CHIP_PORT_MODE_NONE; /* N/A */
8754		bp->pfid = bp->pf_num;			/* 0..7 */
8755	}
8756
8757	bp->link_params.chip_id = bp->common.chip_id;
8758	BNX2X_DEV_INFO("chip ID is 0x%x\n", id);
8759
8760	val = (REG_RD(bp, 0x2874) & 0x55);
8761	if ((bp->common.chip_id & 0x1) ||
8762	    (CHIP_IS_E1(bp) && val) || (CHIP_IS_E1H(bp) && (val == 0x55))) {
8763		bp->flags |= ONE_PORT_FLAG;
8764		BNX2X_DEV_INFO("single port device\n");
8765	}
8766
8767	val = REG_RD(bp, MCP_REG_MCPR_NVM_CFG4);
8768	bp->common.flash_size = (BNX2X_NVRAM_1MB_SIZE <<
8769				 (val & MCPR_NVM_CFG4_FLASH_SIZE));
8770	BNX2X_DEV_INFO("flash_size 0x%x (%d)\n",
8771		       bp->common.flash_size, bp->common.flash_size);
8772
8773	bnx2x_init_shmem(bp);
8774
8775
8776
8777	bp->common.shmem2_base = REG_RD(bp, (BP_PATH(bp) ?
8778					MISC_REG_GENERIC_CR_1 :
8779					MISC_REG_GENERIC_CR_0));
8780
8781	bp->link_params.shmem_base = bp->common.shmem_base;
8782	bp->link_params.shmem2_base = bp->common.shmem2_base;
8783	BNX2X_DEV_INFO("shmem offset 0x%x  shmem2 offset 0x%x\n",
8784		       bp->common.shmem_base, bp->common.shmem2_base);
8785
8786	if (!bp->common.shmem_base) {
8787		BNX2X_DEV_INFO("MCP not active\n");
8788		bp->flags |= NO_MCP_FLAG;
8789		return;
8790	}
8791
8792	bp->common.hw_config = SHMEM_RD(bp, dev_info.shared_hw_config.config);
8793	BNX2X_DEV_INFO("hw_config 0x%08x\n", bp->common.hw_config);
8794
8795	bp->link_params.hw_led_mode = ((bp->common.hw_config &
8796					SHARED_HW_CFG_LED_MODE_MASK) >>
8797				       SHARED_HW_CFG_LED_MODE_SHIFT);
8798
8799	bp->link_params.feature_config_flags = 0;
8800	val = SHMEM_RD(bp, dev_info.shared_feature_config.config);
8801	if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED)
8802		bp->link_params.feature_config_flags |=
8803				FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
8804	else
8805		bp->link_params.feature_config_flags &=
8806				~FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
8807
8808	val = SHMEM_RD(bp, dev_info.bc_rev) >> 8;
8809	bp->common.bc_ver = val;
8810	BNX2X_DEV_INFO("bc_ver %X\n", val);
8811	if (val < BNX2X_BC_VER) {
8812		/* for now only warn
8813		 * later we might need to enforce this */
8814		BNX2X_ERR("This driver needs bc_ver %X but found %X, "
8815			  "please upgrade BC\n", BNX2X_BC_VER, val);
8816	}
8817	bp->link_params.feature_config_flags |=
8818				(val >= REQ_BC_VER_4_VRFY_FIRST_PHY_OPT_MDL) ?
8819				FEATURE_CONFIG_BC_SUPPORTS_OPT_MDL_VRFY : 0;
8820
8821	bp->link_params.feature_config_flags |=
8822		(val >= REQ_BC_VER_4_VRFY_SPECIFIC_PHY_OPT_MDL) ?
8823		FEATURE_CONFIG_BC_SUPPORTS_DUAL_PHY_OPT_MDL_VRFY : 0;
8824
8825	bp->link_params.feature_config_flags |=
8826		(val >= REQ_BC_VER_4_SFP_TX_DISABLE_SUPPORTED) ?
8827		FEATURE_CONFIG_BC_SUPPORTS_SFP_TX_DISABLED : 0;
8828	bp->flags |= (val >= REQ_BC_VER_4_PFC_STATS_SUPPORTED) ?
8829			BC_SUPPORTS_PFC_STATS : 0;
8830
8831	pci_read_config_word(bp->pdev, bp->pm_cap + PCI_PM_PMC, &pmc);
8832	bp->flags |= (pmc & PCI_PM_CAP_PME_D3cold) ? 0 : NO_WOL_FLAG;
8833
8834	BNX2X_DEV_INFO("%sWoL capable\n",
8835		       (bp->flags & NO_WOL_FLAG) ? "not " : "");
8836
8837	val = SHMEM_RD(bp, dev_info.shared_hw_config.part_num);
8838	val2 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[4]);
8839	val3 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[8]);
8840	val4 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[12]);
8841
8842	dev_info(&bp->pdev->dev, "part number %X-%X-%X-%X\n",
8843		 val, val2, val3, val4);
8844}
8845
8846#define IGU_FID(val)	GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID)
8847#define IGU_VEC(val)	GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR)
8848
8849static void __devinit bnx2x_get_igu_cam_info(struct bnx2x *bp)
8850{
8851	int pfid = BP_FUNC(bp);
8852	int igu_sb_id;
8853	u32 val;
8854	u8 fid, igu_sb_cnt = 0;
8855
8856	bp->igu_base_sb = 0xff;
8857	if (CHIP_INT_MODE_IS_BC(bp)) {
8858		int vn = BP_VN(bp);
8859		igu_sb_cnt = bp->igu_sb_cnt;
8860		bp->igu_base_sb = (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn) *
8861			FP_SB_MAX_E1x;
8862
8863		bp->igu_dsb_id =  E1HVN_MAX * FP_SB_MAX_E1x +
8864			(CHIP_MODE_IS_4_PORT(bp) ? pfid : vn);
8865
8866		return;
8867	}
8868
8869	/* IGU in normal mode - read CAM */
8870	for (igu_sb_id = 0; igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE;
8871	     igu_sb_id++) {
8872		val = REG_RD(bp, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4);
8873		if (!(val & IGU_REG_MAPPING_MEMORY_VALID))
8874			continue;
8875		fid = IGU_FID(val);
8876		if ((fid & IGU_FID_ENCODE_IS_PF)) {
8877			if ((fid & IGU_FID_PF_NUM_MASK) != pfid)
8878				continue;
8879			if (IGU_VEC(val) == 0)
8880				/* default status block */
8881				bp->igu_dsb_id = igu_sb_id;
8882			else {
8883				if (bp->igu_base_sb == 0xff)
8884					bp->igu_base_sb = igu_sb_id;
8885				igu_sb_cnt++;
8886			}
8887		}
8888	}
8889
8890#ifdef CONFIG_PCI_MSI
8891	/*
8892	 * It's expected that number of CAM entries for this functions is equal
8893	 * to the number evaluated based on the MSI-X table size. We want a
8894	 * harsh warning if these values are different!
8895	 */
8896	WARN_ON(bp->igu_sb_cnt != igu_sb_cnt);
8897#endif
8898
8899	if (igu_sb_cnt == 0)
8900		BNX2X_ERR("CAM configuration error\n");
8901}
8902
8903static void __devinit bnx2x_link_settings_supported(struct bnx2x *bp,
8904						    u32 switch_cfg)
8905{
8906	int cfg_size = 0, idx, port = BP_PORT(bp);
8907
8908	/* Aggregation of supported attributes of all external phys */
8909	bp->port.supported[0] = 0;
8910	bp->port.supported[1] = 0;
8911	switch (bp->link_params.num_phys) {
8912	case 1:
8913		bp->port.supported[0] = bp->link_params.phy[INT_PHY].supported;
8914		cfg_size = 1;
8915		break;
8916	case 2:
8917		bp->port.supported[0] = bp->link_params.phy[EXT_PHY1].supported;
8918		cfg_size = 1;
8919		break;
8920	case 3:
8921		if (bp->link_params.multi_phy_config &
8922		    PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
8923			bp->port.supported[1] =
8924				bp->link_params.phy[EXT_PHY1].supported;
8925			bp->port.supported[0] =
8926				bp->link_params.phy[EXT_PHY2].supported;
8927		} else {
8928			bp->port.supported[0] =
8929				bp->link_params.phy[EXT_PHY1].supported;
8930			bp->port.supported[1] =
8931				bp->link_params.phy[EXT_PHY2].supported;
8932		}
8933		cfg_size = 2;
8934		break;
8935	}
8936
8937	if (!(bp->port.supported[0] || bp->port.supported[1])) {
8938		BNX2X_ERR("NVRAM config error. BAD phy config."
8939			  "PHY1 config 0x%x, PHY2 config 0x%x\n",
8940			   SHMEM_RD(bp,
8941			   dev_info.port_hw_config[port].external_phy_config),
8942			   SHMEM_RD(bp,
8943			   dev_info.port_hw_config[port].external_phy_config2));
8944			return;
8945	}
8946
8947	if (CHIP_IS_E3(bp))
8948		bp->port.phy_addr = REG_RD(bp, MISC_REG_WC0_CTRL_PHY_ADDR);
8949	else {
8950		switch (switch_cfg) {
8951		case SWITCH_CFG_1G:
8952			bp->port.phy_addr = REG_RD(
8953				bp, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10);
8954			break;
8955		case SWITCH_CFG_10G:
8956			bp->port.phy_addr = REG_RD(
8957				bp, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18);
8958			break;
8959		default:
8960			BNX2X_ERR("BAD switch_cfg link_config 0x%x\n",
8961				  bp->port.link_config[0]);
8962			return;
8963		}
8964	}
8965	BNX2X_DEV_INFO("phy_addr 0x%x\n", bp->port.phy_addr);
8966	/* mask what we support according to speed_cap_mask per configuration */
8967	for (idx = 0; idx < cfg_size; idx++) {
8968		if (!(bp->link_params.speed_cap_mask[idx] &
8969				PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF))
8970			bp->port.supported[idx] &= ~SUPPORTED_10baseT_Half;
8971
8972		if (!(bp->link_params.speed_cap_mask[idx] &
8973				PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL))
8974			bp->port.supported[idx] &= ~SUPPORTED_10baseT_Full;
8975
8976		if (!(bp->link_params.speed_cap_mask[idx] &
8977				PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF))
8978			bp->port.supported[idx] &= ~SUPPORTED_100baseT_Half;
8979
8980		if (!(bp->link_params.speed_cap_mask[idx] &
8981				PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL))
8982			bp->port.supported[idx] &= ~SUPPORTED_100baseT_Full;
8983
8984		if (!(bp->link_params.speed_cap_mask[idx] &
8985					PORT_HW_CFG_SPEED_CAPABILITY_D0_1G))
8986			bp->port.supported[idx] &= ~(SUPPORTED_1000baseT_Half |
8987						     SUPPORTED_1000baseT_Full);
8988
8989		if (!(bp->link_params.speed_cap_mask[idx] &
8990					PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G))
8991			bp->port.supported[idx] &= ~SUPPORTED_2500baseX_Full;
8992
8993		if (!(bp->link_params.speed_cap_mask[idx] &
8994					PORT_HW_CFG_SPEED_CAPABILITY_D0_10G))
8995			bp->port.supported[idx] &= ~SUPPORTED_10000baseT_Full;
8996
8997	}
8998
8999	BNX2X_DEV_INFO("supported 0x%x 0x%x\n", bp->port.supported[0],
9000		       bp->port.supported[1]);
9001}
9002
9003static void __devinit bnx2x_link_settings_requested(struct bnx2x *bp)
9004{
9005	u32 link_config, idx, cfg_size = 0;
9006	bp->port.advertising[0] = 0;
9007	bp->port.advertising[1] = 0;
9008	switch (bp->link_params.num_phys) {
9009	case 1:
9010	case 2:
9011		cfg_size = 1;
9012		break;
9013	case 3:
9014		cfg_size = 2;
9015		break;
9016	}
9017	for (idx = 0; idx < cfg_size; idx++) {
9018		bp->link_params.req_duplex[idx] = DUPLEX_FULL;
9019		link_config = bp->port.link_config[idx];
9020		switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) {
9021		case PORT_FEATURE_LINK_SPEED_AUTO:
9022			if (bp->port.supported[idx] & SUPPORTED_Autoneg) {
9023				bp->link_params.req_line_speed[idx] =
9024					SPEED_AUTO_NEG;
9025				bp->port.advertising[idx] |=
9026					bp->port.supported[idx];
9027			} else {
9028				/* force 10G, no AN */
9029				bp->link_params.req_line_speed[idx] =
9030					SPEED_10000;
9031				bp->port.advertising[idx] |=
9032					(ADVERTISED_10000baseT_Full |
9033					 ADVERTISED_FIBRE);
9034				continue;
9035			}
9036			break;
9037
9038		case PORT_FEATURE_LINK_SPEED_10M_FULL:
9039			if (bp->port.supported[idx] & SUPPORTED_10baseT_Full) {
9040				bp->link_params.req_line_speed[idx] =
9041					SPEED_10;
9042				bp->port.advertising[idx] |=
9043					(ADVERTISED_10baseT_Full |
9044					 ADVERTISED_TP);
9045			} else {
9046				BNX2X_ERR("NVRAM config error. "
9047					    "Invalid link_config 0x%x"
9048					    "  speed_cap_mask 0x%x\n",
9049					    link_config,
9050				    bp->link_params.speed_cap_mask[idx]);
9051				return;
9052			}
9053			break;
9054
9055		case PORT_FEATURE_LINK_SPEED_10M_HALF:
9056			if (bp->port.supported[idx] & SUPPORTED_10baseT_Half) {
9057				bp->link_params.req_line_speed[idx] =
9058					SPEED_10;
9059				bp->link_params.req_duplex[idx] =
9060					DUPLEX_HALF;
9061				bp->port.advertising[idx] |=
9062					(ADVERTISED_10baseT_Half |
9063					 ADVERTISED_TP);
9064			} else {
9065				BNX2X_ERR("NVRAM config error. "
9066					    "Invalid link_config 0x%x"
9067					    "  speed_cap_mask 0x%x\n",
9068					    link_config,
9069					  bp->link_params.speed_cap_mask[idx]);
9070				return;
9071			}
9072			break;
9073
9074		case PORT_FEATURE_LINK_SPEED_100M_FULL:
9075			if (bp->port.supported[idx] &
9076			    SUPPORTED_100baseT_Full) {
9077				bp->link_params.req_line_speed[idx] =
9078					SPEED_100;
9079				bp->port.advertising[idx] |=
9080					(ADVERTISED_100baseT_Full |
9081					 ADVERTISED_TP);
9082			} else {
9083				BNX2X_ERR("NVRAM config error. "
9084					    "Invalid link_config 0x%x"
9085					    "  speed_cap_mask 0x%x\n",
9086					    link_config,
