bnx2x_main.c revision 89db4ad830fbdde9c2d990b88bbac8245718177d
1/* bnx2x_main.c: Broadcom Everest network driver.
2 *
3 * Copyright (c) 2007-2011 Broadcom Corporation
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation.
8 *
9 * Maintained by: Eilon Greenstein <eilong@broadcom.com>
10 * Written by: Eliezer Tamir
11 * Based on code from Michael Chan's bnx2 driver
12 * UDP CSUM errata workaround by Arik Gendelman
13 * Slowpath and fastpath rework by Vladislav Zolotarov
14 * Statistics and Link management by Yitchak Gertner
15 *
16 */
17
18#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19
20#include <linux/module.h>
21#include <linux/moduleparam.h>
22#include <linux/kernel.h>
23#include <linux/device.h>  /* for dev_info() */
24#include <linux/timer.h>
25#include <linux/errno.h>
26#include <linux/ioport.h>
27#include <linux/slab.h>
28#include <linux/interrupt.h>
29#include <linux/pci.h>
30#include <linux/init.h>
31#include <linux/netdevice.h>
32#include <linux/etherdevice.h>
33#include <linux/skbuff.h>
34#include <linux/dma-mapping.h>
35#include <linux/bitops.h>
36#include <linux/irq.h>
37#include <linux/delay.h>
38#include <asm/byteorder.h>
39#include <linux/time.h>
40#include <linux/ethtool.h>
41#include <linux/mii.h>
42#include <linux/if.h>
43#include <linux/if_vlan.h>
44#include <net/ip.h>
45#include <net/ipv6.h>
46#include <net/tcp.h>
47#include <net/checksum.h>
48#include <net/ip6_checksum.h>
49#include <linux/workqueue.h>
50#include <linux/crc32.h>
51#include <linux/crc32c.h>
52#include <linux/prefetch.h>
53#include <linux/zlib.h>
54#include <linux/io.h>
55#include <linux/stringify.h>
56#include <linux/vmalloc.h>
57
58#include "bnx2x.h"
59#include "bnx2x_init.h"
60#include "bnx2x_init_ops.h"
61#include "bnx2x_cmn.h"
62#include "bnx2x_dcb.h"
63#include "bnx2x_sp.h"
64
65#include <linux/firmware.h>
66#include "bnx2x_fw_file_hdr.h"
67/* FW files */
68#define FW_FILE_VERSION					\
69	__stringify(BCM_5710_FW_MAJOR_VERSION) "."	\
70	__stringify(BCM_5710_FW_MINOR_VERSION) "."	\
71	__stringify(BCM_5710_FW_REVISION_VERSION) "."	\
72	__stringify(BCM_5710_FW_ENGINEERING_VERSION)
73#define FW_FILE_NAME_E1		"bnx2x/bnx2x-e1-" FW_FILE_VERSION ".fw"
74#define FW_FILE_NAME_E1H	"bnx2x/bnx2x-e1h-" FW_FILE_VERSION ".fw"
75#define FW_FILE_NAME_E2		"bnx2x/bnx2x-e2-" FW_FILE_VERSION ".fw"
76
77/* Time in jiffies before concluding the transmitter is hung */
78#define TX_TIMEOUT		(5*HZ)
79
80static char version[] __devinitdata =
81	"Broadcom NetXtreme II 5771x/578xx 10/20-Gigabit Ethernet Driver "
82	DRV_MODULE_NAME " " DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
83
84MODULE_AUTHOR("Eliezer Tamir");
85MODULE_DESCRIPTION("Broadcom NetXtreme II "
86		   "BCM57710/57711/57711E/"
87		   "57712/57712_MF/57800/57800_MF/57810/57810_MF/"
88		   "57840/57840_MF Driver");
89MODULE_LICENSE("GPL");
90MODULE_VERSION(DRV_MODULE_VERSION);
91MODULE_FIRMWARE(FW_FILE_NAME_E1);
92MODULE_FIRMWARE(FW_FILE_NAME_E1H);
93MODULE_FIRMWARE(FW_FILE_NAME_E2);
94
95static int multi_mode = 1;
96module_param(multi_mode, int, 0);
97MODULE_PARM_DESC(multi_mode, " Multi queue mode "
98			     "(0 Disable; 1 Enable (default))");
99
100int num_queues;
101module_param(num_queues, int, 0);
102MODULE_PARM_DESC(num_queues, " Number of queues for multi_mode=1"
103				" (default is as a number of CPUs)");
104
105static int disable_tpa;
106module_param(disable_tpa, int, 0);
107MODULE_PARM_DESC(disable_tpa, " Disable the TPA (LRO) feature");
108
109#define INT_MODE_INTx			1
110#define INT_MODE_MSI			2
111static int int_mode;
112module_param(int_mode, int, 0);
113MODULE_PARM_DESC(int_mode, " Force interrupt mode other than MSI-X "
114				"(1 INT#x; 2 MSI)");
115
116static int dropless_fc;
117module_param(dropless_fc, int, 0);
118MODULE_PARM_DESC(dropless_fc, " Pause on exhausted host ring");
119
120static int poll;
121module_param(poll, int, 0);
122MODULE_PARM_DESC(poll, " Use polling (for debug)");
123
124static int mrrs = -1;
125module_param(mrrs, int, 0);
126MODULE_PARM_DESC(mrrs, " Force Max Read Req Size (0..3) (for debug)");
127
128static int debug;
129module_param(debug, int, 0);
130MODULE_PARM_DESC(debug, " Default debug msglevel");
131
132
133
134struct workqueue_struct *bnx2x_wq;
135
136enum bnx2x_board_type {
137	BCM57710 = 0,
138	BCM57711,
139	BCM57711E,
140	BCM57712,
141	BCM57712_MF,
142	BCM57800,
143	BCM57800_MF,
144	BCM57810,
145	BCM57810_MF,
146	BCM57840,
147	BCM57840_MF
148};
149
150/* indexed by board_type, above */
151static struct {
152	char *name;
153} board_info[] __devinitdata = {
154	{ "Broadcom NetXtreme II BCM57710 10 Gigabit PCIe [Everest]" },
155	{ "Broadcom NetXtreme II BCM57711 10 Gigabit PCIe" },
156	{ "Broadcom NetXtreme II BCM57711E 10 Gigabit PCIe" },
157	{ "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet" },
158	{ "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet Multi Function" },
159	{ "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet" },
160	{ "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet Multi Function" },
161	{ "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet" },
162	{ "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet Multi Function" },
163	{ "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet" },
164	{ "Broadcom NetXtreme II BCM57840 10/20 Gigabit "
165						"Ethernet Multi Function"}
166};
167
168#ifndef PCI_DEVICE_ID_NX2_57710
169#define PCI_DEVICE_ID_NX2_57710		CHIP_NUM_57710
170#endif
171#ifndef PCI_DEVICE_ID_NX2_57711
172#define PCI_DEVICE_ID_NX2_57711		CHIP_NUM_57711
173#endif
174#ifndef PCI_DEVICE_ID_NX2_57711E
175#define PCI_DEVICE_ID_NX2_57711E	CHIP_NUM_57711E
176#endif
177#ifndef PCI_DEVICE_ID_NX2_57712
178#define PCI_DEVICE_ID_NX2_57712		CHIP_NUM_57712
179#endif
180#ifndef PCI_DEVICE_ID_NX2_57712_MF
181#define PCI_DEVICE_ID_NX2_57712_MF	CHIP_NUM_57712_MF
182#endif
183#ifndef PCI_DEVICE_ID_NX2_57800
184#define PCI_DEVICE_ID_NX2_57800		CHIP_NUM_57800
185#endif
186#ifndef PCI_DEVICE_ID_NX2_57800_MF
187#define PCI_DEVICE_ID_NX2_57800_MF	CHIP_NUM_57800_MF
188#endif
189#ifndef PCI_DEVICE_ID_NX2_57810
190#define PCI_DEVICE_ID_NX2_57810		CHIP_NUM_57810
191#endif
192#ifndef PCI_DEVICE_ID_NX2_57810_MF
193#define PCI_DEVICE_ID_NX2_57810_MF	CHIP_NUM_57810_MF
194#endif
195#ifndef PCI_DEVICE_ID_NX2_57840
196#define PCI_DEVICE_ID_NX2_57840		CHIP_NUM_57840
197#endif
198#ifndef PCI_DEVICE_ID_NX2_57840_MF
199#define PCI_DEVICE_ID_NX2_57840_MF	CHIP_NUM_57840_MF
200#endif
201static DEFINE_PCI_DEVICE_TABLE(bnx2x_pci_tbl) = {
202	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57710), BCM57710 },
203	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711), BCM57711 },
204	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711E), BCM57711E },
205	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712), BCM57712 },
206	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_MF), BCM57712_MF },
207	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800), BCM57800 },
208	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_MF), BCM57800_MF },
209	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810), BCM57810 },
210	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_MF), BCM57810_MF },
211	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840), BCM57840 },
212	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MF), BCM57840_MF },
213	{ 0 }
214};
215
216MODULE_DEVICE_TABLE(pci, bnx2x_pci_tbl);
217
218/****************************************************************************
219* General service functions
220****************************************************************************/
221
222static inline void __storm_memset_dma_mapping(struct bnx2x *bp,
223				       u32 addr, dma_addr_t mapping)
224{
225	REG_WR(bp,  addr, U64_LO(mapping));
226	REG_WR(bp,  addr + 4, U64_HI(mapping));
227}
228
229static inline void storm_memset_spq_addr(struct bnx2x *bp,
230					 dma_addr_t mapping, u16 abs_fid)
231{
232	u32 addr = XSEM_REG_FAST_MEMORY +
233			XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid);
234
235	__storm_memset_dma_mapping(bp, addr, mapping);
236}
237
238static inline void storm_memset_vf_to_pf(struct bnx2x *bp, u16 abs_fid,
239					 u16 pf_id)
240{
241	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid),
242		pf_id);
243	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid),
244		pf_id);
245	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid),
246		pf_id);
247	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid),
248		pf_id);
249}
250
251static inline void storm_memset_func_en(struct bnx2x *bp, u16 abs_fid,
252					u8 enable)
253{
254	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid),
255		enable);
256	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid),
257		enable);
258	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid),
259		enable);
260	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid),
261		enable);
262}
263
264static inline void storm_memset_eq_data(struct bnx2x *bp,
265				struct event_ring_data *eq_data,
266				u16 pfid)
267{
268	size_t size = sizeof(struct event_ring_data);
269
270	u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid);
271
272	__storm_memset_struct(bp, addr, size, (u32 *)eq_data);
273}
274
275static inline void storm_memset_eq_prod(struct bnx2x *bp, u16 eq_prod,
276					u16 pfid)
277{
278	u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_PROD_OFFSET(pfid);
279	REG_WR16(bp, addr, eq_prod);
280}
281
282/* used only at init
283 * locking is done by mcp
284 */
285static void bnx2x_reg_wr_ind(struct bnx2x *bp, u32 addr, u32 val)
286{
287	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
288	pci_write_config_dword(bp->pdev, PCICFG_GRC_DATA, val);
289	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
290			       PCICFG_VENDOR_ID_OFFSET);
291}
292
293static u32 bnx2x_reg_rd_ind(struct bnx2x *bp, u32 addr)
294{
295	u32 val;
296
297	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
298	pci_read_config_dword(bp->pdev, PCICFG_GRC_DATA, &val);
299	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
300			       PCICFG_VENDOR_ID_OFFSET);
301
302	return val;
303}
304
305#define DMAE_DP_SRC_GRC		"grc src_addr [%08x]"
306#define DMAE_DP_SRC_PCI		"pci src_addr [%x:%08x]"
307#define DMAE_DP_DST_GRC		"grc dst_addr [%08x]"
308#define DMAE_DP_DST_PCI		"pci dst_addr [%x:%08x]"
309#define DMAE_DP_DST_NONE	"dst_addr [none]"
310
311static void bnx2x_dp_dmae(struct bnx2x *bp, struct dmae_command *dmae,
312			  int msglvl)
313{
314	u32 src_type = dmae->opcode & DMAE_COMMAND_SRC;
315
316	switch (dmae->opcode & DMAE_COMMAND_DST) {
317	case DMAE_CMD_DST_PCI:
318		if (src_type == DMAE_CMD_SRC_PCI)
319			DP(msglvl, "DMAE: opcode 0x%08x\n"
320			   "src [%x:%08x], len [%d*4], dst [%x:%08x]\n"
321			   "comp_addr [%x:%08x], comp_val 0x%08x\n",
322			   dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
323			   dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
324			   dmae->comp_addr_hi, dmae->comp_addr_lo,
325			   dmae->comp_val);
326		else
327			DP(msglvl, "DMAE: opcode 0x%08x\n"
328			   "src [%08x], len [%d*4], dst [%x:%08x]\n"
329			   "comp_addr [%x:%08x], comp_val 0x%08x\n",
330			   dmae->opcode, dmae->src_addr_lo >> 2,
331			   dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
332			   dmae->comp_addr_hi, dmae->comp_addr_lo,
333			   dmae->comp_val);
334		break;
335	case DMAE_CMD_DST_GRC:
336		if (src_type == DMAE_CMD_SRC_PCI)
337			DP(msglvl, "DMAE: opcode 0x%08x\n"
338			   "src [%x:%08x], len [%d*4], dst_addr [%08x]\n"
339			   "comp_addr [%x:%08x], comp_val 0x%08x\n",
340			   dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
341			   dmae->len, dmae->dst_addr_lo >> 2,
342			   dmae->comp_addr_hi, dmae->comp_addr_lo,
343			   dmae->comp_val);
344		else
345			DP(msglvl, "DMAE: opcode 0x%08x\n"
346			   "src [%08x], len [%d*4], dst [%08x]\n"
347			   "comp_addr [%x:%08x], comp_val 0x%08x\n",
348			   dmae->opcode, dmae->src_addr_lo >> 2,
349			   dmae->len, dmae->dst_addr_lo >> 2,
350			   dmae->comp_addr_hi, dmae->comp_addr_lo,
351			   dmae->comp_val);
352		break;
353	default:
354		if (src_type == DMAE_CMD_SRC_PCI)
355			DP(msglvl, "DMAE: opcode 0x%08x\n"
356			   "src_addr [%x:%08x]  len [%d * 4]  dst_addr [none]\n"
357			   "comp_addr [%x:%08x]  comp_val 0x%08x\n",
358			   dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
359			   dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
360			   dmae->comp_val);
361		else
362			DP(msglvl, "DMAE: opcode 0x%08x\n"
363			   "src_addr [%08x]  len [%d * 4]  dst_addr [none]\n"
364			   "comp_addr [%x:%08x]  comp_val 0x%08x\n",
365			   dmae->opcode, dmae->src_addr_lo >> 2,
366			   dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
367			   dmae->comp_val);
368		break;
369	}
370
371}
372
373/* copy command into DMAE command memory and set DMAE command go */
374void bnx2x_post_dmae(struct bnx2x *bp, struct dmae_command *dmae, int idx)
375{
376	u32 cmd_offset;
377	int i;
378
379	cmd_offset = (DMAE_REG_CMD_MEM + sizeof(struct dmae_command) * idx);
380	for (i = 0; i < (sizeof(struct dmae_command)/4); i++) {
381		REG_WR(bp, cmd_offset + i*4, *(((u32 *)dmae) + i));
382
383		DP(BNX2X_MSG_OFF, "DMAE cmd[%d].%d (0x%08x) : 0x%08x\n",
384		   idx, i, cmd_offset + i*4, *(((u32 *)dmae) + i));
385	}
386	REG_WR(bp, dmae_reg_go_c[idx], 1);
387}
388
389u32 bnx2x_dmae_opcode_add_comp(u32 opcode, u8 comp_type)
390{
391	return opcode | ((comp_type << DMAE_COMMAND_C_DST_SHIFT) |
392			   DMAE_CMD_C_ENABLE);
393}
394
395u32 bnx2x_dmae_opcode_clr_src_reset(u32 opcode)
396{
397	return opcode & ~DMAE_CMD_SRC_RESET;
398}
399
400u32 bnx2x_dmae_opcode(struct bnx2x *bp, u8 src_type, u8 dst_type,
401			     bool with_comp, u8 comp_type)
402{
403	u32 opcode = 0;
404
405	opcode |= ((src_type << DMAE_COMMAND_SRC_SHIFT) |
406		   (dst_type << DMAE_COMMAND_DST_SHIFT));
407
408	opcode |= (DMAE_CMD_SRC_RESET | DMAE_CMD_DST_RESET);
409
410	opcode |= (BP_PORT(bp) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0);
411	opcode |= ((BP_VN(bp) << DMAE_CMD_E1HVN_SHIFT) |
412		   (BP_VN(bp) << DMAE_COMMAND_DST_VN_SHIFT));
413	opcode |= (DMAE_COM_SET_ERR << DMAE_COMMAND_ERR_POLICY_SHIFT);
414
415#ifdef __BIG_ENDIAN
416	opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP;
417#else
418	opcode |= DMAE_CMD_ENDIANITY_DW_SWAP;
419#endif
420	if (with_comp)
421		opcode = bnx2x_dmae_opcode_add_comp(opcode, comp_type);
422	return opcode;
423}
424
425static void bnx2x_prep_dmae_with_comp(struct bnx2x *bp,
426				      struct dmae_command *dmae,
427				      u8 src_type, u8 dst_type)
428{
429	memset(dmae, 0, sizeof(struct dmae_command));
430
431	/* set the opcode */
432	dmae->opcode = bnx2x_dmae_opcode(bp, src_type, dst_type,
433					 true, DMAE_COMP_PCI);
434
435	/* fill in the completion parameters */
436	dmae->comp_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_comp));
437	dmae->comp_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_comp));
438	dmae->comp_val = DMAE_COMP_VAL;
439}
440
441/* issue a dmae command over the init-channel and wailt for completion */
442static int bnx2x_issue_dmae_with_comp(struct bnx2x *bp,
443				      struct dmae_command *dmae)
444{
445	u32 *wb_comp = bnx2x_sp(bp, wb_comp);
446	int cnt = CHIP_REV_IS_SLOW(bp) ? (400000) : 4000;
447	int rc = 0;
448
449	DP(BNX2X_MSG_OFF, "data before [0x%08x 0x%08x 0x%08x 0x%08x]\n",
450	   bp->slowpath->wb_data[0], bp->slowpath->wb_data[1],
451	   bp->slowpath->wb_data[2], bp->slowpath->wb_data[3]);
452
453	/*
454	 * Lock the dmae channel. Disable BHs to prevent a dead-lock
455	 * as long as this code is called both from syscall context and
456	 * from ndo_set_rx_mode() flow that may be called from BH.
