bnx2x_main.c revision 7a752993fe90adf8e150cc1a85beef5f782429e7
1/* bnx2x_main.c: Broadcom Everest network driver.
2 *
3 * Copyright (c) 2007-2011 Broadcom Corporation
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation.
8 *
9 * Maintained by: Eilon Greenstein <eilong@broadcom.com>
10 * Written by: Eliezer Tamir
11 * Based on code from Michael Chan's bnx2 driver
12 * UDP CSUM errata workaround by Arik Gendelman
13 * Slowpath and fastpath rework by Vladislav Zolotarov
14 * Statistics and Link management by Yitchak Gertner
15 *
16 */
17
18#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19
20#include <linux/module.h>
21#include <linux/moduleparam.h>
22#include <linux/kernel.h>
23#include <linux/device.h>  /* for dev_info() */
24#include <linux/timer.h>
25#include <linux/errno.h>
26#include <linux/ioport.h>
27#include <linux/slab.h>
28#include <linux/interrupt.h>
29#include <linux/pci.h>
30#include <linux/init.h>
31#include <linux/netdevice.h>
32#include <linux/etherdevice.h>
33#include <linux/skbuff.h>
34#include <linux/dma-mapping.h>
35#include <linux/bitops.h>
36#include <linux/irq.h>
37#include <linux/delay.h>
38#include <asm/byteorder.h>
39#include <linux/time.h>
40#include <linux/ethtool.h>
41#include <linux/mii.h>
42#include <linux/if.h>
43#include <linux/if_vlan.h>
44#include <net/ip.h>
45#include <net/ipv6.h>
46#include <net/tcp.h>
47#include <net/checksum.h>
48#include <net/ip6_checksum.h>
49#include <linux/workqueue.h>
50#include <linux/crc32.h>
51#include <linux/crc32c.h>
52#include <linux/prefetch.h>
53#include <linux/zlib.h>
54#include <linux/io.h>
55#include <linux/stringify.h>
56#include <linux/vmalloc.h>
57
58#include "bnx2x.h"
59#include "bnx2x_init.h"
60#include "bnx2x_init_ops.h"
61#include "bnx2x_cmn.h"
62#include "bnx2x_dcb.h"
63#include "bnx2x_sp.h"
64
65#include <linux/firmware.h>
66#include "bnx2x_fw_file_hdr.h"
67/* FW files */
68#define FW_FILE_VERSION					\
69	__stringify(BCM_5710_FW_MAJOR_VERSION) "."	\
70	__stringify(BCM_5710_FW_MINOR_VERSION) "."	\
71	__stringify(BCM_5710_FW_REVISION_VERSION) "."	\
72	__stringify(BCM_5710_FW_ENGINEERING_VERSION)
73#define FW_FILE_NAME_E1		"bnx2x/bnx2x-e1-" FW_FILE_VERSION ".fw"
74#define FW_FILE_NAME_E1H	"bnx2x/bnx2x-e1h-" FW_FILE_VERSION ".fw"
75#define FW_FILE_NAME_E2		"bnx2x/bnx2x-e2-" FW_FILE_VERSION ".fw"
76
77/* Time in jiffies before concluding the transmitter is hung */
78#define TX_TIMEOUT		(5*HZ)
79
80static char version[] __devinitdata =
81	"Broadcom NetXtreme II 5771x/578xx 10/20-Gigabit Ethernet Driver "
82	DRV_MODULE_NAME " " DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
83
84MODULE_AUTHOR("Eliezer Tamir");
85MODULE_DESCRIPTION("Broadcom NetXtreme II "
86		   "BCM57710/57711/57711E/"
87		   "57712/57712_MF/57800/57800_MF/57810/57810_MF/"
88		   "57840/57840_MF Driver");
89MODULE_LICENSE("GPL");
90MODULE_VERSION(DRV_MODULE_VERSION);
91MODULE_FIRMWARE(FW_FILE_NAME_E1);
92MODULE_FIRMWARE(FW_FILE_NAME_E1H);
93MODULE_FIRMWARE(FW_FILE_NAME_E2);
94
95static int multi_mode = 1;
96module_param(multi_mode, int, 0);
97MODULE_PARM_DESC(multi_mode, " Multi queue mode "
98			     "(0 Disable; 1 Enable (default))");
99
100int num_queues;
101module_param(num_queues, int, 0);
102MODULE_PARM_DESC(num_queues, " Number of queues for multi_mode=1"
103				" (default is as a number of CPUs)");
104
105static int disable_tpa;
106module_param(disable_tpa, int, 0);
107MODULE_PARM_DESC(disable_tpa, " Disable the TPA (LRO) feature");
108
109#define INT_MODE_INTx			1
110#define INT_MODE_MSI			2
111static int int_mode;
112module_param(int_mode, int, 0);
113MODULE_PARM_DESC(int_mode, " Force interrupt mode other than MSI-X "
114				"(1 INT#x; 2 MSI)");
115
116static int dropless_fc;
117module_param(dropless_fc, int, 0);
118MODULE_PARM_DESC(dropless_fc, " Pause on exhausted host ring");
119
120static int poll;
121module_param(poll, int, 0);
122MODULE_PARM_DESC(poll, " Use polling (for debug)");
123
124static int mrrs = -1;
125module_param(mrrs, int, 0);
126MODULE_PARM_DESC(mrrs, " Force Max Read Req Size (0..3) (for debug)");
127
128static int debug;
129module_param(debug, int, 0);
130MODULE_PARM_DESC(debug, " Default debug msglevel");
131
132
133
134struct workqueue_struct *bnx2x_wq;
135
136enum bnx2x_board_type {
137	BCM57710 = 0,
138	BCM57711,
139	BCM57711E,
140	BCM57712,
141	BCM57712_MF,
142	BCM57800,
143	BCM57800_MF,
144	BCM57810,
145	BCM57810_MF,
146	BCM57840,
147	BCM57840_MF
148};
149
150/* indexed by board_type, above */
151static struct {
152	char *name;
153} board_info[] __devinitdata = {
154	{ "Broadcom NetXtreme II BCM57710 10 Gigabit PCIe [Everest]" },
155	{ "Broadcom NetXtreme II BCM57711 10 Gigabit PCIe" },
156	{ "Broadcom NetXtreme II BCM57711E 10 Gigabit PCIe" },
157	{ "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet" },
158	{ "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet Multi Function" },
159	{ "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet" },
160	{ "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet Multi Function" },
161	{ "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet" },
162	{ "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet Multi Function" },
163	{ "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet" },
164	{ "Broadcom NetXtreme II BCM57840 10/20 Gigabit "
165						"Ethernet Multi Function"}
166};
167
168#ifndef PCI_DEVICE_ID_NX2_57710
169#define PCI_DEVICE_ID_NX2_57710		CHIP_NUM_57710
170#endif
171#ifndef PCI_DEVICE_ID_NX2_57711
172#define PCI_DEVICE_ID_NX2_57711		CHIP_NUM_57711
173#endif
174#ifndef PCI_DEVICE_ID_NX2_57711E
175#define PCI_DEVICE_ID_NX2_57711E	CHIP_NUM_57711E
176#endif
177#ifndef PCI_DEVICE_ID_NX2_57712
178#define PCI_DEVICE_ID_NX2_57712		CHIP_NUM_57712
179#endif
180#ifndef PCI_DEVICE_ID_NX2_57712_MF
181#define PCI_DEVICE_ID_NX2_57712_MF	CHIP_NUM_57712_MF
182#endif
183#ifndef PCI_DEVICE_ID_NX2_57800
184#define PCI_DEVICE_ID_NX2_57800		CHIP_NUM_57800
185#endif
186#ifndef PCI_DEVICE_ID_NX2_57800_MF
187#define PCI_DEVICE_ID_NX2_57800_MF	CHIP_NUM_57800_MF
188#endif
189#ifndef PCI_DEVICE_ID_NX2_57810
190#define PCI_DEVICE_ID_NX2_57810		CHIP_NUM_57810
191#endif
192#ifndef PCI_DEVICE_ID_NX2_57810_MF
193#define PCI_DEVICE_ID_NX2_57810_MF	CHIP_NUM_57810_MF
194#endif
195#ifndef PCI_DEVICE_ID_NX2_57840
196#define PCI_DEVICE_ID_NX2_57840		CHIP_NUM_57840
197#endif
198#ifndef PCI_DEVICE_ID_NX2_57840_MF
199#define PCI_DEVICE_ID_NX2_57840_MF	CHIP_NUM_57840_MF
200#endif
201static DEFINE_PCI_DEVICE_TABLE(bnx2x_pci_tbl) = {
202	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57710), BCM57710 },
203	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711), BCM57711 },
204	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711E), BCM57711E },
205	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712), BCM57712 },
206	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_MF), BCM57712_MF },
207	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800), BCM57800 },
208	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_MF), BCM57800_MF },
209	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810), BCM57810 },
210	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_MF), BCM57810_MF },
211	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840), BCM57840 },
212	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MF), BCM57840_MF },
213	{ 0 }
214};
215
216MODULE_DEVICE_TABLE(pci, bnx2x_pci_tbl);
217
218/****************************************************************************
219* General service functions
220****************************************************************************/
221
222static inline void __storm_memset_dma_mapping(struct bnx2x *bp,
223				       u32 addr, dma_addr_t mapping)
224{
225	REG_WR(bp,  addr, U64_LO(mapping));
226	REG_WR(bp,  addr + 4, U64_HI(mapping));
227}
228
229static inline void storm_memset_spq_addr(struct bnx2x *bp,
230					 dma_addr_t mapping, u16 abs_fid)
231{
232	u32 addr = XSEM_REG_FAST_MEMORY +
233			XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid);
234
235	__storm_memset_dma_mapping(bp, addr, mapping);
236}
237
238static inline void storm_memset_vf_to_pf(struct bnx2x *bp, u16 abs_fid,
239					 u16 pf_id)
240{
241	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid),
242		pf_id);
243	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid),
244		pf_id);
245	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid),
246		pf_id);
247	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid),
248		pf_id);
249}
250
251static inline void storm_memset_func_en(struct bnx2x *bp, u16 abs_fid,
252					u8 enable)
253{
254	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid),
255		enable);
256	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid),
257		enable);
258	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid),
259		enable);
260	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid),
261		enable);
262}
263
264static inline void storm_memset_eq_data(struct bnx2x *bp,
265				struct event_ring_data *eq_data,
266				u16 pfid)
267{
268	size_t size = sizeof(struct event_ring_data);
269
270	u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid);
271
272	__storm_memset_struct(bp, addr, size, (u32 *)eq_data);
273}
274
275static inline void storm_memset_eq_prod(struct bnx2x *bp, u16 eq_prod,
276					u16 pfid)
277{
278	u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_PROD_OFFSET(pfid);
279	REG_WR16(bp, addr, eq_prod);
280}
281
282/* used only at init
283 * locking is done by mcp
284 */
285static void bnx2x_reg_wr_ind(struct bnx2x *bp, u32 addr, u32 val)
286{
287	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
288	pci_write_config_dword(bp->pdev, PCICFG_GRC_DATA, val);
289	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
290			       PCICFG_VENDOR_ID_OFFSET);
291}
292
293static u32 bnx2x_reg_rd_ind(struct bnx2x *bp, u32 addr)
294{
295	u32 val;
296
297	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
298	pci_read_config_dword(bp->pdev, PCICFG_GRC_DATA, &val);
299	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
300			       PCICFG_VENDOR_ID_OFFSET);
301
302	return val;
303}
304
305#define DMAE_DP_SRC_GRC		"grc src_addr [%08x]"
306#define DMAE_DP_SRC_PCI		"pci src_addr [%x:%08x]"
307#define DMAE_DP_DST_GRC		"grc dst_addr [%08x]"
308#define DMAE_DP_DST_PCI		"pci dst_addr [%x:%08x]"
309#define DMAE_DP_DST_NONE	"dst_addr [none]"
310
311static void bnx2x_dp_dmae(struct bnx2x *bp, struct dmae_command *dmae,
312			  int msglvl)
313{
314	u32 src_type = dmae->opcode & DMAE_COMMAND_SRC;
315
316	switch (dmae->opcode & DMAE_COMMAND_DST) {
317	case DMAE_CMD_DST_PCI:
318		if (src_type == DMAE_CMD_SRC_PCI)
319			DP(msglvl, "DMAE: opcode 0x%08x\n"
320			   "src [%x:%08x], len [%d*4], dst [%x:%08x]\n"
321			   "comp_addr [%x:%08x], comp_val 0x%08x\n",
322			   dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
323			   dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
324			   dmae->comp_addr_hi, dmae->comp_addr_lo,
325			   dmae->comp_val);
326		else
327			DP(msglvl, "DMAE: opcode 0x%08x\n"
328			   "src [%08x], len [%d*4], dst [%x:%08x]\n"
329			   "comp_addr [%x:%08x], comp_val 0x%08x\n",
330			   dmae->opcode, dmae->src_addr_lo >> 2,
331			   dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
332			   dmae->comp_addr_hi, dmae->comp_addr_lo,
333			   dmae->comp_val);
334		break;
335	case DMAE_CMD_DST_GRC:
336		if (src_type == DMAE_CMD_SRC_PCI)
337			DP(msglvl, "DMAE: opcode 0x%08x\n"
338			   "src [%x:%08x], len [%d*4], dst_addr [%08x]\n"
339			   "comp_addr [%x:%08x], comp_val 0x%08x\n",
340			   dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
341			   dmae->len, dmae->dst_addr_lo >> 2,
342			   dmae->comp_addr_hi, dmae->comp_addr_lo,
343			   dmae->comp_val);
344		else
345			DP(msglvl, "DMAE: opcode 0x%08x\n"
346			   "src [%08x], len [%d*4], dst [%08x]\n"
347			   "comp_addr [%x:%08x], comp_val 0x%08x\n",
348			   dmae->opcode, dmae->src_addr_lo >> 2,
349			   dmae->len, dmae->dst_addr_lo >> 2,
350			   dmae->comp_addr_hi, dmae->comp_addr_lo,
351			   dmae->comp_val);
352		break;
353	default:
354		if (src_type == DMAE_CMD_SRC_PCI)
355			DP(msglvl, "DMAE: opcode 0x%08x\n"
356			   "src_addr [%x:%08x]  len [%d * 4]  dst_addr [none]\n"
357			   "comp_addr [%x:%08x]  comp_val 0x%08x\n",
358			   dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
359			   dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
360			   dmae->comp_val);
361		else
362			DP(msglvl, "DMAE: opcode 0x%08x\n"
363			   "src_addr [%08x]  len [%d * 4]  dst_addr [none]\n"
364			   "comp_addr [%x:%08x]  comp_val 0x%08x\n",
365			   dmae->opcode, dmae->src_addr_lo >> 2,
366			   dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
367			   dmae->comp_val);
368		break;
369	}
370
371}
372
373/* copy command into DMAE command memory and set DMAE command go */
374void bnx2x_post_dmae(struct bnx2x *bp, struct dmae_command *dmae, int idx)
375{
376	u32 cmd_offset;
377	int i;
378
379	cmd_offset = (DMAE_REG_CMD_MEM + sizeof(struct dmae_command) * idx);
380	for (i = 0; i < (sizeof(struct dmae_command)/4); i++) {
381		REG_WR(bp, cmd_offset + i*4, *(((u32 *)dmae) + i));
382
383		DP(BNX2X_MSG_OFF, "DMAE cmd[%d].%d (0x%08x) : 0x%08x\n",
384		   idx, i, cmd_offset + i*4, *(((u32 *)dmae) + i));
385	}
386	REG_WR(bp, dmae_reg_go_c[idx], 1);
387}
388
389u32 bnx2x_dmae_opcode_add_comp(u32 opcode, u8 comp_type)
390{
391	return opcode | ((comp_type << DMAE_COMMAND_C_DST_SHIFT) |
392			   DMAE_CMD_C_ENABLE);
393}
394
395u32 bnx2x_dmae_opcode_clr_src_reset(u32 opcode)
396{
397	return opcode & ~DMAE_CMD_SRC_RESET;
398}
399
400u32 bnx2x_dmae_opcode(struct bnx2x *bp, u8 src_type, u8 dst_type,
401			     bool with_comp, u8 comp_type)
402{
403	u32 opcode = 0;
404
405	opcode |= ((src_type << DMAE_COMMAND_SRC_SHIFT) |
406		   (dst_type << DMAE_COMMAND_DST_SHIFT));
407
408	opcode |= (DMAE_CMD_SRC_RESET | DMAE_CMD_DST_RESET);
409
410	opcode |= (BP_PORT(bp) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0);
411	opcode |= ((BP_VN(bp) << DMAE_CMD_E1HVN_SHIFT) |
412		   (BP_VN(bp) << DMAE_COMMAND_DST_VN_SHIFT));
413	opcode |= (DMAE_COM_SET_ERR << DMAE_COMMAND_ERR_POLICY_SHIFT);
414
415#ifdef __BIG_ENDIAN
416	opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP;
417#else
418	opcode |= DMAE_CMD_ENDIANITY_DW_SWAP;
419#endif
420	if (with_comp)
421		opcode = bnx2x_dmae_opcode_add_comp(opcode, comp_type);
422	return opcode;
423}
424
425static void bnx2x_prep_dmae_with_comp(struct bnx2x *bp,
426				      struct dmae_command *dmae,
427				      u8 src_type, u8 dst_type)
428{
429	memset(dmae, 0, sizeof(struct dmae_command));
430
431	/* set the opcode */
432	dmae->opcode = bnx2x_dmae_opcode(bp, src_type, dst_type,
433					 true, DMAE_COMP_PCI);
434
435	/* fill in the completion parameters */
436	dmae->comp_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_comp));
437	dmae->comp_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_comp));
438	dmae->comp_val = DMAE_COMP_VAL;
439}
440
441/* issue a dmae command over the init-channel and wailt for completion */
442static int bnx2x_issue_dmae_with_comp(struct bnx2x *bp,
443				      struct dmae_command *dmae)
444{
445	u32 *wb_comp = bnx2x_sp(bp, wb_comp);
446	int cnt = CHIP_REV_IS_SLOW(bp) ? (400000) : 4000;
447	int rc = 0;
448
449	DP(BNX2X_MSG_OFF, "data before [0x%08x 0x%08x 0x%08x 0x%08x]\n",
450	   bp->slowpath->wb_data[0], bp->slowpath->wb_data[1],
451	   bp->slowpath->wb_data[2], bp->slowpath->wb_data[3]);
452
453	/*
454	 * Lock the dmae channel. Disable BHs to prevent a dead-lock
455	 * as long as this code is called both from syscall context and
456	 * from ndo_set_rx_mode() flow that may be called from BH.
457	 */
458	spin_lock_bh(&bp->dmae_lock);
459
460	/* reset completion */
461	*wb_comp = 0;
462
463	/* post the command on the channel used for initializations */
464	bnx2x_post_dmae(bp, dmae, INIT_DMAE_C(bp));
465
466	/* wait for completion */
467	udelay(5);
468	while ((*wb_comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) {
469		DP(BNX2X_MSG_OFF, "wb_comp 0x%08x\n", *wb_comp);
470
471		if (!cnt ||
472		    (bp->recovery_state != BNX2X_RECOVERY_DONE &&
473		     bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
474			BNX2X_ERR("DMAE timeout!\n");
475			rc = DMAE_TIMEOUT;
476			goto unlock;
477		}
478		cnt--;
479		udelay(50);
480	}
481	if (*wb_comp & DMAE_PCI_ERR_FLAG) {
482		BNX2X_ERR("DMAE PCI error!\n");
483		rc = DMAE_PCI_ERROR;
484	}
485
486	DP(BNX2X_MSG_OFF, "data after [0x%08x 0x%08x 0x%08x 0x%08x]\n",
487	   bp->slowpath->wb_data[0], bp->slowpath->wb_data[1],
488	   bp->slowpath->wb_data[2], bp->slowpath->wb_data[3]);
489
490unlock:
491	spin_unlock_bh(&bp->dmae_lock);
492	return rc;
493}
494
495void bnx2x_write_dmae(struct bnx2x *bp, dma_addr_t dma_addr, u32 dst_addr,
496		      u32 len32)
497{
498	struct dmae_command dmae;
499
500	if (!bp->dmae_ready) {
501		u32 *data = bnx2x_sp(bp, wb_data[0]);
502
503		DP(BNX2X_MSG_OFF,
504		   "DMAE is not ready (dst_addr %08x len32 %d) using indirect\n",
505		   dst_addr, len32);
506		if (CHIP_IS_E1(bp))
507			bnx2x_init_ind_wr(bp, dst_addr, data, len32);
508		else
509			bnx2x_init_str_wr(bp, dst_addr, data, len32);
510		return;
511	}
512
513	/* set opcode and fixed command fields */
514	bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC);
515
516	/* fill in addresses and len */
517	dmae.src_addr_lo = U64_LO(dma_addr);
518	dmae.src_addr_hi = U64_HI(dma_addr);
519	dmae.dst_addr_lo = dst_addr >> 2;
520	dmae.dst_addr_hi = 0;
521	dmae.len = len32;
522
523	bnx2x_dp_dmae(bp, &dmae, BNX2X_MSG_OFF);
524
525	/* issue the command and wait for completion */
526	bnx2x_issue_dmae_with_comp(bp, &dmae);
527}
528
529void bnx2x_read_dmae(struct bnx2x *bp, u32 src_addr, u32 len32)
530{
531	struct dmae_command dmae;
532
533	if (!bp->dmae_ready) {
534		u32 *data = bnx2x_sp(bp, wb_data[0]);
535		int i;
536
537		if (CHIP_IS_E1(bp)) {
538			DP(BNX2X_MSG_OFF,
539			   "DMAE is not ready (src_addr %08x len32 %d) using indirect\n",
540			   src_addr, len32);
541			for (i = 0; i < len32; i++)
542				data[i] = bnx2x_reg_rd_ind(bp, src_addr + i*4);
543		} else
544			for (i = 0; i < len32; i++)
545				data[i] = REG_RD(bp, src_addr + i*4);
546
547		return;
548	}
549
550	/* set opcode and fixed command fields */
551	bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI);
552
553	/* fill in addresses and len */
554	dmae.src_addr_lo = src_addr >> 2;
555	dmae.src_addr_hi = 0;
556	dmae.dst_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_data));
557	dmae.dst_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_data));
558	dmae.len = len32;
559
560	bnx2x_dp_dmae(bp, &dmae, BNX2X_MSG_OFF);
561
562	/* issue the command and wait for completion */
563	bnx2x_issue_dmae_with_comp(bp, &dmae);
564}
565
566static void bnx2x_write_dmae_phys_len(struct bnx2x *bp, dma_addr_t phys_addr,
567				      u32 addr, u32 len)
568{
569	int dmae_wr_max = DMAE_LEN32_WR_MAX(bp);
570	int offset = 0;
571
572	while (len > dmae_wr_max) {
573		bnx2x_write_dmae(bp, phys_addr + offset,
574				 addr + offset, dmae_wr_max);
575		offset += dmae_wr_max * 4;
576		len -= dmae_wr_max;
577	}
578
579	bnx2x_write_dmae(bp, phys_addr + offset, addr + offset, len);
580}
581
582/* used only for slowpath so not inlined */
583static void bnx2x_wb_wr(struct bnx2x *bp, int reg, u32 val_hi, u32 val_lo)
584{
585	u32 wb_write[2];
586
587	wb_write[0] = val_hi;
588	wb_write[1] = val_lo;
589	REG_WR_DMAE(bp, reg, wb_write, 2);
590}
591
592#ifdef USE_WB_RD
593static u64 bnx2x_wb_rd(struct bnx2x *bp, int reg)
594{
595	u32 wb_data[2];
596
597	REG_RD_DMAE(bp, reg, wb_data, 2);
598
599	return HILO_U64(wb_data[0], wb_data[1]);
600}
601#endif
602
603static int bnx2x_mc_assert(struct bnx2x *bp)
604{
605	char last_idx;
606	int i, rc = 0;
607	u32 row0, row1, row2, row3;
608
609	/* XSTORM */
610	last_idx = REG_RD8(bp, BAR_XSTRORM_INTMEM +
611			   XSTORM_ASSERT_LIST_INDEX_OFFSET);
612	if (last_idx)
613		BNX2X_ERR("XSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
614
615	/* print the asserts */
616	for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
617
618		row0 = REG_RD(bp, BAR_XSTRORM_INTMEM +
619			      XSTORM_ASSERT_LIST_OFFSET(i));
620		row1 = REG_RD(bp, BAR_XSTRORM_INTMEM +
621			      XSTORM_ASSERT_LIST_OFFSET(i) + 4);
622		row2 = REG_RD(bp, BAR_XSTRORM_INTMEM +
623			      XSTORM_ASSERT_LIST_OFFSET(i) + 8);
624		row3 = REG_RD(bp, BAR_XSTRORM_INTMEM +
625			      XSTORM_ASSERT_LIST_OFFSET(i) + 12);
626
627		if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
628			BNX2X_ERR("XSTORM_ASSERT_INDEX 0x%x = 0x%08x"
629				  " 0x%08x 0x%08x 0x%08x\n",
630				  i, row3, row2, row1, row0);
631			rc++;
632		} else {
633			break;
634		}
635	}
636
637	/* TSTORM */
638	last_idx = REG_RD8(bp, BAR_TSTRORM_INTMEM +
639			   TSTORM_ASSERT_LIST_INDEX_OFFSET);
640	if (last_idx)
641		BNX2X_ERR("TSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
642
643	/* print the asserts */
644	for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
645
646		row0 = REG_RD(bp, BAR_TSTRORM_INTMEM +
647			      TSTORM_ASSERT_LIST_OFFSET(i));
648		row1 = REG_RD(bp, BAR_TSTRORM_INTMEM +
649			      TSTORM_ASSERT_LIST_OFFSET(i) + 4);
650		row2 = REG_RD(bp, BAR_TSTRORM_INTMEM +
651			      TSTORM_ASSERT_LIST_OFFSET(i) + 8);
652		row3 = REG_RD(bp, BAR_TSTRORM_INTMEM +
653			      TSTORM_ASSERT_LIST_OFFSET(i) + 12);
654
655		if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
656			BNX2X_ERR("TSTORM_ASSERT_INDEX 0x%x = 0x%08x"
657				  " 0x%08x 0x%08x 0x%08x\n",
658				  i, row3, row2, row1, row0);
659			rc++;
660		} else {
661			break;
662		}
663	}
664
665	/* CSTORM */
666	last_idx = REG_RD8(bp, BAR_CSTRORM_INTMEM +
667			   CSTORM_ASSERT_LIST_INDEX_OFFSET);
668	if (last_idx)
669		BNX2X_ERR("CSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
670
671	/* print the asserts */
672	for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
673
674		row0 = REG_RD(bp, BAR_CSTRORM_INTMEM +
675			      CSTORM_ASSERT_LIST_OFFSET(i));
676		row1 = REG_RD(bp, BAR_CSTRORM_INTMEM +
677			      CSTORM_ASSERT_LIST_OFFSET(i) + 4);
678		row2 = REG_RD(bp, BAR_CSTRORM_INTMEM +
679			      CSTORM_ASSERT_LIST_OFFSET(i) + 8);
680		row3 = REG_RD(bp, BAR_CSTRORM_INTMEM +
681			      CSTORM_ASSERT_LIST_OFFSET(i) + 12);
682
683		if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
684			BNX2X_ERR("CSTORM_ASSERT_INDEX 0x%x = 0x%08x"
685				  " 0x%08x 0x%08x 0x%08x\n",
686				  i, row3, row2, row1, row0);
687			rc++;
688		} else {
689			break;
690		}
691	}
692
693	/* USTORM */
694	last_idx = REG_RD8(bp, BAR_USTRORM_INTMEM +
695			   USTORM_ASSERT_LIST_INDEX_OFFSET);
696	if (last_idx)
697		BNX2X_ERR("USTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
698
699	/* print the asserts */
700	for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
701
702		row0 = REG_RD(bp, BAR_USTRORM_INTMEM +
703			      USTORM_ASSERT_LIST_OFFSET(i));
704		row1 = REG_RD(bp, BAR_USTRORM_INTMEM +
705			      USTORM_ASSERT_LIST_OFFSET(i) + 4);
706		row2 = REG_RD(bp, BAR_USTRORM_INTMEM +
707			      USTORM_ASSERT_LIST_OFFSET(i) + 8);
708		row3 = REG_RD(bp, BAR_USTRORM_INTMEM +
709			      USTORM_ASSERT_LIST_OFFSET(i) + 12);
710
711		if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
712			BNX2X_ERR("USTORM_ASSERT_INDEX 0x%x = 0x%08x"
713				  " 0x%08x 0x%08x 0x%08x\n",
714				  i, row3, row2, row1, row0);
715			rc++;
716		} else {
717			break;
718		}
719	}
720
721	return rc;
722}
723
724void bnx2x_fw_dump_lvl(struct bnx2x *bp, const char *lvl)
725{
726	u32 addr, val;
727	u32 mark, offset;
728	__be32 data[9];
729	int word;
730	u32 trace_shmem_base;
731	if (BP_NOMCP(bp)) {
732		BNX2X_ERR("NO MCP - can not dump\n");
733		return;
734	}
735	netdev_printk(lvl, bp->dev, "bc %d.%d.%d\n",
736		(bp->common.bc_ver & 0xff0000) >> 16,
737		(bp->common.bc_ver & 0xff00) >> 8,
738		(bp->common.bc_ver & 0xff));
739
740	val = REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER);
741	if (val == REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER))
742		printk("%s" "MCP PC at 0x%x\n", lvl, val);
743
744	if (BP_PATH(bp) == 0)
745		trace_shmem_base = bp->common.shmem_base;
746	else
747		trace_shmem_base = SHMEM2_RD(bp, other_shmem_base_addr);
748	addr = trace_shmem_base - 0x0800 + 4;
749	mark = REG_RD(bp, addr);
750	mark = (CHIP_IS_E1x(bp) ? MCP_REG_MCPR_SCRATCH : MCP_A_REG_MCPR_SCRATCH)
751			+ ((mark + 0x3) & ~0x3) - 0x08000000;
752	printk("%s" "begin fw dump (mark 0x%x)\n", lvl, mark);
753
754	printk("%s", lvl);
755	for (offset = mark; offset <= trace_shmem_base; offset += 0x8*4) {
756		for (word = 0; word < 8; word++)
757			data[word] = htonl(REG_RD(bp, offset + 4*word));
758		data[8] = 0x0;
759		pr_cont("%s", (char *)data);
760	}
761	for (offset = addr + 4; offset <= mark; offset += 0x8*4) {
762		for (word = 0; word < 8; word++)
763			data[word] = htonl(REG_RD(bp, offset + 4*word));
764		data[8] = 0x0;
765		pr_cont("%s", (char *)data);
766	}
767	printk("%s" "end of fw dump\n", lvl);
768}
769
770static inline void bnx2x_fw_dump(struct bnx2x *bp)
771{
772	bnx2x_fw_dump_lvl(bp, KERN_ERR);
773}
774
775void bnx2x_panic_dump(struct bnx2x *bp)
776{
777	int i;
778	u16 j;
779	struct hc_sp_status_block_data sp_sb_data;
780	int func = BP_FUNC(bp);
781#ifdef BNX2X_STOP_ON_ERROR
782	u16 start = 0, end = 0;
783	u8 cos;
784#endif
785
786	bp->stats_state = STATS_STATE_DISABLED;
787	bp->eth_stats.unrecoverable_error++;
788	DP(BNX2X_MSG_STATS, "stats_state - DISABLED\n");
789
790	BNX2X_ERR("begin crash dump -----------------\n");
791
792	/* Indices */
793	/* Common */
794	BNX2X_ERR("def_idx(0x%x)  def_att_idx(0x%x)  attn_state(0x%x)"
795		  "  spq_prod_idx(0x%x) next_stats_cnt(0x%x)\n",
796		  bp->def_idx, bp->def_att_idx, bp->attn_state,
797		  bp->spq_prod_idx, bp->stats_counter);
798	BNX2X_ERR("DSB: attn bits(0x%x)  ack(0x%x)  id(0x%x)  idx(0x%x)\n",
799		  bp->def_status_blk->atten_status_block.attn_bits,
800		  bp->def_status_blk->atten_status_block.attn_bits_ack,
801		  bp->def_status_blk->atten_status_block.status_block_id,
802		  bp->def_status_blk->atten_status_block.attn_bits_index);
803	BNX2X_ERR("     def (");
804	for (i = 0; i < HC_SP_SB_MAX_INDICES; i++)
805		pr_cont("0x%x%s",
806			bp->def_status_blk->sp_sb.index_values[i],
807			(i == HC_SP_SB_MAX_INDICES - 1) ? ")  " : " ");
808
809	for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++)
810		*((u32 *)&sp_sb_data + i) = REG_RD(bp, BAR_CSTRORM_INTMEM +
811			CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) +
812			i*sizeof(u32));
813
814	pr_cont("igu_sb_id(0x%x)  igu_seg_id(0x%x) pf_id(0x%x)  vnic_id(0x%x)  vf_id(0x%x)  vf_valid (0x%x) state(0x%x)\n",
815	       sp_sb_data.igu_sb_id,
816	       sp_sb_data.igu_seg_id,
817	       sp_sb_data.p_func.pf_id,
818	       sp_sb_data.p_func.vnic_id,
819	       sp_sb_data.p_func.vf_id,
820	       sp_sb_data.p_func.vf_valid,
821	       sp_sb_data.state);
822
823
824	for_each_eth_queue(bp, i) {
825		struct bnx2x_fastpath *fp = &bp->fp[i];
826		int loop;
827		struct hc_status_block_data_e2 sb_data_e2;
828		struct hc_status_block_data_e1x sb_data_e1x;
829		struct hc_status_block_sm  *hc_sm_p =
830			CHIP_IS_E1x(bp) ?
831			sb_data_e1x.common.state_machine :
832			sb_data_e2.common.state_machine;
833		struct hc_index_data *hc_index_p =
834			CHIP_IS_E1x(bp) ?
835			sb_data_e1x.index_data :
836			sb_data_e2.index_data;
837		u8 data_size, cos;
838		u32 *sb_data_p;
839		struct bnx2x_fp_txdata txdata;
840
841		/* Rx */
842		BNX2X_ERR("fp%d: rx_bd_prod(0x%x)  rx_bd_cons(0x%x)"
843			  "  rx_comp_prod(0x%x)"
844			  "  rx_comp_cons(0x%x)  *rx_cons_sb(0x%x)\n",
845			  i, fp->rx_bd_prod, fp->rx_bd_cons,
846			  fp->rx_comp_prod,
847			  fp->rx_comp_cons, le16_to_cpu(*fp->rx_cons_sb));
848		BNX2X_ERR("     rx_sge_prod(0x%x)  last_max_sge(0x%x)"
849			  "  fp_hc_idx(0x%x)\n",
850			  fp->rx_sge_prod, fp->last_max_sge,
851			  le16_to_cpu(fp->fp_hc_idx));
852
853		/* Tx */
854		for_each_cos_in_tx_queue(fp, cos)
855		{
856			txdata = fp->txdata[cos];
857			BNX2X_ERR("fp%d: tx_pkt_prod(0x%x)  tx_pkt_cons(0x%x)"
858				  "  tx_bd_prod(0x%x)  tx_bd_cons(0x%x)"
859				  "  *tx_cons_sb(0x%x)\n",
860				  i, txdata.tx_pkt_prod,
861				  txdata.tx_pkt_cons, txdata.tx_bd_prod,
862				  txdata.tx_bd_cons,
863				  le16_to_cpu(*txdata.tx_cons_sb));
864		}
865
866		loop = CHIP_IS_E1x(bp) ?
867			HC_SB_MAX_INDICES_E1X : HC_SB_MAX_INDICES_E2;
868
869		/* host sb data */
870
871#ifdef BCM_CNIC
872		if (IS_FCOE_FP(fp))
873			continue;
874#endif
875		BNX2X_ERR("     run indexes (");
876		for (j = 0; j < HC_SB_MAX_SM; j++)
877			pr_cont("0x%x%s",
878			       fp->sb_running_index[j],
879			       (j == HC_SB_MAX_SM - 1) ? ")" : " ");
880
881		BNX2X_ERR("     indexes (");
882		for (j = 0; j < loop; j++)
883			pr_cont("0x%x%s",
884			       fp->sb_index_values[j],
885			       (j == loop - 1) ? ")" : " ");
886		/* fw sb data */
887		data_size = CHIP_IS_E1x(bp) ?
888			sizeof(struct hc_status_block_data_e1x) :
889			sizeof(struct hc_status_block_data_e2);
890		data_size /= sizeof(u32);
891		sb_data_p = CHIP_IS_E1x(bp) ?
892			(u32 *)&sb_data_e1x :
893			(u32 *)&sb_data_e2;
894		/* copy sb data in here */
895		for (j = 0; j < data_size; j++)
896			*(sb_data_p + j) = REG_RD(bp, BAR_CSTRORM_INTMEM +
897				CSTORM_STATUS_BLOCK_DATA_OFFSET(fp->fw_sb_id) +
898				j * sizeof(u32));
899
900		if (!CHIP_IS_E1x(bp)) {
901			pr_cont("pf_id(0x%x)  vf_id(0x%x)  vf_valid(0x%x) "
902				"vnic_id(0x%x)  same_igu_sb_1b(0x%x) "
903				"state(0x%x)\n",
904				sb_data_e2.common.p_func.pf_id,
905				sb_data_e2.common.p_func.vf_id,
906				sb_data_e2.common.p_func.vf_valid,
907				sb_data_e2.common.p_func.vnic_id,
908				sb_data_e2.common.same_igu_sb_1b,
909				sb_data_e2.common.state);
910		} else {
911			pr_cont("pf_id(0x%x)  vf_id(0x%x)  vf_valid(0x%x) "
912				"vnic_id(0x%x)  same_igu_sb_1b(0x%x) "
913				"state(0x%x)\n",
914				sb_data_e1x.common.p_func.pf_id,
915				sb_data_e1x.common.p_func.vf_id,
916				sb_data_e1x.common.p_func.vf_valid,
917				sb_data_e1x.common.p_func.vnic_id,
918				sb_data_e1x.common.same_igu_sb_1b,
919				sb_data_e1x.common.state);
920		}
921
922		/* SB_SMs data */
923		for (j = 0; j < HC_SB_MAX_SM; j++) {
924			pr_cont("SM[%d] __flags (0x%x) "
925			       "igu_sb_id (0x%x)  igu_seg_id(0x%x) "
926			       "time_to_expire (0x%x) "
927			       "timer_value(0x%x)\n", j,
928			       hc_sm_p[j].__flags,
929			       hc_sm_p[j].igu_sb_id,
930			       hc_sm_p[j].igu_seg_id,
931			       hc_sm_p[j].time_to_expire,
932			       hc_sm_p[j].timer_value);
933		}
934
935		/* Indecies data */
936		for (j = 0; j < loop; j++) {
937			pr_cont("INDEX[%d] flags (0x%x) "
938					 "timeout (0x%x)\n", j,
939			       hc_index_p[j].flags,
940			       hc_index_p[j].timeout);
941		}
942	}
943
944#ifdef BNX2X_STOP_ON_ERROR
945	/* Rings */
946	/* Rx */
947	for_each_rx_queue(bp, i) {
948		struct bnx2x_fastpath *fp = &bp->fp[i];
949
950		start = RX_BD(le16_to_cpu(*fp->rx_cons_sb) - 10);
951		end = RX_BD(le16_to_cpu(*fp->rx_cons_sb) + 503);
952		for (j = start; j != end; j = RX_BD(j + 1)) {
953			u32 *rx_bd = (u32 *)&fp->rx_desc_ring[j];
954			struct sw_rx_bd *sw_bd = &fp->rx_buf_ring[j];
955
956			BNX2X_ERR("fp%d: rx_bd[%x]=[%x:%x]  sw_bd=[%p]\n",
957				  i, j, rx_bd[1], rx_bd[0], sw_bd->data);
958		}
959
960		start = RX_SGE(fp->rx_sge_prod);
961		end = RX_SGE(fp->last_max_sge);
962		for (j = start; j != end; j = RX_SGE(j + 1)) {
963			u32 *rx_sge = (u32 *)&fp->rx_sge_ring[j];
964			struct sw_rx_page *sw_page = &fp->rx_page_ring[j];
965
966			BNX2X_ERR("fp%d: rx_sge[%x]=[%x:%x]  sw_page=[%p]\n",
967				  i, j, rx_sge[1], rx_sge[0], sw_page->page);
968		}
969
970		start = RCQ_BD(fp->rx_comp_cons - 10);
971		end = RCQ_BD(fp->rx_comp_cons + 503);
972		for (j = start; j != end; j = RCQ_BD(j + 1)) {
973			u32 *cqe = (u32 *)&fp->rx_comp_ring[j];
974
975			BNX2X_ERR("fp%d: cqe[%x]=[%x:%x:%x:%x]\n",
976				  i, j, cqe[0], cqe[1], cqe[2], cqe[3]);
977		}
978	}
979
980	/* Tx */
981	for_each_tx_queue(bp, i) {
982		struct bnx2x_fastpath *fp = &bp->fp[i];
983		for_each_cos_in_tx_queue(fp, cos) {
984			struct bnx2x_fp_txdata *txdata = &fp->txdata[cos];
985
986			start = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) - 10);
987			end = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) + 245);
988			for (j = start; j != end; j = TX_BD(j + 1)) {
989				struct sw_tx_bd *sw_bd =
990					&txdata->tx_buf_ring[j];
991
992				BNX2X_ERR("fp%d: txdata %d, "
993					  "packet[%x]=[%p,%x]\n",
994					  i, cos, j, sw_bd->skb,
995					  sw_bd->first_bd);
996			}
997
998			start = TX_BD(txdata->tx_bd_cons - 10);
999			end = TX_BD(txdata->tx_bd_cons + 254);
1000			for (j = start; j != end; j = TX_BD(j + 1)) {
1001				u32 *tx_bd = (u32 *)&txdata->tx_desc_ring[j];
1002
1003				BNX2X_ERR("fp%d: txdata %d, tx_bd[%x]="
1004					  "[%x:%x:%x:%x]\n",
1005					  i, cos, j, tx_bd[0], tx_bd[1],
1006					  tx_bd[2], tx_bd[3]);
1007			}
1008		}
1009	}
1010#endif
1011	bnx2x_fw_dump(bp);
1012	bnx2x_mc_assert(bp);
1013	BNX2X_ERR("end crash dump -----------------\n");
1014}
1015
1016/*
1017 * FLR Support for E2
1018 *
1019 * bnx2x_pf_flr_clnup() is called during nic_load in the per function HW
1020 * initialization.
1021 */
1022#define FLR_WAIT_USEC		10000	/* 10 miliseconds */
1023#define FLR_WAIT_INTERVAL	50	/* usec */
1024#define	FLR_POLL_CNT		(FLR_WAIT_USEC/FLR_WAIT_INTERVAL) /* 200 */
1025
1026struct pbf_pN_buf_regs {
1027	int pN;
1028	u32 init_crd;
1029	u32 crd;
1030	u32 crd_freed;
1031};
1032
1033struct pbf_pN_cmd_regs {
1034	int pN;
1035	u32 lines_occup;
1036	u32 lines_freed;
1037};
1038
1039static void bnx2x_pbf_pN_buf_flushed(struct bnx2x *bp,
1040				     struct pbf_pN_buf_regs *regs,
1041				     u32 poll_count)
1042{
1043	u32 init_crd, crd, crd_start, crd_freed, crd_freed_start;
1044	u32 cur_cnt = poll_count;
1045
1046	crd_freed = crd_freed_start = REG_RD(bp, regs->crd_freed);
1047	crd = crd_start = REG_RD(bp, regs->crd);
1048	init_crd = REG_RD(bp, regs->init_crd);
1049
1050	DP(BNX2X_MSG_SP, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd);
1051	DP(BNX2X_MSG_SP, "CREDIT[%d]      : s:%x\n", regs->pN, crd);
1052	DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed);
1053
1054	while ((crd != init_crd) && ((u32)SUB_S32(crd_freed, crd_freed_start) <
1055	       (init_crd - crd_start))) {
1056		if (cur_cnt--) {
1057			udelay(FLR_WAIT_INTERVAL);
1058			crd = REG_RD(bp, regs->crd);
1059			crd_freed = REG_RD(bp, regs->crd_freed);
1060		} else {
1061			DP(BNX2X_MSG_SP, "PBF tx buffer[%d] timed out\n",
1062			   regs->pN);
1063			DP(BNX2X_MSG_SP, "CREDIT[%d]      : c:%x\n",
1064			   regs->pN, crd);
1065			DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: c:%x\n",
1066			   regs->pN, crd_freed);
1067			break;
1068		}
1069	}
1070	DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF tx buffer[%d]\n",
1071	   poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
1072}
1073
1074static void bnx2x_pbf_pN_cmd_flushed(struct bnx2x *bp,
1075				     struct pbf_pN_cmd_regs *regs,
1076				     u32 poll_count)
1077{
1078	u32 occup, to_free, freed, freed_start;
1079	u32 cur_cnt = poll_count;
1080
1081	occup = to_free = REG_RD(bp, regs->lines_occup);
1082	freed = freed_start = REG_RD(bp, regs->lines_freed);
1083
1084	DP(BNX2X_MSG_SP, "OCCUPANCY[%d]   : s:%x\n", regs->pN, occup);
1085	DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n", regs->pN, freed);
1086
1087	while (occup && ((u32)SUB_S32(freed, freed_start) < to_free)) {
1088		if (cur_cnt--) {
1089			udelay(FLR_WAIT_INTERVAL);
1090			occup = REG_RD(bp, regs->lines_occup);
1091			freed = REG_RD(bp, regs->lines_freed);
1092		} else {
1093			DP(BNX2X_MSG_SP, "PBF cmd queue[%d] timed out\n",
1094			   regs->pN);
1095			DP(BNX2X_MSG_SP, "OCCUPANCY[%d]   : s:%x\n",
1096			   regs->pN, occup);
1097			DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n",
1098			   regs->pN, freed);
1099			break;
1100		}
1101	}
1102	DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF cmd queue[%d]\n",
1103	   poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
1104}
1105
1106static inline u32 bnx2x_flr_clnup_reg_poll(struct bnx2x *bp, u32 reg,
1107				     u32 expected, u32 poll_count)
1108{
1109	u32 cur_cnt = poll_count;
1110	u32 val;
1111
1112	while ((val = REG_RD(bp, reg)) != expected && cur_cnt--)
1113		udelay(FLR_WAIT_INTERVAL);
1114
1115	return val;
1116}
1117
1118static inline int bnx2x_flr_clnup_poll_hw_counter(struct bnx2x *bp, u32 reg,
1119						  char *msg, u32 poll_cnt)
1120{
1121	u32 val = bnx2x_flr_clnup_reg_poll(bp, reg, 0, poll_cnt);
1122	if (val != 0) {
1123		BNX2X_ERR("%s usage count=%d\n", msg, val);
1124		return 1;
1125	}
1126	return 0;
1127}
1128
1129static u32 bnx2x_flr_clnup_poll_count(struct bnx2x *bp)
1130{
1131	/* adjust polling timeout */
1132	if (CHIP_REV_IS_EMUL(bp))
1133		return FLR_POLL_CNT * 2000;
1134
1135	if (CHIP_REV_IS_FPGA(bp))
1136		return FLR_POLL_CNT * 120;
1137
1138	return FLR_POLL_CNT;
1139}
1140
1141static void bnx2x_tx_hw_flushed(struct bnx2x *bp, u32 poll_count)
1142{
1143	struct pbf_pN_cmd_regs cmd_regs[] = {
1144		{0, (CHIP_IS_E3B0(bp)) ?
1145			PBF_REG_TQ_OCCUPANCY_Q0 :
1146			PBF_REG_P0_TQ_OCCUPANCY,
1147		    (CHIP_IS_E3B0(bp)) ?
1148			PBF_REG_TQ_LINES_FREED_CNT_Q0 :
1149			PBF_REG_P0_TQ_LINES_FREED_CNT},
1150		{1, (CHIP_IS_E3B0(bp)) ?
1151			PBF_REG_TQ_OCCUPANCY_Q1 :
1152			PBF_REG_P1_TQ_OCCUPANCY,
1153		    (CHIP_IS_E3B0(bp)) ?
1154			PBF_REG_TQ_LINES_FREED_CNT_Q1 :
1155			PBF_REG_P1_TQ_LINES_FREED_CNT},
1156		{4, (CHIP_IS_E3B0(bp)) ?
1157			PBF_REG_TQ_OCCUPANCY_LB_Q :
1158			PBF_REG_P4_TQ_OCCUPANCY,
1159		    (CHIP_IS_E3B0(bp)) ?
1160			PBF_REG_TQ_LINES_FREED_CNT_LB_Q :
1161			PBF_REG_P4_TQ_LINES_FREED_CNT}
1162	};
1163
1164	struct pbf_pN_buf_regs buf_regs[] = {
1165		{0, (CHIP_IS_E3B0(bp)) ?
1166			PBF_REG_INIT_CRD_Q0 :
1167			PBF_REG_P0_INIT_CRD ,
1168		    (CHIP_IS_E3B0(bp)) ?
1169			PBF_REG_CREDIT_Q0 :
1170			PBF_REG_P0_CREDIT,
1171		    (CHIP_IS_E3B0(bp)) ?
1172			PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 :
1173			PBF_REG_P0_INTERNAL_CRD_FREED_CNT},
1174		{1, (CHIP_IS_E3B0(bp)) ?
1175			PBF_REG_INIT_CRD_Q1 :
1176			PBF_REG_P1_INIT_CRD,
1177		    (CHIP_IS_E3B0(bp)) ?
1178			PBF_REG_CREDIT_Q1 :
1179			PBF_REG_P1_CREDIT,
1180		    (CHIP_IS_E3B0(bp)) ?
1181			PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 :
1182			PBF_REG_P1_INTERNAL_CRD_FREED_CNT},
1183		{4, (CHIP_IS_E3B0(bp)) ?
1184			PBF_REG_INIT_CRD_LB_Q :
1185			PBF_REG_P4_INIT_CRD,
1186		    (CHIP_IS_E3B0(bp)) ?
1187			PBF_REG_CREDIT_LB_Q :
1188			PBF_REG_P4_CREDIT,
1189		    (CHIP_IS_E3B0(bp)) ?
1190			PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q :
1191			PBF_REG_P4_INTERNAL_CRD_FREED_CNT},
1192	};
1193
1194	int i;
1195
1196	/* Verify the command queues are flushed P0, P1, P4 */
1197	for (i = 0; i < ARRAY_SIZE(cmd_regs); i++)
1198		bnx2x_pbf_pN_cmd_flushed(bp, &cmd_regs[i], poll_count);
1199
1200
1201	/* Verify the transmission buffers are flushed P0, P1, P4 */
1202	for (i = 0; i < ARRAY_SIZE(buf_regs); i++)
1203		bnx2x_pbf_pN_buf_flushed(bp, &buf_regs[i], poll_count);
1204}
1205
1206#define OP_GEN_PARAM(param) \
1207	(((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM)
1208
1209#define OP_GEN_TYPE(type) \
1210	(((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE)
1211
1212#define OP_GEN_AGG_VECT(index) \
1213	(((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX)
1214
1215
1216static inline int bnx2x_send_final_clnup(struct bnx2x *bp, u8 clnup_func,
1217					 u32 poll_cnt)
1218{
1219	struct sdm_op_gen op_gen = {0};
1220
1221	u32 comp_addr = BAR_CSTRORM_INTMEM +
1222			CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func);
1223	int ret = 0;
1224
1225	if (REG_RD(bp, comp_addr)) {
1226		BNX2X_ERR("Cleanup complete was not 0 before sending\n");
1227		return 1;
1228	}
1229
1230	op_gen.command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX);
1231	op_gen.command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE);
1232	op_gen.command |= OP_GEN_AGG_VECT(clnup_func);
1233	op_gen.command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT;
1234
1235	DP(BNX2X_MSG_SP, "sending FW Final cleanup\n");
1236	REG_WR(bp, XSDM_REG_OPERATION_GEN, op_gen.command);
1237
1238	if (bnx2x_flr_clnup_reg_poll(bp, comp_addr, 1, poll_cnt) != 1) {
1239		BNX2X_ERR("FW final cleanup did not succeed\n");
1240		ret = 1;
1241	}
1242	/* Zero completion for nxt FLR */
1243	REG_WR(bp, comp_addr, 0);
1244
1245	return ret;
1246}
1247
1248static inline u8 bnx2x_is_pcie_pending(struct pci_dev *dev)
1249{
1250	int pos;
1251	u16 status;
1252
1253	pos = pci_pcie_cap(dev);
1254	if (!pos)
1255		return false;
1256
1257	pci_read_config_word(dev, pos + PCI_EXP_DEVSTA, &status);
1258	return status & PCI_EXP_DEVSTA_TRPND;
1259}
1260
1261/* PF FLR specific routines
1262*/
1263static int bnx2x_poll_hw_usage_counters(struct bnx2x *bp, u32 poll_cnt)
1264{
1265
1266	/* wait for CFC PF usage-counter to zero (includes all the VFs) */
1267	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1268			CFC_REG_NUM_LCIDS_INSIDE_PF,
1269			"CFC PF usage counter timed out",
1270			poll_cnt))
1271		return 1;
1272
1273
1274	/* Wait for DQ PF usage-counter to zero (until DQ cleanup) */
1275	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1276			DORQ_REG_PF_USAGE_CNT,
1277			"DQ PF usage counter timed out",
1278			poll_cnt))
1279		return 1;
1280
1281	/* Wait for QM PF usage-counter to zero (until DQ cleanup) */
1282	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1283			QM_REG_PF_USG_CNT_0 + 4*BP_FUNC(bp),
1284			"QM PF usage counter timed out",
1285			poll_cnt))
1286		return 1;
1287
1288	/* Wait for Timer PF usage-counters to zero (until DQ cleanup) */
1289	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1290			TM_REG_LIN0_VNIC_UC + 4*BP_PORT(bp),
1291			"Timers VNIC usage counter timed out",
1292			poll_cnt))
1293		return 1;
1294	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1295			TM_REG_LIN0_NUM_SCANS + 4*BP_PORT(bp),
1296			"Timers NUM_SCANS usage counter timed out",
1297			poll_cnt))
1298		return 1;
1299
1300	/* Wait DMAE PF usage counter to zero */
1301	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1302			dmae_reg_go_c[INIT_DMAE_C(bp)],
1303			"DMAE dommand register timed out",
1304			poll_cnt))
1305		return 1;
1306
1307	return 0;
1308}
1309
1310static void bnx2x_hw_enable_status(struct bnx2x *bp)
1311{
1312	u32 val;
1313
1314	val = REG_RD(bp, CFC_REG_WEAK_ENABLE_PF);
1315	DP(BNX2X_MSG_SP, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val);
1316
1317	val = REG_RD(bp, PBF_REG_DISABLE_PF);
1318	DP(BNX2X_MSG_SP, "PBF_REG_DISABLE_PF is 0x%x\n", val);
1319
1320	val = REG_RD(bp, IGU_REG_PCI_PF_MSI_EN);
1321	DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val);
1322
1323	val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_EN);
1324	DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val);
1325
1326	val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_FUNC_MASK);
1327	DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val);
1328
1329	val = REG_RD(bp, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR);
1330	DP(BNX2X_MSG_SP, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val);
1331
1332	val = REG_RD(bp, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR);
1333	DP(BNX2X_MSG_SP, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val);
1334
1335	val = REG_RD(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
1336	DP(BNX2X_MSG_SP, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n",
1337	   val);
1338}
1339
1340static int bnx2x_pf_flr_clnup(struct bnx2x *bp)
1341{
1342	u32 poll_cnt = bnx2x_flr_clnup_poll_count(bp);
1343
1344	DP(BNX2X_MSG_SP, "Cleanup after FLR PF[%d]\n", BP_ABS_FUNC(bp));
1345
1346	/* Re-enable PF target read access */
1347	REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
1348
1349	/* Poll HW usage counters */
1350	DP(BNX2X_MSG_SP, "Polling usage counters\n");
1351	if (bnx2x_poll_hw_usage_counters(bp, poll_cnt))
1352		return -EBUSY;
1353
1354	/* Zero the igu 'trailing edge' and 'leading edge' */
1355
1356	/* Send the FW cleanup command */
1357	if (bnx2x_send_final_clnup(bp, (u8)BP_FUNC(bp), poll_cnt))
1358		return -EBUSY;
1359
1360	/* ATC cleanup */
1361
1362	/* Verify TX hw is flushed */
1363	bnx2x_tx_hw_flushed(bp, poll_cnt);
1364
1365	/* Wait 100ms (not adjusted according to platform) */
1366	msleep(100);
1367
1368	/* Verify no pending pci transactions */
1369	if (bnx2x_is_pcie_pending(bp->pdev))
1370		BNX2X_ERR("PCIE Transactions still pending\n");
1371
1372	/* Debug */
1373	bnx2x_hw_enable_status(bp);
1374
1375	/*
1376	 * Master enable - Due to WB DMAE writes performed before this
1377	 * register is re-initialized as part of the regular function init
1378	 */
1379	REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
1380
1381	return 0;
1382}
1383
1384static void bnx2x_hc_int_enable(struct bnx2x *bp)
1385{
1386	int port = BP_PORT(bp);
1387	u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
1388	u32 val = REG_RD(bp, addr);
1389	int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
1390	int msi = (bp->flags & USING_MSI_FLAG) ? 1 : 0;
1391
1392	if (msix) {
1393		val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1394			 HC_CONFIG_0_REG_INT_LINE_EN_0);
1395		val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1396			HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1397	} else if (msi) {
1398		val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0;
1399		val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1400			HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1401			HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1402	} else {
1403		val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1404			HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1405			HC_CONFIG_0_REG_INT_LINE_EN_0 |
1406			HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1407
1408		if (!CHIP_IS_E1(bp)) {
1409			DP(NETIF_MSG_INTR, "write %x to HC %d (addr 0x%x)\n",
1410			   val, port, addr);
1411
1412			REG_WR(bp, addr, val);
1413
1414			val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0;
1415		}
1416	}
1417
1418	if (CHIP_IS_E1(bp))
1419		REG_WR(bp, HC_REG_INT_MASK + port*4, 0x1FFFF);
1420
1421	DP(NETIF_MSG_INTR, "write %x to HC %d (addr 0x%x)  mode %s\n",
1422	   val, port, addr, (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1423
1424	REG_WR(bp, addr, val);
1425	/*
1426	 * Ensure that HC_CONFIG is written before leading/trailing edge config
1427	 */
1428	mmiowb();
1429	barrier();
1430
1431	if (!CHIP_IS_E1(bp)) {
1432		/* init leading/trailing edge */
1433		if (IS_MF(bp)) {
1434			val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1435			if (bp->port.pmf)
1436				/* enable nig and gpio3 attention */
1437				val |= 0x1100;
1438		} else
1439			val = 0xffff;
1440
1441		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
1442		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
1443	}
1444
1445	/* Make sure that interrupts are indeed enabled from here on */
1446	mmiowb();
1447}
1448
1449static void bnx2x_igu_int_enable(struct bnx2x *bp)
1450{
1451	u32 val;
1452	int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
1453	int msi = (bp->flags & USING_MSI_FLAG) ? 1 : 0;
1454
1455	val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
1456
1457	if (msix) {
1458		val &= ~(IGU_PF_CONF_INT_LINE_EN |
1459			 IGU_PF_CONF_SINGLE_ISR_EN);
1460		val |= (IGU_PF_CONF_FUNC_EN |
1461			IGU_PF_CONF_MSI_MSIX_EN |
1462			IGU_PF_CONF_ATTN_BIT_EN);
1463	} else if (msi) {
1464		val &= ~IGU_PF_CONF_INT_LINE_EN;
1465		val |= (IGU_PF_CONF_FUNC_EN |
1466			IGU_PF_CONF_MSI_MSIX_EN |
1467			IGU_PF_CONF_ATTN_BIT_EN |
1468			IGU_PF_CONF_SINGLE_ISR_EN);
1469	} else {
1470		val &= ~IGU_PF_CONF_MSI_MSIX_EN;
1471		val |= (IGU_PF_CONF_FUNC_EN |
1472			IGU_PF_CONF_INT_LINE_EN |
1473			IGU_PF_CONF_ATTN_BIT_EN |
1474			IGU_PF_CONF_SINGLE_ISR_EN);
1475	}
1476
1477	DP(NETIF_MSG_INTR, "write 0x%x to IGU  mode %s\n",
1478	   val, (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1479
1480	REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1481
1482	barrier();
1483
1484	/* init leading/trailing edge */
1485	if (IS_MF(bp)) {
1486		val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1487		if (bp->port.pmf)
1488			/* enable nig and gpio3 attention */
1489			val |= 0x1100;
1490	} else
1491		val = 0xffff;
1492
1493	REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
1494	REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
1495
1496	/* Make sure that interrupts are indeed enabled from here on */
1497	mmiowb();
1498}
1499
1500void bnx2x_int_enable(struct bnx2x *bp)
1501{
1502	if (bp->common.int_block == INT_BLOCK_HC)
1503		bnx2x_hc_int_enable(bp);
1504	else
1505		bnx2x_igu_int_enable(bp);
1506}
1507
1508static void bnx2x_hc_int_disable(struct bnx2x *bp)
1509{
1510	int port = BP_PORT(bp);
1511	u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
1512	u32 val = REG_RD(bp, addr);
1513
1514	/*
1515	 * in E1 we must use only PCI configuration space to disable
1516	 * MSI/MSIX capablility
1517	 * It's forbitten to disable IGU_PF_CONF_MSI_MSIX_EN in HC block
1518	 */
1519	if (CHIP_IS_E1(bp)) {
1520		/*  Since IGU_PF_CONF_MSI_MSIX_EN still always on
1521		 *  Use mask register to prevent from HC sending interrupts
1522		 *  after we exit the function
1523		 */
1524		REG_WR(bp, HC_REG_INT_MASK + port*4, 0);
1525
1526		val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1527			 HC_CONFIG_0_REG_INT_LINE_EN_0 |
1528			 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1529	} else
1530		val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1531			 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1532			 HC_CONFIG_0_REG_INT_LINE_EN_0 |
1533			 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1534
1535	DP(NETIF_MSG_INTR, "write %x to HC %d (addr 0x%x)\n",
1536	   val, port, addr);
1537
1538	/* flush all outstanding writes */
1539	mmiowb();
1540
1541	REG_WR(bp, addr, val);
1542	if (REG_RD(bp, addr) != val)
1543		BNX2X_ERR("BUG! proper val not read from IGU!\n");
1544}
1545
1546static void bnx2x_igu_int_disable(struct bnx2x *bp)
1547{
1548	u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
1549
1550	val &= ~(IGU_PF_CONF_MSI_MSIX_EN |
1551		 IGU_PF_CONF_INT_LINE_EN |
1552		 IGU_PF_CONF_ATTN_BIT_EN);
1553
1554	DP(NETIF_MSG_INTR, "write %x to IGU\n", val);
1555
1556	/* flush all outstanding writes */
1557	mmiowb();
1558
1559	REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1560	if (REG_RD(bp, IGU_REG_PF_CONFIGURATION) != val)
1561		BNX2X_ERR("BUG! proper val not read from IGU!\n");
1562}
1563
1564void bnx2x_int_disable(struct bnx2x *bp)
1565{
1566	if (bp->common.int_block == INT_BLOCK_HC)
1567		bnx2x_hc_int_disable(bp);
1568	else
1569		bnx2x_igu_int_disable(bp);
1570}
1571
1572void bnx2x_int_disable_sync(struct bnx2x *bp, int disable_hw)
1573{
1574	int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
1575	int i, offset;
1576
1577	if (disable_hw)
1578		/* prevent the HW from sending interrupts */
1579		bnx2x_int_disable(bp);
1580
1581	/* make sure all ISRs are done */
1582	if (msix) {
1583		synchronize_irq(bp->msix_table[0].vector);
1584		offset = 1;
1585#ifdef BCM_CNIC
1586		offset++;
1587#endif
1588		for_each_eth_queue(bp, i)
1589			synchronize_irq(bp->msix_table[offset++].vector);
1590	} else
1591		synchronize_irq(bp->pdev->irq);
1592
1593	/* make sure sp_task is not running */
1594	cancel_delayed_work(&bp->sp_task);
1595	cancel_delayed_work(&bp->period_task);
1596	flush_workqueue(bnx2x_wq);
1597}
1598
1599/* fast path */
1600
1601/*
1602 * General service functions
1603 */
1604
1605/* Return true if succeeded to acquire the lock */
1606static bool bnx2x_trylock_hw_lock(struct bnx2x *bp, u32 resource)
1607{
1608	u32 lock_status;
1609	u32 resource_bit = (1 << resource);
1610	int func = BP_FUNC(bp);
1611	u32 hw_lock_control_reg;
1612
1613	DP(NETIF_MSG_HW, "Trying to take a lock on resource %d\n", resource);
1614
1615	/* Validating that the resource is within range */
1616	if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1617		DP(NETIF_MSG_HW,
1618		   "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1619		   resource, HW_LOCK_MAX_RESOURCE_VALUE);
1620		return false;
1621	}
1622
1623	if (func <= 5)
1624		hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1625	else
1626		hw_lock_control_reg =
1627				(MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1628
1629	/* Try to acquire the lock */
1630	REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
1631	lock_status = REG_RD(bp, hw_lock_control_reg);
1632	if (lock_status & resource_bit)
1633		return true;
1634
1635	DP(NETIF_MSG_HW, "Failed to get a lock on resource %d\n", resource);
1636	return false;
1637}
1638
1639/**
1640 * bnx2x_get_leader_lock_resource - get the recovery leader resource id
1641 *
1642 * @bp:	driver handle
1643 *
1644 * Returns the recovery leader resource id according to the engine this function
1645 * belongs to. Currently only only 2 engines is supported.