9087					  bp->link_params.speed_cap_mask[idx]);
9088				return;
9089			}
9090			break;
9091
9092		case PORT_FEATURE_LINK_SPEED_100M_HALF:
9093			if (bp->port.supported[idx] &
9094			    SUPPORTED_100baseT_Half) {
9095				bp->link_params.req_line_speed[idx] =
9096								SPEED_100;
9097				bp->link_params.req_duplex[idx] =
9098								DUPLEX_HALF;
9099				bp->port.advertising[idx] |=
9100					(ADVERTISED_100baseT_Half |
9101					 ADVERTISED_TP);
9102			} else {
9103				BNX2X_ERR("NVRAM config error. "
9104				    "Invalid link_config 0x%x"
9105				    "  speed_cap_mask 0x%x\n",
9106				    link_config,
9107				    bp->link_params.speed_cap_mask[idx]);
9108				return;
9109			}
9110			break;
9111
9112		case PORT_FEATURE_LINK_SPEED_1G:
9113			if (bp->port.supported[idx] &
9114			    SUPPORTED_1000baseT_Full) {
9115				bp->link_params.req_line_speed[idx] =
9116					SPEED_1000;
9117				bp->port.advertising[idx] |=
9118					(ADVERTISED_1000baseT_Full |
9119					 ADVERTISED_TP);
9120			} else {
9121				BNX2X_ERR("NVRAM config error. "
9122				    "Invalid link_config 0x%x"
9123				    "  speed_cap_mask 0x%x\n",
9124				    link_config,
9125				    bp->link_params.speed_cap_mask[idx]);
9126				return;
9127			}
9128			break;
9129
9130		case PORT_FEATURE_LINK_SPEED_2_5G:
9131			if (bp->port.supported[idx] &
9132			    SUPPORTED_2500baseX_Full) {
9133				bp->link_params.req_line_speed[idx] =
9134					SPEED_2500;
9135				bp->port.advertising[idx] |=
9136					(ADVERTISED_2500baseX_Full |
9137						ADVERTISED_TP);
9138			} else {
9139				BNX2X_ERR("NVRAM config error. "
9140				    "Invalid link_config 0x%x"
9141				    "  speed_cap_mask 0x%x\n",
9142				    link_config,
9143				    bp->link_params.speed_cap_mask[idx]);
9144				return;
9145			}
9146			break;
9147
9148		case PORT_FEATURE_LINK_SPEED_10G_CX4:
9149			if (bp->port.supported[idx] &
9150			    SUPPORTED_10000baseT_Full) {
9151				bp->link_params.req_line_speed[idx] =
9152					SPEED_10000;
9153				bp->port.advertising[idx] |=
9154					(ADVERTISED_10000baseT_Full |
9155						ADVERTISED_FIBRE);
9156			} else {
9157				BNX2X_ERR("NVRAM config error. "
9158				    "Invalid link_config 0x%x"
9159				    "  speed_cap_mask 0x%x\n",
9160				    link_config,
9161				    bp->link_params.speed_cap_mask[idx]);
9162				return;
9163			}
9164			break;
9165		case PORT_FEATURE_LINK_SPEED_20G:
9166			bp->link_params.req_line_speed[idx] = SPEED_20000;
9167
9168			break;
9169		default:
9170			BNX2X_ERR("NVRAM config error. "
9171				  "BAD link speed link_config 0x%x\n",
9172				  link_config);
9173				bp->link_params.req_line_speed[idx] =
9174							SPEED_AUTO_NEG;
9175				bp->port.advertising[idx] =
9176						bp->port.supported[idx];
9177			break;
9178		}
9179
9180		bp->link_params.req_flow_ctrl[idx] = (link_config &
9181					 PORT_FEATURE_FLOW_CONTROL_MASK);
9182		if ((bp->link_params.req_flow_ctrl[idx] ==
9183		     BNX2X_FLOW_CTRL_AUTO) &&
9184		    !(bp->port.supported[idx] & SUPPORTED_Autoneg)) {
9185			bp->link_params.req_flow_ctrl[idx] =
9186				BNX2X_FLOW_CTRL_NONE;
9187		}
9188
9189		BNX2X_DEV_INFO("req_line_speed %d  req_duplex %d req_flow_ctrl"
9190			       " 0x%x advertising 0x%x\n",
9191			       bp->link_params.req_line_speed[idx],
9192			       bp->link_params.req_duplex[idx],
9193			       bp->link_params.req_flow_ctrl[idx],
9194			       bp->port.advertising[idx]);
9195	}
9196}
9197
9198static void __devinit bnx2x_set_mac_buf(u8 *mac_buf, u32 mac_lo, u16 mac_hi)
9199{
9200	mac_hi = cpu_to_be16(mac_hi);
9201	mac_lo = cpu_to_be32(mac_lo);
9202	memcpy(mac_buf, &mac_hi, sizeof(mac_hi));
9203	memcpy(mac_buf + sizeof(mac_hi), &mac_lo, sizeof(mac_lo));
9204}
9205
9206static void __devinit bnx2x_get_port_hwinfo(struct bnx2x *bp)
9207{
9208	int port = BP_PORT(bp);
9209	u32 config;
9210	u32 ext_phy_type, ext_phy_config;
9211
9212	bp->link_params.bp = bp;
9213	bp->link_params.port = port;
9214
9215	bp->link_params.lane_config =
9216		SHMEM_RD(bp, dev_info.port_hw_config[port].lane_config);
9217
9218	bp->link_params.speed_cap_mask[0] =
9219		SHMEM_RD(bp,
9220			 dev_info.port_hw_config[port].speed_capability_mask);
9221	bp->link_params.speed_cap_mask[1] =
9222		SHMEM_RD(bp,
9223			 dev_info.port_hw_config[port].speed_capability_mask2);
9224	bp->port.link_config[0] =
9225		SHMEM_RD(bp, dev_info.port_feature_config[port].link_config);
9226
9227	bp->port.link_config[1] =
9228		SHMEM_RD(bp, dev_info.port_feature_config[port].link_config2);
9229
9230	bp->link_params.multi_phy_config =
9231		SHMEM_RD(bp, dev_info.port_hw_config[port].multi_phy_config);
9232	/* If the device is capable of WoL, set the default state according
9233	 * to the HW
9234	 */
9235	config = SHMEM_RD(bp, dev_info.port_feature_config[port].config);
9236	bp->wol = (!(bp->flags & NO_WOL_FLAG) &&
9237		   (config & PORT_FEATURE_WOL_ENABLED));
9238
9239	BNX2X_DEV_INFO("lane_config 0x%08x  "
9240		       "speed_cap_mask0 0x%08x  link_config0 0x%08x\n",
9241		       bp->link_params.lane_config,
9242		       bp->link_params.speed_cap_mask[0],
9243		       bp->port.link_config[0]);
9244
9245	bp->link_params.switch_cfg = (bp->port.link_config[0] &
9246				      PORT_FEATURE_CONNECTED_SWITCH_MASK);
9247	bnx2x_phy_probe(&bp->link_params);
9248	bnx2x_link_settings_supported(bp, bp->link_params.switch_cfg);
9249
9250	bnx2x_link_settings_requested(bp);
9251
9252	/*
9253	 * If connected directly, work with the internal PHY, otherwise, work
9254	 * with the external PHY
9255	 */
9256	ext_phy_config =
9257		SHMEM_RD(bp,
9258			 dev_info.port_hw_config[port].external_phy_config);
9259	ext_phy_type = XGXS_EXT_PHY_TYPE(ext_phy_config);
9260	if (ext_phy_type == PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT)
9261		bp->mdio.prtad = bp->port.phy_addr;
9262
9263	else if ((ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE) &&
9264		 (ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_NOT_CONN))
9265		bp->mdio.prtad =
9266			XGXS_EXT_PHY_ADDR(ext_phy_config);
9267
9268	/*
9269	 * Check if hw lock is required to access MDC/MDIO bus to the PHY(s)
9270	 * In MF mode, it is set to cover self test cases
9271	 */
9272	if (IS_MF(bp))
9273		bp->port.need_hw_lock = 1;
9274	else
9275		bp->port.need_hw_lock = bnx2x_hw_lock_required(bp,
9276							bp->common.shmem_base,
9277							bp->common.shmem2_base);
9278}
9279
9280#ifdef BCM_CNIC
9281void bnx2x_get_iscsi_info(struct bnx2x *bp)
9282{
9283	int port = BP_PORT(bp);
9284
9285	u32 max_iscsi_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
9286				drv_lic_key[port].max_iscsi_conn);
9287
9288	/* Get the number of maximum allowed iSCSI connections */
9289	bp->cnic_eth_dev.max_iscsi_conn =
9290		(max_iscsi_conn & BNX2X_MAX_ISCSI_INIT_CONN_MASK) >>
9291		BNX2X_MAX_ISCSI_INIT_CONN_SHIFT;
9292
9293	BNX2X_DEV_INFO("max_iscsi_conn 0x%x\n",
9294		       bp->cnic_eth_dev.max_iscsi_conn);
9295
9296	/*
9297	 * If maximum allowed number of connections is zero -
9298	 * disable the feature.
9299	 */
9300	if (!bp->cnic_eth_dev.max_iscsi_conn)
9301		bp->flags |= NO_ISCSI_FLAG;
9302}
9303
9304static void __devinit bnx2x_get_fcoe_info(struct bnx2x *bp)
9305{
9306	int port = BP_PORT(bp);
9307	int func = BP_ABS_FUNC(bp);
9308
9309	u32 max_fcoe_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
9310				drv_lic_key[port].max_fcoe_conn);
9311
9312	/* Get the number of maximum allowed FCoE connections */
9313	bp->cnic_eth_dev.max_fcoe_conn =
9314		(max_fcoe_conn & BNX2X_MAX_FCOE_INIT_CONN_MASK) >>
9315		BNX2X_MAX_FCOE_INIT_CONN_SHIFT;
9316
9317	/* Read the WWN: */
9318	if (!IS_MF(bp)) {
9319		/* Port info */
9320		bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
9321			SHMEM_RD(bp,
9322				dev_info.port_hw_config[port].
9323				 fcoe_wwn_port_name_upper);
9324		bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
9325			SHMEM_RD(bp,
9326				dev_info.port_hw_config[port].
9327				 fcoe_wwn_port_name_lower);
9328
9329		/* Node info */
9330		bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
9331			SHMEM_RD(bp,
9332				dev_info.port_hw_config[port].
9333				 fcoe_wwn_node_name_upper);
9334		bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
9335			SHMEM_RD(bp,
9336				dev_info.port_hw_config[port].
9337				 fcoe_wwn_node_name_lower);
9338	} else if (!IS_MF_SD(bp)) {
9339		u32 cfg = MF_CFG_RD(bp, func_ext_config[func].func_cfg);
9340
9341		/*
9342		 * Read the WWN info only if the FCoE feature is enabled for
9343		 * this function.
9344		 */
9345		if (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) {
9346			/* Port info */
9347			bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
9348				MF_CFG_RD(bp, func_ext_config[func].
9349						fcoe_wwn_port_name_upper);
9350			bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
9351				MF_CFG_RD(bp, func_ext_config[func].
9352						fcoe_wwn_port_name_lower);
9353
9354			/* Node info */
9355			bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
9356				MF_CFG_RD(bp, func_ext_config[func].
9357						fcoe_wwn_node_name_upper);
9358			bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
9359				MF_CFG_RD(bp, func_ext_config[func].
9360						fcoe_wwn_node_name_lower);
9361		}
9362	}
9363
9364	BNX2X_DEV_INFO("max_fcoe_conn 0x%x\n", bp->cnic_eth_dev.max_fcoe_conn);
9365
9366	/*
9367	 * If maximum allowed number of connections is zero -
9368	 * disable the feature.
9369	 */
9370	if (!bp->cnic_eth_dev.max_fcoe_conn)
9371		bp->flags |= NO_FCOE_FLAG;
9372}
9373
9374static void __devinit bnx2x_get_cnic_info(struct bnx2x *bp)
9375{
9376	/*
9377	 * iSCSI may be dynamically disabled but reading
9378	 * info here we will decrease memory usage by driver
9379	 * if the feature is disabled for good
9380	 */
9381	bnx2x_get_iscsi_info(bp);
9382	bnx2x_get_fcoe_info(bp);
9383}
9384#endif
9385
9386static void __devinit bnx2x_get_mac_hwinfo(struct bnx2x *bp)
9387{
9388	u32 val, val2;
9389	int func = BP_ABS_FUNC(bp);
9390	int port = BP_PORT(bp);
9391#ifdef BCM_CNIC
9392	u8 *iscsi_mac = bp->cnic_eth_dev.iscsi_mac;
9393	u8 *fip_mac = bp->fip_mac;
9394#endif
9395
9396	/* Zero primary MAC configuration */
9397	memset(bp->dev->dev_addr, 0, ETH_ALEN);
9398
9399	if (BP_NOMCP(bp)) {
9400		BNX2X_ERROR("warning: random MAC workaround active\n");
9401		random_ether_addr(bp->dev->dev_addr);
9402	} else if (IS_MF(bp)) {
9403		val2 = MF_CFG_RD(bp, func_mf_config[func].mac_upper);
9404		val = MF_CFG_RD(bp, func_mf_config[func].mac_lower);
9405		if ((val2 != FUNC_MF_CFG_UPPERMAC_DEFAULT) &&
9406		    (val != FUNC_MF_CFG_LOWERMAC_DEFAULT))
9407			bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
9408
9409#ifdef BCM_CNIC
9410		/*
9411		 * iSCSI and FCoE NPAR MACs: if there is no either iSCSI or
9412		 * FCoE MAC then the appropriate feature should be disabled.
9413		 */
9414		if (IS_MF_SI(bp)) {
9415			u32 cfg = MF_CFG_RD(bp, func_ext_config[func].func_cfg);
9416			if (cfg & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) {
9417				val2 = MF_CFG_RD(bp, func_ext_config[func].
9418						     iscsi_mac_addr_upper);
9419				val = MF_CFG_RD(bp, func_ext_config[func].
9420						    iscsi_mac_addr_lower);
9421				bnx2x_set_mac_buf(iscsi_mac, val, val2);
9422				BNX2X_DEV_INFO("Read iSCSI MAC: %pM\n",
9423					       iscsi_mac);
9424			} else
9425				bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
9426
9427			if (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) {
9428				val2 = MF_CFG_RD(bp, func_ext_config[func].
9429						     fcoe_mac_addr_upper);
9430				val = MF_CFG_RD(bp, func_ext_config[func].