457	 */
458	spin_lock_bh(&bp->dmae_lock);
459
460	/* reset completion */
461	*wb_comp = 0;
462
463	/* post the command on the channel used for initializations */
464	bnx2x_post_dmae(bp, dmae, INIT_DMAE_C(bp));
465
466	/* wait for completion */
467	udelay(5);
468	while ((*wb_comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) {
469		DP(BNX2X_MSG_OFF, "wb_comp 0x%08x\n", *wb_comp);
470
471		if (!cnt) {
472			BNX2X_ERR("DMAE timeout!\n");
473			rc = DMAE_TIMEOUT;
474			goto unlock;
475		}
476		cnt--;
477		udelay(50);
478	}
479	if (*wb_comp & DMAE_PCI_ERR_FLAG) {
480		BNX2X_ERR("DMAE PCI error!\n");
481		rc = DMAE_PCI_ERROR;
482	}
483
484	DP(BNX2X_MSG_OFF, "data after [0x%08x 0x%08x 0x%08x 0x%08x]\n",
485	   bp->slowpath->wb_data[0], bp->slowpath->wb_data[1],
486	   bp->slowpath->wb_data[2], bp->slowpath->wb_data[3]);
487
488unlock:
489	spin_unlock_bh(&bp->dmae_lock);
490	return rc;
491}
492
493void bnx2x_write_dmae(struct bnx2x *bp, dma_addr_t dma_addr, u32 dst_addr,
494		      u32 len32)
495{
496	struct dmae_command dmae;
497
498	if (!bp->dmae_ready) {
499		u32 *data = bnx2x_sp(bp, wb_data[0]);
500
501		DP(BNX2X_MSG_OFF,
502		   "DMAE is not ready (dst_addr %08x len32 %d) using indirect\n",
503		   dst_addr, len32);
504		if (CHIP_IS_E1(bp))
505			bnx2x_init_ind_wr(bp, dst_addr, data, len32);
506		else
507			bnx2x_init_str_wr(bp, dst_addr, data, len32);
508		return;
509	}
510
511	/* set opcode and fixed command fields */
512	bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC);
513
514	/* fill in addresses and len */
515	dmae.src_addr_lo = U64_LO(dma_addr);
516	dmae.src_addr_hi = U64_HI(dma_addr);
517	dmae.dst_addr_lo = dst_addr >> 2;
518	dmae.dst_addr_hi = 0;
519	dmae.len = len32;
520
521	bnx2x_dp_dmae(bp, &dmae, BNX2X_MSG_OFF);
522
523	/* issue the command and wait for completion */
524	bnx2x_issue_dmae_with_comp(bp, &dmae);
525}
526
527void bnx2x_read_dmae(struct bnx2x *bp, u32 src_addr, u32 len32)
528{
529	struct dmae_command dmae;
530
531	if (!bp->dmae_ready) {
532		u32 *data = bnx2x_sp(bp, wb_data[0]);
533		int i;
534
535		if (CHIP_IS_E1(bp)) {
536			DP(BNX2X_MSG_OFF,
537			   "DMAE is not ready (src_addr %08x len32 %d) using indirect\n",
538			   src_addr, len32);
539			for (i = 0; i < len32; i++)
540				data[i] = bnx2x_reg_rd_ind(bp, src_addr + i*4);
541		} else
542			for (i = 0; i < len32; i++)
543				data[i] = REG_RD(bp, src_addr + i*4);
544
545		return;
546	}
547
548	/* set opcode and fixed command fields */
549	bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI);
550
551	/* fill in addresses and len */
552	dmae.src_addr_lo = src_addr >> 2;
553	dmae.src_addr_hi = 0;
554	dmae.dst_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_data));
555	dmae.dst_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_data));
556	dmae.len = len32;
557
558	bnx2x_dp_dmae(bp, &dmae, BNX2X_MSG_OFF);
559
560	/* issue the command and wait for completion */
561	bnx2x_issue_dmae_with_comp(bp, &dmae);
562}
563
564static void bnx2x_write_dmae_phys_len(struct bnx2x *bp, dma_addr_t phys_addr,
565				      u32 addr, u32 len)
566{
567	int dmae_wr_max = DMAE_LEN32_WR_MAX(bp);
568	int offset = 0;
569
570	while (len > dmae_wr_max) {
571		bnx2x_write_dmae(bp, phys_addr + offset,
572				 addr + offset, dmae_wr_max);
573		offset += dmae_wr_max * 4;
574		len -= dmae_wr_max;
575	}
576
577	bnx2x_write_dmae(bp, phys_addr + offset, addr + offset, len);
578}
579
580/* used only for slowpath so not inlined */
581static void bnx2x_wb_wr(struct bnx2x *bp, int reg, u32 val_hi, u32 val_lo)
582{
583	u32 wb_write[2];
584
585	wb_write[0] = val_hi;
586	wb_write[1] = val_lo;
587	REG_WR_DMAE(bp, reg, wb_write, 2);
588}
589
590#ifdef USE_WB_RD
591static u64 bnx2x_wb_rd(struct bnx2x *bp, int reg)
592{
593	u32 wb_data[2];
594
595	REG_RD_DMAE(bp, reg, wb_data, 2);
596
597	return HILO_U64(wb_data[0], wb_data[1]);
598}
599#endif
600
601static int bnx2x_mc_assert(struct bnx2x *bp)
602{
603	char last_idx;
604	int i, rc = 0;
605	u32 row0, row1, row2, row3;
606
607	/* XSTORM */
608	last_idx = REG_RD8(bp, BAR_XSTRORM_INTMEM +
609			   XSTORM_ASSERT_LIST_INDEX_OFFSET);
610	if (last_idx)
611		BNX2X_ERR("XSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
612
613	/* print the asserts */
614	for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
615
616		row0 = REG_RD(bp, BAR_XSTRORM_INTMEM +
617			      XSTORM_ASSERT_LIST_OFFSET(i));
618		row1 = REG_RD(bp, BAR_XSTRORM_INTMEM +
619			      XSTORM_ASSERT_LIST_OFFSET(i) + 4);
620		row2 = REG_RD(bp, BAR_XSTRORM_INTMEM +
621			      XSTORM_ASSERT_LIST_OFFSET(i) + 8);
622		row3 = REG_RD(bp, BAR_XSTRORM_INTMEM +
623			      XSTORM_ASSERT_LIST_OFFSET(i) + 12);
624
625		if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
626			BNX2X_ERR("XSTORM_ASSERT_INDEX 0x%x = 0x%08x"
627				  " 0x%08x 0x%08x 0x%08x\n",
628				  i, row3, row2, row1, row0);
629			rc++;
630		} else {
631			break;
632		}
633	}
634
635	/* TSTORM */
636	last_idx = REG_RD8(bp, BAR_TSTRORM_INTMEM +
637			   TSTORM_ASSERT_LIST_INDEX_OFFSET);
638	if (last_idx)
639		BNX2X_ERR("TSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
640
641	/* print the asserts */
642	for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
643
644		row0 = REG_RD(bp, BAR_TSTRORM_INTMEM +
645			      TSTORM_ASSERT_LIST_OFFSET(i));
646		row1 = REG_RD(bp, BAR_TSTRORM_INTMEM +
647			      TSTORM_ASSERT_LIST_OFFSET(i) + 4);
648		row2 = REG_RD(bp, BAR_TSTRORM_INTMEM +
649			      TSTORM_ASSERT_LIST_OFFSET(i) + 8);
650		row3 = REG_RD(bp, BAR_TSTRORM_INTMEM +
651			      TSTORM_ASSERT_LIST_OFFSET(i) + 12);
652
653		if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
654			BNX2X_ERR("TSTORM_ASSERT_INDEX 0x%x = 0x%08x"
655				  " 0x%08x 0x%08x 0x%08x\n",
656				  i, row3, row2, row1, row0);
657			rc++;
658		} else {
659			break;
660		}
661	}
662
663	/* CSTORM */
664	last_idx = REG_RD8(bp, BAR_CSTRORM_INTMEM +
665			   CSTORM_ASSERT_LIST_INDEX_OFFSET);
666	if (last_idx)
667		BNX2X_ERR("CSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
668
669	/* print the asserts */
670	for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
671
672		row0 = REG_RD(bp, BAR_CSTRORM_INTMEM +
673			      CSTORM_ASSERT_LIST_OFFSET(i));
674		row1 = REG_RD(bp, BAR_CSTRORM_INTMEM +
675			      CSTORM_ASSERT_LIST_OFFSET(i) + 4);
676		row2 = REG_RD(bp, BAR_CSTRORM_INTMEM +
677			      CSTORM_ASSERT_LIST_OFFSET(i) + 8);
678		row3 = REG_RD(bp, BAR_CSTRORM_INTMEM +
679			      CSTORM_ASSERT_LIST_OFFSET(i) + 12);
680
681		if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
682			BNX2X_ERR("CSTORM_ASSERT_INDEX 0x%x = 0x%08x"
683				  " 0x%08x 0x%08x 0x%08x\n",
684				  i, row3, row2, row1, row0);
685			rc++;
686		} else {
687			break;
688		}
689	}
690
691	/* USTORM */
692	last_idx = REG_RD8(bp, BAR_USTRORM_INTMEM +
693			   USTORM_ASSERT_LIST_INDEX_OFFSET);
694	if (last_idx)
695		BNX2X_ERR("USTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
696
697	/* print the asserts */
698	for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
699
700		row0 = REG_RD(bp, BAR_USTRORM_INTMEM +
701			      USTORM_ASSERT_LIST_OFFSET(i));
702		row1 = REG_RD(bp, BAR_USTRORM_INTMEM +
703			      USTORM_ASSERT_LIST_OFFSET(i) + 4);
704		row2 = REG_RD(bp, BAR_USTRORM_INTMEM +
705			      USTORM_ASSERT_LIST_OFFSET(i) + 8);
706		row3 = REG_RD(bp, BAR_USTRORM_INTMEM +
707			      USTORM_ASSERT_LIST_OFFSET(i) + 12);
708
709		if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
710			BNX2X_ERR("USTORM_ASSERT_INDEX 0x%x = 0x%08x"
711				  " 0x%08x 0x%08x 0x%08x\n",
712				  i, row3, row2, row1, row0);
713			rc++;
714		} else {
715			break;
716		}
717	}
718
719	return rc;
720}
721
722void bnx2x_fw_dump_lvl(struct bnx2x *bp, const char *lvl)
723{
724	u32 addr, val;
725	u32 mark, offset;
726	__be32 data[9];
727	int word;
728	u32 trace_shmem_base;
729	if (BP_NOMCP(bp)) {
730		BNX2X_ERR("NO MCP - can not dump\n");
731		return;
732	}
733	netdev_printk(lvl, bp->dev, "bc %d.%d.%d\n",
734		(bp->common.bc_ver & 0xff0000) >> 16,
735		(bp->common.bc_ver & 0xff00) >> 8,
736		(bp->common.bc_ver & 0xff));
737
738	val = REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER);
739	if (val == REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER))
740		printk("%s" "MCP PC at 0x%x\n", lvl, val);
741
742	if (BP_PATH(bp) == 0)
743		trace_shmem_base = bp->common.shmem_base;
744	else
745		trace_shmem_base = SHMEM2_RD(bp, other_shmem_base_addr);
746	addr = trace_shmem_base - 0x0800 + 4;
747	mark = REG_RD(bp, addr);
748	mark = (CHIP_IS_E1x(bp) ? MCP_REG_MCPR_SCRATCH : MCP_A_REG_MCPR_SCRATCH)
749			+ ((mark + 0x3) & ~0x3) - 0x08000000;
750	printk("%s" "begin fw dump (mark 0x%x)\n", lvl, mark);
751
752	printk("%s", lvl);
753	for (offset = mark; offset <= trace_shmem_base; offset += 0x8*4) {
754		for (word = 0; word < 8; word++)
755			data[word] = htonl(REG_RD(bp, offset + 4*word));
756		data[8] = 0x0;
757		pr_cont("%s", (char *)data);
758	}
759	for (offset = addr + 4; offset <= mark; offset += 0x8*4) {
760		for (word = 0; word < 8; word++)
761			data[word] = htonl(REG_RD(bp, offset + 4*word));
762		data[8] = 0x0;
763		pr_cont("%s", (char *)data);
764	}
765	printk("%s" "end of fw dump\n", lvl);
766}
767
768static inline void bnx2x_fw_dump(struct bnx2x *bp)
769{
770	bnx2x_fw_dump_lvl(bp, KERN_ERR);
771}
772
773void bnx2x_panic_dump(struct bnx2x *bp)
774{
775	int i;
776	u16 j;
777	struct hc_sp_status_block_data sp_sb_data;
778	int func = BP_FUNC(bp);
779#ifdef BNX2X_STOP_ON_ERROR
780	u16 start = 0, end = 0;
781	u8 cos;
782#endif
783
784	bp->stats_state = STATS_STATE_DISABLED;
785	DP(BNX2X_MSG_STATS, "stats_state - DISABLED\n");
786
787	BNX2X_ERR("begin crash dump -----------------\n");
788
789	/* Indices */
790	/* Common */
791	BNX2X_ERR("def_idx(0x%x)  def_att_idx(0x%x)  attn_state(0x%x)"
792		  "  spq_prod_idx(0x%x) next_stats_cnt(0x%x)\n",
793		  bp->def_idx, bp->def_att_idx, bp->attn_state,
794		  bp->spq_prod_idx, bp->stats_counter);
795	BNX2X_ERR("DSB: attn bits(0x%x)  ack(0x%x)  id(0x%x)  idx(0x%x)\n",
796		  bp->def_status_blk->atten_status_block.attn_bits,
797		  bp->def_status_blk->atten_status_block.attn_bits_ack,
798		  bp->def_status_blk->atten_status_block.status_block_id,
799		  bp->def_status_blk->atten_status_block.attn_bits_index);
800	BNX2X_ERR("     def (");
801	for (i = 0; i < HC_SP_SB_MAX_INDICES; i++)
802		pr_cont("0x%x%s",
803			bp->def_status_blk->sp_sb.index_values[i],
804			(i == HC_SP_SB_MAX_INDICES - 1) ? ")  " : " ");
805
806	for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++)
807		*((u32 *)&sp_sb_data + i) = REG_RD(bp, BAR_CSTRORM_INTMEM +
808			CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) +
809			i*sizeof(u32));
810
811	pr_cont("igu_sb_id(0x%x)  igu_seg_id(0x%x) pf_id(0x%x)  vnic_id(0x%x)  vf_id(0x%x)  vf_valid (0x%x) state(0x%x)\n",
812	       sp_sb_data.igu_sb_id,
813	       sp_sb_data.igu_seg_id,
814	       sp_sb_data.p_func.pf_id,
815	       sp_sb_data.p_func.vnic_id,
816	       sp_sb_data.p_func.vf_id,
817	       sp_sb_data.p_func.vf_valid,
818	       sp_sb_data.state);
819
820
821	for_each_eth_queue(bp, i) {
822		struct bnx2x_fastpath *fp = &bp->fp[i];
823		int loop;
824		struct hc_status_block_data_e2 sb_data_e2;
825		struct hc_status_block_data_e1x sb_data_e1x;
826		struct hc_status_block_sm  *hc_sm_p =
827			CHIP_IS_E1x(bp) ?
828			sb_data_e1x.common.state_machine :
829			sb_data_e2.common.state_machine;
830		struct hc_index_data *hc_index_p =
831			CHIP_IS_E1x(bp) ?
832			sb_data_e1x.index_data :
833			sb_data_e2.index_data;
834		u8 data_size, cos;
835		u32 *sb_data_p;
836		struct bnx2x_fp_txdata txdata;
837
838		/* Rx */
839		BNX2X_ERR("fp%d: rx_bd_prod(0x%x)  rx_bd_cons(0x%x)"
840			  "  rx_comp_prod(0x%x)"
841			  "  rx_comp_cons(0x%x)  *rx_cons_sb(0x%x)\n",
842			  i, fp->rx_bd_prod, fp->rx_bd_cons,
843			  fp->rx_comp_prod,
844			  fp->rx_comp_cons, le16_to_cpu(*fp->rx_cons_sb));
845		BNX2X_ERR("     rx_sge_prod(0x%x)  last_max_sge(0x%x)"
846			  "  fp_hc_idx(0x%x)\n",
847			  fp->rx_sge_prod, fp->last_max_sge,
848			  le16_to_cpu(fp->fp_hc_idx));
849
850		/* Tx */
851		for_each_cos_in_tx_queue(fp, cos)
852		{
853			txdata = fp->txdata[cos];
854			BNX2X_ERR("fp%d: tx_pkt_prod(0x%x)  tx_pkt_cons(0x%x)"
855				  "  tx_bd_prod(0x%x)  tx_bd_cons(0x%x)"
856				  "  *tx_cons_sb(0x%x)\n",
857				  i, txdata.tx_pkt_prod,
858				  txdata.tx_pkt_cons, txdata.tx_bd_prod,
859				  txdata.tx_bd_cons,
860				  le16_to_cpu(*txdata.tx_cons_sb));
861		}
862
863		loop = CHIP_IS_E1x(bp) ?