1646 */
1647static inline int bnx2x_get_leader_lock_resource(struct bnx2x *bp)
1648{
1649	if (BP_PATH(bp))
1650		return HW_LOCK_RESOURCE_RECOVERY_LEADER_1;
1651	else
1652		return HW_LOCK_RESOURCE_RECOVERY_LEADER_0;
1653}
1654
1655/**
1656 * bnx2x_trylock_leader_lock- try to aquire a leader lock.
1657 *
1658 * @bp: driver handle
1659 *
1660 * Tries to aquire a leader lock for cuurent engine.
1661 */
1662static inline bool bnx2x_trylock_leader_lock(struct bnx2x *bp)
1663{
1664	return bnx2x_trylock_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
1665}
1666
1667#ifdef BCM_CNIC
1668static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err);
1669#endif
1670
1671void bnx2x_sp_event(struct bnx2x_fastpath *fp, union eth_rx_cqe *rr_cqe)
1672{
1673	struct bnx2x *bp = fp->bp;
1674	int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1675	int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1676	enum bnx2x_queue_cmd drv_cmd = BNX2X_Q_CMD_MAX;
1677	struct bnx2x_queue_sp_obj *q_obj = &fp->q_obj;
1678
1679	DP(BNX2X_MSG_SP,
1680	   "fp %d  cid %d  got ramrod #%d  state is %x  type is %d\n",
1681	   fp->index, cid, command, bp->state,
1682	   rr_cqe->ramrod_cqe.ramrod_type);
1683
1684	switch (command) {
1685	case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE):
1686		DP(BNX2X_MSG_SP, "got UPDATE ramrod. CID %d\n", cid);
1687		drv_cmd = BNX2X_Q_CMD_UPDATE;
1688		break;
1689
1690	case (RAMROD_CMD_ID_ETH_CLIENT_SETUP):
1691		DP(BNX2X_MSG_SP, "got MULTI[%d] setup ramrod\n", cid);
1692		drv_cmd = BNX2X_Q_CMD_SETUP;
1693		break;
1694
1695	case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP):
1696		DP(NETIF_MSG_IFUP, "got MULTI[%d] tx-only setup ramrod\n", cid);
1697		drv_cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
1698		break;
1699
1700	case (RAMROD_CMD_ID_ETH_HALT):
1701		DP(BNX2X_MSG_SP, "got MULTI[%d] halt ramrod\n", cid);
1702		drv_cmd = BNX2X_Q_CMD_HALT;
1703		break;
1704
1705	case (RAMROD_CMD_ID_ETH_TERMINATE):
1706		DP(BNX2X_MSG_SP, "got MULTI[%d] teminate ramrod\n", cid);
1707		drv_cmd = BNX2X_Q_CMD_TERMINATE;
1708		break;
1709
1710	case (RAMROD_CMD_ID_ETH_EMPTY):
1711		DP(BNX2X_MSG_SP, "got MULTI[%d] empty ramrod\n", cid);
1712		drv_cmd = BNX2X_Q_CMD_EMPTY;
1713		break;
1714
1715	default:
1716		BNX2X_ERR("unexpected MC reply (%d) on fp[%d]\n",
1717			  command, fp->index);
1718		return;
1719	}
1720
1721	if ((drv_cmd != BNX2X_Q_CMD_MAX) &&
1722	    q_obj->complete_cmd(bp, q_obj, drv_cmd))
1723		/* q_obj->complete_cmd() failure means that this was
1724		 * an unexpected completion.
1725		 *
1726		 * In this case we don't want to increase the bp->spq_left
1727		 * because apparently we haven't sent this command the first
1728		 * place.
1729		 */
1730#ifdef BNX2X_STOP_ON_ERROR
1731		bnx2x_panic();
1732#else
1733		return;
1734#endif
1735
1736	smp_mb__before_atomic_inc();
1737	atomic_inc(&bp->cq_spq_left);
1738	/* push the change in bp->spq_left and towards the memory */
1739	smp_mb__after_atomic_inc();
1740
1741	DP(BNX2X_MSG_SP, "bp->cq_spq_left %x\n", atomic_read(&bp->cq_spq_left));
1742
1743	return;
1744}
1745
1746void bnx2x_update_rx_prod(struct bnx2x *bp, struct bnx2x_fastpath *fp,
1747			u16 bd_prod, u16 rx_comp_prod, u16 rx_sge_prod)
1748{
1749	u32 start = BAR_USTRORM_INTMEM + fp->ustorm_rx_prods_offset;
1750
1751	bnx2x_update_rx_prod_gen(bp, fp, bd_prod, rx_comp_prod, rx_sge_prod,
1752				 start);
1753}
1754
1755irqreturn_t bnx2x_interrupt(int irq, void *dev_instance)
1756{
1757	struct bnx2x *bp = netdev_priv(dev_instance);
1758	u16 status = bnx2x_ack_int(bp);
1759	u16 mask;
1760	int i;
1761	u8 cos;
1762
1763	/* Return here if interrupt is shared and it's not for us */
1764	if (unlikely(status == 0)) {
1765		DP(NETIF_MSG_INTR, "not our interrupt!\n");
1766		return IRQ_NONE;
1767	}
1768	DP(NETIF_MSG_INTR, "got an interrupt  status 0x%x\n", status);
1769
1770#ifdef BNX2X_STOP_ON_ERROR
1771	if (unlikely(bp->panic))
1772		return IRQ_HANDLED;
1773#endif
1774
1775	for_each_eth_queue(bp, i) {
1776		struct bnx2x_fastpath *fp = &bp->fp[i];
1777
1778		mask = 0x2 << (fp->index + CNIC_PRESENT);
1779		if (status & mask) {
1780			/* Handle Rx or Tx according to SB id */
1781			prefetch(fp->rx_cons_sb);
1782			for_each_cos_in_tx_queue(fp, cos)
1783				prefetch(fp->txdata[cos].tx_cons_sb);
1784			prefetch(&fp->sb_running_index[SM_RX_ID]);
1785			napi_schedule(&bnx2x_fp(bp, fp->index, napi));
1786			status &= ~mask;
1787		}
1788	}
1789
1790#ifdef BCM_CNIC
1791	mask = 0x2;
1792	if (status & (mask | 0x1)) {
1793		struct cnic_ops *c_ops = NULL;
1794
1795		if (likely(bp->state == BNX2X_STATE_OPEN)) {
1796			rcu_read_lock();
1797			c_ops = rcu_dereference(bp->cnic_ops);
1798			if (c_ops)
1799				c_ops->cnic_handler(bp->cnic_data, NULL);
1800			rcu_read_unlock();
1801		}
1802
1803		status &= ~mask;
1804	}
1805#endif
1806
1807	if (unlikely(status & 0x1)) {
1808		queue_delayed_work(bnx2x_wq, &bp->sp_task, 0);
1809
1810		status &= ~0x1;
1811		if (!status)
1812			return IRQ_HANDLED;
1813	}
1814
1815	if (unlikely(status))
1816		DP(NETIF_MSG_INTR, "got an unknown interrupt! (status 0x%x)\n",
1817		   status);
1818
1819	return IRQ_HANDLED;
1820}
1821
1822/* Link */
1823
1824/*
1825 * General service functions
1826 */
1827
1828int bnx2x_acquire_hw_lock(struct bnx2x *bp, u32 resource)
1829{
1830	u32 lock_status;
1831	u32 resource_bit = (1 << resource);
1832	int func = BP_FUNC(bp);
1833	u32 hw_lock_control_reg;
1834	int cnt;
1835
1836	/* Validating that the resource is within range */
1837	if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1838		DP(NETIF_MSG_HW,
1839		   "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1840		   resource, HW_LOCK_MAX_RESOURCE_VALUE);
1841		return -EINVAL;
1842	}
1843
1844	if (func <= 5) {
1845		hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1846	} else {
1847		hw_lock_control_reg =
1848				(MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1849	}
1850
1851	/* Validating that the resource is not already taken */
1852	lock_status = REG_RD(bp, hw_lock_control_reg);
1853	if (lock_status & resource_bit) {
1854		DP(NETIF_MSG_HW, "lock_status 0x%x  resource_bit 0x%x\n",
1855		   lock_status, resource_bit);
1856		return -EEXIST;
1857	}
1858
1859	/* Try for 5 second every 5ms */
1860	for (cnt = 0; cnt < 1000; cnt++) {
1861		/* Try to acquire the lock */
1862		REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
1863		lock_status = REG_RD(bp, hw_lock_control_reg);
1864		if (lock_status & resource_bit)
1865			return 0;
1866
1867		msleep(5);
1868	}
1869	DP(NETIF_MSG_HW, "Timeout\n");
1870	return -EAGAIN;
1871}
1872
1873int bnx2x_release_leader_lock(struct bnx2x *bp)
1874{
1875	return bnx2x_release_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
1876}
1877
1878int bnx2x_release_hw_lock(struct bnx2x *bp, u32 resource)
1879{
1880	u32 lock_status;
1881	u32 resource_bit = (1 << resource);
1882	int func = BP_FUNC(bp);
1883	u32 hw_lock_control_reg;
1884
1885	DP(NETIF_MSG_HW, "Releasing a lock on resource %d\n", resource);
1886
1887	/* Validating that the resource is within range */
1888	if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1889		DP(NETIF_MSG_HW,
1890		   "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1891		   resource, HW_LOCK_MAX_RESOURCE_VALUE);
1892		return -EINVAL;
1893	}
1894
1895	if (func <= 5) {
1896		hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1897	} else {
1898		hw_lock_control_reg =
1899				(MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1900	}
1901
1902	/* Validating that the resource is currently taken */
1903	lock_status = REG_RD(bp, hw_lock_control_reg);
1904	if (!(lock_status & resource_bit)) {
1905		DP(NETIF_MSG_HW, "lock_status 0x%x  resource_bit 0x%x\n",
1906		   lock_status, resource_bit);
1907		return -EFAULT;
1908	}
1909
1910	REG_WR(bp, hw_lock_control_reg, resource_bit);
1911	return 0;
1912}
1913
1914
1915int bnx2x_get_gpio(struct bnx2x *bp, int gpio_num, u8 port)
1916{
1917	/* The GPIO should be swapped if swap register is set and active */
1918	int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
1919			 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
1920	int gpio_shift = gpio_num +
1921			(gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
1922	u32 gpio_mask = (1 << gpio_shift);
1923	u32 gpio_reg;
1924	int value;
1925
1926	if (gpio_num > MISC_REGISTERS_GPIO_3) {
1927		BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
1928		return -EINVAL;
1929	}
1930
1931	/* read GPIO value */
1932	gpio_reg = REG_RD(bp, MISC_REG_GPIO);
1933
1934	/* get the requested pin value */
1935	if ((gpio_reg & gpio_mask) == gpio_mask)
1936		value = 1;
1937	else
1938		value = 0;
1939
1940	DP(NETIF_MSG_LINK, "pin %d  value 0x%x\n", gpio_num, value);
1941
1942	return value;
1943}
1944
1945int bnx2x_set_gpio(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
1946{
1947	/* The GPIO should be swapped if swap register is set and active */
1948	int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
1949			 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
1950	int gpio_shift = gpio_num +
1951			(gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
1952	u32 gpio_mask = (1 << gpio_shift);
1953	u32 gpio_reg;
1954
1955	if (gpio_num > MISC_REGISTERS_GPIO_3) {
1956		BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
1957		return -EINVAL;
1958	}
1959
1960	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
1961	/* read GPIO and mask except the float bits */
1962	gpio_reg = (REG_RD(bp, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT);
1963
1964	switch (mode) {
1965	case MISC_REGISTERS_GPIO_OUTPUT_LOW:
1966		DP(NETIF_MSG_LINK, "Set GPIO %d (shift %d) -> output low\n",
1967		   gpio_num, gpio_shift);
1968		/* clear FLOAT and set CLR */
1969		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
1970		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS);
1971		break;
1972
1973	case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
1974		DP(NETIF_MSG_LINK, "Set GPIO %d (shift %d) -> output high\n",
1975		   gpio_num, gpio_shift);
1976		/* clear FLOAT and set SET */
1977		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
1978		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_SET_POS);
1979		break;
1980
1981	case MISC_REGISTERS_GPIO_INPUT_HI_Z:
1982		DP(NETIF_MSG_LINK, "Set GPIO %d (shift %d) -> input\n",
1983		   gpio_num, gpio_shift);
1984		/* set FLOAT */
1985		gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
1986		break;
1987
1988	default:
1989		break;
1990	}
1991
1992	REG_WR(bp, MISC_REG_GPIO, gpio_reg);
1993	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
1994
1995	return 0;
1996}
1997
1998int bnx2x_set_mult_gpio(struct bnx2x *bp, u8 pins, u32 mode)
1999{
2000	u32 gpio_reg = 0;
2001	int rc = 0;
2002
2003	/* Any port swapping should be handled by caller. */
2004
2005	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2006	/* read GPIO and mask except the float bits */
2007	gpio_reg = REG_RD(bp, MISC_REG_GPIO);
2008	gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2009	gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS);
2010	gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS);
2011
2012	switch (mode) {
2013	case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2014		DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output low\n", pins);
2015		/* set CLR */
2016		gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS);
2017		break;
2018
2019	case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2020		DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output high\n", pins);
2021		/* set SET */
2022		gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS);
2023		break;
2024
2025	case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2026		DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> input\n", pins);
2027		/* set FLOAT */
2028		gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2029		break;
2030
2031	default:
2032		BNX2X_ERR("Invalid GPIO mode assignment %d\n", mode);
2033		rc = -EINVAL;
2034		break;
2035	}
2036
2037	if (rc == 0)
2038		REG_WR(bp, MISC_REG_GPIO, gpio_reg);
2039
2040	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2041
2042	return rc;
2043}
2044
2045int bnx2x_set_gpio_int(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
2046{
2047	/* The GPIO should be swapped if swap register is set and active */
2048	int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2049			 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2050	int gpio_shift = gpio_num +
2051			(gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2052	u32 gpio_mask = (1 << gpio_shift);
2053	u32 gpio_reg;
2054
2055	if (gpio_num > MISC_REGISTERS_GPIO_3) {
2056		BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2057		return -EINVAL;
2058	}
2059
2060	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2061	/* read GPIO int */
2062	gpio_reg = REG_RD(bp, MISC_REG_GPIO_INT);
2063
2064	switch (mode) {
2065	case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR:
2066		DP(NETIF_MSG_LINK, "Clear GPIO INT %d (shift %d) -> "
2067				   "output low\n", gpio_num, gpio_shift);
2068		/* clear SET and set CLR */
2069		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2070		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2071		break;
2072
2073	case MISC_REGISTERS_GPIO_INT_OUTPUT_SET:
2074		DP(NETIF_MSG_LINK, "Set GPIO INT %d (shift %d) -> "
2075				   "output high\n", gpio_num, gpio_shift);
2076		/* clear CLR and set SET */
2077		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2078		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2079		break;
2080
2081	default:
2082		break;
2083	}
2084
2085	REG_WR(bp, MISC_REG_GPIO_INT, gpio_reg);
2086	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2087
2088	return 0;
2089}
2090
2091static int bnx2x_set_spio(struct bnx2x *bp, int spio_num, u32 mode)
2092{
2093	u32 spio_mask = (1 << spio_num);
2094	u32 spio_reg;
2095
2096	if ((spio_num < MISC_REGISTERS_SPIO_4) ||
2097	    (spio_num > MISC_REGISTERS_SPIO_7)) {
2098		BNX2X_ERR("Invalid SPIO %d\n", spio_num);
2099		return -EINVAL;
2100	}
2101
2102	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2103	/* read SPIO and mask except the float bits */
2104	spio_reg = (REG_RD(bp, MISC_REG_SPIO) & MISC_REGISTERS_SPIO_FLOAT);
2105
2106	switch (mode) {
2107	case MISC_REGISTERS_SPIO_OUTPUT_LOW:
2108		DP(NETIF_MSG_LINK, "Set SPIO %d -> output low\n", spio_num);
2109		/* clear FLOAT and set CLR */
2110		spio_reg &= ~(spio_mask << MISC_REGISTERS_SPIO_FLOAT_POS);
2111		spio_reg |=  (spio_mask << MISC_REGISTERS_SPIO_CLR_POS);
2112		break;
2113
2114	case MISC_REGISTERS_SPIO_OUTPUT_HIGH:
2115		DP(NETIF_MSG_LINK, "Set SPIO %d -> output high\n", spio_num);
2116		/* clear FLOAT and set SET */
2117		spio_reg &= ~(spio_mask << MISC_REGISTERS_SPIO_FLOAT_POS);
2118		spio_reg |=  (spio_mask << MISC_REGISTERS_SPIO_SET_POS);
2119		break;
2120
2121	case MISC_REGISTERS_SPIO_INPUT_HI_Z:
2122		DP(NETIF_MSG_LINK, "Set SPIO %d -> input\n", spio_num);
2123		/* set FLOAT */
2124		spio_reg |= (spio_mask << MISC_REGISTERS_SPIO_FLOAT_POS);
2125		break;
2126
2127	default:
2128		break;
2129	}
2130
2131	REG_WR(bp, MISC_REG_SPIO, spio_reg);
2132	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2133
2134	return 0;
2135}
2136
2137void bnx2x_calc_fc_adv(struct bnx2x *bp)
2138{
2139	u8 cfg_idx = bnx2x_get_link_cfg_idx(bp);
2140	switch (bp->link_vars.ieee_fc &
2141		MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) {
2142	case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_NONE:
2143		bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
2144						   ADVERTISED_Pause);
2145		break;
2146
2147	case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH:
2148		bp->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause |
2149						  ADVERTISED_Pause);
2150		break;
2151
2152	case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC:
2153		bp->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause;
2154		break;
2155
2156	default:
2157		bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
2158						   ADVERTISED_Pause);
2159		break;
2160	}
2161}
2162
2163u8 bnx2x_initial_phy_init(struct bnx2x *bp, int load_mode)
2164{
2165	if (!BP_NOMCP(bp)) {
2166		u8 rc;
2167		int cfx_idx = bnx2x_get_link_cfg_idx(bp);
2168		u16 req_line_speed = bp->link_params.req_line_speed[cfx_idx];
2169		/*
2170		 * Initialize link parameters structure variables
2171		 * It is recommended to turn off RX FC for jumbo frames
2172		 * for better performance
2173		 */
2174		if (CHIP_IS_E1x(bp) && (bp->dev->mtu > 5000))
2175			bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_TX;
2176		else
2177			bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_BOTH;
2178
2179		bnx2x_acquire_phy_lock(bp);
2180
2181		if (load_mode == LOAD_DIAG) {
2182			struct link_params *lp = &bp->link_params;
2183			lp->loopback_mode = LOOPBACK_XGXS;
2184			/* do PHY loopback at 10G speed, if possible */
2185			if (lp->req_line_speed[cfx_idx] < SPEED_10000) {
2186				if (lp->speed_cap_mask[cfx_idx] &
2187				    PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)
2188					lp->req_line_speed[cfx_idx] =
2189					SPEED_10000;
2190				else
2191					lp->req_line_speed[cfx_idx] =
2192					SPEED_1000;
2193			}
2194		}
2195
2196		rc = bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2197
2198		bnx2x_release_phy_lock(bp);
2199
2200		bnx2x_calc_fc_adv(bp);
2201
2202		if (CHIP_REV_IS_SLOW(bp) && bp->link_vars.link_up) {
2203			bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2204			bnx2x_link_report(bp);
2205		} else
2206			queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2207		bp->link_params.req_line_speed[cfx_idx] = req_line_speed;
2208		return rc;
2209	}
2210	BNX2X_ERR("Bootcode is missing - can not initialize link\n");
2211	return -EINVAL;
2212}
2213
2214void bnx2x_link_set(struct bnx2x *bp)
2215{
2216	if (!BP_NOMCP(bp)) {
2217		bnx2x_acquire_phy_lock(bp);
2218		bnx2x_link_reset(&bp->link_params, &bp->link_vars, 1);
2219		bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2220		bnx2x_release_phy_lock(bp);
2221
2222		bnx2x_calc_fc_adv(bp);
2223	} else
2224		BNX2X_ERR("Bootcode is missing - can not set link\n");
2225}
2226
2227static void bnx2x__link_reset(struct bnx2x *bp)
2228{
2229	if (!BP_NOMCP(bp)) {
2230		bnx2x_acquire_phy_lock(bp);
2231		bnx2x_link_reset(&bp->link_params, &bp->link_vars, 1);
2232		bnx2x_release_phy_lock(bp);
2233	} else
2234		BNX2X_ERR("Bootcode is missing - can not reset link\n");
2235}
2236
2237u8 bnx2x_link_test(struct bnx2x *bp, u8 is_serdes)
2238{
2239	u8 rc = 0;
2240
2241	if (!BP_NOMCP(bp)) {
2242		bnx2x_acquire_phy_lock(bp);
2243		rc = bnx2x_test_link(&bp->link_params, &bp->link_vars,
2244				     is_serdes);
2245		bnx2x_release_phy_lock(bp);
2246	} else
2247		BNX2X_ERR("Bootcode is missing - can not test link\n");
2248
2249	return rc;
2250}
2251
2252static void bnx2x_init_port_minmax(struct bnx2x *bp)
2253{
2254	u32 r_param = bp->link_vars.line_speed / 8;
2255	u32 fair_periodic_timeout_usec;
2256	u32 t_fair;
2257
2258	memset(&(bp->cmng.rs_vars), 0,
2259	       sizeof(struct rate_shaping_vars_per_port));
2260	memset(&(bp->cmng.fair_vars), 0, sizeof(struct fairness_vars_per_port));
2261
2262	/* 100 usec in SDM ticks = 25 since each tick is 4 usec */
2263	bp->cmng.rs_vars.rs_periodic_timeout = RS_PERIODIC_TIMEOUT_USEC / 4;
2264
2265	/* this is the threshold below which no timer arming will occur
2266	   1.25 coefficient is for the threshold to be a little bigger
2267	   than the real time, to compensate for timer in-accuracy */
2268	bp->cmng.rs_vars.rs_threshold =
2269				(RS_PERIODIC_TIMEOUT_USEC * r_param * 5) / 4;
2270
2271	/* resolution of fairness timer */
2272	fair_periodic_timeout_usec = QM_ARB_BYTES / r_param;
2273	/* for 10G it is 1000usec. for 1G it is 10000usec. */
2274	t_fair = T_FAIR_COEF / bp->link_vars.line_speed;
2275
2276	/* this is the threshold below which we won't arm the timer anymore */
2277	bp->cmng.fair_vars.fair_threshold = QM_ARB_BYTES;
2278
2279	/* we multiply by 1e3/8 to get bytes/msec.
2280	   We don't want the credits to pass a credit
2281	   of the t_fair*FAIR_MEM (algorithm resolution) */
2282	bp->cmng.fair_vars.upper_bound = r_param * t_fair * FAIR_MEM;
2283	/* since each tick is 4 usec */
2284	bp->cmng.fair_vars.fairness_timeout = fair_periodic_timeout_usec / 4;
2285}
2286
2287/* Calculates the sum of vn_min_rates.
2288   It's needed for further normalizing of the min_rates.
2289   Returns:
2290     sum of vn_min_rates.
2291       or
2292     0 - if all the min_rates are 0.
2293     In the later case fainess algorithm should be deactivated.
2294     If not all min_rates are zero then those that are zeroes will be set to 1.
2295 */
2296static void bnx2x_calc_vn_weight_sum(struct bnx2x *bp)
2297{
2298	int all_zero = 1;
2299	int vn;
2300
2301	bp->vn_weight_sum = 0;
2302	for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2303		u32 vn_cfg = bp->mf_config[vn];
2304		u32 vn_min_rate = ((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
2305				   FUNC_MF_CFG_MIN_BW_SHIFT) * 100;
2306
2307		/* Skip hidden vns */
2308		if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
2309			continue;
2310
2311		/* If min rate is zero - set it to 1 */
2312		if (!vn_min_rate)
2313			vn_min_rate = DEF_MIN_RATE;
2314		else
2315			all_zero = 0;
2316
2317		bp->vn_weight_sum += vn_min_rate;
2318	}
2319
2320	/* if ETS or all min rates are zeros - disable fairness */
2321	if (BNX2X_IS_ETS_ENABLED(bp)) {
2322		bp->cmng.flags.cmng_enables &=
2323					~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2324		DP(NETIF_MSG_IFUP, "Fairness will be disabled due to ETS\n");
2325	} else if (all_zero) {
2326		bp->cmng.flags.cmng_enables &=
2327					~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2328		DP(NETIF_MSG_IFUP, "All MIN values are zeroes"
2329		   "  fairness will be disabled\n");
2330	} else
2331		bp->cmng.flags.cmng_enables |=
2332					CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2333}
2334
2335static void bnx2x_init_vn_minmax(struct bnx2x *bp, int vn)
2336{
2337	struct rate_shaping_vars_per_vn m_rs_vn;
2338	struct fairness_vars_per_vn m_fair_vn;
2339	u32 vn_cfg = bp->mf_config[vn];
2340	int func = func_by_vn(bp, vn);
2341	u16 vn_min_rate, vn_max_rate;
2342	int i;
2343
2344	/* If function is hidden - set min and max to zeroes */
2345	if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) {
2346		vn_min_rate = 0;
2347		vn_max_rate = 0;
2348
2349	} else {
2350		u32 maxCfg = bnx2x_extract_max_cfg(bp, vn_cfg);
2351
2352		vn_min_rate = ((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
2353				FUNC_MF_CFG_MIN_BW_SHIFT) * 100;
2354		/* If fairness is enabled (not all min rates are zeroes) and
2355		   if current min rate is zero - set it to 1.
2356		   This is a requirement of the algorithm. */
2357		if (bp->vn_weight_sum && (vn_min_rate == 0))
2358			vn_min_rate = DEF_MIN_RATE;
2359
2360		if (IS_MF_SI(bp))
2361			/* maxCfg in percents of linkspeed */
2362			vn_max_rate = (bp->link_vars.line_speed * maxCfg) / 100;
2363		else
2364			/* maxCfg is absolute in 100Mb units */
2365			vn_max_rate = maxCfg * 100;
2366	}
2367
2368	DP(NETIF_MSG_IFUP,
2369	   "func %d: vn_min_rate %d  vn_max_rate %d  vn_weight_sum %d\n",
2370	   func, vn_min_rate, vn_max_rate, bp->vn_weight_sum);
2371
2372	memset(&m_rs_vn, 0, sizeof(struct rate_shaping_vars_per_vn));
2373	memset(&m_fair_vn, 0, sizeof(struct fairness_vars_per_vn));
2374
2375	/* global vn counter - maximal Mbps for this vn */
2376	m_rs_vn.vn_counter.rate = vn_max_rate;
2377
2378	/* quota - number of bytes transmitted in this period */
2379	m_rs_vn.vn_counter.quota =
2380				(vn_max_rate * RS_PERIODIC_TIMEOUT_USEC) / 8;
2381
2382	if (bp->vn_weight_sum) {
2383		/* credit for each period of the fairness algorithm:
2384		   number of bytes in T_FAIR (the vn share the port rate).
2385		   vn_weight_sum should not be larger than 10000, thus
2386		   T_FAIR_COEF / (8 * vn_weight_sum) will always be greater
2387		   than zero */
2388		m_fair_vn.vn_credit_delta =
2389			max_t(u32, (vn_min_rate * (T_FAIR_COEF /
2390						   (8 * bp->vn_weight_sum))),
2391			      (bp->cmng.fair_vars.fair_threshold +
2392							MIN_ABOVE_THRESH));
2393		DP(NETIF_MSG_IFUP, "m_fair_vn.vn_credit_delta %d\n",
2394		   m_fair_vn.vn_credit_delta);
2395	}
2396
2397	/* Store it to internal memory */
2398	for (i = 0; i < sizeof(struct rate_shaping_vars_per_vn)/4; i++)
2399		REG_WR(bp, BAR_XSTRORM_INTMEM +
2400		       XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func) + i * 4,
2401		       ((u32 *)(&m_rs_vn))[i]);
2402
2403	for (i = 0; i < sizeof(struct fairness_vars_per_vn)/4; i++)
2404		REG_WR(bp, BAR_XSTRORM_INTMEM +
2405		       XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func) + i * 4,
2406		       ((u32 *)(&m_fair_vn))[i]);
2407}
2408
2409static int bnx2x_get_cmng_fns_mode(struct bnx2x *bp)
2410{
2411	if (CHIP_REV_IS_SLOW(bp))
2412		return CMNG_FNS_NONE;
2413	if (IS_MF(bp))
2414		return CMNG_FNS_MINMAX;
2415
2416	return CMNG_FNS_NONE;
2417}
2418
2419void bnx2x_read_mf_cfg(struct bnx2x *bp)
2420{
2421	int vn, n = (CHIP_MODE_IS_4_PORT(bp) ? 2 : 1);
2422
2423	if (BP_NOMCP(bp))
2424		return; /* what should be the default bvalue in this case */
2425
2426	/* For 2 port configuration the absolute function number formula
2427	 * is:
2428	 *      abs_func = 2 * vn + BP_PORT + BP_PATH
2429	 *
2430	 *      and there are 4 functions per port
2431	 *
2432	 * For 4 port configuration it is
2433	 *      abs_func = 4 * vn + 2 * BP_PORT + BP_PATH
2434	 *
2435	 *      and there are 2 functions per port
2436	 */
2437	for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2438		int /*abs*/func = n * (2 * vn + BP_PORT(bp)) + BP_PATH(bp);
2439
2440		if (func >= E1H_FUNC_MAX)
2441			break;
2442
2443		bp->mf_config[vn] =
2444			MF_CFG_RD(bp, func_mf_config[func].config);
2445	}
2446}
2447
2448static void bnx2x_cmng_fns_init(struct bnx2x *bp, u8 read_cfg, u8 cmng_type)
2449{
2450
2451	if (cmng_type == CMNG_FNS_MINMAX) {
2452		int vn;
2453
2454		/* clear cmng_enables */
2455		bp->cmng.flags.cmng_enables = 0;
2456
2457		/* read mf conf from shmem */
2458		if (read_cfg)
2459			bnx2x_read_mf_cfg(bp);
2460
2461		/* Init rate shaping and fairness contexts */
2462		bnx2x_init_port_minmax(bp);
2463
2464		/* vn_weight_sum and enable fairness if not 0 */
2465		bnx2x_calc_vn_weight_sum(bp);
2466
2467		/* calculate and set min-max rate for each vn */
2468		if (bp->port.pmf)
2469			for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++)
2470				bnx2x_init_vn_minmax(bp, vn);
2471
2472		/* always enable rate shaping and fairness */
2473		bp->cmng.flags.cmng_enables |=
2474					CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN;
2475		if (!bp->vn_weight_sum)
2476			DP(NETIF_MSG_IFUP, "All MIN values are zeroes"
2477				   "  fairness will be disabled\n");
2478		return;
2479	}
2480
2481	/* rate shaping and fairness are disabled */
2482	DP(NETIF_MSG_IFUP,
2483	   "rate shaping and fairness are disabled\n");
2484}
2485
2486/* This function is called upon link interrupt */
2487static void bnx2x_link_attn(struct bnx2x *bp)
2488{
2489	/* Make sure that we are synced with the current statistics */
2490	bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2491
2492	bnx2x_link_update(&bp->link_params, &bp->link_vars);
2493
2494	if (bp->link_vars.link_up) {
2495
2496		/* dropless flow control */
2497		if (!CHIP_IS_E1(bp) && bp->dropless_fc) {
2498			int port = BP_PORT(bp);
2499			u32 pause_enabled = 0;
2500
2501			if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_TX)
2502				pause_enabled = 1;
2503
2504			REG_WR(bp, BAR_USTRORM_INTMEM +
2505			       USTORM_ETH_PAUSE_ENABLED_OFFSET(port),
2506			       pause_enabled);
2507		}
2508
2509		if (bp->link_vars.mac_type != MAC_TYPE_EMAC) {
2510			struct host_port_stats *pstats;
2511
2512			pstats = bnx2x_sp(bp, port_stats);
2513			/* reset old mac stats */
2514			memset(&(pstats->mac_stx[0]), 0,
2515			       sizeof(struct mac_stx));
2516		}
2517		if (bp->state == BNX2X_STATE_OPEN)
2518			bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2519	}
2520
2521	if (bp->link_vars.link_up && bp->link_vars.line_speed) {
2522		int cmng_fns = bnx2x_get_cmng_fns_mode(bp);
2523
2524		if (cmng_fns != CMNG_FNS_NONE) {
2525			bnx2x_cmng_fns_init(bp, false, cmng_fns);
2526			storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
2527		} else
2528			/* rate shaping and fairness are disabled */
2529			DP(NETIF_MSG_IFUP,
2530			   "single function mode without fairness\n");
2531	}
2532
2533	__bnx2x_link_report(bp);
2534
2535	if (IS_MF(bp))
2536		bnx2x_link_sync_notify(bp);
2537}
2538
2539void bnx2x__link_status_update(struct bnx2x *bp)
2540{
2541	if (bp->state != BNX2X_STATE_OPEN)
2542		return;
2543
2544	/* read updated dcb configuration */
2545	bnx2x_dcbx_pmf_update(bp);
2546
2547	bnx2x_link_status_update(&bp->link_params, &bp->link_vars);
2548
2549	if (bp->link_vars.link_up)
2550		bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2551	else
2552		bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2553
2554	/* indicate link status */
2555	bnx2x_link_report(bp);
2556}
2557
2558static void bnx2x_pmf_update(struct bnx2x *bp)
2559{
2560	int port = BP_PORT(bp);
2561	u32 val;
2562
2563	bp->port.pmf = 1;
2564	DP(NETIF_MSG_LINK, "pmf %d\n", bp->port.pmf);
2565
2566	/*
2567	 * We need the mb() to ensure the ordering between the writing to
2568	 * bp->port.pmf here and reading it from the bnx2x_periodic_task().
2569	 */
2570	smp_mb();
2571
2572	/* queue a periodic task */
2573	queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2574
2575	bnx2x_dcbx_pmf_update(bp);
2576
2577	/* enable nig attention */
2578	val = (0xff0f | (1 << (BP_VN(bp) + 4)));
2579	if (bp->common.int_block == INT_BLOCK_HC) {
2580		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
2581		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
2582	} else if (!CHIP_IS_E1x(bp)) {
2583		REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
2584		REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
2585	}
2586
2587	bnx2x_stats_handle(bp, STATS_EVENT_PMF);
2588}
2589
2590/* end of Link */
2591
2592/* slow path */
2593
2594/*
2595 * General service functions
2596 */
2597
2598/* send the MCP a request, block until there is a reply */
2599u32 bnx2x_fw_command(struct bnx2x *bp, u32 command, u32 param)
2600{
2601	int mb_idx = BP_FW_MB_IDX(bp);
2602	u32 seq;
2603	u32 rc = 0;
2604	u32 cnt = 1;
2605	u8 delay = CHIP_REV_IS_SLOW(bp) ? 100 : 10;
2606
2607	mutex_lock(&bp->fw_mb_mutex);
2608	seq = ++bp->fw_seq;
2609	SHMEM_WR(bp, func_mb[mb_idx].drv_mb_param, param);
2610	SHMEM_WR(bp, func_mb[mb_idx].drv_mb_header, (command | seq));
2611
2612	DP(BNX2X_MSG_MCP, "wrote command (%x) to FW MB param 0x%08x\n",
2613			(command | seq), param);
2614
2615	do {
2616		/* let the FW do it's magic ... */
2617		msleep(delay);
2618
2619		rc = SHMEM_RD(bp, func_mb[mb_idx].fw_mb_header);
2620
2621		/* Give the FW up to 5 second (500*10ms) */
2622	} while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500));
2623
2624	DP(BNX2X_MSG_MCP, "[after %d ms] read (%x) seq is (%x) from FW MB\n",
2625	   cnt*delay, rc, seq);
2626
2627	/* is this a reply to our command? */
2628	if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK))
2629		rc &= FW_MSG_CODE_MASK;
2630	else {
2631		/* FW BUG! */
2632		BNX2X_ERR("FW failed to respond!\n");
2633		bnx2x_fw_dump(bp);
2634		rc = 0;
2635	}
2636	mutex_unlock(&bp->fw_mb_mutex);
2637
2638	return rc;
2639}
2640
2641
2642void bnx2x_func_init(struct bnx2x *bp, struct bnx2x_func_init_params *p)
2643{
2644	if (CHIP_IS_E1x(bp)) {
2645		struct tstorm_eth_function_common_config tcfg = {0};
2646
2647		storm_memset_func_cfg(bp, &tcfg, p->func_id);
2648	}
2649
2650	/* Enable the function in the FW */
2651	storm_memset_vf_to_pf(bp, p->func_id, p->pf_id);
2652	storm_memset_func_en(bp, p->func_id, 1);
2653
2654	/* spq */
2655	if (p->func_flgs & FUNC_FLG_SPQ) {
2656		storm_memset_spq_addr(bp, p->spq_map, p->func_id);
2657		REG_WR(bp, XSEM_REG_FAST_MEMORY +
2658		       XSTORM_SPQ_PROD_OFFSET(p->func_id), p->spq_prod);
2659	}
2660}
2661
2662/**
2663 * bnx2x_get_tx_only_flags - Return common flags
2664 *
2665 * @bp		device handle
2666 * @fp		queue handle
2667 * @zero_stats	TRUE if statistics zeroing is needed
2668 *
2669 * Return the flags that are common for the Tx-only and not normal connections.
2670 */
2671static inline unsigned long bnx2x_get_common_flags(struct bnx2x *bp,
2672						   struct bnx2x_fastpath *fp,
2673						   bool zero_stats)
2674{
2675	unsigned long flags = 0;
2676
2677	/* PF driver will always initialize the Queue to an ACTIVE state */
2678	__set_bit(BNX2X_Q_FLG_ACTIVE, &flags);
2679
2680	/* tx only connections collect statistics (on the same index as the
2681	 *  parent connection). The statistics are zeroed when the parent
2682	 *  connection is initialized.
2683	 */
2684
2685	__set_bit(BNX2X_Q_FLG_STATS, &flags);
2686	if (zero_stats)
2687		__set_bit(BNX2X_Q_FLG_ZERO_STATS, &flags);
2688
2689
2690	return flags;
2691}
2692
2693static inline unsigned long bnx2x_get_q_flags(struct bnx2x *bp,
2694					      struct bnx2x_fastpath *fp,
2695					      bool leading)
2696{
2697	unsigned long flags = 0;
2698
2699	/* calculate other queue flags */
2700	if (IS_MF_SD(bp))
2701		__set_bit(BNX2X_Q_FLG_OV, &flags);
2702
2703	if (IS_FCOE_FP(fp))
2704		__set_bit(BNX2X_Q_FLG_FCOE, &flags);
2705
2706	if (!fp->disable_tpa) {
2707		__set_bit(BNX2X_Q_FLG_TPA, &flags);
2708		__set_bit(BNX2X_Q_FLG_TPA_IPV6, &flags);
2709	}
2710
2711	if (leading) {
2712		__set_bit(BNX2X_Q_FLG_LEADING_RSS, &flags);
2713		__set_bit(BNX2X_Q_FLG_MCAST, &flags);
2714	}
2715
2716	/* Always set HW VLAN stripping */
2717	__set_bit(BNX2X_Q_FLG_VLAN, &flags);
2718
2719
2720	return flags | bnx2x_get_common_flags(bp, fp, true);
2721}
2722
2723static void bnx2x_pf_q_prep_general(struct bnx2x *bp,
2724	struct bnx2x_fastpath *fp, struct bnx2x_general_setup_params *gen_init,
2725	u8 cos)
2726{
2727	gen_init->stat_id = bnx2x_stats_id(fp);
2728	gen_init->spcl_id = fp->cl_id;
2729
2730	/* Always use mini-jumbo MTU for FCoE L2 ring */
2731	if (IS_FCOE_FP(fp))
2732		gen_init->mtu = BNX2X_FCOE_MINI_JUMBO_MTU;
2733	else
2734		gen_init->mtu = bp->dev->mtu;
2735
2736	gen_init->cos = cos;
2737}
2738
2739static void bnx2x_pf_rx_q_prep(struct bnx2x *bp,
2740	struct bnx2x_fastpath *fp, struct rxq_pause_params *pause,
2741	struct bnx2x_rxq_setup_params *rxq_init)
2742{
2743	u8 max_sge = 0;
2744	u16 sge_sz = 0;
2745	u16 tpa_agg_size = 0;
2746
2747	if (!fp->disable_tpa) {
2748		pause->sge_th_lo = SGE_TH_LO(bp);
2749		pause->sge_th_hi = SGE_TH_HI(bp);
2750
2751		/* validate SGE ring has enough to cross high threshold */
2752		WARN_ON(bp->dropless_fc &&
2753				pause->sge_th_hi + FW_PREFETCH_CNT >
2754				MAX_RX_SGE_CNT * NUM_RX_SGE_PAGES);
2755
2756		tpa_agg_size = min_t(u32,
2757			(min_t(u32, 8, MAX_SKB_FRAGS) *
2758			SGE_PAGE_SIZE * PAGES_PER_SGE), 0xffff);
2759		max_sge = SGE_PAGE_ALIGN(bp->dev->mtu) >>
2760			SGE_PAGE_SHIFT;
2761		max_sge = ((max_sge + PAGES_PER_SGE - 1) &
2762			  (~(PAGES_PER_SGE-1))) >> PAGES_PER_SGE_SHIFT;
2763		sge_sz = (u16)min_t(u32, SGE_PAGE_SIZE * PAGES_PER_SGE,
2764				    0xffff);
2765	}
2766
2767	/* pause - not for e1 */
2768	if (!CHIP_IS_E1(bp)) {
2769		pause->bd_th_lo = BD_TH_LO(bp);
2770		pause->bd_th_hi = BD_TH_HI(bp);
2771
2772		pause->rcq_th_lo = RCQ_TH_LO(bp);
2773		pause->rcq_th_hi = RCQ_TH_HI(bp);
2774		/*
2775		 * validate that rings have enough entries to cross
2776		 * high thresholds
2777		 */
2778		WARN_ON(bp->dropless_fc &&
2779				pause->bd_th_hi + FW_PREFETCH_CNT >
2780				bp->rx_ring_size);
2781		WARN_ON(bp->dropless_fc &&
2782				pause->rcq_th_hi + FW_PREFETCH_CNT >
2783				NUM_RCQ_RINGS * MAX_RCQ_DESC_CNT);
2784
2785		pause->pri_map = 1;
2786	}
2787
2788	/* rxq setup */
2789	rxq_init->dscr_map = fp->rx_desc_mapping;
2790	rxq_init->sge_map = fp->rx_sge_mapping;
2791	rxq_init->rcq_map = fp->rx_comp_mapping;
2792	rxq_init->rcq_np_map = fp->rx_comp_mapping + BCM_PAGE_SIZE;
2793
2794	/* This should be a maximum number of data bytes that may be
2795	 * placed on the BD (not including paddings).
2796	 */
2797	rxq_init->buf_sz = fp->rx_buf_size - BNX2X_FW_RX_ALIGN_START -
2798		BNX2X_FW_RX_ALIGN_END -	IP_HEADER_ALIGNMENT_PADDING;
2799
2800	rxq_init->cl_qzone_id = fp->cl_qzone_id;
2801	rxq_init->tpa_agg_sz = tpa_agg_size;
2802	rxq_init->sge_buf_sz = sge_sz;
2803	rxq_init->max_sges_pkt = max_sge;
2804	rxq_init->rss_engine_id = BP_FUNC(bp);
2805
2806	/* Maximum number or simultaneous TPA aggregation for this Queue.
2807	 *
2808	 * For PF Clients it should be the maximum avaliable number.
2809	 * VF driver(s) may want to define it to a smaller value.
2810	 */
2811	rxq_init->max_tpa_queues = MAX_AGG_QS(bp);
2812
2813	rxq_init->cache_line_log = BNX2X_RX_ALIGN_SHIFT;
2814	rxq_init->fw_sb_id = fp->fw_sb_id;
2815
2816	if (IS_FCOE_FP(fp))
2817		rxq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS;
2818	else
2819		rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
2820}
2821
2822static void bnx2x_pf_tx_q_prep(struct bnx2x *bp,
2823	struct bnx2x_fastpath *fp, struct bnx2x_txq_setup_params *txq_init,
2824	u8 cos)
2825{
2826	txq_init->dscr_map = fp->txdata[cos].tx_desc_mapping;
2827	txq_init->sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos;
2828	txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW;
2829	txq_init->fw_sb_id = fp->fw_sb_id;
2830
2831	/*
2832	 * set the tss leading client id for TX classfication ==
2833	 * leading RSS client id
2834	 */
2835	txq_init->tss_leading_cl_id = bnx2x_fp(bp, 0, cl_id);
2836
2837	if (IS_FCOE_FP(fp)) {
2838		txq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_TX_CQ_CONS;
2839		txq_init->traffic_type = LLFC_TRAFFIC_TYPE_FCOE;
2840	}
2841}
2842
2843static void bnx2x_pf_init(struct bnx2x *bp)
2844{
2845	struct bnx2x_func_init_params func_init = {0};
2846	struct event_ring_data eq_data = { {0} };
2847	u16 flags;
2848
2849	if (!CHIP_IS_E1x(bp)) {
2850		/* reset IGU PF statistics: MSIX + ATTN */
2851		/* PF */
2852		REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
2853			   BNX2X_IGU_STAS_MSG_VF_CNT*4 +
2854			   (CHIP_MODE_IS_4_PORT(bp) ?
2855				BP_FUNC(bp) : BP_VN(bp))*4, 0);
2856		/* ATTN */
2857		REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
2858			   BNX2X_IGU_STAS_MSG_VF_CNT*4 +
2859			   BNX2X_IGU_STAS_MSG_PF_CNT*4 +
2860			   (CHIP_MODE_IS_4_PORT(bp) ?
2861				BP_FUNC(bp) : BP_VN(bp))*4, 0);
2862	}
2863
2864	/* function setup flags */
2865	flags = (FUNC_FLG_STATS | FUNC_FLG_LEADING | FUNC_FLG_SPQ);
2866
2867	/* This flag is relevant for E1x only.
2868	 * E2 doesn't have a TPA configuration in a function level.
2869	 */
2870	flags |= (bp->flags & TPA_ENABLE_FLAG) ? FUNC_FLG_TPA : 0;
2871
2872	func_init.func_flgs = flags;
2873	func_init.pf_id = BP_FUNC(bp);
2874	func_init.func_id = BP_FUNC(bp);
2875	func_init.spq_map = bp->spq_mapping;
2876	func_init.spq_prod = bp->spq_prod_idx;
2877
2878	bnx2x_func_init(bp, &func_init);
2879
2880	memset(&(bp->cmng), 0, sizeof(struct cmng_struct_per_port));
2881
2882	/*
2883	 * Congestion management values depend on the link rate
2884	 * There is no active link so initial link rate is set to 10 Gbps.
2885	 * When the link comes up The congestion management values are
2886	 * re-calculated according to the actual link rate.
2887	 */
2888	bp->link_vars.line_speed = SPEED_10000;
2889	bnx2x_cmng_fns_init(bp, true, bnx2x_get_cmng_fns_mode(bp));
2890
2891	/* Only the PMF sets the HW */
2892	if (bp->port.pmf)
2893		storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
2894
2895	/* init Event Queue */
2896	eq_data.base_addr.hi = U64_HI(bp->eq_mapping);
2897	eq_data.base_addr.lo = U64_LO(bp->eq_mapping);
2898	eq_data.producer = bp->eq_prod;
2899	eq_data.index_id = HC_SP_INDEX_EQ_CONS;
2900	eq_data.sb_id = DEF_SB_ID;
2901	storm_memset_eq_data(bp, &eq_data, BP_FUNC(bp));
2902}
2903
2904
2905static void bnx2x_e1h_disable(struct bnx2x *bp)
2906{
2907	int port = BP_PORT(bp);
2908
2909	bnx2x_tx_disable(bp);
2910
2911	REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
2912}
2913
2914static void bnx2x_e1h_enable(struct bnx2x *bp)
2915{
2916	int port = BP_PORT(bp);
2917
2918	REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 1);
2919
2920	/* Tx queue should be only reenabled */
2921	netif_tx_wake_all_queues(bp->dev);
2922
2923	/*
2924	 * Should not call netif_carrier_on since it will be called if the link
2925	 * is up when checking for link state
2926	 */
2927}
2928
2929#define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3
2930
2931static void bnx2x_drv_info_ether_stat(struct bnx2x *bp)
2932{
2933	struct eth_stats_info *ether_stat =
2934		&bp->slowpath->drv_info_to_mcp.ether_stat;
2935
2936	/* leave last char as NULL */
2937	memcpy(ether_stat->version, DRV_MODULE_VERSION,
2938	       ETH_STAT_INFO_VERSION_LEN - 1);
2939
2940	bp->fp[0].mac_obj.get_n_elements(bp, &bp->fp[0].mac_obj,
2941					 DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED,
2942					 ether_stat->mac_local);
2943
2944	ether_stat->mtu_size = bp->dev->mtu;
2945
2946	if (bp->dev->features & NETIF_F_RXCSUM)
2947		ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK;
2948	if (bp->dev->features & NETIF_F_TSO)
2949		ether_stat->feature_flags |= FEATURE_ETH_LSO_MASK;
2950	ether_stat->feature_flags |= bp->common.boot_mode;
2951
2952	ether_stat->promiscuous_mode = (bp->dev->flags & IFF_PROMISC) ? 1 : 0;
2953
2954	ether_stat->txq_size = bp->tx_ring_size;
2955	ether_stat->rxq_size = bp->rx_ring_size;
2956}
2957
2958static void bnx2x_drv_info_fcoe_stat(struct bnx2x *bp)
2959{
2960#ifdef BCM_CNIC
2961	struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
2962	struct fcoe_stats_info *fcoe_stat =
2963		&bp->slowpath->drv_info_to_mcp.fcoe_stat;
2964
2965	memcpy(fcoe_stat->mac_local, bp->fip_mac, ETH_ALEN);
2966
2967	fcoe_stat->qos_priority =
2968		app->traffic_type_priority[LLFC_TRAFFIC_TYPE_FCOE];
2969
2970	/* insert FCoE stats from ramrod response */
2971	if (!NO_FCOE(bp)) {
2972		struct tstorm_per_queue_stats *fcoe_q_tstorm_stats =
2973			&bp->fw_stats_data->queue_stats[FCOE_IDX].
2974			tstorm_queue_statistics;
2975
2976		struct xstorm_per_queue_stats *fcoe_q_xstorm_stats =
2977			&bp->fw_stats_data->queue_stats[FCOE_IDX].