9431						    fcoe_mac_addr_lower);
9432				bnx2x_set_mac_buf(fip_mac, val, val2);
9433				BNX2X_DEV_INFO("Read FCoE L2 MAC: %pM\n",
9434					       fip_mac);
9435
9436			} else
9437				bp->flags |= NO_FCOE_FLAG;
9438		} else { /* SD mode */
9439			if (BNX2X_IS_MF_PROTOCOL_ISCSI(bp)) {
9440				/* use primary mac as iscsi mac */
9441				memcpy(iscsi_mac, bp->dev->dev_addr, ETH_ALEN);
9442				/* Zero primary MAC configuration */
9443				memset(bp->dev->dev_addr, 0, ETH_ALEN);
9444
9445				BNX2X_DEV_INFO("SD ISCSI MODE\n");
9446				BNX2X_DEV_INFO("Read iSCSI MAC: %pM\n",
9447					       iscsi_mac);
9448			}
9449		}
9450#endif
9451	} else {
9452		/* in SF read MACs from port configuration */
9453		val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper);
9454		val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower);
9455		bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
9456
9457#ifdef BCM_CNIC
9458		val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
9459				    iscsi_mac_upper);
9460		val = SHMEM_RD(bp, dev_info.port_hw_config[port].
9461				   iscsi_mac_lower);
9462		bnx2x_set_mac_buf(iscsi_mac, val, val2);
9463
9464		val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
9465				    fcoe_fip_mac_upper);
9466		val = SHMEM_RD(bp, dev_info.port_hw_config[port].
9467				   fcoe_fip_mac_lower);
9468		bnx2x_set_mac_buf(fip_mac, val, val2);
9469#endif
9470	}
9471
9472	memcpy(bp->link_params.mac_addr, bp->dev->dev_addr, ETH_ALEN);
9473	memcpy(bp->dev->perm_addr, bp->dev->dev_addr, ETH_ALEN);
9474
9475#ifdef BCM_CNIC
9476	/* Set the FCoE MAC in MF_SD mode */
9477	if (!CHIP_IS_E1x(bp) && IS_MF_SD(bp))
9478		memcpy(fip_mac, bp->dev->dev_addr, ETH_ALEN);
9479
9480	/* Disable iSCSI if MAC configuration is
9481	 * invalid.
9482	 */
9483	if (!is_valid_ether_addr(iscsi_mac)) {
9484		bp->flags |= NO_ISCSI_FLAG;
9485		memset(iscsi_mac, 0, ETH_ALEN);
9486	}
9487
9488	/* Disable FCoE if MAC configuration is
9489	 * invalid.
9490	 */
9491	if (!is_valid_ether_addr(fip_mac)) {
9492		bp->flags |= NO_FCOE_FLAG;
9493		memset(bp->fip_mac, 0, ETH_ALEN);
9494	}
9495#endif
9496
9497	if (!bnx2x_is_valid_ether_addr(bp, bp->dev->dev_addr))
9498		dev_err(&bp->pdev->dev,
9499			"bad Ethernet MAC address configuration: "
9500			"%pM, change it manually before bringing up "
9501			"the appropriate network interface\n",
9502			bp->dev->dev_addr);
9503}
9504
9505static int __devinit bnx2x_get_hwinfo(struct bnx2x *bp)
9506{
9507	int /*abs*/func = BP_ABS_FUNC(bp);
9508	int vn;
9509	u32 val = 0;
9510	int rc = 0;
9511
9512	bnx2x_get_common_hwinfo(bp);
9513
9514	/*
9515	 * initialize IGU parameters
9516	 */
9517	if (CHIP_IS_E1x(bp)) {
9518		bp->common.int_block = INT_BLOCK_HC;
9519
9520		bp->igu_dsb_id = DEF_SB_IGU_ID;
9521		bp->igu_base_sb = 0;
9522	} else {
9523		bp->common.int_block = INT_BLOCK_IGU;
9524
9525		/* do not allow device reset during IGU info preocessing */
9526		bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
9527
9528		val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
9529
9530		if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
9531			int tout = 5000;
9532
9533			BNX2X_DEV_INFO("FORCING Normal Mode\n");
9534
9535			val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN);
9536			REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION, val);
9537			REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x7f);
9538
9539			while (tout && REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
9540				tout--;
9541				usleep_range(1000, 1000);
9542			}
9543
9544			if (REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
9545				dev_err(&bp->pdev->dev,
9546					"FORCING Normal Mode failed!!!\n");
9547				return -EPERM;
9548			}
9549		}
9550
9551		if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
9552			BNX2X_DEV_INFO("IGU Backward Compatible Mode\n");
9553			bp->common.int_block |= INT_BLOCK_MODE_BW_COMP;
9554		} else
9555			BNX2X_DEV_INFO("IGU Normal Mode\n");
9556
9557		bnx2x_get_igu_cam_info(bp);
9558
9559		bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
9560	}
9561
9562	/*
9563	 * set base FW non-default (fast path) status block id, this value is
9564	 * used to initialize the fw_sb_id saved on the fp/queue structure to
9565	 * determine the id used by the FW.
9566	 */
9567	if (CHIP_IS_E1x(bp))
9568		bp->base_fw_ndsb = BP_PORT(bp) * FP_SB_MAX_E1x + BP_L_ID(bp);
9569	else /*
9570	      * 57712 - we currently use one FW SB per IGU SB (Rx and Tx of
9571	      * the same queue are indicated on the same IGU SB). So we prefer
9572	      * FW and IGU SBs to be the same value.
9573	      */
9574		bp->base_fw_ndsb = bp->igu_base_sb;
9575
9576	BNX2X_DEV_INFO("igu_dsb_id %d  igu_base_sb %d  igu_sb_cnt %d\n"
9577		       "base_fw_ndsb %d\n", bp->igu_dsb_id, bp->igu_base_sb,
9578		       bp->igu_sb_cnt, bp->base_fw_ndsb);
9579
9580	/*
9581	 * Initialize MF configuration
9582	 */
9583
9584	bp->mf_ov = 0;
9585	bp->mf_mode = 0;
9586	vn = BP_VN(bp);
9587
9588	if (!CHIP_IS_E1(bp) && !BP_NOMCP(bp)) {
9589		BNX2X_DEV_INFO("shmem2base 0x%x, size %d, mfcfg offset %d\n",
9590			       bp->common.shmem2_base, SHMEM2_RD(bp, size),
9591			      (u32)offsetof(struct shmem2_region, mf_cfg_addr));
9592
9593		if (SHMEM2_HAS(bp, mf_cfg_addr))
9594			bp->common.mf_cfg_base = SHMEM2_RD(bp, mf_cfg_addr);
9595		else
9596			bp->common.mf_cfg_base = bp->common.shmem_base +
9597				offsetof(struct shmem_region, func_mb) +
9598				E1H_FUNC_MAX * sizeof(struct drv_func_mb);
9599		/*
9600		 * get mf configuration:
9601		 * 1. existence of MF configuration
9602		 * 2. MAC address must be legal (check only upper bytes)
9603		 *    for  Switch-Independent mode;
9604		 *    OVLAN must be legal for Switch-Dependent mode
9605		 * 3. SF_MODE configures specific MF mode
9606		 */
9607		if (bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
9608			/* get mf configuration */
9609			val = SHMEM_RD(bp,
9610				       dev_info.shared_feature_config.config);
9611			val &= SHARED_FEAT_CFG_FORCE_SF_MODE_MASK;
9612
9613			switch (val) {
9614			case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT:
9615				val = MF_CFG_RD(bp, func_mf_config[func].
9616						mac_upper);
9617				/* check for legal mac (upper bytes)*/
9618				if (val != 0xffff) {
9619					bp->mf_mode = MULTI_FUNCTION_SI;
9620					bp->mf_config[vn] = MF_CFG_RD(bp,
9621						   func_mf_config[func].config);
9622				} else
9623					BNX2X_DEV_INFO("illegal MAC address "
9624						       "for SI\n");
9625				break;
9626			case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED:
9627				/* get OV configuration */
9628				val = MF_CFG_RD(bp,
9629					func_mf_config[FUNC_0].e1hov_tag);
9630				val &= FUNC_MF_CFG_E1HOV_TAG_MASK;
9631
9632				if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
9633					bp->mf_mode = MULTI_FUNCTION_SD;
9634					bp->mf_config[vn] = MF_CFG_RD(bp,
9635						func_mf_config[func].config);
9636				} else
9637					BNX2X_DEV_INFO("illegal OV for SD\n");
9638				break;
9639			default:
9640				/* Unknown configuration: reset mf_config */
9641				bp->mf_config[vn] = 0;
9642				BNX2X_DEV_INFO("unkown MF mode 0x%x\n", val);
9643			}
9644		}
9645
9646		BNX2X_DEV_INFO("%s function mode\n",
9647			       IS_MF(bp) ? "multi" : "single");
9648
9649		switch (bp->mf_mode) {
9650		case MULTI_FUNCTION_SD:
9651			val = MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
9652			      FUNC_MF_CFG_E1HOV_TAG_MASK;
9653			if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
9654				bp->mf_ov = val;
9655				bp->path_has_ovlan = true;
9656
9657				BNX2X_DEV_INFO("MF OV for func %d is %d "
9658					       "(0x%04x)\n", func, bp->mf_ov,
9659					       bp->mf_ov);
9660			} else {
9661				dev_err(&bp->pdev->dev,
9662					"No valid MF OV for func %d, "
9663					"aborting\n", func);
9664				return -EPERM;
9665			}
9666			break;
9667		case MULTI_FUNCTION_SI:
9668			BNX2X_DEV_INFO("func %d is in MF "
9669				       "switch-independent mode\n", func);
9670			break;
9671		default:
9672			if (vn) {
9673				dev_err(&bp->pdev->dev,
9674					"VN %d is in a single function mode, "
9675					"aborting\n", vn);
9676				return -EPERM;
9677			}
9678			break;
9679		}
9680
9681		/* check if other port on the path needs ovlan:
9682		 * Since MF configuration is shared between ports
9683		 * Possible mixed modes are only
9684		 * {SF, SI} {SF, SD} {SD, SF} {SI, SF}
9685		 */
9686		if (CHIP_MODE_IS_4_PORT(bp) &&
9687		    !bp->path_has_ovlan &&
9688		    !IS_MF(bp) &&
9689		    bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
9690			u8 other_port = !BP_PORT(bp);
9691			u8 other_func = BP_PATH(bp) + 2*other_port;
9692			val = MF_CFG_RD(bp,
9693					func_mf_config[other_func].e1hov_tag);
9694			if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT)
9695				bp->path_has_ovlan = true;
9696		}
9697	}
9698
9699	/* adjust igu_sb_cnt to MF for E1x */
9700	if (CHIP_IS_E1x(bp) && IS_MF(bp))
9701		bp->igu_sb_cnt /= E1HVN_MAX;
9702
9703	/* port info */
9704	bnx2x_get_port_hwinfo(bp);
9705
9706	/* Get MAC addresses */
9707	bnx2x_get_mac_hwinfo(bp);
9708
9709#ifdef BCM_CNIC
9710	bnx2x_get_cnic_info(bp);
9711#endif
9712
9713	/* Get current FW pulse sequence */
9714	if (!BP_NOMCP(bp)) {
9715		int mb_idx = BP_FW_MB_IDX(bp);
9716
9717		bp->fw_drv_pulse_wr_seq =
9718				(SHMEM_RD(bp, func_mb[mb_idx].drv_pulse_mb) &
9719				 DRV_PULSE_SEQ_MASK);
9720		BNX2X_DEV_INFO("drv_pulse 0x%x\n", bp->fw_drv_pulse_wr_seq);
9721	}
9722
9723	return rc;
9724}
9725
9726static void __devinit bnx2x_read_fwinfo(struct bnx2x *bp)
9727{
9728	int cnt, i, block_end, rodi;
9729	char vpd_data[BNX2X_VPD_LEN+1];
9730	char str_id_reg[VENDOR_ID_LEN+1];