864			HC_SB_MAX_INDICES_E1X : HC_SB_MAX_INDICES_E2;
865
866		/* host sb data */
867
868#ifdef BCM_CNIC
869		if (IS_FCOE_FP(fp))
870			continue;
871#endif
872		BNX2X_ERR("     run indexes (");
873		for (j = 0; j < HC_SB_MAX_SM; j++)
874			pr_cont("0x%x%s",
875			       fp->sb_running_index[j],
876			       (j == HC_SB_MAX_SM - 1) ? ")" : " ");
877
878		BNX2X_ERR("     indexes (");
879		for (j = 0; j < loop; j++)
880			pr_cont("0x%x%s",
881			       fp->sb_index_values[j],
882			       (j == loop - 1) ? ")" : " ");
883		/* fw sb data */
884		data_size = CHIP_IS_E1x(bp) ?
885			sizeof(struct hc_status_block_data_e1x) :
886			sizeof(struct hc_status_block_data_e2);
887		data_size /= sizeof(u32);
888		sb_data_p = CHIP_IS_E1x(bp) ?
889			(u32 *)&sb_data_e1x :
890			(u32 *)&sb_data_e2;
891		/* copy sb data in here */
892		for (j = 0; j < data_size; j++)
893			*(sb_data_p + j) = REG_RD(bp, BAR_CSTRORM_INTMEM +
894				CSTORM_STATUS_BLOCK_DATA_OFFSET(fp->fw_sb_id) +
895				j * sizeof(u32));
896
897		if (!CHIP_IS_E1x(bp)) {
898			pr_cont("pf_id(0x%x)  vf_id(0x%x)  vf_valid(0x%x) "
899				"vnic_id(0x%x)  same_igu_sb_1b(0x%x) "
900				"state(0x%x)\n",
901				sb_data_e2.common.p_func.pf_id,
902				sb_data_e2.common.p_func.vf_id,
903				sb_data_e2.common.p_func.vf_valid,
904				sb_data_e2.common.p_func.vnic_id,
905				sb_data_e2.common.same_igu_sb_1b,
906				sb_data_e2.common.state);
907		} else {
908			pr_cont("pf_id(0x%x)  vf_id(0x%x)  vf_valid(0x%x) "
909				"vnic_id(0x%x)  same_igu_sb_1b(0x%x) "
910				"state(0x%x)\n",
911				sb_data_e1x.common.p_func.pf_id,
912				sb_data_e1x.common.p_func.vf_id,
913				sb_data_e1x.common.p_func.vf_valid,
914				sb_data_e1x.common.p_func.vnic_id,
915				sb_data_e1x.common.same_igu_sb_1b,
916				sb_data_e1x.common.state);
917		}
918
919		/* SB_SMs data */
920		for (j = 0; j < HC_SB_MAX_SM; j++) {
921			pr_cont("SM[%d] __flags (0x%x) "
922			       "igu_sb_id (0x%x)  igu_seg_id(0x%x) "
923			       "time_to_expire (0x%x) "
924			       "timer_value(0x%x)\n", j,
925			       hc_sm_p[j].__flags,
926			       hc_sm_p[j].igu_sb_id,
927			       hc_sm_p[j].igu_seg_id,
928			       hc_sm_p[j].time_to_expire,
929			       hc_sm_p[j].timer_value);
930		}
931
932		/* Indecies data */
933		for (j = 0; j < loop; j++) {
934			pr_cont("INDEX[%d] flags (0x%x) "
935					 "timeout (0x%x)\n", j,
936			       hc_index_p[j].flags,
937			       hc_index_p[j].timeout);
938		}
939	}
940
941#ifdef BNX2X_STOP_ON_ERROR
942	/* Rings */
943	/* Rx */
944	for_each_rx_queue(bp, i) {
945		struct bnx2x_fastpath *fp = &bp->fp[i];
946
947		start = RX_BD(le16_to_cpu(*fp->rx_cons_sb) - 10);
948		end = RX_BD(le16_to_cpu(*fp->rx_cons_sb) + 503);
949		for (j = start; j != end; j = RX_BD(j + 1)) {
950			u32 *rx_bd = (u32 *)&fp->rx_desc_ring[j];
951			struct sw_rx_bd *sw_bd = &fp->rx_buf_ring[j];
952
953			BNX2X_ERR("fp%d: rx_bd[%x]=[%x:%x]  sw_bd=[%p]\n",
954				  i, j, rx_bd[1], rx_bd[0], sw_bd->data);
955		}
956
957		start = RX_SGE(fp->rx_sge_prod);
958		end = RX_SGE(fp->last_max_sge);
959		for (j = start; j != end; j = RX_SGE(j + 1)) {
960			u32 *rx_sge = (u32 *)&fp->rx_sge_ring[j];
961			struct sw_rx_page *sw_page = &fp->rx_page_ring[j];
962
963			BNX2X_ERR("fp%d: rx_sge[%x]=[%x:%x]  sw_page=[%p]\n",
964				  i, j, rx_sge[1], rx_sge[0], sw_page->page);
965		}
966
967		start = RCQ_BD(fp->rx_comp_cons - 10);
968		end = RCQ_BD(fp->rx_comp_cons + 503);
969		for (j = start; j != end; j = RCQ_BD(j + 1)) {
970			u32 *cqe = (u32 *)&fp->rx_comp_ring[j];
971
972			BNX2X_ERR("fp%d: cqe[%x]=[%x:%x:%x:%x]\n",
973				  i, j, cqe[0], cqe[1], cqe[2], cqe[3]);
974		}
975	}
976
977	/* Tx */
978	for_each_tx_queue(bp, i) {
979		struct bnx2x_fastpath *fp = &bp->fp[i];
980		for_each_cos_in_tx_queue(fp, cos) {
981			struct bnx2x_fp_txdata *txdata = &fp->txdata[cos];
982
983			start = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) - 10);
984			end = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) + 245);
985			for (j = start; j != end; j = TX_BD(j + 1)) {
986				struct sw_tx_bd *sw_bd =
987					&txdata->tx_buf_ring[j];
988
989				BNX2X_ERR("fp%d: txdata %d, "
990					  "packet[%x]=[%p,%x]\n",
991					  i, cos, j, sw_bd->skb,
992					  sw_bd->first_bd);
993			}
994
995			start = TX_BD(txdata->tx_bd_cons - 10);
996			end = TX_BD(txdata->tx_bd_cons + 254);
997			for (j = start; j != end; j = TX_BD(j + 1)) {
998				u32 *tx_bd = (u32 *)&txdata->tx_desc_ring[j];
999
1000				BNX2X_ERR("fp%d: txdata %d, tx_bd[%x]="
1001					  "[%x:%x:%x:%x]\n",
1002					  i, cos, j, tx_bd[0], tx_bd[1],
1003					  tx_bd[2], tx_bd[3]);
1004			}
1005		}
1006	}
1007#endif
1008	bnx2x_fw_dump(bp);
1009	bnx2x_mc_assert(bp);
1010	BNX2X_ERR("end crash dump -----------------\n");
1011}
1012
1013/*
1014 * FLR Support for E2
1015 *
1016 * bnx2x_pf_flr_clnup() is called during nic_load in the per function HW
1017 * initialization.
1018 */
1019#define FLR_WAIT_USEC		10000	/* 10 miliseconds */
1020#define FLR_WAIT_INTERVAL	50	/* usec */
1021#define	FLR_POLL_CNT		(FLR_WAIT_USEC/FLR_WAIT_INTERVAL) /* 200 */
1022
1023struct pbf_pN_buf_regs {
1024	int pN;
1025	u32 init_crd;
1026	u32 crd;
1027	u32 crd_freed;
1028};
1029
1030struct pbf_pN_cmd_regs {
1031	int pN;
1032	u32 lines_occup;
1033	u32 lines_freed;
1034};
1035
1036static void bnx2x_pbf_pN_buf_flushed(struct bnx2x *bp,
1037				     struct pbf_pN_buf_regs *regs,
1038				     u32 poll_count)
1039{
1040	u32 init_crd, crd, crd_start, crd_freed, crd_freed_start;
1041	u32 cur_cnt = poll_count;
1042
1043	crd_freed = crd_freed_start = REG_RD(bp, regs->crd_freed);
1044	crd = crd_start = REG_RD(bp, regs->crd);
1045	init_crd = REG_RD(bp, regs->init_crd);
1046
1047	DP(BNX2X_MSG_SP, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd);
1048	DP(BNX2X_MSG_SP, "CREDIT[%d]      : s:%x\n", regs->pN, crd);
1049	DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed);
1050
1051	while ((crd != init_crd) && ((u32)SUB_S32(crd_freed, crd_freed_start) <
1052	       (init_crd - crd_start))) {
1053		if (cur_cnt--) {
1054			udelay(FLR_WAIT_INTERVAL);
1055			crd = REG_RD(bp, regs->crd);
1056			crd_freed = REG_RD(bp, regs->crd_freed);
1057		} else {
1058			DP(BNX2X_MSG_SP, "PBF tx buffer[%d] timed out\n",
1059			   regs->pN);
1060			DP(BNX2X_MSG_SP, "CREDIT[%d]      : c:%x\n",
1061			   regs->pN, crd);
1062			DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: c:%x\n",
1063			   regs->pN, crd_freed);
1064			break;
1065		}
1066	}
1067	DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF tx buffer[%d]\n",
1068	   poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
1069}
1070
1071static void bnx2x_pbf_pN_cmd_flushed(struct bnx2x *bp,
1072				     struct pbf_pN_cmd_regs *regs,
1073				     u32 poll_count)
1074{
1075	u32 occup, to_free, freed, freed_start;
1076	u32 cur_cnt = poll_count;
1077
1078	occup = to_free = REG_RD(bp, regs->lines_occup);
1079	freed = freed_start = REG_RD(bp, regs->lines_freed);
1080
1081	DP(BNX2X_MSG_SP, "OCCUPANCY[%d]   : s:%x\n", regs->pN, occup);
1082	DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n", regs->pN, freed);
1083
1084	while (occup && ((u32)SUB_S32(freed, freed_start) < to_free)) {
1085		if (cur_cnt--) {
1086			udelay(FLR_WAIT_INTERVAL);
1087			occup = REG_RD(bp, regs->lines_occup);
1088			freed = REG_RD(bp, regs->lines_freed);
1089		} else {
1090			DP(BNX2X_MSG_SP, "PBF cmd queue[%d] timed out\n",
1091			   regs->pN);
1092			DP(BNX2X_MSG_SP, "OCCUPANCY[%d]   : s:%x\n",
1093			   regs->pN, occup);
1094			DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n",
1095			   regs->pN, freed);
1096			break;
1097		}
1098	}
1099	DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF cmd queue[%d]\n",
1100	   poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
1101}
1102
1103static inline u32 bnx2x_flr_clnup_reg_poll(struct bnx2x *bp, u32 reg,
1104				     u32 expected, u32 poll_count)
1105{
1106	u32 cur_cnt = poll_count;
1107	u32 val;
1108
1109	while ((val = REG_RD(bp, reg)) != expected && cur_cnt--)
1110		udelay(FLR_WAIT_INTERVAL);
1111
1112	return val;
1113}
1114
1115static inline int bnx2x_flr_clnup_poll_hw_counter(struct bnx2x *bp, u32 reg,
1116						  char *msg, u32 poll_cnt)
1117{
1118	u32 val = bnx2x_flr_clnup_reg_poll(bp, reg, 0, poll_cnt);
1119	if (val != 0) {
1120		BNX2X_ERR("%s usage count=%d\n", msg, val);
1121		return 1;
1122	}
1123	return 0;
1124}
1125
1126static u32 bnx2x_flr_clnup_poll_count(struct bnx2x *bp)
1127{
1128	/* adjust polling timeout */
1129	if (CHIP_REV_IS_EMUL(bp))
1130		return FLR_POLL_CNT * 2000;
1131
1132	if (CHIP_REV_IS_FPGA(bp))
1133		return FLR_POLL_CNT * 120;
1134
1135	return FLR_POLL_CNT;
1136}
1137
1138static void bnx2x_tx_hw_flushed(struct bnx2x *bp, u32 poll_count)
1139{
1140	struct pbf_pN_cmd_regs cmd_regs[] = {
1141		{0, (CHIP_IS_E3B0(bp)) ?
1142			PBF_REG_TQ_OCCUPANCY_Q0 :
1143			PBF_REG_P0_TQ_OCCUPANCY,
1144		    (CHIP_IS_E3B0(bp)) ?
1145			PBF_REG_TQ_LINES_FREED_CNT_Q0 :
1146			PBF_REG_P0_TQ_LINES_FREED_CNT},
1147		{1, (CHIP_IS_E3B0(bp)) ?
1148			PBF_REG_TQ_OCCUPANCY_Q1 :
1149			PBF_REG_P1_TQ_OCCUPANCY,
1150		    (CHIP_IS_E3B0(bp)) ?
1151			PBF_REG_TQ_LINES_FREED_CNT_Q1 :
1152			PBF_REG_P1_TQ_LINES_FREED_CNT},
1153		{4, (CHIP_IS_E3B0(bp)) ?
1154			PBF_REG_TQ_OCCUPANCY_LB_Q :
1155			PBF_REG_P4_TQ_OCCUPANCY,
1156		    (CHIP_IS_E3B0(bp)) ?
1157			PBF_REG_TQ_LINES_FREED_CNT_LB_Q :
1158			PBF_REG_P4_TQ_LINES_FREED_CNT}
1159	};
1160
1161	struct pbf_pN_buf_regs buf_regs[] = {
1162		{0, (CHIP_IS_E3B0(bp)) ?
1163			PBF_REG_INIT_CRD_Q0 :
1164			PBF_REG_P0_INIT_CRD ,
1165		    (CHIP_IS_E3B0(bp)) ?
1166			PBF_REG_CREDIT_Q0 :
1167			PBF_REG_P0_CREDIT,
1168		    (CHIP_IS_E3B0(bp)) ?
1169			PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 :
1170			PBF_REG_P0_INTERNAL_CRD_FREED_CNT},
1171		{1, (CHIP_IS_E3B0(bp)) ?
1172			PBF_REG_INIT_CRD_Q1 :
1173			PBF_REG_P1_INIT_CRD,
1174		    (CHIP_IS_E3B0(bp)) ?
1175			PBF_REG_CREDIT_Q1 :
1176			PBF_REG_P1_CREDIT,
1177		    (CHIP_IS_E3B0(bp)) ?
1178			PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 :
1179			PBF_REG_P1_INTERNAL_CRD_FREED_CNT},
1180		{4, (CHIP_IS_E3B0(bp)) ?
1181			PBF_REG_INIT_CRD_LB_Q :
1182			PBF_REG_P4_INIT_CRD,
1183		    (CHIP_IS_E3B0(bp)) ?
1184			PBF_REG_CREDIT_LB_Q :
1185			PBF_REG_P4_CREDIT,
1186		    (CHIP_IS_E3B0(bp)) ?