2978			xstorm_queue_statistics;
2979
2980		struct fcoe_statistics_params *fw_fcoe_stat =
2981			&bp->fw_stats_data->fcoe;
2982
2983		ADD_64(fcoe_stat->rx_bytes_hi, 0, fcoe_stat->rx_bytes_lo,
2984		       fw_fcoe_stat->rx_stat0.fcoe_rx_byte_cnt);
2985
2986		ADD_64(fcoe_stat->rx_bytes_hi,
2987		       fcoe_q_tstorm_stats->rcv_ucast_bytes.hi,
2988		       fcoe_stat->rx_bytes_lo,
2989		       fcoe_q_tstorm_stats->rcv_ucast_bytes.lo);
2990
2991		ADD_64(fcoe_stat->rx_bytes_hi,
2992		       fcoe_q_tstorm_stats->rcv_bcast_bytes.hi,
2993		       fcoe_stat->rx_bytes_lo,
2994		       fcoe_q_tstorm_stats->rcv_bcast_bytes.lo);
2995
2996		ADD_64(fcoe_stat->rx_bytes_hi,
2997		       fcoe_q_tstorm_stats->rcv_mcast_bytes.hi,
2998		       fcoe_stat->rx_bytes_lo,
2999		       fcoe_q_tstorm_stats->rcv_mcast_bytes.lo);
3000
3001		ADD_64(fcoe_stat->rx_frames_hi, 0, fcoe_stat->rx_frames_lo,
3002		       fw_fcoe_stat->rx_stat0.fcoe_rx_pkt_cnt);
3003
3004		ADD_64(fcoe_stat->rx_frames_hi, 0, fcoe_stat->rx_frames_lo,
3005		       fcoe_q_tstorm_stats->rcv_ucast_pkts);
3006
3007		ADD_64(fcoe_stat->rx_frames_hi, 0, fcoe_stat->rx_frames_lo,
3008		       fcoe_q_tstorm_stats->rcv_bcast_pkts);
3009
3010		ADD_64(fcoe_stat->rx_frames_hi, 0, fcoe_stat->rx_frames_lo,
3011		       fcoe_q_tstorm_stats->rcv_mcast_pkts);
3012
3013		ADD_64(fcoe_stat->tx_bytes_hi, 0, fcoe_stat->tx_bytes_lo,
3014		       fw_fcoe_stat->tx_stat.fcoe_tx_byte_cnt);
3015
3016		ADD_64(fcoe_stat->tx_bytes_hi,
3017		       fcoe_q_xstorm_stats->ucast_bytes_sent.hi,
3018		       fcoe_stat->tx_bytes_lo,
3019		       fcoe_q_xstorm_stats->ucast_bytes_sent.lo);
3020
3021		ADD_64(fcoe_stat->tx_bytes_hi,
3022		       fcoe_q_xstorm_stats->bcast_bytes_sent.hi,
3023		       fcoe_stat->tx_bytes_lo,
3024		       fcoe_q_xstorm_stats->bcast_bytes_sent.lo);
3025
3026		ADD_64(fcoe_stat->tx_bytes_hi,
3027		       fcoe_q_xstorm_stats->mcast_bytes_sent.hi,
3028		       fcoe_stat->tx_bytes_lo,
3029		       fcoe_q_xstorm_stats->mcast_bytes_sent.lo);
3030
3031		ADD_64(fcoe_stat->tx_frames_hi, 0, fcoe_stat->tx_frames_lo,
3032		       fw_fcoe_stat->tx_stat.fcoe_tx_pkt_cnt);
3033
3034		ADD_64(fcoe_stat->tx_frames_hi, 0, fcoe_stat->tx_frames_lo,
3035		       fcoe_q_xstorm_stats->ucast_pkts_sent);
3036
3037		ADD_64(fcoe_stat->tx_frames_hi, 0, fcoe_stat->tx_frames_lo,
3038		       fcoe_q_xstorm_stats->bcast_pkts_sent);
3039
3040		ADD_64(fcoe_stat->tx_frames_hi, 0, fcoe_stat->tx_frames_lo,
3041		       fcoe_q_xstorm_stats->mcast_pkts_sent);
3042	}
3043
3044	/* ask L5 driver to add data to the struct */
3045	bnx2x_cnic_notify(bp, CNIC_CTL_FCOE_STATS_GET_CMD);
3046#endif
3047}
3048
3049static void bnx2x_drv_info_iscsi_stat(struct bnx2x *bp)
3050{
3051#ifdef BCM_CNIC
3052	struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
3053	struct iscsi_stats_info *iscsi_stat =
3054		&bp->slowpath->drv_info_to_mcp.iscsi_stat;
3055
3056	memcpy(iscsi_stat->mac_local, bp->cnic_eth_dev.iscsi_mac, ETH_ALEN);
3057
3058	iscsi_stat->qos_priority =
3059		app->traffic_type_priority[LLFC_TRAFFIC_TYPE_ISCSI];
3060
3061	/* ask L5 driver to add data to the struct */
3062	bnx2x_cnic_notify(bp, CNIC_CTL_ISCSI_STATS_GET_CMD);
3063#endif
3064}
3065
3066/* called due to MCP event (on pmf):
3067 *	reread new bandwidth configuration
3068 *	configure FW
3069 *	notify others function about the change
3070 */
3071static inline void bnx2x_config_mf_bw(struct bnx2x *bp)
3072{
3073	if (bp->link_vars.link_up) {
3074		bnx2x_cmng_fns_init(bp, true, CMNG_FNS_MINMAX);
3075		bnx2x_link_sync_notify(bp);
3076	}
3077	storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
3078}
3079
3080static inline void bnx2x_set_mf_bw(struct bnx2x *bp)
3081{
3082	bnx2x_config_mf_bw(bp);
3083	bnx2x_fw_command(bp, DRV_MSG_CODE_SET_MF_BW_ACK, 0);
3084}
3085
3086static void bnx2x_handle_drv_info_req(struct bnx2x *bp)
3087{
3088	enum drv_info_opcode op_code;
3089	u32 drv_info_ctl = SHMEM2_RD(bp, drv_info_control);
3090
3091	/* if drv_info version supported by MFW doesn't match - send NACK */
3092	if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) {
3093		bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3094		return;
3095	}
3096
3097	op_code = (drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >>
3098		  DRV_INFO_CONTROL_OP_CODE_SHIFT;
3099
3100	memset(&bp->slowpath->drv_info_to_mcp, 0,
3101	       sizeof(union drv_info_to_mcp));
3102
3103	switch (op_code) {
3104	case ETH_STATS_OPCODE:
3105		bnx2x_drv_info_ether_stat(bp);
3106		break;
3107	case FCOE_STATS_OPCODE:
3108		bnx2x_drv_info_fcoe_stat(bp);
3109		break;
3110	case ISCSI_STATS_OPCODE:
3111		bnx2x_drv_info_iscsi_stat(bp);
3112		break;
3113	default:
3114		/* if op code isn't supported - send NACK */
3115		bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3116		return;
3117	}
3118
3119	/* if we got drv_info attn from MFW then these fields are defined in
3120	 * shmem2 for sure
3121	 */
3122	SHMEM2_WR(bp, drv_info_host_addr_lo,
3123		U64_LO(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3124	SHMEM2_WR(bp, drv_info_host_addr_hi,
3125		U64_HI(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3126
3127	bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_ACK, 0);
3128}
3129
3130static void bnx2x_dcc_event(struct bnx2x *bp, u32 dcc_event)
3131{
3132	DP(BNX2X_MSG_MCP, "dcc_event 0x%x\n", dcc_event);
3133
3134	if (dcc_event & DRV_STATUS_DCC_DISABLE_ENABLE_PF) {
3135
3136		/*
3137		 * This is the only place besides the function initialization
3138		 * where the bp->flags can change so it is done without any
3139		 * locks
3140		 */
3141		if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
3142			DP(NETIF_MSG_IFDOWN, "mf_cfg function disabled\n");
3143			bp->flags |= MF_FUNC_DIS;
3144
3145			bnx2x_e1h_disable(bp);
3146		} else {
3147			DP(NETIF_MSG_IFUP, "mf_cfg function enabled\n");
3148			bp->flags &= ~MF_FUNC_DIS;
3149
3150			bnx2x_e1h_enable(bp);
3151		}
3152		dcc_event &= ~DRV_STATUS_DCC_DISABLE_ENABLE_PF;
3153	}
3154	if (dcc_event & DRV_STATUS_DCC_BANDWIDTH_ALLOCATION) {
3155		bnx2x_config_mf_bw(bp);
3156		dcc_event &= ~DRV_STATUS_DCC_BANDWIDTH_ALLOCATION;
3157	}
3158
3159	/* Report results to MCP */
3160	if (dcc_event)
3161		bnx2x_fw_command(bp, DRV_MSG_CODE_DCC_FAILURE, 0);
3162	else
3163		bnx2x_fw_command(bp, DRV_MSG_CODE_DCC_OK, 0);
3164}
3165
3166/* must be called under the spq lock */
3167static inline struct eth_spe *bnx2x_sp_get_next(struct bnx2x *bp)
3168{
3169	struct eth_spe *next_spe = bp->spq_prod_bd;
3170
3171	if (bp->spq_prod_bd == bp->spq_last_bd) {
3172		bp->spq_prod_bd = bp->spq;
3173		bp->spq_prod_idx = 0;
3174		DP(NETIF_MSG_TIMER, "end of spq\n");
3175	} else {
3176		bp->spq_prod_bd++;
3177		bp->spq_prod_idx++;
3178	}
3179	return next_spe;
3180}
3181
3182/* must be called under the spq lock */
3183static inline void bnx2x_sp_prod_update(struct bnx2x *bp)
3184{
3185	int func = BP_FUNC(bp);
3186
3187	/*
3188	 * Make sure that BD data is updated before writing the producer:
3189	 * BD data is written to the memory, the producer is read from the
3190	 * memory, thus we need a full memory barrier to ensure the ordering.
3191	 */
3192	mb();
3193
3194	REG_WR16(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func),
3195		 bp->spq_prod_idx);
3196	mmiowb();
3197}
3198
3199/**
3200 * bnx2x_is_contextless_ramrod - check if the current command ends on EQ
3201 *
3202 * @cmd:	command to check
3203 * @cmd_type:	command type
3204 */
3205static inline bool bnx2x_is_contextless_ramrod(int cmd, int cmd_type)
3206{
3207	if ((cmd_type == NONE_CONNECTION_TYPE) ||
3208	    (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) ||
3209	    (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) ||
3210	    (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) ||
3211	    (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) ||
3212	    (cmd == RAMROD_CMD_ID_ETH_SET_MAC) ||
3213	    (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE))
3214		return true;
3215	else
3216		return false;
3217
3218}
3219
3220
3221/**
3222 * bnx2x_sp_post - place a single command on an SP ring
3223 *
3224 * @bp:		driver handle
3225 * @command:	command to place (e.g. SETUP, FILTER_RULES, etc.)
3226 * @cid:	SW CID the command is related to
3227 * @data_hi:	command private data address (high 32 bits)
3228 * @data_lo:	command private data address (low 32 bits)
3229 * @cmd_type:	command type (e.g. NONE, ETH)
3230 *
3231 * SP data is handled as if it's always an address pair, thus data fields are
3232 * not swapped to little endian in upper functions. Instead this function swaps
3233 * data as if it's two u32 fields.
3234 */
3235int bnx2x_sp_post(struct bnx2x *bp, int command, int cid,
3236		  u32 data_hi, u32 data_lo, int cmd_type)
3237{
3238	struct eth_spe *spe;
3239	u16 type;
3240	bool common = bnx2x_is_contextless_ramrod(command, cmd_type);
3241
3242#ifdef BNX2X_STOP_ON_ERROR
3243	if (unlikely(bp->panic))
3244		return -EIO;
3245#endif
3246
3247	spin_lock_bh(&bp->spq_lock);
3248
3249	if (common) {
3250		if (!atomic_read(&bp->eq_spq_left)) {
3251			BNX2X_ERR("BUG! EQ ring full!\n");
3252			spin_unlock_bh(&bp->spq_lock);
3253			bnx2x_panic();
3254			return -EBUSY;
3255		}
3256	} else if (!atomic_read(&bp->cq_spq_left)) {
3257			BNX2X_ERR("BUG! SPQ ring full!\n");
3258			spin_unlock_bh(&bp->spq_lock);
3259			bnx2x_panic();
3260			return -EBUSY;
3261	}
3262
3263	spe = bnx2x_sp_get_next(bp);
3264
3265	/* CID needs port number to be encoded int it */
3266	spe->hdr.conn_and_cmd_data =
3267			cpu_to_le32((command << SPE_HDR_CMD_ID_SHIFT) |
3268				    HW_CID(bp, cid));
3269
3270	type = (cmd_type << SPE_HDR_CONN_TYPE_SHIFT) & SPE_HDR_CONN_TYPE;
3271
3272	type |= ((BP_FUNC(bp) << SPE_HDR_FUNCTION_ID_SHIFT) &
3273		 SPE_HDR_FUNCTION_ID);
3274
3275	spe->hdr.type = cpu_to_le16(type);
3276
3277	spe->data.update_data_addr.hi = cpu_to_le32(data_hi);
3278	spe->data.update_data_addr.lo = cpu_to_le32(data_lo);
3279
3280	/*
3281	 * It's ok if the actual decrement is issued towards the memory
3282	 * somewhere between the spin_lock and spin_unlock. Thus no
3283	 * more explict memory barrier is needed.
3284	 */
3285	if (common)
3286		atomic_dec(&bp->eq_spq_left);
3287	else
3288		atomic_dec(&bp->cq_spq_left);
3289
3290
3291	DP(BNX2X_MSG_SP/*NETIF_MSG_TIMER*/,
3292	   "SPQE[%x] (%x:%x)  (cmd, common?) (%d,%d)  hw_cid %x  data (%x:%x) "
3293	   "type(0x%x) left (CQ, EQ) (%x,%x)\n",
3294	   bp->spq_prod_idx, (u32)U64_HI(bp->spq_mapping),
3295	   (u32)(U64_LO(bp->spq_mapping) +
3296	   (void *)bp->spq_prod_bd - (void *)bp->spq), command, common,
3297	   HW_CID(bp, cid), data_hi, data_lo, type,
3298	   atomic_read(&bp->cq_spq_left), atomic_read(&bp->eq_spq_left));
3299
3300	bnx2x_sp_prod_update(bp);
3301	spin_unlock_bh(&bp->spq_lock);
3302	return 0;
3303}
3304
3305/* acquire split MCP access lock register */
3306static int bnx2x_acquire_alr(struct bnx2x *bp)
3307{
3308	u32 j, val;
3309	int rc = 0;
3310
3311	might_sleep();
3312	for (j = 0; j < 1000; j++) {
3313		val = (1UL << 31);
3314		REG_WR(bp, GRCBASE_MCP + 0x9c, val);
3315		val = REG_RD(bp, GRCBASE_MCP + 0x9c);
3316		if (val & (1L << 31))
3317			break;
3318
3319		msleep(5);
3320	}
3321	if (!(val & (1L << 31))) {
3322		BNX2X_ERR("Cannot acquire MCP access lock register\n");
3323		rc = -EBUSY;
3324	}
3325
3326	return rc;
3327}
3328
3329/* release split MCP access lock register */
3330static void bnx2x_release_alr(struct bnx2x *bp)
3331{
3332	REG_WR(bp, GRCBASE_MCP + 0x9c, 0);
3333}
3334
3335#define BNX2X_DEF_SB_ATT_IDX	0x0001
3336#define BNX2X_DEF_SB_IDX	0x0002
3337
3338static inline u16 bnx2x_update_dsb_idx(struct bnx2x *bp)
3339{
3340	struct host_sp_status_block *def_sb = bp->def_status_blk;
3341	u16 rc = 0;
3342
3343	barrier(); /* status block is written to by the chip */
3344	if (bp->def_att_idx != def_sb->atten_status_block.attn_bits_index) {
3345		bp->def_att_idx = def_sb->atten_status_block.attn_bits_index;
3346		rc |= BNX2X_DEF_SB_ATT_IDX;
3347	}
3348
3349	if (bp->def_idx != def_sb->sp_sb.running_index) {
3350		bp->def_idx = def_sb->sp_sb.running_index;
3351		rc |= BNX2X_DEF_SB_IDX;
3352	}
3353
3354	/* Do not reorder: indecies reading should complete before handling */
3355	barrier();
3356	return rc;
3357}
3358
3359/*
3360 * slow path service functions
3361 */
3362
3363static void bnx2x_attn_int_asserted(struct bnx2x *bp, u32 asserted)
3364{
3365	int port = BP_PORT(bp);
3366	u32 aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
3367			      MISC_REG_AEU_MASK_ATTN_FUNC_0;
3368	u32 nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 :
3369				       NIG_REG_MASK_INTERRUPT_PORT0;
3370	u32 aeu_mask;
3371	u32 nig_mask = 0;
3372	u32 reg_addr;
3373
3374	if (bp->attn_state & asserted)
3375		BNX2X_ERR("IGU ERROR\n");
3376
3377	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
3378	aeu_mask = REG_RD(bp, aeu_addr);
3379
3380	DP(NETIF_MSG_HW, "aeu_mask %x  newly asserted %x\n",
3381	   aeu_mask, asserted);
3382	aeu_mask &= ~(asserted & 0x3ff);
3383	DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
3384
3385	REG_WR(bp, aeu_addr, aeu_mask);
3386	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
3387
3388	DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
3389	bp->attn_state |= asserted;
3390	DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
3391
3392	if (asserted & ATTN_HARD_WIRED_MASK) {
3393		if (asserted & ATTN_NIG_FOR_FUNC) {
3394
3395			bnx2x_acquire_phy_lock(bp);
3396
3397			/* save nig interrupt mask */
3398			nig_mask = REG_RD(bp, nig_int_mask_addr);
3399
3400			/* If nig_mask is not set, no need to call the update
3401			 * function.
3402			 */
3403			if (nig_mask) {
3404				REG_WR(bp, nig_int_mask_addr, 0);
3405
3406				bnx2x_link_attn(bp);
3407			}
3408
3409			/* handle unicore attn? */
3410		}
3411		if (asserted & ATTN_SW_TIMER_4_FUNC)
3412			DP(NETIF_MSG_HW, "ATTN_SW_TIMER_4_FUNC!\n");
3413
3414		if (asserted & GPIO_2_FUNC)
3415			DP(NETIF_MSG_HW, "GPIO_2_FUNC!\n");
3416
3417		if (asserted & GPIO_3_FUNC)
3418			DP(NETIF_MSG_HW, "GPIO_3_FUNC!\n");
3419
3420		if (asserted & GPIO_4_FUNC)
3421			DP(NETIF_MSG_HW, "GPIO_4_FUNC!\n");
3422
3423		if (port == 0) {
3424			if (asserted & ATTN_GENERAL_ATTN_1) {
3425				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_1!\n");
3426				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_1, 0x0);
3427			}
3428			if (asserted & ATTN_GENERAL_ATTN_2) {
3429				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_2!\n");
3430				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_2, 0x0);
3431			}
3432			if (asserted & ATTN_GENERAL_ATTN_3) {
3433				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_3!\n");
3434				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_3, 0x0);
3435			}
3436		} else {
3437			if (asserted & ATTN_GENERAL_ATTN_4) {
3438				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_4!\n");
3439				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_4, 0x0);
3440			}
3441			if (asserted & ATTN_GENERAL_ATTN_5) {
3442				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_5!\n");
3443				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_5, 0x0);
3444			}
3445			if (asserted & ATTN_GENERAL_ATTN_6) {
3446				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_6!\n");
3447				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_6, 0x0);
3448			}
3449		}
3450
3451	} /* if hardwired */
3452
3453	if (bp->common.int_block == INT_BLOCK_HC)
3454		reg_addr = (HC_REG_COMMAND_REG + port*32 +
3455			    COMMAND_REG_ATTN_BITS_SET);
3456	else
3457		reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8);
3458
3459	DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", asserted,
3460	   (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
3461	REG_WR(bp, reg_addr, asserted);
3462
3463	/* now set back the mask */
3464	if (asserted & ATTN_NIG_FOR_FUNC) {
3465		REG_WR(bp, nig_int_mask_addr, nig_mask);
3466		bnx2x_release_phy_lock(bp);
3467	}
3468}
3469
3470static inline void bnx2x_fan_failure(struct bnx2x *bp)
3471{
3472	int port = BP_PORT(bp);
3473	u32 ext_phy_config;
3474	/* mark the failure */
3475	ext_phy_config =
3476		SHMEM_RD(bp,
3477			 dev_info.port_hw_config[port].external_phy_config);
3478
3479	ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK;
3480	ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE;
3481	SHMEM_WR(bp, dev_info.port_hw_config[port].external_phy_config,
3482		 ext_phy_config);
3483
3484	/* log the failure */
3485	netdev_err(bp->dev, "Fan Failure on Network Controller has caused"
3486	       " the driver to shutdown the card to prevent permanent"
3487	       " damage.  Please contact OEM Support for assistance\n");
3488
3489	/*
3490	 * Scheudle device reset (unload)
3491	 * This is due to some boards consuming sufficient power when driver is
3492	 * up to overheat if fan fails.
3493	 */
3494	smp_mb__before_clear_bit();
3495	set_bit(BNX2X_SP_RTNL_FAN_FAILURE, &bp->sp_rtnl_state);
3496	smp_mb__after_clear_bit();
3497	schedule_delayed_work(&bp->sp_rtnl_task, 0);
3498
3499}
3500
3501static inline void bnx2x_attn_int_deasserted0(struct bnx2x *bp, u32 attn)
3502{
3503	int port = BP_PORT(bp);
3504	int reg_offset;
3505	u32 val;
3506
3507	reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
3508			     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
3509
3510	if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) {
3511
3512		val = REG_RD(bp, reg_offset);
3513		val &= ~AEU_INPUTS_ATTN_BITS_SPIO5;
3514		REG_WR(bp, reg_offset, val);
3515
3516		BNX2X_ERR("SPIO5 hw attention\n");
3517
3518		/* Fan failure attention */
3519		bnx2x_hw_reset_phy(&bp->link_params);
3520		bnx2x_fan_failure(bp);
3521	}
3522
3523	if ((attn & bp->link_vars.aeu_int_mask) && bp->port.pmf) {
3524		bnx2x_acquire_phy_lock(bp);
3525		bnx2x_handle_module_detect_int(&bp->link_params);
3526		bnx2x_release_phy_lock(bp);
3527	}
3528
3529	if (attn & HW_INTERRUT_ASSERT_SET_0) {
3530
3531		val = REG_RD(bp, reg_offset);
3532		val &= ~(attn & HW_INTERRUT_ASSERT_SET_0);
3533		REG_WR(bp, reg_offset, val);
3534
3535		BNX2X_ERR("FATAL HW block attention set0 0x%x\n",
3536			  (u32)(attn & HW_INTERRUT_ASSERT_SET_0));
3537		bnx2x_panic();
3538	}
3539}
3540
3541static inline void bnx2x_attn_int_deasserted1(struct bnx2x *bp, u32 attn)
3542{
3543	u32 val;
3544
3545	if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) {
3546
3547		val = REG_RD(bp, DORQ_REG_DORQ_INT_STS_CLR);
3548		BNX2X_ERR("DB hw attention 0x%x\n", val);
3549		/* DORQ discard attention */
3550		if (val & 0x2)
3551			BNX2X_ERR("FATAL error from DORQ\n");
3552	}
3553
3554	if (attn & HW_INTERRUT_ASSERT_SET_1) {
3555
3556		int port = BP_PORT(bp);
3557		int reg_offset;
3558
3559		reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 :
3560				     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1);
3561
3562		val = REG_RD(bp, reg_offset);
3563		val &= ~(attn & HW_INTERRUT_ASSERT_SET_1);
3564		REG_WR(bp, reg_offset, val);
3565
3566		BNX2X_ERR("FATAL HW block attention set1 0x%x\n",
3567			  (u32)(attn & HW_INTERRUT_ASSERT_SET_1));
3568		bnx2x_panic();
3569	}
3570}
3571
3572static inline void bnx2x_attn_int_deasserted2(struct bnx2x *bp, u32 attn)
3573{
3574	u32 val;
3575
3576	if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) {
3577
3578		val = REG_RD(bp, CFC_REG_CFC_INT_STS_CLR);
3579		BNX2X_ERR("CFC hw attention 0x%x\n", val);
3580		/* CFC error attention */
3581		if (val & 0x2)
3582			BNX2X_ERR("FATAL error from CFC\n");
3583	}
3584
3585	if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) {
3586		val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_0);
3587		BNX2X_ERR("PXP hw attention-0 0x%x\n", val);
3588		/* RQ_USDMDP_FIFO_OVERFLOW */
3589		if (val & 0x18000)
3590			BNX2X_ERR("FATAL error from PXP\n");
3591
3592		if (!CHIP_IS_E1x(bp)) {
3593			val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_1);
3594			BNX2X_ERR("PXP hw attention-1 0x%x\n", val);
3595		}
3596	}
3597
3598	if (attn & HW_INTERRUT_ASSERT_SET_2) {
3599
3600		int port = BP_PORT(bp);
3601		int reg_offset;
3602
3603		reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 :
3604				     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2);
3605
3606		val = REG_RD(bp, reg_offset);
3607		val &= ~(attn & HW_INTERRUT_ASSERT_SET_2);
3608		REG_WR(bp, reg_offset, val);
3609
3610		BNX2X_ERR("FATAL HW block attention set2 0x%x\n",
3611			  (u32)(attn & HW_INTERRUT_ASSERT_SET_2));
3612		bnx2x_panic();
3613	}
3614}
3615
3616static inline void bnx2x_attn_int_deasserted3(struct bnx2x *bp, u32 attn)
3617{
3618	u32 val;
3619
3620	if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) {
3621
3622		if (attn & BNX2X_PMF_LINK_ASSERT) {
3623			int func = BP_FUNC(bp);
3624
3625			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
3626			bp->mf_config[BP_VN(bp)] = MF_CFG_RD(bp,
3627					func_mf_config[BP_ABS_FUNC(bp)].config);
3628			val = SHMEM_RD(bp,
3629				       func_mb[BP_FW_MB_IDX(bp)].drv_status);
3630			if (val & DRV_STATUS_DCC_EVENT_MASK)
3631				bnx2x_dcc_event(bp,
3632					    (val & DRV_STATUS_DCC_EVENT_MASK));
3633
3634			if (val & DRV_STATUS_SET_MF_BW)
3635				bnx2x_set_mf_bw(bp);
3636
3637			if (val & DRV_STATUS_DRV_INFO_REQ)
3638				bnx2x_handle_drv_info_req(bp);
3639			if ((bp->port.pmf == 0) && (val & DRV_STATUS_PMF))
3640				bnx2x_pmf_update(bp);
3641
3642			if (bp->port.pmf &&
3643			    (val & DRV_STATUS_DCBX_NEGOTIATION_RESULTS) &&
3644				bp->dcbx_enabled > 0)
3645				/* start dcbx state machine */
3646				bnx2x_dcbx_set_params(bp,
3647					BNX2X_DCBX_STATE_NEG_RECEIVED);
3648			if (bp->link_vars.periodic_flags &
3649			    PERIODIC_FLAGS_LINK_EVENT) {
3650				/*  sync with link */
3651				bnx2x_acquire_phy_lock(bp);
3652				bp->link_vars.periodic_flags &=
3653					~PERIODIC_FLAGS_LINK_EVENT;
3654				bnx2x_release_phy_lock(bp);
3655				if (IS_MF(bp))
3656					bnx2x_link_sync_notify(bp);
3657				bnx2x_link_report(bp);
3658			}
3659			/* Always call it here: bnx2x_link_report() will
3660			 * prevent the link indication duplication.
3661			 */
3662			bnx2x__link_status_update(bp);
3663		} else if (attn & BNX2X_MC_ASSERT_BITS) {
3664
3665			BNX2X_ERR("MC assert!\n");
3666			bnx2x_mc_assert(bp);
3667			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_10, 0);
3668			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_9, 0);
3669			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_8, 0);
3670			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_7, 0);
3671			bnx2x_panic();
3672
3673		} else if (attn & BNX2X_MCP_ASSERT) {
3674
3675			BNX2X_ERR("MCP assert!\n");
3676			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_11, 0);
3677			bnx2x_fw_dump(bp);
3678
3679		} else
3680			BNX2X_ERR("Unknown HW assert! (attn 0x%x)\n", attn);
3681	}
3682
3683	if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) {
3684		BNX2X_ERR("LATCHED attention 0x%08x (masked)\n", attn);
3685		if (attn & BNX2X_GRC_TIMEOUT) {
3686			val = CHIP_IS_E1(bp) ? 0 :
3687					REG_RD(bp, MISC_REG_GRC_TIMEOUT_ATTN);
3688			BNX2X_ERR("GRC time-out 0x%08x\n", val);
3689		}
3690		if (attn & BNX2X_GRC_RSV) {
3691			val = CHIP_IS_E1(bp) ? 0 :
3692					REG_RD(bp, MISC_REG_GRC_RSV_ATTN);
3693			BNX2X_ERR("GRC reserved 0x%08x\n", val);
3694		}
3695		REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff);
3696	}
3697}
3698
3699/*
3700 * Bits map:
3701 * 0-7   - Engine0 load counter.
3702 * 8-15  - Engine1 load counter.
3703 * 16    - Engine0 RESET_IN_PROGRESS bit.
3704 * 17    - Engine1 RESET_IN_PROGRESS bit.
3705 * 18    - Engine0 ONE_IS_LOADED. Set when there is at least one active function
3706 *         on the engine
3707 * 19    - Engine1 ONE_IS_LOADED.
3708 * 20    - Chip reset flow bit. When set none-leader must wait for both engines
3709 *         leader to complete (check for both RESET_IN_PROGRESS bits and not for
3710 *         just the one belonging to its engine).
3711 *
3712 */
3713#define BNX2X_RECOVERY_GLOB_REG		MISC_REG_GENERIC_POR_1
3714
3715#define BNX2X_PATH0_LOAD_CNT_MASK	0x000000ff
3716#define BNX2X_PATH0_LOAD_CNT_SHIFT	0
3717#define BNX2X_PATH1_LOAD_CNT_MASK	0x0000ff00
3718#define BNX2X_PATH1_LOAD_CNT_SHIFT	8
3719#define BNX2X_PATH0_RST_IN_PROG_BIT	0x00010000
3720#define BNX2X_PATH1_RST_IN_PROG_BIT	0x00020000
3721#define BNX2X_GLOBAL_RESET_BIT		0x00040000
3722
3723/*
3724 * Set the GLOBAL_RESET bit.
3725 *
3726 * Should be run under rtnl lock
3727 */
3728void bnx2x_set_reset_global(struct bnx2x *bp)
3729{
3730	u32 val;
3731	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3732	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3733	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val | BNX2X_GLOBAL_RESET_BIT);
3734	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3735}
3736
3737/*
3738 * Clear the GLOBAL_RESET bit.
3739 *
3740 * Should be run under rtnl lock
3741 */
3742static inline void bnx2x_clear_reset_global(struct bnx2x *bp)
3743{
3744	u32 val;
3745	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3746	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3747	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val & (~BNX2X_GLOBAL_RESET_BIT));
3748	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3749}
3750
3751/*
3752 * Checks the GLOBAL_RESET bit.
3753 *
3754 * should be run under rtnl lock
3755 */
3756static inline bool bnx2x_reset_is_global(struct bnx2x *bp)
3757{
3758	u32 val	= REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3759
3760	DP(NETIF_MSG_HW, "GEN_REG_VAL=0x%08x\n", val);
3761	return (val & BNX2X_GLOBAL_RESET_BIT) ? true : false;
3762}
3763
3764/*
3765 * Clear RESET_IN_PROGRESS bit for the current engine.
3766 *
3767 * Should be run under rtnl lock
3768 */
3769static inline void bnx2x_set_reset_done(struct bnx2x *bp)
3770{
3771	u32 val;
3772	u32 bit = BP_PATH(bp) ?
3773		BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
3774	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3775	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3776
3777	/* Clear the bit */
3778	val &= ~bit;
3779	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
3780
3781	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3782}
3783
3784/*
3785 * Set RESET_IN_PROGRESS for the current engine.
3786 *
3787 * should be run under rtnl lock
3788 */
3789void bnx2x_set_reset_in_progress(struct bnx2x *bp)
3790{
3791	u32 val;
3792	u32 bit = BP_PATH(bp) ?
3793		BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
3794	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3795	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3796
3797	/* Set the bit */
3798	val |= bit;
3799	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
3800	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3801}
3802
3803/*
3804 * Checks the RESET_IN_PROGRESS bit for the given engine.
3805 * should be run under rtnl lock
3806 */
3807bool bnx2x_reset_is_done(struct bnx2x *bp, int engine)
3808{
3809	u32 val	= REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3810	u32 bit = engine ?
3811		BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
3812
3813	/* return false if bit is set */
3814	return (val & bit) ? false : true;
3815}
3816
3817/*
3818 * set pf load for the current pf.
3819 *
3820 * should be run under rtnl lock
3821 */
3822void bnx2x_set_pf_load(struct bnx2x *bp)
3823{
3824	u32 val1, val;
3825	u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
3826			     BNX2X_PATH0_LOAD_CNT_MASK;
3827	u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
3828			     BNX2X_PATH0_LOAD_CNT_SHIFT;
3829
3830	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3831	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3832
3833	DP(NETIF_MSG_HW, "Old GEN_REG_VAL=0x%08x\n", val);
3834
3835	/* get the current counter value */
3836	val1 = (val & mask) >> shift;
3837
3838	/* set bit of that PF */
3839	val1 |= (1 << bp->pf_num);
3840
3841	/* clear the old value */
3842	val &= ~mask;
3843
3844	/* set the new one */
3845	val |= ((val1 << shift) & mask);
3846
3847	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
3848	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3849}
3850
3851/**
3852 * bnx2x_clear_pf_load - clear pf load mark
3853 *
3854 * @bp:		driver handle
3855 *
3856 * Should be run under rtnl lock.
3857 * Decrements the load counter for the current engine. Returns
3858 * whether other functions are still loaded
3859 */
3860bool bnx2x_clear_pf_load(struct bnx2x *bp)
3861{
3862	u32 val1, val;
3863	u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
3864			     BNX2X_PATH0_LOAD_CNT_MASK;
3865	u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
3866			     BNX2X_PATH0_LOAD_CNT_SHIFT;
3867
3868	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3869	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3870	DP(NETIF_MSG_HW, "Old GEN_REG_VAL=0x%08x\n", val);
3871
3872	/* get the current counter value */
3873	val1 = (val & mask) >> shift;
3874
3875	/* clear bit of that PF */
3876	val1 &= ~(1 << bp->pf_num);
3877
3878	/* clear the old value */
3879	val &= ~mask;
3880
3881	/* set the new one */
3882	val |= ((val1 << shift) & mask);
3883
3884	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
3885	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3886	return val1 != 0;
3887}
3888
3889/*
3890 * Read the load status for the current engine.
3891 *
3892 * should be run under rtnl lock
3893 */
3894static inline bool bnx2x_get_load_status(struct bnx2x *bp, int engine)
3895{
3896	u32 mask = (engine ? BNX2X_PATH1_LOAD_CNT_MASK :
3897			     BNX2X_PATH0_LOAD_CNT_MASK);
3898	u32 shift = (engine ? BNX2X_PATH1_LOAD_CNT_SHIFT :
3899			     BNX2X_PATH0_LOAD_CNT_SHIFT);
3900	u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3901
3902	DP(NETIF_MSG_HW, "GLOB_REG=0x%08x\n", val);
3903
3904	val = (val & mask) >> shift;
3905
3906	DP(NETIF_MSG_HW, "load mask for engine %d = 0x%x\n", engine, val);
3907
3908	return val != 0;
3909}
3910
3911/*
3912 * Reset the load status for the current engine.
3913 */
3914static inline void bnx2x_clear_load_status(struct bnx2x *bp)
3915{
3916	u32 val;
3917	u32 mask = (BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
3918		    BNX2X_PATH0_LOAD_CNT_MASK);
3919	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3920	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3921	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val & (~mask));
3922	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3923}
3924
3925static inline void _print_next_block(int idx, const char *blk)
3926{
3927	pr_cont("%s%s", idx ? ", " : "", blk);
3928}
3929
3930static inline int bnx2x_check_blocks_with_parity0(u32 sig, int par_num,
3931						  bool print)
3932{
3933	int i = 0;
3934	u32 cur_bit = 0;
3935	for (i = 0; sig; i++) {
3936		cur_bit = ((u32)0x1 << i);
3937		if (sig & cur_bit) {
3938			switch (cur_bit) {
3939			case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR:
3940				if (print)
3941					_print_next_block(par_num++, "BRB");
3942				break;
3943			case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR:
3944				if (print)
3945					_print_next_block(par_num++, "PARSER");
3946				break;
3947			case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR:
3948				if (print)
3949					_print_next_block(par_num++, "TSDM");
3950				break;
3951			case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR:
3952				if (print)
3953					_print_next_block(par_num++,
3954							  "SEARCHER");
3955				break;
3956			case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR:
3957				if (print)
3958					_print_next_block(par_num++, "TCM");
3959				break;
3960			case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR:
3961				if (print)
3962					_print_next_block(par_num++, "TSEMI");
3963				break;
3964			case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR:
3965				if (print)
3966					_print_next_block(par_num++, "XPB");
3967				break;
3968			}
3969
3970			/* Clear the bit */
3971			sig &= ~cur_bit;
3972		}
3973	}
3974
3975	return par_num;
3976}
3977
3978static inline int bnx2x_check_blocks_with_parity1(u32 sig, int par_num,
3979						  bool *global, bool print)
3980{
3981	int i = 0;
3982	u32 cur_bit = 0;
3983	for (i = 0; sig; i++) {
3984		cur_bit = ((u32)0x1 << i);
3985		if (sig & cur_bit) {
3986			switch (cur_bit) {
3987			case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR:
3988				if (print)
3989					_print_next_block(par_num++, "PBF");
3990				break;
3991			case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR:
3992				if (print)
3993					_print_next_block(par_num++, "QM");
3994				break;
3995			case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR:
3996				if (print)
3997					_print_next_block(par_num++, "TM");
3998				break;
3999			case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR:
4000				if (print)
4001					_print_next_block(par_num++, "XSDM");
4002				break;
4003			case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR:
4004				if (print)
4005					_print_next_block(par_num++, "XCM");
4006				break;
4007			case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR:
4008				if (print)
4009					_print_next_block(par_num++, "XSEMI");
4010				break;
4011			case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR:
4012				if (print)
4013					_print_next_block(par_num++,
4014							  "DOORBELLQ");
4015				break;
4016			case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR:
4017				if (print)
4018					_print_next_block(par_num++, "NIG");
4019				break;
4020			case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR:
4021				if (print)
4022					_print_next_block(par_num++,
4023							  "VAUX PCI CORE");
4024				*global = true;
4025				break;
4026			case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR:
4027				if (print)
4028					_print_next_block(par_num++, "DEBUG");
4029				break;
4030			case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR:
4031				if (print)
4032					_print_next_block(par_num++, "USDM");
4033				break;
4034			case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR:
4035				if (print)
4036					_print_next_block(par_num++, "UCM");
4037				break;
4038			case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR:
4039				if (print)
4040					_print_next_block(par_num++, "USEMI");
4041				break;
4042			case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR:
4043				if (print)
4044					_print_next_block(par_num++, "UPB");
4045				break;
4046			case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR:
4047				if (print)
4048					_print_next_block(par_num++, "CSDM");
4049				break;
4050			case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR:
4051				if (print)
4052					_print_next_block(par_num++, "CCM");
4053				break;
4054			}
4055
4056			/* Clear the bit */
4057			sig &= ~cur_bit;
4058		}
4059	}
4060
4061	return par_num;
4062}
4063
4064static inline int bnx2x_check_blocks_with_parity2(u32 sig, int par_num,
4065						  bool print)
4066{
4067	int i = 0;
4068	u32 cur_bit = 0;
4069	for (i = 0; sig; i++) {
4070		cur_bit = ((u32)0x1 << i);
4071		if (sig & cur_bit) {
4072			switch (cur_bit) {
4073			case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR:
4074				if (print)
4075					_print_next_block(par_num++, "CSEMI");
4076				break;
4077			case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR:
4078				if (print)
4079					_print_next_block(par_num++, "PXP");
4080				break;
4081			case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR:
4082				if (print)
4083					_print_next_block(par_num++,
4084					"PXPPCICLOCKCLIENT");
4085				break;
4086			case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR:
4087				if (print)
4088					_print_next_block(par_num++, "CFC");
4089				break;
4090			case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR:
4091				if (print)
4092					_print_next_block(par_num++, "CDU");
4093				break;
4094			case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR:
4095				if (print)
4096					_print_next_block(par_num++, "DMAE");
4097				break;
4098			case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR:
4099				if (print)
4100					_print_next_block(par_num++, "IGU");
4101				break;
4102			case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR:
4103				if (print)
4104					_print_next_block(par_num++, "MISC");
4105				break;
4106			}
4107
4108			/* Clear the bit */
4109			sig &= ~cur_bit;
4110		}
4111	}
4112
4113	return par_num;
4114}
4115
4116static inline int bnx2x_check_blocks_with_parity3(u32 sig, int par_num,
4117						  bool *global, bool print)
4118{
4119	int i = 0;
4120	u32 cur_bit = 0;
4121	for (i = 0; sig; i++) {
4122		cur_bit = ((u32)0x1 << i);
4123		if (sig & cur_bit) {
4124			switch (cur_bit) {
4125			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY:
4126				if (print)
4127					_print_next_block(par_num++, "MCP ROM");
4128				*global = true;
4129				break;
4130			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY:
4131				if (print)
4132					_print_next_block(par_num++,
4133							  "MCP UMP RX");
4134				*global = true;
4135				break;
4136			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY:
4137				if (print)
4138					_print_next_block(par_num++,
4139							  "MCP UMP TX");
4140				*global = true;
4141				break;
4142			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY:
4143				if (print)
4144					_print_next_block(par_num++,
4145							  "MCP SCPAD");
4146				*global = true;
4147				break;
4148			}
4149
4150			/* Clear the bit */
4151			sig &= ~cur_bit;
4152		}
4153	}
4154
4155	return par_num;
4156}
4157
4158static inline int bnx2x_check_blocks_with_parity4(u32 sig, int par_num,
4159						  bool print)
4160{
4161	int i = 0;
4162	u32 cur_bit = 0;
4163	for (i = 0; sig; i++) {
4164		cur_bit = ((u32)0x1 << i);
4165		if (sig & cur_bit) {
4166			switch (cur_bit) {
4167			case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR:
4168				if (print)
4169					_print_next_block(par_num++, "PGLUE_B");
4170				break;
4171			case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR:
4172				if (print)
4173					_print_next_block(par_num++, "ATC");
4174				break;
4175			}
4176
4177			/* Clear the bit */
4178			sig &= ~cur_bit;
4179		}
4180	}
4181
4182	return par_num;
4183}
4184
4185static inline bool bnx2x_parity_attn(struct bnx2x *bp, bool *global, bool print,
4186				     u32 *sig)
4187{
4188	if ((sig[0] & HW_PRTY_ASSERT_SET_0) ||
4189	    (sig[1] & HW_PRTY_ASSERT_SET_1) ||
4190	    (sig[2] & HW_PRTY_ASSERT_SET_2) ||
4191	    (sig[3] & HW_PRTY_ASSERT_SET_3) ||
4192	    (sig[4] & HW_PRTY_ASSERT_SET_4)) {
4193		int par_num = 0;
4194		DP(NETIF_MSG_HW, "Was parity error: HW block parity attention: "
4195			"[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x "
4196			"[4]:0x%08x\n",
4197			  sig[0] & HW_PRTY_ASSERT_SET_0,
4198			  sig[1] & HW_PRTY_ASSERT_SET_1,
4199			  sig[2] & HW_PRTY_ASSERT_SET_2,
4200			  sig[3] & HW_PRTY_ASSERT_SET_3,
4201			  sig[4] & HW_PRTY_ASSERT_SET_4);
4202		if (print)
4203			netdev_err(bp->dev,
4204				   "Parity errors detected in blocks: ");
4205		par_num = bnx2x_check_blocks_with_parity0(
4206			sig[0] & HW_PRTY_ASSERT_SET_0, par_num, print);
4207		par_num = bnx2x_check_blocks_with_parity1(
4208			sig[1] & HW_PRTY_ASSERT_SET_1, par_num, global, print);
4209		par_num = bnx2x_check_blocks_with_parity2(
4210			sig[2] & HW_PRTY_ASSERT_SET_2, par_num, print);
4211		par_num = bnx2x_check_blocks_with_parity3(
4212			sig[3] & HW_PRTY_ASSERT_SET_3, par_num, global, print);
4213		par_num = bnx2x_check_blocks_with_parity4(
4214			sig[4] & HW_PRTY_ASSERT_SET_4, par_num, print);
4215
4216		if (print)
4217			pr_cont("\n");
4218
4219		return true;
4220	} else
4221		return false;
4222}
4223
4224/**
4225 * bnx2x_chk_parity_attn - checks for parity attentions.
4226 *
4227 * @bp:		driver handle
4228 * @global:	true if there was a global attention
4229 * @print:	show parity attention in syslog
4230 */
4231bool bnx2x_chk_parity_attn(struct bnx2x *bp, bool *global, bool print)
4232{
4233	struct attn_route attn = { {0} };
4234	int port = BP_PORT(bp);
4235
4236	attn.sig[0] = REG_RD(bp,
4237		MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 +
4238			     port*4);
4239	attn.sig[1] = REG_RD(bp,
4240		MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 +
4241			     port*4);
4242	attn.sig[2] = REG_RD(bp,
4243		MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 +
4244			     port*4);
4245	attn.sig[3] = REG_RD(bp,
4246		MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 +
4247			     port*4);
4248
4249	if (!CHIP_IS_E1x(bp))
4250		attn.sig[4] = REG_RD(bp,
4251			MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 +
4252				     port*4);
4253
4254	return bnx2x_parity_attn(bp, global, print, attn.sig);
4255}
4256
4257
4258static inline void bnx2x_attn_int_deasserted4(struct bnx2x *bp, u32 attn)
4259{
4260	u32 val;
4261	if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) {
4262
4263		val = REG_RD(bp, PGLUE_B_REG_PGLUE_B_INT_STS_CLR);
4264		BNX2X_ERR("PGLUE hw attention 0x%x\n", val);
4265		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR)
4266			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
4267				  "ADDRESS_ERROR\n");
4268		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR)
4269			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
4270				  "INCORRECT_RCV_BEHAVIOR\n");
4271		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN)
4272			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
4273				  "WAS_ERROR_ATTN\n");
4274		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN)
4275			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
4276				  "VF_LENGTH_VIOLATION_ATTN\n");
4277		if (val &
4278		    PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN)
4279			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
4280				  "VF_GRC_SPACE_VIOLATION_ATTN\n");
4281		if (val &
4282		    PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN)
4283			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
4284				  "VF_MSIX_BAR_VIOLATION_ATTN\n");
4285		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN)
4286			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
4287				  "TCPL_ERROR_ATTN\n");
4288		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN)
4289			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
4290				  "TCPL_IN_TWO_RCBS_ATTN\n");
4291		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW)
4292			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
4293				  "CSSNOOP_FIFO_OVERFLOW\n");
4294	}
4295	if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) {
4296		val = REG_RD(bp, ATC_REG_ATC_INT_STS_CLR);
4297		BNX2X_ERR("ATC hw attention 0x%x\n", val);
4298		if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR)
4299			BNX2X_ERR("ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n");
4300		if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND)
4301			BNX2X_ERR("ATC_ATC_INT_STS_REG"
4302				  "_ATC_TCPL_TO_NOT_PEND\n");
4303		if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS)
4304			BNX2X_ERR("ATC_ATC_INT_STS_REG_"
4305				  "ATC_GPA_MULTIPLE_HITS\n");
4306		if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT)
4307			BNX2X_ERR("ATC_ATC_INT_STS_REG_"
4308				  "ATC_RCPL_TO_EMPTY_CNT\n");
4309		if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR)
4310			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n");
4311		if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU)
4312			BNX2X_ERR("ATC_ATC_INT_STS_REG_"
4313				  "ATC_IREQ_LESS_THAN_STU\n");
4314	}
4315
4316	if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
4317		    AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) {
4318		BNX2X_ERR("FATAL parity attention set4 0x%x\n",
4319		(u32)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
4320		    AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)));
4321	}
4322
4323}
4324
4325static void bnx2x_attn_int_deasserted(struct bnx2x *bp, u32 deasserted)
4326{
4327	struct attn_route attn, *group_mask;
4328	int port = BP_PORT(bp);
4329	int index;
4330	u32 reg_addr;
4331	u32 val;
4332	u32 aeu_mask;
4333	bool global = false;
4334
4335	/* need to take HW lock because MCP or other port might also
4336	   try to handle this event */
4337	bnx2x_acquire_alr(bp);
4338
4339	if (bnx2x_chk_parity_attn(bp, &global, true)) {
4340#ifndef BNX2X_STOP_ON_ERROR
4341		bp->recovery_state = BNX2X_RECOVERY_INIT;
4342		schedule_delayed_work(&bp->sp_rtnl_task, 0);
4343		/* Disable HW interrupts */
4344		bnx2x_int_disable(bp);
4345		/* In case of parity errors don't handle attentions so that
4346		 * other function would "see" parity errors.
4347		 */
4348#else
4349		bnx2x_panic();
4350#endif
4351		bnx2x_release_alr(bp);
4352		return;
4353	}
4354
4355	attn.sig[0] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4);
4356	attn.sig[1] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4);
4357	attn.sig[2] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4);
4358	attn.sig[3] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4);
4359	if (!CHIP_IS_E1x(bp))
4360		attn.sig[4] =
4361		      REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4);
4362	else
4363		attn.sig[4] = 0;
4364
4365	DP(NETIF_MSG_HW, "attn: %08x %08x %08x %08x %08x\n",
4366	   attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]);
4367
4368	for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
4369		if (deasserted & (1 << index)) {
4370			group_mask = &bp->attn_group[index];
4371
4372			DP(NETIF_MSG_HW, "group[%d]: %08x %08x "
4373					 "%08x %08x %08x\n",
4374			   index,
4375			   group_mask->sig[0], group_mask->sig[1],
4376			   group_mask->sig[2], group_mask->sig[3],
4377			   group_mask->sig[4]);
4378
4379			bnx2x_attn_int_deasserted4(bp,
4380					attn.sig[4] & group_mask->sig[4]);
4381			bnx2x_attn_int_deasserted3(bp,
4382					attn.sig[3] & group_mask->sig[3]);
4383			bnx2x_attn_int_deasserted1(bp,
4384					attn.sig[1] & group_mask->sig[1]);
4385			bnx2x_attn_int_deasserted2(bp,
4386					attn.sig[2] & group_mask->sig[2]);
4387			bnx2x_attn_int_deasserted0(bp,
4388					attn.sig[0] & group_mask->sig[0]);
4389		}
4390	}
4391
4392	bnx2x_release_alr(bp);
4393
4394	if (bp->common.int_block == INT_BLOCK_HC)
4395		reg_addr = (HC_REG_COMMAND_REG + port*32 +
4396			    COMMAND_REG_ATTN_BITS_CLR);
4397	else
4398		reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8);
4399
4400	val = ~deasserted;
4401	DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", val,
4402	   (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
4403	REG_WR(bp, reg_addr, val);
4404
4405	if (~bp->attn_state & deasserted)
4406		BNX2X_ERR("IGU ERROR\n");
4407
4408	reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
4409			  MISC_REG_AEU_MASK_ATTN_FUNC_0;
4410
4411	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4412	aeu_mask = REG_RD(bp, reg_addr);
4413
4414	DP(NETIF_MSG_HW, "aeu_mask %x  newly deasserted %x\n",
4415	   aeu_mask, deasserted);
4416	aeu_mask |= (deasserted & 0x3ff);
4417	DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
4418
4419	REG_WR(bp, reg_addr, aeu_mask);
4420	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4421
4422	DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
4423	bp->attn_state &= ~deasserted;
4424	DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
4425}
4426
4427static void bnx2x_attn_int(struct bnx2x *bp)
4428{
4429	/* read local copy of bits */
4430	u32 attn_bits = le32_to_cpu(bp->def_status_blk->atten_status_block.
4431								attn_bits);
4432	u32 attn_ack = le32_to_cpu(bp->def_status_blk->atten_status_block.
4433								attn_bits_ack);
4434	u32 attn_state = bp->attn_state;
4435
4436	/* look for changed bits */
4437	u32 asserted   =  attn_bits & ~attn_ack & ~attn_state;
4438	u32 deasserted = ~attn_bits &  attn_ack &  attn_state;
4439
4440	DP(NETIF_MSG_HW,
4441	   "attn_bits %x  attn_ack %x  asserted %x  deasserted %x\n",
4442	   attn_bits, attn_ack, asserted, deasserted);
4443
4444	if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state))
4445		BNX2X_ERR("BAD attention state\n");
4446
4447	/* handle bits that were raised */
4448	if (asserted)
4449		bnx2x_attn_int_asserted(bp, asserted);
4450
4451	if (deasserted)
4452		bnx2x_attn_int_deasserted(bp, deasserted);
4453}
4454
4455void bnx2x_igu_ack_sb(struct bnx2x *bp, u8 igu_sb_id, u8 segment,
4456		      u16 index, u8 op, u8 update)
4457{
4458	u32 igu_addr = BAR_IGU_INTMEM + (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8;
4459
4460	bnx2x_igu_ack_sb_gen(bp, igu_sb_id, segment, index, op, update,
4461			     igu_addr);
4462}
4463
4464static inline void bnx2x_update_eq_prod(struct bnx2x *bp, u16 prod)
4465{
4466	/* No memory barriers */
4467	storm_memset_eq_prod(bp, prod, BP_FUNC(bp));
4468	mmiowb(); /* keep prod updates ordered */
4469}
4470
4471#ifdef BCM_CNIC
4472static int  bnx2x_cnic_handle_cfc_del(struct bnx2x *bp, u32 cid,
4473				      union event_ring_elem *elem)
4474{
4475	u8 err = elem->message.error;
4476
4477	if (!bp->cnic_eth_dev.starting_cid  ||
4478	    (cid < bp->cnic_eth_dev.starting_cid &&
4479	    cid != bp->cnic_eth_dev.iscsi_l2_cid))
4480		return 1;
4481
4482	DP(BNX2X_MSG_SP, "got delete ramrod for CNIC CID %d\n", cid);
4483
4484	if (unlikely(err)) {
4485
4486		BNX2X_ERR("got delete ramrod for CNIC CID %d with error!\n",
4487			  cid);
4488		bnx2x_panic_dump(bp);
4489	}
4490	bnx2x_cnic_cfc_comp(bp, cid, err);
4491	return 0;
4492}
4493#endif
4494
4495static inline void bnx2x_handle_mcast_eqe(struct bnx2x *bp)
4496{
4497	struct bnx2x_mcast_ramrod_params rparam;
4498	int rc;
4499
4500	memset(&rparam, 0, sizeof(rparam));
4501
4502	rparam.mcast_obj = &bp->mcast_obj;
4503
4504	netif_addr_lock_bh(bp->dev);
4505
4506	/* Clear pending state for the last command */
4507	bp->mcast_obj.raw.clear_pending(&bp->mcast_obj.raw);
4508
4509	/* If there are pending mcast commands - send them */
4510	if (bp->mcast_obj.check_pending(&bp->mcast_obj)) {
4511		rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
4512		if (rc < 0)
4513			BNX2X_ERR("Failed to send pending mcast commands: %d\n",
4514				  rc);
4515	}
4516
4517	netif_addr_unlock_bh(bp->dev);
4518}
4519
4520static inline void bnx2x_handle_classification_eqe(struct bnx2x *bp,
4521						   union event_ring_elem *elem)
4522{
4523	unsigned long ramrod_flags = 0;
4524	int rc = 0;
4525	u32 cid = elem->message.data.eth_event.echo & BNX2X_SWCID_MASK;
4526	struct bnx2x_vlan_mac_obj *vlan_mac_obj;
4527
4528	/* Always push next commands out, don't wait here */
4529	__set_bit(RAMROD_CONT, &ramrod_flags);
4530
4531	switch (elem->message.data.eth_event.echo >> BNX2X_SWCID_SHIFT) {
4532	case BNX2X_FILTER_MAC_PENDING:
4533#ifdef BCM_CNIC
4534		if (cid == BNX2X_ISCSI_ETH_CID)
4535			vlan_mac_obj = &bp->iscsi_l2_mac_obj;
4536		else
4537#endif
4538			vlan_mac_obj = &bp->fp[cid].mac_obj;
4539
4540		break;
4541	case BNX2X_FILTER_MCAST_PENDING:
4542		/* This is only relevant for 57710 where multicast MACs are
4543		 * configured as unicast MACs using the same ramrod.
4544		 */
4545		bnx2x_handle_mcast_eqe(bp);
4546		return;
4547	default:
4548		BNX2X_ERR("Unsupported classification command: %d\n",
4549			  elem->message.data.eth_event.echo);
4550		return;
4551	}
4552
4553	rc = vlan_mac_obj->complete(bp, vlan_mac_obj, elem, &ramrod_flags);
4554
4555	if (rc < 0)
4556		BNX2X_ERR("Failed to schedule new commands: %d\n", rc);
4557	else if (rc > 0)
4558		DP(BNX2X_MSG_SP, "Scheduled next pending commands...\n");
4559
4560}
4561
4562#ifdef BCM_CNIC
4563static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start);
4564#endif
4565
4566static inline void bnx2x_handle_rx_mode_eqe(struct bnx2x *bp)
4567{
4568	netif_addr_lock_bh(bp->dev);
4569
4570	clear_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
4571
4572	/* Send rx_mode command again if was requested */
4573	if (test_and_clear_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state))
4574		bnx2x_set_storm_rx_mode(bp);
4575#ifdef BCM_CNIC
4576	else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED,
4577				    &bp->sp_state))
4578		bnx2x_set_iscsi_eth_rx_mode(bp, true);
4579	else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED,
4580				    &bp->sp_state))
4581		bnx2x_set_iscsi_eth_rx_mode(bp, false);
4582#endif
4583
4584	netif_addr_unlock_bh(bp->dev);
4585}
4586
4587static inline struct bnx2x_queue_sp_obj *bnx2x_cid_to_q_obj(
4588	struct bnx2x *bp, u32 cid)
4589{
4590	DP(BNX2X_MSG_SP, "retrieving fp from cid %d\n", cid);
4591#ifdef BCM_CNIC
4592	if (cid == BNX2X_FCOE_ETH_CID)
4593		return &bnx2x_fcoe(bp, q_obj);
4594	else
4595#endif
4596		return &bnx2x_fp(bp, CID_TO_FP(cid), q_obj);
4597}
4598
4599static void bnx2x_eq_int(struct bnx2x *bp)
4600{
4601	u16 hw_cons, sw_cons, sw_prod;
4602	union event_ring_elem *elem;
4603	u32 cid;
4604	u8 opcode;
4605	int spqe_cnt = 0;
4606	struct bnx2x_queue_sp_obj *q_obj;
4607	struct bnx2x_func_sp_obj *f_obj = &bp->func_obj;
4608	struct bnx2x_raw_obj *rss_raw = &bp->rss_conf_obj.raw;
4609
4610	hw_cons = le16_to_cpu(*bp->eq_cons_sb);
4611
4612	/* The hw_cos range is 1-255, 257 - the sw_cons range is 0-254, 256.