9731	char str_id_cap[VENDOR_ID_LEN+1];
9732	u8 len;
9733
9734	cnt = pci_read_vpd(bp->pdev, 0, BNX2X_VPD_LEN, vpd_data);
9735	memset(bp->fw_ver, 0, sizeof(bp->fw_ver));
9736
9737	if (cnt < BNX2X_VPD_LEN)
9738		goto out_not_found;
9739
9740	i = pci_vpd_find_tag(vpd_data, 0, BNX2X_VPD_LEN,
9741			     PCI_VPD_LRDT_RO_DATA);
9742	if (i < 0)
9743		goto out_not_found;
9744
9745
9746	block_end = i + PCI_VPD_LRDT_TAG_SIZE +
9747		    pci_vpd_lrdt_size(&vpd_data[i]);
9748
9749	i += PCI_VPD_LRDT_TAG_SIZE;
9750
9751	if (block_end > BNX2X_VPD_LEN)
9752		goto out_not_found;
9753
9754	rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
9755				   PCI_VPD_RO_KEYWORD_MFR_ID);
9756	if (rodi < 0)
9757		goto out_not_found;
9758
9759	len = pci_vpd_info_field_size(&vpd_data[rodi]);
9760
9761	if (len != VENDOR_ID_LEN)
9762		goto out_not_found;
9763
9764	rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
9765
9766	/* vendor specific info */
9767	snprintf(str_id_reg, VENDOR_ID_LEN + 1, "%04x", PCI_VENDOR_ID_DELL);
9768	snprintf(str_id_cap, VENDOR_ID_LEN + 1, "%04X", PCI_VENDOR_ID_DELL);
9769	if (!strncmp(str_id_reg, &vpd_data[rodi], VENDOR_ID_LEN) ||
9770	    !strncmp(str_id_cap, &vpd_data[rodi], VENDOR_ID_LEN)) {
9771
9772		rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
9773						PCI_VPD_RO_KEYWORD_VENDOR0);
9774		if (rodi >= 0) {
9775			len = pci_vpd_info_field_size(&vpd_data[rodi]);
9776
9777			rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
9778
9779			if (len < 32 && (len + rodi) <= BNX2X_VPD_LEN) {
9780				memcpy(bp->fw_ver, &vpd_data[rodi], len);
9781				bp->fw_ver[len] = ' ';
9782			}
9783		}
9784		return;
9785	}
9786out_not_found:
9787	return;
9788}
9789
9790static void __devinit bnx2x_set_modes_bitmap(struct bnx2x *bp)
9791{
9792	u32 flags = 0;
9793
9794	if (CHIP_REV_IS_FPGA(bp))
9795		SET_FLAGS(flags, MODE_FPGA);
9796	else if (CHIP_REV_IS_EMUL(bp))
9797		SET_FLAGS(flags, MODE_EMUL);
9798	else
9799		SET_FLAGS(flags, MODE_ASIC);
9800
9801	if (CHIP_MODE_IS_4_PORT(bp))
9802		SET_FLAGS(flags, MODE_PORT4);
9803	else
9804		SET_FLAGS(flags, MODE_PORT2);
9805
9806	if (CHIP_IS_E2(bp))
9807		SET_FLAGS(flags, MODE_E2);
9808	else if (CHIP_IS_E3(bp)) {
9809		SET_FLAGS(flags, MODE_E3);
9810		if (CHIP_REV(bp) == CHIP_REV_Ax)
9811			SET_FLAGS(flags, MODE_E3_A0);
9812		else /*if (CHIP_REV(bp) == CHIP_REV_Bx)*/
9813			SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3);
9814	}
9815
9816	if (IS_MF(bp)) {
9817		SET_FLAGS(flags, MODE_MF);
9818		switch (bp->mf_mode) {
9819		case MULTI_FUNCTION_SD:
9820			SET_FLAGS(flags, MODE_MF_SD);
9821			break;
9822		case MULTI_FUNCTION_SI:
9823			SET_FLAGS(flags, MODE_MF_SI);
9824			break;
9825		}
9826	} else
9827		SET_FLAGS(flags, MODE_SF);
9828
9829#if defined(__LITTLE_ENDIAN)
9830	SET_FLAGS(flags, MODE_LITTLE_ENDIAN);
9831#else /*(__BIG_ENDIAN)*/
9832	SET_FLAGS(flags, MODE_BIG_ENDIAN);
9833#endif
9834	INIT_MODE_FLAGS(bp) = flags;
9835}
9836
9837static int __devinit bnx2x_init_bp(struct bnx2x *bp)
9838{
9839	int func;
9840	int timer_interval;
9841	int rc;
9842
9843	mutex_init(&bp->port.phy_mutex);
9844	mutex_init(&bp->fw_mb_mutex);
9845	spin_lock_init(&bp->stats_lock);
9846#ifdef BCM_CNIC
9847	mutex_init(&bp->cnic_mutex);
9848#endif
9849
9850	INIT_DELAYED_WORK(&bp->sp_task, bnx2x_sp_task);
9851	INIT_DELAYED_WORK(&bp->sp_rtnl_task, bnx2x_sp_rtnl_task);
9852	INIT_DELAYED_WORK(&bp->period_task, bnx2x_period_task);
9853	rc = bnx2x_get_hwinfo(bp);
9854	if (rc)
9855		return rc;
9856
9857	bnx2x_set_modes_bitmap(bp);
9858
9859	rc = bnx2x_alloc_mem_bp(bp);
9860	if (rc)
9861		return rc;
9862
9863	bnx2x_read_fwinfo(bp);
9864
9865	func = BP_FUNC(bp);
9866
9867	/* need to reset chip if undi was active */
9868	if (!BP_NOMCP(bp))
9869		bnx2x_undi_unload(bp);
9870
9871	/* init fw_seq after undi_unload! */
9872	if (!BP_NOMCP(bp)) {
9873		bp->fw_seq =
9874			(SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
9875			 DRV_MSG_SEQ_NUMBER_MASK);
9876		BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp->fw_seq);
9877	}
9878
9879	if (CHIP_REV_IS_FPGA(bp))
9880		dev_err(&bp->pdev->dev, "FPGA detected\n");
9881
9882	if (BP_NOMCP(bp) && (func == 0))
9883		dev_err(&bp->pdev->dev, "MCP disabled, "
9884					"must load devices in order!\n");
9885
9886	bp->multi_mode = multi_mode;
9887
9888	bp->disable_tpa = disable_tpa;
9889
9890#ifdef BCM_CNIC
9891	bp->disable_tpa |= IS_MF_ISCSI_SD(bp);
9892#endif
9893
9894	/* Set TPA flags */
9895	if (bp->disable_tpa) {
9896		bp->flags &= ~TPA_ENABLE_FLAG;
9897		bp->dev->features &= ~NETIF_F_LRO;
9898	} else {
9899		bp->flags |= TPA_ENABLE_FLAG;
9900		bp->dev->features |= NETIF_F_LRO;
9901	}
9902
9903	if (CHIP_IS_E1(bp))
9904		bp->dropless_fc = 0;
9905	else
9906		bp->dropless_fc = dropless_fc;
9907
9908	bp->mrrs = mrrs;
9909
9910	bp->tx_ring_size = MAX_TX_AVAIL;
9911
9912	/* make sure that the numbers are in the right granularity */
9913	bp->tx_ticks = (50 / BNX2X_BTR) * BNX2X_BTR;
9914	bp->rx_ticks = (25 / BNX2X_BTR) * BNX2X_BTR;
9915
9916	timer_interval = (CHIP_REV_IS_SLOW(bp) ? 5*HZ : HZ);
9917	bp->current_interval = (poll ? poll : timer_interval);
9918
9919	init_timer(&bp->timer);
9920	bp->timer.expires = jiffies + bp->current_interval;
9921	bp->timer.data = (unsigned long) bp;
9922	bp->timer.function = bnx2x_timer;
9923
9924	bnx2x_dcbx_set_state(bp, true, BNX2X_DCBX_ENABLED_ON_NEG_ON);
9925	bnx2x_dcbx_init_params(bp);
9926
9927#ifdef BCM_CNIC
9928	if (CHIP_IS_E1x(bp))
9929		bp->cnic_base_cl_id = FP_SB_MAX_E1x;
9930	else
9931		bp->cnic_base_cl_id = FP_SB_MAX_E2;
9932#endif
9933
9934	/* multiple tx priority */
9935	if (CHIP_IS_E1x(bp))
9936		bp->max_cos = BNX2X_MULTI_TX_COS_E1X;
9937	if (CHIP_IS_E2(bp) || CHIP_IS_E3A0(bp))
9938		bp->max_cos = BNX2X_MULTI_TX_COS_E2_E3A0;
9939	if (CHIP_IS_E3B0(bp))
9940		bp->max_cos = BNX2X_MULTI_TX_COS_E3B0;
9941
9942	return rc;
9943}
9944
9945
9946/****************************************************************************
9947* General service functions
9948****************************************************************************/
9949
9950/*
9951 * net_device service functions
9952 */
9953
9954/* called with rtnl_lock */
9955static int bnx2x_open(struct net_device *dev)
9956{
9957	struct bnx2x *bp = netdev_priv(dev);
9958	bool global = false;
9959	int other_engine = BP_PATH(bp) ? 0 : 1;
9960	u32 other_load_counter, load_counter;
9961
9962	netif_carrier_off(dev);
9963
9964	bnx2x_set_power_state(bp, PCI_D0);
9965
9966	other_load_counter = bnx2x_get_load_cnt(bp, other_engine);
9967	load_counter = bnx2x_get_load_cnt(bp, BP_PATH(bp));
9968
9969	/*
9970	 * If parity had happen during the unload, then attentions
9971	 * and/or RECOVERY_IN_PROGRES may still be set. In this case we
9972	 * want the first function loaded on the current engine to
9973	 * complete the recovery.
9974	 */
9975	if (!bnx2x_reset_is_done(bp, BP_PATH(bp)) ||
9976	    bnx2x_chk_parity_attn(bp, &global, true))
9977		do {
9978			/*
9979			 * If there are attentions and they are in a global
9980			 * blocks, set the GLOBAL_RESET bit regardless whether
9981			 * it will be this function that will complete the
9982			 * recovery or not.
9983			 */
9984			if (global)
9985				bnx2x_set_reset_global(bp);
9986
9987			/*
9988			 * Only the first function on the current engine should
9989			 * try to recover in open. In case of attentions in
9990			 * global blocks only the first in the chip should try
9991			 * to recover.
9992			 */
9993			if ((!load_counter &&
9994			     (!global || !other_load_counter)) &&
9995			    bnx2x_trylock_leader_lock(bp) &&
9996			    !bnx2x_leader_reset(bp)) {
9997				netdev_info(bp->dev, "Recovered in open\n");
9998				break;
9999			}
10000
10001			/* recovery has failed... */
10002			bnx2x_set_power_state(bp, PCI_D3hot);
10003			bp->recovery_state = BNX2X_RECOVERY_FAILED;
10004
10005			netdev_err(bp->dev, "Recovery flow hasn't been properly"
10006			" completed yet. Try again later. If u still see this"
10007			" message after a few retries then power cycle is"
10008			" required.\n");
10009
10010			return -EAGAIN;
10011		} while (0);
10012
10013	bp->recovery_state = BNX2X_RECOVERY_DONE;
10014	return bnx2x_nic_load(bp, LOAD_OPEN);
10015}
10016
10017/* called with rtnl_lock */
10018int bnx2x_close(struct net_device *dev)
10019{
10020	struct bnx2x *bp = netdev_priv(dev);
10021
10022	/* Unload the driver, release IRQs */
10023	bnx2x_nic_unload(bp, UNLOAD_CLOSE);
10024
10025	/* Power off */
10026	bnx2x_set_power_state(bp, PCI_D3hot);
10027
10028	return 0;
10029}
10030
10031static inline int bnx2x_init_mcast_macs_list(struct bnx2x *bp,
10032					 struct bnx2x_mcast_ramrod_params *p)
10033{
10034	int mc_count = netdev_mc_count(bp->dev);
10035	struct bnx2x_mcast_list_elem *mc_mac =
10036		kzalloc(sizeof(*mc_mac) * mc_count, GFP_ATOMIC);
10037	struct netdev_hw_addr *ha;
10038
10039	if (!mc_mac)
10040		return -ENOMEM;
10041
10042	INIT_LIST_HEAD(&p->mcast_list);
10043
10044	netdev_for_each_mc_addr(ha, bp->dev) {
10045		mc_mac->mac = bnx2x_mc_addr(ha);
10046		list_add_tail(&mc_mac->link, &p->mcast_list);
10047		mc_mac++;
10048	}
10049
10050	p->mcast_list_len = mc_count;
10051
10052	return 0;
10053}
10054
10055static inline void bnx2x_free_mcast_macs_list(
10056	struct bnx2x_mcast_ramrod_params *p)
10057{
10058	struct bnx2x_mcast_list_elem *mc_mac =
10059		list_first_entry(&p->mcast_list, struct bnx2x_mcast_list_elem,
10060				 link);
10061
10062	WARN_ON(!mc_mac);
10063	kfree(mc_mac);
10064}
10065
10066/**
10067 * bnx2x_set_uc_list - configure a new unicast MACs list.
10068 *
10069 * @bp: driver handle
10070 *
10071 * We will use zero (0) as a MAC type for these MACs.