1187			PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q :
1188			PBF_REG_P4_INTERNAL_CRD_FREED_CNT},
1189	};
1190
1191	int i;
1192
1193	/* Verify the command queues are flushed P0, P1, P4 */
1194	for (i = 0; i < ARRAY_SIZE(cmd_regs); i++)
1195		bnx2x_pbf_pN_cmd_flushed(bp, &cmd_regs[i], poll_count);
1196
1197
1198	/* Verify the transmission buffers are flushed P0, P1, P4 */
1199	for (i = 0; i < ARRAY_SIZE(buf_regs); i++)
1200		bnx2x_pbf_pN_buf_flushed(bp, &buf_regs[i], poll_count);
1201}
1202
1203#define OP_GEN_PARAM(param) \
1204	(((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM)
1205
1206#define OP_GEN_TYPE(type) \
1207	(((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE)
1208
1209#define OP_GEN_AGG_VECT(index) \
1210	(((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX)
1211
1212
1213static inline int bnx2x_send_final_clnup(struct bnx2x *bp, u8 clnup_func,
1214					 u32 poll_cnt)
1215{
1216	struct sdm_op_gen op_gen = {0};
1217
1218	u32 comp_addr = BAR_CSTRORM_INTMEM +
1219			CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func);
1220	int ret = 0;
1221
1222	if (REG_RD(bp, comp_addr)) {
1223		BNX2X_ERR("Cleanup complete was not 0 before sending\n");
1224		return 1;
1225	}
1226
1227	op_gen.command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX);
1228	op_gen.command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE);
1229	op_gen.command |= OP_GEN_AGG_VECT(clnup_func);
1230	op_gen.command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT;
1231
1232	DP(BNX2X_MSG_SP, "sending FW Final cleanup\n");
1233	REG_WR(bp, XSDM_REG_OPERATION_GEN, op_gen.command);
1234
1235	if (bnx2x_flr_clnup_reg_poll(bp, comp_addr, 1, poll_cnt) != 1) {
1236		BNX2X_ERR("FW final cleanup did not succeed\n");
1237		ret = 1;
1238	}
1239	/* Zero completion for nxt FLR */
1240	REG_WR(bp, comp_addr, 0);
1241
1242	return ret;
1243}
1244
1245static inline u8 bnx2x_is_pcie_pending(struct pci_dev *dev)
1246{
1247	int pos;
1248	u16 status;
1249
1250	pos = pci_pcie_cap(dev);
1251	if (!pos)
1252		return false;
1253
1254	pci_read_config_word(dev, pos + PCI_EXP_DEVSTA, &status);
1255	return status & PCI_EXP_DEVSTA_TRPND;
1256}
1257
1258/* PF FLR specific routines
1259*/
1260static int bnx2x_poll_hw_usage_counters(struct bnx2x *bp, u32 poll_cnt)
1261{
1262
1263	/* wait for CFC PF usage-counter to zero (includes all the VFs) */
1264	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1265			CFC_REG_NUM_LCIDS_INSIDE_PF,
1266			"CFC PF usage counter timed out",
1267			poll_cnt))
1268		return 1;
1269
1270
1271	/* Wait for DQ PF usage-counter to zero (until DQ cleanup) */
1272	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1273			DORQ_REG_PF_USAGE_CNT,
1274			"DQ PF usage counter timed out",
1275			poll_cnt))
1276		return 1;
1277
1278	/* Wait for QM PF usage-counter to zero (until DQ cleanup) */
1279	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1280			QM_REG_PF_USG_CNT_0 + 4*BP_FUNC(bp),
1281			"QM PF usage counter timed out",
1282			poll_cnt))
1283		return 1;
1284
1285	/* Wait for Timer PF usage-counters to zero (until DQ cleanup) */
1286	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1287			TM_REG_LIN0_VNIC_UC + 4*BP_PORT(bp),
1288			"Timers VNIC usage counter timed out",
1289			poll_cnt))
1290		return 1;
1291	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1292			TM_REG_LIN0_NUM_SCANS + 4*BP_PORT(bp),
1293			"Timers NUM_SCANS usage counter timed out",
1294			poll_cnt))
1295		return 1;
1296
1297	/* Wait DMAE PF usage counter to zero */
1298	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1299			dmae_reg_go_c[INIT_DMAE_C(bp)],
1300			"DMAE dommand register timed out",
1301			poll_cnt))
1302		return 1;
1303
1304	return 0;
1305}
1306
1307static void bnx2x_hw_enable_status(struct bnx2x *bp)
1308{
1309	u32 val;
1310
1311	val = REG_RD(bp, CFC_REG_WEAK_ENABLE_PF);
1312	DP(BNX2X_MSG_SP, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val);
1313
1314	val = REG_RD(bp, PBF_REG_DISABLE_PF);
1315	DP(BNX2X_MSG_SP, "PBF_REG_DISABLE_PF is 0x%x\n", val);
1316
1317	val = REG_RD(bp, IGU_REG_PCI_PF_MSI_EN);
1318	DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val);
1319
1320	val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_EN);
1321	DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val);
1322
1323	val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_FUNC_MASK);
1324	DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val);
1325
1326	val = REG_RD(bp, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR);
1327	DP(BNX2X_MSG_SP, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val);
1328
1329	val = REG_RD(bp, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR);
1330	DP(BNX2X_MSG_SP, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val);
1331
1332	val = REG_RD(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
1333	DP(BNX2X_MSG_SP, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n",
1334	   val);
1335}
1336
1337static int bnx2x_pf_flr_clnup(struct bnx2x *bp)
1338{
1339	u32 poll_cnt = bnx2x_flr_clnup_poll_count(bp);
1340
1341	DP(BNX2X_MSG_SP, "Cleanup after FLR PF[%d]\n", BP_ABS_FUNC(bp));
1342
1343	/* Re-enable PF target read access */
1344	REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
1345
1346	/* Poll HW usage counters */
1347	DP(BNX2X_MSG_SP, "Polling usage counters\n");
1348	if (bnx2x_poll_hw_usage_counters(bp, poll_cnt))
1349		return -EBUSY;
1350
1351	/* Zero the igu 'trailing edge' and 'leading edge' */
1352
1353	/* Send the FW cleanup command */
1354	if (bnx2x_send_final_clnup(bp, (u8)BP_FUNC(bp), poll_cnt))
1355		return -EBUSY;
1356
1357	/* ATC cleanup */
1358
1359	/* Verify TX hw is flushed */
1360	bnx2x_tx_hw_flushed(bp, poll_cnt);
1361
1362	/* Wait 100ms (not adjusted according to platform) */
1363	msleep(100);
1364
1365	/* Verify no pending pci transactions */
1366	if (bnx2x_is_pcie_pending(bp->pdev))
1367		BNX2X_ERR("PCIE Transactions still pending\n");
1368
1369	/* Debug */
1370	bnx2x_hw_enable_status(bp);
1371
1372	/*
1373	 * Master enable - Due to WB DMAE writes performed before this
1374	 * register is re-initialized as part of the regular function init
1375	 */
1376	REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
1377
1378	return 0;
1379}
1380
1381static void bnx2x_hc_int_enable(struct bnx2x *bp)
1382{
1383	int port = BP_PORT(bp);
1384	u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
1385	u32 val = REG_RD(bp, addr);
1386	int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
1387	int msi = (bp->flags & USING_MSI_FLAG) ? 1 : 0;
1388
1389	if (msix) {
1390		val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1391			 HC_CONFIG_0_REG_INT_LINE_EN_0);
1392		val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1393			HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1394	} else if (msi) {
1395		val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0;
1396		val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1397			HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1398			HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1399	} else {
1400		val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1401			HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1402			HC_CONFIG_0_REG_INT_LINE_EN_0 |
1403			HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1404
1405		if (!CHIP_IS_E1(bp)) {
1406			DP(NETIF_MSG_INTR, "write %x to HC %d (addr 0x%x)\n",
1407			   val, port, addr);
1408
1409			REG_WR(bp, addr, val);
1410
1411			val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0;
1412		}
1413	}
1414
1415	if (CHIP_IS_E1(bp))
1416		REG_WR(bp, HC_REG_INT_MASK + port*4, 0x1FFFF);
1417
1418	DP(NETIF_MSG_INTR, "write %x to HC %d (addr 0x%x)  mode %s\n",
1419	   val, port, addr, (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1420
1421	REG_WR(bp, addr, val);
1422	/*
1423	 * Ensure that HC_CONFIG is written before leading/trailing edge config
1424	 */
1425	mmiowb();
1426	barrier();
1427
1428	if (!CHIP_IS_E1(bp)) {
1429		/* init leading/trailing edge */
1430		if (IS_MF(bp)) {
1431			val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1432			if (bp->port.pmf)
1433				/* enable nig and gpio3 attention */
1434				val |= 0x1100;
1435		} else
1436			val = 0xffff;
1437
1438		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
1439		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
1440	}
1441
1442	/* Make sure that interrupts are indeed enabled from here on */
1443	mmiowb();
1444}
1445
1446static void bnx2x_igu_int_enable(struct bnx2x *bp)
1447{
1448	u32 val;
1449	int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
1450	int msi = (bp->flags & USING_MSI_FLAG) ? 1 : 0;
1451
1452	val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
1453
1454	if (msix) {
1455		val &= ~(IGU_PF_CONF_INT_LINE_EN |
1456			 IGU_PF_CONF_SINGLE_ISR_EN);
1457		val |= (IGU_PF_CONF_FUNC_EN |
1458			IGU_PF_CONF_MSI_MSIX_EN |
1459			IGU_PF_CONF_ATTN_BIT_EN);
1460	} else if (msi) {
1461		val &= ~IGU_PF_CONF_INT_LINE_EN;
1462		val |= (IGU_PF_CONF_FUNC_EN |
1463			IGU_PF_CONF_MSI_MSIX_EN |
1464			IGU_PF_CONF_ATTN_BIT_EN |
1465			IGU_PF_CONF_SINGLE_ISR_EN);
1466	} else {
1467		val &= ~IGU_PF_CONF_MSI_MSIX_EN;
1468		val |= (IGU_PF_CONF_FUNC_EN |
1469			IGU_PF_CONF_INT_LINE_EN |
1470			IGU_PF_CONF_ATTN_BIT_EN |
1471			IGU_PF_CONF_SINGLE_ISR_EN);
1472	}
1473
1474	DP(NETIF_MSG_INTR, "write 0x%x to IGU  mode %s\n",
1475	   val, (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1476
1477	REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1478
1479	barrier();
1480
1481	/* init leading/trailing edge */
1482	if (IS_MF(bp)) {
1483		val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1484		if (bp->port.pmf)
1485			/* enable nig and gpio3 attention */
1486			val |= 0x1100;
1487	} else
1488		val = 0xffff;
1489
1490	REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
1491	REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
1492
1493	/* Make sure that interrupts are indeed enabled from here on */
1494	mmiowb();
1495}
1496
1497void bnx2x_int_enable(struct bnx2x *bp)
1498{
1499	if (bp->common.int_block == INT_BLOCK_HC)
1500		bnx2x_hc_int_enable(bp);
1501	else
1502		bnx2x_igu_int_enable(bp);
1503}
1504
1505static void bnx2x_hc_int_disable(struct bnx2x *bp)
1506{
1507	int port = BP_PORT(bp);
1508	u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
1509	u32 val = REG_RD(bp, addr);
1510
1511	/*
1512	 * in E1 we must use only PCI configuration space to disable
1513	 * MSI/MSIX capablility
1514	 * It's forbitten to disable IGU_PF_CONF_MSI_MSIX_EN in HC block
1515	 */
1516	if (CHIP_IS_E1(bp)) {
1517		/*  Since IGU_PF_CONF_MSI_MSIX_EN still always on
1518		 *  Use mask register to prevent from HC sending interrupts
1519		 *  after we exit the function
1520		 */
1521		REG_WR(bp, HC_REG_INT_MASK + port*4, 0);
1522
1523		val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1524			 HC_CONFIG_0_REG_INT_LINE_EN_0 |
1525			 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1526	} else
1527		val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1528			 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1529			 HC_CONFIG_0_REG_INT_LINE_EN_0 |
1530			 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1531
1532	DP(NETIF_MSG_INTR, "write %x to HC %d (addr 0x%x)\n",
1533	   val, port, addr);
1534
1535	/* flush all outstanding writes */
1536	mmiowb();
1537
1538	REG_WR(bp, addr, val);
1539	if (REG_RD(bp, addr) != val)
1540		BNX2X_ERR("BUG! proper val not read from IGU!\n");
1541}
1542
1543static void bnx2x_igu_int_disable(struct bnx2x *bp)
1544{
1545	u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
1546
1547	val &= ~(IGU_PF_CONF_MSI_MSIX_EN |
1548		 IGU_PF_CONF_INT_LINE_EN |
1549		 IGU_PF_CONF_ATTN_BIT_EN);
1550
1551	DP(NETIF_MSG_INTR, "write %x to IGU\n", val);
1552
1553	/* flush all outstanding writes */
1554	mmiowb();
1555
1556	REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1557	if (REG_RD(bp, IGU_REG_PF_CONFIGURATION) != val)
1558		BNX2X_ERR("BUG! proper val not read from IGU!\n");
1559}
1560
1561void bnx2x_int_disable(struct bnx2x *bp)
1562{
1563	if (bp->common.int_block == INT_BLOCK_HC)
1564		bnx2x_hc_int_disable(bp);
1565	else
1566		bnx2x_igu_int_disable(bp);
1567}
1568
1569void bnx2x_int_disable_sync(struct bnx2x *bp, int disable_hw)
1570{
1571	int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
1572	int i, offset;
1573
1574	if (disable_hw)
1575		/* prevent the HW from sending interrupts */
1576		bnx2x_int_disable(bp);
1577
1578	/* make sure all ISRs are done */
1579	if (msix) {
1580		synchronize_irq(bp->msix_table[0].vector);
1581		offset = 1;
1582#ifdef BCM_CNIC
1583		offset++;
1584#endif
1585		for_each_eth_queue(bp, i)
1586			synchronize_irq(bp->msix_table[offset++].vector);
1587	} else
1588		synchronize_irq(bp->pdev->irq);
1589
1590	/* make sure sp_task is not running */
1591	cancel_delayed_work(&bp->sp_task);
1592	cancel_delayed_work(&bp->period_task);
1593	flush_workqueue(bnx2x_wq);
1594}
1595
1596/* fast path */
1597
1598/*
1599 * General service functions
1600 */
1601
1602/* Return true if succeeded to acquire the lock */
1603static bool bnx2x_trylock_hw_lock(struct bnx2x *bp, u32 resource)
1604{
1605	u32 lock_status;
1606	u32 resource_bit = (1 << resource);
1607	int func = BP_FUNC(bp);
1608	u32 hw_lock_control_reg;
1609
1610	DP(NETIF_MSG_HW, "Trying to take a lock on resource %d\n", resource);
1611
1612	/* Validating that the resource is within range */
1613	if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1614		DP(NETIF_MSG_HW,
1615		   "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1616		   resource, HW_LOCK_MAX_RESOURCE_VALUE);
1617		return false;
1618	}
1619
1620	if (func <= 5)
1621		hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1622	else
1623		hw_lock_control_reg =
1624				(MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1625
1626	/* Try to acquire the lock */
1627	REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
1628	lock_status = REG_RD(bp, hw_lock_control_reg);
1629	if (lock_status & resource_bit)
1630		return true;
1631
1632	DP(NETIF_MSG_HW, "Failed to get a lock on resource %d\n", resource);
1633	return false;
1634}
1635
1636/**
1637 * bnx2x_get_leader_lock_resource - get the recovery leader resource id
1638 *
1639 * @bp:	driver handle
1640 *
1641 * Returns the recovery leader resource id according to the engine this function
1642 * belongs to. Currently only only 2 engines is supported.
1643 */
1644static inline int bnx2x_get_leader_lock_resource(struct bnx2x *bp)
1645{
1646	if (BP_PATH(bp))
1647		return HW_LOCK_RESOURCE_RECOVERY_LEADER_1;
1648	else
1649		return HW_LOCK_RESOURCE_RECOVERY_LEADER_0;
1650}
1651
1652/**
1653 * bnx2x_trylock_leader_lock- try to aquire a leader lock.
1654 *
1655 * @bp: driver handle
1656 *
1657 * Tries to aquire a leader lock for cuurent engine.
1658 */
1659static inline bool bnx2x_trylock_leader_lock(struct bnx2x *bp)
1660{
1661	return bnx2x_trylock_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
1662}
1663
1664#ifdef BCM_CNIC
1665static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err);
1666#endif
1667
1668void bnx2x_sp_event(struct bnx2x_fastpath *fp, union eth_rx_cqe *rr_cqe)
1669{
1670	struct bnx2x *bp = fp->bp;
1671	int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1672	int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1673	enum bnx2x_queue_cmd drv_cmd = BNX2X_Q_CMD_MAX;
1674	struct bnx2x_queue_sp_obj *q_obj = &fp->q_obj;
1675
1676	DP(BNX2X_MSG_SP,
1677	   "fp %d  cid %d  got ramrod #%d  state is %x  type is %d\n",
1678	   fp->index, cid, command, bp->state,
1679	   rr_cqe->ramrod_cqe.ramrod_type);
1680
1681	switch (command) {
1682	case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE):
1683		DP(BNX2X_MSG_SP, "got UPDATE ramrod. CID %d\n", cid);
1684		drv_cmd = BNX2X_Q_CMD_UPDATE;
1685		break;
1686
1687	case (RAMROD_CMD_ID_ETH_CLIENT_SETUP):
1688		DP(BNX2X_MSG_SP, "got MULTI[%d] setup ramrod\n", cid);
1689		drv_cmd = BNX2X_Q_CMD_SETUP;
1690		break;
1691
1692	case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP):
1693		DP(NETIF_MSG_IFUP, "got MULTI[%d] tx-only setup ramrod\n", cid);
1694		drv_cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
1695		break;
1696
1697	case (RAMROD_CMD_ID_ETH_HALT):
1698		DP(BNX2X_MSG_SP, "got MULTI[%d] halt ramrod\n", cid);
1699		drv_cmd = BNX2X_Q_CMD_HALT;
1700		break;
1701
1702	case (RAMROD_CMD_ID_ETH_TERMINATE):
1703		DP(BNX2X_MSG_SP, "got MULTI[%d] teminate ramrod\n", cid);
1704		drv_cmd = BNX2X_Q_CMD_TERMINATE;
1705		break;
1706
1707	case (RAMROD_CMD_ID_ETH_EMPTY):
1708		DP(BNX2X_MSG_SP, "got MULTI[%d] empty ramrod\n", cid);
1709		drv_cmd = BNX2X_Q_CMD_EMPTY;
1710		break;
1711
1712	default:
1713		BNX2X_ERR("unexpected MC reply (%d) on fp[%d]\n",
1714			  command, fp->index);
1715		return;
1716	}
1717
1718	if ((drv_cmd != BNX2X_Q_CMD_MAX) &&
1719	    q_obj->complete_cmd(bp, q_obj, drv_cmd))
1720		/* q_obj->complete_cmd() failure means that this was
1721		 * an unexpected completion.
1722		 *
1723		 * In this case we don't want to increase the bp->spq_left
1724		 * because apparently we haven't sent this command the first
1725		 * place.