4613	 * when we get the the next-page we nned to adjust so the loop
4614	 * condition below will be met. The next element is the size of a
4615	 * regular element and hence incrementing by 1
4616	 */
4617	if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE)
4618		hw_cons++;
4619
4620	/* This function may never run in parallel with itself for a
4621	 * specific bp, thus there is no need in "paired" read memory
4622	 * barrier here.
4623	 */
4624	sw_cons = bp->eq_cons;
4625	sw_prod = bp->eq_prod;
4626
4627	DP(BNX2X_MSG_SP, "EQ:  hw_cons %u  sw_cons %u bp->eq_spq_left %x\n",
4628			hw_cons, sw_cons, atomic_read(&bp->eq_spq_left));
4629
4630	for (; sw_cons != hw_cons;
4631	      sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) {
4632
4633
4634		elem = &bp->eq_ring[EQ_DESC(sw_cons)];
4635
4636		cid = SW_CID(elem->message.data.cfc_del_event.cid);
4637		opcode = elem->message.opcode;
4638
4639
4640		/* handle eq element */
4641		switch (opcode) {
4642		case EVENT_RING_OPCODE_STAT_QUERY:
4643			DP(NETIF_MSG_TIMER, "got statistics comp event %d\n",
4644			   bp->stats_comp++);
4645			/* nothing to do with stats comp */
4646			goto next_spqe;
4647
4648		case EVENT_RING_OPCODE_CFC_DEL:
4649			/* handle according to cid range */
4650			/*
4651			 * we may want to verify here that the bp state is
4652			 * HALTING
4653			 */
4654			DP(BNX2X_MSG_SP,
4655			   "got delete ramrod for MULTI[%d]\n", cid);
4656#ifdef BCM_CNIC
4657			if (!bnx2x_cnic_handle_cfc_del(bp, cid, elem))
4658				goto next_spqe;
4659#endif
4660			q_obj = bnx2x_cid_to_q_obj(bp, cid);
4661
4662			if (q_obj->complete_cmd(bp, q_obj, BNX2X_Q_CMD_CFC_DEL))
4663				break;
4664
4665
4666
4667			goto next_spqe;
4668
4669		case EVENT_RING_OPCODE_STOP_TRAFFIC:
4670			DP(BNX2X_MSG_SP, "got STOP TRAFFIC\n");
4671			if (f_obj->complete_cmd(bp, f_obj,
4672						BNX2X_F_CMD_TX_STOP))
4673				break;
4674			bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_PAUSED);
4675			goto next_spqe;
4676
4677		case EVENT_RING_OPCODE_START_TRAFFIC:
4678			DP(BNX2X_MSG_SP, "got START TRAFFIC\n");
4679			if (f_obj->complete_cmd(bp, f_obj,
4680						BNX2X_F_CMD_TX_START))
4681				break;
4682			bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_RELEASED);
4683			goto next_spqe;
4684		case EVENT_RING_OPCODE_FUNCTION_START:
4685			DP(BNX2X_MSG_SP, "got FUNC_START ramrod\n");
4686			if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_START))
4687				break;
4688
4689			goto next_spqe;
4690
4691		case EVENT_RING_OPCODE_FUNCTION_STOP:
4692			DP(BNX2X_MSG_SP, "got FUNC_STOP ramrod\n");
4693			if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_STOP))
4694				break;
4695
4696			goto next_spqe;
4697		}
4698
4699		switch (opcode | bp->state) {
4700		case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
4701		      BNX2X_STATE_OPEN):
4702		case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
4703		      BNX2X_STATE_OPENING_WAIT4_PORT):
4704			cid = elem->message.data.eth_event.echo &
4705				BNX2X_SWCID_MASK;
4706			DP(BNX2X_MSG_SP, "got RSS_UPDATE ramrod. CID %d\n",
4707			   cid);
4708			rss_raw->clear_pending(rss_raw);
4709			break;
4710
4711		case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_OPEN):
4712		case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_DIAG):
4713		case (EVENT_RING_OPCODE_SET_MAC |
4714		      BNX2X_STATE_CLOSING_WAIT4_HALT):
4715		case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
4716		      BNX2X_STATE_OPEN):
4717		case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
4718		      BNX2X_STATE_DIAG):
4719		case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
4720		      BNX2X_STATE_CLOSING_WAIT4_HALT):
4721			DP(BNX2X_MSG_SP, "got (un)set mac ramrod\n");
4722			bnx2x_handle_classification_eqe(bp, elem);
4723			break;
4724
4725		case (EVENT_RING_OPCODE_MULTICAST_RULES |
4726		      BNX2X_STATE_OPEN):
4727		case (EVENT_RING_OPCODE_MULTICAST_RULES |
4728		      BNX2X_STATE_DIAG):
4729		case (EVENT_RING_OPCODE_MULTICAST_RULES |
4730		      BNX2X_STATE_CLOSING_WAIT4_HALT):
4731			DP(BNX2X_MSG_SP, "got mcast ramrod\n");
4732			bnx2x_handle_mcast_eqe(bp);
4733			break;
4734
4735		case (EVENT_RING_OPCODE_FILTERS_RULES |
4736		      BNX2X_STATE_OPEN):
4737		case (EVENT_RING_OPCODE_FILTERS_RULES |
4738		      BNX2X_STATE_DIAG):
4739		case (EVENT_RING_OPCODE_FILTERS_RULES |
4740		      BNX2X_STATE_CLOSING_WAIT4_HALT):
4741			DP(BNX2X_MSG_SP, "got rx_mode ramrod\n");
4742			bnx2x_handle_rx_mode_eqe(bp);
4743			break;
4744		default:
4745			/* unknown event log error and continue */
4746			BNX2X_ERR("Unknown EQ event %d, bp->state 0x%x\n",
4747				  elem->message.opcode, bp->state);
4748		}
4749next_spqe:
4750		spqe_cnt++;
4751	} /* for */
4752
4753	smp_mb__before_atomic_inc();
4754	atomic_add(spqe_cnt, &bp->eq_spq_left);
4755
4756	bp->eq_cons = sw_cons;
4757	bp->eq_prod = sw_prod;
4758	/* Make sure that above mem writes were issued towards the memory */
4759	smp_wmb();
4760
4761	/* update producer */
4762	bnx2x_update_eq_prod(bp, bp->eq_prod);
4763}
4764
4765static void bnx2x_sp_task(struct work_struct *work)
4766{
4767	struct bnx2x *bp = container_of(work, struct bnx2x, sp_task.work);
4768	u16 status;
4769
4770	status = bnx2x_update_dsb_idx(bp);
4771/*	if (status == 0)				     */
4772/*		BNX2X_ERR("spurious slowpath interrupt!\n"); */
4773
4774	DP(NETIF_MSG_INTR, "got a slowpath interrupt (status 0x%x)\n", status);
4775
4776	/* HW attentions */
4777	if (status & BNX2X_DEF_SB_ATT_IDX) {
4778		bnx2x_attn_int(bp);
4779		status &= ~BNX2X_DEF_SB_ATT_IDX;
4780	}
4781
4782	/* SP events: STAT_QUERY and others */
4783	if (status & BNX2X_DEF_SB_IDX) {
4784#ifdef BCM_CNIC
4785		struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp);
4786
4787		if ((!NO_FCOE(bp)) &&
4788			(bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) {
4789			/*
4790			 * Prevent local bottom-halves from running as
4791			 * we are going to change the local NAPI list.
4792			 */
4793			local_bh_disable();
4794			napi_schedule(&bnx2x_fcoe(bp, napi));
4795			local_bh_enable();
4796		}
4797#endif
4798		/* Handle EQ completions */
4799		bnx2x_eq_int(bp);
4800
4801		bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID,
4802			le16_to_cpu(bp->def_idx), IGU_INT_NOP, 1);
4803
4804		status &= ~BNX2X_DEF_SB_IDX;
4805	}
4806
4807	if (unlikely(status))
4808		DP(NETIF_MSG_INTR, "got an unknown interrupt! (status 0x%x)\n",
4809		   status);
4810
4811	bnx2x_ack_sb(bp, bp->igu_dsb_id, ATTENTION_ID,
4812	     le16_to_cpu(bp->def_att_idx), IGU_INT_ENABLE, 1);
4813}
4814
4815irqreturn_t bnx2x_msix_sp_int(int irq, void *dev_instance)
4816{
4817	struct net_device *dev = dev_instance;
4818	struct bnx2x *bp = netdev_priv(dev);
4819
4820	bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0,
4821		     IGU_INT_DISABLE, 0);
4822
4823#ifdef BNX2X_STOP_ON_ERROR
4824	if (unlikely(bp->panic))
4825		return IRQ_HANDLED;
4826#endif
4827
4828#ifdef BCM_CNIC
4829	{
4830		struct cnic_ops *c_ops;
4831
4832		rcu_read_lock();
4833		c_ops = rcu_dereference(bp->cnic_ops);
4834		if (c_ops)
4835			c_ops->cnic_handler(bp->cnic_data, NULL);
4836		rcu_read_unlock();
4837	}
4838#endif
4839	queue_delayed_work(bnx2x_wq, &bp->sp_task, 0);
4840
4841	return IRQ_HANDLED;
4842}
4843
4844/* end of slow path */
4845
4846
4847void bnx2x_drv_pulse(struct bnx2x *bp)
4848{
4849	SHMEM_WR(bp, func_mb[BP_FW_MB_IDX(bp)].drv_pulse_mb,
4850		 bp->fw_drv_pulse_wr_seq);
4851}
4852
4853
4854static void bnx2x_timer(unsigned long data)
4855{
4856	u8 cos;
4857	struct bnx2x *bp = (struct bnx2x *) data;
4858
4859	if (!netif_running(bp->dev))
4860		return;
4861
4862	if (poll) {
4863		struct bnx2x_fastpath *fp = &bp->fp[0];
4864
4865		for_each_cos_in_tx_queue(fp, cos)
4866			bnx2x_tx_int(bp, &fp->txdata[cos]);
4867		bnx2x_rx_int(fp, 1000);
4868	}
4869
4870	if (!BP_NOMCP(bp)) {
4871		int mb_idx = BP_FW_MB_IDX(bp);
4872		u32 drv_pulse;
4873		u32 mcp_pulse;
4874
4875		++bp->fw_drv_pulse_wr_seq;
4876		bp->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK;
4877		/* TBD - add SYSTEM_TIME */
4878		drv_pulse = bp->fw_drv_pulse_wr_seq;
4879		bnx2x_drv_pulse(bp);
4880
4881		mcp_pulse = (SHMEM_RD(bp, func_mb[mb_idx].mcp_pulse_mb) &
4882			     MCP_PULSE_SEQ_MASK);
4883		/* The delta between driver pulse and mcp response
4884		 * should be 1 (before mcp response) or 0 (after mcp response)
4885		 */
4886		if ((drv_pulse != mcp_pulse) &&
4887		    (drv_pulse != ((mcp_pulse + 1) & MCP_PULSE_SEQ_MASK))) {
4888			/* someone lost a heartbeat... */
4889			BNX2X_ERR("drv_pulse (0x%x) != mcp_pulse (0x%x)\n",
4890				  drv_pulse, mcp_pulse);
4891		}
4892	}
4893
4894	if (bp->state == BNX2X_STATE_OPEN)
4895		bnx2x_stats_handle(bp, STATS_EVENT_UPDATE);
4896
4897	mod_timer(&bp->timer, jiffies + bp->current_interval);
4898}
4899
4900/* end of Statistics */
4901
4902/* nic init */
4903
4904/*
4905 * nic init service functions
4906 */
4907
4908static inline void bnx2x_fill(struct bnx2x *bp, u32 addr, int fill, u32 len)
4909{
4910	u32 i;
4911	if (!(len%4) && !(addr%4))
4912		for (i = 0; i < len; i += 4)
4913			REG_WR(bp, addr + i, fill);
4914	else
4915		for (i = 0; i < len; i++)
4916			REG_WR8(bp, addr + i, fill);
4917
4918}
4919
4920/* helper: writes FP SP data to FW - data_size in dwords */
4921static inline void bnx2x_wr_fp_sb_data(struct bnx2x *bp,
4922				       int fw_sb_id,
4923				       u32 *sb_data_p,
4924				       u32 data_size)
4925{
4926	int index;
4927	for (index = 0; index < data_size; index++)
4928		REG_WR(bp, BAR_CSTRORM_INTMEM +
4929			CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) +
4930			sizeof(u32)*index,
4931			*(sb_data_p + index));
4932}
4933
4934static inline void bnx2x_zero_fp_sb(struct bnx2x *bp, int fw_sb_id)
4935{
4936	u32 *sb_data_p;
4937	u32 data_size = 0;
4938	struct hc_status_block_data_e2 sb_data_e2;
4939	struct hc_status_block_data_e1x sb_data_e1x;
4940
4941	/* disable the function first */
4942	if (!CHIP_IS_E1x(bp)) {
4943		memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
4944		sb_data_e2.common.state = SB_DISABLED;
4945		sb_data_e2.common.p_func.vf_valid = false;
4946		sb_data_p = (u32 *)&sb_data_e2;
4947		data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
4948	} else {
4949		memset(&sb_data_e1x, 0,
4950		       sizeof(struct hc_status_block_data_e1x));
4951		sb_data_e1x.common.state = SB_DISABLED;
4952		sb_data_e1x.common.p_func.vf_valid = false;
4953		sb_data_p = (u32 *)&sb_data_e1x;
4954		data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
4955	}
4956	bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
4957
4958	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
4959			CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id), 0,
4960			CSTORM_STATUS_BLOCK_SIZE);
4961	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
4962			CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id), 0,
4963			CSTORM_SYNC_BLOCK_SIZE);
4964}
4965
4966/* helper:  writes SP SB data to FW */
4967static inline void bnx2x_wr_sp_sb_data(struct bnx2x *bp,
4968		struct hc_sp_status_block_data *sp_sb_data)
4969{
4970	int func = BP_FUNC(bp);
4971	int i;
4972	for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++)
4973		REG_WR(bp, BAR_CSTRORM_INTMEM +
4974			CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) +
4975			i*sizeof(u32),
4976			*((u32 *)sp_sb_data + i));
4977}
4978
4979static inline void bnx2x_zero_sp_sb(struct bnx2x *bp)
4980{
4981	int func = BP_FUNC(bp);
4982	struct hc_sp_status_block_data sp_sb_data;
4983	memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
4984
4985	sp_sb_data.state = SB_DISABLED;
4986	sp_sb_data.p_func.vf_valid = false;
4987
4988	bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
4989
4990	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
4991			CSTORM_SP_STATUS_BLOCK_OFFSET(func), 0,
4992			CSTORM_SP_STATUS_BLOCK_SIZE);
4993	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
4994			CSTORM_SP_SYNC_BLOCK_OFFSET(func), 0,
4995			CSTORM_SP_SYNC_BLOCK_SIZE);
4996
4997}
4998
4999
5000static inline
5001void bnx2x_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm,
5002					   int igu_sb_id, int igu_seg_id)
5003{
5004	hc_sm->igu_sb_id = igu_sb_id;
5005	hc_sm->igu_seg_id = igu_seg_id;
5006	hc_sm->timer_value = 0xFF;
5007	hc_sm->time_to_expire = 0xFFFFFFFF;
5008}
5009
5010
5011/* allocates state machine ids. */
5012static inline
5013void bnx2x_map_sb_state_machines(struct hc_index_data *index_data)
5014{
5015	/* zero out state machine indices */
5016	/* rx indices */
5017	index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
5018
5019	/* tx indices */
5020	index_data[HC_INDEX_OOO_TX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
5021	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID;
5022	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID;
5023	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID;
5024
5025	/* map indices */
5026	/* rx indices */
5027	index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |=
5028		SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5029
5030	/* tx indices */
5031	index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |=
5032		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5033	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |=
5034		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5035	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |=
5036		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5037	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |=
5038		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5039}
5040
5041static void bnx2x_init_sb(struct bnx2x *bp, dma_addr_t mapping, int vfid,
5042			  u8 vf_valid, int fw_sb_id, int igu_sb_id)
5043{
5044	int igu_seg_id;
5045
5046	struct hc_status_block_data_e2 sb_data_e2;
5047	struct hc_status_block_data_e1x sb_data_e1x;
5048	struct hc_status_block_sm  *hc_sm_p;
5049	int data_size;
5050	u32 *sb_data_p;
5051
5052	if (CHIP_INT_MODE_IS_BC(bp))
5053		igu_seg_id = HC_SEG_ACCESS_NORM;
5054	else
5055		igu_seg_id = IGU_SEG_ACCESS_NORM;
5056
5057	bnx2x_zero_fp_sb(bp, fw_sb_id);
5058
5059	if (!CHIP_IS_E1x(bp)) {
5060		memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
5061		sb_data_e2.common.state = SB_ENABLED;
5062		sb_data_e2.common.p_func.pf_id = BP_FUNC(bp);
5063		sb_data_e2.common.p_func.vf_id = vfid;
5064		sb_data_e2.common.p_func.vf_valid = vf_valid;
5065		sb_data_e2.common.p_func.vnic_id = BP_VN(bp);
5066		sb_data_e2.common.same_igu_sb_1b = true;
5067		sb_data_e2.common.host_sb_addr.hi = U64_HI(mapping);
5068		sb_data_e2.common.host_sb_addr.lo = U64_LO(mapping);
5069		hc_sm_p = sb_data_e2.common.state_machine;
5070		sb_data_p = (u32 *)&sb_data_e2;
5071		data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
5072		bnx2x_map_sb_state_machines(sb_data_e2.index_data);
5073	} else {
5074		memset(&sb_data_e1x, 0,
5075		       sizeof(struct hc_status_block_data_e1x));
5076		sb_data_e1x.common.state = SB_ENABLED;
5077		sb_data_e1x.common.p_func.pf_id = BP_FUNC(bp);
5078		sb_data_e1x.common.p_func.vf_id = 0xff;
5079		sb_data_e1x.common.p_func.vf_valid = false;
5080		sb_data_e1x.common.p_func.vnic_id = BP_VN(bp);
5081		sb_data_e1x.common.same_igu_sb_1b = true;
5082		sb_data_e1x.common.host_sb_addr.hi = U64_HI(mapping);
5083		sb_data_e1x.common.host_sb_addr.lo = U64_LO(mapping);
5084		hc_sm_p = sb_data_e1x.common.state_machine;
5085		sb_data_p = (u32 *)&sb_data_e1x;
5086		data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
5087		bnx2x_map_sb_state_machines(sb_data_e1x.index_data);
5088	}
5089
5090	bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID],
5091				       igu_sb_id, igu_seg_id);
5092	bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID],
5093				       igu_sb_id, igu_seg_id);
5094
5095	DP(NETIF_MSG_HW, "Init FW SB %d\n", fw_sb_id);
5096
5097	/* write indecies to HW */
5098	bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
5099}
5100
5101static void bnx2x_update_coalesce_sb(struct bnx2x *bp, u8 fw_sb_id,
5102				     u16 tx_usec, u16 rx_usec)
5103{
5104	bnx2x_update_coalesce_sb_index(bp, fw_sb_id, HC_INDEX_ETH_RX_CQ_CONS,
5105				    false, rx_usec);
5106	bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
5107				       HC_INDEX_ETH_TX_CQ_CONS_COS0, false,
5108				       tx_usec);
5109	bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
5110				       HC_INDEX_ETH_TX_CQ_CONS_COS1, false,
5111				       tx_usec);
5112	bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
5113				       HC_INDEX_ETH_TX_CQ_CONS_COS2, false,
5114				       tx_usec);
5115}
5116
5117static void bnx2x_init_def_sb(struct bnx2x *bp)
5118{
5119	struct host_sp_status_block *def_sb = bp->def_status_blk;
5120	dma_addr_t mapping = bp->def_status_blk_mapping;
5121	int igu_sp_sb_index;
5122	int igu_seg_id;
5123	int port = BP_PORT(bp);
5124	int func = BP_FUNC(bp);
5125	int reg_offset, reg_offset_en5;
5126	u64 section;
5127	int index;
5128	struct hc_sp_status_block_data sp_sb_data;
5129	memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
5130
5131	if (CHIP_INT_MODE_IS_BC(bp)) {
5132		igu_sp_sb_index = DEF_SB_IGU_ID;
5133		igu_seg_id = HC_SEG_ACCESS_DEF;
5134	} else {
5135		igu_sp_sb_index = bp->igu_dsb_id;
5136		igu_seg_id = IGU_SEG_ACCESS_DEF;
5137	}
5138
5139	/* ATTN */
5140	section = ((u64)mapping) + offsetof(struct host_sp_status_block,
5141					    atten_status_block);
5142	def_sb->atten_status_block.status_block_id = igu_sp_sb_index;
5143
5144	bp->attn_state = 0;
5145
5146	reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
5147			     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
5148	reg_offset_en5 = (port ? MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 :
5149				 MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0);
5150	for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
5151		int sindex;
5152		/* take care of sig[0]..sig[4] */
5153		for (sindex = 0; sindex < 4; sindex++)
5154			bp->attn_group[index].sig[sindex] =
5155			   REG_RD(bp, reg_offset + sindex*0x4 + 0x10*index);
5156
5157		if (!CHIP_IS_E1x(bp))
5158			/*
5159			 * enable5 is separate from the rest of the registers,
5160			 * and therefore the address skip is 4
5161			 * and not 16 between the different groups
5162			 */
5163			bp->attn_group[index].sig[4] = REG_RD(bp,
5164					reg_offset_en5 + 0x4*index);
5165		else
5166			bp->attn_group[index].sig[4] = 0;
5167	}
5168
5169	if (bp->common.int_block == INT_BLOCK_HC) {
5170		reg_offset = (port ? HC_REG_ATTN_MSG1_ADDR_L :
5171				     HC_REG_ATTN_MSG0_ADDR_L);
5172
5173		REG_WR(bp, reg_offset, U64_LO(section));
5174		REG_WR(bp, reg_offset + 4, U64_HI(section));
5175	} else if (!CHIP_IS_E1x(bp)) {
5176		REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section));
5177		REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section));
5178	}
5179
5180	section = ((u64)mapping) + offsetof(struct host_sp_status_block,
5181					    sp_sb);
5182
5183	bnx2x_zero_sp_sb(bp);
5184
5185	sp_sb_data.state		= SB_ENABLED;
5186	sp_sb_data.host_sb_addr.lo	= U64_LO(section);
5187	sp_sb_data.host_sb_addr.hi	= U64_HI(section);
5188	sp_sb_data.igu_sb_id		= igu_sp_sb_index;
5189	sp_sb_data.igu_seg_id		= igu_seg_id;
5190	sp_sb_data.p_func.pf_id		= func;
5191	sp_sb_data.p_func.vnic_id	= BP_VN(bp);
5192	sp_sb_data.p_func.vf_id		= 0xff;
5193
5194	bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
5195
5196	bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
5197}
5198
5199void bnx2x_update_coalesce(struct bnx2x *bp)
5200{
5201	int i;
5202
5203	for_each_eth_queue(bp, i)
5204		bnx2x_update_coalesce_sb(bp, bp->fp[i].fw_sb_id,
5205					 bp->tx_ticks, bp->rx_ticks);
5206}
5207
5208static void bnx2x_init_sp_ring(struct bnx2x *bp)
5209{
5210	spin_lock_init(&bp->spq_lock);
5211	atomic_set(&bp->cq_spq_left, MAX_SPQ_PENDING);
5212
5213	bp->spq_prod_idx = 0;
5214	bp->dsb_sp_prod = BNX2X_SP_DSB_INDEX;
5215	bp->spq_prod_bd = bp->spq;
5216	bp->spq_last_bd = bp->spq_prod_bd + MAX_SP_DESC_CNT;
5217}
5218
5219static void bnx2x_init_eq_ring(struct bnx2x *bp)
5220{
5221	int i;
5222	for (i = 1; i <= NUM_EQ_PAGES; i++) {
5223		union event_ring_elem *elem =
5224			&bp->eq_ring[EQ_DESC_CNT_PAGE * i - 1];
5225
5226		elem->next_page.addr.hi =
5227			cpu_to_le32(U64_HI(bp->eq_mapping +
5228				   BCM_PAGE_SIZE * (i % NUM_EQ_PAGES)));
5229		elem->next_page.addr.lo =
5230			cpu_to_le32(U64_LO(bp->eq_mapping +
5231				   BCM_PAGE_SIZE*(i % NUM_EQ_PAGES)));
5232	}
5233	bp->eq_cons = 0;
5234	bp->eq_prod = NUM_EQ_DESC;
5235	bp->eq_cons_sb = BNX2X_EQ_INDEX;
5236	/* we want a warning message before it gets rought... */
5237	atomic_set(&bp->eq_spq_left,
5238		min_t(int, MAX_SP_DESC_CNT - MAX_SPQ_PENDING, NUM_EQ_DESC) - 1);
5239}
5240
5241
5242/* called with netif_addr_lock_bh() */
5243void bnx2x_set_q_rx_mode(struct bnx2x *bp, u8 cl_id,
5244			 unsigned long rx_mode_flags,
5245			 unsigned long rx_accept_flags,
5246			 unsigned long tx_accept_flags,
5247			 unsigned long ramrod_flags)
5248{
5249	struct bnx2x_rx_mode_ramrod_params ramrod_param;
5250	int rc;
5251
5252	memset(&ramrod_param, 0, sizeof(ramrod_param));
5253
5254	/* Prepare ramrod parameters */
5255	ramrod_param.cid = 0;
5256	ramrod_param.cl_id = cl_id;
5257	ramrod_param.rx_mode_obj = &bp->rx_mode_obj;
5258	ramrod_param.func_id = BP_FUNC(bp);
5259
5260	ramrod_param.pstate = &bp->sp_state;
5261	ramrod_param.state = BNX2X_FILTER_RX_MODE_PENDING;
5262
5263	ramrod_param.rdata = bnx2x_sp(bp, rx_mode_rdata);
5264	ramrod_param.rdata_mapping = bnx2x_sp_mapping(bp, rx_mode_rdata);
5265
5266	set_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
5267
5268	ramrod_param.ramrod_flags = ramrod_flags;
5269	ramrod_param.rx_mode_flags = rx_mode_flags;
5270
5271	ramrod_param.rx_accept_flags = rx_accept_flags;
5272	ramrod_param.tx_accept_flags = tx_accept_flags;
5273
5274	rc = bnx2x_config_rx_mode(bp, &ramrod_param);
5275	if (rc < 0) {
5276		BNX2X_ERR("Set rx_mode %d failed\n", bp->rx_mode);
5277		return;
5278	}
5279}
5280
5281/* called with netif_addr_lock_bh() */
5282void bnx2x_set_storm_rx_mode(struct bnx2x *bp)
5283{
5284	unsigned long rx_mode_flags = 0, ramrod_flags = 0;
5285	unsigned long rx_accept_flags = 0, tx_accept_flags = 0;
5286
5287#ifdef BCM_CNIC
5288	if (!NO_FCOE(bp))
5289
5290		/* Configure rx_mode of FCoE Queue */
5291		__set_bit(BNX2X_RX_MODE_FCOE_ETH, &rx_mode_flags);
5292#endif
5293
5294	switch (bp->rx_mode) {
5295	case BNX2X_RX_MODE_NONE:
5296		/*
5297		 * 'drop all' supersedes any accept flags that may have been
5298		 * passed to the function.
5299		 */
5300		break;
5301	case BNX2X_RX_MODE_NORMAL:
5302		__set_bit(BNX2X_ACCEPT_UNICAST, &rx_accept_flags);
5303		__set_bit(BNX2X_ACCEPT_MULTICAST, &rx_accept_flags);
5304		__set_bit(BNX2X_ACCEPT_BROADCAST, &rx_accept_flags);
5305
5306		/* internal switching mode */
5307		__set_bit(BNX2X_ACCEPT_UNICAST, &tx_accept_flags);
5308		__set_bit(BNX2X_ACCEPT_MULTICAST, &tx_accept_flags);
5309		__set_bit(BNX2X_ACCEPT_BROADCAST, &tx_accept_flags);
5310
5311		break;
5312	case BNX2X_RX_MODE_ALLMULTI:
5313		__set_bit(BNX2X_ACCEPT_UNICAST, &rx_accept_flags);
5314		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &rx_accept_flags);
5315		__set_bit(BNX2X_ACCEPT_BROADCAST, &rx_accept_flags);
5316
5317		/* internal switching mode */
5318		__set_bit(BNX2X_ACCEPT_UNICAST, &tx_accept_flags);
5319		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &tx_accept_flags);
5320		__set_bit(BNX2X_ACCEPT_BROADCAST, &tx_accept_flags);
5321
5322		break;
5323	case BNX2X_RX_MODE_PROMISC:
5324		/* According to deffinition of SI mode, iface in promisc mode
5325		 * should receive matched and unmatched (in resolution of port)
5326		 * unicast packets.
5327		 */
5328		__set_bit(BNX2X_ACCEPT_UNMATCHED, &rx_accept_flags);
5329		__set_bit(BNX2X_ACCEPT_UNICAST, &rx_accept_flags);
5330		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &rx_accept_flags);
5331		__set_bit(BNX2X_ACCEPT_BROADCAST, &rx_accept_flags);
5332
5333		/* internal switching mode */
5334		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &tx_accept_flags);
5335		__set_bit(BNX2X_ACCEPT_BROADCAST, &tx_accept_flags);
5336
5337		if (IS_MF_SI(bp))
5338			__set_bit(BNX2X_ACCEPT_ALL_UNICAST, &tx_accept_flags);
5339		else
5340			__set_bit(BNX2X_ACCEPT_UNICAST, &tx_accept_flags);
5341
5342		break;
5343	default:
5344		BNX2X_ERR("Unknown rx_mode: %d\n", bp->rx_mode);
5345		return;
5346	}
5347
5348	if (bp->rx_mode != BNX2X_RX_MODE_NONE) {
5349		__set_bit(BNX2X_ACCEPT_ANY_VLAN, &rx_accept_flags);
5350		__set_bit(BNX2X_ACCEPT_ANY_VLAN, &tx_accept_flags);
5351	}
5352
5353	__set_bit(RAMROD_RX, &ramrod_flags);
5354	__set_bit(RAMROD_TX, &ramrod_flags);
5355
5356	bnx2x_set_q_rx_mode(bp, bp->fp->cl_id, rx_mode_flags, rx_accept_flags,
5357			    tx_accept_flags, ramrod_flags);
5358}
5359
5360static void bnx2x_init_internal_common(struct bnx2x *bp)
5361{
5362	int i;
5363
5364	if (IS_MF_SI(bp))
5365		/*
5366		 * In switch independent mode, the TSTORM needs to accept
5367		 * packets that failed classification, since approximate match
5368		 * mac addresses aren't written to NIG LLH
5369		 */
5370		REG_WR8(bp, BAR_TSTRORM_INTMEM +
5371			    TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET, 2);
5372	else if (!CHIP_IS_E1(bp)) /* 57710 doesn't support MF */
5373		REG_WR8(bp, BAR_TSTRORM_INTMEM +
5374			    TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET, 0);
5375
5376	/* Zero this manually as its initialization is
5377	   currently missing in the initTool */
5378	for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++)
5379		REG_WR(bp, BAR_USTRORM_INTMEM +
5380		       USTORM_AGG_DATA_OFFSET + i * 4, 0);
5381	if (!CHIP_IS_E1x(bp)) {
5382		REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET,
5383			CHIP_INT_MODE_IS_BC(bp) ?
5384			HC_IGU_BC_MODE : HC_IGU_NBC_MODE);
5385	}
5386}
5387
5388static void bnx2x_init_internal(struct bnx2x *bp, u32 load_code)
5389{
5390	switch (load_code) {
5391	case FW_MSG_CODE_DRV_LOAD_COMMON:
5392	case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP:
5393		bnx2x_init_internal_common(bp);
5394		/* no break */
5395
5396	case FW_MSG_CODE_DRV_LOAD_PORT:
5397		/* nothing to do */
5398		/* no break */
5399
5400	case FW_MSG_CODE_DRV_LOAD_FUNCTION:
5401		/* internal memory per function is
5402		   initialized inside bnx2x_pf_init */
5403		break;
5404
5405	default:
5406		BNX2X_ERR("Unknown load_code (0x%x) from MCP\n", load_code);
5407		break;
5408	}
5409}
5410
5411static inline u8 bnx2x_fp_igu_sb_id(struct bnx2x_fastpath *fp)
5412{
5413	return fp->bp->igu_base_sb + fp->index + CNIC_PRESENT;
5414}
5415
5416static inline u8 bnx2x_fp_fw_sb_id(struct bnx2x_fastpath *fp)
5417{
5418	return fp->bp->base_fw_ndsb + fp->index + CNIC_PRESENT;
5419}
5420
5421static inline u8 bnx2x_fp_cl_id(struct bnx2x_fastpath *fp)
5422{
5423	if (CHIP_IS_E1x(fp->bp))
5424		return BP_L_ID(fp->bp) + fp->index;
5425	else	/* We want Client ID to be the same as IGU SB ID for 57712 */
5426		return bnx2x_fp_igu_sb_id(fp);
5427}
5428
5429static void bnx2x_init_eth_fp(struct bnx2x *bp, int fp_idx)
5430{
5431	struct bnx2x_fastpath *fp = &bp->fp[fp_idx];
5432	u8 cos;
5433	unsigned long q_type = 0;
5434	u32 cids[BNX2X_MULTI_TX_COS] = { 0 };
5435	fp->rx_queue = fp_idx;
5436	fp->cid = fp_idx;
5437	fp->cl_id = bnx2x_fp_cl_id(fp);
5438	fp->fw_sb_id = bnx2x_fp_fw_sb_id(fp);
5439	fp->igu_sb_id = bnx2x_fp_igu_sb_id(fp);
5440	/* qZone id equals to FW (per path) client id */
5441	fp->cl_qzone_id  = bnx2x_fp_qzone_id(fp);
5442
5443	/* init shortcut */
5444	fp->ustorm_rx_prods_offset = bnx2x_rx_ustorm_prods_offset(fp);
5445
5446	/* Setup SB indicies */
5447	fp->rx_cons_sb = BNX2X_RX_SB_INDEX;
5448
5449	/* Configure Queue State object */
5450	__set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
5451	__set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
5452
5453	BUG_ON(fp->max_cos > BNX2X_MULTI_TX_COS);
5454
5455	/* init tx data */
5456	for_each_cos_in_tx_queue(fp, cos) {
5457		bnx2x_init_txdata(bp, &fp->txdata[cos],
5458				  CID_COS_TO_TX_ONLY_CID(fp->cid, cos),
5459				  FP_COS_TO_TXQ(fp, cos),
5460				  BNX2X_TX_SB_INDEX_BASE + cos);
5461		cids[cos] = fp->txdata[cos].cid;
5462	}
5463
5464	bnx2x_init_queue_obj(bp, &fp->q_obj, fp->cl_id, cids, fp->max_cos,
5465			     BP_FUNC(bp), bnx2x_sp(bp, q_rdata),
5466			     bnx2x_sp_mapping(bp, q_rdata), q_type);
5467
5468	/**
5469	 * Configure classification DBs: Always enable Tx switching
5470	 */
5471	bnx2x_init_vlan_mac_fp_objs(fp, BNX2X_OBJ_TYPE_RX_TX);
5472
5473	DP(NETIF_MSG_IFUP, "queue[%d]:  bnx2x_init_sb(%p,%p)  "
5474				   "cl_id %d  fw_sb %d  igu_sb %d\n",
5475		   fp_idx, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id,
5476		   fp->igu_sb_id);
5477	bnx2x_init_sb(bp, fp->status_blk_mapping, BNX2X_VF_ID_INVALID, false,
5478		      fp->fw_sb_id, fp->igu_sb_id);
5479
5480	bnx2x_update_fpsb_idx(fp);
5481}
5482
5483void bnx2x_nic_init(struct bnx2x *bp, u32 load_code)
5484{
5485	int i;
5486
5487	for_each_eth_queue(bp, i)
5488		bnx2x_init_eth_fp(bp, i);
5489#ifdef BCM_CNIC
5490	if (!NO_FCOE(bp))
5491		bnx2x_init_fcoe_fp(bp);
5492
5493	bnx2x_init_sb(bp, bp->cnic_sb_mapping,
5494		      BNX2X_VF_ID_INVALID, false,
5495		      bnx2x_cnic_fw_sb_id(bp), bnx2x_cnic_igu_sb_id(bp));
5496
5497#endif
5498
5499	/* Initialize MOD_ABS interrupts */
5500	bnx2x_init_mod_abs_int(bp, &bp->link_vars, bp->common.chip_id,
5501			       bp->common.shmem_base, bp->common.shmem2_base,
5502			       BP_PORT(bp));
5503	/* ensure status block indices were read */
5504	rmb();
5505
5506	bnx2x_init_def_sb(bp);
5507	bnx2x_update_dsb_idx(bp);
5508	bnx2x_init_rx_rings(bp);
5509	bnx2x_init_tx_rings(bp);
5510	bnx2x_init_sp_ring(bp);
5511	bnx2x_init_eq_ring(bp);
5512	bnx2x_init_internal(bp, load_code);
5513	bnx2x_pf_init(bp);
5514	bnx2x_stats_init(bp);
5515
5516	/* flush all before enabling interrupts */
5517	mb();
5518	mmiowb();
5519
5520	bnx2x_int_enable(bp);
5521
5522	/* Check for SPIO5 */
5523	bnx2x_attn_int_deasserted0(bp,
5524		REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + BP_PORT(bp)*4) &
5525				   AEU_INPUTS_ATTN_BITS_SPIO5);
5526}
5527
5528/* end of nic init */
5529
5530/*
5531 * gzip service functions
5532 */
5533
5534static int bnx2x_gunzip_init(struct bnx2x *bp)
5535{
5536	bp->gunzip_buf = dma_alloc_coherent(&bp->pdev->dev, FW_BUF_SIZE,
5537					    &bp->gunzip_mapping, GFP_KERNEL);
5538	if (bp->gunzip_buf  == NULL)
5539		goto gunzip_nomem1;
5540
5541	bp->strm = kmalloc(sizeof(*bp->strm), GFP_KERNEL);
5542	if (bp->strm  == NULL)
5543		goto gunzip_nomem2;
5544
5545	bp->strm->workspace = vmalloc(zlib_inflate_workspacesize());
5546	if (bp->strm->workspace == NULL)
5547		goto gunzip_nomem3;
5548
5549	return 0;
5550
5551gunzip_nomem3:
5552	kfree(bp->strm);
5553	bp->strm = NULL;
5554
5555gunzip_nomem2:
5556	dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
5557			  bp->gunzip_mapping);
5558	bp->gunzip_buf = NULL;
5559
5560gunzip_nomem1:
5561	netdev_err(bp->dev, "Cannot allocate firmware buffer for"
5562	       " un-compression\n");
5563	return -ENOMEM;
5564}
5565
5566static void bnx2x_gunzip_end(struct bnx2x *bp)
5567{
5568	if (bp->strm) {
5569		vfree(bp->strm->workspace);
5570		kfree(bp->strm);
5571		bp->strm = NULL;
5572	}
5573
5574	if (bp->gunzip_buf) {
5575		dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
5576				  bp->gunzip_mapping);
5577		bp->gunzip_buf = NULL;
5578	}
5579}
5580
5581static int bnx2x_gunzip(struct bnx2x *bp, const u8 *zbuf, int len)
5582{
5583	int n, rc;
5584
5585	/* check gzip header */
5586	if ((zbuf[0] != 0x1f) || (zbuf[1] != 0x8b) || (zbuf[2] != Z_DEFLATED)) {
5587		BNX2X_ERR("Bad gzip header\n");
5588		return -EINVAL;
5589	}
5590
5591	n = 10;
5592
5593#define FNAME				0x8
5594
5595	if (zbuf[3] & FNAME)
5596		while ((zbuf[n++] != 0) && (n < len));
5597
5598	bp->strm->next_in = (typeof(bp->strm->next_in))zbuf + n;
5599	bp->strm->avail_in = len - n;
5600	bp->strm->next_out = bp->gunzip_buf;
5601	bp->strm->avail_out = FW_BUF_SIZE;
5602
5603	rc = zlib_inflateInit2(bp->strm, -MAX_WBITS);
5604	if (rc != Z_OK)
5605		return rc;
5606
5607	rc = zlib_inflate(bp->strm, Z_FINISH);
5608	if ((rc != Z_OK) && (rc != Z_STREAM_END))
5609		netdev_err(bp->dev, "Firmware decompression error: %s\n",
5610			   bp->strm->msg);
5611
5612	bp->gunzip_outlen = (FW_BUF_SIZE - bp->strm->avail_out);
5613	if (bp->gunzip_outlen & 0x3)
5614		netdev_err(bp->dev, "Firmware decompression error:"
5615				    " gunzip_outlen (%d) not aligned\n",
5616				bp->gunzip_outlen);
5617	bp->gunzip_outlen >>= 2;
5618
5619	zlib_inflateEnd(bp->strm);
5620
5621	if (rc == Z_STREAM_END)
5622		return 0;
5623
5624	return rc;
5625}
5626
5627/* nic load/unload */
5628
5629/*
5630 * General service functions
5631 */
5632
5633/* send a NIG loopback debug packet */
5634static void bnx2x_lb_pckt(struct bnx2x *bp)
5635{
5636	u32 wb_write[3];
5637
5638	/* Ethernet source and destination addresses */
5639	wb_write[0] = 0x55555555;
5640	wb_write[1] = 0x55555555;
5641	wb_write[2] = 0x20;		/* SOP */
5642	REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
5643
5644	/* NON-IP protocol */
5645	wb_write[0] = 0x09000000;
5646	wb_write[1] = 0x55555555;
5647	wb_write[2] = 0x10;		/* EOP, eop_bvalid = 0 */
5648	REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
5649}
5650
5651/* some of the internal memories
5652 * are not directly readable from the driver
5653 * to test them we send debug packets
5654 */
5655static int bnx2x_int_mem_test(struct bnx2x *bp)
5656{
5657	int factor;
5658	int count, i;
5659	u32 val = 0;
5660
5661	if (CHIP_REV_IS_FPGA(bp))
5662		factor = 120;
5663	else if (CHIP_REV_IS_EMUL(bp))
5664		factor = 200;
5665	else
5666		factor = 1;
5667
5668	/* Disable inputs of parser neighbor blocks */
5669	REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
5670	REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
5671	REG_WR(bp, CFC_REG_DEBUG0, 0x1);
5672	REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
5673
5674	/*  Write 0 to parser credits for CFC search request */
5675	REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
5676
5677	/* send Ethernet packet */
5678	bnx2x_lb_pckt(bp);
5679
5680	/* TODO do i reset NIG statistic? */
5681	/* Wait until NIG register shows 1 packet of size 0x10 */
5682	count = 1000 * factor;
5683	while (count) {
5684
5685		bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
5686		val = *bnx2x_sp(bp, wb_data[0]);
5687		if (val == 0x10)
5688			break;
5689
5690		msleep(10);
5691		count--;
5692	}
5693	if (val != 0x10) {
5694		BNX2X_ERR("NIG timeout  val = 0x%x\n", val);
5695		return -1;
5696	}
5697
5698	/* Wait until PRS register shows 1 packet */
5699	count = 1000 * factor;
5700	while (count) {
5701		val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
5702		if (val == 1)
5703			break;
5704
5705		msleep(10);
5706		count--;
5707	}
5708	if (val != 0x1) {
5709		BNX2X_ERR("PRS timeout val = 0x%x\n", val);
5710		return -2;
5711	}
5712
5713	/* Reset and init BRB, PRS */
5714	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
5715	msleep(50);
5716	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
5717	msleep(50);
5718	bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
5719	bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
5720
5721	DP(NETIF_MSG_HW, "part2\n");
5722
5723	/* Disable inputs of parser neighbor blocks */
5724	REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
5725	REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
5726	REG_WR(bp, CFC_REG_DEBUG0, 0x1);
5727	REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
5728
5729	/* Write 0 to parser credits for CFC search request */
5730	REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
5731
5732	/* send 10 Ethernet packets */
5733	for (i = 0; i < 10; i++)
5734		bnx2x_lb_pckt(bp);
5735
5736	/* Wait until NIG register shows 10 + 1
5737	   packets of size 11*0x10 = 0xb0 */
5738	count = 1000 * factor;
5739	while (count) {
5740
5741		bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
5742		val = *bnx2x_sp(bp, wb_data[0]);
5743		if (val == 0xb0)
5744			break;
5745
5746		msleep(10);
5747		count--;
5748	}
5749	if (val != 0xb0) {
5750		BNX2X_ERR("NIG timeout  val = 0x%x\n", val);
5751		return -3;
5752	}
5753
5754	/* Wait until PRS register shows 2 packets */
5755	val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
5756	if (val != 2)
5757		BNX2X_ERR("PRS timeout  val = 0x%x\n", val);
5758
5759	/* Write 1 to parser credits for CFC search request */
5760	REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1);
5761
5762	/* Wait until PRS register shows 3 packets */
5763	msleep(10 * factor);
5764	/* Wait until NIG register shows 1 packet of size 0x10 */
5765	val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
5766	if (val != 3)
5767		BNX2X_ERR("PRS timeout  val = 0x%x\n", val);
5768
5769	/* clear NIG EOP FIFO */
5770	for (i = 0; i < 11; i++)
5771		REG_RD(bp, NIG_REG_INGRESS_EOP_LB_FIFO);
5772	val = REG_RD(bp, NIG_REG_INGRESS_EOP_LB_EMPTY);
5773	if (val != 1) {
5774		BNX2X_ERR("clear of NIG failed\n");
5775		return -4;
5776	}
5777
5778	/* Reset and init BRB, PRS, NIG */
5779	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
5780	msleep(50);
5781	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
5782	msleep(50);
5783	bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
5784	bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
5785#ifndef BCM_CNIC
5786	/* set NIC mode */
5787	REG_WR(bp, PRS_REG_NIC_MODE, 1);
5788#endif
5789
5790	/* Enable inputs of parser neighbor blocks */
5791	REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x7fffffff);
5792	REG_WR(bp, TCM_REG_PRS_IFEN, 0x1);
5793	REG_WR(bp, CFC_REG_DEBUG0, 0x0);
5794	REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x1);
5795
5796	DP(NETIF_MSG_HW, "done\n");
5797
5798	return 0; /* OK */
5799}
5800
5801static void bnx2x_enable_blocks_attention(struct bnx2x *bp)
5802{
5803	REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
5804	if (!CHIP_IS_E1x(bp))
5805		REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0x40);
5806	else
5807		REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0);
5808	REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
5809	REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
5810	/*
5811	 * mask read length error interrupts in brb for parser
5812	 * (parsing unit and 'checksum and crc' unit)
5813	 * these errors are legal (PU reads fixed length and CAC can cause
5814	 * read length error on truncated packets)
5815	 */
5816	REG_WR(bp, BRB1_REG_BRB1_INT_MASK, 0xFC00);
5817	REG_WR(bp, QM_REG_QM_INT_MASK, 0);
5818	REG_WR(bp, TM_REG_TM_INT_MASK, 0);
5819	REG_WR(bp, XSDM_REG_XSDM_INT_MASK_0, 0);
5820	REG_WR(bp, XSDM_REG_XSDM_INT_MASK_1, 0);
5821	REG_WR(bp, XCM_REG_XCM_INT_MASK, 0);
5822/*	REG_WR(bp, XSEM_REG_XSEM_INT_MASK_0, 0); */
5823/*	REG_WR(bp, XSEM_REG_XSEM_INT_MASK_1, 0); */
5824	REG_WR(bp, USDM_REG_USDM_INT_MASK_0, 0);
5825	REG_WR(bp, USDM_REG_USDM_INT_MASK_1, 0);
5826	REG_WR(bp, UCM_REG_UCM_INT_MASK, 0);
5827/*	REG_WR(bp, USEM_REG_USEM_INT_MASK_0, 0); */
5828/*	REG_WR(bp, USEM_REG_USEM_INT_MASK_1, 0); */
5829	REG_WR(bp, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0);
5830	REG_WR(bp, CSDM_REG_CSDM_INT_MASK_0, 0);
5831	REG_WR(bp, CSDM_REG_CSDM_INT_MASK_1, 0);
5832	REG_WR(bp, CCM_REG_CCM_INT_MASK, 0);
5833/*	REG_WR(bp, CSEM_REG_CSEM_INT_MASK_0, 0); */
5834/*	REG_WR(bp, CSEM_REG_CSEM_INT_MASK_1, 0); */
5835
5836	if (CHIP_REV_IS_FPGA(bp))
5837		REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0, 0x580000);
5838	else if (!CHIP_IS_E1x(bp))
5839		REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0,
5840			   (PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF
5841				| PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT
5842				| PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN
5843				| PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED
5844				| PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED));
5845	else
5846		REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0, 0x480000);
5847	REG_WR(bp, TSDM_REG_TSDM_INT_MASK_0, 0);
5848	REG_WR(bp, TSDM_REG_TSDM_INT_MASK_1, 0);
5849	REG_WR(bp, TCM_REG_TCM_INT_MASK, 0);
5850/*	REG_WR(bp, TSEM_REG_TSEM_INT_MASK_0, 0); */
5851
5852	if (!CHIP_IS_E1x(bp))
5853		/* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */
5854		REG_WR(bp, TSEM_REG_TSEM_INT_MASK_1, 0x07ff);
5855
5856	REG_WR(bp, CDU_REG_CDU_INT_MASK, 0);
5857	REG_WR(bp, DMAE_REG_DMAE_INT_MASK, 0);
5858/*	REG_WR(bp, MISC_REG_MISC_INT_MASK, 0); */
5859	REG_WR(bp, PBF_REG_PBF_INT_MASK, 0x18);		/* bit 3,4 masked */
5860}
5861
5862static void bnx2x_reset_common(struct bnx2x *bp)
5863{
5864	u32 val = 0x1400;
5865
5866	/* reset_common */
5867	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
5868	       0xd3ffff7f);
5869
5870	if (CHIP_IS_E3(bp)) {
5871		val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
5872		val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
5873	}
5874
5875	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR, val);
5876}
5877
5878static void bnx2x_setup_dmae(struct bnx2x *bp)
5879{
5880	bp->dmae_ready = 0;
5881	spin_lock_init(&bp->dmae_lock);
5882}
5883
5884static void bnx2x_init_pxp(struct bnx2x *bp)
5885{
5886	u16 devctl;
5887	int r_order, w_order;
5888
5889	pci_read_config_word(bp->pdev,
5890			     pci_pcie_cap(bp->pdev) + PCI_EXP_DEVCTL, &devctl);
5891	DP(NETIF_MSG_HW, "read 0x%x from devctl\n", devctl);
5892	w_order = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
5893	if (bp->mrrs == -1)
5894		r_order = ((devctl & PCI_EXP_DEVCTL_READRQ) >> 12);
5895	else {
5896		DP(NETIF_MSG_HW, "force read order to %d\n", bp->mrrs);
5897		r_order = bp->mrrs;
5898	}
5899
5900	bnx2x_init_pxp_arb(bp, r_order, w_order);
5901}
5902
5903static void bnx2x_setup_fan_failure_detection(struct bnx2x *bp)
5904{
5905	int is_required;
5906	u32 val;
5907	int port;
5908
5909	if (BP_NOMCP(bp))
5910		return;
5911
5912	is_required = 0;
5913	val = SHMEM_RD(bp, dev_info.shared_hw_config.config2) &
5914	      SHARED_HW_CFG_FAN_FAILURE_MASK;
5915
5916	if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED)
5917		is_required = 1;
5918
5919	/*
5920	 * The fan failure mechanism is usually related to the PHY type since
5921	 * the power consumption of the board is affected by the PHY. Currently,
5922	 * fan is required for most designs with SFX7101, BCM8727 and BCM8481.
5923	 */
5924	else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE)
5925		for (port = PORT_0; port < PORT_MAX; port++) {
5926			is_required |=
5927				bnx2x_fan_failure_det_req(
5928					bp,
5929					bp->common.shmem_base,
5930					bp->common.shmem2_base,
5931					port);
5932		}
5933
5934	DP(NETIF_MSG_HW, "fan detection setting: %d\n", is_required);
5935
5936	if (is_required == 0)
5937		return;
5938
5939	/* Fan failure is indicated by SPIO 5 */
5940	bnx2x_set_spio(bp, MISC_REGISTERS_SPIO_5,
5941		       MISC_REGISTERS_SPIO_INPUT_HI_Z);
5942
5943	/* set to active low mode */
5944	val = REG_RD(bp, MISC_REG_SPIO_INT);
5945	val |= ((1 << MISC_REGISTERS_SPIO_5) <<
5946					MISC_REGISTERS_SPIO_INT_OLD_SET_POS);
5947	REG_WR(bp, MISC_REG_SPIO_INT, val);
5948
5949	/* enable interrupt to signal the IGU */
5950	val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
5951	val |= (1 << MISC_REGISTERS_SPIO_5);
5952	REG_WR(bp, MISC_REG_SPIO_EVENT_EN, val);
5953}
5954
5955static void bnx2x_pretend_func(struct bnx2x *bp, u8 pretend_func_num)
5956{
5957	u32 offset = 0;
5958
5959	if (CHIP_IS_E1(bp))
5960		return;
5961	if (CHIP_IS_E1H(bp) && (pretend_func_num >= E1H_FUNC_MAX))
5962		return;
5963
5964	switch (BP_ABS_FUNC(bp)) {
5965	case 0:
5966		offset = PXP2_REG_PGL_PRETEND_FUNC_F0;
5967		break;
5968	case 1:
5969		offset = PXP2_REG_PGL_PRETEND_FUNC_F1;
5970		break;
5971	case 2:
5972		offset = PXP2_REG_PGL_PRETEND_FUNC_F2;
5973		break;
5974	case 3:
5975		offset = PXP2_REG_PGL_PRETEND_FUNC_F3;
5976		break;
5977	case 4:
5978		offset = PXP2_REG_PGL_PRETEND_FUNC_F4;
5979		break;
5980	case 5:
5981		offset = PXP2_REG_PGL_PRETEND_FUNC_F5;
5982		break;
5983	case 6:
5984		offset = PXP2_REG_PGL_PRETEND_FUNC_F6;
5985		break;
5986	case 7:
5987		offset = PXP2_REG_PGL_PRETEND_FUNC_F7;
5988		break;
5989	default:
5990		return;
5991	}
5992
5993	REG_WR(bp, offset, pretend_func_num);
5994	REG_RD(bp, offset);
5995	DP(NETIF_MSG_HW, "Pretending to func %d\n", pretend_func_num);
5996}
5997
5998void bnx2x_pf_disable(struct bnx2x *bp)
5999{
6000	u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
6001	val &= ~IGU_PF_CONF_FUNC_EN;
6002
6003	REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
6004	REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
6005	REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 0);
6006}
6007
6008static inline void bnx2x__common_init_phy(struct bnx2x *bp)
6009{
6010	u32 shmem_base[2], shmem2_base[2];
6011	shmem_base[0] =  bp->common.shmem_base;
6012	shmem2_base[0] = bp->common.shmem2_base;
6013	if (!CHIP_IS_E1x(bp)) {
6014		shmem_base[1] =
6015			SHMEM2_RD(bp, other_shmem_base_addr);
6016		shmem2_base[1] =
6017			SHMEM2_RD(bp, other_shmem2_base_addr);
6018	}
6019	bnx2x_acquire_phy_lock(bp);
6020	bnx2x_common_init_phy(bp, shmem_base, shmem2_base,
6021			      bp->common.chip_id);
6022	bnx2x_release_phy_lock(bp);
6023}
6024
6025/**
6026 * bnx2x_init_hw_common - initialize the HW at the COMMON phase.
6027 *
6028 * @bp:		driver handle
6029 */
6030static int bnx2x_init_hw_common(struct bnx2x *bp)
6031{
6032	u32 val;
6033
6034	DP(BNX2X_MSG_MCP, "starting common init  func %d\n", BP_ABS_FUNC(bp));
6035
6036	/*
6037	 * take the UNDI lock to protect undi_unload flow from accessing
6038	 * registers while we're resetting the chip
6039	 */
6040	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
6041
6042	bnx2x_reset_common(bp);
6043	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0xffffffff);
6044
6045	val = 0xfffc;
6046	if (CHIP_IS_E3(bp)) {
6047		val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
6048		val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
6049	}
6050	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET, val);
6051
6052	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
6053
6054	bnx2x_init_block(bp, BLOCK_MISC, PHASE_COMMON);
6055
6056	if (!CHIP_IS_E1x(bp)) {
6057		u8 abs_func_id;
6058
6059		/**
6060		 * 4-port mode or 2-port mode we need to turn of master-enable
6061		 * for everyone, after that, turn it back on for self.