10072 */
10073static inline int bnx2x_set_uc_list(struct bnx2x *bp)
10074{
10075	int rc;
10076	struct net_device *dev = bp->dev;
10077	struct netdev_hw_addr *ha;
10078	struct bnx2x_vlan_mac_obj *mac_obj = &bp->fp->mac_obj;
10079	unsigned long ramrod_flags = 0;
10080
10081	/* First schedule a cleanup up of old configuration */
10082	rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_UC_LIST_MAC, false);
10083	if (rc < 0) {
10084		BNX2X_ERR("Failed to schedule DELETE operations: %d\n", rc);
10085		return rc;
10086	}
10087
10088	netdev_for_each_uc_addr(ha, dev) {
10089		rc = bnx2x_set_mac_one(bp, bnx2x_uc_addr(ha), mac_obj, true,
10090				       BNX2X_UC_LIST_MAC, &ramrod_flags);
10091		if (rc < 0) {
10092			BNX2X_ERR("Failed to schedule ADD operations: %d\n",
10093				  rc);
10094			return rc;
10095		}
10096	}
10097
10098	/* Execute the pending commands */
10099	__set_bit(RAMROD_CONT, &ramrod_flags);
10100	return bnx2x_set_mac_one(bp, NULL, mac_obj, false /* don't care */,
10101				 BNX2X_UC_LIST_MAC, &ramrod_flags);
10102}
10103
10104static inline int bnx2x_set_mc_list(struct bnx2x *bp)
10105{
10106	struct net_device *dev = bp->dev;
10107	struct bnx2x_mcast_ramrod_params rparam = {0};
10108	int rc = 0;
10109
10110	rparam.mcast_obj = &bp->mcast_obj;
10111
10112	/* first, clear all configured multicast MACs */
10113	rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
10114	if (rc < 0) {
10115		BNX2X_ERR("Failed to clear multicast "
10116			  "configuration: %d\n", rc);
10117		return rc;
10118	}
10119
10120	/* then, configure a new MACs list */
10121	if (netdev_mc_count(dev)) {
10122		rc = bnx2x_init_mcast_macs_list(bp, &rparam);
10123		if (rc) {
10124			BNX2X_ERR("Failed to create multicast MACs "
10125				  "list: %d\n", rc);
10126			return rc;
10127		}
10128
10129		/* Now add the new MACs */
10130		rc = bnx2x_config_mcast(bp, &rparam,
10131					BNX2X_MCAST_CMD_ADD);
10132		if (rc < 0)
10133			BNX2X_ERR("Failed to set a new multicast "
10134				  "configuration: %d\n", rc);
10135
10136		bnx2x_free_mcast_macs_list(&rparam);
10137	}
10138
10139	return rc;
10140}
10141
10142
10143/* If bp->state is OPEN, should be called with netif_addr_lock_bh() */
10144void bnx2x_set_rx_mode(struct net_device *dev)
10145{
10146	struct bnx2x *bp = netdev_priv(dev);
10147	u32 rx_mode = BNX2X_RX_MODE_NORMAL;
10148
10149	if (bp->state != BNX2X_STATE_OPEN) {
10150		DP(NETIF_MSG_IFUP, "state is %x, returning\n", bp->state);
10151		return;
10152	}
10153
10154	DP(NETIF_MSG_IFUP, "dev->flags = %x\n", bp->dev->flags);
10155
10156	if (dev->flags & IFF_PROMISC)
10157		rx_mode = BNX2X_RX_MODE_PROMISC;
10158	else if ((dev->flags & IFF_ALLMULTI) ||
10159		 ((netdev_mc_count(dev) > BNX2X_MAX_MULTICAST) &&
10160		  CHIP_IS_E1(bp)))
10161		rx_mode = BNX2X_RX_MODE_ALLMULTI;
10162	else {
10163		/* some multicasts */
10164		if (bnx2x_set_mc_list(bp) < 0)
10165			rx_mode = BNX2X_RX_MODE_ALLMULTI;
10166
10167		if (bnx2x_set_uc_list(bp) < 0)
10168			rx_mode = BNX2X_RX_MODE_PROMISC;
10169	}
10170
10171	bp->rx_mode = rx_mode;
10172#ifdef BCM_CNIC
10173	/* handle ISCSI SD mode */
10174	if (IS_MF_ISCSI_SD(bp))
10175		bp->rx_mode = BNX2X_RX_MODE_NONE;
10176#endif
10177
10178	/* Schedule the rx_mode command */
10179	if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state)) {
10180		set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
10181		return;
10182	}
10183
10184	bnx2x_set_storm_rx_mode(bp);
10185}
10186
10187/* called with rtnl_lock */
10188static int bnx2x_mdio_read(struct net_device *netdev, int prtad,
10189			   int devad, u16 addr)
10190{
10191	struct bnx2x *bp = netdev_priv(netdev);
10192	u16 value;
10193	int rc;
10194
10195	DP(NETIF_MSG_LINK, "mdio_read: prtad 0x%x, devad 0x%x, addr 0x%x\n",
10196	   prtad, devad, addr);
10197
10198	/* The HW expects different devad if CL22 is used */
10199	devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
10200
10201	bnx2x_acquire_phy_lock(bp);
10202	rc = bnx2x_phy_read(&bp->link_params, prtad, devad, addr, &value);
10203	bnx2x_release_phy_lock(bp);
10204	DP(NETIF_MSG_LINK, "mdio_read_val 0x%x rc = 0x%x\n", value, rc);
10205
10206	if (!rc)
10207		rc = value;
10208	return rc;
10209}
10210
10211/* called with rtnl_lock */
10212static int bnx2x_mdio_write(struct net_device *netdev, int prtad, int devad,
10213			    u16 addr, u16 value)
10214{
10215	struct bnx2x *bp = netdev_priv(netdev);
10216	int rc;
10217
10218	DP(NETIF_MSG_LINK, "mdio_write: prtad 0x%x, devad 0x%x, addr 0x%x,"
10219			   " value 0x%x\n", prtad, devad, addr, value);
10220
10221	/* The HW expects different devad if CL22 is used */
10222	devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
10223
10224	bnx2x_acquire_phy_lock(bp);
10225	rc = bnx2x_phy_write(&bp->link_params, prtad, devad, addr, value);
10226	bnx2x_release_phy_lock(bp);
10227	return rc;
10228}
10229
10230/* called with rtnl_lock */
10231static int bnx2x_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
10232{
10233	struct bnx2x *bp = netdev_priv(dev);
10234	struct mii_ioctl_data *mdio = if_mii(ifr);
10235
10236	DP(NETIF_MSG_LINK, "ioctl: phy id 0x%x, reg 0x%x, val_in 0x%x\n",
10237	   mdio->phy_id, mdio->reg_num, mdio->val_in);
10238
10239	if (!netif_running(dev))
10240		return -EAGAIN;
10241
10242	return mdio_mii_ioctl(&bp->mdio, mdio, cmd);
10243}
10244
10245#ifdef CONFIG_NET_POLL_CONTROLLER
10246static void poll_bnx2x(struct net_device *dev)
10247{
10248	struct bnx2x *bp = netdev_priv(dev);
10249
10250	disable_irq(bp->pdev->irq);
10251	bnx2x_interrupt(bp->pdev->irq, dev);
10252	enable_irq(bp->pdev->irq);
10253}
10254#endif
10255
10256static int bnx2x_validate_addr(struct net_device *dev)
10257{
10258	struct bnx2x *bp = netdev_priv(dev);
10259
10260	if (!bnx2x_is_valid_ether_addr(bp, dev->dev_addr))
10261		return -EADDRNOTAVAIL;
10262	return 0;
10263}
10264
10265static const struct net_device_ops bnx2x_netdev_ops = {
10266	.ndo_open		= bnx2x_open,
10267	.ndo_stop		= bnx2x_close,
10268	.ndo_start_xmit		= bnx2x_start_xmit,
10269	.ndo_select_queue	= bnx2x_select_queue,
10270	.ndo_set_rx_mode	= bnx2x_set_rx_mode,
10271	.ndo_set_mac_address	= bnx2x_change_mac_addr,
10272	.ndo_validate_addr	= bnx2x_validate_addr,
10273	.ndo_do_ioctl		= bnx2x_ioctl,
10274	.ndo_change_mtu		= bnx2x_change_mtu,
10275	.ndo_fix_features	= bnx2x_fix_features,
10276	.ndo_set_features	= bnx2x_set_features,
10277	.ndo_tx_timeout		= bnx2x_tx_timeout,
10278#ifdef CONFIG_NET_POLL_CONTROLLER
10279	.ndo_poll_controller	= poll_bnx2x,
10280#endif
10281	.ndo_setup_tc		= bnx2x_setup_tc,
10282
10283#if defined(NETDEV_FCOE_WWNN) && defined(BCM_CNIC)
10284	.ndo_fcoe_get_wwn	= bnx2x_fcoe_get_wwn,
10285#endif
10286};
10287
10288static inline int bnx2x_set_coherency_mask(struct bnx2x *bp)
10289{
10290	struct device *dev = &bp->pdev->dev;
10291
10292	if (dma_set_mask(dev, DMA_BIT_MASK(64)) == 0) {
10293		bp->flags |= USING_DAC_FLAG;
10294		if (dma_set_coherent_mask(dev, DMA_BIT_MASK(64)) != 0) {
10295			dev_err(dev, "dma_set_coherent_mask failed, "
10296				     "aborting\n");
10297			return -EIO;
10298		}
10299	} else if (dma_set_mask(dev, DMA_BIT_MASK(32)) != 0) {
10300		dev_err(dev, "System does not support DMA, aborting\n");
10301		return -EIO;
10302	}
10303
10304	return 0;
10305}
10306
10307static int __devinit bnx2x_init_dev(struct pci_dev *pdev,
10308				    struct net_device *dev,
10309				    unsigned long board_type)
10310{
10311	struct bnx2x *bp;
10312	int rc;
10313
10314	SET_NETDEV_DEV(dev, &pdev->dev);
10315	bp = netdev_priv(dev);
10316
10317	bp->dev = dev;
10318	bp->pdev = pdev;
10319	bp->flags = 0;
10320	bp->pf_num = PCI_FUNC(pdev->devfn);
10321
10322	rc = pci_enable_device(pdev);
10323	if (rc) {
10324		dev_err(&bp->pdev->dev,
10325			"Cannot enable PCI device, aborting\n");
10326		goto err_out;
10327	}
10328
10329	if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
10330		dev_err(&bp->pdev->dev,
10331			"Cannot find PCI device base address, aborting\n");
10332		rc = -ENODEV;
10333		goto err_out_disable;
10334	}
10335
10336	if (!(pci_resource_flags(pdev, 2) & IORESOURCE_MEM)) {
10337		dev_err(&bp->pdev->dev, "Cannot find second PCI device"
10338		       " base address, aborting\n");
10339		rc = -ENODEV;
10340		goto err_out_disable;
10341	}
10342
10343	if (atomic_read(&pdev->enable_cnt) == 1) {
10344		rc = pci_request_regions(pdev, DRV_MODULE_NAME);
10345		if (rc) {
10346			dev_err(&bp->pdev->dev,
10347				"Cannot obtain PCI resources, aborting\n");
10348			goto err_out_disable;
10349		}
10350
10351		pci_set_master(pdev);
10352		pci_save_state(pdev);
10353	}
10354
10355	bp->pm_cap = pci_find_capability(pdev, PCI_CAP_ID_PM);
10356	if (bp->pm_cap == 0) {
10357		dev_err(&bp->pdev->dev,
10358			"Cannot find power management capability, aborting\n");
10359		rc = -EIO;
10360		goto err_out_release;
10361	}
10362
10363	if (!pci_is_pcie(pdev)) {
10364		dev_err(&bp->pdev->dev,	"Not PCI Express, aborting\n");
10365		rc = -EIO;
10366		goto err_out_release;
10367	}
10368
10369	rc = bnx2x_set_coherency_mask(bp);
10370	if (rc)
10371		goto err_out_release;
10372
10373	dev->mem_start = pci_resource_start(pdev, 0);
10374	dev->base_addr = dev->mem_start;
10375	dev->mem_end = pci_resource_end(pdev, 0);
10376
10377	dev->irq = pdev->irq;
10378
10379	bp->regview = pci_ioremap_bar(pdev, 0);
10380	if (!bp->regview) {
10381		dev_err(&bp->pdev->dev,
10382			"Cannot map register space, aborting\n");
10383		rc = -ENOMEM;
10384		goto err_out_release;
10385	}
10386
10387	bnx2x_set_power_state(bp, PCI_D0);
10388
10389	/* clean indirect addresses */
10390	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
10391			       PCICFG_VENDOR_ID_OFFSET);
10392	/*
10393	 * Clean the following indirect addresses for all functions since it
10394	 * is not used by the driver.
10395	 */
10396	REG_WR(bp, PXP2_REG_PGL_ADDR_88_F0, 0);
10397	REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F0, 0);
10398	REG_WR(bp, PXP2_REG_PGL_ADDR_90_F0, 0);
10399	REG_WR(bp, PXP2_REG_PGL_ADDR_94_F0, 0);
10400
10401	if (CHIP_IS_E1x(bp)) {
10402		REG_WR(bp, PXP2_REG_PGL_ADDR_88_F1, 0);
10403		REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F1, 0);
10404		REG_WR(bp, PXP2_REG_PGL_ADDR_90_F1, 0);
10405		REG_WR(bp, PXP2_REG_PGL_ADDR_94_F1, 0);
10406	}
10407
10408	/*
10409	 * Enable internal target-read (in case we are probed after PF FLR).
10410	 * Must be done prior to any BAR read access. Only for 57712 and up
10411	 */
10412	if (board_type != BCM57710 &&
10413	    board_type != BCM57711 &&
10414	    board_type != BCM57711E)
10415		REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
10416
10417	/* Reset the load counter */
10418	bnx2x_clear_load_cnt(bp);
10419
10420	dev->watchdog_timeo = TX_TIMEOUT;
10421
10422	dev->netdev_ops = &bnx2x_netdev_ops;
10423	bnx2x_set_ethtool_ops(dev);
10424
10425	dev->priv_flags |= IFF_UNICAST_FLT;
10426
10427	dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
10428		NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 | NETIF_F_LRO |
10429		NETIF_F_RXCSUM | NETIF_F_RXHASH | NETIF_F_HW_VLAN_TX;
10430
10431	dev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
10432		NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 | NETIF_F_HIGHDMA;
10433
10434	dev->features |= dev->hw_features | NETIF_F_HW_VLAN_RX;
10435	if (bp->flags & USING_DAC_FLAG)
10436		dev->features |= NETIF_F_HIGHDMA;
10437
10438	/* Add Loopback capability to the device */
10439	dev->hw_features |= NETIF_F_LOOPBACK;
10440
10441#ifdef BCM_DCBNL
10442	dev->dcbnl_ops = &bnx2x_dcbnl_ops;
10443#endif
10444
10445	/* get_port_hwinfo() will set prtad and mmds properly */
10446	bp->mdio.prtad = MDIO_PRTAD_NONE;
10447	bp->mdio.mmds = 0;
10448	bp->mdio.mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22;
10449	bp->mdio.dev = dev;
10450	bp->mdio.mdio_read = bnx2x_mdio_read;
10451	bp->mdio.mdio_write = bnx2x_mdio_write;
10452
10453	return 0;
10454
10455err_out_release:
10456	if (atomic_read(&pdev->enable_cnt) == 1)
10457		pci_release_regions(pdev);
10458
10459err_out_disable:
10460	pci_disable_device(pdev);
10461	pci_set_drvdata(pdev, NULL);
10462
10463err_out:
10464	return rc;
10465}
10466
10467static void __devinit bnx2x_get_pcie_width_speed(struct bnx2x *bp,
10468						 int *width, int *speed)
10469{
10470	u32 val = REG_RD(bp, PCICFG_OFFSET + PCICFG_LINK_CONTROL);
10471
10472	*width = (val & PCICFG_LINK_WIDTH) >> PCICFG_LINK_WIDTH_SHIFT;
10473
10474	/* return value of 1=2.5GHz 2=5GHz */
10475	*speed = (val & PCICFG_LINK_SPEED) >> PCICFG_LINK_SPEED_SHIFT;
10476}
10477
10478static int bnx2x_check_firmware(struct bnx2x *bp)
10479{
10480	const struct firmware *firmware = bp->firmware;
10481	struct bnx2x_fw_file_hdr *fw_hdr;
10482	struct bnx2x_fw_file_section *sections;
10483	u32 offset, len, num_ops;
10484	u16 *ops_offsets;
10485	int i;
10486	const u8 *fw_ver;
10487
10488	if (firmware->size < sizeof(struct bnx2x_fw_file_hdr))
10489		return -EINVAL;
10490
10491	fw_hdr = (struct bnx2x_fw_file_hdr *)firmware->data;
10492	sections = (struct bnx2x_fw_file_section *)fw_hdr;