1726		 */
1727#ifdef BNX2X_STOP_ON_ERROR
1728		bnx2x_panic();
1729#else
1730		return;
1731#endif
1732
1733	smp_mb__before_atomic_inc();
1734	atomic_inc(&bp->cq_spq_left);
1735	/* push the change in bp->spq_left and towards the memory */
1736	smp_mb__after_atomic_inc();
1737
1738	DP(BNX2X_MSG_SP, "bp->cq_spq_left %x\n", atomic_read(&bp->cq_spq_left));
1739
1740	return;
1741}
1742
1743void bnx2x_update_rx_prod(struct bnx2x *bp, struct bnx2x_fastpath *fp,
1744			u16 bd_prod, u16 rx_comp_prod, u16 rx_sge_prod)
1745{
1746	u32 start = BAR_USTRORM_INTMEM + fp->ustorm_rx_prods_offset;
1747
1748	bnx2x_update_rx_prod_gen(bp, fp, bd_prod, rx_comp_prod, rx_sge_prod,
1749				 start);
1750}
1751
1752irqreturn_t bnx2x_interrupt(int irq, void *dev_instance)
1753{
1754	struct bnx2x *bp = netdev_priv(dev_instance);
1755	u16 status = bnx2x_ack_int(bp);
1756	u16 mask;
1757	int i;
1758	u8 cos;
1759
1760	/* Return here if interrupt is shared and it's not for us */
1761	if (unlikely(status == 0)) {
1762		DP(NETIF_MSG_INTR, "not our interrupt!\n");
1763		return IRQ_NONE;
1764	}
1765	DP(NETIF_MSG_INTR, "got an interrupt  status 0x%x\n", status);
1766
1767#ifdef BNX2X_STOP_ON_ERROR
1768	if (unlikely(bp->panic))
1769		return IRQ_HANDLED;
1770#endif
1771
1772	for_each_eth_queue(bp, i) {
1773		struct bnx2x_fastpath *fp = &bp->fp[i];
1774
1775		mask = 0x2 << (fp->index + CNIC_PRESENT);
1776		if (status & mask) {
1777			/* Handle Rx or Tx according to SB id */
1778			prefetch(fp->rx_cons_sb);
1779			for_each_cos_in_tx_queue(fp, cos)
1780				prefetch(fp->txdata[cos].tx_cons_sb);
1781			prefetch(&fp->sb_running_index[SM_RX_ID]);
1782			napi_schedule(&bnx2x_fp(bp, fp->index, napi));
1783			status &= ~mask;
1784		}
1785	}
1786
1787#ifdef BCM_CNIC
1788	mask = 0x2;
1789	if (status & (mask | 0x1)) {
1790		struct cnic_ops *c_ops = NULL;
1791
1792		if (likely(bp->state == BNX2X_STATE_OPEN)) {
1793			rcu_read_lock();
1794			c_ops = rcu_dereference(bp->cnic_ops);
1795			if (c_ops)
1796				c_ops->cnic_handler(bp->cnic_data, NULL);
1797			rcu_read_unlock();
1798		}
1799
1800		status &= ~mask;
1801	}
1802#endif
1803
1804	if (unlikely(status & 0x1)) {
1805		queue_delayed_work(bnx2x_wq, &bp->sp_task, 0);
1806
1807		status &= ~0x1;
1808		if (!status)
1809			return IRQ_HANDLED;
1810	}
1811
1812	if (unlikely(status))
1813		DP(NETIF_MSG_INTR, "got an unknown interrupt! (status 0x%x)\n",
1814		   status);
1815
1816	return IRQ_HANDLED;
1817}
1818
1819/* Link */
1820
1821/*
1822 * General service functions
1823 */
1824
1825int bnx2x_acquire_hw_lock(struct bnx2x *bp, u32 resource)
1826{
1827	u32 lock_status;
1828	u32 resource_bit = (1 << resource);
1829	int func = BP_FUNC(bp);
1830	u32 hw_lock_control_reg;
1831	int cnt;
1832
1833	/* Validating that the resource is within range */
1834	if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1835		DP(NETIF_MSG_HW,
1836		   "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1837		   resource, HW_LOCK_MAX_RESOURCE_VALUE);
1838		return -EINVAL;
1839	}
1840
1841	if (func <= 5) {
1842		hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1843	} else {
1844		hw_lock_control_reg =
1845				(MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1846	}
1847
1848	/* Validating that the resource is not already taken */
1849	lock_status = REG_RD(bp, hw_lock_control_reg);
1850	if (lock_status & resource_bit) {
1851		DP(NETIF_MSG_HW, "lock_status 0x%x  resource_bit 0x%x\n",
1852		   lock_status, resource_bit);
1853		return -EEXIST;
1854	}
1855
1856	/* Try for 5 second every 5ms */
1857	for (cnt = 0; cnt < 1000; cnt++) {
1858		/* Try to acquire the lock */
1859		REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
1860		lock_status = REG_RD(bp, hw_lock_control_reg);
1861		if (lock_status & resource_bit)
1862			return 0;
1863
1864		msleep(5);
1865	}
1866	DP(NETIF_MSG_HW, "Timeout\n");
1867	return -EAGAIN;
1868}
1869
1870int bnx2x_release_leader_lock(struct bnx2x *bp)
1871{
1872	return bnx2x_release_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
1873}
1874
1875int bnx2x_release_hw_lock(struct bnx2x *bp, u32 resource)
1876{
1877	u32 lock_status;
1878	u32 resource_bit = (1 << resource);
1879	int func = BP_FUNC(bp);
1880	u32 hw_lock_control_reg;
1881
1882	DP(NETIF_MSG_HW, "Releasing a lock on resource %d\n", resource);
1883
1884	/* Validating that the resource is within range */
1885	if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1886		DP(NETIF_MSG_HW,
1887		   "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1888		   resource, HW_LOCK_MAX_RESOURCE_VALUE);
1889		return -EINVAL;
1890	}
1891
1892	if (func <= 5) {
1893		hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1894	} else {
1895		hw_lock_control_reg =
1896				(MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1897	}
1898
1899	/* Validating that the resource is currently taken */
1900	lock_status = REG_RD(bp, hw_lock_control_reg);
1901	if (!(lock_status & resource_bit)) {
1902		DP(NETIF_MSG_HW, "lock_status 0x%x  resource_bit 0x%x\n",
1903		   lock_status, resource_bit);
1904		return -EFAULT;
1905	}
1906
1907	REG_WR(bp, hw_lock_control_reg, resource_bit);
1908	return 0;
1909}
1910
1911
1912int bnx2x_get_gpio(struct bnx2x *bp, int gpio_num, u8 port)
1913{
1914	/* The GPIO should be swapped if swap register is set and active */
1915	int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
1916			 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
1917	int gpio_shift = gpio_num +
1918			(gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
1919	u32 gpio_mask = (1 << gpio_shift);
1920	u32 gpio_reg;
1921	int value;
1922
1923	if (gpio_num > MISC_REGISTERS_GPIO_3) {
1924		BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
1925		return -EINVAL;
1926	}
1927
1928	/* read GPIO value */
1929	gpio_reg = REG_RD(bp, MISC_REG_GPIO);
1930
1931	/* get the requested pin value */
1932	if ((gpio_reg & gpio_mask) == gpio_mask)
1933		value = 1;
1934	else
1935		value = 0;
1936
1937	DP(NETIF_MSG_LINK, "pin %d  value 0x%x\n", gpio_num, value);
1938
1939	return value;
1940}
1941
1942int bnx2x_set_gpio(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
1943{
1944	/* The GPIO should be swapped if swap register is set and active */
1945	int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
1946			 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
1947	int gpio_shift = gpio_num +
1948			(gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
1949	u32 gpio_mask = (1 << gpio_shift);
1950	u32 gpio_reg;
1951
1952	if (gpio_num > MISC_REGISTERS_GPIO_3) {
1953		BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
1954		return -EINVAL;
1955	}
1956
1957	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
1958	/* read GPIO and mask except the float bits */
1959	gpio_reg = (REG_RD(bp, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT);
1960
1961	switch (mode) {
1962	case MISC_REGISTERS_GPIO_OUTPUT_LOW:
1963		DP(NETIF_MSG_LINK, "Set GPIO %d (shift %d) -> output low\n",
1964		   gpio_num, gpio_shift);
1965		/* clear FLOAT and set CLR */
1966		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
1967		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS);
1968		break;
1969
1970	case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
1971		DP(NETIF_MSG_LINK, "Set GPIO %d (shift %d) -> output high\n",
1972		   gpio_num, gpio_shift);
1973		/* clear FLOAT and set SET */
1974		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
1975		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_SET_POS);
1976		break;
1977
1978	case MISC_REGISTERS_GPIO_INPUT_HI_Z:
1979		DP(NETIF_MSG_LINK, "Set GPIO %d (shift %d) -> input\n",
1980		   gpio_num, gpio_shift);
1981		/* set FLOAT */
1982		gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
1983		break;
1984
1985	default:
1986		break;
1987	}
1988
1989	REG_WR(bp, MISC_REG_GPIO, gpio_reg);
1990	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
1991
1992	return 0;
1993}
1994
1995int bnx2x_set_mult_gpio(struct bnx2x *bp, u8 pins, u32 mode)
1996{
1997	u32 gpio_reg = 0;
1998	int rc = 0;
1999
2000	/* Any port swapping should be handled by caller. */
2001
2002	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2003	/* read GPIO and mask except the float bits */
2004	gpio_reg = REG_RD(bp, MISC_REG_GPIO);
2005	gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2006	gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS);
2007	gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS);
2008
2009	switch (mode) {
2010	case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2011		DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output low\n", pins);
2012		/* set CLR */
2013		gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS);
2014		break;
2015
2016	case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2017		DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output high\n", pins);
2018		/* set SET */
2019		gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS);
2020		break;
2021
2022	case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2023		DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> input\n", pins);
2024		/* set FLOAT */
2025		gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2026		break;
2027
2028	default:
2029		BNX2X_ERR("Invalid GPIO mode assignment %d\n", mode);
2030		rc = -EINVAL;
2031		break;
2032	}
2033
2034	if (rc == 0)
2035		REG_WR(bp, MISC_REG_GPIO, gpio_reg);
2036
2037	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2038
2039	return rc;
2040}
2041
2042int bnx2x_set_gpio_int(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
2043{
2044	/* The GPIO should be swapped if swap register is set and active */
2045	int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2046			 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2047	int gpio_shift = gpio_num +
2048			(gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2049	u32 gpio_mask = (1 << gpio_shift);
2050	u32 gpio_reg;
2051
2052	if (gpio_num > MISC_REGISTERS_GPIO_3) {
2053		BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2054		return -EINVAL;
2055	}
2056
2057	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2058	/* read GPIO int */
2059	gpio_reg = REG_RD(bp, MISC_REG_GPIO_INT);
2060
2061	switch (mode) {
2062	case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR:
2063		DP(NETIF_MSG_LINK, "Clear GPIO INT %d (shift %d) -> "
2064				   "output low\n", gpio_num, gpio_shift);
2065		/* clear SET and set CLR */
2066		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2067		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2068		break;
2069
2070	case MISC_REGISTERS_GPIO_INT_OUTPUT_SET:
2071		DP(NETIF_MSG_LINK, "Set GPIO INT %d (shift %d) -> "
2072				   "output high\n", gpio_num, gpio_shift);
2073		/* clear CLR and set SET */
2074		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2075		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2076		break;
2077
2078	default:
2079		break;
2080	}
2081
2082	REG_WR(bp, MISC_REG_GPIO_INT, gpio_reg);
2083	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2084
2085	return 0;
2086}
2087
2088static int bnx2x_set_spio(struct bnx2x *bp, int spio_num, u32 mode)
2089{
2090	u32 spio_mask = (1 << spio_num);
2091	u32 spio_reg;
2092
2093	if ((spio_num < MISC_REGISTERS_SPIO_4) ||
2094	    (spio_num > MISC_REGISTERS_SPIO_7)) {
2095		BNX2X_ERR("Invalid SPIO %d\n", spio_num);
2096		return -EINVAL;
2097	}
2098
2099	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2100	/* read SPIO and mask except the float bits */
2101	spio_reg = (REG_RD(bp, MISC_REG_SPIO) & MISC_REGISTERS_SPIO_FLOAT);
2102
2103	switch (mode) {
2104	case MISC_REGISTERS_SPIO_OUTPUT_LOW:
2105		DP(NETIF_MSG_LINK, "Set SPIO %d -> output low\n", spio_num);
2106		/* clear FLOAT and set CLR */
2107		spio_reg &= ~(spio_mask << MISC_REGISTERS_SPIO_FLOAT_POS);
2108		spio_reg |=  (spio_mask << MISC_REGISTERS_SPIO_CLR_POS);
2109		break;
2110
2111	case MISC_REGISTERS_SPIO_OUTPUT_HIGH:
2112		DP(NETIF_MSG_LINK, "Set SPIO %d -> output high\n", spio_num);
2113		/* clear FLOAT and set SET */
2114		spio_reg &= ~(spio_mask << MISC_REGISTERS_SPIO_FLOAT_POS);
2115		spio_reg |=  (spio_mask << MISC_REGISTERS_SPIO_SET_POS);
2116		break;
2117
2118	case MISC_REGISTERS_SPIO_INPUT_HI_Z:
2119		DP(NETIF_MSG_LINK, "Set SPIO %d -> input\n", spio_num);
2120		/* set FLOAT */
2121		spio_reg |= (spio_mask << MISC_REGISTERS_SPIO_FLOAT_POS);
2122		break;
2123
2124	default:
2125		break;
2126	}
2127
2128	REG_WR(bp, MISC_REG_SPIO, spio_reg);
2129	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2130
2131	return 0;
2132}
2133
2134void bnx2x_calc_fc_adv(struct bnx2x *bp)
2135{
2136	u8 cfg_idx = bnx2x_get_link_cfg_idx(bp);
2137	switch (bp->link_vars.ieee_fc &
2138		MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) {
2139	case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_NONE:
2140		bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
2141						   ADVERTISED_Pause);
2142		break;
2143
2144	case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH:
2145		bp->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause |
2146						  ADVERTISED_Pause);
2147		break;
2148
2149	case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC:
2150		bp->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause;
2151		break;
2152
2153	default:
2154		bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
2155						   ADVERTISED_Pause);
2156		break;
2157	}
2158}
2159
2160u8 bnx2x_initial_phy_init(struct bnx2x *bp, int load_mode)
2161{
2162	if (!BP_NOMCP(bp)) {
2163		u8 rc;
2164		int cfx_idx = bnx2x_get_link_cfg_idx(bp);
2165		u16 req_line_speed = bp->link_params.req_line_speed[cfx_idx];
2166		/*
2167		 * Initialize link parameters structure variables
2168		 * It is recommended to turn off RX FC for jumbo frames
2169		 * for better performance
2170		 */
2171		if (CHIP_IS_E1x(bp) && (bp->dev->mtu > 5000))
2172			bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_TX;
2173		else
2174			bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_BOTH;
2175
2176		bnx2x_acquire_phy_lock(bp);
2177
2178		if (load_mode == LOAD_DIAG) {
2179			struct link_params *lp = &bp->link_params;
2180			lp->loopback_mode = LOOPBACK_XGXS;
2181			/* do PHY loopback at 10G speed, if possible */
2182			if (lp->req_line_speed[cfx_idx] < SPEED_10000) {
2183				if (lp->speed_cap_mask[cfx_idx] &
2184				    PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)
2185					lp->req_line_speed[cfx_idx] =
2186					SPEED_10000;
2187				else
2188					lp->req_line_speed[cfx_idx] =
2189					SPEED_1000;
2190			}
2191		}
2192
2193		rc = bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2194
2195		bnx2x_release_phy_lock(bp);
2196
2197		bnx2x_calc_fc_adv(bp);
2198
2199		if (CHIP_REV_IS_SLOW(bp) && bp->link_vars.link_up) {
2200			bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2201			bnx2x_link_report(bp);
2202		} else
2203			queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2204		bp->link_params.req_line_speed[cfx_idx] = req_line_speed;
2205		return rc;
2206	}
2207	BNX2X_ERR("Bootcode is missing - can not initialize link\n");
2208	return -EINVAL;
2209}
2210
2211void bnx2x_link_set(struct bnx2x *bp)
2212{
2213	if (!BP_NOMCP(bp)) {
2214		bnx2x_acquire_phy_lock(bp);
2215		bnx2x_link_reset(&bp->link_params, &bp->link_vars, 1);
2216		bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2217		bnx2x_release_phy_lock(bp);
2218
2219		bnx2x_calc_fc_adv(bp);
2220	} else
2221		BNX2X_ERR("Bootcode is missing - can not set link\n");
2222}
2223
2224static void bnx2x__link_reset(struct bnx2x *bp)
2225{
2226	if (!BP_NOMCP(bp)) {
2227		bnx2x_acquire_phy_lock(bp);
2228		bnx2x_link_reset(&bp->link_params, &bp->link_vars, 1);
2229		bnx2x_release_phy_lock(bp);
2230	} else
2231		BNX2X_ERR("Bootcode is missing - can not reset link\n");
2232}
2233
2234u8 bnx2x_link_test(struct bnx2x *bp, u8 is_serdes)
2235{
2236	u8 rc = 0;
2237
2238	if (!BP_NOMCP(bp)) {
2239		bnx2x_acquire_phy_lock(bp);
2240		rc = bnx2x_test_link(&bp->link_params, &bp->link_vars,
2241				     is_serdes);
2242		bnx2x_release_phy_lock(bp);
2243	} else
2244		BNX2X_ERR("Bootcode is missing - can not test link\n");
2245
2246	return rc;
2247}
2248
2249static void bnx2x_init_port_minmax(struct bnx2x *bp)
2250{
2251	u32 r_param = bp->link_vars.line_speed / 8;
2252	u32 fair_periodic_timeout_usec;
2253	u32 t_fair;
2254
2255	memset(&(bp->cmng.rs_vars), 0,
2256	       sizeof(struct rate_shaping_vars_per_port));
2257	memset(&(bp->cmng.fair_vars), 0, sizeof(struct fairness_vars_per_port));
2258
2259	/* 100 usec in SDM ticks = 25 since each tick is 4 usec */
2260	bp->cmng.rs_vars.rs_periodic_timeout = RS_PERIODIC_TIMEOUT_USEC / 4;
2261
2262	/* this is the threshold below which no timer arming will occur
2263	   1.25 coefficient is for the threshold to be a little bigger
2264	   than the real time, to compensate for timer in-accuracy */
2265	bp->cmng.rs_vars.rs_threshold =
2266				(RS_PERIODIC_TIMEOUT_USEC * r_param * 5) / 4;
2267
2268	/* resolution of fairness timer */
2269	fair_periodic_timeout_usec = QM_ARB_BYTES / r_param;
2270	/* for 10G it is 1000usec. for 1G it is 10000usec. */
2271	t_fair = T_FAIR_COEF / bp->link_vars.line_speed;
2272
2273	/* this is the threshold below which we won't arm the timer anymore */
2274	bp->cmng.fair_vars.fair_threshold = QM_ARB_BYTES;
2275
2276	/* we multiply by 1e3/8 to get bytes/msec.