6062		 * so, we disregard multi-function or not, and always disable
6063		 * for all functions on the given path, this means 0,2,4,6 for
6064		 * path 0 and 1,3,5,7 for path 1
6065		 */
6066		for (abs_func_id = BP_PATH(bp);
6067		     abs_func_id < E2_FUNC_MAX*2; abs_func_id += 2) {
6068			if (abs_func_id == BP_ABS_FUNC(bp)) {
6069				REG_WR(bp,
6070				    PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER,
6071				    1);
6072				continue;
6073			}
6074
6075			bnx2x_pretend_func(bp, abs_func_id);
6076			/* clear pf enable */
6077			bnx2x_pf_disable(bp);
6078			bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
6079		}
6080	}
6081
6082	bnx2x_init_block(bp, BLOCK_PXP, PHASE_COMMON);
6083	if (CHIP_IS_E1(bp)) {
6084		/* enable HW interrupt from PXP on USDM overflow
6085		   bit 16 on INT_MASK_0 */
6086		REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
6087	}
6088
6089	bnx2x_init_block(bp, BLOCK_PXP2, PHASE_COMMON);
6090	bnx2x_init_pxp(bp);
6091
6092#ifdef __BIG_ENDIAN
6093	REG_WR(bp, PXP2_REG_RQ_QM_ENDIAN_M, 1);
6094	REG_WR(bp, PXP2_REG_RQ_TM_ENDIAN_M, 1);
6095	REG_WR(bp, PXP2_REG_RQ_SRC_ENDIAN_M, 1);
6096	REG_WR(bp, PXP2_REG_RQ_CDU_ENDIAN_M, 1);
6097	REG_WR(bp, PXP2_REG_RQ_DBG_ENDIAN_M, 1);
6098	/* make sure this value is 0 */
6099	REG_WR(bp, PXP2_REG_RQ_HC_ENDIAN_M, 0);
6100
6101/*	REG_WR(bp, PXP2_REG_RD_PBF_SWAP_MODE, 1); */
6102	REG_WR(bp, PXP2_REG_RD_QM_SWAP_MODE, 1);
6103	REG_WR(bp, PXP2_REG_RD_TM_SWAP_MODE, 1);
6104	REG_WR(bp, PXP2_REG_RD_SRC_SWAP_MODE, 1);
6105	REG_WR(bp, PXP2_REG_RD_CDURD_SWAP_MODE, 1);
6106#endif
6107
6108	bnx2x_ilt_init_page_size(bp, INITOP_SET);
6109
6110	if (CHIP_REV_IS_FPGA(bp) && CHIP_IS_E1H(bp))
6111		REG_WR(bp, PXP2_REG_PGL_TAGS_LIMIT, 0x1);
6112
6113	/* let the HW do it's magic ... */
6114	msleep(100);
6115	/* finish PXP init */
6116	val = REG_RD(bp, PXP2_REG_RQ_CFG_DONE);
6117	if (val != 1) {
6118		BNX2X_ERR("PXP2 CFG failed\n");
6119		return -EBUSY;
6120	}
6121	val = REG_RD(bp, PXP2_REG_RD_INIT_DONE);
6122	if (val != 1) {
6123		BNX2X_ERR("PXP2 RD_INIT failed\n");
6124		return -EBUSY;
6125	}
6126
6127	/* Timers bug workaround E2 only. We need to set the entire ILT to
6128	 * have entries with value "0" and valid bit on.
6129	 * This needs to be done by the first PF that is loaded in a path
6130	 * (i.e. common phase)
6131	 */
6132	if (!CHIP_IS_E1x(bp)) {
6133/* In E2 there is a bug in the timers block that can cause function 6 / 7
6134 * (i.e. vnic3) to start even if it is marked as "scan-off".
6135 * This occurs when a different function (func2,3) is being marked
6136 * as "scan-off". Real-life scenario for example: if a driver is being
6137 * load-unloaded while func6,7 are down. This will cause the timer to access
6138 * the ilt, translate to a logical address and send a request to read/write.
6139 * Since the ilt for the function that is down is not valid, this will cause
6140 * a translation error which is unrecoverable.
6141 * The Workaround is intended to make sure that when this happens nothing fatal
6142 * will occur. The workaround:
6143 *	1.  First PF driver which loads on a path will:
6144 *		a.  After taking the chip out of reset, by using pretend,
6145 *		    it will write "0" to the following registers of
6146 *		    the other vnics.
6147 *		    REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
6148 *		    REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0);
6149 *		    REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0);
6150 *		    And for itself it will write '1' to
6151 *		    PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable
6152 *		    dmae-operations (writing to pram for example.)
6153 *		    note: can be done for only function 6,7 but cleaner this
6154 *			  way.
6155 *		b.  Write zero+valid to the entire ILT.
6156 *		c.  Init the first_timers_ilt_entry, last_timers_ilt_entry of
6157 *		    VNIC3 (of that port). The range allocated will be the
6158 *		    entire ILT. This is needed to prevent  ILT range error.
6159 *	2.  Any PF driver load flow:
6160 *		a.  ILT update with the physical addresses of the allocated
6161 *		    logical pages.
6162 *		b.  Wait 20msec. - note that this timeout is needed to make
6163 *		    sure there are no requests in one of the PXP internal
6164 *		    queues with "old" ILT addresses.
6165 *		c.  PF enable in the PGLC.
6166 *		d.  Clear the was_error of the PF in the PGLC. (could have
6167 *		    occured while driver was down)
6168 *		e.  PF enable in the CFC (WEAK + STRONG)
6169 *		f.  Timers scan enable
6170 *	3.  PF driver unload flow:
6171 *		a.  Clear the Timers scan_en.
6172 *		b.  Polling for scan_on=0 for that PF.
6173 *		c.  Clear the PF enable bit in the PXP.
6174 *		d.  Clear the PF enable in the CFC (WEAK + STRONG)
6175 *		e.  Write zero+valid to all ILT entries (The valid bit must
6176 *		    stay set)
6177 *		f.  If this is VNIC 3 of a port then also init
6178 *		    first_timers_ilt_entry to zero and last_timers_ilt_entry
6179 *		    to the last enrty in the ILT.
6180 *
6181 *	Notes:
6182 *	Currently the PF error in the PGLC is non recoverable.
6183 *	In the future the there will be a recovery routine for this error.
6184 *	Currently attention is masked.
6185 *	Having an MCP lock on the load/unload process does not guarantee that
6186 *	there is no Timer disable during Func6/7 enable. This is because the
6187 *	Timers scan is currently being cleared by the MCP on FLR.
6188 *	Step 2.d can be done only for PF6/7 and the driver can also check if
6189 *	there is error before clearing it. But the flow above is simpler and
6190 *	more general.
6191 *	All ILT entries are written by zero+valid and not just PF6/7
6192 *	ILT entries since in the future the ILT entries allocation for
6193 *	PF-s might be dynamic.
6194 */
6195		struct ilt_client_info ilt_cli;
6196		struct bnx2x_ilt ilt;
6197		memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
6198		memset(&ilt, 0, sizeof(struct bnx2x_ilt));
6199
6200		/* initialize dummy TM client */
6201		ilt_cli.start = 0;
6202		ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
6203		ilt_cli.client_num = ILT_CLIENT_TM;
6204
6205		/* Step 1: set zeroes to all ilt page entries with valid bit on
6206		 * Step 2: set the timers first/last ilt entry to point
6207		 * to the entire range to prevent ILT range error for 3rd/4th
6208		 * vnic	(this code assumes existance of the vnic)
6209		 *
6210		 * both steps performed by call to bnx2x_ilt_client_init_op()
6211		 * with dummy TM client
6212		 *
6213		 * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT
6214		 * and his brother are split registers
6215		 */
6216		bnx2x_pretend_func(bp, (BP_PATH(bp) + 6));
6217		bnx2x_ilt_client_init_op_ilt(bp, &ilt, &ilt_cli, INITOP_CLEAR);
6218		bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
6219
6220		REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN, BNX2X_PXP_DRAM_ALIGN);
6221		REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_RD, BNX2X_PXP_DRAM_ALIGN);
6222		REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1);
6223	}
6224
6225
6226	REG_WR(bp, PXP2_REG_RQ_DISABLE_INPUTS, 0);
6227	REG_WR(bp, PXP2_REG_RD_DISABLE_INPUTS, 0);
6228
6229	if (!CHIP_IS_E1x(bp)) {
6230		int factor = CHIP_REV_IS_EMUL(bp) ? 1000 :
6231				(CHIP_REV_IS_FPGA(bp) ? 400 : 0);
6232		bnx2x_init_block(bp, BLOCK_PGLUE_B, PHASE_COMMON);
6233
6234		bnx2x_init_block(bp, BLOCK_ATC, PHASE_COMMON);
6235
6236		/* let the HW do it's magic ... */
6237		do {
6238			msleep(200);
6239			val = REG_RD(bp, ATC_REG_ATC_INIT_DONE);
6240		} while (factor-- && (val != 1));
6241
6242		if (val != 1) {
6243			BNX2X_ERR("ATC_INIT failed\n");
6244			return -EBUSY;
6245		}
6246	}
6247
6248	bnx2x_init_block(bp, BLOCK_DMAE, PHASE_COMMON);
6249
6250	/* clean the DMAE memory */
6251	bp->dmae_ready = 1;
6252	bnx2x_init_fill(bp, TSEM_REG_PRAM, 0, 8, 1);
6253
6254	bnx2x_init_block(bp, BLOCK_TCM, PHASE_COMMON);
6255
6256	bnx2x_init_block(bp, BLOCK_UCM, PHASE_COMMON);
6257
6258	bnx2x_init_block(bp, BLOCK_CCM, PHASE_COMMON);
6259
6260	bnx2x_init_block(bp, BLOCK_XCM, PHASE_COMMON);
6261
6262	bnx2x_read_dmae(bp, XSEM_REG_PASSIVE_BUFFER, 3);
6263	bnx2x_read_dmae(bp, CSEM_REG_PASSIVE_BUFFER, 3);
6264	bnx2x_read_dmae(bp, TSEM_REG_PASSIVE_BUFFER, 3);
6265	bnx2x_read_dmae(bp, USEM_REG_PASSIVE_BUFFER, 3);
6266
6267	bnx2x_init_block(bp, BLOCK_QM, PHASE_COMMON);
6268
6269
6270	/* QM queues pointers table */
6271	bnx2x_qm_init_ptr_table(bp, bp->qm_cid_count, INITOP_SET);
6272
6273	/* soft reset pulse */
6274	REG_WR(bp, QM_REG_SOFT_RESET, 1);
6275	REG_WR(bp, QM_REG_SOFT_RESET, 0);
6276
6277#ifdef BCM_CNIC
6278	bnx2x_init_block(bp, BLOCK_TM, PHASE_COMMON);
6279#endif
6280
6281	bnx2x_init_block(bp, BLOCK_DORQ, PHASE_COMMON);
6282	REG_WR(bp, DORQ_REG_DPM_CID_OFST, BNX2X_DB_SHIFT);
6283	if (!CHIP_REV_IS_SLOW(bp))
6284		/* enable hw interrupt from doorbell Q */
6285		REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
6286
6287	bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6288
6289	bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6290	REG_WR(bp, PRS_REG_A_PRSU_20, 0xf);
6291
6292	if (!CHIP_IS_E1(bp))
6293		REG_WR(bp, PRS_REG_E1HOV_MODE, bp->path_has_ovlan);
6294
6295	if (!CHIP_IS_E1x(bp) && !CHIP_IS_E3B0(bp))
6296		/* Bit-map indicating which L2 hdrs may appear
6297		 * after the basic Ethernet header
6298		 */
6299		REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC,
6300		       bp->path_has_ovlan ? 7 : 6);
6301
6302	bnx2x_init_block(bp, BLOCK_TSDM, PHASE_COMMON);
6303	bnx2x_init_block(bp, BLOCK_CSDM, PHASE_COMMON);
6304	bnx2x_init_block(bp, BLOCK_USDM, PHASE_COMMON);
6305	bnx2x_init_block(bp, BLOCK_XSDM, PHASE_COMMON);
6306
6307	if (!CHIP_IS_E1x(bp)) {
6308		/* reset VFC memories */
6309		REG_WR(bp, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
6310			   VFC_MEMORIES_RST_REG_CAM_RST |
6311			   VFC_MEMORIES_RST_REG_RAM_RST);
6312		REG_WR(bp, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
6313			   VFC_MEMORIES_RST_REG_CAM_RST |
6314			   VFC_MEMORIES_RST_REG_RAM_RST);
6315
6316		msleep(20);
6317	}
6318
6319	bnx2x_init_block(bp, BLOCK_TSEM, PHASE_COMMON);
6320	bnx2x_init_block(bp, BLOCK_USEM, PHASE_COMMON);
6321	bnx2x_init_block(bp, BLOCK_CSEM, PHASE_COMMON);
6322	bnx2x_init_block(bp, BLOCK_XSEM, PHASE_COMMON);
6323
6324	/* sync semi rtc */
6325	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
6326	       0x80000000);
6327	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET,
6328	       0x80000000);
6329
6330	bnx2x_init_block(bp, BLOCK_UPB, PHASE_COMMON);
6331	bnx2x_init_block(bp, BLOCK_XPB, PHASE_COMMON);
6332	bnx2x_init_block(bp, BLOCK_PBF, PHASE_COMMON);
6333
6334	if (!CHIP_IS_E1x(bp))
6335		REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC,
6336		       bp->path_has_ovlan ? 7 : 6);
6337
6338	REG_WR(bp, SRC_REG_SOFT_RST, 1);
6339
6340	bnx2x_init_block(bp, BLOCK_SRC, PHASE_COMMON);
6341
6342#ifdef BCM_CNIC
6343	REG_WR(bp, SRC_REG_KEYSEARCH_0, 0x63285672);
6344	REG_WR(bp, SRC_REG_KEYSEARCH_1, 0x24b8f2cc);
6345	REG_WR(bp, SRC_REG_KEYSEARCH_2, 0x223aef9b);
6346	REG_WR(bp, SRC_REG_KEYSEARCH_3, 0x26001e3a);
6347	REG_WR(bp, SRC_REG_KEYSEARCH_4, 0x7ae91116);
6348	REG_WR(bp, SRC_REG_KEYSEARCH_5, 0x5ce5230b);
6349	REG_WR(bp, SRC_REG_KEYSEARCH_6, 0x298d8adf);
6350	REG_WR(bp, SRC_REG_KEYSEARCH_7, 0x6eb0ff09);
6351	REG_WR(bp, SRC_REG_KEYSEARCH_8, 0x1830f82f);
6352	REG_WR(bp, SRC_REG_KEYSEARCH_9, 0x01e46be7);
6353#endif
6354	REG_WR(bp, SRC_REG_SOFT_RST, 0);
6355
6356	if (sizeof(union cdu_context) != 1024)
6357		/* we currently assume that a context is 1024 bytes */
6358		dev_alert(&bp->pdev->dev, "please adjust the size "
6359					  "of cdu_context(%ld)\n",
6360			 (long)sizeof(union cdu_context));
6361
6362	bnx2x_init_block(bp, BLOCK_CDU, PHASE_COMMON);
6363	val = (4 << 24) + (0 << 12) + 1024;
6364	REG_WR(bp, CDU_REG_CDU_GLOBAL_PARAMS, val);
6365
6366	bnx2x_init_block(bp, BLOCK_CFC, PHASE_COMMON);
6367	REG_WR(bp, CFC_REG_INIT_REG, 0x7FF);
6368	/* enable context validation interrupt from CFC */
6369	REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
6370
6371	/* set the thresholds to prevent CFC/CDU race */
6372	REG_WR(bp, CFC_REG_DEBUG0, 0x20020000);
6373
6374	bnx2x_init_block(bp, BLOCK_HC, PHASE_COMMON);
6375
6376	if (!CHIP_IS_E1x(bp) && BP_NOMCP(bp))
6377		REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x36);
6378
6379	bnx2x_init_block(bp, BLOCK_IGU, PHASE_COMMON);
6380	bnx2x_init_block(bp, BLOCK_MISC_AEU, PHASE_COMMON);
6381
6382	/* Reset PCIE errors for debug */
6383	REG_WR(bp, 0x2814, 0xffffffff);
6384	REG_WR(bp, 0x3820, 0xffffffff);
6385
6386	if (!CHIP_IS_E1x(bp)) {
6387		REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_CONTROL_5,
6388			   (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 |
6389				PXPCS_TL_CONTROL_5_ERR_UNSPPORT));
6390		REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT,
6391			   (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 |
6392				PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 |
6393				PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2));
6394		REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT,
6395			   (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 |
6396				PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 |
6397				PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5));
6398	}
6399
6400	bnx2x_init_block(bp, BLOCK_NIG, PHASE_COMMON);
6401	if (!CHIP_IS_E1(bp)) {
6402		/* in E3 this done in per-port section */
6403		if (!CHIP_IS_E3(bp))
6404			REG_WR(bp, NIG_REG_LLH_MF_MODE, IS_MF(bp));
6405	}
6406	if (CHIP_IS_E1H(bp))
6407		/* not applicable for E2 (and above ...) */
6408		REG_WR(bp, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(bp));
6409
6410	if (CHIP_REV_IS_SLOW(bp))
6411		msleep(200);
6412
6413	/* finish CFC init */
6414	val = reg_poll(bp, CFC_REG_LL_INIT_DONE, 1, 100, 10);
6415	if (val != 1) {
6416		BNX2X_ERR("CFC LL_INIT failed\n");
6417		return -EBUSY;
6418	}
6419	val = reg_poll(bp, CFC_REG_AC_INIT_DONE, 1, 100, 10);
6420	if (val != 1) {
6421		BNX2X_ERR("CFC AC_INIT failed\n");
6422		return -EBUSY;
6423	}
6424	val = reg_poll(bp, CFC_REG_CAM_INIT_DONE, 1, 100, 10);
6425	if (val != 1) {
6426		BNX2X_ERR("CFC CAM_INIT failed\n");
6427		return -EBUSY;
6428	}
6429	REG_WR(bp, CFC_REG_DEBUG0, 0);
6430
6431	if (CHIP_IS_E1(bp)) {
6432		/* read NIG statistic
6433		   to see if this is our first up since powerup */
6434		bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
6435		val = *bnx2x_sp(bp, wb_data[0]);
6436
6437		/* do internal memory self test */
6438		if ((val == 0) && bnx2x_int_mem_test(bp)) {
6439			BNX2X_ERR("internal mem self test failed\n");
6440			return -EBUSY;
6441		}
6442	}
6443
6444	bnx2x_setup_fan_failure_detection(bp);
6445
6446	/* clear PXP2 attentions */
6447	REG_RD(bp, PXP2_REG_PXP2_INT_STS_CLR_0);
6448
6449	bnx2x_enable_blocks_attention(bp);
6450	bnx2x_enable_blocks_parity(bp);
6451
6452	if (!BP_NOMCP(bp)) {
6453		if (CHIP_IS_E1x(bp))
6454			bnx2x__common_init_phy(bp);
6455	} else
6456		BNX2X_ERR("Bootcode is missing - can not initialize link\n");
6457
6458	return 0;
6459}
6460
6461/**
6462 * bnx2x_init_hw_common_chip - init HW at the COMMON_CHIP phase.
6463 *
6464 * @bp:		driver handle
6465 */
6466static int bnx2x_init_hw_common_chip(struct bnx2x *bp)
6467{
6468	int rc = bnx2x_init_hw_common(bp);
6469
6470	if (rc)
6471		return rc;
6472
6473	/* In E2 2-PORT mode, same ext phy is used for the two paths */
6474	if (!BP_NOMCP(bp))
6475		bnx2x__common_init_phy(bp);
6476
6477	return 0;
6478}
6479
6480static int bnx2x_init_hw_port(struct bnx2x *bp)
6481{
6482	int port = BP_PORT(bp);
6483	int init_phase = port ? PHASE_PORT1 : PHASE_PORT0;
6484	u32 low, high;
6485	u32 val;
6486
6487	bnx2x__link_reset(bp);
6488
6489	DP(BNX2X_MSG_MCP, "starting port init  port %d\n", port);
6490
6491	REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
6492
6493	bnx2x_init_block(bp, BLOCK_MISC, init_phase);
6494	bnx2x_init_block(bp, BLOCK_PXP, init_phase);
6495	bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
6496
6497	/* Timers bug workaround: disables the pf_master bit in pglue at
6498	 * common phase, we need to enable it here before any dmae access are
6499	 * attempted. Therefore we manually added the enable-master to the
6500	 * port phase (it also happens in the function phase)
6501	 */
6502	if (!CHIP_IS_E1x(bp))
6503		REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
6504
6505	bnx2x_init_block(bp, BLOCK_ATC, init_phase);
6506	bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
6507	bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
6508	bnx2x_init_block(bp, BLOCK_QM, init_phase);
6509
6510	bnx2x_init_block(bp, BLOCK_TCM, init_phase);
6511	bnx2x_init_block(bp, BLOCK_UCM, init_phase);
6512	bnx2x_init_block(bp, BLOCK_CCM, init_phase);
6513	bnx2x_init_block(bp, BLOCK_XCM, init_phase);
6514
6515	/* QM cid (connection) count */
6516	bnx2x_qm_init_cid_count(bp, bp->qm_cid_count, INITOP_SET);
6517
6518#ifdef BCM_CNIC
6519	bnx2x_init_block(bp, BLOCK_TM, init_phase);
6520	REG_WR(bp, TM_REG_LIN0_SCAN_TIME + port*4, 20);
6521	REG_WR(bp, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31);
6522#endif
6523
6524	bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
6525
6526	if (CHIP_IS_E1(bp) || CHIP_IS_E1H(bp)) {
6527		bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
6528
6529		if (IS_MF(bp))
6530			low = ((bp->flags & ONE_PORT_FLAG) ? 160 : 246);
6531		else if (bp->dev->mtu > 4096) {
6532			if (bp->flags & ONE_PORT_FLAG)
6533				low = 160;
6534			else {
6535				val = bp->dev->mtu;
6536				/* (24*1024 + val*4)/256 */
6537				low = 96 + (val/64) +
6538						((val % 64) ? 1 : 0);
6539			}
6540		} else
6541			low = ((bp->flags & ONE_PORT_FLAG) ? 80 : 160);
6542		high = low + 56;	/* 14*1024/256 */
6543		REG_WR(bp, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low);
6544		REG_WR(bp, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high);
6545	}
6546
6547	if (CHIP_MODE_IS_4_PORT(bp))
6548		REG_WR(bp, (BP_PORT(bp) ?
6549			    BRB1_REG_MAC_GUARANTIED_1 :
6550			    BRB1_REG_MAC_GUARANTIED_0), 40);
6551
6552
6553	bnx2x_init_block(bp, BLOCK_PRS, init_phase);
6554	if (CHIP_IS_E3B0(bp))
6555		/* Ovlan exists only if we are in multi-function +
6556		 * switch-dependent mode, in switch-independent there
6557		 * is no ovlan headers
6558		 */
6559		REG_WR(bp, BP_PORT(bp) ?
6560		       PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
6561		       PRS_REG_HDRS_AFTER_BASIC_PORT_0,
6562		       (bp->path_has_ovlan ? 7 : 6));
6563
6564	bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
6565	bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
6566	bnx2x_init_block(bp, BLOCK_USDM, init_phase);
6567	bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
6568
6569	bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
6570	bnx2x_init_block(bp, BLOCK_USEM, init_phase);
6571	bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
6572	bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
6573
6574	bnx2x_init_block(bp, BLOCK_UPB, init_phase);
6575	bnx2x_init_block(bp, BLOCK_XPB, init_phase);
6576
6577	bnx2x_init_block(bp, BLOCK_PBF, init_phase);
6578
6579	if (CHIP_IS_E1x(bp)) {
6580		/* configure PBF to work without PAUSE mtu 9000 */
6581		REG_WR(bp, PBF_REG_P0_PAUSE_ENABLE + port*4, 0);
6582
6583		/* update threshold */
6584		REG_WR(bp, PBF_REG_P0_ARB_THRSH + port*4, (9040/16));
6585		/* update init credit */
6586		REG_WR(bp, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22);
6587
6588		/* probe changes */
6589		REG_WR(bp, PBF_REG_INIT_P0 + port*4, 1);
6590		udelay(50);
6591		REG_WR(bp, PBF_REG_INIT_P0 + port*4, 0);
6592	}
6593
6594#ifdef BCM_CNIC
6595	bnx2x_init_block(bp, BLOCK_SRC, init_phase);
6596#endif
6597	bnx2x_init_block(bp, BLOCK_CDU, init_phase);
6598	bnx2x_init_block(bp, BLOCK_CFC, init_phase);
6599
6600	if (CHIP_IS_E1(bp)) {
6601		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
6602		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
6603	}
6604	bnx2x_init_block(bp, BLOCK_HC, init_phase);
6605
6606	bnx2x_init_block(bp, BLOCK_IGU, init_phase);
6607
6608	bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
6609	/* init aeu_mask_attn_func_0/1:
6610	 *  - SF mode: bits 3-7 are masked. only bits 0-2 are in use
6611	 *  - MF mode: bit 3 is masked. bits 0-2 are in use as in SF
6612	 *             bits 4-7 are used for "per vn group attention" */
6613	val = IS_MF(bp) ? 0xF7 : 0x7;
6614	/* Enable DCBX attention for all but E1 */
6615	val |= CHIP_IS_E1(bp) ? 0 : 0x10;
6616	REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val);
6617
6618	bnx2x_init_block(bp, BLOCK_NIG, init_phase);
6619
6620	if (!CHIP_IS_E1x(bp)) {
6621		/* Bit-map indicating which L2 hdrs may appear after the
6622		 * basic Ethernet header
6623		 */
6624		REG_WR(bp, BP_PORT(bp) ?
6625			   NIG_REG_P1_HDRS_AFTER_BASIC :
6626			   NIG_REG_P0_HDRS_AFTER_BASIC,
6627			   IS_MF_SD(bp) ? 7 : 6);
6628
6629		if (CHIP_IS_E3(bp))
6630			REG_WR(bp, BP_PORT(bp) ?
6631				   NIG_REG_LLH1_MF_MODE :
6632				   NIG_REG_LLH_MF_MODE, IS_MF(bp));
6633	}
6634	if (!CHIP_IS_E3(bp))
6635		REG_WR(bp, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1);
6636
6637	if (!CHIP_IS_E1(bp)) {
6638		/* 0x2 disable mf_ov, 0x1 enable */
6639		REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4,
6640		       (IS_MF_SD(bp) ? 0x1 : 0x2));
6641
6642		if (!CHIP_IS_E1x(bp)) {
6643			val = 0;
6644			switch (bp->mf_mode) {
6645			case MULTI_FUNCTION_SD:
6646				val = 1;
6647				break;
6648			case MULTI_FUNCTION_SI:
6649				val = 2;
6650				break;
6651			}
6652
6653			REG_WR(bp, (BP_PORT(bp) ? NIG_REG_LLH1_CLS_TYPE :
6654						  NIG_REG_LLH0_CLS_TYPE), val);
6655		}
6656		{
6657			REG_WR(bp, NIG_REG_LLFC_ENABLE_0 + port*4, 0);
6658			REG_WR(bp, NIG_REG_LLFC_OUT_EN_0 + port*4, 0);
6659			REG_WR(bp, NIG_REG_PAUSE_ENABLE_0 + port*4, 1);
6660		}
6661	}
6662
6663
6664	/* If SPIO5 is set to generate interrupts, enable it for this port */
6665	val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
6666	if (val & (1 << MISC_REGISTERS_SPIO_5)) {
6667		u32 reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
6668				       MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
6669		val = REG_RD(bp, reg_addr);
6670		val |= AEU_INPUTS_ATTN_BITS_SPIO5;
6671		REG_WR(bp, reg_addr, val);
6672	}
6673
6674	return 0;
6675}
6676
6677static void bnx2x_ilt_wr(struct bnx2x *bp, u32 index, dma_addr_t addr)
6678{
6679	int reg;
6680
6681	if (CHIP_IS_E1(bp))
6682		reg = PXP2_REG_RQ_ONCHIP_AT + index*8;
6683	else
6684		reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8;
6685
6686	bnx2x_wb_wr(bp, reg, ONCHIP_ADDR1(addr), ONCHIP_ADDR2(addr));
6687}
6688
6689static inline void bnx2x_igu_clear_sb(struct bnx2x *bp, u8 idu_sb_id)
6690{
6691	bnx2x_igu_clear_sb_gen(bp, BP_FUNC(bp), idu_sb_id, true /*PF*/);
6692}
6693
6694static inline void bnx2x_clear_func_ilt(struct bnx2x *bp, u32 func)
6695{
6696	u32 i, base = FUNC_ILT_BASE(func);
6697	for (i = base; i < base + ILT_PER_FUNC; i++)
6698		bnx2x_ilt_wr(bp, i, 0);
6699}
6700
6701static int bnx2x_init_hw_func(struct bnx2x *bp)
6702{
6703	int port = BP_PORT(bp);
6704	int func = BP_FUNC(bp);
6705	int init_phase = PHASE_PF0 + func;
6706	struct bnx2x_ilt *ilt = BP_ILT(bp);
6707	u16 cdu_ilt_start;
6708	u32 addr, val;
6709	u32 main_mem_base, main_mem_size, main_mem_prty_clr;
6710	int i, main_mem_width, rc;
6711
6712	DP(BNX2X_MSG_MCP, "starting func init  func %d\n", func);
6713
6714	/* FLR cleanup - hmmm */
6715	if (!CHIP_IS_E1x(bp)) {
6716		rc = bnx2x_pf_flr_clnup(bp);
6717		if (rc)
6718			return rc;
6719	}
6720
6721	/* set MSI reconfigure capability */
6722	if (bp->common.int_block == INT_BLOCK_HC) {
6723		addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0);
6724		val = REG_RD(bp, addr);
6725		val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0;
6726		REG_WR(bp, addr, val);
6727	}
6728
6729	bnx2x_init_block(bp, BLOCK_PXP, init_phase);
6730	bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
6731
6732	ilt = BP_ILT(bp);
6733	cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
6734
6735	for (i = 0; i < L2_ILT_LINES(bp); i++) {
6736		ilt->lines[cdu_ilt_start + i].page =
6737			bp->context.vcxt + (ILT_PAGE_CIDS * i);
6738		ilt->lines[cdu_ilt_start + i].page_mapping =
6739			bp->context.cxt_mapping + (CDU_ILT_PAGE_SZ * i);
6740		/* cdu ilt pages are allocated manually so there's no need to
6741		set the size */
6742	}
6743	bnx2x_ilt_init_op(bp, INITOP_SET);
6744
6745#ifdef BCM_CNIC
6746	bnx2x_src_init_t2(bp, bp->t2, bp->t2_mapping, SRC_CONN_NUM);
6747
6748	/* T1 hash bits value determines the T1 number of entries */
6749	REG_WR(bp, SRC_REG_NUMBER_HASH_BITS0 + port*4, SRC_HASH_BITS);
6750#endif
6751
6752#ifndef BCM_CNIC
6753	/* set NIC mode */
6754	REG_WR(bp, PRS_REG_NIC_MODE, 1);
6755#endif  /* BCM_CNIC */
6756
6757	if (!CHIP_IS_E1x(bp)) {
6758		u32 pf_conf = IGU_PF_CONF_FUNC_EN;
6759
6760		/* Turn on a single ISR mode in IGU if driver is going to use
6761		 * INT#x or MSI
6762		 */
6763		if (!(bp->flags & USING_MSIX_FLAG))
6764			pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
6765		/*
6766		 * Timers workaround bug: function init part.
6767		 * Need to wait 20msec after initializing ILT,
6768		 * needed to make sure there are no requests in
6769		 * one of the PXP internal queues with "old" ILT addresses
6770		 */
6771		msleep(20);
6772		/*
6773		 * Master enable - Due to WB DMAE writes performed before this
6774		 * register is re-initialized as part of the regular function
6775		 * init
6776		 */
6777		REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
6778		/* Enable the function in IGU */
6779		REG_WR(bp, IGU_REG_PF_CONFIGURATION, pf_conf);
6780	}
6781
6782	bp->dmae_ready = 1;
6783
6784	bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
6785
6786	if (!CHIP_IS_E1x(bp))
6787		REG_WR(bp, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, func);
6788
6789	bnx2x_init_block(bp, BLOCK_ATC, init_phase);
6790	bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
6791	bnx2x_init_block(bp, BLOCK_NIG, init_phase);
6792	bnx2x_init_block(bp, BLOCK_SRC, init_phase);
6793	bnx2x_init_block(bp, BLOCK_MISC, init_phase);
6794	bnx2x_init_block(bp, BLOCK_TCM, init_phase);
6795	bnx2x_init_block(bp, BLOCK_UCM, init_phase);
6796	bnx2x_init_block(bp, BLOCK_CCM, init_phase);
6797	bnx2x_init_block(bp, BLOCK_XCM, init_phase);
6798	bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
6799	bnx2x_init_block(bp, BLOCK_USEM, init_phase);
6800	bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
6801	bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
6802
6803	if (!CHIP_IS_E1x(bp))
6804		REG_WR(bp, QM_REG_PF_EN, 1);
6805
6806	if (!CHIP_IS_E1x(bp)) {
6807		REG_WR(bp, TSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
6808		REG_WR(bp, USEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
6809		REG_WR(bp, CSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
6810		REG_WR(bp, XSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
6811	}
6812	bnx2x_init_block(bp, BLOCK_QM, init_phase);
6813
6814	bnx2x_init_block(bp, BLOCK_TM, init_phase);
6815	bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
6816	bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
6817	bnx2x_init_block(bp, BLOCK_PRS, init_phase);
6818	bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
6819	bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
6820	bnx2x_init_block(bp, BLOCK_USDM, init_phase);
6821	bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
6822	bnx2x_init_block(bp, BLOCK_UPB, init_phase);
6823	bnx2x_init_block(bp, BLOCK_XPB, init_phase);
6824	bnx2x_init_block(bp, BLOCK_PBF, init_phase);
6825	if (!CHIP_IS_E1x(bp))
6826		REG_WR(bp, PBF_REG_DISABLE_PF, 0);
6827
6828	bnx2x_init_block(bp, BLOCK_CDU, init_phase);
6829
6830	bnx2x_init_block(bp, BLOCK_CFC, init_phase);
6831
6832	if (!CHIP_IS_E1x(bp))
6833		REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 1);
6834
6835	if (IS_MF(bp)) {
6836		REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 1);
6837		REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + port*8, bp->mf_ov);
6838	}
6839
6840	bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
6841
6842	/* HC init per function */
6843	if (bp->common.int_block == INT_BLOCK_HC) {
6844		if (CHIP_IS_E1H(bp)) {
6845			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
6846
6847			REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
6848			REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
6849		}
6850		bnx2x_init_block(bp, BLOCK_HC, init_phase);
6851
6852	} else {
6853		int num_segs, sb_idx, prod_offset;
6854
6855		REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
6856
6857		if (!CHIP_IS_E1x(bp)) {
6858			REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
6859			REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
6860		}
6861
6862		bnx2x_init_block(bp, BLOCK_IGU, init_phase);
6863
6864		if (!CHIP_IS_E1x(bp)) {
6865			int dsb_idx = 0;
6866			/**
6867			 * Producer memory:
6868			 * E2 mode: address 0-135 match to the mapping memory;
6869			 * 136 - PF0 default prod; 137 - PF1 default prod;
6870			 * 138 - PF2 default prod; 139 - PF3 default prod;
6871			 * 140 - PF0 attn prod;    141 - PF1 attn prod;
6872			 * 142 - PF2 attn prod;    143 - PF3 attn prod;
6873			 * 144-147 reserved.
6874			 *
6875			 * E1.5 mode - In backward compatible mode;
6876			 * for non default SB; each even line in the memory
6877			 * holds the U producer and each odd line hold
6878			 * the C producer. The first 128 producers are for
6879			 * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20
6880			 * producers are for the DSB for each PF.
6881			 * Each PF has five segments: (the order inside each
6882			 * segment is PF0; PF1; PF2; PF3) - 128-131 U prods;
6883			 * 132-135 C prods; 136-139 X prods; 140-143 T prods;
6884			 * 144-147 attn prods;
6885			 */
6886			/* non-default-status-blocks */
6887			num_segs = CHIP_INT_MODE_IS_BC(bp) ?
6888				IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS;
6889			for (sb_idx = 0; sb_idx < bp->igu_sb_cnt; sb_idx++) {
6890				prod_offset = (bp->igu_base_sb + sb_idx) *
6891					num_segs;
6892
6893				for (i = 0; i < num_segs; i++) {
6894					addr = IGU_REG_PROD_CONS_MEMORY +
6895							(prod_offset + i) * 4;
6896					REG_WR(bp, addr, 0);
6897				}
6898				/* send consumer update with value 0 */
6899				bnx2x_ack_sb(bp, bp->igu_base_sb + sb_idx,
6900					     USTORM_ID, 0, IGU_INT_NOP, 1);
6901				bnx2x_igu_clear_sb(bp,
6902						   bp->igu_base_sb + sb_idx);
6903			}
6904
6905			/* default-status-blocks */
6906			num_segs = CHIP_INT_MODE_IS_BC(bp) ?
6907				IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS;
6908
6909			if (CHIP_MODE_IS_4_PORT(bp))
6910				dsb_idx = BP_FUNC(bp);
6911			else
6912				dsb_idx = BP_VN(bp);
6913
6914			prod_offset = (CHIP_INT_MODE_IS_BC(bp) ?
6915				       IGU_BC_BASE_DSB_PROD + dsb_idx :
6916				       IGU_NORM_BASE_DSB_PROD + dsb_idx);
6917
6918			/*
6919			 * igu prods come in chunks of E1HVN_MAX (4) -
6920			 * does not matters what is the current chip mode
6921			 */
6922			for (i = 0; i < (num_segs * E1HVN_MAX);
6923			     i += E1HVN_MAX) {
6924				addr = IGU_REG_PROD_CONS_MEMORY +
6925							(prod_offset + i)*4;
6926				REG_WR(bp, addr, 0);
6927			}
6928			/* send consumer update with 0 */
6929			if (CHIP_INT_MODE_IS_BC(bp)) {
6930				bnx2x_ack_sb(bp, bp->igu_dsb_id,
6931					     USTORM_ID, 0, IGU_INT_NOP, 1);
6932				bnx2x_ack_sb(bp, bp->igu_dsb_id,
6933					     CSTORM_ID, 0, IGU_INT_NOP, 1);
6934				bnx2x_ack_sb(bp, bp->igu_dsb_id,
6935					     XSTORM_ID, 0, IGU_INT_NOP, 1);
6936				bnx2x_ack_sb(bp, bp->igu_dsb_id,
6937					     TSTORM_ID, 0, IGU_INT_NOP, 1);
6938				bnx2x_ack_sb(bp, bp->igu_dsb_id,
6939					     ATTENTION_ID, 0, IGU_INT_NOP, 1);
6940			} else {
6941				bnx2x_ack_sb(bp, bp->igu_dsb_id,
6942					     USTORM_ID, 0, IGU_INT_NOP, 1);
6943				bnx2x_ack_sb(bp, bp->igu_dsb_id,
6944					     ATTENTION_ID, 0, IGU_INT_NOP, 1);
6945			}
6946			bnx2x_igu_clear_sb(bp, bp->igu_dsb_id);
6947
6948			/* !!! these should become driver const once
6949			   rf-tool supports split-68 const */
6950			REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
6951			REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
6952			REG_WR(bp, IGU_REG_SB_MASK_LSB, 0);
6953			REG_WR(bp, IGU_REG_SB_MASK_MSB, 0);
6954			REG_WR(bp, IGU_REG_PBA_STATUS_LSB, 0);
6955			REG_WR(bp, IGU_REG_PBA_STATUS_MSB, 0);
6956		}
6957	}
6958
6959	/* Reset PCIE errors for debug */
6960	REG_WR(bp, 0x2114, 0xffffffff);
6961	REG_WR(bp, 0x2120, 0xffffffff);
6962
6963	if (CHIP_IS_E1x(bp)) {
6964		main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/
6965		main_mem_base = HC_REG_MAIN_MEMORY +
6966				BP_PORT(bp) * (main_mem_size * 4);
6967		main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR;
6968		main_mem_width = 8;
6969
6970		val = REG_RD(bp, main_mem_prty_clr);
6971		if (val)
6972			DP(BNX2X_MSG_MCP, "Hmmm... Parity errors in HC "
6973					  "block during "
6974					  "function init (0x%x)!\n", val);
6975
6976		/* Clear "false" parity errors in MSI-X table */
6977		for (i = main_mem_base;
6978		     i < main_mem_base + main_mem_size * 4;
6979		     i += main_mem_width) {
6980			bnx2x_read_dmae(bp, i, main_mem_width / 4);
6981			bnx2x_write_dmae(bp, bnx2x_sp_mapping(bp, wb_data),
6982					 i, main_mem_width / 4);
6983		}
6984		/* Clear HC parity attention */
6985		REG_RD(bp, main_mem_prty_clr);
6986	}
6987
6988#ifdef BNX2X_STOP_ON_ERROR
6989	/* Enable STORMs SP logging */
6990	REG_WR8(bp, BAR_USTRORM_INTMEM +
6991	       USTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
6992	REG_WR8(bp, BAR_TSTRORM_INTMEM +
6993	       TSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
6994	REG_WR8(bp, BAR_CSTRORM_INTMEM +
6995	       CSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
6996	REG_WR8(bp, BAR_XSTRORM_INTMEM +
6997	       XSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
6998#endif
6999
7000	bnx2x_phy_probe(&bp->link_params);
7001
7002	return 0;
7003}
7004
7005
7006void bnx2x_free_mem(struct bnx2x *bp)
7007{
7008	/* fastpath */
7009	bnx2x_free_fp_mem(bp);
7010	/* end of fastpath */
7011
7012	BNX2X_PCI_FREE(bp->def_status_blk, bp->def_status_blk_mapping,
7013		       sizeof(struct host_sp_status_block));
7014
7015	BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping,
7016		       bp->fw_stats_data_sz + bp->fw_stats_req_sz);
7017
7018	BNX2X_PCI_FREE(bp->slowpath, bp->slowpath_mapping,
7019		       sizeof(struct bnx2x_slowpath));
7020
7021	BNX2X_PCI_FREE(bp->context.vcxt, bp->context.cxt_mapping,
7022		       bp->context.size);
7023
7024	bnx2x_ilt_mem_op(bp, ILT_MEMOP_FREE);
7025
7026	BNX2X_FREE(bp->ilt->lines);
7027
7028#ifdef BCM_CNIC
7029	if (!CHIP_IS_E1x(bp))
7030		BNX2X_PCI_FREE(bp->cnic_sb.e2_sb, bp->cnic_sb_mapping,
7031			       sizeof(struct host_hc_status_block_e2));
7032	else
7033		BNX2X_PCI_FREE(bp->cnic_sb.e1x_sb, bp->cnic_sb_mapping,
7034			       sizeof(struct host_hc_status_block_e1x));
7035
7036	BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ);
7037#endif
7038
7039	BNX2X_PCI_FREE(bp->spq, bp->spq_mapping, BCM_PAGE_SIZE);
7040
7041	BNX2X_PCI_FREE(bp->eq_ring, bp->eq_mapping,
7042		       BCM_PAGE_SIZE * NUM_EQ_PAGES);
7043}
7044
7045static inline int bnx2x_alloc_fw_stats_mem(struct bnx2x *bp)
7046{
7047	int num_groups;
7048	int is_fcoe_stats = NO_FCOE(bp) ? 0 : 1;
7049
7050	/* number of queues for statistics is number of eth queues + FCoE */
7051	u8 num_queue_stats = BNX2X_NUM_ETH_QUEUES(bp) + is_fcoe_stats;
7052
7053	/* Total number of FW statistics requests =
7054	 * 1 for port stats + 1 for PF stats + potential 1 for FCoE stats +
7055	 * num of queues
7056	 */
7057	bp->fw_stats_num = 2 + is_fcoe_stats + num_queue_stats;
7058
7059
7060	/* Request is built from stats_query_header and an array of
7061	 * stats_query_cmd_group each of which contains
7062	 * STATS_QUERY_CMD_COUNT rules. The real number or requests is
7063	 * configured in the stats_query_header.
7064	 */
7065	num_groups = ((bp->fw_stats_num) / STATS_QUERY_CMD_COUNT) +
7066		     (((bp->fw_stats_num) % STATS_QUERY_CMD_COUNT) ? 1 : 0);
7067
7068	bp->fw_stats_req_sz = sizeof(struct stats_query_header) +
7069			num_groups * sizeof(struct stats_query_cmd_group);
7070
7071	/* Data for statistics requests + stats_conter
7072	 *
7073	 * stats_counter holds per-STORM counters that are incremented
7074	 * when STORM has finished with the current request.
7075	 *
7076	 * memory for FCoE offloaded statistics are counted anyway,
7077	 * even if they will not be sent.
7078	 */
7079	bp->fw_stats_data_sz = sizeof(struct per_port_stats) +
7080		sizeof(struct per_pf_stats) +
7081		sizeof(struct fcoe_statistics_params) +
7082		sizeof(struct per_queue_stats) * num_queue_stats +
7083		sizeof(struct stats_counter);
7084
7085	BNX2X_PCI_ALLOC(bp->fw_stats, &bp->fw_stats_mapping,
7086			bp->fw_stats_data_sz + bp->fw_stats_req_sz);
7087
7088	/* Set shortcuts */
7089	bp->fw_stats_req = (struct bnx2x_fw_stats_req *)bp->fw_stats;
7090	bp->fw_stats_req_mapping = bp->fw_stats_mapping;
7091
7092	bp->fw_stats_data = (struct bnx2x_fw_stats_data *)
7093		((u8 *)bp->fw_stats + bp->fw_stats_req_sz);
7094
7095	bp->fw_stats_data_mapping = bp->fw_stats_mapping +
7096				   bp->fw_stats_req_sz;
7097	return 0;
7098
7099alloc_mem_err:
7100	BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping,
7101		       bp->fw_stats_data_sz + bp->fw_stats_req_sz);
7102	return -ENOMEM;
7103}
7104
7105
7106int bnx2x_alloc_mem(struct bnx2x *bp)
7107{
7108#ifdef BCM_CNIC
7109	if (!CHIP_IS_E1x(bp))
7110		/* size = the status block + ramrod buffers */
7111		BNX2X_PCI_ALLOC(bp->cnic_sb.e2_sb, &bp->cnic_sb_mapping,
7112				sizeof(struct host_hc_status_block_e2));
7113	else
7114		BNX2X_PCI_ALLOC(bp->cnic_sb.e1x_sb, &bp->cnic_sb_mapping,
7115				sizeof(struct host_hc_status_block_e1x));
7116
7117	/* allocate searcher T2 table */
7118	BNX2X_PCI_ALLOC(bp->t2, &bp->t2_mapping, SRC_T2_SZ);
7119#endif
7120
7121
7122	BNX2X_PCI_ALLOC(bp->def_status_blk, &bp->def_status_blk_mapping,
7123			sizeof(struct host_sp_status_block));
7124
7125	BNX2X_PCI_ALLOC(bp->slowpath, &bp->slowpath_mapping,
7126			sizeof(struct bnx2x_slowpath));
7127
7128	/* Allocated memory for FW statistics  */
7129	if (bnx2x_alloc_fw_stats_mem(bp))
7130		goto alloc_mem_err;
7131
7132	bp->context.size = sizeof(union cdu_context) * BNX2X_L2_CID_COUNT(bp);
7133
7134	BNX2X_PCI_ALLOC(bp->context.vcxt, &bp->context.cxt_mapping,
7135			bp->context.size);
7136
7137	BNX2X_ALLOC(bp->ilt->lines, sizeof(struct ilt_line) * ILT_MAX_LINES);
7138
7139	if (bnx2x_ilt_mem_op(bp, ILT_MEMOP_ALLOC))
7140		goto alloc_mem_err;
7141
7142	/* Slow path ring */
7143	BNX2X_PCI_ALLOC(bp->spq, &bp->spq_mapping, BCM_PAGE_SIZE);
7144
7145	/* EQ */
7146	BNX2X_PCI_ALLOC(bp->eq_ring, &bp->eq_mapping,
7147			BCM_PAGE_SIZE * NUM_EQ_PAGES);
7148
7149
7150	/* fastpath */
7151	/* need to be done at the end, since it's self adjusting to amount
7152	 * of memory available for RSS queues
7153	 */
7154	if (bnx2x_alloc_fp_mem(bp))
7155		goto alloc_mem_err;
7156	return 0;
7157
7158alloc_mem_err:
7159	bnx2x_free_mem(bp);
7160	return -ENOMEM;
7161}
7162
7163/*
7164 * Init service functions
7165 */
7166
7167int bnx2x_set_mac_one(struct bnx2x *bp, u8 *mac,
7168		      struct bnx2x_vlan_mac_obj *obj, bool set,
7169		      int mac_type, unsigned long *ramrod_flags)
7170{
7171	int rc;
7172	struct bnx2x_vlan_mac_ramrod_params ramrod_param;
7173
7174	memset(&ramrod_param, 0, sizeof(ramrod_param));
7175
7176	/* Fill general parameters */
7177	ramrod_param.vlan_mac_obj = obj;
7178	ramrod_param.ramrod_flags = *ramrod_flags;
7179
7180	/* Fill a user request section if needed */
7181	if (!test_bit(RAMROD_CONT, ramrod_flags)) {
7182		memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN);
7183
7184		__set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags);
7185
7186		/* Set the command: ADD or DEL */
7187		if (set)
7188			ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_ADD;
7189		else
7190			ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_DEL;
7191	}
7192
7193	rc = bnx2x_config_vlan_mac(bp, &ramrod_param);
7194	if (rc < 0)
7195		BNX2X_ERR("%s MAC failed\n", (set ? "Set" : "Del"));
7196	return rc;
7197}
7198
7199int bnx2x_del_all_macs(struct bnx2x *bp,
7200		       struct bnx2x_vlan_mac_obj *mac_obj,
7201		       int mac_type, bool wait_for_comp)
7202{
7203	int rc;
7204	unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
7205
7206	/* Wait for completion of requested */
7207	if (wait_for_comp)
7208		__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
7209
7210	/* Set the mac type of addresses we want to clear */
7211	__set_bit(mac_type, &vlan_mac_flags);
7212
7213	rc = mac_obj->delete_all(bp, mac_obj, &vlan_mac_flags, &ramrod_flags);
7214	if (rc < 0)
7215		BNX2X_ERR("Failed to delete MACs: %d\n", rc);
7216
7217	return rc;
7218}
7219
7220int bnx2x_set_eth_mac(struct bnx2x *bp, bool set)
7221{
7222	unsigned long ramrod_flags = 0;
7223
7224#ifdef BCM_CNIC
7225	if (is_zero_ether_addr(bp->dev->dev_addr) && IS_MF_ISCSI_SD(bp)) {
7226		DP(NETIF_MSG_IFUP, "Ignoring Zero MAC for iSCSI SD mode\n");
7227		return 0;
7228	}
7229#endif
7230
7231	DP(NETIF_MSG_IFUP, "Adding Eth MAC\n");
7232
7233	__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
7234	/* Eth MAC is set on RSS leading client (fp[0]) */
7235	return bnx2x_set_mac_one(bp, bp->dev->dev_addr, &bp->fp->mac_obj, set,
7236				 BNX2X_ETH_MAC, &ramrod_flags);
7237}
7238
7239int bnx2x_setup_leading(struct bnx2x *bp)
7240{
7241	return bnx2x_setup_queue(bp, &bp->fp[0], 1);
7242}
7243
7244/**
7245 * bnx2x_set_int_mode - configure interrupt mode
7246 *
7247 * @bp:		driver handle
7248 *
7249 * In case of MSI-X it will also try to enable MSI-X.
7250 */
7251static void __devinit bnx2x_set_int_mode(struct bnx2x *bp)
7252{
7253	switch (int_mode) {
7254	case INT_MODE_MSI:
7255		bnx2x_enable_msi(bp);
7256		/* falling through... */
7257	case INT_MODE_INTx:
7258		bp->num_queues = 1 + NON_ETH_CONTEXT_USE;
7259		DP(NETIF_MSG_IFUP, "set number of queues to 1\n");
7260		break;
7261	default:
7262		/* Set number of queues according to bp->multi_mode value */
7263		bnx2x_set_num_queues(bp);
7264
7265		DP(NETIF_MSG_IFUP, "set number of queues to %d\n",
7266		   bp->num_queues);
7267
7268		/* if we can't use MSI-X we only need one fp,
7269		 * so try to enable MSI-X with the requested number of fp's
7270		 * and fallback to MSI or legacy INTx with one fp
7271		 */
7272		if (bnx2x_enable_msix(bp)) {
7273			/* failed to enable MSI-X */
7274			if (bp->multi_mode)
7275				DP(NETIF_MSG_IFUP,
7276					  "Multi requested but failed to "
7277					  "enable MSI-X (%d), "
7278					  "set number of queues to %d\n",
7279				   bp->num_queues,
7280				   1 + NON_ETH_CONTEXT_USE);
7281			bp->num_queues = 1 + NON_ETH_CONTEXT_USE;
7282
7283			/* Try to enable MSI */
7284			if (!(bp->flags & DISABLE_MSI_FLAG))
7285				bnx2x_enable_msi(bp);
7286		}
7287		break;
7288	}
7289}
7290
7291/* must be called prioir to any HW initializations */
7292static inline u16 bnx2x_cid_ilt_lines(struct bnx2x *bp)
7293{
7294	return L2_ILT_LINES(bp);
7295}
7296
7297void bnx2x_ilt_set_info(struct bnx2x *bp)
7298{
7299	struct ilt_client_info *ilt_client;
7300	struct bnx2x_ilt *ilt = BP_ILT(bp);
7301	u16 line = 0;
7302
7303	ilt->start_line = FUNC_ILT_BASE(BP_FUNC(bp));
7304	DP(BNX2X_MSG_SP, "ilt starts at line %d\n", ilt->start_line);
7305
7306	/* CDU */
7307	ilt_client = &ilt->clients[ILT_CLIENT_CDU];
7308	ilt_client->client_num = ILT_CLIENT_CDU;
7309	ilt_client->page_size = CDU_ILT_PAGE_SZ;
7310	ilt_client->flags = ILT_CLIENT_SKIP_MEM;
7311	ilt_client->start = line;
7312	line += bnx2x_cid_ilt_lines(bp);
7313#ifdef BCM_CNIC
7314	line += CNIC_ILT_LINES;
7315#endif
7316	ilt_client->end = line - 1;
7317
7318	DP(BNX2X_MSG_SP, "ilt client[CDU]: start %d, end %d, psz 0x%x, "
7319					 "flags 0x%x, hw psz %d\n",
7320	   ilt_client->start,
7321	   ilt_client->end,
7322	   ilt_client->page_size,
7323	   ilt_client->flags,
7324	   ilog2(ilt_client->page_size >> 12));
7325
7326	/* QM */
7327	if (QM_INIT(bp->qm_cid_count)) {
7328		ilt_client = &ilt->clients[ILT_CLIENT_QM];
7329		ilt_client->client_num = ILT_CLIENT_QM;
7330		ilt_client->page_size = QM_ILT_PAGE_SZ;
7331		ilt_client->flags = 0;
7332		ilt_client->start = line;
7333
7334		/* 4 bytes for each cid */
7335		line += DIV_ROUND_UP(bp->qm_cid_count * QM_QUEUES_PER_FUNC * 4,
7336							 QM_ILT_PAGE_SZ);
7337
7338		ilt_client->end = line - 1;
7339
7340		DP(BNX2X_MSG_SP, "ilt client[QM]: start %d, end %d, psz 0x%x, "
7341						 "flags 0x%x, hw psz %d\n",
7342		   ilt_client->start,
7343		   ilt_client->end,
7344		   ilt_client->page_size,
7345		   ilt_client->flags,
7346		   ilog2(ilt_client->page_size >> 12));
7347
7348	}
7349	/* SRC */
7350	ilt_client = &ilt->clients[ILT_CLIENT_SRC];
7351#ifdef BCM_CNIC
7352	ilt_client->client_num = ILT_CLIENT_SRC;
7353	ilt_client->page_size = SRC_ILT_PAGE_SZ;
7354	ilt_client->flags = 0;
7355	ilt_client->start = line;
7356	line += SRC_ILT_LINES;
7357	ilt_client->end = line - 1;
7358
7359	DP(BNX2X_MSG_SP, "ilt client[SRC]: start %d, end %d, psz 0x%x, "
7360					 "flags 0x%x, hw psz %d\n",
7361	   ilt_client->start,
7362	   ilt_client->end,
7363	   ilt_client->page_size,
7364	   ilt_client->flags,
7365	   ilog2(ilt_client->page_size >> 12));
7366
7367#else
7368	ilt_client->flags = (ILT_CLIENT_SKIP_INIT | ILT_CLIENT_SKIP_MEM);
7369#endif
7370
7371	/* TM */
7372	ilt_client = &ilt->clients[ILT_CLIENT_TM];
7373#ifdef BCM_CNIC
7374	ilt_client->client_num = ILT_CLIENT_TM;
7375	ilt_client->page_size = TM_ILT_PAGE_SZ;
7376	ilt_client->flags = 0;
7377	ilt_client->start = line;
7378	line += TM_ILT_LINES;
7379	ilt_client->end = line - 1;
7380
7381	DP(BNX2X_MSG_SP, "ilt client[TM]: start %d, end %d, psz 0x%x, "
7382					 "flags 0x%x, hw psz %d\n",
7383	   ilt_client->start,
7384	   ilt_client->end,
7385	   ilt_client->page_size,
7386	   ilt_client->flags,
7387	   ilog2(ilt_client->page_size >> 12));
7388
7389#else
7390	ilt_client->flags = (ILT_CLIENT_SKIP_INIT | ILT_CLIENT_SKIP_MEM);
7391#endif
7392	BUG_ON(line > ILT_MAX_LINES);
7393}
7394
7395/**
7396 * bnx2x_pf_q_prep_init - prepare INIT transition parameters
7397 *
7398 * @bp:			driver handle
7399 * @fp:			pointer to fastpath
7400 * @init_params:	pointer to parameters structure
7401 *
7402 * parameters configured:
7403 *      - HC configuration
7404 *      - Queue's CDU context
7405 */
7406static inline void bnx2x_pf_q_prep_init(struct bnx2x *bp,
7407	struct bnx2x_fastpath *fp, struct bnx2x_queue_init_params *init_params)
7408{
7409
7410	u8 cos;
7411	/* FCoE Queue uses Default SB, thus has no HC capabilities */
7412	if (!IS_FCOE_FP(fp)) {
7413		__set_bit(BNX2X_Q_FLG_HC, &init_params->rx.flags);
7414		__set_bit(BNX2X_Q_FLG_HC, &init_params->tx.flags);
7415
7416		/* If HC is supporterd, enable host coalescing in the transition
7417		 * to INIT state.
7418		 */
7419		__set_bit(BNX2X_Q_FLG_HC_EN, &init_params->rx.flags);
7420		__set_bit(BNX2X_Q_FLG_HC_EN, &init_params->tx.flags);
7421
7422		/* HC rate */
7423		init_params->rx.hc_rate = bp->rx_ticks ?
7424			(1000000 / bp->rx_ticks) : 0;
7425		init_params->tx.hc_rate = bp->tx_ticks ?
7426			(1000000 / bp->tx_ticks) : 0;
7427
7428		/* FW SB ID */
7429		init_params->rx.fw_sb_id = init_params->tx.fw_sb_id =
7430			fp->fw_sb_id;
7431
7432		/*
7433		 * CQ index among the SB indices: FCoE clients uses the default
7434		 * SB, therefore it's different.