10493
10494	/* Make sure none of the offsets and sizes make us read beyond
10495	 * the end of the firmware data */
10496	for (i = 0; i < sizeof(*fw_hdr) / sizeof(*sections); i++) {
10497		offset = be32_to_cpu(sections[i].offset);
10498		len = be32_to_cpu(sections[i].len);
10499		if (offset + len > firmware->size) {
10500			dev_err(&bp->pdev->dev,
10501				"Section %d length is out of bounds\n", i);
10502			return -EINVAL;
10503		}
10504	}
10505
10506	/* Likewise for the init_ops offsets */
10507	offset = be32_to_cpu(fw_hdr->init_ops_offsets.offset);
10508	ops_offsets = (u16 *)(firmware->data + offset);
10509	num_ops = be32_to_cpu(fw_hdr->init_ops.len) / sizeof(struct raw_op);
10510
10511	for (i = 0; i < be32_to_cpu(fw_hdr->init_ops_offsets.len) / 2; i++) {
10512		if (be16_to_cpu(ops_offsets[i]) > num_ops) {
10513			dev_err(&bp->pdev->dev,
10514				"Section offset %d is out of bounds\n", i);
10515			return -EINVAL;
10516		}
10517	}
10518
10519	/* Check FW version */
10520	offset = be32_to_cpu(fw_hdr->fw_version.offset);
10521	fw_ver = firmware->data + offset;
10522	if ((fw_ver[0] != BCM_5710_FW_MAJOR_VERSION) ||
10523	    (fw_ver[1] != BCM_5710_FW_MINOR_VERSION) ||
10524	    (fw_ver[2] != BCM_5710_FW_REVISION_VERSION) ||
10525	    (fw_ver[3] != BCM_5710_FW_ENGINEERING_VERSION)) {
10526		dev_err(&bp->pdev->dev,
10527			"Bad FW version:%d.%d.%d.%d. Should be %d.%d.%d.%d\n",
10528		       fw_ver[0], fw_ver[1], fw_ver[2],
10529		       fw_ver[3], BCM_5710_FW_MAJOR_VERSION,
10530		       BCM_5710_FW_MINOR_VERSION,
10531		       BCM_5710_FW_REVISION_VERSION,
10532		       BCM_5710_FW_ENGINEERING_VERSION);
10533		return -EINVAL;
10534	}
10535
10536	return 0;
10537}
10538
10539static inline void be32_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
10540{
10541	const __be32 *source = (const __be32 *)_source;
10542	u32 *target = (u32 *)_target;
10543	u32 i;
10544
10545	for (i = 0; i < n/4; i++)
10546		target[i] = be32_to_cpu(source[i]);
10547}
10548
10549/*
10550   Ops array is stored in the following format:
10551   {op(8bit), offset(24bit, big endian), data(32bit, big endian)}
10552 */
10553static inline void bnx2x_prep_ops(const u8 *_source, u8 *_target, u32 n)
10554{
10555	const __be32 *source = (const __be32 *)_source;
10556	struct raw_op *target = (struct raw_op *)_target;
10557	u32 i, j, tmp;
10558
10559	for (i = 0, j = 0; i < n/8; i++, j += 2) {
10560		tmp = be32_to_cpu(source[j]);
10561		target[i].op = (tmp >> 24) & 0xff;
10562		target[i].offset = tmp & 0xffffff;
10563		target[i].raw_data = be32_to_cpu(source[j + 1]);
10564	}
10565}
10566
10567/**
10568 * IRO array is stored in the following format:
10569 * {base(24bit), m1(16bit), m2(16bit), m3(16bit), size(16bit) }
10570 */
10571static inline void bnx2x_prep_iro(const u8 *_source, u8 *_target, u32 n)
10572{
10573	const __be32 *source = (const __be32 *)_source;
10574	struct iro *target = (struct iro *)_target;
10575	u32 i, j, tmp;
10576
10577	for (i = 0, j = 0; i < n/sizeof(struct iro); i++) {
10578		target[i].base = be32_to_cpu(source[j]);
10579		j++;
10580		tmp = be32_to_cpu(source[j]);
10581		target[i].m1 = (tmp >> 16) & 0xffff;
10582		target[i].m2 = tmp & 0xffff;
10583		j++;
10584		tmp = be32_to_cpu(source[j]);
10585		target[i].m3 = (tmp >> 16) & 0xffff;
10586		target[i].size = tmp & 0xffff;
10587		j++;
10588	}
10589}
10590
10591static inline void be16_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
10592{
10593	const __be16 *source = (const __be16 *)_source;
10594	u16 *target = (u16 *)_target;
10595	u32 i;
10596
10597	for (i = 0; i < n/2; i++)
10598		target[i] = be16_to_cpu(source[i]);
10599}
10600
10601#define BNX2X_ALLOC_AND_SET(arr, lbl, func)				\
10602do {									\
10603	u32 len = be32_to_cpu(fw_hdr->arr.len);				\
10604	bp->arr = kmalloc(len, GFP_KERNEL);				\
10605	if (!bp->arr) {							\
10606		pr_err("Failed to allocate %d bytes for "#arr"\n", len); \
10607		goto lbl;						\
10608	}								\
10609	func(bp->firmware->data + be32_to_cpu(fw_hdr->arr.offset),	\
10610	     (u8 *)bp->arr, len);					\
10611} while (0)
10612
10613int bnx2x_init_firmware(struct bnx2x *bp)
10614{
10615	struct bnx2x_fw_file_hdr *fw_hdr;
10616	int rc;
10617
10618
10619	if (!bp->firmware) {
10620		const char *fw_file_name;
10621
10622		if (CHIP_IS_E1(bp))
10623			fw_file_name = FW_FILE_NAME_E1;
10624		else if (CHIP_IS_E1H(bp))
10625			fw_file_name = FW_FILE_NAME_E1H;
10626		else if (!CHIP_IS_E1x(bp))
10627			fw_file_name = FW_FILE_NAME_E2;
10628		else {
10629			BNX2X_ERR("Unsupported chip revision\n");
10630			return -EINVAL;
10631		}
10632		BNX2X_DEV_INFO("Loading %s\n", fw_file_name);
10633
10634		rc = request_firmware(&bp->firmware, fw_file_name,
10635				      &bp->pdev->dev);
10636		if (rc) {
10637			BNX2X_ERR("Can't load firmware file %s\n",
10638				  fw_file_name);
10639			goto request_firmware_exit;
10640		}
10641
10642		rc = bnx2x_check_firmware(bp);
10643		if (rc) {
10644			BNX2X_ERR("Corrupt firmware file %s\n", fw_file_name);
10645			goto request_firmware_exit;
10646		}
10647	}
10648
10649	fw_hdr = (struct bnx2x_fw_file_hdr *)bp->firmware->data;
10650
10651	/* Initialize the pointers to the init arrays */
10652	/* Blob */
10653	BNX2X_ALLOC_AND_SET(init_data, request_firmware_exit, be32_to_cpu_n);
10654
10655	/* Opcodes */
10656	BNX2X_ALLOC_AND_SET(init_ops, init_ops_alloc_err, bnx2x_prep_ops);
10657
10658	/* Offsets */
10659	BNX2X_ALLOC_AND_SET(init_ops_offsets, init_offsets_alloc_err,
10660			    be16_to_cpu_n);
10661
10662	/* STORMs firmware */
10663	INIT_TSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
10664			be32_to_cpu(fw_hdr->tsem_int_table_data.offset);
10665	INIT_TSEM_PRAM_DATA(bp)      = bp->firmware->data +
10666			be32_to_cpu(fw_hdr->tsem_pram_data.offset);
10667	INIT_USEM_INT_TABLE_DATA(bp) = bp->firmware->data +
10668			be32_to_cpu(fw_hdr->usem_int_table_data.offset);
10669	INIT_USEM_PRAM_DATA(bp)      = bp->firmware->data +
10670			be32_to_cpu(fw_hdr->usem_pram_data.offset);
10671	INIT_XSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
10672			be32_to_cpu(fw_hdr->xsem_int_table_data.offset);
10673	INIT_XSEM_PRAM_DATA(bp)      = bp->firmware->data +
10674			be32_to_cpu(fw_hdr->xsem_pram_data.offset);
10675	INIT_CSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
10676			be32_to_cpu(fw_hdr->csem_int_table_data.offset);
10677	INIT_CSEM_PRAM_DATA(bp)      = bp->firmware->data +
10678			be32_to_cpu(fw_hdr->csem_pram_data.offset);
10679	/* IRO */
10680	BNX2X_ALLOC_AND_SET(iro_arr, iro_alloc_err, bnx2x_prep_iro);
10681
10682	return 0;
10683
10684iro_alloc_err:
10685	kfree(bp->init_ops_offsets);
10686init_offsets_alloc_err:
10687	kfree(bp->init_ops);
10688init_ops_alloc_err:
10689	kfree(bp->init_data);
10690request_firmware_exit:
10691	release_firmware(bp->firmware);
10692
10693	return rc;
10694}
10695
10696static void bnx2x_release_firmware(struct bnx2x *bp)
10697{
10698	kfree(bp->init_ops_offsets);
10699	kfree(bp->init_ops);
10700	kfree(bp->init_data);
10701	release_firmware(bp->firmware);
10702	bp->firmware = NULL;
10703}
10704
10705
10706static struct bnx2x_func_sp_drv_ops bnx2x_func_sp_drv = {
10707	.init_hw_cmn_chip = bnx2x_init_hw_common_chip,
10708	.init_hw_cmn      = bnx2x_init_hw_common,
10709	.init_hw_port     = bnx2x_init_hw_port,
10710	.init_hw_func     = bnx2x_init_hw_func,
10711
10712	.reset_hw_cmn     = bnx2x_reset_common,
10713	.reset_hw_port    = bnx2x_reset_port,
10714	.reset_hw_func    = bnx2x_reset_func,
10715
10716	.gunzip_init      = bnx2x_gunzip_init,
10717	.gunzip_end       = bnx2x_gunzip_end,
10718
10719	.init_fw          = bnx2x_init_firmware,
10720	.release_fw       = bnx2x_release_firmware,
10721};
10722
10723void bnx2x__init_func_obj(struct bnx2x *bp)
10724{
10725	/* Prepare DMAE related driver resources */
10726	bnx2x_setup_dmae(bp);
10727
10728	bnx2x_init_func_obj(bp, &bp->func_obj,
10729			    bnx2x_sp(bp, func_rdata),
10730			    bnx2x_sp_mapping(bp, func_rdata),
10731			    &bnx2x_func_sp_drv);
10732}
10733
10734/* must be called after sriov-enable */
10735static inline int bnx2x_set_qm_cid_count(struct bnx2x *bp)
10736{
10737	int cid_count = BNX2X_L2_CID_COUNT(bp);
10738
10739#ifdef BCM_CNIC
10740	cid_count += CNIC_CID_MAX;
10741#endif
10742	return roundup(cid_count, QM_CID_ROUND);
10743}
10744
10745/**
10746 * bnx2x_get_num_none_def_sbs - return the number of none default SBs
10747 *
10748 * @dev:	pci device
10749 *
10750 */
10751static inline int bnx2x_get_num_non_def_sbs(struct pci_dev *pdev)
10752{
10753	int pos;
10754	u16 control;
10755
10756	pos = pci_find_capability(pdev, PCI_CAP_ID_MSIX);
10757
10758	/*
10759	 * If MSI-X is not supported - return number of SBs needed to support
10760	 * one fast path queue: one FP queue + SB for CNIC
10761	 */
10762	if (!pos)
10763		return 1 + CNIC_PRESENT;
10764
10765	/*
10766	 * The value in the PCI configuration space is the index of the last
10767	 * entry, namely one less than the actual size of the table, which is
10768	 * exactly what we want to return from this function: number of all SBs
10769	 * without the default SB.
10770	 */
10771	pci_read_config_word(pdev, pos  + PCI_MSI_FLAGS, &control);
10772	return control & PCI_MSIX_FLAGS_QSIZE;
10773}
10774
10775static int __devinit bnx2x_init_one(struct pci_dev *pdev,
10776				    const struct pci_device_id *ent)
10777{
10778	struct net_device *dev = NULL;
10779	struct bnx2x *bp;
10780	int pcie_width, pcie_speed;
10781	int rc, max_non_def_sbs;
10782	int rx_count, tx_count, rss_count;
10783	/*
10784	 * An estimated maximum supported CoS number according to the chip
10785	 * version.
10786	 * We will try to roughly estimate the maximum number of CoSes this chip
10787	 * may support in order to minimize the memory allocated for Tx
10788	 * netdev_queue's. This number will be accurately calculated during the
10789	 * initialization of bp->max_cos based on the chip versions AND chip
10790	 * revision in the bnx2x_init_bp().
10791	 */
10792	u8 max_cos_est = 0;
10793
10794	switch (ent->driver_data) {
10795	case BCM57710:
10796	case BCM57711:
10797	case BCM57711E:
10798		max_cos_est = BNX2X_MULTI_TX_COS_E1X;
10799		break;
10800
10801	case BCM57712:
10802	case BCM57712_MF:
10803		max_cos_est = BNX2X_MULTI_TX_COS_E2_E3A0;
10804		break;
10805
10806	case BCM57800:
10807	case BCM57800_MF:
10808	case BCM57810:
10809	case BCM57810_MF:
10810	case BCM57840:
10811	case BCM57840_MF:
10812		max_cos_est = BNX2X_MULTI_TX_COS_E3B0;
10813		break;
10814
10815	default:
10816		pr_err("Unknown board_type (%ld), aborting\n",
10817			   ent->driver_data);
10818		return -ENODEV;
10819	}
10820
10821	max_non_def_sbs = bnx2x_get_num_non_def_sbs(pdev);
10822
10823	/* !!! FIXME !!!
10824	 * Do not allow the maximum SB count to grow above 16
10825	 * since Special CIDs starts from 16*BNX2X_MULTI_TX_COS=48.
10826	 * We will use the FP_SB_MAX_E1x macro for this matter.
10827	 */
10828	max_non_def_sbs = min_t(int, FP_SB_MAX_E1x, max_non_def_sbs);
10829
10830	WARN_ON(!max_non_def_sbs);
10831
10832	/* Maximum number of RSS queues: one IGU SB goes to CNIC */
10833	rss_count = max_non_def_sbs - CNIC_PRESENT;
10834
10835	/* Maximum number of netdev Rx queues: RSS + FCoE L2 */
10836	rx_count = rss_count + FCOE_PRESENT;
10837
10838	/*
10839	 * Maximum number of netdev Tx queues:
10840	 *      Maximum TSS queues * Maximum supported number of CoS  + FCoE L2
10841	 */
10842	tx_count = MAX_TXQS_PER_COS * max_cos_est + FCOE_PRESENT;
10843
10844	/* dev zeroed in init_etherdev */
10845	dev = alloc_etherdev_mqs(sizeof(*bp), tx_count, rx_count);
10846	if (!dev) {
10847		dev_err(&pdev->dev, "Cannot allocate net device\n");
10848		return -ENOMEM;
10849	}
10850
10851	bp = netdev_priv(dev);
10852
10853	DP(NETIF_MSG_DRV, "Allocated netdev with %d tx and %d rx queues\n",
10854			  tx_count, rx_count);
10855
10856	bp->igu_sb_cnt = max_non_def_sbs;
10857	bp->msg_enable = debug;
10858	pci_set_drvdata(pdev, dev);
10859
10860	rc = bnx2x_init_dev(pdev, dev, ent->driver_data);
10861	if (rc < 0) {
10862		free_netdev(dev);
10863		return rc;
10864	}
10865
10866	DP(NETIF_MSG_DRV, "max_non_def_sbs %d\n", max_non_def_sbs);
10867
10868	rc = bnx2x_init_bp(bp);
10869	if (rc)
10870		goto init_one_exit;
10871
10872	/*
10873	 * Map doorbels here as we need the real value of bp->max_cos which
10874	 * is initialized in bnx2x_init_bp().
10875	 */
10876	bp->doorbells = ioremap_nocache(pci_resource_start(pdev, 2),
10877					min_t(u64, BNX2X_DB_SIZE(bp),
10878					      pci_resource_len(pdev, 2)));
10879	if (!bp->doorbells) {
10880		dev_err(&bp->pdev->dev,
10881			"Cannot map doorbell space, aborting\n");
10882		rc = -ENOMEM;
10883		goto init_one_exit;
10884	}
10885
10886	/* calc qm_cid_count */
10887	bp->qm_cid_count = bnx2x_set_qm_cid_count(bp);
10888
10889#ifdef BCM_CNIC
10890	/* disable FCOE L2 queue for E1x */
10891	if (CHIP_IS_E1x(bp))
10892		bp->flags |= NO_FCOE_FLAG;
10893
10894#endif
10895
10896	/* Configure interrupt mode: try to enable MSI-X/MSI if
10897	 * needed, set bp->num_queues appropriately.