2277	   We don't want the credits to pass a credit
2278	   of the t_fair*FAIR_MEM (algorithm resolution) */
2279	bp->cmng.fair_vars.upper_bound = r_param * t_fair * FAIR_MEM;
2280	/* since each tick is 4 usec */
2281	bp->cmng.fair_vars.fairness_timeout = fair_periodic_timeout_usec / 4;
2282}
2283
2284/* Calculates the sum of vn_min_rates.
2285   It's needed for further normalizing of the min_rates.
2286   Returns:
2287     sum of vn_min_rates.
2288       or
2289     0 - if all the min_rates are 0.
2290     In the later case fainess algorithm should be deactivated.
2291     If not all min_rates are zero then those that are zeroes will be set to 1.
2292 */
2293static void bnx2x_calc_vn_weight_sum(struct bnx2x *bp)
2294{
2295	int all_zero = 1;
2296	int vn;
2297
2298	bp->vn_weight_sum = 0;
2299	for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2300		u32 vn_cfg = bp->mf_config[vn];
2301		u32 vn_min_rate = ((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
2302				   FUNC_MF_CFG_MIN_BW_SHIFT) * 100;
2303
2304		/* Skip hidden vns */
2305		if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
2306			continue;
2307
2308		/* If min rate is zero - set it to 1 */
2309		if (!vn_min_rate)
2310			vn_min_rate = DEF_MIN_RATE;
2311		else
2312			all_zero = 0;
2313
2314		bp->vn_weight_sum += vn_min_rate;
2315	}
2316
2317	/* if ETS or all min rates are zeros - disable fairness */
2318	if (BNX2X_IS_ETS_ENABLED(bp)) {
2319		bp->cmng.flags.cmng_enables &=
2320					~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2321		DP(NETIF_MSG_IFUP, "Fairness will be disabled due to ETS\n");
2322	} else if (all_zero) {
2323		bp->cmng.flags.cmng_enables &=
2324					~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2325		DP(NETIF_MSG_IFUP, "All MIN values are zeroes"
2326		   "  fairness will be disabled\n");
2327	} else
2328		bp->cmng.flags.cmng_enables |=
2329					CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2330}
2331
2332static void bnx2x_init_vn_minmax(struct bnx2x *bp, int vn)
2333{
2334	struct rate_shaping_vars_per_vn m_rs_vn;
2335	struct fairness_vars_per_vn m_fair_vn;
2336	u32 vn_cfg = bp->mf_config[vn];
2337	int func = func_by_vn(bp, vn);
2338	u16 vn_min_rate, vn_max_rate;
2339	int i;
2340
2341	/* If function is hidden - set min and max to zeroes */
2342	if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) {
2343		vn_min_rate = 0;
2344		vn_max_rate = 0;
2345
2346	} else {
2347		u32 maxCfg = bnx2x_extract_max_cfg(bp, vn_cfg);
2348
2349		vn_min_rate = ((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
2350				FUNC_MF_CFG_MIN_BW_SHIFT) * 100;
2351		/* If fairness is enabled (not all min rates are zeroes) and
2352		   if current min rate is zero - set it to 1.
2353		   This is a requirement of the algorithm. */
2354		if (bp->vn_weight_sum && (vn_min_rate == 0))
2355			vn_min_rate = DEF_MIN_RATE;
2356
2357		if (IS_MF_SI(bp))
2358			/* maxCfg in percents of linkspeed */
2359			vn_max_rate = (bp->link_vars.line_speed * maxCfg) / 100;
2360		else
2361			/* maxCfg is absolute in 100Mb units */
2362			vn_max_rate = maxCfg * 100;
2363	}
2364
2365	DP(NETIF_MSG_IFUP,
2366	   "func %d: vn_min_rate %d  vn_max_rate %d  vn_weight_sum %d\n",
2367	   func, vn_min_rate, vn_max_rate, bp->vn_weight_sum);
2368
2369	memset(&m_rs_vn, 0, sizeof(struct rate_shaping_vars_per_vn));
2370	memset(&m_fair_vn, 0, sizeof(struct fairness_vars_per_vn));
2371
2372	/* global vn counter - maximal Mbps for this vn */
2373	m_rs_vn.vn_counter.rate = vn_max_rate;
2374
2375	/* quota - number of bytes transmitted in this period */
2376	m_rs_vn.vn_counter.quota =
2377				(vn_max_rate * RS_PERIODIC_TIMEOUT_USEC) / 8;
2378
2379	if (bp->vn_weight_sum) {
2380		/* credit for each period of the fairness algorithm:
2381		   number of bytes in T_FAIR (the vn share the port rate).
2382		   vn_weight_sum should not be larger than 10000, thus
2383		   T_FAIR_COEF / (8 * vn_weight_sum) will always be greater
2384		   than zero */
2385		m_fair_vn.vn_credit_delta =
2386			max_t(u32, (vn_min_rate * (T_FAIR_COEF /
2387						   (8 * bp->vn_weight_sum))),
2388			      (bp->cmng.fair_vars.fair_threshold +
2389							MIN_ABOVE_THRESH));
2390		DP(NETIF_MSG_IFUP, "m_fair_vn.vn_credit_delta %d\n",
2391		   m_fair_vn.vn_credit_delta);
2392	}
2393
2394	/* Store it to internal memory */
2395	for (i = 0; i < sizeof(struct rate_shaping_vars_per_vn)/4; i++)
2396		REG_WR(bp, BAR_XSTRORM_INTMEM +
2397		       XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func) + i * 4,
2398		       ((u32 *)(&m_rs_vn))[i]);
2399
2400	for (i = 0; i < sizeof(struct fairness_vars_per_vn)/4; i++)
2401		REG_WR(bp, BAR_XSTRORM_INTMEM +
2402		       XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func) + i * 4,
2403		       ((u32 *)(&m_fair_vn))[i]);
2404}
2405
2406static int bnx2x_get_cmng_fns_mode(struct bnx2x *bp)
2407{
2408	if (CHIP_REV_IS_SLOW(bp))
2409		return CMNG_FNS_NONE;
2410	if (IS_MF(bp))
2411		return CMNG_FNS_MINMAX;
2412
2413	return CMNG_FNS_NONE;
2414}
2415
2416void bnx2x_read_mf_cfg(struct bnx2x *bp)
2417{
2418	int vn, n = (CHIP_MODE_IS_4_PORT(bp) ? 2 : 1);
2419
2420	if (BP_NOMCP(bp))
2421		return; /* what should be the default bvalue in this case */
2422
2423	/* For 2 port configuration the absolute function number formula
2424	 * is:
2425	 *      abs_func = 2 * vn + BP_PORT + BP_PATH
2426	 *
2427	 *      and there are 4 functions per port
2428	 *
2429	 * For 4 port configuration it is
2430	 *      abs_func = 4 * vn + 2 * BP_PORT + BP_PATH
2431	 *
2432	 *      and there are 2 functions per port
2433	 */
2434	for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2435		int /*abs*/func = n * (2 * vn + BP_PORT(bp)) + BP_PATH(bp);
2436
2437		if (func >= E1H_FUNC_MAX)
2438			break;
2439
2440		bp->mf_config[vn] =
2441			MF_CFG_RD(bp, func_mf_config[func].config);
2442	}
2443}
2444
2445static void bnx2x_cmng_fns_init(struct bnx2x *bp, u8 read_cfg, u8 cmng_type)
2446{
2447
2448	if (cmng_type == CMNG_FNS_MINMAX) {
2449		int vn;
2450
2451		/* clear cmng_enables */
2452		bp->cmng.flags.cmng_enables = 0;
2453
2454		/* read mf conf from shmem */
2455		if (read_cfg)
2456			bnx2x_read_mf_cfg(bp);
2457
2458		/* Init rate shaping and fairness contexts */
2459		bnx2x_init_port_minmax(bp);
2460
2461		/* vn_weight_sum and enable fairness if not 0 */
2462		bnx2x_calc_vn_weight_sum(bp);
2463
2464		/* calculate and set min-max rate for each vn */
2465		if (bp->port.pmf)
2466			for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++)
2467				bnx2x_init_vn_minmax(bp, vn);
2468
2469		/* always enable rate shaping and fairness */
2470		bp->cmng.flags.cmng_enables |=
2471					CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN;
2472		if (!bp->vn_weight_sum)
2473			DP(NETIF_MSG_IFUP, "All MIN values are zeroes"
2474				   "  fairness will be disabled\n");
2475		return;
2476	}
2477
2478	/* rate shaping and fairness are disabled */
2479	DP(NETIF_MSG_IFUP,
2480	   "rate shaping and fairness are disabled\n");
2481}
2482
2483/* This function is called upon link interrupt */
2484static void bnx2x_link_attn(struct bnx2x *bp)
2485{
2486	/* Make sure that we are synced with the current statistics */
2487	bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2488
2489	bnx2x_link_update(&bp->link_params, &bp->link_vars);
2490
2491	if (bp->link_vars.link_up) {
2492
2493		/* dropless flow control */
2494		if (!CHIP_IS_E1(bp) && bp->dropless_fc) {
2495			int port = BP_PORT(bp);
2496			u32 pause_enabled = 0;
2497
2498			if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_TX)
2499				pause_enabled = 1;
2500
2501			REG_WR(bp, BAR_USTRORM_INTMEM +
2502			       USTORM_ETH_PAUSE_ENABLED_OFFSET(port),
2503			       pause_enabled);
2504		}
2505
2506		if (bp->link_vars.mac_type != MAC_TYPE_EMAC) {
2507			struct host_port_stats *pstats;
2508
2509			pstats = bnx2x_sp(bp, port_stats);
2510			/* reset old mac stats */
2511			memset(&(pstats->mac_stx[0]), 0,
2512			       sizeof(struct mac_stx));
2513		}
2514		if (bp->state == BNX2X_STATE_OPEN)
2515			bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2516	}
2517
2518	if (bp->link_vars.link_up && bp->link_vars.line_speed) {
2519		int cmng_fns = bnx2x_get_cmng_fns_mode(bp);
2520
2521		if (cmng_fns != CMNG_FNS_NONE) {
2522			bnx2x_cmng_fns_init(bp, false, cmng_fns);
2523			storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
2524		} else
2525			/* rate shaping and fairness are disabled */
2526			DP(NETIF_MSG_IFUP,
2527			   "single function mode without fairness\n");
2528	}
2529
2530	__bnx2x_link_report(bp);
2531
2532	if (IS_MF(bp))
2533		bnx2x_link_sync_notify(bp);
2534}
2535
2536void bnx2x__link_status_update(struct bnx2x *bp)
2537{
2538	if (bp->state != BNX2X_STATE_OPEN)
2539		return;
2540
2541	/* read updated dcb configuration */
2542	bnx2x_dcbx_pmf_update(bp);
2543
2544	bnx2x_link_status_update(&bp->link_params, &bp->link_vars);
2545
2546	if (bp->link_vars.link_up)
2547		bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2548	else
2549		bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2550
2551	/* indicate link status */
2552	bnx2x_link_report(bp);
2553}
2554
2555static void bnx2x_pmf_update(struct bnx2x *bp)
2556{
2557	int port = BP_PORT(bp);
2558	u32 val;
2559
2560	bp->port.pmf = 1;
2561	DP(NETIF_MSG_LINK, "pmf %d\n", bp->port.pmf);
2562
2563	/*
2564	 * We need the mb() to ensure the ordering between the writing to
2565	 * bp->port.pmf here and reading it from the bnx2x_periodic_task().
2566	 */
2567	smp_mb();
2568
2569	/* queue a periodic task */
2570	queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2571
2572	bnx2x_dcbx_pmf_update(bp);
2573
2574	/* enable nig attention */
2575	val = (0xff0f | (1 << (BP_VN(bp) + 4)));
2576	if (bp->common.int_block == INT_BLOCK_HC) {
2577		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
2578		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
2579	} else if (!CHIP_IS_E1x(bp)) {
2580		REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
2581		REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
2582	}
2583
2584	bnx2x_stats_handle(bp, STATS_EVENT_PMF);
2585}
2586
2587/* end of Link */
2588
2589/* slow path */
2590
2591/*
2592 * General service functions
2593 */
2594
2595/* send the MCP a request, block until there is a reply */
2596u32 bnx2x_fw_command(struct bnx2x *bp, u32 command, u32 param)
2597{
2598	int mb_idx = BP_FW_MB_IDX(bp);
2599	u32 seq;
2600	u32 rc = 0;
2601	u32 cnt = 1;
2602	u8 delay = CHIP_REV_IS_SLOW(bp) ? 100 : 10;
2603
2604	mutex_lock(&bp->fw_mb_mutex);
2605	seq = ++bp->fw_seq;
2606	SHMEM_WR(bp, func_mb[mb_idx].drv_mb_param, param);
2607	SHMEM_WR(bp, func_mb[mb_idx].drv_mb_header, (command | seq));
2608
2609	DP(BNX2X_MSG_MCP, "wrote command (%x) to FW MB param 0x%08x\n",
2610			(command | seq), param);
2611
2612	do {
2613		/* let the FW do it's magic ... */
2614		msleep(delay);
2615
2616		rc = SHMEM_RD(bp, func_mb[mb_idx].fw_mb_header);
2617
2618		/* Give the FW up to 5 second (500*10ms) */
2619	} while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500));
2620
2621	DP(BNX2X_MSG_MCP, "[after %d ms] read (%x) seq is (%x) from FW MB\n",
2622	   cnt*delay, rc, seq);
2623
2624	/* is this a reply to our command? */
2625	if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK))
2626		rc &= FW_MSG_CODE_MASK;
2627	else {
2628		/* FW BUG! */
2629		BNX2X_ERR("FW failed to respond!\n");
2630		bnx2x_fw_dump(bp);
2631		rc = 0;
2632	}
2633	mutex_unlock(&bp->fw_mb_mutex);
2634
2635	return rc;
2636}
2637
2638
2639void bnx2x_func_init(struct bnx2x *bp, struct bnx2x_func_init_params *p)
2640{
2641	if (CHIP_IS_E1x(bp)) {
2642		struct tstorm_eth_function_common_config tcfg = {0};
2643
2644		storm_memset_func_cfg(bp, &tcfg, p->func_id);
2645	}
2646
2647	/* Enable the function in the FW */
2648	storm_memset_vf_to_pf(bp, p->func_id, p->pf_id);
2649	storm_memset_func_en(bp, p->func_id, 1);
2650
2651	/* spq */
2652	if (p->func_flgs & FUNC_FLG_SPQ) {
2653		storm_memset_spq_addr(bp, p->spq_map, p->func_id);
2654		REG_WR(bp, XSEM_REG_FAST_MEMORY +
2655		       XSTORM_SPQ_PROD_OFFSET(p->func_id), p->spq_prod);
2656	}
2657}
2658
2659/**
2660 * bnx2x_get_tx_only_flags - Return common flags
2661 *
2662 * @bp		device handle
2663 * @fp		queue handle
2664 * @zero_stats	TRUE if statistics zeroing is needed
2665 *
2666 * Return the flags that are common for the Tx-only and not normal connections.
2667 */
2668static inline unsigned long bnx2x_get_common_flags(struct bnx2x *bp,
2669						   struct bnx2x_fastpath *fp,
2670						   bool zero_stats)
2671{
2672	unsigned long flags = 0;
2673
2674	/* PF driver will always initialize the Queue to an ACTIVE state */
2675	__set_bit(BNX2X_Q_FLG_ACTIVE, &flags);
2676
2677	/* tx only connections collect statistics (on the same index as the
2678	 *  parent connection). The statistics are zeroed when the parent
2679	 *  connection is initialized.