7435		 */
7436		init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
7437		init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS;
7438	}
7439
7440	/* set maximum number of COSs supported by this queue */
7441	init_params->max_cos = fp->max_cos;
7442
7443	DP(BNX2X_MSG_SP, "fp: %d setting queue params max cos to: %d\n",
7444	    fp->index, init_params->max_cos);
7445
7446	/* set the context pointers queue object */
7447	for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++)
7448		init_params->cxts[cos] =
7449			&bp->context.vcxt[fp->txdata[cos].cid].eth;
7450}
7451
7452int bnx2x_setup_tx_only(struct bnx2x *bp, struct bnx2x_fastpath *fp,
7453			struct bnx2x_queue_state_params *q_params,
7454			struct bnx2x_queue_setup_tx_only_params *tx_only_params,
7455			int tx_index, bool leading)
7456{
7457	memset(tx_only_params, 0, sizeof(*tx_only_params));
7458
7459	/* Set the command */
7460	q_params->cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
7461
7462	/* Set tx-only QUEUE flags: don't zero statistics */
7463	tx_only_params->flags = bnx2x_get_common_flags(bp, fp, false);
7464
7465	/* choose the index of the cid to send the slow path on */
7466	tx_only_params->cid_index = tx_index;
7467
7468	/* Set general TX_ONLY_SETUP parameters */
7469	bnx2x_pf_q_prep_general(bp, fp, &tx_only_params->gen_params, tx_index);
7470
7471	/* Set Tx TX_ONLY_SETUP parameters */
7472	bnx2x_pf_tx_q_prep(bp, fp, &tx_only_params->txq_params, tx_index);
7473
7474	DP(BNX2X_MSG_SP, "preparing to send tx-only ramrod for connection:"
7475			 "cos %d, primary cid %d, cid %d, "
7476			 "client id %d, sp-client id %d, flags %lx\n",
7477	   tx_index, q_params->q_obj->cids[FIRST_TX_COS_INDEX],
7478	   q_params->q_obj->cids[tx_index], q_params->q_obj->cl_id,
7479	   tx_only_params->gen_params.spcl_id, tx_only_params->flags);
7480
7481	/* send the ramrod */
7482	return bnx2x_queue_state_change(bp, q_params);
7483}
7484
7485
7486/**
7487 * bnx2x_setup_queue - setup queue
7488 *
7489 * @bp:		driver handle
7490 * @fp:		pointer to fastpath
7491 * @leading:	is leading
7492 *
7493 * This function performs 2 steps in a Queue state machine
7494 *      actually: 1) RESET->INIT 2) INIT->SETUP
7495 */
7496
7497int bnx2x_setup_queue(struct bnx2x *bp, struct bnx2x_fastpath *fp,
7498		       bool leading)
7499{
7500	struct bnx2x_queue_state_params q_params = {0};
7501	struct bnx2x_queue_setup_params *setup_params =
7502						&q_params.params.setup;
7503	struct bnx2x_queue_setup_tx_only_params *tx_only_params =
7504						&q_params.params.tx_only;
7505	int rc;
7506	u8 tx_index;
7507
7508	DP(BNX2X_MSG_SP, "setting up queue %d\n", fp->index);
7509
7510	/* reset IGU state skip FCoE L2 queue */
7511	if (!IS_FCOE_FP(fp))
7512		bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, 0,
7513			     IGU_INT_ENABLE, 0);
7514
7515	q_params.q_obj = &fp->q_obj;
7516	/* We want to wait for completion in this context */
7517	__set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
7518
7519	/* Prepare the INIT parameters */
7520	bnx2x_pf_q_prep_init(bp, fp, &q_params.params.init);
7521
7522	/* Set the command */
7523	q_params.cmd = BNX2X_Q_CMD_INIT;
7524
7525	/* Change the state to INIT */
7526	rc = bnx2x_queue_state_change(bp, &q_params);
7527	if (rc) {
7528		BNX2X_ERR("Queue(%d) INIT failed\n", fp->index);
7529		return rc;
7530	}
7531
7532	DP(BNX2X_MSG_SP, "init complete\n");
7533
7534
7535	/* Now move the Queue to the SETUP state... */
7536	memset(setup_params, 0, sizeof(*setup_params));
7537
7538	/* Set QUEUE flags */
7539	setup_params->flags = bnx2x_get_q_flags(bp, fp, leading);
7540
7541	/* Set general SETUP parameters */
7542	bnx2x_pf_q_prep_general(bp, fp, &setup_params->gen_params,
7543				FIRST_TX_COS_INDEX);
7544
7545	bnx2x_pf_rx_q_prep(bp, fp, &setup_params->pause_params,
7546			    &setup_params->rxq_params);
7547
7548	bnx2x_pf_tx_q_prep(bp, fp, &setup_params->txq_params,
7549			   FIRST_TX_COS_INDEX);
7550
7551	/* Set the command */
7552	q_params.cmd = BNX2X_Q_CMD_SETUP;
7553
7554	/* Change the state to SETUP */
7555	rc = bnx2x_queue_state_change(bp, &q_params);
7556	if (rc) {
7557		BNX2X_ERR("Queue(%d) SETUP failed\n", fp->index);
7558		return rc;
7559	}
7560
7561	/* loop through the relevant tx-only indices */
7562	for (tx_index = FIRST_TX_ONLY_COS_INDEX;
7563	      tx_index < fp->max_cos;
7564	      tx_index++) {
7565
7566		/* prepare and send tx-only ramrod*/
7567		rc = bnx2x_setup_tx_only(bp, fp, &q_params,
7568					  tx_only_params, tx_index, leading);
7569		if (rc) {
7570			BNX2X_ERR("Queue(%d.%d) TX_ONLY_SETUP failed\n",
7571				  fp->index, tx_index);
7572			return rc;
7573		}
7574	}
7575
7576	return rc;
7577}
7578
7579static int bnx2x_stop_queue(struct bnx2x *bp, int index)
7580{
7581	struct bnx2x_fastpath *fp = &bp->fp[index];
7582	struct bnx2x_fp_txdata *txdata;
7583	struct bnx2x_queue_state_params q_params = {0};
7584	int rc, tx_index;
7585
7586	DP(BNX2X_MSG_SP, "stopping queue %d cid %d\n", index, fp->cid);
7587
7588	q_params.q_obj = &fp->q_obj;
7589	/* We want to wait for completion in this context */
7590	__set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
7591
7592
7593	/* close tx-only connections */
7594	for (tx_index = FIRST_TX_ONLY_COS_INDEX;
7595	     tx_index < fp->max_cos;
7596	     tx_index++){
7597
7598		/* ascertain this is a normal queue*/
7599		txdata = &fp->txdata[tx_index];
7600
7601		DP(BNX2X_MSG_SP, "stopping tx-only queue %d\n",
7602							txdata->txq_index);
7603
7604		/* send halt terminate on tx-only connection */
7605		q_params.cmd = BNX2X_Q_CMD_TERMINATE;
7606		memset(&q_params.params.terminate, 0,
7607		       sizeof(q_params.params.terminate));
7608		q_params.params.terminate.cid_index = tx_index;
7609
7610		rc = bnx2x_queue_state_change(bp, &q_params);
7611		if (rc)
7612			return rc;
7613
7614		/* send halt terminate on tx-only connection */
7615		q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
7616		memset(&q_params.params.cfc_del, 0,
7617		       sizeof(q_params.params.cfc_del));
7618		q_params.params.cfc_del.cid_index = tx_index;
7619		rc = bnx2x_queue_state_change(bp, &q_params);
7620		if (rc)
7621			return rc;
7622	}
7623	/* Stop the primary connection: */
7624	/* ...halt the connection */
7625	q_params.cmd = BNX2X_Q_CMD_HALT;
7626	rc = bnx2x_queue_state_change(bp, &q_params);
7627	if (rc)
7628		return rc;
7629
7630	/* ...terminate the connection */
7631	q_params.cmd = BNX2X_Q_CMD_TERMINATE;
7632	memset(&q_params.params.terminate, 0,
7633	       sizeof(q_params.params.terminate));
7634	q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX;
7635	rc = bnx2x_queue_state_change(bp, &q_params);
7636	if (rc)
7637		return rc;
7638	/* ...delete cfc entry */
7639	q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
7640	memset(&q_params.params.cfc_del, 0,
7641	       sizeof(q_params.params.cfc_del));
7642	q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX;
7643	return bnx2x_queue_state_change(bp, &q_params);
7644}
7645
7646
7647static void bnx2x_reset_func(struct bnx2x *bp)
7648{
7649	int port = BP_PORT(bp);
7650	int func = BP_FUNC(bp);
7651	int i;
7652
7653	/* Disable the function in the FW */
7654	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0);
7655	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0);
7656	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0);
7657	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0);
7658
7659	/* FP SBs */
7660	for_each_eth_queue(bp, i) {
7661		struct bnx2x_fastpath *fp = &bp->fp[i];
7662		REG_WR8(bp, BAR_CSTRORM_INTMEM +
7663			   CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id),
7664			   SB_DISABLED);
7665	}
7666
7667#ifdef BCM_CNIC
7668	/* CNIC SB */
7669	REG_WR8(bp, BAR_CSTRORM_INTMEM +
7670		CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(bnx2x_cnic_fw_sb_id(bp)),
7671		SB_DISABLED);
7672#endif
7673	/* SP SB */
7674	REG_WR8(bp, BAR_CSTRORM_INTMEM +
7675		   CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func),
7676		   SB_DISABLED);
7677
7678	for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++)
7679		REG_WR(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func),
7680		       0);
7681
7682	/* Configure IGU */
7683	if (bp->common.int_block == INT_BLOCK_HC) {
7684		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
7685		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
7686	} else {
7687		REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
7688		REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
7689	}
7690
7691#ifdef BCM_CNIC
7692	/* Disable Timer scan */
7693	REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 0);
7694	/*
7695	 * Wait for at least 10ms and up to 2 second for the timers scan to
7696	 * complete
7697	 */
7698	for (i = 0; i < 200; i++) {
7699		msleep(10);
7700		if (!REG_RD(bp, TM_REG_LIN0_SCAN_ON + port*4))
7701			break;
7702	}
7703#endif
7704	/* Clear ILT */
7705	bnx2x_clear_func_ilt(bp, func);
7706
7707	/* Timers workaround bug for E2: if this is vnic-3,
7708	 * we need to set the entire ilt range for this timers.
7709	 */
7710	if (!CHIP_IS_E1x(bp) && BP_VN(bp) == 3) {
7711		struct ilt_client_info ilt_cli;
7712		/* use dummy TM client */
7713		memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
7714		ilt_cli.start = 0;
7715		ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
7716		ilt_cli.client_num = ILT_CLIENT_TM;
7717
7718		bnx2x_ilt_boundry_init_op(bp, &ilt_cli, 0, INITOP_CLEAR);
7719	}
7720
7721	/* this assumes that reset_port() called before reset_func()*/
7722	if (!CHIP_IS_E1x(bp))
7723		bnx2x_pf_disable(bp);
7724
7725	bp->dmae_ready = 0;
7726}
7727
7728static void bnx2x_reset_port(struct bnx2x *bp)
7729{
7730	int port = BP_PORT(bp);
7731	u32 val;
7732
7733	/* Reset physical Link */
7734	bnx2x__link_reset(bp);
7735
7736	REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
7737
7738	/* Do not rcv packets to BRB */
7739	REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0);
7740	/* Do not direct rcv packets that are not for MCP to the BRB */
7741	REG_WR(bp, (port ? NIG_REG_LLH1_BRB1_NOT_MCP :
7742			   NIG_REG_LLH0_BRB1_NOT_MCP), 0x0);
7743
7744	/* Configure AEU */
7745	REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0);
7746
7747	msleep(100);
7748	/* Check for BRB port occupancy */
7749	val = REG_RD(bp, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4);
7750	if (val)
7751		DP(NETIF_MSG_IFDOWN,
7752		   "BRB1 is not empty  %d blocks are occupied\n", val);
7753
7754	/* TODO: Close Doorbell port? */
7755}
7756
7757static inline int bnx2x_reset_hw(struct bnx2x *bp, u32 load_code)
7758{
7759	struct bnx2x_func_state_params func_params = {0};
7760
7761	/* Prepare parameters for function state transitions */
7762	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
7763
7764	func_params.f_obj = &bp->func_obj;
7765	func_params.cmd = BNX2X_F_CMD_HW_RESET;
7766
7767	func_params.params.hw_init.load_phase = load_code;
7768
7769	return bnx2x_func_state_change(bp, &func_params);
7770}
7771
7772static inline int bnx2x_func_stop(struct bnx2x *bp)
7773{
7774	struct bnx2x_func_state_params func_params = {0};
7775	int rc;
7776
7777	/* Prepare parameters for function state transitions */
7778	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
7779	func_params.f_obj = &bp->func_obj;
7780	func_params.cmd = BNX2X_F_CMD_STOP;
7781
7782	/*
7783	 * Try to stop the function the 'good way'. If fails (in case
7784	 * of a parity error during bnx2x_chip_cleanup()) and we are
7785	 * not in a debug mode, perform a state transaction in order to
7786	 * enable further HW_RESET transaction.
7787	 */
7788	rc = bnx2x_func_state_change(bp, &func_params);
7789	if (rc) {
7790#ifdef BNX2X_STOP_ON_ERROR
7791		return rc;
7792#else
7793		BNX2X_ERR("FUNC_STOP ramrod failed. Running a dry "
7794			  "transaction\n");
7795		__set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
7796		return bnx2x_func_state_change(bp, &func_params);
7797#endif
7798	}
7799
7800	return 0;
7801}
7802
7803/**
7804 * bnx2x_send_unload_req - request unload mode from the MCP.
7805 *
7806 * @bp:			driver handle
7807 * @unload_mode:	requested function's unload mode
7808 *
7809 * Return unload mode returned by the MCP: COMMON, PORT or FUNC.
7810 */
7811u32 bnx2x_send_unload_req(struct bnx2x *bp, int unload_mode)
7812{
7813	u32 reset_code = 0;
7814	int port = BP_PORT(bp);
7815
7816	/* Select the UNLOAD request mode */
7817	if (unload_mode == UNLOAD_NORMAL)
7818		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
7819
7820	else if (bp->flags & NO_WOL_FLAG)
7821		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP;
7822
7823	else if (bp->wol) {
7824		u32 emac_base = port ? GRCBASE_EMAC1 : GRCBASE_EMAC0;
7825		u8 *mac_addr = bp->dev->dev_addr;
7826		u32 val;
7827		u16 pmc;
7828
7829		/* The mac address is written to entries 1-4 to
7830		 * preserve entry 0 which is used by the PMF
7831		 */
7832		u8 entry = (BP_VN(bp) + 1)*8;
7833
7834		val = (mac_addr[0] << 8) | mac_addr[1];
7835		EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry, val);
7836
7837		val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
7838		      (mac_addr[4] << 8) | mac_addr[5];
7839		EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry + 4, val);
7840
7841		/* Enable the PME and clear the status */
7842		pci_read_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, &pmc);
7843		pmc |= PCI_PM_CTRL_PME_ENABLE | PCI_PM_CTRL_PME_STATUS;
7844		pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, pmc);
7845
7846		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_EN;
7847
7848	} else
7849		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
7850
7851	/* Send the request to the MCP */
7852	if (!BP_NOMCP(bp))
7853		reset_code = bnx2x_fw_command(bp, reset_code, 0);
7854	else {
7855		int path = BP_PATH(bp);
7856
7857		DP(NETIF_MSG_IFDOWN, "NO MCP - load counts[%d]      "
7858				     "%d, %d, %d\n",
7859		   path, load_count[path][0], load_count[path][1],
7860		   load_count[path][2]);
7861		load_count[path][0]--;
7862		load_count[path][1 + port]--;
7863		DP(NETIF_MSG_IFDOWN, "NO MCP - new load counts[%d]  "
7864				     "%d, %d, %d\n",
7865		   path, load_count[path][0], load_count[path][1],
7866		   load_count[path][2]);
7867		if (load_count[path][0] == 0)
7868			reset_code = FW_MSG_CODE_DRV_UNLOAD_COMMON;
7869		else if (load_count[path][1 + port] == 0)
7870			reset_code = FW_MSG_CODE_DRV_UNLOAD_PORT;
7871		else
7872			reset_code = FW_MSG_CODE_DRV_UNLOAD_FUNCTION;
7873	}
7874
7875	return reset_code;
7876}
7877
7878/**
7879 * bnx2x_send_unload_done - send UNLOAD_DONE command to the MCP.
7880 *
7881 * @bp:		driver handle
7882 */
7883void bnx2x_send_unload_done(struct bnx2x *bp)
7884{
7885	/* Report UNLOAD_DONE to MCP */
7886	if (!BP_NOMCP(bp))
7887		bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0);
7888}
7889
7890static inline int bnx2x_func_wait_started(struct bnx2x *bp)
7891{
7892	int tout = 50;
7893	int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
7894
7895	if (!bp->port.pmf)
7896		return 0;
7897
7898	/*
7899	 * (assumption: No Attention from MCP at this stage)
7900	 * PMF probably in the middle of TXdisable/enable transaction
7901	 * 1. Sync IRS for default SB
7902	 * 2. Sync SP queue - this guarantes us that attention handling started
7903	 * 3. Wait, that TXdisable/enable transaction completes
7904	 *
7905	 * 1+2 guranty that if DCBx attention was scheduled it already changed
7906	 * pending bit of transaction from STARTED-->TX_STOPPED, if we alredy
7907	 * received complettion for the transaction the state is TX_STOPPED.
7908	 * State will return to STARTED after completion of TX_STOPPED-->STARTED
7909	 * transaction.
7910	 */
7911
7912	/* make sure default SB ISR is done */
7913	if (msix)
7914		synchronize_irq(bp->msix_table[0].vector);
7915	else
7916		synchronize_irq(bp->pdev->irq);
7917
7918	flush_workqueue(bnx2x_wq);
7919
7920	while (bnx2x_func_get_state(bp, &bp->func_obj) !=
7921				BNX2X_F_STATE_STARTED && tout--)
7922		msleep(20);
7923
7924	if (bnx2x_func_get_state(bp, &bp->func_obj) !=
7925						BNX2X_F_STATE_STARTED) {
7926#ifdef BNX2X_STOP_ON_ERROR
7927		return -EBUSY;
7928#else
7929		/*
7930		 * Failed to complete the transaction in a "good way"
7931		 * Force both transactions with CLR bit
7932		 */
7933		struct bnx2x_func_state_params func_params = {0};
7934
7935		DP(BNX2X_MSG_SP, "Hmmm... unexpected function state! "
7936			  "Forcing STARTED-->TX_ST0PPED-->STARTED\n");
7937
7938		func_params.f_obj = &bp->func_obj;
7939		__set_bit(RAMROD_DRV_CLR_ONLY,
7940					&func_params.ramrod_flags);
7941
7942		/* STARTED-->TX_ST0PPED */
7943		func_params.cmd = BNX2X_F_CMD_TX_STOP;
7944		bnx2x_func_state_change(bp, &func_params);
7945
7946		/* TX_ST0PPED-->STARTED */
7947		func_params.cmd = BNX2X_F_CMD_TX_START;
7948		return bnx2x_func_state_change(bp, &func_params);
7949#endif
7950	}
7951
7952	return 0;
7953}
7954
7955void bnx2x_chip_cleanup(struct bnx2x *bp, int unload_mode)
7956{
7957	int port = BP_PORT(bp);
7958	int i, rc = 0;
7959	u8 cos;
7960	struct bnx2x_mcast_ramrod_params rparam = {0};
7961	u32 reset_code;
7962
7963	/* Wait until tx fastpath tasks complete */
7964	for_each_tx_queue(bp, i) {
7965		struct bnx2x_fastpath *fp = &bp->fp[i];
7966
7967		for_each_cos_in_tx_queue(fp, cos)
7968			rc = bnx2x_clean_tx_queue(bp, &fp->txdata[cos]);
7969#ifdef BNX2X_STOP_ON_ERROR
7970		if (rc)
7971			return;
7972#endif
7973	}
7974
7975	/* Give HW time to discard old tx messages */
7976	usleep_range(1000, 1000);
7977
7978	/* Clean all ETH MACs */
7979	rc = bnx2x_del_all_macs(bp, &bp->fp[0].mac_obj, BNX2X_ETH_MAC, false);
7980	if (rc < 0)
7981		BNX2X_ERR("Failed to delete all ETH macs: %d\n", rc);
7982
7983	/* Clean up UC list  */
7984	rc = bnx2x_del_all_macs(bp, &bp->fp[0].mac_obj, BNX2X_UC_LIST_MAC,
7985				true);
7986	if (rc < 0)
7987		BNX2X_ERR("Failed to schedule DEL commands for UC MACs list: "
7988			  "%d\n", rc);
7989
7990	/* Disable LLH */
7991	if (!CHIP_IS_E1(bp))
7992		REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
7993
7994	/* Set "drop all" (stop Rx).
7995	 * We need to take a netif_addr_lock() here in order to prevent
7996	 * a race between the completion code and this code.
7997	 */
7998	netif_addr_lock_bh(bp->dev);
7999	/* Schedule the rx_mode command */
8000	if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
8001		set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
8002	else
8003		bnx2x_set_storm_rx_mode(bp);
8004
8005	/* Cleanup multicast configuration */
8006	rparam.mcast_obj = &bp->mcast_obj;
8007	rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
8008	if (rc < 0)
8009		BNX2X_ERR("Failed to send DEL multicast command: %d\n", rc);
8010
8011	netif_addr_unlock_bh(bp->dev);
8012
8013
8014
8015	/*
8016	 * Send the UNLOAD_REQUEST to the MCP. This will return if
8017	 * this function should perform FUNC, PORT or COMMON HW
8018	 * reset.
8019	 */
8020	reset_code = bnx2x_send_unload_req(bp, unload_mode);
8021
8022	/*
8023	 * (assumption: No Attention from MCP at this stage)
8024	 * PMF probably in the middle of TXdisable/enable transaction
8025	 */
8026	rc = bnx2x_func_wait_started(bp);
8027	if (rc) {
8028		BNX2X_ERR("bnx2x_func_wait_started failed\n");
8029#ifdef BNX2X_STOP_ON_ERROR
8030		return;
8031#endif
8032	}
8033
8034	/* Close multi and leading connections
8035	 * Completions for ramrods are collected in a synchronous way
8036	 */
8037	for_each_queue(bp, i)
8038		if (bnx2x_stop_queue(bp, i))
8039#ifdef BNX2X_STOP_ON_ERROR
8040			return;
8041#else
8042			goto unload_error;
8043#endif
8044	/* If SP settings didn't get completed so far - something
8045	 * very wrong has happen.
8046	 */
8047	if (!bnx2x_wait_sp_comp(bp, ~0x0UL))
8048		BNX2X_ERR("Hmmm... Common slow path ramrods got stuck!\n");
8049
8050#ifndef BNX2X_STOP_ON_ERROR
8051unload_error:
8052#endif
8053	rc = bnx2x_func_stop(bp);
8054	if (rc) {
8055		BNX2X_ERR("Function stop failed!\n");
8056#ifdef BNX2X_STOP_ON_ERROR
8057		return;
8058#endif
8059	}
8060
8061	/* Disable HW interrupts, NAPI */
8062	bnx2x_netif_stop(bp, 1);
8063
8064	/* Release IRQs */
8065	bnx2x_free_irq(bp);
8066
8067	/* Reset the chip */
8068	rc = bnx2x_reset_hw(bp, reset_code);
8069	if (rc)
8070		BNX2X_ERR("HW_RESET failed\n");
8071
8072
8073	/* Report UNLOAD_DONE to MCP */
8074	bnx2x_send_unload_done(bp);
8075}
8076
8077void bnx2x_disable_close_the_gate(struct bnx2x *bp)
8078{
8079	u32 val;
8080
8081	DP(NETIF_MSG_HW, "Disabling \"close the gates\"\n");
8082
8083	if (CHIP_IS_E1(bp)) {
8084		int port = BP_PORT(bp);
8085		u32 addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
8086			MISC_REG_AEU_MASK_ATTN_FUNC_0;
8087
8088		val = REG_RD(bp, addr);
8089		val &= ~(0x300);
8090		REG_WR(bp, addr, val);
8091	} else {
8092		val = REG_RD(bp, MISC_REG_AEU_GENERAL_MASK);
8093		val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK |
8094			 MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK);
8095		REG_WR(bp, MISC_REG_AEU_GENERAL_MASK, val);
8096	}
8097}
8098
8099/* Close gates #2, #3 and #4: */
8100static void bnx2x_set_234_gates(struct bnx2x *bp, bool close)
8101{
8102	u32 val;
8103
8104	/* Gates #2 and #4a are closed/opened for "not E1" only */
8105	if (!CHIP_IS_E1(bp)) {
8106		/* #4 */
8107		REG_WR(bp, PXP_REG_HST_DISCARD_DOORBELLS, !!close);
8108		/* #2 */
8109		REG_WR(bp, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close);
8110	}
8111
8112	/* #3 */
8113	if (CHIP_IS_E1x(bp)) {
8114		/* Prevent interrupts from HC on both ports */
8115		val = REG_RD(bp, HC_REG_CONFIG_1);
8116		REG_WR(bp, HC_REG_CONFIG_1,
8117		       (!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) :
8118		       (val & ~(u32)HC_CONFIG_1_REG_BLOCK_DISABLE_1));
8119
8120		val = REG_RD(bp, HC_REG_CONFIG_0);
8121		REG_WR(bp, HC_REG_CONFIG_0,
8122		       (!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) :
8123		       (val & ~(u32)HC_CONFIG_0_REG_BLOCK_DISABLE_0));
8124	} else {
8125		/* Prevent incomming interrupts in IGU */
8126		val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
8127
8128		REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION,
8129		       (!close) ?
8130		       (val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) :
8131		       (val & ~(u32)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE));
8132	}
8133
8134	DP(NETIF_MSG_HW, "%s gates #2, #3 and #4\n",
8135		close ? "closing" : "opening");
8136	mmiowb();
8137}
8138
8139#define SHARED_MF_CLP_MAGIC  0x80000000 /* `magic' bit */
8140
8141static void bnx2x_clp_reset_prep(struct bnx2x *bp, u32 *magic_val)
8142{
8143	/* Do some magic... */
8144	u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
8145	*magic_val = val & SHARED_MF_CLP_MAGIC;
8146	MF_CFG_WR(bp, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC);
8147}
8148
8149/**
8150 * bnx2x_clp_reset_done - restore the value of the `magic' bit.
8151 *
8152 * @bp:		driver handle
8153 * @magic_val:	old value of the `magic' bit.
8154 */
8155static void bnx2x_clp_reset_done(struct bnx2x *bp, u32 magic_val)
8156{
8157	/* Restore the `magic' bit value... */
8158	u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
8159	MF_CFG_WR(bp, shared_mf_config.clp_mb,
8160		(val & (~SHARED_MF_CLP_MAGIC)) | magic_val);
8161}
8162
8163/**
8164 * bnx2x_reset_mcp_prep - prepare for MCP reset.
8165 *
8166 * @bp:		driver handle
8167 * @magic_val:	old value of 'magic' bit.
8168 *
8169 * Takes care of CLP configurations.
8170 */
8171static void bnx2x_reset_mcp_prep(struct bnx2x *bp, u32 *magic_val)
8172{
8173	u32 shmem;
8174	u32 validity_offset;
8175
8176	DP(NETIF_MSG_HW, "Starting\n");
8177
8178	/* Set `magic' bit in order to save MF config */
8179	if (!CHIP_IS_E1(bp))
8180		bnx2x_clp_reset_prep(bp, magic_val);
8181
8182	/* Get shmem offset */
8183	shmem = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
8184	validity_offset = offsetof(struct shmem_region, validity_map[0]);
8185
8186	/* Clear validity map flags */
8187	if (shmem > 0)
8188		REG_WR(bp, shmem + validity_offset, 0);
8189}
8190
8191#define MCP_TIMEOUT      5000   /* 5 seconds (in ms) */
8192#define MCP_ONE_TIMEOUT  100    /* 100 ms */
8193
8194/**
8195 * bnx2x_mcp_wait_one - wait for MCP_ONE_TIMEOUT
8196 *
8197 * @bp:	driver handle
8198 */
8199static inline void bnx2x_mcp_wait_one(struct bnx2x *bp)
8200{
8201	/* special handling for emulation and FPGA,
8202	   wait 10 times longer */
8203	if (CHIP_REV_IS_SLOW(bp))
8204		msleep(MCP_ONE_TIMEOUT*10);
8205	else
8206		msleep(MCP_ONE_TIMEOUT);
8207}
8208
8209/*
8210 * initializes bp->common.shmem_base and waits for validity signature to appear
8211 */
8212static int bnx2x_init_shmem(struct bnx2x *bp)
8213{
8214	int cnt = 0;
8215	u32 val = 0;
8216
8217	do {
8218		bp->common.shmem_base = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
8219		if (bp->common.shmem_base) {
8220			val = SHMEM_RD(bp, validity_map[BP_PORT(bp)]);
8221			if (val & SHR_MEM_VALIDITY_MB)
8222				return 0;
8223		}
8224
8225		bnx2x_mcp_wait_one(bp);
8226
8227	} while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT));
8228
8229	BNX2X_ERR("BAD MCP validity signature\n");
8230
8231	return -ENODEV;
8232}
8233
8234static int bnx2x_reset_mcp_comp(struct bnx2x *bp, u32 magic_val)
8235{
8236	int rc = bnx2x_init_shmem(bp);
8237
8238	/* Restore the `magic' bit value */
8239	if (!CHIP_IS_E1(bp))
8240		bnx2x_clp_reset_done(bp, magic_val);
8241
8242	return rc;
8243}
8244
8245static void bnx2x_pxp_prep(struct bnx2x *bp)
8246{
8247	if (!CHIP_IS_E1(bp)) {
8248		REG_WR(bp, PXP2_REG_RD_START_INIT, 0);
8249		REG_WR(bp, PXP2_REG_RQ_RBC_DONE, 0);
8250		mmiowb();
8251	}
8252}
8253
8254/*
8255 * Reset the whole chip except for:
8256 *      - PCIE core
8257 *      - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by
8258 *              one reset bit)
8259 *      - IGU
8260 *      - MISC (including AEU)
8261 *      - GRC
8262 *      - RBCN, RBCP
8263 */
8264static void bnx2x_process_kill_chip_reset(struct bnx2x *bp, bool global)
8265{
8266	u32 not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2;
8267	u32 global_bits2, stay_reset2;
8268
8269	/*
8270	 * Bits that have to be set in reset_mask2 if we want to reset 'global'
8271	 * (per chip) blocks.
8272	 */
8273	global_bits2 =
8274		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU |
8275		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE;
8276
8277	/* Don't reset the following blocks */
8278	not_reset_mask1 =
8279		MISC_REGISTERS_RESET_REG_1_RST_HC |
8280		MISC_REGISTERS_RESET_REG_1_RST_PXPV |
8281		MISC_REGISTERS_RESET_REG_1_RST_PXP;
8282
8283	not_reset_mask2 =
8284		MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO |
8285		MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE |
8286		MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE |
8287		MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE |
8288		MISC_REGISTERS_RESET_REG_2_RST_RBCN |
8289		MISC_REGISTERS_RESET_REG_2_RST_GRC  |
8290		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE |
8291		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B |
8292		MISC_REGISTERS_RESET_REG_2_RST_ATC |
8293		MISC_REGISTERS_RESET_REG_2_PGLC;
8294
8295	/*
8296	 * Keep the following blocks in reset:
8297	 *  - all xxMACs are handled by the bnx2x_link code.
8298	 */
8299	stay_reset2 =
8300		MISC_REGISTERS_RESET_REG_2_RST_BMAC0 |
8301		MISC_REGISTERS_RESET_REG_2_RST_BMAC1 |
8302		MISC_REGISTERS_RESET_REG_2_RST_EMAC0 |
8303		MISC_REGISTERS_RESET_REG_2_RST_EMAC1 |
8304		MISC_REGISTERS_RESET_REG_2_UMAC0 |
8305		MISC_REGISTERS_RESET_REG_2_UMAC1 |
8306		MISC_REGISTERS_RESET_REG_2_XMAC |
8307		MISC_REGISTERS_RESET_REG_2_XMAC_SOFT;
8308
8309	/* Full reset masks according to the chip */
8310	reset_mask1 = 0xffffffff;
8311
8312	if (CHIP_IS_E1(bp))
8313		reset_mask2 = 0xffff;
8314	else if (CHIP_IS_E1H(bp))
8315		reset_mask2 = 0x1ffff;
8316	else if (CHIP_IS_E2(bp))
8317		reset_mask2 = 0xfffff;
8318	else /* CHIP_IS_E3 */
8319		reset_mask2 = 0x3ffffff;
8320
8321	/* Don't reset global blocks unless we need to */
8322	if (!global)
8323		reset_mask2 &= ~global_bits2;
8324
8325	/*
8326	 * In case of attention in the QM, we need to reset PXP
8327	 * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM
8328	 * because otherwise QM reset would release 'close the gates' shortly
8329	 * before resetting the PXP, then the PSWRQ would send a write
8330	 * request to PGLUE. Then when PXP is reset, PGLUE would try to
8331	 * read the payload data from PSWWR, but PSWWR would not
8332	 * respond. The write queue in PGLUE would stuck, dmae commands
8333	 * would not return. Therefore it's important to reset the second
8334	 * reset register (containing the
8335	 * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the
8336	 * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM
8337	 * bit).
8338	 */
8339	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
8340	       reset_mask2 & (~not_reset_mask2));
8341
8342	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
8343	       reset_mask1 & (~not_reset_mask1));
8344
8345	barrier();
8346	mmiowb();
8347
8348	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET,
8349	       reset_mask2 & (~stay_reset2));
8350
8351	barrier();
8352	mmiowb();
8353
8354	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1);
8355	mmiowb();
8356}
8357
8358/**
8359 * bnx2x_er_poll_igu_vq - poll for pending writes bit.
8360 * It should get cleared in no more than 1s.
8361 *
8362 * @bp:	driver handle
8363 *
8364 * It should get cleared in no more than 1s. Returns 0 if
8365 * pending writes bit gets cleared.
8366 */
8367static int bnx2x_er_poll_igu_vq(struct bnx2x *bp)
8368{
8369	u32 cnt = 1000;
8370	u32 pend_bits = 0;
8371
8372	do {
8373		pend_bits  = REG_RD(bp, IGU_REG_PENDING_BITS_STATUS);
8374
8375		if (pend_bits == 0)
8376			break;
8377
8378		usleep_range(1000, 1000);
8379	} while (cnt-- > 0);
8380
8381	if (cnt <= 0) {
8382		BNX2X_ERR("Still pending IGU requests pend_bits=%x!\n",
8383			  pend_bits);
8384		return -EBUSY;
8385	}
8386
8387	return 0;
8388}
8389
8390static int bnx2x_process_kill(struct bnx2x *bp, bool global)
8391{
8392	int cnt = 1000;
8393	u32 val = 0;
8394	u32 sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2;
8395
8396
8397	/* Empty the Tetris buffer, wait for 1s */
8398	do {
8399		sr_cnt  = REG_RD(bp, PXP2_REG_RD_SR_CNT);
8400		blk_cnt = REG_RD(bp, PXP2_REG_RD_BLK_CNT);
8401		port_is_idle_0 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_0);
8402		port_is_idle_1 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_1);
8403		pgl_exp_rom2 = REG_RD(bp, PXP2_REG_PGL_EXP_ROM2);
8404		if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) &&
8405		    ((port_is_idle_0 & 0x1) == 0x1) &&
8406		    ((port_is_idle_1 & 0x1) == 0x1) &&
8407		    (pgl_exp_rom2 == 0xffffffff))
8408			break;
8409		usleep_range(1000, 1000);
8410	} while (cnt-- > 0);
8411
8412	if (cnt <= 0) {
8413		DP(NETIF_MSG_HW, "Tetris buffer didn't get empty or there"
8414			  " are still"
8415			  " outstanding read requests after 1s!\n");
8416		DP(NETIF_MSG_HW, "sr_cnt=0x%08x, blk_cnt=0x%08x,"
8417			  " port_is_idle_0=0x%08x,"
8418			  " port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n",
8419			  sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1,
8420			  pgl_exp_rom2);
8421		return -EAGAIN;
8422	}
8423
8424	barrier();
8425
8426	/* Close gates #2, #3 and #4 */
8427	bnx2x_set_234_gates(bp, true);
8428
8429	/* Poll for IGU VQs for 57712 and newer chips */
8430	if (!CHIP_IS_E1x(bp) && bnx2x_er_poll_igu_vq(bp))
8431		return -EAGAIN;
8432
8433
8434	/* TBD: Indicate that "process kill" is in progress to MCP */
8435
8436	/* Clear "unprepared" bit */
8437	REG_WR(bp, MISC_REG_UNPREPARED, 0);
8438	barrier();
8439
8440	/* Make sure all is written to the chip before the reset */
8441	mmiowb();
8442
8443	/* Wait for 1ms to empty GLUE and PCI-E core queues,
8444	 * PSWHST, GRC and PSWRD Tetris buffer.
8445	 */
8446	usleep_range(1000, 1000);
8447
8448	/* Prepare to chip reset: */
8449	/* MCP */
8450	if (global)
8451		bnx2x_reset_mcp_prep(bp, &val);
8452
8453	/* PXP */
8454	bnx2x_pxp_prep(bp);
8455	barrier();
8456
8457	/* reset the chip */
8458	bnx2x_process_kill_chip_reset(bp, global);
8459	barrier();
8460
8461	/* Recover after reset: */
8462	/* MCP */
8463	if (global && bnx2x_reset_mcp_comp(bp, val))
8464		return -EAGAIN;
8465
8466	/* TBD: Add resetting the NO_MCP mode DB here */
8467
8468	/* PXP */
8469	bnx2x_pxp_prep(bp);
8470
8471	/* Open the gates #2, #3 and #4 */
8472	bnx2x_set_234_gates(bp, false);
8473
8474	/* TBD: IGU/AEU preparation bring back the AEU/IGU to a
8475	 * reset state, re-enable attentions. */
8476
8477	return 0;
8478}
8479
8480int bnx2x_leader_reset(struct bnx2x *bp)
8481{
8482	int rc = 0;
8483	bool global = bnx2x_reset_is_global(bp);
8484	u32 load_code;
8485
8486	/* if not going to reset MCP - load "fake" driver to reset HW while
8487	 * driver is owner of the HW
8488	 */
8489	if (!global && !BP_NOMCP(bp)) {
8490		load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_REQ, 0);
8491		if (!load_code) {
8492			BNX2X_ERR("MCP response failure, aborting\n");
8493			rc = -EAGAIN;
8494			goto exit_leader_reset;
8495		}
8496		if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
8497		    (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
8498			BNX2X_ERR("MCP unexpected resp, aborting\n");
8499			rc = -EAGAIN;
8500			goto exit_leader_reset2;
8501		}
8502		load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
8503		if (!load_code) {
8504			BNX2X_ERR("MCP response failure, aborting\n");
8505			rc = -EAGAIN;
8506			goto exit_leader_reset2;
8507		}
8508	}
8509
8510	/* Try to recover after the failure */
8511	if (bnx2x_process_kill(bp, global)) {
8512		netdev_err(bp->dev, "Something bad had happen on engine %d! "
8513				    "Aii!\n", BP_PATH(bp));
8514		rc = -EAGAIN;
8515		goto exit_leader_reset2;
8516	}
8517
8518	/*
8519	 * Clear RESET_IN_PROGRES and RESET_GLOBAL bits and update the driver
8520	 * state.
8521	 */
8522	bnx2x_set_reset_done(bp);
8523	if (global)
8524		bnx2x_clear_reset_global(bp);
8525
8526exit_leader_reset2:
8527	/* unload "fake driver" if it was loaded */
8528	if (!global && !BP_NOMCP(bp)) {
8529		bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
8530		bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0);
8531	}
8532exit_leader_reset:
8533	bp->is_leader = 0;
8534	bnx2x_release_leader_lock(bp);
8535	smp_mb();
8536	return rc;
8537}
8538
8539static inline void bnx2x_recovery_failed(struct bnx2x *bp)
8540{
8541	netdev_err(bp->dev, "Recovery has failed. Power cycle is needed.\n");
8542
8543	/* Disconnect this device */
8544	netif_device_detach(bp->dev);
8545
8546	/*
8547	 * Block ifup for all function on this engine until "process kill"
8548	 * or power cycle.
8549	 */
8550	bnx2x_set_reset_in_progress(bp);
8551
8552	/* Shut down the power */
8553	bnx2x_set_power_state(bp, PCI_D3hot);
8554
8555	bp->recovery_state = BNX2X_RECOVERY_FAILED;
8556
8557	smp_mb();
8558}
8559
8560/*
8561 * Assumption: runs under rtnl lock. This together with the fact
8562 * that it's called only from bnx2x_sp_rtnl() ensure that it
8563 * will never be called when netif_running(bp->dev) is false.
8564 */
8565static void bnx2x_parity_recover(struct bnx2x *bp)
8566{
8567	bool global = false;
8568	u32 error_recovered, error_unrecovered;
8569	bool is_parity;
8570
8571	DP(NETIF_MSG_HW, "Handling parity\n");
8572	while (1) {
8573		switch (bp->recovery_state) {
8574		case BNX2X_RECOVERY_INIT:
8575			DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_INIT\n");
8576			is_parity = bnx2x_chk_parity_attn(bp, &global, false);
8577			WARN_ON(!is_parity);
8578
8579			/* Try to get a LEADER_LOCK HW lock */
8580			if (bnx2x_trylock_leader_lock(bp)) {
8581				bnx2x_set_reset_in_progress(bp);
8582				/*
8583				 * Check if there is a global attention and if
8584				 * there was a global attention, set the global
8585				 * reset bit.
8586				 */
8587
8588				if (global)
8589					bnx2x_set_reset_global(bp);
8590
8591				bp->is_leader = 1;
8592			}
8593
8594			/* Stop the driver */
8595			/* If interface has been removed - break */
8596			if (bnx2x_nic_unload(bp, UNLOAD_RECOVERY))
8597				return;
8598
8599			bp->recovery_state = BNX2X_RECOVERY_WAIT;
8600
8601			/* Ensure "is_leader", MCP command sequence and
8602			 * "recovery_state" update values are seen on other
8603			 * CPUs.
8604			 */
8605			smp_mb();
8606			break;
8607
8608		case BNX2X_RECOVERY_WAIT:
8609			DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_WAIT\n");
8610			if (bp->is_leader) {
8611				int other_engine = BP_PATH(bp) ? 0 : 1;
8612				bool other_load_status =
8613					bnx2x_get_load_status(bp, other_engine);
8614				bool load_status =
8615					bnx2x_get_load_status(bp, BP_PATH(bp));
8616				global = bnx2x_reset_is_global(bp);
8617
8618				/*
8619				 * In case of a parity in a global block, let
8620				 * the first leader that performs a
8621				 * leader_reset() reset the global blocks in
8622				 * order to clear global attentions. Otherwise
8623				 * the the gates will remain closed for that
8624				 * engine.
8625				 */
8626				if (load_status ||
8627				    (global && other_load_status)) {
8628					/* Wait until all other functions get
8629					 * down.
8630					 */
8631					schedule_delayed_work(&bp->sp_rtnl_task,
8632								HZ/10);
8633					return;
8634				} else {
8635					/* If all other functions got down -
8636					 * try to bring the chip back to
8637					 * normal. In any case it's an exit
8638					 * point for a leader.
8639					 */
8640					if (bnx2x_leader_reset(bp)) {
8641						bnx2x_recovery_failed(bp);
8642						return;
8643					}
8644
8645					/* If we are here, means that the
8646					 * leader has succeeded and doesn't
8647					 * want to be a leader any more. Try
8648					 * to continue as a none-leader.
8649					 */
8650					break;
8651				}
8652			} else { /* non-leader */
8653				if (!bnx2x_reset_is_done(bp, BP_PATH(bp))) {
8654					/* Try to get a LEADER_LOCK HW lock as
8655					 * long as a former leader may have
8656					 * been unloaded by the user or
8657					 * released a leadership by another
8658					 * reason.
8659					 */
8660					if (bnx2x_trylock_leader_lock(bp)) {
8661						/* I'm a leader now! Restart a
8662						 * switch case.
8663						 */
8664						bp->is_leader = 1;
8665						break;
8666					}
8667
8668					schedule_delayed_work(&bp->sp_rtnl_task,
8669								HZ/10);
8670					return;
8671
8672				} else {
8673					/*
8674					 * If there was a global attention, wait
8675					 * for it to be cleared.
8676					 */
8677					if (bnx2x_reset_is_global(bp)) {
8678						schedule_delayed_work(
8679							&bp->sp_rtnl_task,
8680							HZ/10);
8681						return;
8682					}
8683
8684					error_recovered =
8685					  bp->eth_stats.recoverable_error;
8686					error_unrecovered =
8687					  bp->eth_stats.unrecoverable_error;
8688					bp->recovery_state =
8689						BNX2X_RECOVERY_NIC_LOADING;
8690					if (bnx2x_nic_load(bp, LOAD_NORMAL)) {
8691						error_unrecovered++;
8692						netdev_err(bp->dev,
8693							   "Recovery failed. "
8694							   "Power cycle "
8695							   "needed\n");
8696						/* Disconnect this device */
8697						netif_device_detach(bp->dev);
8698						/* Shut down the power */
8699						bnx2x_set_power_state(
8700							bp, PCI_D3hot);
8701						smp_mb();
8702					} else {
8703						bp->recovery_state =
8704							BNX2X_RECOVERY_DONE;
8705						error_recovered++;
8706						smp_mb();
8707					}
8708					bp->eth_stats.recoverable_error =
8709						error_recovered;
8710					bp->eth_stats.unrecoverable_error =
8711						error_unrecovered;
8712
8713					return;
8714				}
8715			}
8716		default:
8717			return;
8718		}
8719	}
8720}
8721
8722/* bnx2x_nic_unload() flushes the bnx2x_wq, thus reset task is
8723 * scheduled on a general queue in order to prevent a dead lock.
8724 */
8725static void bnx2x_sp_rtnl_task(struct work_struct *work)
8726{
8727	struct bnx2x *bp = container_of(work, struct bnx2x, sp_rtnl_task.work);
8728
8729	rtnl_lock();
8730
8731	if (!netif_running(bp->dev))
8732		goto sp_rtnl_exit;
8733
8734	/* if stop on error is defined no recovery flows should be executed */
8735#ifdef BNX2X_STOP_ON_ERROR
8736	BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined "
8737		  "so reset not done to allow debug dump,\n"
8738		  "you will need to reboot when done\n");
8739	goto sp_rtnl_not_reset;
8740#endif
8741
8742	if (unlikely(bp->recovery_state != BNX2X_RECOVERY_DONE)) {
8743		/*
8744		 * Clear all pending SP commands as we are going to reset the
8745		 * function anyway.
8746		 */
8747		bp->sp_rtnl_state = 0;
8748		smp_mb();
8749
8750		bnx2x_parity_recover(bp);
8751
8752		goto sp_rtnl_exit;
8753	}
8754
8755	if (test_and_clear_bit(BNX2X_SP_RTNL_TX_TIMEOUT, &bp->sp_rtnl_state)) {
8756		/*
8757		 * Clear all pending SP commands as we are going to reset the
8758		 * function anyway.
8759		 */
8760		bp->sp_rtnl_state = 0;
8761		smp_mb();
8762
8763		bnx2x_nic_unload(bp, UNLOAD_NORMAL);
8764		bnx2x_nic_load(bp, LOAD_NORMAL);
8765
8766		goto sp_rtnl_exit;
8767	}
8768#ifdef BNX2X_STOP_ON_ERROR
8769sp_rtnl_not_reset:
8770#endif
8771	if (test_and_clear_bit(BNX2X_SP_RTNL_SETUP_TC, &bp->sp_rtnl_state))
8772		bnx2x_setup_tc(bp->dev, bp->dcbx_port_params.ets.num_of_cos);
8773
8774	/*
8775	 * in case of fan failure we need to reset id if the "stop on error"
8776	 * debug flag is set, since we trying to prevent permanent overheating
8777	 * damage
8778	 */
8779	if (test_and_clear_bit(BNX2X_SP_RTNL_FAN_FAILURE, &bp->sp_rtnl_state)) {
8780		DP(BNX2X_MSG_SP, "fan failure detected. Unloading driver\n");
8781		netif_device_detach(bp->dev);
8782		bnx2x_close(bp->dev);
8783	}
8784
8785sp_rtnl_exit:
8786	rtnl_unlock();
8787}
8788
8789/* end of nic load/unload */
8790
8791static void bnx2x_period_task(struct work_struct *work)
8792{
8793	struct bnx2x *bp = container_of(work, struct bnx2x, period_task.work);
8794
8795	if (!netif_running(bp->dev))
8796		goto period_task_exit;
8797
8798	if (CHIP_REV_IS_SLOW(bp)) {
8799		BNX2X_ERR("period task called on emulation, ignoring\n");
8800		goto period_task_exit;
8801	}
8802
8803	bnx2x_acquire_phy_lock(bp);
8804	/*
8805	 * The barrier is needed to ensure the ordering between the writing to
8806	 * the bp->port.pmf in the bnx2x_nic_load() or bnx2x_pmf_update() and
8807	 * the reading here.
8808	 */
8809	smp_mb();
8810	if (bp->port.pmf) {
8811		bnx2x_period_func(&bp->link_params, &bp->link_vars);
8812
8813		/* Re-queue task in 1 sec */
8814		queue_delayed_work(bnx2x_wq, &bp->period_task, 1*HZ);
8815	}
8816
8817	bnx2x_release_phy_lock(bp);
8818period_task_exit:
8819	return;
8820}
8821
8822/*
8823 * Init service functions
8824 */
8825
8826static u32 bnx2x_get_pretend_reg(struct bnx2x *bp)
8827{
8828	u32 base = PXP2_REG_PGL_PRETEND_FUNC_F0;
8829	u32 stride = PXP2_REG_PGL_PRETEND_FUNC_F1 - base;
8830	return base + (BP_ABS_FUNC(bp)) * stride;
8831}
8832
8833static void bnx2x_undi_int_disable_e1h(struct bnx2x *bp)
8834{
8835	u32 reg = bnx2x_get_pretend_reg(bp);
8836
8837	/* Flush all outstanding writes */
8838	mmiowb();
8839
8840	/* Pretend to be function 0 */
8841	REG_WR(bp, reg, 0);
8842	REG_RD(bp, reg);	/* Flush the GRC transaction (in the chip) */
8843
8844	/* From now we are in the "like-E1" mode */
8845	bnx2x_int_disable(bp);
8846
8847	/* Flush all outstanding writes */
8848	mmiowb();
8849
8850	/* Restore the original function */
8851	REG_WR(bp, reg, BP_ABS_FUNC(bp));
8852	REG_RD(bp, reg);
8853}
8854
8855static inline void bnx2x_undi_int_disable(struct bnx2x *bp)
8856{
8857	if (CHIP_IS_E1(bp))
8858		bnx2x_int_disable(bp);
8859	else
8860		bnx2x_undi_int_disable_e1h(bp);
8861}
8862
8863static void __devinit bnx2x_undi_unload(struct bnx2x *bp)
8864{
8865	u32 val;
8866
8867	/* possibly another driver is trying to reset the chip */
8868	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
8869
8870	/* check if doorbell queue is reset */
8871	if (REG_RD(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET)
8872	    & MISC_REGISTERS_RESET_REG_1_RST_DORQ) {
8873
8874		/*
8875		 * Check if it is the UNDI driver
8876		 * UNDI driver initializes CID offset for normal bell to 0x7
8877		 */
8878		val = REG_RD(bp, DORQ_REG_NORM_CID_OFST);
8879		if (val == 0x7) {
8880			u32 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
8881			/* save our pf_num */
8882			int orig_pf_num = bp->pf_num;
8883			int port;
8884			u32 swap_en, swap_val, value;
8885
8886			/* clear the UNDI indication */
8887			REG_WR(bp, DORQ_REG_NORM_CID_OFST, 0);
8888
8889			BNX2X_DEV_INFO("UNDI is active! reset device\n");
8890
8891			/* try unload UNDI on port 0 */
8892			bp->pf_num = 0;
8893			bp->fw_seq =
8894			      (SHMEM_RD(bp, func_mb[bp->pf_num].drv_mb_header) &
8895				DRV_MSG_SEQ_NUMBER_MASK);
8896			reset_code = bnx2x_fw_command(bp, reset_code, 0);
8897
8898			/* if UNDI is loaded on the other port */
8899			if (reset_code != FW_MSG_CODE_DRV_UNLOAD_COMMON) {
8900
8901				/* send "DONE" for previous unload */
8902				bnx2x_fw_command(bp,
8903						 DRV_MSG_CODE_UNLOAD_DONE, 0);
8904
8905				/* unload UNDI on port 1 */
8906				bp->pf_num = 1;
8907				bp->fw_seq =
8908			      (SHMEM_RD(bp, func_mb[bp->pf_num].drv_mb_header) &
8909					DRV_MSG_SEQ_NUMBER_MASK);
8910				reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
8911
8912				bnx2x_fw_command(bp, reset_code, 0);
8913			}
8914
8915			bnx2x_undi_int_disable(bp);
8916			port = BP_PORT(bp);
8917
8918			/* close input traffic and wait for it */
8919			/* Do not rcv packets to BRB */
8920			REG_WR(bp, (port ? NIG_REG_LLH1_BRB1_DRV_MASK :
8921					   NIG_REG_LLH0_BRB1_DRV_MASK), 0x0);
8922			/* Do not direct rcv packets that are not for MCP to
8923			 * the BRB */
8924			REG_WR(bp, (port ? NIG_REG_LLH1_BRB1_NOT_MCP :
8925					   NIG_REG_LLH0_BRB1_NOT_MCP), 0x0);
8926			/* clear AEU */
8927			REG_WR(bp, (port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
8928					   MISC_REG_AEU_MASK_ATTN_FUNC_0), 0);
8929			msleep(10);
8930
8931			/* save NIG port swap info */
8932			swap_val = REG_RD(bp, NIG_REG_PORT_SWAP);
8933			swap_en = REG_RD(bp, NIG_REG_STRAP_OVERRIDE);
8934			/* reset device */
8935			REG_WR(bp,
8936			       GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
8937			       0xd3ffffff);
8938
8939			value = 0x1400;
8940			if (CHIP_IS_E3(bp)) {
8941				value |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
8942				value |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
8943			}
8944
8945			REG_WR(bp,
8946			       GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
8947			       value);
8948
8949			/* take the NIG out of reset and restore swap values */
8950			REG_WR(bp,
8951			       GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET,
8952			       MISC_REGISTERS_RESET_REG_1_RST_NIG);
8953			REG_WR(bp, NIG_REG_PORT_SWAP, swap_val);
8954			REG_WR(bp, NIG_REG_STRAP_OVERRIDE, swap_en);
8955
8956			/* send unload done to the MCP */
8957			bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0);
8958
8959			/* restore our func and fw_seq */
8960			bp->pf_num = orig_pf_num;
8961		}
8962	}
8963
8964	/* now it's safe to release the lock */
8965	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
8966}
8967
8968static void __devinit bnx2x_get_common_hwinfo(struct bnx2x *bp)
8969{
8970	u32 val, val2, val3, val4, id, boot_mode;
8971	u16 pmc;
8972
8973	/* Get the chip revision id and number. */
8974	/* chip num:16-31, rev:12-15, metal:4-11, bond_id:0-3 */
8975	val = REG_RD(bp, MISC_REG_CHIP_NUM);
8976	id = ((val & 0xffff) << 16);
8977	val = REG_RD(bp, MISC_REG_CHIP_REV);
8978	id |= ((val & 0xf) << 12);
8979	val = REG_RD(bp, MISC_REG_CHIP_METAL);
8980	id |= ((val & 0xff) << 4);
8981	val = REG_RD(bp, MISC_REG_BOND_ID);
8982	id |= (val & 0xf);
8983	bp->common.chip_id = id;
8984
8985	/* Set doorbell size */
8986	bp->db_size = (1 << BNX2X_DB_SHIFT);
8987
8988	if (!CHIP_IS_E1x(bp)) {
8989		val = REG_RD(bp, MISC_REG_PORT4MODE_EN_OVWR);
8990		if ((val & 1) == 0)
8991			val = REG_RD(bp, MISC_REG_PORT4MODE_EN);
8992		else
8993			val = (val >> 1) & 1;
8994		BNX2X_DEV_INFO("chip is in %s\n", val ? "4_PORT_MODE" :
8995						       "2_PORT_MODE");
8996		bp->common.chip_port_mode = val ? CHIP_4_PORT_MODE :
8997						 CHIP_2_PORT_MODE;
8998
8999		if (CHIP_MODE_IS_4_PORT(bp))
9000			bp->pfid = (bp->pf_num >> 1);	/* 0..3 */
9001		else
9002			bp->pfid = (bp->pf_num & 0x6);	/* 0, 2, 4, 6 */
9003	} else {
9004		bp->common.chip_port_mode = CHIP_PORT_MODE_NONE; /* N/A */
9005		bp->pfid = bp->pf_num;			/* 0..7 */
9006	}
9007
9008	bp->link_params.chip_id = bp->common.chip_id;
9009	BNX2X_DEV_INFO("chip ID is 0x%x\n", id);
9010
9011	val = (REG_RD(bp, 0x2874) & 0x55);
9012	if ((bp->common.chip_id & 0x1) ||
9013	    (CHIP_IS_E1(bp) && val) || (CHIP_IS_E1H(bp) && (val == 0x55))) {
9014		bp->flags |= ONE_PORT_FLAG;
9015		BNX2X_DEV_INFO("single port device\n");
9016	}
9017
9018	val = REG_RD(bp, MCP_REG_MCPR_NVM_CFG4);
9019	bp->common.flash_size = (BNX2X_NVRAM_1MB_SIZE <<
9020				 (val & MCPR_NVM_CFG4_FLASH_SIZE));
9021	BNX2X_DEV_INFO("flash_size 0x%x (%d)\n",
9022		       bp->common.flash_size, bp->common.flash_size);
9023
9024	bnx2x_init_shmem(bp);
9025
9026
9027
9028	bp->common.shmem2_base = REG_RD(bp, (BP_PATH(bp) ?