10898	 */
10899	bnx2x_set_int_mode(bp);
10900
10901	/* Add all NAPI objects */
10902	bnx2x_add_all_napi(bp);
10903
10904	rc = register_netdev(dev);
10905	if (rc) {
10906		dev_err(&pdev->dev, "Cannot register net device\n");
10907		goto init_one_exit;
10908	}
10909
10910#ifdef BCM_CNIC
10911	if (!NO_FCOE(bp)) {
10912		/* Add storage MAC address */
10913		rtnl_lock();
10914		dev_addr_add(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
10915		rtnl_unlock();
10916	}
10917#endif
10918
10919	bnx2x_get_pcie_width_speed(bp, &pcie_width, &pcie_speed);
10920
10921	netdev_info(dev, "%s (%c%d) PCI-E x%d %s found at mem %lx, IRQ %d, node addr %pM\n",
10922		    board_info[ent->driver_data].name,
10923		    (CHIP_REV(bp) >> 12) + 'A', (CHIP_METAL(bp) >> 4),
10924		    pcie_width,
10925		    ((!CHIP_IS_E2(bp) && pcie_speed == 2) ||
10926		     (CHIP_IS_E2(bp) && pcie_speed == 1)) ?
10927		    "5GHz (Gen2)" : "2.5GHz",
10928		    dev->base_addr, bp->pdev->irq, dev->dev_addr);
10929
10930	return 0;
10931
10932init_one_exit:
10933	if (bp->regview)
10934		iounmap(bp->regview);
10935
10936	if (bp->doorbells)
10937		iounmap(bp->doorbells);
10938
10939	free_netdev(dev);
10940
10941	if (atomic_read(&pdev->enable_cnt) == 1)
10942		pci_release_regions(pdev);
10943
10944	pci_disable_device(pdev);
10945	pci_set_drvdata(pdev, NULL);
10946
10947	return rc;
10948}
10949
10950static void __devexit bnx2x_remove_one(struct pci_dev *pdev)
10951{
10952	struct net_device *dev = pci_get_drvdata(pdev);
10953	struct bnx2x *bp;
10954
10955	if (!dev) {
10956		dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n");
10957		return;
10958	}
10959	bp = netdev_priv(dev);
10960
10961#ifdef BCM_CNIC
10962	/* Delete storage MAC address */
10963	if (!NO_FCOE(bp)) {
10964		rtnl_lock();
10965		dev_addr_del(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
10966		rtnl_unlock();
10967	}
10968#endif
10969
10970#ifdef BCM_DCBNL
10971	/* Delete app tlvs from dcbnl */
10972	bnx2x_dcbnl_update_applist(bp, true);
10973#endif
10974
10975	unregister_netdev(dev);
10976
10977	/* Delete all NAPI objects */
10978	bnx2x_del_all_napi(bp);
10979
10980	/* Power on: we can't let PCI layer write to us while we are in D3 */
10981	bnx2x_set_power_state(bp, PCI_D0);
10982
10983	/* Disable MSI/MSI-X */
10984	bnx2x_disable_msi(bp);
10985
10986	/* Power off */
10987	bnx2x_set_power_state(bp, PCI_D3hot);
10988
10989	/* Make sure RESET task is not scheduled before continuing */
10990	cancel_delayed_work_sync(&bp->sp_rtnl_task);
10991
10992	if (bp->regview)
10993		iounmap(bp->regview);
10994
10995	if (bp->doorbells)
10996		iounmap(bp->doorbells);
10997
10998	bnx2x_release_firmware(bp);
10999
11000	bnx2x_free_mem_bp(bp);
11001
11002	free_netdev(dev);
11003
11004	if (atomic_read(&pdev->enable_cnt) == 1)
11005		pci_release_regions(pdev);
11006
11007	pci_disable_device(pdev);
11008	pci_set_drvdata(pdev, NULL);
11009}
11010
11011static int bnx2x_eeh_nic_unload(struct bnx2x *bp)
11012{
11013	int i;
11014
11015	bp->state = BNX2X_STATE_ERROR;
11016
11017	bp->rx_mode = BNX2X_RX_MODE_NONE;
11018
11019#ifdef BCM_CNIC
11020	bnx2x_cnic_notify(bp, CNIC_CTL_STOP_CMD);
11021#endif
11022	/* Stop Tx */
11023	bnx2x_tx_disable(bp);
11024
11025	bnx2x_netif_stop(bp, 0);
11026
11027	del_timer_sync(&bp->timer);
11028
11029	bnx2x_stats_handle(bp, STATS_EVENT_STOP);
11030
11031	/* Release IRQs */
11032	bnx2x_free_irq(bp);
11033
11034	/* Free SKBs, SGEs, TPA pool and driver internals */
11035	bnx2x_free_skbs(bp);
11036
11037	for_each_rx_queue(bp, i)
11038		bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE);
11039
11040	bnx2x_free_mem(bp);
11041
11042	bp->state = BNX2X_STATE_CLOSED;
11043
11044	netif_carrier_off(bp->dev);
11045
11046	return 0;
11047}
11048
11049static void bnx2x_eeh_recover(struct bnx2x *bp)
11050{
11051	u32 val;
11052
11053	mutex_init(&bp->port.phy_mutex);
11054
11055	bp->common.shmem_base = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
11056	bp->link_params.shmem_base = bp->common.shmem_base;
11057	BNX2X_DEV_INFO("shmem offset is 0x%x\n", bp->common.shmem_base);
11058
11059	if (!bp->common.shmem_base ||
11060	    (bp->common.shmem_base < 0xA0000) ||
11061	    (bp->common.shmem_base >= 0xC0000)) {
11062		BNX2X_DEV_INFO("MCP not active\n");
11063		bp->flags |= NO_MCP_FLAG;
11064		return;
11065	}
11066
11067	val = SHMEM_RD(bp, validity_map[BP_PORT(bp)]);
11068	if ((val & (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB))
11069		!= (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB))
11070		BNX2X_ERR("BAD MCP validity signature\n");
11071
11072	if (!BP_NOMCP(bp)) {
11073		bp->fw_seq =
11074		    (SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
11075		    DRV_MSG_SEQ_NUMBER_MASK);
11076		BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp->fw_seq);
11077	}
11078}
11079
11080/**
11081 * bnx2x_io_error_detected - called when PCI error is detected
11082 * @pdev: Pointer to PCI device
11083 * @state: The current pci connection state
11084 *
11085 * This function is called after a PCI bus error affecting
11086 * this device has been detected.
11087 */
11088static pci_ers_result_t bnx2x_io_error_detected(struct pci_dev *pdev,
11089						pci_channel_state_t state)
11090{
11091	struct net_device *dev = pci_get_drvdata(pdev);
11092	struct bnx2x *bp = netdev_priv(dev);
11093
11094	rtnl_lock();
11095
11096	netif_device_detach(dev);
11097
11098	if (state == pci_channel_io_perm_failure) {
11099		rtnl_unlock();
11100		return PCI_ERS_RESULT_DISCONNECT;
11101	}
11102
11103	if (netif_running(dev))
11104		bnx2x_eeh_nic_unload(bp);
11105
11106	pci_disable_device(pdev);
11107
11108	rtnl_unlock();
11109
11110	/* Request a slot reset */
11111	return PCI_ERS_RESULT_NEED_RESET;
11112}
11113
11114/**
11115 * bnx2x_io_slot_reset - called after the PCI bus has been reset
11116 * @pdev: Pointer to PCI device
11117 *
11118 * Restart the card from scratch, as if from a cold-boot.
11119 */
11120static pci_ers_result_t bnx2x_io_slot_reset(struct pci_dev *pdev)
11121{
11122	struct net_device *dev = pci_get_drvdata(pdev);
11123	struct bnx2x *bp = netdev_priv(dev);
11124
11125	rtnl_lock();
11126
11127	if (pci_enable_device(pdev)) {
11128		dev_err(&pdev->dev,
11129			"Cannot re-enable PCI device after reset\n");
11130		rtnl_unlock();
11131		return PCI_ERS_RESULT_DISCONNECT;
11132	}
11133
11134	pci_set_master(pdev);
11135	pci_restore_state(pdev);
11136
11137	if (netif_running(dev))
11138		bnx2x_set_power_state(bp, PCI_D0);
11139
11140	rtnl_unlock();
11141
11142	return PCI_ERS_RESULT_RECOVERED;
11143}
11144
11145/**
11146 * bnx2x_io_resume - called when traffic can start flowing again
11147 * @pdev: Pointer to PCI device
11148 *
11149 * This callback is called when the error recovery driver tells us that
11150 * its OK to resume normal operation.
11151 */
11152static void bnx2x_io_resume(struct pci_dev *pdev)
11153{
11154	struct net_device *dev = pci_get_drvdata(pdev);
11155	struct bnx2x *bp = netdev_priv(dev);
11156
11157	if (bp->recovery_state != BNX2X_RECOVERY_DONE) {
11158		netdev_err(bp->dev, "Handling parity error recovery. "
11159				    "Try again later\n");
11160		return;
11161	}
11162
11163	rtnl_lock();
11164
11165	bnx2x_eeh_recover(bp);
11166
11167	if (netif_running(dev))
11168		bnx2x_nic_load(bp, LOAD_NORMAL);
11169
11170	netif_device_attach(dev);
11171
11172	rtnl_unlock();
11173}
11174
11175static struct pci_error_handlers bnx2x_err_handler = {
11176	.error_detected = bnx2x_io_error_detected,
11177	.slot_reset     = bnx2x_io_slot_reset,
11178	.resume         = bnx2x_io_resume,
11179};
11180
11181static struct pci_driver bnx2x_pci_driver = {
11182	.name        = DRV_MODULE_NAME,
11183	.id_table    = bnx2x_pci_tbl,
11184	.probe       = bnx2x_init_one,
11185	.remove      = __devexit_p(bnx2x_remove_one),
11186	.suspend     = bnx2x_suspend,
11187	.resume      = bnx2x_resume,
11188	.err_handler = &bnx2x_err_handler,
11189};
11190
11191static int __init bnx2x_init(void)
11192{
11193	int ret;
11194
11195	pr_info("%s", version);
11196
11197	bnx2x_wq = create_singlethread_workqueue("bnx2x");
11198	if (bnx2x_wq == NULL) {
11199		pr_err("Cannot create workqueue\n");
11200		return -ENOMEM;
11201	}
11202
11203	ret = pci_register_driver(&bnx2x_pci_driver);
11204	if (ret) {
11205		pr_err("Cannot register driver\n");
11206		destroy_workqueue(bnx2x_wq);
11207	}
11208	return ret;
11209}
11210
11211static void __exit bnx2x_cleanup(void)
11212{
11213	pci_unregister_driver(&bnx2x_pci_driver);
11214
11215	destroy_workqueue(bnx2x_wq);
11216}
11217
11218void bnx2x_notify_link_changed(struct bnx2x *bp)
11219{
11220	REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + BP_FUNC(bp)*sizeof(u32), 1);
11221}
11222
11223module_init(bnx2x_init);
11224module_exit(bnx2x_cleanup);
11225
11226#ifdef BCM_CNIC
11227/**
11228 * bnx2x_set_iscsi_eth_mac_addr - set iSCSI MAC(s).
11229 *
11230 * @bp:		driver handle
11231 * @set:	set or clear the CAM entry
11232 *
11233 * This function will wait until the ramdord completion returns.
11234 * Return 0 if success, -ENODEV if ramrod doesn't return.
11235 */
11236static inline int bnx2x_set_iscsi_eth_mac_addr(struct bnx2x *bp)
11237{
11238	unsigned long ramrod_flags = 0;
11239
11240	__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
11241	return bnx2x_set_mac_one(bp, bp->cnic_eth_dev.iscsi_mac,
11242				 &bp->iscsi_l2_mac_obj, true,
11243				 BNX2X_ISCSI_ETH_MAC, &ramrod_flags);
11244}
11245
11246/* count denotes the number of new completions we have seen */
11247static void bnx2x_cnic_sp_post(struct bnx2x *bp, int count)
11248{
11249	struct eth_spe *spe;
11250
11251#ifdef BNX2X_STOP_ON_ERROR
11252	if (unlikely(bp->panic))
11253		return;
11254#endif
11255
11256	spin_lock_bh(&bp->spq_lock);
11257	BUG_ON(bp->cnic_spq_pending < count);
11258	bp->cnic_spq_pending -= count;
11259
11260
11261	for (; bp->cnic_kwq_pending; bp->cnic_kwq_pending--) {
11262		u16 type =  (le16_to_cpu(bp->cnic_kwq_cons->hdr.type)
11263				& SPE_HDR_CONN_TYPE) >>
11264				SPE_HDR_CONN_TYPE_SHIFT;
11265		u8 cmd = (le32_to_cpu(bp->cnic_kwq_cons->hdr.conn_and_cmd_data)
11266				>> SPE_HDR_CMD_ID_SHIFT) & 0xff;
11267
11268		/* Set validation for iSCSI L2 client before sending SETUP
11269		 *  ramrod
11270		 */
11271		if (type == ETH_CONNECTION_TYPE) {
11272			if (cmd == RAMROD_CMD_ID_ETH_CLIENT_SETUP)
11273				bnx2x_set_ctx_validation(bp, &bp->context.
11274					vcxt[BNX2X_ISCSI_ETH_CID].eth,
11275					BNX2X_ISCSI_ETH_CID);
11276		}
11277
11278		/*
11279		 * There may be not more than 8 L2, not more than 8 L5 SPEs
11280		 * and in the air. We also check that number of outstanding
11281		 * COMMON ramrods is not more than the EQ and SPQ can
11282		 * accommodate.