2680	 */
2681
2682	__set_bit(BNX2X_Q_FLG_STATS, &flags);
2683	if (zero_stats)
2684		__set_bit(BNX2X_Q_FLG_ZERO_STATS, &flags);
2685
2686
2687	return flags;
2688}
2689
2690static inline unsigned long bnx2x_get_q_flags(struct bnx2x *bp,
2691					      struct bnx2x_fastpath *fp,
2692					      bool leading)
2693{
2694	unsigned long flags = 0;
2695
2696	/* calculate other queue flags */
2697	if (IS_MF_SD(bp))
2698		__set_bit(BNX2X_Q_FLG_OV, &flags);
2699
2700	if (IS_FCOE_FP(fp))
2701		__set_bit(BNX2X_Q_FLG_FCOE, &flags);
2702
2703	if (!fp->disable_tpa) {
2704		__set_bit(BNX2X_Q_FLG_TPA, &flags);
2705		__set_bit(BNX2X_Q_FLG_TPA_IPV6, &flags);
2706	}
2707
2708	if (leading) {
2709		__set_bit(BNX2X_Q_FLG_LEADING_RSS, &flags);
2710		__set_bit(BNX2X_Q_FLG_MCAST, &flags);
2711	}
2712
2713	/* Always set HW VLAN stripping */
2714	__set_bit(BNX2X_Q_FLG_VLAN, &flags);
2715
2716
2717	return flags | bnx2x_get_common_flags(bp, fp, true);
2718}
2719
2720static void bnx2x_pf_q_prep_general(struct bnx2x *bp,
2721	struct bnx2x_fastpath *fp, struct bnx2x_general_setup_params *gen_init,
2722	u8 cos)
2723{
2724	gen_init->stat_id = bnx2x_stats_id(fp);
2725	gen_init->spcl_id = fp->cl_id;
2726
2727	/* Always use mini-jumbo MTU for FCoE L2 ring */
2728	if (IS_FCOE_FP(fp))
2729		gen_init->mtu = BNX2X_FCOE_MINI_JUMBO_MTU;
2730	else
2731		gen_init->mtu = bp->dev->mtu;
2732
2733	gen_init->cos = cos;
2734}
2735
2736static void bnx2x_pf_rx_q_prep(struct bnx2x *bp,
2737	struct bnx2x_fastpath *fp, struct rxq_pause_params *pause,
2738	struct bnx2x_rxq_setup_params *rxq_init)
2739{
2740	u8 max_sge = 0;
2741	u16 sge_sz = 0;
2742	u16 tpa_agg_size = 0;
2743
2744	if (!fp->disable_tpa) {
2745		pause->sge_th_lo = SGE_TH_LO(bp);
2746		pause->sge_th_hi = SGE_TH_HI(bp);
2747
2748		/* validate SGE ring has enough to cross high threshold */
2749		WARN_ON(bp->dropless_fc &&
2750				pause->sge_th_hi + FW_PREFETCH_CNT >
2751				MAX_RX_SGE_CNT * NUM_RX_SGE_PAGES);
2752
2753		tpa_agg_size = min_t(u32,
2754			(min_t(u32, 8, MAX_SKB_FRAGS) *
2755			SGE_PAGE_SIZE * PAGES_PER_SGE), 0xffff);
2756		max_sge = SGE_PAGE_ALIGN(bp->dev->mtu) >>
2757			SGE_PAGE_SHIFT;
2758		max_sge = ((max_sge + PAGES_PER_SGE - 1) &
2759			  (~(PAGES_PER_SGE-1))) >> PAGES_PER_SGE_SHIFT;
2760		sge_sz = (u16)min_t(u32, SGE_PAGE_SIZE * PAGES_PER_SGE,
2761				    0xffff);
2762	}
2763
2764	/* pause - not for e1 */
2765	if (!CHIP_IS_E1(bp)) {
2766		pause->bd_th_lo = BD_TH_LO(bp);
2767		pause->bd_th_hi = BD_TH_HI(bp);
2768
2769		pause->rcq_th_lo = RCQ_TH_LO(bp);
2770		pause->rcq_th_hi = RCQ_TH_HI(bp);
2771		/*
2772		 * validate that rings have enough entries to cross
2773		 * high thresholds
2774		 */
2775		WARN_ON(bp->dropless_fc &&
2776				pause->bd_th_hi + FW_PREFETCH_CNT >
2777				bp->rx_ring_size);
2778		WARN_ON(bp->dropless_fc &&
2779				pause->rcq_th_hi + FW_PREFETCH_CNT >
2780				NUM_RCQ_RINGS * MAX_RCQ_DESC_CNT);
2781
2782		pause->pri_map = 1;
2783	}
2784
2785	/* rxq setup */
2786	rxq_init->dscr_map = fp->rx_desc_mapping;
2787	rxq_init->sge_map = fp->rx_sge_mapping;
2788	rxq_init->rcq_map = fp->rx_comp_mapping;
2789	rxq_init->rcq_np_map = fp->rx_comp_mapping + BCM_PAGE_SIZE;
2790
2791	/* This should be a maximum number of data bytes that may be
2792	 * placed on the BD (not including paddings).
2793	 */
2794	rxq_init->buf_sz = fp->rx_buf_size - BNX2X_FW_RX_ALIGN_START -
2795		BNX2X_FW_RX_ALIGN_END -	IP_HEADER_ALIGNMENT_PADDING;
2796
2797	rxq_init->cl_qzone_id = fp->cl_qzone_id;
2798	rxq_init->tpa_agg_sz = tpa_agg_size;
2799	rxq_init->sge_buf_sz = sge_sz;
2800	rxq_init->max_sges_pkt = max_sge;
2801	rxq_init->rss_engine_id = BP_FUNC(bp);
2802
2803	/* Maximum number or simultaneous TPA aggregation for this Queue.
2804	 *
2805	 * For PF Clients it should be the maximum avaliable number.
2806	 * VF driver(s) may want to define it to a smaller value.
2807	 */
2808	rxq_init->max_tpa_queues = MAX_AGG_QS(bp);
2809
2810	rxq_init->cache_line_log = BNX2X_RX_ALIGN_SHIFT;
2811	rxq_init->fw_sb_id = fp->fw_sb_id;
2812
2813	if (IS_FCOE_FP(fp))
2814		rxq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS;
2815	else
2816		rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
2817}
2818
2819static void bnx2x_pf_tx_q_prep(struct bnx2x *bp,
2820	struct bnx2x_fastpath *fp, struct bnx2x_txq_setup_params *txq_init,
2821	u8 cos)
2822{
2823	txq_init->dscr_map = fp->txdata[cos].tx_desc_mapping;
2824	txq_init->sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos;
2825	txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW;
2826	txq_init->fw_sb_id = fp->fw_sb_id;
2827
2828	/*
2829	 * set the tss leading client id for TX classfication ==
2830	 * leading RSS client id
2831	 */
2832	txq_init->tss_leading_cl_id = bnx2x_fp(bp, 0, cl_id);
2833
2834	if (IS_FCOE_FP(fp)) {
2835		txq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_TX_CQ_CONS;
2836		txq_init->traffic_type = LLFC_TRAFFIC_TYPE_FCOE;
2837	}
2838}
2839
2840static void bnx2x_pf_init(struct bnx2x *bp)
2841{
2842	struct bnx2x_func_init_params func_init = {0};
2843	struct event_ring_data eq_data = { {0} };
2844	u16 flags;
2845
2846	if (!CHIP_IS_E1x(bp)) {
2847		/* reset IGU PF statistics: MSIX + ATTN */
2848		/* PF */
2849		REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
2850			   BNX2X_IGU_STAS_MSG_VF_CNT*4 +
2851			   (CHIP_MODE_IS_4_PORT(bp) ?
2852				BP_FUNC(bp) : BP_VN(bp))*4, 0);
2853		/* ATTN */
2854		REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
2855			   BNX2X_IGU_STAS_MSG_VF_CNT*4 +
2856			   BNX2X_IGU_STAS_MSG_PF_CNT*4 +
2857			   (CHIP_MODE_IS_4_PORT(bp) ?
2858				BP_FUNC(bp) : BP_VN(bp))*4, 0);
2859	}
2860
2861	/* function setup flags */
2862	flags = (FUNC_FLG_STATS | FUNC_FLG_LEADING | FUNC_FLG_SPQ);
2863
2864	/* This flag is relevant for E1x only.
2865	 * E2 doesn't have a TPA configuration in a function level.
2866	 */
2867	flags |= (bp->flags & TPA_ENABLE_FLAG) ? FUNC_FLG_TPA : 0;
2868
2869	func_init.func_flgs = flags;
2870	func_init.pf_id = BP_FUNC(bp);
2871	func_init.func_id = BP_FUNC(bp);
2872	func_init.spq_map = bp->spq_mapping;
2873	func_init.spq_prod = bp->spq_prod_idx;
2874
2875	bnx2x_func_init(bp, &func_init);
2876
2877	memset(&(bp->cmng), 0, sizeof(struct cmng_struct_per_port));
2878
2879	/*
2880	 * Congestion management values depend on the link rate
2881	 * There is no active link so initial link rate is set to 10 Gbps.
2882	 * When the link comes up The congestion management values are
2883	 * re-calculated according to the actual link rate.
2884	 */
2885	bp->link_vars.line_speed = SPEED_10000;
2886	bnx2x_cmng_fns_init(bp, true, bnx2x_get_cmng_fns_mode(bp));
2887
2888	/* Only the PMF sets the HW */
2889	if (bp->port.pmf)
2890		storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
2891
2892	/* init Event Queue */
2893	eq_data.base_addr.hi = U64_HI(bp->eq_mapping);
2894	eq_data.base_addr.lo = U64_LO(bp->eq_mapping);
2895	eq_data.producer = bp->eq_prod;
2896	eq_data.index_id = HC_SP_INDEX_EQ_CONS;
2897	eq_data.sb_id = DEF_SB_ID;
2898	storm_memset_eq_data(bp, &eq_data, BP_FUNC(bp));
2899}
2900
2901
2902static void bnx2x_e1h_disable(struct bnx2x *bp)
2903{
2904	int port = BP_PORT(bp);
2905
2906	bnx2x_tx_disable(bp);
2907
2908	REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
2909}
2910
2911static void bnx2x_e1h_enable(struct bnx2x *bp)
2912{
2913	int port = BP_PORT(bp);
2914
2915	REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 1);
2916
2917	/* Tx queue should be only reenabled */
2918	netif_tx_wake_all_queues(bp->dev);
2919
2920	/*
2921	 * Should not call netif_carrier_on since it will be called if the link
2922	 * is up when checking for link state
2923	 */
2924}
2925
2926#define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3
2927
2928static void bnx2x_drv_info_ether_stat(struct bnx2x *bp)
2929{
2930	struct eth_stats_info *ether_stat =
2931		&bp->slowpath->drv_info_to_mcp.ether_stat;
2932
2933	/* leave last char as NULL */
2934	memcpy(ether_stat->version, DRV_MODULE_VERSION,
2935	       ETH_STAT_INFO_VERSION_LEN - 1);
2936
2937	bp->fp[0].mac_obj.get_n_elements(bp, &bp->fp[0].mac_obj,
2938					 DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED,
2939					 ether_stat->mac_local);
2940
2941	ether_stat->mtu_size = bp->dev->mtu;
2942
2943	if (bp->dev->features & NETIF_F_RXCSUM)
2944		ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK;
2945	if (bp->dev->features & NETIF_F_TSO)
2946		ether_stat->feature_flags |= FEATURE_ETH_LSO_MASK;
2947	ether_stat->feature_flags |= bp->common.boot_mode;
2948
2949	ether_stat->promiscuous_mode = (bp->dev->flags & IFF_PROMISC) ? 1 : 0;
2950
2951	ether_stat->txq_size = bp->tx_ring_size;
2952	ether_stat->rxq_size = bp->rx_ring_size;
2953}
2954
2955static void bnx2x_drv_info_fcoe_stat(struct bnx2x *bp)
2956{
2957#ifdef BCM_CNIC
2958	struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
2959	struct fcoe_stats_info *fcoe_stat =
2960		&bp->slowpath->drv_info_to_mcp.fcoe_stat;
2961
2962	memcpy(fcoe_stat->mac_local, bp->fip_mac, ETH_ALEN);
2963
2964	fcoe_stat->qos_priority =
2965		app->traffic_type_priority[LLFC_TRAFFIC_TYPE_FCOE];
2966
2967	/* insert FCoE stats from ramrod response */
2968	if (!NO_FCOE(bp)) {
2969		struct tstorm_per_queue_stats *fcoe_q_tstorm_stats =
2970			&bp->fw_stats_data->queue_stats[FCOE_IDX].
2971			tstorm_queue_statistics;
2972
2973		struct xstorm_per_queue_stats *fcoe_q_xstorm_stats =
2974			&bp->fw_stats_data->queue_stats[FCOE_IDX].
2975			xstorm_queue_statistics;
2976
2977		struct fcoe_statistics_params *fw_fcoe_stat =
2978			&bp->fw_stats_data->fcoe;
2979
2980		ADD_64(fcoe_stat->rx_bytes_hi, 0, fcoe_stat->rx_bytes_lo,
2981		       fw_fcoe_stat->rx_stat0.fcoe_rx_byte_cnt);
2982
2983		ADD_64(fcoe_stat->rx_bytes_hi,
2984		       fcoe_q_tstorm_stats->rcv_ucast_bytes.hi,
2985		       fcoe_stat->rx_bytes_lo,
2986		       fcoe_q_tstorm_stats->rcv_ucast_bytes.lo);
2987
2988		ADD_64(fcoe_stat->rx_bytes_hi,
2989		       fcoe_q_tstorm_stats->rcv_bcast_bytes.hi,
2990		       fcoe_stat->rx_bytes_lo,
2991		       fcoe_q_tstorm_stats->rcv_bcast_bytes.lo);
2992
2993		ADD_64(fcoe_stat->rx_bytes_hi,
2994		       fcoe_q_tstorm_stats->rcv_mcast_bytes.hi,
2995		       fcoe_stat->rx_bytes_lo,
2996		       fcoe_q_tstorm_stats->rcv_mcast_bytes.lo);
2997
2998		ADD_64(fcoe_stat->rx_frames_hi, 0, fcoe_stat->rx_frames_lo,
2999		       fw_fcoe_stat->rx_stat0.fcoe_rx_pkt_cnt);
3000
3001		ADD_64(fcoe_stat->rx_frames_hi, 0, fcoe_stat->rx_frames_lo,
3002		       fcoe_q_tstorm_stats->rcv_ucast_pkts);
3003
3004		ADD_64(fcoe_stat->rx_frames_hi, 0, fcoe_stat->rx_frames_lo,
3005		       fcoe_q_tstorm_stats->rcv_bcast_pkts);
3006
3007		ADD_64(fcoe_stat->rx_frames_hi, 0, fcoe_stat->rx_frames_lo,
3008		       fcoe_q_tstorm_stats->rcv_mcast_pkts);
3009
3010		ADD_64(fcoe_stat->tx_bytes_hi, 0, fcoe_stat->tx_bytes_lo,
3011		       fw_fcoe_stat->tx_stat.fcoe_tx_byte_cnt);
3012
3013		ADD_64(fcoe_stat->tx_bytes_hi,
3014		       fcoe_q_xstorm_stats->ucast_bytes_sent.hi,
3015		       fcoe_stat->tx_bytes_lo,
3016		       fcoe_q_xstorm_stats->ucast_bytes_sent.lo);
3017
3018		ADD_64(fcoe_stat->tx_bytes_hi,
3019		       fcoe_q_xstorm_stats->bcast_bytes_sent.hi,
3020		       fcoe_stat->tx_bytes_lo,
3021		       fcoe_q_xstorm_stats->bcast_bytes_sent.lo);
3022
3023		ADD_64(fcoe_stat->tx_bytes_hi,
3024		       fcoe_q_xstorm_stats->mcast_bytes_sent.hi,
3025		       fcoe_stat->tx_bytes_lo,
3026		       fcoe_q_xstorm_stats->mcast_bytes_sent.lo);
3027
3028		ADD_64(fcoe_stat->tx_frames_hi, 0, fcoe_stat->tx_frames_lo,
3029		       fw_fcoe_stat->tx_stat.fcoe_tx_pkt_cnt);
3030
3031		ADD_64(fcoe_stat->tx_frames_hi, 0, fcoe_stat->tx_frames_lo,
3032		       fcoe_q_xstorm_stats->ucast_pkts_sent);
3033
3034		ADD_64(fcoe_stat->tx_frames_hi, 0, fcoe_stat->tx_frames_lo,
3035		       fcoe_q_xstorm_stats->bcast_pkts_sent);
3036
3037		ADD_64(fcoe_stat->tx_frames_hi, 0, fcoe_stat->tx_frames_lo,
3038		       fcoe_q_xstorm_stats->mcast_pkts_sent);
3039	}
3040
3041	/* ask L5 driver to add data to the struct */
3042	bnx2x_cnic_notify(bp, CNIC_CTL_FCOE_STATS_GET_CMD);
3043#endif
3044}
3045
3046static void bnx2x_drv_info_iscsi_stat(struct bnx2x *bp)
3047{
3048#ifdef BCM_CNIC
3049	struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
3050	struct iscsi_stats_info *iscsi_stat =
3051		&bp->slowpath->drv_info_to_mcp.iscsi_stat;
3052
3053	memcpy(iscsi_stat->mac_local, bp->cnic_eth_dev.iscsi_mac, ETH_ALEN);
3054
3055	iscsi_stat->qos_priority =
3056		app->traffic_type_priority[LLFC_TRAFFIC_TYPE_ISCSI];
3057
3058	/* ask L5 driver to add data to the struct */
3059	bnx2x_cnic_notify(bp, CNIC_CTL_ISCSI_STATS_GET_CMD);
3060#endif
3061}
3062
3063/* called due to MCP event (on pmf):
3064 *	reread new bandwidth configuration
3065 *	configure FW
3066 *	notify others function about the change
3067 */
3068static inline void bnx2x_config_mf_bw(struct bnx2x *bp)
3069{
3070	if (bp->link_vars.link_up) {
3071		bnx2x_cmng_fns_init(bp, true, CMNG_FNS_MINMAX);
3072		bnx2x_link_sync_notify(bp);
3073	}
3074	storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
3075}
3076
3077static inline void bnx2x_set_mf_bw(struct bnx2x *bp)
3078{
3079	bnx2x_config_mf_bw(bp);
3080	bnx2x_fw_command(bp, DRV_MSG_CODE_SET_MF_BW_ACK, 0);
3081}
3082
3083static void bnx2x_handle_drv_info_req(struct bnx2x *bp)
3084{
3085	enum drv_info_opcode op_code;
3086	u32 drv_info_ctl = SHMEM2_RD(bp, drv_info_control);
3087
3088	/* if drv_info version supported by MFW doesn't match - send NACK */
3089	if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) {
3090		bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3091		return;
3092	}
3093
3094	op_code = (drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >>
3095		  DRV_INFO_CONTROL_OP_CODE_SHIFT;
3096
3097	memset(&bp->slowpath->drv_info_to_mcp, 0,
3098	       sizeof(union drv_info_to_mcp));
3099
3100	switch (op_code) {
3101	case ETH_STATS_OPCODE:
3102		bnx2x_drv_info_ether_stat(bp);
3103		break;
3104	case FCOE_STATS_OPCODE:
3105		bnx2x_drv_info_fcoe_stat(bp);
3106		break;
3107	case ISCSI_STATS_OPCODE:
3108		bnx2x_drv_info_iscsi_stat(bp);
3109		break;
3110	default:
3111		/* if op code isn't supported - send NACK */
3112		bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3113		return;
3114	}
3115
3116	/* if we got drv_info attn from MFW then these fields are defined in
3117	 * shmem2 for sure
3118	 */
3119	SHMEM2_WR(bp, drv_info_host_addr_lo,
3120		U64_LO(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3121	SHMEM2_WR(bp, drv_info_host_addr_hi,
3122		U64_HI(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3123
3124	bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_ACK, 0);
3125}
3126
3127static void bnx2x_dcc_event(struct bnx2x *bp, u32 dcc_event)
3128{
3129	DP(BNX2X_MSG_MCP, "dcc_event 0x%x\n", dcc_event);
3130
3131	if (dcc_event & DRV_STATUS_DCC_DISABLE_ENABLE_PF) {
3132
3133		/*
3134		 * This is the only place besides the function initialization
3135		 * where the bp->flags can change so it is done without any
3136		 * locks
3137		 */
3138		if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
3139			DP(NETIF_MSG_IFDOWN, "mf_cfg function disabled\n");
3140			bp->flags |= MF_FUNC_DIS;
3141
3142			bnx2x_e1h_disable(bp);
3143		} else {
3144			DP(NETIF_MSG_IFUP, "mf_cfg function enabled\n");
3145			bp->flags &= ~MF_FUNC_DIS;
3146
3147			bnx2x_e1h_enable(bp);
3148		}
3149		dcc_event &= ~DRV_STATUS_DCC_DISABLE_ENABLE_PF;
3150	}
3151	if (dcc_event & DRV_STATUS_DCC_BANDWIDTH_ALLOCATION) {
3152		bnx2x_config_mf_bw(bp);
3153		dcc_event &= ~DRV_STATUS_DCC_BANDWIDTH_ALLOCATION;
3154	}
3155
3156	/* Report results to MCP */
3157	if (dcc_event)
3158		bnx2x_fw_command(bp, DRV_MSG_CODE_DCC_FAILURE, 0);
3159	else
3160		bnx2x_fw_command(bp, DRV_MSG_CODE_DCC_OK, 0);
3161}
3162
3163/* must be called under the spq lock */
3164static inline struct eth_spe *bnx2x_sp_get_next(struct bnx2x *bp)
3165{
3166	struct eth_spe *next_spe = bp->spq_prod_bd;
3167
3168	if (bp->spq_prod_bd == bp->spq_last_bd) {
3169		bp->spq_prod_bd = bp->spq;
3170		bp->spq_prod_idx = 0;
3171		DP(NETIF_MSG_TIMER, "end of spq\n");
3172	} else {
3173		bp->spq_prod_bd++;
3174		bp->spq_prod_idx++;
3175	}
3176	return next_spe;
3177}
3178
3179/* must be called under the spq lock */
3180static inline void bnx2x_sp_prod_update(struct bnx2x *bp)
3181{
3182	int func = BP_FUNC(bp);
3183
3184	/*
3185	 * Make sure that BD data is updated before writing the producer:
3186	 * BD data is written to the memory, the producer is read from the
3187	 * memory, thus we need a full memory barrier to ensure the ordering.