9029					MISC_REG_GENERIC_CR_1 :
9030					MISC_REG_GENERIC_CR_0));
9031
9032	bp->link_params.shmem_base = bp->common.shmem_base;
9033	bp->link_params.shmem2_base = bp->common.shmem2_base;
9034	BNX2X_DEV_INFO("shmem offset 0x%x  shmem2 offset 0x%x\n",
9035		       bp->common.shmem_base, bp->common.shmem2_base);
9036
9037	if (!bp->common.shmem_base) {
9038		BNX2X_DEV_INFO("MCP not active\n");
9039		bp->flags |= NO_MCP_FLAG;
9040		return;
9041	}
9042
9043	bp->common.hw_config = SHMEM_RD(bp, dev_info.shared_hw_config.config);
9044	BNX2X_DEV_INFO("hw_config 0x%08x\n", bp->common.hw_config);
9045
9046	bp->link_params.hw_led_mode = ((bp->common.hw_config &
9047					SHARED_HW_CFG_LED_MODE_MASK) >>
9048				       SHARED_HW_CFG_LED_MODE_SHIFT);
9049
9050	bp->link_params.feature_config_flags = 0;
9051	val = SHMEM_RD(bp, dev_info.shared_feature_config.config);
9052	if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED)
9053		bp->link_params.feature_config_flags |=
9054				FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
9055	else
9056		bp->link_params.feature_config_flags &=
9057				~FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
9058
9059	val = SHMEM_RD(bp, dev_info.bc_rev) >> 8;
9060	bp->common.bc_ver = val;
9061	BNX2X_DEV_INFO("bc_ver %X\n", val);
9062	if (val < BNX2X_BC_VER) {
9063		/* for now only warn
9064		 * later we might need to enforce this */
9065		BNX2X_ERR("This driver needs bc_ver %X but found %X, "
9066			  "please upgrade BC\n", BNX2X_BC_VER, val);
9067	}
9068	bp->link_params.feature_config_flags |=
9069				(val >= REQ_BC_VER_4_VRFY_FIRST_PHY_OPT_MDL) ?
9070				FEATURE_CONFIG_BC_SUPPORTS_OPT_MDL_VRFY : 0;
9071
9072	bp->link_params.feature_config_flags |=
9073		(val >= REQ_BC_VER_4_VRFY_SPECIFIC_PHY_OPT_MDL) ?
9074		FEATURE_CONFIG_BC_SUPPORTS_DUAL_PHY_OPT_MDL_VRFY : 0;
9075
9076	bp->link_params.feature_config_flags |=
9077		(val >= REQ_BC_VER_4_SFP_TX_DISABLE_SUPPORTED) ?
9078		FEATURE_CONFIG_BC_SUPPORTS_SFP_TX_DISABLED : 0;
9079	bp->flags |= (val >= REQ_BC_VER_4_PFC_STATS_SUPPORTED) ?
9080			BC_SUPPORTS_PFC_STATS : 0;
9081
9082	boot_mode = SHMEM_RD(bp,
9083			dev_info.port_feature_config[BP_PORT(bp)].mba_config) &
9084			PORT_FEATURE_MBA_BOOT_AGENT_TYPE_MASK;
9085	switch (boot_mode) {
9086	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_PXE:
9087		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_PXE;
9088		break;
9089	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_ISCSIB:
9090		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_ISCSI;
9091		break;
9092	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_FCOE_BOOT:
9093		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_FCOE;
9094		break;
9095	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_NONE:
9096		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_NONE;
9097		break;
9098	}
9099
9100	pci_read_config_word(bp->pdev, bp->pm_cap + PCI_PM_PMC, &pmc);
9101	bp->flags |= (pmc & PCI_PM_CAP_PME_D3cold) ? 0 : NO_WOL_FLAG;
9102
9103	BNX2X_DEV_INFO("%sWoL capable\n",
9104		       (bp->flags & NO_WOL_FLAG) ? "not " : "");
9105
9106	val = SHMEM_RD(bp, dev_info.shared_hw_config.part_num);
9107	val2 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[4]);
9108	val3 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[8]);
9109	val4 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[12]);
9110
9111	dev_info(&bp->pdev->dev, "part number %X-%X-%X-%X\n",
9112		 val, val2, val3, val4);
9113}
9114
9115#define IGU_FID(val)	GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID)
9116#define IGU_VEC(val)	GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR)
9117
9118static void __devinit bnx2x_get_igu_cam_info(struct bnx2x *bp)
9119{
9120	int pfid = BP_FUNC(bp);
9121	int igu_sb_id;
9122	u32 val;
9123	u8 fid, igu_sb_cnt = 0;
9124
9125	bp->igu_base_sb = 0xff;
9126	if (CHIP_INT_MODE_IS_BC(bp)) {
9127		int vn = BP_VN(bp);
9128		igu_sb_cnt = bp->igu_sb_cnt;
9129		bp->igu_base_sb = (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn) *
9130			FP_SB_MAX_E1x;
9131
9132		bp->igu_dsb_id =  E1HVN_MAX * FP_SB_MAX_E1x +
9133			(CHIP_MODE_IS_4_PORT(bp) ? pfid : vn);
9134
9135		return;
9136	}
9137
9138	/* IGU in normal mode - read CAM */
9139	for (igu_sb_id = 0; igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE;
9140	     igu_sb_id++) {
9141		val = REG_RD(bp, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4);
9142		if (!(val & IGU_REG_MAPPING_MEMORY_VALID))
9143			continue;
9144		fid = IGU_FID(val);
9145		if ((fid & IGU_FID_ENCODE_IS_PF)) {
9146			if ((fid & IGU_FID_PF_NUM_MASK) != pfid)
9147				continue;
9148			if (IGU_VEC(val) == 0)
9149				/* default status block */
9150				bp->igu_dsb_id = igu_sb_id;
9151			else {
9152				if (bp->igu_base_sb == 0xff)
9153					bp->igu_base_sb = igu_sb_id;
9154				igu_sb_cnt++;
9155			}
9156		}
9157	}
9158
9159#ifdef CONFIG_PCI_MSI
9160	/*
9161	 * It's expected that number of CAM entries for this functions is equal
9162	 * to the number evaluated based on the MSI-X table size. We want a
9163	 * harsh warning if these values are different!
9164	 */
9165	WARN_ON(bp->igu_sb_cnt != igu_sb_cnt);
9166#endif
9167
9168	if (igu_sb_cnt == 0)
9169		BNX2X_ERR("CAM configuration error\n");
9170}
9171
9172static void __devinit bnx2x_link_settings_supported(struct bnx2x *bp,
9173						    u32 switch_cfg)
9174{
9175	int cfg_size = 0, idx, port = BP_PORT(bp);
9176
9177	/* Aggregation of supported attributes of all external phys */
9178	bp->port.supported[0] = 0;
9179	bp->port.supported[1] = 0;
9180	switch (bp->link_params.num_phys) {
9181	case 1:
9182		bp->port.supported[0] = bp->link_params.phy[INT_PHY].supported;
9183		cfg_size = 1;
9184		break;
9185	case 2:
9186		bp->port.supported[0] = bp->link_params.phy[EXT_PHY1].supported;
9187		cfg_size = 1;
9188		break;
9189	case 3:
9190		if (bp->link_params.multi_phy_config &
9191		    PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
9192			bp->port.supported[1] =
9193				bp->link_params.phy[EXT_PHY1].supported;
9194			bp->port.supported[0] =
9195				bp->link_params.phy[EXT_PHY2].supported;
9196		} else {
9197			bp->port.supported[0] =
9198				bp->link_params.phy[EXT_PHY1].supported;
9199			bp->port.supported[1] =
9200				bp->link_params.phy[EXT_PHY2].supported;
9201		}
9202		cfg_size = 2;
9203		break;
9204	}
9205
9206	if (!(bp->port.supported[0] || bp->port.supported[1])) {
9207		BNX2X_ERR("NVRAM config error. BAD phy config."
9208			  "PHY1 config 0x%x, PHY2 config 0x%x\n",
9209			   SHMEM_RD(bp,
9210			   dev_info.port_hw_config[port].external_phy_config),
9211			   SHMEM_RD(bp,
9212			   dev_info.port_hw_config[port].external_phy_config2));
9213			return;
9214	}
9215
9216	if (CHIP_IS_E3(bp))
9217		bp->port.phy_addr = REG_RD(bp, MISC_REG_WC0_CTRL_PHY_ADDR);
9218	else {
9219		switch (switch_cfg) {
9220		case SWITCH_CFG_1G:
9221			bp->port.phy_addr = REG_RD(
9222				bp, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10);
9223			break;
9224		case SWITCH_CFG_10G:
9225			bp->port.phy_addr = REG_RD(
9226				bp, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18);
9227			break;
9228		default:
9229			BNX2X_ERR("BAD switch_cfg link_config 0x%x\n",
9230				  bp->port.link_config[0]);
9231			return;
9232		}
9233	}
9234	BNX2X_DEV_INFO("phy_addr 0x%x\n", bp->port.phy_addr);
9235	/* mask what we support according to speed_cap_mask per configuration */
9236	for (idx = 0; idx < cfg_size; idx++) {
9237		if (!(bp->link_params.speed_cap_mask[idx] &
9238				PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF))
9239			bp->port.supported[idx] &= ~SUPPORTED_10baseT_Half;
9240
9241		if (!(bp->link_params.speed_cap_mask[idx] &
9242				PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL))
9243			bp->port.supported[idx] &= ~SUPPORTED_10baseT_Full;
9244
9245		if (!(bp->link_params.speed_cap_mask[idx] &
9246				PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF))
9247			bp->port.supported[idx] &= ~SUPPORTED_100baseT_Half;
9248
9249		if (!(bp->link_params.speed_cap_mask[idx] &
9250				PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL))
9251			bp->port.supported[idx] &= ~SUPPORTED_100baseT_Full;
9252
9253		if (!(bp->link_params.speed_cap_mask[idx] &
9254					PORT_HW_CFG_SPEED_CAPABILITY_D0_1G))
9255			bp->port.supported[idx] &= ~(SUPPORTED_1000baseT_Half |
9256						     SUPPORTED_1000baseT_Full);
9257
9258		if (!(bp->link_params.speed_cap_mask[idx] &
9259					PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G))
9260			bp->port.supported[idx] &= ~SUPPORTED_2500baseX_Full;
9261
9262		if (!(bp->link_params.speed_cap_mask[idx] &
9263					PORT_HW_CFG_SPEED_CAPABILITY_D0_10G))
9264			bp->port.supported[idx] &= ~SUPPORTED_10000baseT_Full;
9265
9266	}
9267
9268	BNX2X_DEV_INFO("supported 0x%x 0x%x\n", bp->port.supported[0],
9269		       bp->port.supported[1]);
9270}
9271
9272static void __devinit bnx2x_link_settings_requested(struct bnx2x *bp)
9273{
9274	u32 link_config, idx, cfg_size = 0;
9275	bp->port.advertising[0] = 0;
9276	bp->port.advertising[1] = 0;
9277	switch (bp->link_params.num_phys) {
9278	case 1:
9279	case 2:
9280		cfg_size = 1;
9281		break;
9282	case 3:
9283		cfg_size = 2;
9284		break;
9285	}
9286	for (idx = 0; idx < cfg_size; idx++) {
9287		bp->link_params.req_duplex[idx] = DUPLEX_FULL;
9288		link_config = bp->port.link_config[idx];
9289		switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) {
9290		case PORT_FEATURE_LINK_SPEED_AUTO:
9291			if (bp->port.supported[idx] & SUPPORTED_Autoneg) {
9292				bp->link_params.req_line_speed[idx] =
9293					SPEED_AUTO_NEG;
9294				bp->port.advertising[idx] |=
9295					bp->port.supported[idx];
9296			} else {
9297				/* force 10G, no AN */
9298				bp->link_params.req_line_speed[idx] =
9299					SPEED_10000;
9300				bp->port.advertising[idx] |=
9301					(ADVERTISED_10000baseT_Full |
9302					 ADVERTISED_FIBRE);
9303				continue;
9304			}
9305			break;
9306
9307		case PORT_FEATURE_LINK_SPEED_10M_FULL:
9308			if (bp->port.supported[idx] & SUPPORTED_10baseT_Full) {
9309				bp->link_params.req_line_speed[idx] =
9310					SPEED_10;
9311				bp->port.advertising[idx] |=
9312					(ADVERTISED_10baseT_Full |
9313					 ADVERTISED_TP);
9314			} else {
9315				BNX2X_ERR("NVRAM config error. "
9316					    "Invalid link_config 0x%x"
9317					    "  speed_cap_mask 0x%x\n",
9318					    link_config,
9319				    bp->link_params.speed_cap_mask[idx]);
9320				return;
9321			}
9322			break;
9323
9324		case PORT_FEATURE_LINK_SPEED_10M_HALF:
9325			if (bp->port.supported[idx] & SUPPORTED_10baseT_Half) {
9326				bp->link_params.req_line_speed[idx] =
9327					SPEED_10;
9328				bp->link_params.req_duplex[idx] =
9329					DUPLEX_HALF;
9330				bp->port.advertising[idx] |=
9331					(ADVERTISED_10baseT_Half |
9332					 ADVERTISED_TP);
9333			} else {
9334				BNX2X_ERR("NVRAM config error. "
9335					    "Invalid link_config 0x%x"
9336					    "  speed_cap_mask 0x%x\n",
9337					    link_config,
9338					  bp->link_params.speed_cap_mask[idx]);
9339				return;
9340			}
9341			break;
9342
9343		case PORT_FEATURE_LINK_SPEED_100M_FULL:
9344			if (bp->port.supported[idx] &
9345			    SUPPORTED_100baseT_Full) {
9346				bp->link_params.req_line_speed[idx] =
9347					SPEED_100;
9348				bp->port.advertising[idx] |=
9349					(ADVERTISED_100baseT_Full |
9350					 ADVERTISED_TP);
9351			} else {
9352				BNX2X_ERR("NVRAM config error. "
9353					    "Invalid link_config 0x%x"
9354					    "  speed_cap_mask 0x%x\n",
9355					    link_config,
9356					  bp->link_params.speed_cap_mask[idx]);
9357				return;
9358			}
9359			break;
9360
9361		case PORT_FEATURE_LINK_SPEED_100M_HALF:
9362			if (bp->port.supported[idx] &
9363			    SUPPORTED_100baseT_Half) {
9364				bp->link_params.req_line_speed[idx] =
9365								SPEED_100;
9366				bp->link_params.req_duplex[idx] =
9367								DUPLEX_HALF;
9368				bp->port.advertising[idx] |=
9369					(ADVERTISED_100baseT_Half |
9370					 ADVERTISED_TP);
9371			} else {
9372				BNX2X_ERR("NVRAM config error. "
9373				    "Invalid link_config 0x%x"
9374				    "  speed_cap_mask 0x%x\n",
9375				    link_config,
9376				    bp->link_params.speed_cap_mask[idx]);
9377				return;
9378			}
9379			break;
9380
9381		case PORT_FEATURE_LINK_SPEED_1G:
9382			if (bp->port.supported[idx] &
9383			    SUPPORTED_1000baseT_Full) {
9384				bp->link_params.req_line_speed[idx] =
9385					SPEED_1000;
9386				bp->port.advertising[idx] |=
9387					(ADVERTISED_1000baseT_Full |
9388					 ADVERTISED_TP);
9389			} else {
9390				BNX2X_ERR("NVRAM config error. "
9391				    "Invalid link_config 0x%x"
9392				    "  speed_cap_mask 0x%x\n",
9393				    link_config,
9394				    bp->link_params.speed_cap_mask[idx]);
9395				return;
9396			}
9397			break;
9398
9399		case PORT_FEATURE_LINK_SPEED_2_5G:
9400			if (bp->port.supported[idx] &
9401			    SUPPORTED_2500baseX_Full) {
9402				bp->link_params.req_line_speed[idx] =
9403					SPEED_2500;
9404				bp->port.advertising[idx] |=
9405					(ADVERTISED_2500baseX_Full |
9406						ADVERTISED_TP);
9407			} else {
9408				BNX2X_ERR("NVRAM config error. "
9409				    "Invalid link_config 0x%x"
9410				    "  speed_cap_mask 0x%x\n",
9411				    link_config,
9412				    bp->link_params.speed_cap_mask[idx]);
9413				return;
9414			}
9415			break;
9416
9417		case PORT_FEATURE_LINK_SPEED_10G_CX4:
9418			if (bp->port.supported[idx] &
9419			    SUPPORTED_10000baseT_Full) {
9420				bp->link_params.req_line_speed[idx] =
9421					SPEED_10000;
9422				bp->port.advertising[idx] |=
9423					(ADVERTISED_10000baseT_Full |
9424						ADVERTISED_FIBRE);
9425			} else {
9426				BNX2X_ERR("NVRAM config error. "
9427				    "Invalid link_config 0x%x"
9428				    "  speed_cap_mask 0x%x\n",
9429				    link_config,
9430				    bp->link_params.speed_cap_mask[idx]);
9431				return;
9432			}
9433			break;
9434		case PORT_FEATURE_LINK_SPEED_20G:
9435			bp->link_params.req_line_speed[idx] = SPEED_20000;
9436
9437			break;
9438		default:
9439			BNX2X_ERR("NVRAM config error. "
9440				  "BAD link speed link_config 0x%x\n",
9441				  link_config);
9442				bp->link_params.req_line_speed[idx] =
9443							SPEED_AUTO_NEG;
9444				bp->port.advertising[idx] =
9445						bp->port.supported[idx];
9446			break;
9447		}
9448
9449		bp->link_params.req_flow_ctrl[idx] = (link_config &
9450					 PORT_FEATURE_FLOW_CONTROL_MASK);
9451		if ((bp->link_params.req_flow_ctrl[idx] ==
9452		     BNX2X_FLOW_CTRL_AUTO) &&
9453		    !(bp->port.supported[idx] & SUPPORTED_Autoneg)) {
9454			bp->link_params.req_flow_ctrl[idx] =
9455				BNX2X_FLOW_CTRL_NONE;
9456		}
9457
9458		BNX2X_DEV_INFO("req_line_speed %d  req_duplex %d req_flow_ctrl"
9459			       " 0x%x advertising 0x%x\n",
9460			       bp->link_params.req_line_speed[idx],
9461			       bp->link_params.req_duplex[idx],
9462			       bp->link_params.req_flow_ctrl[idx],
9463			       bp->port.advertising[idx]);
9464	}
9465}
9466
9467static void __devinit bnx2x_set_mac_buf(u8 *mac_buf, u32 mac_lo, u16 mac_hi)
9468{
9469	mac_hi = cpu_to_be16(mac_hi);
9470	mac_lo = cpu_to_be32(mac_lo);
9471	memcpy(mac_buf, &mac_hi, sizeof(mac_hi));
9472	memcpy(mac_buf + sizeof(mac_hi), &mac_lo, sizeof(mac_lo));
9473}
9474
9475static void __devinit bnx2x_get_port_hwinfo(struct bnx2x *bp)
9476{
9477	int port = BP_PORT(bp);
9478	u32 config;
9479	u32 ext_phy_type, ext_phy_config;
9480
9481	bp->link_params.bp = bp;
9482	bp->link_params.port = port;
9483
9484	bp->link_params.lane_config =
9485		SHMEM_RD(bp, dev_info.port_hw_config[port].lane_config);
9486
9487	bp->link_params.speed_cap_mask[0] =
9488		SHMEM_RD(bp,
9489			 dev_info.port_hw_config[port].speed_capability_mask);
9490	bp->link_params.speed_cap_mask[1] =
9491		SHMEM_RD(bp,
9492			 dev_info.port_hw_config[port].speed_capability_mask2);
9493	bp->port.link_config[0] =
9494		SHMEM_RD(bp, dev_info.port_feature_config[port].link_config);
9495
9496	bp->port.link_config[1] =
9497		SHMEM_RD(bp, dev_info.port_feature_config[port].link_config2);
9498
9499	bp->link_params.multi_phy_config =
9500		SHMEM_RD(bp, dev_info.port_hw_config[port].multi_phy_config);
9501	/* If the device is capable of WoL, set the default state according
9502	 * to the HW
9503	 */
9504	config = SHMEM_RD(bp, dev_info.port_feature_config[port].config);
9505	bp->wol = (!(bp->flags & NO_WOL_FLAG) &&
9506		   (config & PORT_FEATURE_WOL_ENABLED));
9507
9508	BNX2X_DEV_INFO("lane_config 0x%08x  "
9509		       "speed_cap_mask0 0x%08x  link_config0 0x%08x\n",
9510		       bp->link_params.lane_config,
9511		       bp->link_params.speed_cap_mask[0],
9512		       bp->port.link_config[0]);
9513
9514	bp->link_params.switch_cfg = (bp->port.link_config[0] &
9515				      PORT_FEATURE_CONNECTED_SWITCH_MASK);
9516	bnx2x_phy_probe(&bp->link_params);
9517	bnx2x_link_settings_supported(bp, bp->link_params.switch_cfg);
9518
9519	bnx2x_link_settings_requested(bp);
9520
9521	/*
9522	 * If connected directly, work with the internal PHY, otherwise, work
9523	 * with the external PHY
9524	 */
9525	ext_phy_config =
9526		SHMEM_RD(bp,
9527			 dev_info.port_hw_config[port].external_phy_config);
9528	ext_phy_type = XGXS_EXT_PHY_TYPE(ext_phy_config);
9529	if (ext_phy_type == PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT)
9530		bp->mdio.prtad = bp->port.phy_addr;
9531
9532	else if ((ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE) &&
9533		 (ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_NOT_CONN))
9534		bp->mdio.prtad =
9535			XGXS_EXT_PHY_ADDR(ext_phy_config);
9536
9537	/*
9538	 * Check if hw lock is required to access MDC/MDIO bus to the PHY(s)
9539	 * In MF mode, it is set to cover self test cases
9540	 */
9541	if (IS_MF(bp))
9542		bp->port.need_hw_lock = 1;
9543	else
9544		bp->port.need_hw_lock = bnx2x_hw_lock_required(bp,
9545							bp->common.shmem_base,
9546							bp->common.shmem2_base);
9547}
9548
9549void bnx2x_get_iscsi_info(struct bnx2x *bp)
9550{
9551#ifdef BCM_CNIC
9552	int port = BP_PORT(bp);
9553
9554	u32 max_iscsi_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
9555				drv_lic_key[port].max_iscsi_conn);
9556
9557	/* Get the number of maximum allowed iSCSI connections */
9558	bp->cnic_eth_dev.max_iscsi_conn =
9559		(max_iscsi_conn & BNX2X_MAX_ISCSI_INIT_CONN_MASK) >>
9560		BNX2X_MAX_ISCSI_INIT_CONN_SHIFT;
9561
9562	BNX2X_DEV_INFO("max_iscsi_conn 0x%x\n",
9563		       bp->cnic_eth_dev.max_iscsi_conn);
9564
9565	/*
9566	 * If maximum allowed number of connections is zero -
9567	 * disable the feature.
9568	 */
9569	if (!bp->cnic_eth_dev.max_iscsi_conn)
9570		bp->flags |= NO_ISCSI_FLAG;
9571#else
9572	bp->flags |= NO_ISCSI_FLAG;
9573#endif
9574}
9575
9576static void __devinit bnx2x_get_fcoe_info(struct bnx2x *bp)
9577{
9578#ifdef BCM_CNIC
9579	int port = BP_PORT(bp);
9580	int func = BP_ABS_FUNC(bp);
9581
9582	u32 max_fcoe_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
9583				drv_lic_key[port].max_fcoe_conn);
9584
9585	/* Get the number of maximum allowed FCoE connections */
9586	bp->cnic_eth_dev.max_fcoe_conn =
9587		(max_fcoe_conn & BNX2X_MAX_FCOE_INIT_CONN_MASK) >>
9588		BNX2X_MAX_FCOE_INIT_CONN_SHIFT;
9589
9590	/* Read the WWN: */
9591	if (!IS_MF(bp)) {
9592		/* Port info */
9593		bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
9594			SHMEM_RD(bp,
9595				dev_info.port_hw_config[port].
9596				 fcoe_wwn_port_name_upper);
9597		bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
9598			SHMEM_RD(bp,
9599				dev_info.port_hw_config[port].
9600				 fcoe_wwn_port_name_lower);
9601
9602		/* Node info */
9603		bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
9604			SHMEM_RD(bp,
9605				dev_info.port_hw_config[port].
9606				 fcoe_wwn_node_name_upper);
9607		bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
9608			SHMEM_RD(bp,
9609				dev_info.port_hw_config[port].
9610				 fcoe_wwn_node_name_lower);
9611	} else if (!IS_MF_SD(bp)) {
9612		u32 cfg = MF_CFG_RD(bp, func_ext_config[func].func_cfg);
9613
9614		/*
9615		 * Read the WWN info only if the FCoE feature is enabled for
9616		 * this function.
9617		 */
9618		if (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) {
9619			/* Port info */
9620			bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
9621				MF_CFG_RD(bp, func_ext_config[func].
9622						fcoe_wwn_port_name_upper);
9623			bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
9624				MF_CFG_RD(bp, func_ext_config[func].
9625						fcoe_wwn_port_name_lower);
9626
9627			/* Node info */
9628			bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
9629				MF_CFG_RD(bp, func_ext_config[func].
9630						fcoe_wwn_node_name_upper);
9631			bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
9632				MF_CFG_RD(bp, func_ext_config[func].
9633						fcoe_wwn_node_name_lower);
9634		}
9635	}
9636
9637	BNX2X_DEV_INFO("max_fcoe_conn 0x%x\n", bp->cnic_eth_dev.max_fcoe_conn);
9638
9639	/*
9640	 * If maximum allowed number of connections is zero -
9641	 * disable the feature.
9642	 */
9643	if (!bp->cnic_eth_dev.max_fcoe_conn)
9644		bp->flags |= NO_FCOE_FLAG;
9645#else
9646	bp->flags |= NO_FCOE_FLAG;
9647#endif
9648}
9649
9650static void __devinit bnx2x_get_cnic_info(struct bnx2x *bp)
9651{
9652	/*
9653	 * iSCSI may be dynamically disabled but reading
9654	 * info here we will decrease memory usage by driver
9655	 * if the feature is disabled for good
9656	 */
9657	bnx2x_get_iscsi_info(bp);
9658	bnx2x_get_fcoe_info(bp);
9659}
9660
9661static void __devinit bnx2x_get_mac_hwinfo(struct bnx2x *bp)
9662{
9663	u32 val, val2;
9664	int func = BP_ABS_FUNC(bp);
9665	int port = BP_PORT(bp);
9666#ifdef BCM_CNIC
9667	u8 *iscsi_mac = bp->cnic_eth_dev.iscsi_mac;
9668	u8 *fip_mac = bp->fip_mac;
9669#endif
9670
9671	/* Zero primary MAC configuration */
9672	memset(bp->dev->dev_addr, 0, ETH_ALEN);
9673
9674	if (BP_NOMCP(bp)) {
9675		BNX2X_ERROR("warning: random MAC workaround active\n");
9676		random_ether_addr(bp->dev->dev_addr);
9677	} else if (IS_MF(bp)) {
9678		val2 = MF_CFG_RD(bp, func_mf_config[func].mac_upper);
9679		val = MF_CFG_RD(bp, func_mf_config[func].mac_lower);
9680		if ((val2 != FUNC_MF_CFG_UPPERMAC_DEFAULT) &&
9681		    (val != FUNC_MF_CFG_LOWERMAC_DEFAULT))
9682			bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
9683
9684#ifdef BCM_CNIC
9685		/*
9686		 * iSCSI and FCoE NPAR MACs: if there is no either iSCSI or
9687		 * FCoE MAC then the appropriate feature should be disabled.
9688		 */
9689		if (IS_MF_SI(bp)) {
9690			u32 cfg = MF_CFG_RD(bp, func_ext_config[func].func_cfg);
9691			if (cfg & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) {
9692				val2 = MF_CFG_RD(bp, func_ext_config[func].
9693						     iscsi_mac_addr_upper);
9694				val = MF_CFG_RD(bp, func_ext_config[func].
9695						    iscsi_mac_addr_lower);
9696				bnx2x_set_mac_buf(iscsi_mac, val, val2);
9697				BNX2X_DEV_INFO("Read iSCSI MAC: %pM\n",
9698					       iscsi_mac);
9699			} else
9700				bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
9701
9702			if (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) {
9703				val2 = MF_CFG_RD(bp, func_ext_config[func].
9704						     fcoe_mac_addr_upper);
9705				val = MF_CFG_RD(bp, func_ext_config[func].
9706						    fcoe_mac_addr_lower);
9707				bnx2x_set_mac_buf(fip_mac, val, val2);
9708				BNX2X_DEV_INFO("Read FCoE L2 MAC: %pM\n",
9709					       fip_mac);
9710
9711			} else
9712				bp->flags |= NO_FCOE_FLAG;
9713		} else { /* SD mode */
9714			if (BNX2X_IS_MF_PROTOCOL_ISCSI(bp)) {
9715				/* use primary mac as iscsi mac */
9716				memcpy(iscsi_mac, bp->dev->dev_addr, ETH_ALEN);
9717				/* Zero primary MAC configuration */
9718				memset(bp->dev->dev_addr, 0, ETH_ALEN);
9719
9720				BNX2X_DEV_INFO("SD ISCSI MODE\n");
9721				BNX2X_DEV_INFO("Read iSCSI MAC: %pM\n",
9722					       iscsi_mac);
9723			}
9724		}
9725#endif
9726	} else {
9727		/* in SF read MACs from port configuration */
9728		val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper);
9729		val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower);
9730		bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
9731
9732#ifdef BCM_CNIC
9733		val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
9734				    iscsi_mac_upper);
9735		val = SHMEM_RD(bp, dev_info.port_hw_config[port].
9736				   iscsi_mac_lower);
9737		bnx2x_set_mac_buf(iscsi_mac, val, val2);
9738
9739		val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
9740				    fcoe_fip_mac_upper);
9741		val = SHMEM_RD(bp, dev_info.port_hw_config[port].
9742				   fcoe_fip_mac_lower);
9743		bnx2x_set_mac_buf(fip_mac, val, val2);
9744#endif
9745	}
9746
9747	memcpy(bp->link_params.mac_addr, bp->dev->dev_addr, ETH_ALEN);
9748	memcpy(bp->dev->perm_addr, bp->dev->dev_addr, ETH_ALEN);
9749
9750#ifdef BCM_CNIC
9751	/* Set the FCoE MAC in MF_SD mode */
9752	if (!CHIP_IS_E1x(bp) && IS_MF_SD(bp))
9753		memcpy(fip_mac, bp->dev->dev_addr, ETH_ALEN);
9754
9755	/* Disable iSCSI if MAC configuration is
9756	 * invalid.
9757	 */
9758	if (!is_valid_ether_addr(iscsi_mac)) {
9759		bp->flags |= NO_ISCSI_FLAG;
9760		memset(iscsi_mac, 0, ETH_ALEN);
9761	}
9762
9763	/* Disable FCoE if MAC configuration is
9764	 * invalid.
9765	 */
9766	if (!is_valid_ether_addr(fip_mac)) {
9767		bp->flags |= NO_FCOE_FLAG;
9768		memset(bp->fip_mac, 0, ETH_ALEN);
9769	}
9770#endif
9771
9772	if (!bnx2x_is_valid_ether_addr(bp, bp->dev->dev_addr))
9773		dev_err(&bp->pdev->dev,
9774			"bad Ethernet MAC address configuration: "
9775			"%pM, change it manually before bringing up "
9776			"the appropriate network interface\n",
9777			bp->dev->dev_addr);
9778}
9779
9780static int __devinit bnx2x_get_hwinfo(struct bnx2x *bp)
9781{
9782	int /*abs*/func = BP_ABS_FUNC(bp);
9783	int vn;
9784	u32 val = 0;
9785	int rc = 0;
9786
9787	bnx2x_get_common_hwinfo(bp);
9788
9789	/*
9790	 * initialize IGU parameters
9791	 */
9792	if (CHIP_IS_E1x(bp)) {
9793		bp->common.int_block = INT_BLOCK_HC;
9794
9795		bp->igu_dsb_id = DEF_SB_IGU_ID;
9796		bp->igu_base_sb = 0;
9797	} else {
9798		bp->common.int_block = INT_BLOCK_IGU;
9799
9800		/* do not allow device reset during IGU info preocessing */
9801		bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
9802
9803		val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
9804
9805		if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
9806			int tout = 5000;
9807
9808			BNX2X_DEV_INFO("FORCING Normal Mode\n");
9809
9810			val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN);
9811			REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION, val);
9812			REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x7f);
9813
9814			while (tout && REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
9815				tout--;
9816				usleep_range(1000, 1000);
9817			}
9818
9819			if (REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
9820				dev_err(&bp->pdev->dev,
9821					"FORCING Normal Mode failed!!!\n");
9822				return -EPERM;
9823			}
9824		}
9825
9826		if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
9827			BNX2X_DEV_INFO("IGU Backward Compatible Mode\n");
9828			bp->common.int_block |= INT_BLOCK_MODE_BW_COMP;
9829		} else
9830			BNX2X_DEV_INFO("IGU Normal Mode\n");
9831
9832		bnx2x_get_igu_cam_info(bp);
9833
9834		bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
9835	}
9836
9837	/*
9838	 * set base FW non-default (fast path) status block id, this value is
9839	 * used to initialize the fw_sb_id saved on the fp/queue structure to
9840	 * determine the id used by the FW.
9841	 */
9842	if (CHIP_IS_E1x(bp))
9843		bp->base_fw_ndsb = BP_PORT(bp) * FP_SB_MAX_E1x + BP_L_ID(bp);
9844	else /*
9845	      * 57712 - we currently use one FW SB per IGU SB (Rx and Tx of
9846	      * the same queue are indicated on the same IGU SB). So we prefer
9847	      * FW and IGU SBs to be the same value.
9848	      */
9849		bp->base_fw_ndsb = bp->igu_base_sb;
9850
9851	BNX2X_DEV_INFO("igu_dsb_id %d  igu_base_sb %d  igu_sb_cnt %d\n"
9852		       "base_fw_ndsb %d\n", bp->igu_dsb_id, bp->igu_base_sb,
9853		       bp->igu_sb_cnt, bp->base_fw_ndsb);
9854
9855	/*
9856	 * Initialize MF configuration
9857	 */
9858
9859	bp->mf_ov = 0;
9860	bp->mf_mode = 0;
9861	vn = BP_VN(bp);
9862
9863	if (!CHIP_IS_E1(bp) && !BP_NOMCP(bp)) {
9864		BNX2X_DEV_INFO("shmem2base 0x%x, size %d, mfcfg offset %d\n",
9865			       bp->common.shmem2_base, SHMEM2_RD(bp, size),
9866			      (u32)offsetof(struct shmem2_region, mf_cfg_addr));
9867
9868		if (SHMEM2_HAS(bp, mf_cfg_addr))
9869			bp->common.mf_cfg_base = SHMEM2_RD(bp, mf_cfg_addr);
9870		else
9871			bp->common.mf_cfg_base = bp->common.shmem_base +
9872				offsetof(struct shmem_region, func_mb) +
9873				E1H_FUNC_MAX * sizeof(struct drv_func_mb);
9874		/*
9875		 * get mf configuration:
9876		 * 1. existence of MF configuration
9877		 * 2. MAC address must be legal (check only upper bytes)
9878		 *    for  Switch-Independent mode;
9879		 *    OVLAN must be legal for Switch-Dependent mode
9880		 * 3. SF_MODE configures specific MF mode
9881		 */
9882		if (bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
9883			/* get mf configuration */
9884			val = SHMEM_RD(bp,
9885				       dev_info.shared_feature_config.config);
9886			val &= SHARED_FEAT_CFG_FORCE_SF_MODE_MASK;
9887
9888			switch (val) {
9889			case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT:
9890				val = MF_CFG_RD(bp, func_mf_config[func].
9891						mac_upper);
9892				/* check for legal mac (upper bytes)*/
9893				if (val != 0xffff) {
9894					bp->mf_mode = MULTI_FUNCTION_SI;
9895					bp->mf_config[vn] = MF_CFG_RD(bp,
9896						   func_mf_config[func].config);
9897				} else
9898					BNX2X_DEV_INFO("illegal MAC address "
9899						       "for SI\n");
9900				break;
9901			case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED:
9902				/* get OV configuration */
9903				val = MF_CFG_RD(bp,
9904					func_mf_config[FUNC_0].e1hov_tag);
9905				val &= FUNC_MF_CFG_E1HOV_TAG_MASK;
9906
9907				if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
9908					bp->mf_mode = MULTI_FUNCTION_SD;
9909					bp->mf_config[vn] = MF_CFG_RD(bp,
9910						func_mf_config[func].config);
9911				} else
9912					BNX2X_DEV_INFO("illegal OV for SD\n");
9913				break;
9914			default:
9915				/* Unknown configuration: reset mf_config */
9916				bp->mf_config[vn] = 0;
9917				BNX2X_DEV_INFO("unkown MF mode 0x%x\n", val);
9918			}
9919		}
9920
9921		BNX2X_DEV_INFO("%s function mode\n",
9922			       IS_MF(bp) ? "multi" : "single");
9923
9924		switch (bp->mf_mode) {
9925		case MULTI_FUNCTION_SD:
9926			val = MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
9927			      FUNC_MF_CFG_E1HOV_TAG_MASK;
9928			if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
9929				bp->mf_ov = val;
9930				bp->path_has_ovlan = true;
9931
9932				BNX2X_DEV_INFO("MF OV for func %d is %d "
9933					       "(0x%04x)\n", func, bp->mf_ov,
9934					       bp->mf_ov);
9935			} else {
9936				dev_err(&bp->pdev->dev,
9937					"No valid MF OV for func %d, "
9938					"aborting\n", func);
9939				return -EPERM;
9940			}
9941			break;
9942		case MULTI_FUNCTION_SI:
9943			BNX2X_DEV_INFO("func %d is in MF "
9944				       "switch-independent mode\n", func);
9945			break;
9946		default:
9947			if (vn) {
9948				dev_err(&bp->pdev->dev,
9949					"VN %d is in a single function mode, "
9950					"aborting\n", vn);
9951				return -EPERM;
9952			}
9953			break;
9954		}
9955
9956		/* check if other port on the path needs ovlan:
9957		 * Since MF configuration is shared between ports
9958		 * Possible mixed modes are only
9959		 * {SF, SI} {SF, SD} {SD, SF} {SI, SF}
9960		 */
9961		if (CHIP_MODE_IS_4_PORT(bp) &&
9962		    !bp->path_has_ovlan &&
9963		    !IS_MF(bp) &&
9964		    bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
9965			u8 other_port = !BP_PORT(bp);
9966			u8 other_func = BP_PATH(bp) + 2*other_port;
9967			val = MF_CFG_RD(bp,
9968					func_mf_config[other_func].e1hov_tag);
9969			if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT)
9970				bp->path_has_ovlan = true;
9971		}
9972	}
9973
9974	/* adjust igu_sb_cnt to MF for E1x */
9975	if (CHIP_IS_E1x(bp) && IS_MF(bp))
9976		bp->igu_sb_cnt /= E1HVN_MAX;
9977
9978	/* port info */
9979	bnx2x_get_port_hwinfo(bp);
9980
9981	/* Get MAC addresses */
9982	bnx2x_get_mac_hwinfo(bp);
9983
9984	bnx2x_get_cnic_info(bp);
9985
9986	return rc;
9987}
9988
9989static void __devinit bnx2x_read_fwinfo(struct bnx2x *bp)
9990{
9991	int cnt, i, block_end, rodi;
9992	char vpd_start[BNX2X_VPD_LEN+1];
9993	char str_id_reg[VENDOR_ID_LEN+1];
9994	char str_id_cap[VENDOR_ID_LEN+1];
9995	char *vpd_data;
9996	char *vpd_extended_data = NULL;
9997	u8 len;
9998
9999	cnt = pci_read_vpd(bp->pdev, 0, BNX2X_VPD_LEN, vpd_start);
10000	memset(bp->fw_ver, 0, sizeof(bp->fw_ver));
10001
10002	if (cnt < BNX2X_VPD_LEN)
10003		goto out_not_found;
10004
10005	/* VPD RO tag should be first tag after identifier string, hence
10006	 * we should be able to find it in first BNX2X_VPD_LEN chars
10007	 */
10008	i = pci_vpd_find_tag(vpd_start, 0, BNX2X_VPD_LEN,
10009			     PCI_VPD_LRDT_RO_DATA);
10010	if (i < 0)
10011		goto out_not_found;
10012
10013	block_end = i + PCI_VPD_LRDT_TAG_SIZE +
10014		    pci_vpd_lrdt_size(&vpd_start[i]);
10015
10016	i += PCI_VPD_LRDT_TAG_SIZE;
10017
10018	if (block_end > BNX2X_VPD_LEN) {
10019		vpd_extended_data = kmalloc(block_end, GFP_KERNEL);
10020		if (vpd_extended_data  == NULL)
10021			goto out_not_found;
10022
10023		/* read rest of vpd image into vpd_extended_data */
10024		memcpy(vpd_extended_data, vpd_start, BNX2X_VPD_LEN);
10025		cnt = pci_read_vpd(bp->pdev, BNX2X_VPD_LEN,
10026				   block_end - BNX2X_VPD_LEN,
10027				   vpd_extended_data + BNX2X_VPD_LEN);
10028		if (cnt < (block_end - BNX2X_VPD_LEN))
10029			goto out_not_found;
10030		vpd_data = vpd_extended_data;
10031	} else
10032		vpd_data = vpd_start;
10033
10034	/* now vpd_data holds full vpd content in both cases */
10035
10036	rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
10037				   PCI_VPD_RO_KEYWORD_MFR_ID);
10038	if (rodi < 0)
10039		goto out_not_found;
10040
10041	len = pci_vpd_info_field_size(&vpd_data[rodi]);
10042
10043	if (len != VENDOR_ID_LEN)
10044		goto out_not_found;
10045
10046	rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
10047
10048	/* vendor specific info */
10049	snprintf(str_id_reg, VENDOR_ID_LEN + 1, "%04x", PCI_VENDOR_ID_DELL);
10050	snprintf(str_id_cap, VENDOR_ID_LEN + 1, "%04X", PCI_VENDOR_ID_DELL);
10051	if (!strncmp(str_id_reg, &vpd_data[rodi], VENDOR_ID_LEN) ||
10052	    !strncmp(str_id_cap, &vpd_data[rodi], VENDOR_ID_LEN)) {
10053
10054		rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
10055						PCI_VPD_RO_KEYWORD_VENDOR0);
10056		if (rodi >= 0) {
10057			len = pci_vpd_info_field_size(&vpd_data[rodi]);
10058
10059			rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
10060
10061			if (len < 32 && (len + rodi) <= BNX2X_VPD_LEN) {
10062				memcpy(bp->fw_ver, &vpd_data[rodi], len);
10063				bp->fw_ver[len] = ' ';
10064			}
10065		}
10066		kfree(vpd_extended_data);
10067		return;
10068	}
10069out_not_found:
10070	kfree(vpd_extended_data);
10071	return;
10072}
10073
10074static void __devinit bnx2x_set_modes_bitmap(struct bnx2x *bp)
10075{
10076	u32 flags = 0;
10077
10078	if (CHIP_REV_IS_FPGA(bp))
10079		SET_FLAGS(flags, MODE_FPGA);
10080	else if (CHIP_REV_IS_EMUL(bp))
10081		SET_FLAGS(flags, MODE_EMUL);
10082	else
10083		SET_FLAGS(flags, MODE_ASIC);
10084
10085	if (CHIP_MODE_IS_4_PORT(bp))
10086		SET_FLAGS(flags, MODE_PORT4);
10087	else
10088		SET_FLAGS(flags, MODE_PORT2);
10089
10090	if (CHIP_IS_E2(bp))
10091		SET_FLAGS(flags, MODE_E2);
10092	else if (CHIP_IS_E3(bp)) {
10093		SET_FLAGS(flags, MODE_E3);
10094		if (CHIP_REV(bp) == CHIP_REV_Ax)
10095			SET_FLAGS(flags, MODE_E3_A0);
10096		else /*if (CHIP_REV(bp) == CHIP_REV_Bx)*/
10097			SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3);
10098	}
10099
10100	if (IS_MF(bp)) {
10101		SET_FLAGS(flags, MODE_MF);
10102		switch (bp->mf_mode) {
10103		case MULTI_FUNCTION_SD:
10104			SET_FLAGS(flags, MODE_MF_SD);
10105			break;
10106		case MULTI_FUNCTION_SI:
10107			SET_FLAGS(flags, MODE_MF_SI);
10108			break;
10109		}
10110	} else
10111		SET_FLAGS(flags, MODE_SF);
10112
10113#if defined(__LITTLE_ENDIAN)
10114	SET_FLAGS(flags, MODE_LITTLE_ENDIAN);
10115#else /*(__BIG_ENDIAN)*/
10116	SET_FLAGS(flags, MODE_BIG_ENDIAN);
10117#endif
10118	INIT_MODE_FLAGS(bp) = flags;
10119}
10120
10121static int __devinit bnx2x_init_bp(struct bnx2x *bp)
10122{
10123	int func;
10124	int timer_interval;
10125	int rc;
10126
10127	mutex_init(&bp->port.phy_mutex);
10128	mutex_init(&bp->fw_mb_mutex);
10129	spin_lock_init(&bp->stats_lock);
10130#ifdef BCM_CNIC
10131	mutex_init(&bp->cnic_mutex);
10132#endif
10133
10134	INIT_DELAYED_WORK(&bp->sp_task, bnx2x_sp_task);
10135	INIT_DELAYED_WORK(&bp->sp_rtnl_task, bnx2x_sp_rtnl_task);
10136	INIT_DELAYED_WORK(&bp->period_task, bnx2x_period_task);
10137	rc = bnx2x_get_hwinfo(bp);
10138	if (rc)
10139		return rc;
10140
10141	bnx2x_set_modes_bitmap(bp);
10142
10143	rc = bnx2x_alloc_mem_bp(bp);
10144	if (rc)
10145		return rc;
10146
10147	bnx2x_read_fwinfo(bp);
10148
10149	func = BP_FUNC(bp);
10150
10151	/* need to reset chip if undi was active */
10152	if (!BP_NOMCP(bp))
10153		bnx2x_undi_unload(bp);
10154
10155	if (CHIP_REV_IS_FPGA(bp))
10156		dev_err(&bp->pdev->dev, "FPGA detected\n");
10157
10158	if (BP_NOMCP(bp) && (func == 0))
10159		dev_err(&bp->pdev->dev, "MCP disabled, "
10160					"must load devices in order!\n");
10161
10162	bp->multi_mode = multi_mode;
10163
10164	bp->disable_tpa = disable_tpa;
10165
10166#ifdef BCM_CNIC
10167	bp->disable_tpa |= IS_MF_ISCSI_SD(bp);
10168#endif
10169
10170	/* Set TPA flags */
10171	if (bp->disable_tpa) {
10172		bp->flags &= ~TPA_ENABLE_FLAG;
10173		bp->dev->features &= ~NETIF_F_LRO;
10174	} else {
10175		bp->flags |= TPA_ENABLE_FLAG;
10176		bp->dev->features |= NETIF_F_LRO;
10177	}
10178
10179	if (CHIP_IS_E1(bp))
10180		bp->dropless_fc = 0;
10181	else
10182		bp->dropless_fc = dropless_fc;
10183
10184	bp->mrrs = mrrs;
10185
10186	bp->tx_ring_size = MAX_TX_AVAIL;
10187
10188	/* make sure that the numbers are in the right granularity */
10189	bp->tx_ticks = (50 / BNX2X_BTR) * BNX2X_BTR;
10190	bp->rx_ticks = (25 / BNX2X_BTR) * BNX2X_BTR;
10191
10192	timer_interval = (CHIP_REV_IS_SLOW(bp) ? 5*HZ : HZ);
10193	bp->current_interval = (poll ? poll : timer_interval);
10194
10195	init_timer(&bp->timer);
10196	bp->timer.expires = jiffies + bp->current_interval;
10197	bp->timer.data = (unsigned long) bp;
10198	bp->timer.function = bnx2x_timer;
10199
10200	bnx2x_dcbx_set_state(bp, true, BNX2X_DCBX_ENABLED_ON_NEG_ON);
10201	bnx2x_dcbx_init_params(bp);
10202
10203#ifdef BCM_CNIC
10204	if (CHIP_IS_E1x(bp))
10205		bp->cnic_base_cl_id = FP_SB_MAX_E1x;
10206	else
10207		bp->cnic_base_cl_id = FP_SB_MAX_E2;
10208#endif
10209
10210	/* multiple tx priority */
10211	if (CHIP_IS_E1x(bp))
10212		bp->max_cos = BNX2X_MULTI_TX_COS_E1X;
10213	if (CHIP_IS_E2(bp) || CHIP_IS_E3A0(bp))
10214		bp->max_cos = BNX2X_MULTI_TX_COS_E2_E3A0;
10215	if (CHIP_IS_E3B0(bp))
10216		bp->max_cos = BNX2X_MULTI_TX_COS_E3B0;
10217
10218	return rc;
10219}
10220
10221
10222/****************************************************************************
10223* General service functions
10224****************************************************************************/
10225
10226/*
10227 * net_device service functions
10228 */
10229
10230/* called with rtnl_lock */
10231static int bnx2x_open(struct net_device *dev)
10232{
10233	struct bnx2x *bp = netdev_priv(dev);
10234	bool global = false;
10235	int other_engine = BP_PATH(bp) ? 0 : 1;
10236	bool other_load_status, load_status;
10237
10238	netif_carrier_off(dev);
10239
10240	bnx2x_set_power_state(bp, PCI_D0);
10241
10242	other_load_status = bnx2x_get_load_status(bp, other_engine);
10243	load_status = bnx2x_get_load_status(bp, BP_PATH(bp));
10244
10245	/*
10246	 * If parity had happen during the unload, then attentions
10247	 * and/or RECOVERY_IN_PROGRES may still be set. In this case we
10248	 * want the first function loaded on the current engine to
10249	 * complete the recovery.
10250	 */
10251	if (!bnx2x_reset_is_done(bp, BP_PATH(bp)) ||
10252	    bnx2x_chk_parity_attn(bp, &global, true))
10253		do {
10254			/*
10255			 * If there are attentions and they are in a global
10256			 * blocks, set the GLOBAL_RESET bit regardless whether
10257			 * it will be this function that will complete the
10258			 * recovery or not.
10259			 */
10260			if (global)
10261				bnx2x_set_reset_global(bp);
10262
10263			/*
10264			 * Only the first function on the current engine should
10265			 * try to recover in open. In case of attentions in
10266			 * global blocks only the first in the chip should try
10267			 * to recover.
10268			 */
10269			if ((!load_status &&
10270			     (!global || !other_load_status)) &&
10271			    bnx2x_trylock_leader_lock(bp) &&
10272			    !bnx2x_leader_reset(bp)) {
10273				netdev_info(bp->dev, "Recovered in open\n");
10274				break;
10275			}
10276
10277			/* recovery has failed... */
10278			bnx2x_set_power_state(bp, PCI_D3hot);
10279			bp->recovery_state = BNX2X_RECOVERY_FAILED;
10280
10281			netdev_err(bp->dev, "Recovery flow hasn't been properly"
10282			" completed yet. Try again later. If u still see this"
10283			" message after a few retries then power cycle is"
10284			" required.\n");
10285
10286			return -EAGAIN;
10287		} while (0);
10288
10289	bp->recovery_state = BNX2X_RECOVERY_DONE;
10290	return bnx2x_nic_load(bp, LOAD_OPEN);
10291}
10292
10293/* called with rtnl_lock */
10294int bnx2x_close(struct net_device *dev)
10295{
10296	struct bnx2x *bp = netdev_priv(dev);
10297
10298	/* Unload the driver, release IRQs */
10299	bnx2x_nic_unload(bp, UNLOAD_CLOSE);
10300
10301	/* Power off */
10302	bnx2x_set_power_state(bp, PCI_D3hot);
10303
10304	return 0;
10305}
10306
10307static inline int bnx2x_init_mcast_macs_list(struct bnx2x *bp,
10308					 struct bnx2x_mcast_ramrod_params *p)
10309{
10310	int mc_count = netdev_mc_count(bp->dev);
10311	struct bnx2x_mcast_list_elem *mc_mac =
10312		kzalloc(sizeof(*mc_mac) * mc_count, GFP_ATOMIC);
10313	struct netdev_hw_addr *ha;
10314
10315	if (!mc_mac)
10316		return -ENOMEM;
10317
10318	INIT_LIST_HEAD(&p->mcast_list);
10319
10320	netdev_for_each_mc_addr(ha, bp->dev) {
10321		mc_mac->mac = bnx2x_mc_addr(ha);
10322		list_add_tail(&mc_mac->link, &p->mcast_list);
10323		mc_mac++;
10324	}
10325
10326	p->mcast_list_len = mc_count;
10327
10328	return 0;
10329}
10330
10331static inline void bnx2x_free_mcast_macs_list(
10332	struct bnx2x_mcast_ramrod_params *p)
10333{
10334	struct bnx2x_mcast_list_elem *mc_mac =
10335		list_first_entry(&p->mcast_list, struct bnx2x_mcast_list_elem,
10336				 link);
10337
10338	WARN_ON(!mc_mac);
10339	kfree(mc_mac);
10340}
10341
10342/**
10343 * bnx2x_set_uc_list - configure a new unicast MACs list.
10344 *
10345 * @bp: driver handle
10346 *
10347 * We will use zero (0) as a MAC type for these MACs.