11283		 */
11284		if (type == ETH_CONNECTION_TYPE) {
11285			if (!atomic_read(&bp->cq_spq_left))
11286				break;
11287			else
11288				atomic_dec(&bp->cq_spq_left);
11289		} else if (type == NONE_CONNECTION_TYPE) {
11290			if (!atomic_read(&bp->eq_spq_left))
11291				break;
11292			else
11293				atomic_dec(&bp->eq_spq_left);
11294		} else if ((type == ISCSI_CONNECTION_TYPE) ||
11295			   (type == FCOE_CONNECTION_TYPE)) {
11296			if (bp->cnic_spq_pending >=
11297			    bp->cnic_eth_dev.max_kwqe_pending)
11298				break;
11299			else
11300				bp->cnic_spq_pending++;
11301		} else {
11302			BNX2X_ERR("Unknown SPE type: %d\n", type);
11303			bnx2x_panic();
11304			break;
11305		}
11306
11307		spe = bnx2x_sp_get_next(bp);
11308		*spe = *bp->cnic_kwq_cons;
11309
11310		DP(NETIF_MSG_TIMER, "pending on SPQ %d, on KWQ %d count %d\n",
11311		   bp->cnic_spq_pending, bp->cnic_kwq_pending, count);
11312
11313		if (bp->cnic_kwq_cons == bp->cnic_kwq_last)
11314			bp->cnic_kwq_cons = bp->cnic_kwq;
11315		else
11316			bp->cnic_kwq_cons++;
11317	}
11318	bnx2x_sp_prod_update(bp);
11319	spin_unlock_bh(&bp->spq_lock);
11320}
11321
11322static int bnx2x_cnic_sp_queue(struct net_device *dev,
11323			       struct kwqe_16 *kwqes[], u32 count)
11324{
11325	struct bnx2x *bp = netdev_priv(dev);
11326	int i;
11327
11328#ifdef BNX2X_STOP_ON_ERROR
11329	if (unlikely(bp->panic))
11330		return -EIO;
11331#endif
11332
11333	spin_lock_bh(&bp->spq_lock);
11334
11335	for (i = 0; i < count; i++) {
11336		struct eth_spe *spe = (struct eth_spe *)kwqes[i];
11337
11338		if (bp->cnic_kwq_pending == MAX_SP_DESC_CNT)
11339			break;
11340
11341		*bp->cnic_kwq_prod = *spe;
11342
11343		bp->cnic_kwq_pending++;
11344
11345		DP(NETIF_MSG_TIMER, "L5 SPQE %x %x %x:%x pos %d\n",
11346		   spe->hdr.conn_and_cmd_data, spe->hdr.type,
11347		   spe->data.update_data_addr.hi,
11348		   spe->data.update_data_addr.lo,
11349		   bp->cnic_kwq_pending);
11350
11351		if (bp->cnic_kwq_prod == bp->cnic_kwq_last)
11352			bp->cnic_kwq_prod = bp->cnic_kwq;
11353		else
11354			bp->cnic_kwq_prod++;
11355	}
11356
11357	spin_unlock_bh(&bp->spq_lock);
11358
11359	if (bp->cnic_spq_pending < bp->cnic_eth_dev.max_kwqe_pending)
11360		bnx2x_cnic_sp_post(bp, 0);
11361
11362	return i;
11363}
11364
11365static int bnx2x_cnic_ctl_send(struct bnx2x *bp, struct cnic_ctl_info *ctl)
11366{
11367	struct cnic_ops *c_ops;
11368	int rc = 0;
11369
11370	mutex_lock(&bp->cnic_mutex);
11371	c_ops = rcu_dereference_protected(bp->cnic_ops,
11372					  lockdep_is_held(&bp->cnic_mutex));
11373	if (c_ops)
11374		rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
11375	mutex_unlock(&bp->cnic_mutex);
11376
11377	return rc;
11378}
11379
11380static int bnx2x_cnic_ctl_send_bh(struct bnx2x *bp, struct cnic_ctl_info *ctl)
11381{
11382	struct cnic_ops *c_ops;
11383	int rc = 0;
11384
11385	rcu_read_lock();
11386	c_ops = rcu_dereference(bp->cnic_ops);
11387	if (c_ops)
11388		rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
11389	rcu_read_unlock();
11390
11391	return rc;
11392}
11393
11394/*
11395 * for commands that have no data
11396 */
11397int bnx2x_cnic_notify(struct bnx2x *bp, int cmd)
11398{
11399	struct cnic_ctl_info ctl = {0};
11400
11401	ctl.cmd = cmd;
11402
11403	return bnx2x_cnic_ctl_send(bp, &ctl);
11404}
11405
11406static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err)
11407{
11408	struct cnic_ctl_info ctl = {0};
11409
11410	/* first we tell CNIC and only then we count this as a completion */
11411	ctl.cmd = CNIC_CTL_COMPLETION_CMD;
11412	ctl.data.comp.cid = cid;
11413	ctl.data.comp.error = err;
11414
11415	bnx2x_cnic_ctl_send_bh(bp, &ctl);
11416	bnx2x_cnic_sp_post(bp, 0);
11417}
11418
11419
11420/* Called with netif_addr_lock_bh() taken.
11421 * Sets an rx_mode config for an iSCSI ETH client.
11422 * Doesn't block.
11423 * Completion should be checked outside.
11424 */
11425static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start)
11426{
11427	unsigned long accept_flags = 0, ramrod_flags = 0;
11428	u8 cl_id = bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
11429	int sched_state = BNX2X_FILTER_ISCSI_ETH_STOP_SCHED;
11430
11431	if (start) {
11432		/* Start accepting on iSCSI L2 ring. Accept all multicasts
11433		 * because it's the only way for UIO Queue to accept
11434		 * multicasts (in non-promiscuous mode only one Queue per
11435		 * function will receive multicast packets (leading in our
11436		 * case).
11437		 */
11438		__set_bit(BNX2X_ACCEPT_UNICAST, &accept_flags);
11439		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &accept_flags);
11440		__set_bit(BNX2X_ACCEPT_BROADCAST, &accept_flags);
11441		__set_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags);
11442
11443		/* Clear STOP_PENDING bit if START is requested */
11444		clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &bp->sp_state);
11445
11446		sched_state = BNX2X_FILTER_ISCSI_ETH_START_SCHED;
11447	} else
11448		/* Clear START_PENDING bit if STOP is requested */
11449		clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &bp->sp_state);
11450
11451	if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
11452		set_bit(sched_state, &bp->sp_state);
11453	else {
11454		__set_bit(RAMROD_RX, &ramrod_flags);
11455		bnx2x_set_q_rx_mode(bp, cl_id, 0, accept_flags, 0,
11456				    ramrod_flags);
11457	}
11458}
11459
11460
11461static int bnx2x_drv_ctl(struct net_device *dev, struct drv_ctl_info *ctl)
11462{
11463	struct bnx2x *bp = netdev_priv(dev);
11464	int rc = 0;
11465
11466	switch (ctl->cmd) {
11467	case DRV_CTL_CTXTBL_WR_CMD: {
11468		u32 index = ctl->data.io.offset;
11469		dma_addr_t addr = ctl->data.io.dma_addr;
11470
11471		bnx2x_ilt_wr(bp, index, addr);
11472		break;
11473	}
11474
11475	case DRV_CTL_RET_L5_SPQ_CREDIT_CMD: {
11476		int count = ctl->data.credit.credit_count;
11477
11478		bnx2x_cnic_sp_post(bp, count);
11479		break;
11480	}
11481
11482	/* rtnl_lock is held.  */
11483	case DRV_CTL_START_L2_CMD: {
11484		struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
11485		unsigned long sp_bits = 0;
11486
11487		/* Configure the iSCSI classification object */
11488		bnx2x_init_mac_obj(bp, &bp->iscsi_l2_mac_obj,
11489				   cp->iscsi_l2_client_id,
11490				   cp->iscsi_l2_cid, BP_FUNC(bp),
11491				   bnx2x_sp(bp, mac_rdata),
11492				   bnx2x_sp_mapping(bp, mac_rdata),
11493				   BNX2X_FILTER_MAC_PENDING,
11494				   &bp->sp_state, BNX2X_OBJ_TYPE_RX,
11495				   &bp->macs_pool);
11496
11497		/* Set iSCSI MAC address */
11498		rc = bnx2x_set_iscsi_eth_mac_addr(bp);
11499		if (rc)
11500			break;
11501
11502		mmiowb();
11503		barrier();
11504
11505		/* Start accepting on iSCSI L2 ring */
11506
11507		netif_addr_lock_bh(dev);
11508		bnx2x_set_iscsi_eth_rx_mode(bp, true);
11509		netif_addr_unlock_bh(dev);
11510
11511		/* bits to wait on */
11512		__set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
11513		__set_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &sp_bits);
11514
11515		if (!bnx2x_wait_sp_comp(bp, sp_bits))
11516			BNX2X_ERR("rx_mode completion timed out!\n");
11517
11518		break;
11519	}
11520
11521	/* rtnl_lock is held.  */
11522	case DRV_CTL_STOP_L2_CMD: {
11523		unsigned long sp_bits = 0;
11524
11525		/* Stop accepting on iSCSI L2 ring */
11526		netif_addr_lock_bh(dev);
11527		bnx2x_set_iscsi_eth_rx_mode(bp, false);
11528		netif_addr_unlock_bh(dev);
11529
11530		/* bits to wait on */
11531		__set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
11532		__set_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &sp_bits);
11533
11534		if (!bnx2x_wait_sp_comp(bp, sp_bits))
11535			BNX2X_ERR("rx_mode completion timed out!\n");
11536
11537		mmiowb();
11538		barrier();
11539
11540		/* Unset iSCSI L2 MAC */
11541		rc = bnx2x_del_all_macs(bp, &bp->iscsi_l2_mac_obj,
11542					BNX2X_ISCSI_ETH_MAC, true);
11543		break;
11544	}
11545	case DRV_CTL_RET_L2_SPQ_CREDIT_CMD: {
11546		int count = ctl->data.credit.credit_count;
11547
11548		smp_mb__before_atomic_inc();
11549		atomic_add(count, &bp->cq_spq_left);
11550		smp_mb__after_atomic_inc();
11551		break;
11552	}
11553
11554	default:
11555		BNX2X_ERR("unknown command %x\n", ctl->cmd);
11556		rc = -EINVAL;
11557	}
11558
11559	return rc;
11560}
11561
11562void bnx2x_setup_cnic_irq_info(struct bnx2x *bp)
11563{
11564	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
11565
11566	if (bp->flags & USING_MSIX_FLAG) {
11567		cp->drv_state |= CNIC_DRV_STATE_USING_MSIX;
11568		cp->irq_arr[0].irq_flags |= CNIC_IRQ_FL_MSIX;
11569		cp->irq_arr[0].vector = bp->msix_table[1].vector;
11570	} else {
11571		cp->drv_state &= ~CNIC_DRV_STATE_USING_MSIX;
11572		cp->irq_arr[0].irq_flags &= ~CNIC_IRQ_FL_MSIX;
11573	}
11574	if (!CHIP_IS_E1x(bp))
11575		cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e2_sb;
11576	else
11577		cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e1x_sb;
11578
11579	cp->irq_arr[0].status_blk_num =  bnx2x_cnic_fw_sb_id(bp);
11580	cp->irq_arr[0].status_blk_num2 = bnx2x_cnic_igu_sb_id(bp);
11581	cp->irq_arr[1].status_blk = bp->def_status_blk;
11582	cp->irq_arr[1].status_blk_num = DEF_SB_ID;
11583	cp->irq_arr[1].status_blk_num2 = DEF_SB_IGU_ID;
11584
11585	cp->num_irq = 2;
11586}
11587
11588static int bnx2x_register_cnic(struct net_device *dev, struct cnic_ops *ops,
11589			       void *data)
11590{
11591	struct bnx2x *bp = netdev_priv(dev);
11592	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
11593
11594	if (ops == NULL)
11595		return -EINVAL;
11596
11597	bp->cnic_kwq = kzalloc(PAGE_SIZE, GFP_KERNEL);
11598	if (!bp->cnic_kwq)
11599		return -ENOMEM;
11600
11601	bp->cnic_kwq_cons = bp->cnic_kwq;
11602	bp->cnic_kwq_prod = bp->cnic_kwq;
11603	bp->cnic_kwq_last = bp->cnic_kwq + MAX_SP_DESC_CNT;
11604
11605	bp->cnic_spq_pending = 0;
11606	bp->cnic_kwq_pending = 0;
11607
11608	bp->cnic_data = data;
11609
11610	cp->num_irq = 0;
11611	cp->drv_state |= CNIC_DRV_STATE_REGD;
11612	cp->iro_arr = bp->iro_arr;
11613
11614	bnx2x_setup_cnic_irq_info(bp);
11615
11616	rcu_assign_pointer(bp->cnic_ops, ops);
11617
11618	return 0;
11619}
11620
11621static int bnx2x_unregister_cnic(struct net_device *dev)
11622{
11623	struct bnx2x *bp = netdev_priv(dev);
11624	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
11625
11626	mutex_lock(&bp->cnic_mutex);
11627	cp->drv_state = 0;
11628	RCU_INIT_POINTER(bp->cnic_ops, NULL);
11629	mutex_unlock(&bp->cnic_mutex);
11630	synchronize_rcu();
11631	kfree(bp->cnic_kwq);
11632	bp->cnic_kwq = NULL;
11633
11634	return 0;
11635}
11636
11637struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev)
11638{
11639	struct bnx2x *bp = netdev_priv(dev);
11640	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
11641
11642	/* If both iSCSI and FCoE are disabled - return NULL in
11643	 * order to indicate CNIC that it should not try to work
11644	 * with this device.
11645	 */
11646	if (NO_ISCSI(bp) && NO_FCOE(bp))
11647		return NULL;
11648
11649	cp->drv_owner = THIS_MODULE;
11650	cp->chip_id = CHIP_ID(bp);
11651	cp->pdev = bp->pdev;
11652	cp->io_base = bp->regview;
11653	cp->io_base2 = bp->doorbells;
11654	cp->max_kwqe_pending = 8;
11655	cp->ctx_blk_size = CDU_ILT_PAGE_SZ;
11656	cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
11657			     bnx2x_cid_ilt_lines(bp);
11658	cp->ctx_tbl_len = CNIC_ILT_LINES;
11659	cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
11660	cp->drv_submit_kwqes_16 = bnx2x_cnic_sp_queue;
11661	cp->drv_ctl = bnx2x_drv_ctl;
11662	cp->drv_register_cnic = bnx2x_register_cnic;
11663	cp->drv_unregister_cnic = bnx2x_unregister_cnic;
11664	cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID;
11665	cp->iscsi_l2_client_id =
11666		bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
11667	cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID;
11668
11669	if (NO_ISCSI_OOO(bp))
11670		cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
11671
11672	if (NO_ISCSI(bp))
11673		cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI;
11674
11675	if (NO_FCOE(bp))
11676		cp->drv_state |= CNIC_DRV_STATE_NO_FCOE;
11677
11678	DP(BNX2X_MSG_SP, "page_size %d, tbl_offset %d, tbl_lines %d, "
11679			 "starting cid %d\n",
11680	   cp->ctx_blk_size,
11681	   cp->ctx_tbl_offset,
11682	   cp->ctx_tbl_len,
11683	   cp->starting_cid);
11684	return cp;
11685}
11686EXPORT_SYMBOL(bnx2x_cnic_probe);
11687
11688#endif /* BCM_CNIC */
11689
11690