10348 */
10349static inline int bnx2x_set_uc_list(struct bnx2x *bp)
10350{
10351	int rc;
10352	struct net_device *dev = bp->dev;
10353	struct netdev_hw_addr *ha;
10354	struct bnx2x_vlan_mac_obj *mac_obj = &bp->fp->mac_obj;
10355	unsigned long ramrod_flags = 0;
10356
10357	/* First schedule a cleanup up of old configuration */
10358	rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_UC_LIST_MAC, false);
10359	if (rc < 0) {
10360		BNX2X_ERR("Failed to schedule DELETE operations: %d\n", rc);
10361		return rc;
10362	}
10363
10364	netdev_for_each_uc_addr(ha, dev) {
10365		rc = bnx2x_set_mac_one(bp, bnx2x_uc_addr(ha), mac_obj, true,
10366				       BNX2X_UC_LIST_MAC, &ramrod_flags);
10367		if (rc < 0) {
10368			BNX2X_ERR("Failed to schedule ADD operations: %d\n",
10369				  rc);
10370			return rc;
10371		}
10372	}
10373
10374	/* Execute the pending commands */
10375	__set_bit(RAMROD_CONT, &ramrod_flags);
10376	return bnx2x_set_mac_one(bp, NULL, mac_obj, false /* don't care */,
10377				 BNX2X_UC_LIST_MAC, &ramrod_flags);
10378}
10379
10380static inline int bnx2x_set_mc_list(struct bnx2x *bp)
10381{
10382	struct net_device *dev = bp->dev;
10383	struct bnx2x_mcast_ramrod_params rparam = {0};
10384	int rc = 0;
10385
10386	rparam.mcast_obj = &bp->mcast_obj;
10387
10388	/* first, clear all configured multicast MACs */
10389	rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
10390	if (rc < 0) {
10391		BNX2X_ERR("Failed to clear multicast "
10392			  "configuration: %d\n", rc);
10393		return rc;
10394	}
10395
10396	/* then, configure a new MACs list */
10397	if (netdev_mc_count(dev)) {
10398		rc = bnx2x_init_mcast_macs_list(bp, &rparam);
10399		if (rc) {
10400			BNX2X_ERR("Failed to create multicast MACs "
10401				  "list: %d\n", rc);
10402			return rc;
10403		}
10404
10405		/* Now add the new MACs */
10406		rc = bnx2x_config_mcast(bp, &rparam,
10407					BNX2X_MCAST_CMD_ADD);
10408		if (rc < 0)
10409			BNX2X_ERR("Failed to set a new multicast "
10410				  "configuration: %d\n", rc);
10411
10412		bnx2x_free_mcast_macs_list(&rparam);
10413	}
10414
10415	return rc;
10416}
10417
10418
10419/* If bp->state is OPEN, should be called with netif_addr_lock_bh() */
10420void bnx2x_set_rx_mode(struct net_device *dev)
10421{
10422	struct bnx2x *bp = netdev_priv(dev);
10423	u32 rx_mode = BNX2X_RX_MODE_NORMAL;
10424
10425	if (bp->state != BNX2X_STATE_OPEN) {
10426		DP(NETIF_MSG_IFUP, "state is %x, returning\n", bp->state);
10427		return;
10428	}
10429
10430	DP(NETIF_MSG_IFUP, "dev->flags = %x\n", bp->dev->flags);
10431
10432	if (dev->flags & IFF_PROMISC)
10433		rx_mode = BNX2X_RX_MODE_PROMISC;
10434	else if ((dev->flags & IFF_ALLMULTI) ||
10435		 ((netdev_mc_count(dev) > BNX2X_MAX_MULTICAST) &&
10436		  CHIP_IS_E1(bp)))
10437		rx_mode = BNX2X_RX_MODE_ALLMULTI;
10438	else {
10439		/* some multicasts */
10440		if (bnx2x_set_mc_list(bp) < 0)
10441			rx_mode = BNX2X_RX_MODE_ALLMULTI;
10442
10443		if (bnx2x_set_uc_list(bp) < 0)
10444			rx_mode = BNX2X_RX_MODE_PROMISC;
10445	}
10446
10447	bp->rx_mode = rx_mode;
10448#ifdef BCM_CNIC
10449	/* handle ISCSI SD mode */
10450	if (IS_MF_ISCSI_SD(bp))
10451		bp->rx_mode = BNX2X_RX_MODE_NONE;
10452#endif
10453
10454	/* Schedule the rx_mode command */
10455	if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state)) {
10456		set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
10457		return;
10458	}
10459
10460	bnx2x_set_storm_rx_mode(bp);
10461}
10462
10463/* called with rtnl_lock */
10464static int bnx2x_mdio_read(struct net_device *netdev, int prtad,
10465			   int devad, u16 addr)
10466{
10467	struct bnx2x *bp = netdev_priv(netdev);
10468	u16 value;
10469	int rc;
10470
10471	DP(NETIF_MSG_LINK, "mdio_read: prtad 0x%x, devad 0x%x, addr 0x%x\n",
10472	   prtad, devad, addr);
10473
10474	/* The HW expects different devad if CL22 is used */
10475	devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
10476
10477	bnx2x_acquire_phy_lock(bp);
10478	rc = bnx2x_phy_read(&bp->link_params, prtad, devad, addr, &value);
10479	bnx2x_release_phy_lock(bp);
10480	DP(NETIF_MSG_LINK, "mdio_read_val 0x%x rc = 0x%x\n", value, rc);
10481
10482	if (!rc)
10483		rc = value;
10484	return rc;
10485}
10486
10487/* called with rtnl_lock */
10488static int bnx2x_mdio_write(struct net_device *netdev, int prtad, int devad,
10489			    u16 addr, u16 value)
10490{
10491	struct bnx2x *bp = netdev_priv(netdev);
10492	int rc;
10493
10494	DP(NETIF_MSG_LINK, "mdio_write: prtad 0x%x, devad 0x%x, addr 0x%x,"
10495			   " value 0x%x\n", prtad, devad, addr, value);
10496
10497	/* The HW expects different devad if CL22 is used */
10498	devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
10499
10500	bnx2x_acquire_phy_lock(bp);
10501	rc = bnx2x_phy_write(&bp->link_params, prtad, devad, addr, value);
10502	bnx2x_release_phy_lock(bp);
10503	return rc;
10504}
10505
10506/* called with rtnl_lock */
10507static int bnx2x_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
10508{
10509	struct bnx2x *bp = netdev_priv(dev);
10510	struct mii_ioctl_data *mdio = if_mii(ifr);
10511
10512	DP(NETIF_MSG_LINK, "ioctl: phy id 0x%x, reg 0x%x, val_in 0x%x\n",
10513	   mdio->phy_id, mdio->reg_num, mdio->val_in);
10514
10515	if (!netif_running(dev))
10516		return -EAGAIN;
10517
10518	return mdio_mii_ioctl(&bp->mdio, mdio, cmd);
10519}
10520
10521#ifdef CONFIG_NET_POLL_CONTROLLER
10522static void poll_bnx2x(struct net_device *dev)
10523{
10524	struct bnx2x *bp = netdev_priv(dev);
10525
10526	disable_irq(bp->pdev->irq);
10527	bnx2x_interrupt(bp->pdev->irq, dev);
10528	enable_irq(bp->pdev->irq);
10529}
10530#endif
10531
10532static int bnx2x_validate_addr(struct net_device *dev)
10533{
10534	struct bnx2x *bp = netdev_priv(dev);
10535
10536	if (!bnx2x_is_valid_ether_addr(bp, dev->dev_addr))
10537		return -EADDRNOTAVAIL;
10538	return 0;
10539}
10540
10541static const struct net_device_ops bnx2x_netdev_ops = {
10542	.ndo_open		= bnx2x_open,
10543	.ndo_stop		= bnx2x_close,
10544	.ndo_start_xmit		= bnx2x_start_xmit,
10545	.ndo_select_queue	= bnx2x_select_queue,
10546	.ndo_set_rx_mode	= bnx2x_set_rx_mode,
10547	.ndo_set_mac_address	= bnx2x_change_mac_addr,
10548	.ndo_validate_addr	= bnx2x_validate_addr,
10549	.ndo_do_ioctl		= bnx2x_ioctl,
10550	.ndo_change_mtu		= bnx2x_change_mtu,
10551	.ndo_fix_features	= bnx2x_fix_features,
10552	.ndo_set_features	= bnx2x_set_features,
10553	.ndo_tx_timeout		= bnx2x_tx_timeout,
10554#ifdef CONFIG_NET_POLL_CONTROLLER
10555	.ndo_poll_controller	= poll_bnx2x,
10556#endif
10557	.ndo_setup_tc		= bnx2x_setup_tc,
10558
10559#if defined(NETDEV_FCOE_WWNN) && defined(BCM_CNIC)
10560	.ndo_fcoe_get_wwn	= bnx2x_fcoe_get_wwn,
10561#endif
10562};
10563
10564static inline int bnx2x_set_coherency_mask(struct bnx2x *bp)
10565{
10566	struct device *dev = &bp->pdev->dev;
10567
10568	if (dma_set_mask(dev, DMA_BIT_MASK(64)) == 0) {
10569		bp->flags |= USING_DAC_FLAG;
10570		if (dma_set_coherent_mask(dev, DMA_BIT_MASK(64)) != 0) {
10571			dev_err(dev, "dma_set_coherent_mask failed, "
10572				     "aborting\n");
10573			return -EIO;
10574		}
10575	} else if (dma_set_mask(dev, DMA_BIT_MASK(32)) != 0) {
10576		dev_err(dev, "System does not support DMA, aborting\n");
10577		return -EIO;
10578	}
10579
10580	return 0;
10581}
10582
10583static int __devinit bnx2x_init_dev(struct pci_dev *pdev,
10584				    struct net_device *dev,
10585				    unsigned long board_type)
10586{
10587	struct bnx2x *bp;
10588	int rc;
10589	u32 pci_cfg_dword;
10590	bool chip_is_e1x = (board_type == BCM57710 ||
10591			    board_type == BCM57711 ||
10592			    board_type == BCM57711E);
10593
10594	SET_NETDEV_DEV(dev, &pdev->dev);
10595	bp = netdev_priv(dev);
10596
10597	bp->dev = dev;
10598	bp->pdev = pdev;
10599	bp->flags = 0;
10600
10601	rc = pci_enable_device(pdev);
10602	if (rc) {
10603		dev_err(&bp->pdev->dev,
10604			"Cannot enable PCI device, aborting\n");
10605		goto err_out;
10606	}
10607
10608	if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
10609		dev_err(&bp->pdev->dev,
10610			"Cannot find PCI device base address, aborting\n");
10611		rc = -ENODEV;
10612		goto err_out_disable;
10613	}
10614
10615	if (!(pci_resource_flags(pdev, 2) & IORESOURCE_MEM)) {
10616		dev_err(&bp->pdev->dev, "Cannot find second PCI device"
10617		       " base address, aborting\n");
10618		rc = -ENODEV;
10619		goto err_out_disable;
10620	}
10621
10622	if (atomic_read(&pdev->enable_cnt) == 1) {
10623		rc = pci_request_regions(pdev, DRV_MODULE_NAME);
10624		if (rc) {
10625			dev_err(&bp->pdev->dev,
10626				"Cannot obtain PCI resources, aborting\n");
10627			goto err_out_disable;
10628		}
10629
10630		pci_set_master(pdev);
10631		pci_save_state(pdev);
10632	}
10633
10634	bp->pm_cap = pci_find_capability(pdev, PCI_CAP_ID_PM);
10635	if (bp->pm_cap == 0) {
10636		dev_err(&bp->pdev->dev,
10637			"Cannot find power management capability, aborting\n");
10638		rc = -EIO;
10639		goto err_out_release;
10640	}
10641
10642	if (!pci_is_pcie(pdev)) {
10643		dev_err(&bp->pdev->dev,	"Not PCI Express, aborting\n");
10644		rc = -EIO;
10645		goto err_out_release;
10646	}
10647
10648	rc = bnx2x_set_coherency_mask(bp);
10649	if (rc)
10650		goto err_out_release;
10651
10652	dev->mem_start = pci_resource_start(pdev, 0);
10653	dev->base_addr = dev->mem_start;
10654	dev->mem_end = pci_resource_end(pdev, 0);
10655
10656	dev->irq = pdev->irq;
10657
10658	bp->regview = pci_ioremap_bar(pdev, 0);
10659	if (!bp->regview) {
10660		dev_err(&bp->pdev->dev,
10661			"Cannot map register space, aborting\n");
10662		rc = -ENOMEM;
10663		goto err_out_release;
10664	}
10665
10666	/* In E1/E1H use pci device function given by kernel.
10667	 * In E2/E3 read physical function from ME register since these chips
10668	 * support Physical Device Assignment where kernel BDF maybe arbitrary
10669	 * (depending on hypervisor).
10670	 */
10671	if (chip_is_e1x)
10672		bp->pf_num = PCI_FUNC(pdev->devfn);
10673	else {/* chip is E2/3*/
10674		pci_read_config_dword(bp->pdev,
10675				      PCICFG_ME_REGISTER, &pci_cfg_dword);
10676		bp->pf_num = (u8)((pci_cfg_dword & ME_REG_ABS_PF_NUM) >>
10677		    ME_REG_ABS_PF_NUM_SHIFT);
10678	}
10679	DP(BNX2X_MSG_SP, "me reg PF num: %d\n", bp->pf_num);
10680
10681	bnx2x_set_power_state(bp, PCI_D0);
10682
10683	/* clean indirect addresses */
10684	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
10685			       PCICFG_VENDOR_ID_OFFSET);
10686	/*
10687	 * Clean the following indirect addresses for all functions since it
10688	 * is not used by the driver.
10689	 */
10690	REG_WR(bp, PXP2_REG_PGL_ADDR_88_F0, 0);
10691	REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F0, 0);
10692	REG_WR(bp, PXP2_REG_PGL_ADDR_90_F0, 0);
10693	REG_WR(bp, PXP2_REG_PGL_ADDR_94_F0, 0);
10694
10695	if (chip_is_e1x) {
10696		REG_WR(bp, PXP2_REG_PGL_ADDR_88_F1, 0);
10697		REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F1, 0);
10698		REG_WR(bp, PXP2_REG_PGL_ADDR_90_F1, 0);
10699		REG_WR(bp, PXP2_REG_PGL_ADDR_94_F1, 0);
10700	}
10701
10702	/*
10703	 * Enable internal target-read (in case we are probed after PF FLR).
10704	 * Must be done prior to any BAR read access. Only for 57712 and up
10705	 */
10706	if (!chip_is_e1x)
10707		REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
10708
10709	/* Reset the load counter */
10710	bnx2x_clear_load_status(bp);
10711
10712	dev->watchdog_timeo = TX_TIMEOUT;
10713
10714	dev->netdev_ops = &bnx2x_netdev_ops;
10715	bnx2x_set_ethtool_ops(dev);
10716
10717	dev->priv_flags |= IFF_UNICAST_FLT;
10718
10719	dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
10720		NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 | NETIF_F_LRO |
10721		NETIF_F_RXCSUM | NETIF_F_RXHASH | NETIF_F_HW_VLAN_TX;
10722
10723	dev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
10724		NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 | NETIF_F_HIGHDMA;
10725
10726	dev->features |= dev->hw_features | NETIF_F_HW_VLAN_RX;
10727	if (bp->flags & USING_DAC_FLAG)
10728		dev->features |= NETIF_F_HIGHDMA;
10729
10730	/* Add Loopback capability to the device */
10731	dev->hw_features |= NETIF_F_LOOPBACK;
10732
10733#ifdef BCM_DCBNL
10734	dev->dcbnl_ops = &bnx2x_dcbnl_ops;
10735#endif
10736
10737	/* get_port_hwinfo() will set prtad and mmds properly */
10738	bp->mdio.prtad = MDIO_PRTAD_NONE;
10739	bp->mdio.mmds = 0;
10740	bp->mdio.mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22;
10741	bp->mdio.dev = dev;
10742	bp->mdio.mdio_read = bnx2x_mdio_read;
10743	bp->mdio.mdio_write = bnx2x_mdio_write;
10744
10745	return 0;
10746
10747err_out_release:
10748	if (atomic_read(&pdev->enable_cnt) == 1)
10749		pci_release_regions(pdev);
10750
10751err_out_disable:
10752	pci_disable_device(pdev);
10753	pci_set_drvdata(pdev, NULL);
10754
10755err_out:
10756	return rc;
10757}
10758
10759static void __devinit bnx2x_get_pcie_width_speed(struct bnx2x *bp,
10760						 int *width, int *speed)
10761{
10762	u32 val = REG_RD(bp, PCICFG_OFFSET + PCICFG_LINK_CONTROL);
10763
10764	*width = (val & PCICFG_LINK_WIDTH) >> PCICFG_LINK_WIDTH_SHIFT;
10765
10766	/* return value of 1=2.5GHz 2=5GHz */
10767	*speed = (val & PCICFG_LINK_SPEED) >> PCICFG_LINK_SPEED_SHIFT;
10768}
10769
10770static int bnx2x_check_firmware(struct bnx2x *bp)
10771{
10772	const struct firmware *firmware = bp->firmware;
10773	struct bnx2x_fw_file_hdr *fw_hdr;
10774	struct bnx2x_fw_file_section *sections;
10775	u32 offset, len, num_ops;
10776	u16 *ops_offsets;
10777	int i;
10778	const u8 *fw_ver;
10779
10780	if (firmware->size < sizeof(struct bnx2x_fw_file_hdr))
10781		return -EINVAL;
10782
10783	fw_hdr = (struct bnx2x_fw_file_hdr *)firmware->data;
10784	sections = (struct bnx2x_fw_file_section *)fw_hdr;
10785
10786	/* Make sure none of the offsets and sizes make us read beyond
10787	 * the end of the firmware data */
10788	for (i = 0; i < sizeof(*fw_hdr) / sizeof(*sections); i++) {
10789		offset = be32_to_cpu(sections[i].offset);
10790		len = be32_to_cpu(sections[i].len);
10791		if (offset + len > firmware->size) {
10792			dev_err(&bp->pdev->dev,
10793				"Section %d length is out of bounds\n", i);
10794			return -EINVAL;
10795		}
10796	}
10797
10798	/* Likewise for the init_ops offsets */
10799	offset = be32_to_cpu(fw_hdr->init_ops_offsets.offset);
10800	ops_offsets = (u16 *)(firmware->data + offset);
10801	num_ops = be32_to_cpu(fw_hdr->init_ops.len) / sizeof(struct raw_op);
10802
10803	for (i = 0; i < be32_to_cpu(fw_hdr->init_ops_offsets.len) / 2; i++) {
10804		if (be16_to_cpu(ops_offsets[i]) > num_ops) {
10805			dev_err(&bp->pdev->dev,
10806				"Section offset %d is out of bounds\n", i);
10807			return -EINVAL;
10808		}
10809	}
10810
10811	/* Check FW version */
10812	offset = be32_to_cpu(fw_hdr->fw_version.offset);
10813	fw_ver = firmware->data + offset;
10814	if ((fw_ver[0] != BCM_5710_FW_MAJOR_VERSION) ||
10815	    (fw_ver[1] != BCM_5710_FW_MINOR_VERSION) ||
10816	    (fw_ver[2] != BCM_5710_FW_REVISION_VERSION) ||
10817	    (fw_ver[3] != BCM_5710_FW_ENGINEERING_VERSION)) {
10818		dev_err(&bp->pdev->dev,
10819			"Bad FW version:%d.%d.%d.%d. Should be %d.%d.%d.%d\n",
10820		       fw_ver[0], fw_ver[1], fw_ver[2],
10821		       fw_ver[3], BCM_5710_FW_MAJOR_VERSION,
10822		       BCM_5710_FW_MINOR_VERSION,
10823		       BCM_5710_FW_REVISION_VERSION,
10824		       BCM_5710_FW_ENGINEERING_VERSION);
10825		return -EINVAL;
10826	}
10827
10828	return 0;
10829}
10830
10831static inline void be32_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
10832{
10833	const __be32 *source = (const __be32 *)_source;
10834	u32 *target = (u32 *)_target;
10835	u32 i;
10836
10837	for (i = 0; i < n/4; i++)
10838		target[i] = be32_to_cpu(source[i]);
10839}
10840
10841/*
10842   Ops array is stored in the following format:
10843   {op(8bit), offset(24bit, big endian), data(32bit, big endian)}
10844 */
10845static inline void bnx2x_prep_ops(const u8 *_source, u8 *_target, u32 n)
10846{
10847	const __be32 *source = (const __be32 *)_source;
10848	struct raw_op *target = (struct raw_op *)_target;
10849	u32 i, j, tmp;
10850
10851	for (i = 0, j = 0; i < n/8; i++, j += 2) {
10852		tmp = be32_to_cpu(source[j]);
10853		target[i].op = (tmp >> 24) & 0xff;
10854		target[i].offset = tmp & 0xffffff;
10855		target[i].raw_data = be32_to_cpu(source[j + 1]);
10856	}
10857}
10858
10859/**
10860 * IRO array is stored in the following format:
10861 * {base(24bit), m1(16bit), m2(16bit), m3(16bit), size(16bit) }
10862 */
10863static inline void bnx2x_prep_iro(const u8 *_source, u8 *_target, u32 n)
10864{
10865	const __be32 *source = (const __be32 *)_source;
10866	struct iro *target = (struct iro *)_target;
10867	u32 i, j, tmp;
10868
10869	for (i = 0, j = 0; i < n/sizeof(struct iro); i++) {
10870		target[i].base = be32_to_cpu(source[j]);
10871		j++;
10872		tmp = be32_to_cpu(source[j]);
10873		target[i].m1 = (tmp >> 16) & 0xffff;
10874		target[i].m2 = tmp & 0xffff;
10875		j++;
10876		tmp = be32_to_cpu(source[j]);
10877		target[i].m3 = (tmp >> 16) & 0xffff;
10878		target[i].size = tmp & 0xffff;
10879		j++;
10880	}
10881}
10882
10883static inline void be16_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
10884{
10885	const __be16 *source = (const __be16 *)_source;
10886	u16 *target = (u16 *)_target;
10887	u32 i;
10888
10889	for (i = 0; i < n/2; i++)
10890		target[i] = be16_to_cpu(source[i]);
10891}
10892
10893#define BNX2X_ALLOC_AND_SET(arr, lbl, func)				\
10894do {									\
10895	u32 len = be32_to_cpu(fw_hdr->arr.len);				\
10896	bp->arr = kmalloc(len, GFP_KERNEL);				\
10897	if (!bp->arr) {							\
10898		pr_err("Failed to allocate %d bytes for "#arr"\n", len); \
10899		goto lbl;						\
10900	}								\
10901	func(bp->firmware->data + be32_to_cpu(fw_hdr->arr.offset),	\
10902	     (u8 *)bp->arr, len);					\
10903} while (0)
10904
10905int bnx2x_init_firmware(struct bnx2x *bp)
10906{
10907	struct bnx2x_fw_file_hdr *fw_hdr;
10908	int rc;
10909
10910
10911	if (!bp->firmware) {
10912		const char *fw_file_name;
10913
10914		if (CHIP_IS_E1(bp))
10915			fw_file_name = FW_FILE_NAME_E1;
10916		else if (CHIP_IS_E1H(bp))
10917			fw_file_name = FW_FILE_NAME_E1H;
10918		else if (!CHIP_IS_E1x(bp))
10919			fw_file_name = FW_FILE_NAME_E2;
10920		else {
10921			BNX2X_ERR("Unsupported chip revision\n");
10922			return -EINVAL;
10923		}
10924		BNX2X_DEV_INFO("Loading %s\n", fw_file_name);
10925
10926		rc = request_firmware(&bp->firmware, fw_file_name,
10927				      &bp->pdev->dev);
10928		if (rc) {
10929			BNX2X_ERR("Can't load firmware file %s\n",
10930				  fw_file_name);
10931			goto request_firmware_exit;
10932		}
10933
10934		rc = bnx2x_check_firmware(bp);
10935		if (rc) {
10936			BNX2X_ERR("Corrupt firmware file %s\n", fw_file_name);
10937			goto request_firmware_exit;
10938		}
10939	}
10940
10941	fw_hdr = (struct bnx2x_fw_file_hdr *)bp->firmware->data;
10942
10943	/* Initialize the pointers to the init arrays */
10944	/* Blob */
10945	BNX2X_ALLOC_AND_SET(init_data, request_firmware_exit, be32_to_cpu_n);
10946
10947	/* Opcodes */
10948	BNX2X_ALLOC_AND_SET(init_ops, init_ops_alloc_err, bnx2x_prep_ops);
10949
10950	/* Offsets */
10951	BNX2X_ALLOC_AND_SET(init_ops_offsets, init_offsets_alloc_err,
10952			    be16_to_cpu_n);
10953
10954	/* STORMs firmware */
10955	INIT_TSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
10956			be32_to_cpu(fw_hdr->tsem_int_table_data.offset);
10957	INIT_TSEM_PRAM_DATA(bp)      = bp->firmware->data +
10958			be32_to_cpu(fw_hdr->tsem_pram_data.offset);
10959	INIT_USEM_INT_TABLE_DATA(bp) = bp->firmware->data +
10960			be32_to_cpu(fw_hdr->usem_int_table_data.offset);
10961	INIT_USEM_PRAM_DATA(bp)      = bp->firmware->data +
10962			be32_to_cpu(fw_hdr->usem_pram_data.offset);
10963	INIT_XSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
10964			be32_to_cpu(fw_hdr->xsem_int_table_data.offset);
10965	INIT_XSEM_PRAM_DATA(bp)      = bp->firmware->data +
10966			be32_to_cpu(fw_hdr->xsem_pram_data.offset);
10967	INIT_CSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
10968			be32_to_cpu(fw_hdr->csem_int_table_data.offset);
10969	INIT_CSEM_PRAM_DATA(bp)      = bp->firmware->data +
10970			be32_to_cpu(fw_hdr->csem_pram_data.offset);
10971	/* IRO */
10972	BNX2X_ALLOC_AND_SET(iro_arr, iro_alloc_err, bnx2x_prep_iro);
10973
10974	return 0;
10975
10976iro_alloc_err:
10977	kfree(bp->init_ops_offsets);
10978init_offsets_alloc_err:
10979	kfree(bp->init_ops);
10980init_ops_alloc_err:
10981	kfree(bp->init_data);
10982request_firmware_exit:
10983	release_firmware(bp->firmware);
10984
10985	return rc;
10986}
10987
10988static void bnx2x_release_firmware(struct bnx2x *bp)
10989{
10990	kfree(bp->init_ops_offsets);
10991	kfree(bp->init_ops);
10992	kfree(bp->init_data);
10993	release_firmware(bp->firmware);
10994	bp->firmware = NULL;
10995}
10996
10997
10998static struct bnx2x_func_sp_drv_ops bnx2x_func_sp_drv = {
10999	.init_hw_cmn_chip = bnx2x_init_hw_common_chip,
11000	.init_hw_cmn      = bnx2x_init_hw_common,
11001	.init_hw_port     = bnx2x_init_hw_port,
11002	.init_hw_func     = bnx2x_init_hw_func,
11003
11004	.reset_hw_cmn     = bnx2x_reset_common,
11005	.reset_hw_port    = bnx2x_reset_port,
11006	.reset_hw_func    = bnx2x_reset_func,
11007
11008	.gunzip_init      = bnx2x_gunzip_init,
11009	.gunzip_end       = bnx2x_gunzip_end,
11010
11011	.init_fw          = bnx2x_init_firmware,
11012	.release_fw       = bnx2x_release_firmware,
11013};
11014
11015void bnx2x__init_func_obj(struct bnx2x *bp)
11016{
11017	/* Prepare DMAE related driver resources */
11018	bnx2x_setup_dmae(bp);
11019
11020	bnx2x_init_func_obj(bp, &bp->func_obj,
11021			    bnx2x_sp(bp, func_rdata),
11022			    bnx2x_sp_mapping(bp, func_rdata),
11023			    &bnx2x_func_sp_drv);
11024}
11025
11026/* must be called after sriov-enable */
11027static inline int bnx2x_set_qm_cid_count(struct bnx2x *bp)
11028{
11029	int cid_count = BNX2X_L2_CID_COUNT(bp);
11030
11031#ifdef BCM_CNIC
11032	cid_count += CNIC_CID_MAX;
11033#endif
11034	return roundup(cid_count, QM_CID_ROUND);
11035}
11036
11037/**
11038 * bnx2x_get_num_none_def_sbs - return the number of none default SBs
11039 *
11040 * @dev:	pci device
11041 *
11042 */
11043static inline int bnx2x_get_num_non_def_sbs(struct pci_dev *pdev)
11044{
11045	int pos;
11046	u16 control;
11047
11048	pos = pci_find_capability(pdev, PCI_CAP_ID_MSIX);
11049
11050	/*
11051	 * If MSI-X is not supported - return number of SBs needed to support
11052	 * one fast path queue: one FP queue + SB for CNIC
11053	 */
11054	if (!pos)
11055		return 1 + CNIC_PRESENT;
11056
11057	/*
11058	 * The value in the PCI configuration space is the index of the last
11059	 * entry, namely one less than the actual size of the table, which is
11060	 * exactly what we want to return from this function: number of all SBs
11061	 * without the default SB.
11062	 */
11063	pci_read_config_word(pdev, pos  + PCI_MSI_FLAGS, &control);
11064	return control & PCI_MSIX_FLAGS_QSIZE;
11065}
11066
11067static int __devinit bnx2x_init_one(struct pci_dev *pdev,
11068				    const struct pci_device_id *ent)
11069{
11070	struct net_device *dev = NULL;
11071	struct bnx2x *bp;
11072	int pcie_width, pcie_speed;
11073	int rc, max_non_def_sbs;
11074	int rx_count, tx_count, rss_count;
11075	/*
11076	 * An estimated maximum supported CoS number according to the chip
11077	 * version.
11078	 * We will try to roughly estimate the maximum number of CoSes this chip
11079	 * may support in order to minimize the memory allocated for Tx
11080	 * netdev_queue's. This number will be accurately calculated during the
11081	 * initialization of bp->max_cos based on the chip versions AND chip
11082	 * revision in the bnx2x_init_bp().
11083	 */
11084	u8 max_cos_est = 0;
11085
11086	switch (ent->driver_data) {
11087	case BCM57710:
11088	case BCM57711:
11089	case BCM57711E:
11090		max_cos_est = BNX2X_MULTI_TX_COS_E1X;
11091		break;
11092
11093	case BCM57712:
11094	case BCM57712_MF:
11095		max_cos_est = BNX2X_MULTI_TX_COS_E2_E3A0;
11096		break;
11097
11098	case BCM57800:
11099	case BCM57800_MF:
11100	case BCM57810:
11101	case BCM57810_MF:
11102	case BCM57840:
11103	case BCM57840_MF:
11104		max_cos_est = BNX2X_MULTI_TX_COS_E3B0;
11105		break;
11106
11107	default:
11108		pr_err("Unknown board_type (%ld), aborting\n",
11109			   ent->driver_data);
11110		return -ENODEV;
11111	}
11112
11113	max_non_def_sbs = bnx2x_get_num_non_def_sbs(pdev);
11114
11115	/* !!! FIXME !!!
11116	 * Do not allow the maximum SB count to grow above 16
11117	 * since Special CIDs starts from 16*BNX2X_MULTI_TX_COS=48.
11118	 * We will use the FP_SB_MAX_E1x macro for this matter.
11119	 */
11120	max_non_def_sbs = min_t(int, FP_SB_MAX_E1x, max_non_def_sbs);
11121
11122	WARN_ON(!max_non_def_sbs);
11123
11124	/* Maximum number of RSS queues: one IGU SB goes to CNIC */
11125	rss_count = max_non_def_sbs - CNIC_PRESENT;
11126
11127	/* Maximum number of netdev Rx queues: RSS + FCoE L2 */
11128	rx_count = rss_count + FCOE_PRESENT;
11129
11130	/*
11131	 * Maximum number of netdev Tx queues:
11132	 *      Maximum TSS queues * Maximum supported number of CoS  + FCoE L2
11133	 */
11134	tx_count = MAX_TXQS_PER_COS * max_cos_est + FCOE_PRESENT;
11135
11136	/* dev zeroed in init_etherdev */
11137	dev = alloc_etherdev_mqs(sizeof(*bp), tx_count, rx_count);
11138	if (!dev) {
11139		dev_err(&pdev->dev, "Cannot allocate net device\n");
11140		return -ENOMEM;
11141	}
11142
11143	bp = netdev_priv(dev);
11144
11145	DP(NETIF_MSG_DRV, "Allocated netdev with %d tx and %d rx queues\n",
11146			  tx_count, rx_count);
11147
11148	bp->igu_sb_cnt = max_non_def_sbs;
11149	bp->msg_enable = debug;
11150	pci_set_drvdata(pdev, dev);
11151
11152	rc = bnx2x_init_dev(pdev, dev, ent->driver_data);
11153	if (rc < 0) {
11154		free_netdev(dev);
11155		return rc;
11156	}
11157
11158	DP(NETIF_MSG_DRV, "max_non_def_sbs %d\n", max_non_def_sbs);
11159
11160	rc = bnx2x_init_bp(bp);
11161	if (rc)
11162		goto init_one_exit;
11163
11164	/*
11165	 * Map doorbels here as we need the real value of bp->max_cos which
11166	 * is initialized in bnx2x_init_bp().
11167	 */
11168	bp->doorbells = ioremap_nocache(pci_resource_start(pdev, 2),
11169					min_t(u64, BNX2X_DB_SIZE(bp),
11170					      pci_resource_len(pdev, 2)));
11171	if (!bp->doorbells) {
11172		dev_err(&bp->pdev->dev,
11173			"Cannot map doorbell space, aborting\n");
11174		rc = -ENOMEM;
11175		goto init_one_exit;
11176	}
11177
11178	/* calc qm_cid_count */
11179	bp->qm_cid_count = bnx2x_set_qm_cid_count(bp);
11180
11181#ifdef BCM_CNIC
11182	/* disable FCOE L2 queue for E1x */
11183	if (CHIP_IS_E1x(bp))
11184		bp->flags |= NO_FCOE_FLAG;
11185
11186#endif
11187
11188	/* Configure interrupt mode: try to enable MSI-X/MSI if
11189	 * needed, set bp->num_queues appropriately.
11190	 */
11191	bnx2x_set_int_mode(bp);
11192
11193	/* Add all NAPI objects */
11194	bnx2x_add_all_napi(bp);
11195
11196	rc = register_netdev(dev);
11197	if (rc) {
11198		dev_err(&pdev->dev, "Cannot register net device\n");
11199		goto init_one_exit;
11200	}
11201
11202#ifdef BCM_CNIC
11203	if (!NO_FCOE(bp)) {
11204		/* Add storage MAC address */
11205		rtnl_lock();
11206		dev_addr_add(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
11207		rtnl_unlock();
11208	}
11209#endif
11210
11211	bnx2x_get_pcie_width_speed(bp, &pcie_width, &pcie_speed);
11212
11213	netdev_info(dev, "%s (%c%d) PCI-E x%d %s found at mem %lx, IRQ %d, node addr %pM\n",
11214		    board_info[ent->driver_data].name,
11215		    (CHIP_REV(bp) >> 12) + 'A', (CHIP_METAL(bp) >> 4),
11216		    pcie_width,
11217		    ((!CHIP_IS_E2(bp) && pcie_speed == 2) ||
11218		     (CHIP_IS_E2(bp) && pcie_speed == 1)) ?
11219		    "5GHz (Gen2)" : "2.5GHz",
11220		    dev->base_addr, bp->pdev->irq, dev->dev_addr);
11221
11222	return 0;
11223
11224init_one_exit:
11225	if (bp->regview)
11226		iounmap(bp->regview);
11227
11228	if (bp->doorbells)
11229		iounmap(bp->doorbells);
11230
11231	free_netdev(dev);
11232
11233	if (atomic_read(&pdev->enable_cnt) == 1)
11234		pci_release_regions(pdev);
11235
11236	pci_disable_device(pdev);
11237	pci_set_drvdata(pdev, NULL);
11238
11239	return rc;
11240}
11241
11242static void __devexit bnx2x_remove_one(struct pci_dev *pdev)
11243{
11244	struct net_device *dev = pci_get_drvdata(pdev);
11245	struct bnx2x *bp;
11246
11247	if (!dev) {
11248		dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n");
11249		return;
11250	}
11251	bp = netdev_priv(dev);
11252
11253#ifdef BCM_CNIC
11254	/* Delete storage MAC address */
11255	if (!NO_FCOE(bp)) {
11256		rtnl_lock();
11257		dev_addr_del(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
11258		rtnl_unlock();
11259	}
11260#endif
11261
11262#ifdef BCM_DCBNL
11263	/* Delete app tlvs from dcbnl */
11264	bnx2x_dcbnl_update_applist(bp, true);
11265#endif
11266
11267	unregister_netdev(dev);
11268
11269	/* Delete all NAPI objects */
11270	bnx2x_del_all_napi(bp);
11271
11272	/* Power on: we can't let PCI layer write to us while we are in D3 */
11273	bnx2x_set_power_state(bp, PCI_D0);
11274
11275	/* Disable MSI/MSI-X */
11276	bnx2x_disable_msi(bp);
11277
11278	/* Power off */
11279	bnx2x_set_power_state(bp, PCI_D3hot);
11280
11281	/* Make sure RESET task is not scheduled before continuing */
11282	cancel_delayed_work_sync(&bp->sp_rtnl_task);
11283
11284	if (bp->regview)
11285		iounmap(bp->regview);
11286
11287	if (bp->doorbells)
11288		iounmap(bp->doorbells);
11289
11290	bnx2x_release_firmware(bp);
11291
11292	bnx2x_free_mem_bp(bp);
11293
11294	free_netdev(dev);
11295
11296	if (atomic_read(&pdev->enable_cnt) == 1)
11297		pci_release_regions(pdev);
11298
11299	pci_disable_device(pdev);
11300	pci_set_drvdata(pdev, NULL);
11301}
11302
11303static int bnx2x_eeh_nic_unload(struct bnx2x *bp)
11304{
11305	int i;
11306
11307	bp->state = BNX2X_STATE_ERROR;
11308
11309	bp->rx_mode = BNX2X_RX_MODE_NONE;
11310
11311#ifdef BCM_CNIC
11312	bnx2x_cnic_notify(bp, CNIC_CTL_STOP_CMD);
11313#endif
11314	/* Stop Tx */
11315	bnx2x_tx_disable(bp);
11316
11317	bnx2x_netif_stop(bp, 0);
11318
11319	del_timer_sync(&bp->timer);
11320
11321	bnx2x_stats_handle(bp, STATS_EVENT_STOP);
11322
11323	/* Release IRQs */
11324	bnx2x_free_irq(bp);
11325
11326	/* Free SKBs, SGEs, TPA pool and driver internals */
11327	bnx2x_free_skbs(bp);
11328
11329	for_each_rx_queue(bp, i)
11330		bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE);
11331
11332	bnx2x_free_mem(bp);
11333
11334	bp->state = BNX2X_STATE_CLOSED;
11335
11336	netif_carrier_off(bp->dev);
11337
11338	return 0;
11339}
11340
11341static void bnx2x_eeh_recover(struct bnx2x *bp)
11342{
11343	u32 val;
11344
11345	mutex_init(&bp->port.phy_mutex);
11346
11347	bp->common.shmem_base = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
11348	bp->link_params.shmem_base = bp->common.shmem_base;
11349	BNX2X_DEV_INFO("shmem offset is 0x%x\n", bp->common.shmem_base);
11350
11351	if (!bp->common.shmem_base ||
11352	    (bp->common.shmem_base < 0xA0000) ||
11353	    (bp->common.shmem_base >= 0xC0000)) {
11354		BNX2X_DEV_INFO("MCP not active\n");
11355		bp->flags |= NO_MCP_FLAG;
11356		return;
11357	}
11358
11359	val = SHMEM_RD(bp, validity_map[BP_PORT(bp)]);
11360	if ((val & (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB))
11361		!= (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB))
11362		BNX2X_ERR("BAD MCP validity signature\n");
11363}
11364
11365/**
11366 * bnx2x_io_error_detected - called when PCI error is detected
11367 * @pdev: Pointer to PCI device
11368 * @state: The current pci connection state
11369 *
11370 * This function is called after a PCI bus error affecting
11371 * this device has been detected.
11372 */
11373static pci_ers_result_t bnx2x_io_error_detected(struct pci_dev *pdev,
11374						pci_channel_state_t state)
11375{
11376	struct net_device *dev = pci_get_drvdata(pdev);
11377	struct bnx2x *bp = netdev_priv(dev);
11378
11379	rtnl_lock();
11380
11381	netif_device_detach(dev);
11382
11383	if (state == pci_channel_io_perm_failure) {
11384		rtnl_unlock();
11385		return PCI_ERS_RESULT_DISCONNECT;
11386	}
11387
11388	if (netif_running(dev))
11389		bnx2x_eeh_nic_unload(bp);
11390
11391	pci_disable_device(pdev);
11392
11393	rtnl_unlock();
11394
11395	/* Request a slot reset */
11396	return PCI_ERS_RESULT_NEED_RESET;
11397}
11398
11399/**
11400 * bnx2x_io_slot_reset - called after the PCI bus has been reset
11401 * @pdev: Pointer to PCI device
11402 *
11403 * Restart the card from scratch, as if from a cold-boot.
11404 */
11405static pci_ers_result_t bnx2x_io_slot_reset(struct pci_dev *pdev)
11406{
11407	struct net_device *dev = pci_get_drvdata(pdev);
11408	struct bnx2x *bp = netdev_priv(dev);
11409
11410	rtnl_lock();
11411
11412	if (pci_enable_device(pdev)) {
11413		dev_err(&pdev->dev,
11414			"Cannot re-enable PCI device after reset\n");
11415		rtnl_unlock();
11416		return PCI_ERS_RESULT_DISCONNECT;
11417	}
11418
11419	pci_set_master(pdev);
11420	pci_restore_state(pdev);
11421
11422	if (netif_running(dev))
11423		bnx2x_set_power_state(bp, PCI_D0);
11424
11425	rtnl_unlock();
11426
11427	return PCI_ERS_RESULT_RECOVERED;
11428}
11429
11430/**
11431 * bnx2x_io_resume - called when traffic can start flowing again
11432 * @pdev: Pointer to PCI device
11433 *
11434 * This callback is called when the error recovery driver tells us that
11435 * its OK to resume normal operation.
11436 */
11437static void bnx2x_io_resume(struct pci_dev *pdev)
11438{
11439	struct net_device *dev = pci_get_drvdata(pdev);
11440	struct bnx2x *bp = netdev_priv(dev);
11441
11442	if (bp->recovery_state != BNX2X_RECOVERY_DONE) {
11443		netdev_err(bp->dev, "Handling parity error recovery. "
11444				    "Try again later\n");
11445		return;
11446	}
11447
11448	rtnl_lock();
11449
11450	bnx2x_eeh_recover(bp);
11451
11452	if (netif_running(dev))
11453		bnx2x_nic_load(bp, LOAD_NORMAL);
11454
11455	netif_device_attach(dev);
11456
11457	rtnl_unlock();
11458}
11459
11460static struct pci_error_handlers bnx2x_err_handler = {
11461	.error_detected = bnx2x_io_error_detected,
11462	.slot_reset     = bnx2x_io_slot_reset,
11463	.resume         = bnx2x_io_resume,
11464};
11465
11466static struct pci_driver bnx2x_pci_driver = {
11467	.name        = DRV_MODULE_NAME,
11468	.id_table    = bnx2x_pci_tbl,
11469	.probe       = bnx2x_init_one,
11470	.remove      = __devexit_p(bnx2x_remove_one),
11471	.suspend     = bnx2x_suspend,
11472	.resume      = bnx2x_resume,
11473	.err_handler = &bnx2x_err_handler,
11474};
11475
11476static int __init bnx2x_init(void)
11477{
11478	int ret;
11479
11480	pr_info("%s", version);
11481
11482	bnx2x_wq = create_singlethread_workqueue("bnx2x");
11483	if (bnx2x_wq == NULL) {
11484		pr_err("Cannot create workqueue\n");
11485		return -ENOMEM;
11486	}
11487
11488	ret = pci_register_driver(&bnx2x_pci_driver);
11489	if (ret) {
11490		pr_err("Cannot register driver\n");
11491		destroy_workqueue(bnx2x_wq);
11492	}
11493	return ret;
11494}
11495
11496static void __exit bnx2x_cleanup(void)
11497{
11498	pci_unregister_driver(&bnx2x_pci_driver);
11499
11500	destroy_workqueue(bnx2x_wq);
11501}
11502
11503void bnx2x_notify_link_changed(struct bnx2x *bp)
11504{
11505	REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + BP_FUNC(bp)*sizeof(u32), 1);
11506}
11507
11508module_init(bnx2x_init);
11509module_exit(bnx2x_cleanup);
11510
11511#ifdef BCM_CNIC
11512/**
11513 * bnx2x_set_iscsi_eth_mac_addr - set iSCSI MAC(s).
11514 *
11515 * @bp:		driver handle
11516 * @set:	set or clear the CAM entry
11517 *
11518 * This function will wait until the ramdord completion returns.
11519 * Return 0 if success, -ENODEV if ramrod doesn't return.
11520 */
11521static inline int bnx2x_set_iscsi_eth_mac_addr(struct bnx2x *bp)
11522{
11523	unsigned long ramrod_flags = 0;
11524
11525	__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
11526	return bnx2x_set_mac_one(bp, bp->cnic_eth_dev.iscsi_mac,
11527				 &bp->iscsi_l2_mac_obj, true,
11528				 BNX2X_ISCSI_ETH_MAC, &ramrod_flags);
11529}
11530
11531/* count denotes the number of new completions we have seen */
11532static void bnx2x_cnic_sp_post(struct bnx2x *bp, int count)
11533{
11534	struct eth_spe *spe;
11535
11536#ifdef BNX2X_STOP_ON_ERROR
11537	if (unlikely(bp->panic))
11538		return;
11539#endif
11540
11541	spin_lock_bh(&bp->spq_lock);
11542	BUG_ON(bp->cnic_spq_pending < count);
11543	bp->cnic_spq_pending -= count;
11544
11545
11546	for (; bp->cnic_kwq_pending; bp->cnic_kwq_pending--) {
11547		u16 type =  (le16_to_cpu(bp->cnic_kwq_cons->hdr.type)
11548				& SPE_HDR_CONN_TYPE) >>
11549				SPE_HDR_CONN_TYPE_SHIFT;
11550		u8 cmd = (le32_to_cpu(bp->cnic_kwq_cons->hdr.conn_and_cmd_data)
11551				>> SPE_HDR_CMD_ID_SHIFT) & 0xff;
11552
11553		/* Set validation for iSCSI L2 client before sending SETUP
11554		 *  ramrod
11555		 */
11556		if (type == ETH_CONNECTION_TYPE) {
11557			if (cmd == RAMROD_CMD_ID_ETH_CLIENT_SETUP)
11558				bnx2x_set_ctx_validation(bp, &bp->context.
11559					vcxt[BNX2X_ISCSI_ETH_CID].eth,
11560					BNX2X_ISCSI_ETH_CID);
11561		}
11562
11563		/*
11564		 * There may be not more than 8 L2, not more than 8 L5 SPEs
11565		 * and in the air. We also check that number of outstanding
11566		 * COMMON ramrods is not more than the EQ and SPQ can
11567		 * accommodate.
11568		 */
11569		if (type == ETH_CONNECTION_TYPE) {
11570			if (!atomic_read(&bp->cq_spq_left))
11571				break;
11572			else
11573				atomic_dec(&bp->cq_spq_left);
11574		} else if (type == NONE_CONNECTION_TYPE) {
11575			if (!atomic_read(&bp->eq_spq_left))
11576				break;
11577			else
11578				atomic_dec(&bp->eq_spq_left);
11579		} else if ((type == ISCSI_CONNECTION_TYPE) ||
11580			   (type == FCOE_CONNECTION_TYPE)) {
11581			if (bp->cnic_spq_pending >=
11582			    bp->cnic_eth_dev.max_kwqe_pending)
11583				break;
11584			else
11585				bp->cnic_spq_pending++;
11586		} else {
11587			BNX2X_ERR("Unknown SPE type: %d\n", type);
11588			bnx2x_panic();
11589			break;
11590		}
11591
11592		spe = bnx2x_sp_get_next(bp);
11593		*spe = *bp->cnic_kwq_cons;
11594
11595		DP(NETIF_MSG_TIMER, "pending on SPQ %d, on KWQ %d count %d\n",
11596		   bp->cnic_spq_pending, bp->cnic_kwq_pending, count);
11597
11598		if (bp->cnic_kwq_cons == bp->cnic_kwq_last)
11599			bp->cnic_kwq_cons = bp->cnic_kwq;
11600		else
11601			bp->cnic_kwq_cons++;
11602	}
11603	bnx2x_sp_prod_update(bp);
11604	spin_unlock_bh(&bp->spq_lock);
11605}
11606
11607static int bnx2x_cnic_sp_queue(struct net_device *dev,
11608			       struct kwqe_16 *kwqes[], u32 count)
11609{
11610	struct bnx2x *bp = netdev_priv(dev);
11611	int i;
11612
11613#ifdef BNX2X_STOP_ON_ERROR
11614	if (unlikely(bp->panic))
11615		return -EIO;
11616#endif
11617
11618	if ((bp->recovery_state != BNX2X_RECOVERY_DONE) &&
11619	    (bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
11620		netdev_err(dev, "Handling parity error recovery. Try again "
11621				"later\n");
11622		return -EAGAIN;
11623	}
11624
11625	spin_lock_bh(&bp->spq_lock);
11626
11627	for (i = 0; i < count; i++) {
11628		struct eth_spe *spe = (struct eth_spe *)kwqes[i];
11629
11630		if (bp->cnic_kwq_pending == MAX_SP_DESC_CNT)
11631			break;
11632
11633		*bp->cnic_kwq_prod = *spe;
11634
11635		bp->cnic_kwq_pending++;
11636
11637		DP(NETIF_MSG_TIMER, "L5 SPQE %x %x %x:%x pos %d\n",
11638		   spe->hdr.conn_and_cmd_data, spe->hdr.type,
11639		   spe->data.update_data_addr.hi,
11640		   spe->data.update_data_addr.lo,
11641		   bp->cnic_kwq_pending);
11642
11643		if (bp->cnic_kwq_prod == bp->cnic_kwq_last)
11644			bp->cnic_kwq_prod = bp->cnic_kwq;
11645		else
11646			bp->cnic_kwq_prod++;
11647	}
11648
11649	spin_unlock_bh(&bp->spq_lock);
11650
11651	if (bp->cnic_spq_pending < bp->cnic_eth_dev.max_kwqe_pending)
11652		bnx2x_cnic_sp_post(bp, 0);
11653
11654	return i;
11655}
11656
11657static int bnx2x_cnic_ctl_send(struct bnx2x *bp, struct cnic_ctl_info *ctl)
11658{
11659	struct cnic_ops *c_ops;
11660	int rc = 0;
11661
11662	mutex_lock(&bp->cnic_mutex);
11663	c_ops = rcu_dereference_protected(bp->cnic_ops,
11664					  lockdep_is_held(&bp->cnic_mutex));
11665	if (c_ops)
11666		rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
11667	mutex_unlock(&bp->cnic_mutex);
11668
11669	return rc;
11670}
11671
11672static int bnx2x_cnic_ctl_send_bh(struct bnx2x *bp, struct cnic_ctl_info *ctl)
11673{
11674	struct cnic_ops *c_ops;
11675	int rc = 0;
11676
11677	rcu_read_lock();
11678	c_ops = rcu_dereference(bp->cnic_ops);
11679	if (c_ops)
11680		rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
11681	rcu_read_unlock();
11682
11683	return rc;
11684}
11685
11686/*
11687 * for commands that have no data
11688 */
11689int bnx2x_cnic_notify(struct bnx2x *bp, int cmd)
11690{
11691	struct cnic_ctl_info ctl = {0};
11692
11693	ctl.cmd = cmd;
11694
11695	return bnx2x_cnic_ctl_send(bp, &ctl);
11696}
11697
11698static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err)
11699{
11700	struct cnic_ctl_info ctl = {0};
11701
11702	/* first we tell CNIC and only then we count this as a completion */
11703	ctl.cmd = CNIC_CTL_COMPLETION_CMD;
11704	ctl.data.comp.cid = cid;
11705	ctl.data.comp.error = err;
11706
11707	bnx2x_cnic_ctl_send_bh(bp, &ctl);
11708	bnx2x_cnic_sp_post(bp, 0);
11709}
11710
11711
11712/* Called with netif_addr_lock_bh() taken.
11713 * Sets an rx_mode config for an iSCSI ETH client.
11714 * Doesn't block.
11715 * Completion should be checked outside.
11716 */
11717static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start)
11718{
11719	unsigned long accept_flags = 0, ramrod_flags = 0;
11720	u8 cl_id = bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
11721	int sched_state = BNX2X_FILTER_ISCSI_ETH_STOP_SCHED;
11722
11723	if (start) {
11724		/* Start accepting on iSCSI L2 ring. Accept all multicasts
11725		 * because it's the only way for UIO Queue to accept
11726		 * multicasts (in non-promiscuous mode only one Queue per
11727		 * function will receive multicast packets (leading in our
11728		 * case).
11729		 */
11730		__set_bit(BNX2X_ACCEPT_UNICAST, &accept_flags);
11731		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &accept_flags);
11732		__set_bit(BNX2X_ACCEPT_BROADCAST, &accept_flags);
11733		__set_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags);
11734
11735		/* Clear STOP_PENDING bit if START is requested */
11736		clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &bp->sp_state);
11737
11738		sched_state = BNX2X_FILTER_ISCSI_ETH_START_SCHED;
11739	} else
11740		/* Clear START_PENDING bit if STOP is requested */
11741		clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &bp->sp_state);
11742
11743	if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
11744		set_bit(sched_state, &bp->sp_state);
11745	else {
11746		__set_bit(RAMROD_RX, &ramrod_flags);
11747		bnx2x_set_q_rx_mode(bp, cl_id, 0, accept_flags, 0,
11748				    ramrod_flags);
11749	}
11750}
11751
11752
11753static int bnx2x_drv_ctl(struct net_device *dev, struct drv_ctl_info *ctl)
11754{
11755	struct bnx2x *bp = netdev_priv(dev);
11756	int rc = 0;
11757
11758	switch (ctl->cmd) {
11759	case DRV_CTL_CTXTBL_WR_CMD: {
11760		u32 index = ctl->data.io.offset;
11761		dma_addr_t addr = ctl->data.io.dma_addr;
11762
11763		bnx2x_ilt_wr(bp, index, addr);
11764		break;
11765	}
11766
11767	case DRV_CTL_RET_L5_SPQ_CREDIT_CMD: {
11768		int count = ctl->data.credit.credit_count;
11769
11770		bnx2x_cnic_sp_post(bp, count);
11771		break;
11772	}
11773
11774	/* rtnl_lock is held.  */
11775	case DRV_CTL_START_L2_CMD: {
11776		struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
11777		unsigned long sp_bits = 0;
11778
11779		/* Configure the iSCSI classification object */
11780		bnx2x_init_mac_obj(bp, &bp->iscsi_l2_mac_obj,
11781				   cp->iscsi_l2_client_id,
11782				   cp->iscsi_l2_cid, BP_FUNC(bp),
11783				   bnx2x_sp(bp, mac_rdata),
11784				   bnx2x_sp_mapping(bp, mac_rdata),
11785				   BNX2X_FILTER_MAC_PENDING,
11786				   &bp->sp_state, BNX2X_OBJ_TYPE_RX,
11787				   &bp->macs_pool);
11788
11789		/* Set iSCSI MAC address */
11790		rc = bnx2x_set_iscsi_eth_mac_addr(bp);
11791		if (rc)
11792			break;
11793
11794		mmiowb();
11795		barrier();
11796
11797		/* Start accepting on iSCSI L2 ring */
11798
11799		netif_addr_lock_bh(dev);
11800		bnx2x_set_iscsi_eth_rx_mode(bp, true);
11801		netif_addr_unlock_bh(dev);
11802
11803		/* bits to wait on */
11804		__set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
11805		__set_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &sp_bits);
11806
11807		if (!bnx2x_wait_sp_comp(bp, sp_bits))
11808			BNX2X_ERR("rx_mode completion timed out!\n");
11809
11810		break;
11811	}
11812
11813	/* rtnl_lock is held.  */
11814	case DRV_CTL_STOP_L2_CMD: {
11815		unsigned long sp_bits = 0;
11816
11817		/* Stop accepting on iSCSI L2 ring */
11818		netif_addr_lock_bh(dev);
11819		bnx2x_set_iscsi_eth_rx_mode(bp, false);
11820		netif_addr_unlock_bh(dev);
11821
11822		/* bits to wait on */
11823		__set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
11824		__set_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &sp_bits);
11825
11826		if (!bnx2x_wait_sp_comp(bp, sp_bits))
11827			BNX2X_ERR("rx_mode completion timed out!\n");
11828
11829		mmiowb();
11830		barrier();
11831
11832		/* Unset iSCSI L2 MAC */
11833		rc = bnx2x_del_all_macs(bp, &bp->iscsi_l2_mac_obj,
11834					BNX2X_ISCSI_ETH_MAC, true);
11835		break;
11836	}
11837	case DRV_CTL_RET_L2_SPQ_CREDIT_CMD: {
11838		int count = ctl->data.credit.credit_count;
11839
11840		smp_mb__before_atomic_inc();
11841		atomic_add(count, &bp->cq_spq_left);
11842		smp_mb__after_atomic_inc();
11843		break;
11844	}
11845	case DRV_CTL_ULP_REGISTER_CMD: {
11846		int ulp_type = ctl->data.ulp_type;
11847
11848		if (CHIP_IS_E3(bp)) {
11849			int idx = BP_FW_MB_IDX(bp);
11850			u32 cap;
11851
11852			cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
11853			if (ulp_type == CNIC_ULP_ISCSI)
11854				cap |= DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
11855			else if (ulp_type == CNIC_ULP_FCOE)
11856				cap |= DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
11857			SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
11858		}
11859		break;
11860	}
11861	case DRV_CTL_ULP_UNREGISTER_CMD: {
11862		int ulp_type = ctl->data.ulp_type;
11863
11864		if (CHIP_IS_E3(bp)) {
11865			int idx = BP_FW_MB_IDX(bp);
11866			u32 cap;
11867
11868			cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
11869			if (ulp_type == CNIC_ULP_ISCSI)
11870				cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
11871			else if (ulp_type == CNIC_ULP_FCOE)
11872				cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
11873			SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
11874		}
11875		break;
11876	}
11877
11878	default:
11879		BNX2X_ERR("unknown command %x\n", ctl->cmd);
11880		rc = -EINVAL;
11881	}
11882
11883	return rc;
11884}
11885
11886void bnx2x_setup_cnic_irq_info(struct bnx2x *bp)
11887{
11888	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
11889
11890	if (bp->flags & USING_MSIX_FLAG) {
11891		cp->drv_state |= CNIC_DRV_STATE_USING_MSIX;
11892		cp->irq_arr[0].irq_flags |= CNIC_IRQ_FL_MSIX;
11893		cp->irq_arr[0].vector = bp->msix_table[1].vector;
11894	} else {
11895		cp->drv_state &= ~CNIC_DRV_STATE_USING_MSIX;
11896		cp->irq_arr[0].irq_flags &= ~CNIC_IRQ_FL_MSIX;
11897	}
11898	if (!CHIP_IS_E1x(bp))
11899		cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e2_sb;
11900	else
11901		cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e1x_sb;
11902
11903	cp->irq_arr[0].status_blk_num =  bnx2x_cnic_fw_sb_id(bp);
11904	cp->irq_arr[0].status_blk_num2 = bnx2x_cnic_igu_sb_id(bp);
11905	cp->irq_arr[1].status_blk = bp->def_status_blk;
11906	cp->irq_arr[1].status_blk_num = DEF_SB_ID;
11907	cp->irq_arr[1].status_blk_num2 = DEF_SB_IGU_ID;
11908
11909	cp->num_irq = 2;
11910}
11911
11912static int bnx2x_register_cnic(struct net_device *dev, struct cnic_ops *ops,
11913			       void *data)
11914{
11915	struct bnx2x *bp = netdev_priv(dev);
11916	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
11917
11918	if (ops == NULL)
11919		return -EINVAL;
11920
11921	bp->cnic_kwq = kzalloc(PAGE_SIZE, GFP_KERNEL);
11922	if (!bp->cnic_kwq)
11923		return -ENOMEM;
11924
11925	bp->cnic_kwq_cons = bp->cnic_kwq;
11926	bp->cnic_kwq_prod = bp->cnic_kwq;
11927	bp->cnic_kwq_last = bp->cnic_kwq + MAX_SP_DESC_CNT;
11928
11929	bp->cnic_spq_pending = 0;
11930	bp->cnic_kwq_pending = 0;
11931
11932	bp->cnic_data = data;
11933
11934	cp->num_irq = 0;
11935	cp->drv_state |= CNIC_DRV_STATE_REGD;
11936	cp->iro_arr = bp->iro_arr;
11937
11938	bnx2x_setup_cnic_irq_info(bp);
11939
11940	rcu_assign_pointer(bp->cnic_ops, ops);
11941
11942	return 0;
11943}
11944
11945static int bnx2x_unregister_cnic(struct net_device *dev)
11946{
11947	struct bnx2x *bp = netdev_priv(dev);
11948	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
11949
11950	mutex_lock(&bp->cnic_mutex);
11951	cp->drv_state = 0;
11952	RCU_INIT_POINTER(bp->cnic_ops, NULL);
11953	mutex_unlock(&bp->cnic_mutex);
11954	synchronize_rcu();
11955	kfree(bp->cnic_kwq);
11956	bp->cnic_kwq = NULL;
11957
11958	return 0;
11959}
11960
11961struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev)
11962{
11963	struct bnx2x *bp = netdev_priv(dev);
11964	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
11965
11966	/* If both iSCSI and FCoE are disabled - return NULL in
11967	 * order to indicate CNIC that it should not try to work
11968	 * with this device.
11969	 */
11970	if (NO_ISCSI(bp) && NO_FCOE(bp))
11971		return NULL;
11972
11973	cp->drv_owner = THIS_MODULE;
11974	cp->chip_id = CHIP_ID(bp);
11975	cp->pdev = bp->pdev;
11976	cp->io_base = bp->regview;
11977	cp->io_base2 = bp->doorbells;
11978	cp->max_kwqe_pending = 8;
11979	cp->ctx_blk_size = CDU_ILT_PAGE_SZ;
11980	cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
11981			     bnx2x_cid_ilt_lines(bp);
11982	cp->ctx_tbl_len = CNIC_ILT_LINES;
11983	cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
11984	cp->drv_submit_kwqes_16 = bnx2x_cnic_sp_queue;
11985	cp->drv_ctl = bnx2x_drv_ctl;
11986	cp->drv_register_cnic = bnx2x_register_cnic;
11987	cp->drv_unregister_cnic = bnx2x_unregister_cnic;
11988	cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID;
11989	cp->iscsi_l2_client_id =
11990		bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
11991	cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID;
11992
11993	if (NO_ISCSI_OOO(bp))
11994		cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
11995
11996	if (NO_ISCSI(bp))
11997		cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI;
11998
11999	if (NO_FCOE(bp))
12000		cp->drv_state |= CNIC_DRV_STATE_NO_FCOE;
12001
12002	DP(BNX2X_MSG_SP, "page_size %d, tbl_offset %d, tbl_lines %d, "
12003			 "starting cid %d\n",
12004	   cp->ctx_blk_size,
12005	   cp->ctx_tbl_offset,
12006	   cp->ctx_tbl_len,
12007	   cp->starting_cid);
12008	return cp;
12009}
12010EXPORT_SYMBOL(bnx2x_cnic_probe);
12011
12012#endif /* BCM_CNIC */
12013
12014