3188	 */
3189	mb();
3190
3191	REG_WR16(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func),
3192		 bp->spq_prod_idx);
3193	mmiowb();
3194}
3195
3196/**
3197 * bnx2x_is_contextless_ramrod - check if the current command ends on EQ
3198 *
3199 * @cmd:	command to check
3200 * @cmd_type:	command type
3201 */
3202static inline bool bnx2x_is_contextless_ramrod(int cmd, int cmd_type)
3203{
3204	if ((cmd_type == NONE_CONNECTION_TYPE) ||
3205	    (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) ||
3206	    (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) ||
3207	    (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) ||
3208	    (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) ||
3209	    (cmd == RAMROD_CMD_ID_ETH_SET_MAC) ||
3210	    (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE))
3211		return true;
3212	else
3213		return false;
3214
3215}
3216
3217
3218/**
3219 * bnx2x_sp_post - place a single command on an SP ring
3220 *
3221 * @bp:		driver handle
3222 * @command:	command to place (e.g. SETUP, FILTER_RULES, etc.)
3223 * @cid:	SW CID the command is related to
3224 * @data_hi:	command private data address (high 32 bits)
3225 * @data_lo:	command private data address (low 32 bits)
3226 * @cmd_type:	command type (e.g. NONE, ETH)
3227 *
3228 * SP data is handled as if it's always an address pair, thus data fields are
3229 * not swapped to little endian in upper functions. Instead this function swaps
3230 * data as if it's two u32 fields.
3231 */
3232int bnx2x_sp_post(struct bnx2x *bp, int command, int cid,
3233		  u32 data_hi, u32 data_lo, int cmd_type)
3234{
3235	struct eth_spe *spe;
3236	u16 type;
3237	bool common = bnx2x_is_contextless_ramrod(command, cmd_type);
3238
3239#ifdef BNX2X_STOP_ON_ERROR
3240	if (unlikely(bp->panic))
3241		return -EIO;
3242#endif
3243
3244	spin_lock_bh(&bp->spq_lock);
3245
3246	if (common) {
3247		if (!atomic_read(&bp->eq_spq_left)) {
3248			BNX2X_ERR("BUG! EQ ring full!\n");
3249			spin_unlock_bh(&bp->spq_lock);
3250			bnx2x_panic();
3251			return -EBUSY;
3252		}
3253	} else if (!atomic_read(&bp->cq_spq_left)) {
3254			BNX2X_ERR("BUG! SPQ ring full!\n");
3255			spin_unlock_bh(&bp->spq_lock);
3256			bnx2x_panic();
3257			return -EBUSY;
3258	}
3259
3260	spe = bnx2x_sp_get_next(bp);
3261
3262	/* CID needs port number to be encoded int it */
3263	spe->hdr.conn_and_cmd_data =
3264			cpu_to_le32((command << SPE_HDR_CMD_ID_SHIFT) |
3265				    HW_CID(bp, cid));
3266
3267	type = (cmd_type << SPE_HDR_CONN_TYPE_SHIFT) & SPE_HDR_CONN_TYPE;
3268
3269	type |= ((BP_FUNC(bp) << SPE_HDR_FUNCTION_ID_SHIFT) &
3270		 SPE_HDR_FUNCTION_ID);
3271
3272	spe->hdr.type = cpu_to_le16(type);
3273
3274	spe->data.update_data_addr.hi = cpu_to_le32(data_hi);
3275	spe->data.update_data_addr.lo = cpu_to_le32(data_lo);
3276
3277	/*
3278	 * It's ok if the actual decrement is issued towards the memory
3279	 * somewhere between the spin_lock and spin_unlock. Thus no
3280	 * more explict memory barrier is needed.
3281	 */
3282	if (common)
3283		atomic_dec(&bp->eq_spq_left);
3284	else
3285		atomic_dec(&bp->cq_spq_left);
3286
3287
3288	DP(BNX2X_MSG_SP/*NETIF_MSG_TIMER*/,
3289	   "SPQE[%x] (%x:%x)  (cmd, common?) (%d,%d)  hw_cid %x  data (%x:%x) "
3290	   "type(0x%x) left (CQ, EQ) (%x,%x)\n",
3291	   bp->spq_prod_idx, (u32)U64_HI(bp->spq_mapping),
3292	   (u32)(U64_LO(bp->spq_mapping) +
3293	   (void *)bp->spq_prod_bd - (void *)bp->spq), command, common,
3294	   HW_CID(bp, cid), data_hi, data_lo, type,
3295	   atomic_read(&bp->cq_spq_left), atomic_read(&bp->eq_spq_left));
3296
3297	bnx2x_sp_prod_update(bp);
3298	spin_unlock_bh(&bp->spq_lock);
3299	return 0;
3300}
3301
3302/* acquire split MCP access lock register */
3303static int bnx2x_acquire_alr(struct bnx2x *bp)
3304{
3305	u32 j, val;
3306	int rc = 0;
3307
3308	might_sleep();
3309	for (j = 0; j < 1000; j++) {
3310		val = (1UL << 31);
3311		REG_WR(bp, GRCBASE_MCP + 0x9c, val);
3312		val = REG_RD(bp, GRCBASE_MCP + 0x9c);
3313		if (val & (1L << 31))
3314			break;
3315
3316		msleep(5);
3317	}
3318	if (!(val & (1L << 31))) {
3319		BNX2X_ERR("Cannot acquire MCP access lock register\n");
3320		rc = -EBUSY;
3321	}
3322
3323	return rc;
3324}
3325
3326/* release split MCP access lock register */
3327static void bnx2x_release_alr(struct bnx2x *bp)
3328{
3329	REG_WR(bp, GRCBASE_MCP + 0x9c, 0);
3330}
3331
3332#define BNX2X_DEF_SB_ATT_IDX	0x0001
3333#define BNX2X_DEF_SB_IDX	0x0002
3334
3335static inline u16 bnx2x_update_dsb_idx(struct bnx2x *bp)
3336{
3337	struct host_sp_status_block *def_sb = bp->def_status_blk;
3338	u16 rc = 0;
3339
3340	barrier(); /* status block is written to by the chip */
3341	if (bp->def_att_idx != def_sb->atten_status_block.attn_bits_index) {
3342		bp->def_att_idx = def_sb->atten_status_block.attn_bits_index;
3343		rc |= BNX2X_DEF_SB_ATT_IDX;
3344	}
3345
3346	if (bp->def_idx != def_sb->sp_sb.running_index) {
3347		bp->def_idx = def_sb->sp_sb.running_index;
3348		rc |= BNX2X_DEF_SB_IDX;
3349	}
3350
3351	/* Do not reorder: indecies reading should complete before handling */
3352	barrier();
3353	return rc;
3354}
3355
3356/*
3357 * slow path service functions
3358 */
3359
3360static void bnx2x_attn_int_asserted(struct bnx2x *bp, u32 asserted)
3361{
3362	int port = BP_PORT(bp);
3363	u32 aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
3364			      MISC_REG_AEU_MASK_ATTN_FUNC_0;
3365	u32 nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 :
3366				       NIG_REG_MASK_INTERRUPT_PORT0;
3367	u32 aeu_mask;
3368	u32 nig_mask = 0;
3369	u32 reg_addr;
3370
3371	if (bp->attn_state & asserted)
3372		BNX2X_ERR("IGU ERROR\n");
3373
3374	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
3375	aeu_mask = REG_RD(bp, aeu_addr);
3376
3377	DP(NETIF_MSG_HW, "aeu_mask %x  newly asserted %x\n",
3378	   aeu_mask, asserted);
3379	aeu_mask &= ~(asserted & 0x3ff);
3380	DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
3381
3382	REG_WR(bp, aeu_addr, aeu_mask);
3383	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
3384
3385	DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
3386	bp->attn_state |= asserted;
3387	DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
3388
3389	if (asserted & ATTN_HARD_WIRED_MASK) {
3390		if (asserted & ATTN_NIG_FOR_FUNC) {
3391
3392			bnx2x_acquire_phy_lock(bp);
3393
3394			/* save nig interrupt mask */
3395			nig_mask = REG_RD(bp, nig_int_mask_addr);
3396
3397			/* If nig_mask is not set, no need to call the update
3398			 * function.
3399			 */
3400			if (nig_mask) {
3401				REG_WR(bp, nig_int_mask_addr, 0);
3402
3403				bnx2x_link_attn(bp);
3404			}
3405
3406			/* handle unicore attn? */
3407		}
3408		if (asserted & ATTN_SW_TIMER_4_FUNC)
3409			DP(NETIF_MSG_HW, "ATTN_SW_TIMER_4_FUNC!\n");
3410
3411		if (asserted & GPIO_2_FUNC)
3412			DP(NETIF_MSG_HW, "GPIO_2_FUNC!\n");
3413
3414		if (asserted & GPIO_3_FUNC)
3415			DP(NETIF_MSG_HW, "GPIO_3_FUNC!\n");
3416
3417		if (asserted & GPIO_4_FUNC)
3418			DP(NETIF_MSG_HW, "GPIO_4_FUNC!\n");
3419
3420		if (port == 0) {
3421			if (asserted & ATTN_GENERAL_ATTN_1) {
3422				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_1!\n");
3423				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_1, 0x0);
3424			}
3425			if (asserted & ATTN_GENERAL_ATTN_2) {
3426				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_2!\n");
3427				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_2, 0x0);
3428			}
3429			if (asserted & ATTN_GENERAL_ATTN_3) {
3430				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_3!\n");
3431				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_3, 0x0);
3432			}
3433		} else {
3434			if (asserted & ATTN_GENERAL_ATTN_4) {
3435				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_4!\n");
3436				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_4, 0x0);
3437			}
3438			if (asserted & ATTN_GENERAL_ATTN_5) {
3439				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_5!\n");
3440				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_5, 0x0);
3441			}
3442			if (asserted & ATTN_GENERAL_ATTN_6) {
3443				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_6!\n");
3444				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_6, 0x0);
3445			}
3446		}
3447
3448	} /* if hardwired */
3449
3450	if (bp->common.int_block == INT_BLOCK_HC)
3451		reg_addr = (HC_REG_COMMAND_REG + port*32 +
3452			    COMMAND_REG_ATTN_BITS_SET);
3453	else
3454		reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8);
3455
3456	DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", asserted,
3457	   (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
3458	REG_WR(bp, reg_addr, asserted);
3459
3460	/* now set back the mask */
3461	if (asserted & ATTN_NIG_FOR_FUNC) {
3462		REG_WR(bp, nig_int_mask_addr, nig_mask);
3463		bnx2x_release_phy_lock(bp);
3464	}
3465}
3466
3467static inline void bnx2x_fan_failure(struct bnx2x *bp)
3468{
3469	int port = BP_PORT(bp);
3470	u32 ext_phy_config;
3471	/* mark the failure */
3472	ext_phy_config =
3473		SHMEM_RD(bp,
3474			 dev_info.port_hw_config[port].external_phy_config);
3475
3476	ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK;
3477	ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE;
3478	SHMEM_WR(bp, dev_info.port_hw_config[port].external_phy_config,
3479		 ext_phy_config);
3480
3481	/* log the failure */
3482	netdev_err(bp->dev, "Fan Failure on Network Controller has caused"
3483	       " the driver to shutdown the card to prevent permanent"
3484	       " damage.  Please contact OEM Support for assistance\n");
3485
3486	/*
3487	 * Scheudle device reset (unload)
3488	 * This is due to some boards consuming sufficient power when driver is
3489	 * up to overheat if fan fails.
3490	 */
3491	smp_mb__before_clear_bit();
3492	set_bit(BNX2X_SP_RTNL_FAN_FAILURE, &bp->sp_rtnl_state);
3493	smp_mb__after_clear_bit();
3494	schedule_delayed_work(&bp->sp_rtnl_task, 0);
3495
3496}
3497
3498static inline void bnx2x_attn_int_deasserted0(struct bnx2x *bp, u32 attn)
3499{
3500	int port = BP_PORT(bp);
3501	int reg_offset;
3502	u32 val;
3503
3504	reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
3505			     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
3506
3507	if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) {
3508
3509		val = REG_RD(bp, reg_offset);
3510		val &= ~AEU_INPUTS_ATTN_BITS_SPIO5;
3511		REG_WR(bp, reg_offset, val);
3512
3513		BNX2X_ERR("SPIO5 hw attention\n");
3514
3515		/* Fan failure attention */
3516		bnx2x_hw_reset_phy(&bp->link_params);
3517		bnx2x_fan_failure(bp);
3518	}
3519
3520	if ((attn & bp->link_vars.aeu_int_mask) && bp->port.pmf) {
3521		bnx2x_acquire_phy_lock(bp);
3522		bnx2x_handle_module_detect_int(&bp->link_params);
3523		bnx2x_release_phy_lock(bp);
3524	}
3525
3526	if (attn & HW_INTERRUT_ASSERT_SET_0) {
3527
3528		val = REG_RD(bp, reg_offset);
3529		val &= ~(attn & HW_INTERRUT_ASSERT_SET_0);
3530		REG_WR(bp, reg_offset, val);
3531
3532		BNX2X_ERR("FATAL HW block attention set0 0x%x\n",
3533			  (u32)(attn & HW_INTERRUT_ASSERT_SET_0));
3534		bnx2x_panic();
3535	}
3536}
3537
3538static inline void bnx2x_attn_int_deasserted1(struct bnx2x *bp, u32 attn)
3539{
3540	u32 val;
3541
3542	if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) {
3543
3544		val = REG_RD(bp, DORQ_REG_DORQ_INT_STS_CLR);
3545		BNX2X_ERR("DB hw attention 0x%x\n", val);
3546		/* DORQ discard attention */
3547		if (val & 0x2)
3548			BNX2X_ERR("FATAL error from DORQ\n");
3549	}
3550
3551	if (attn & HW_INTERRUT_ASSERT_SET_1) {
3552
3553		int port = BP_PORT(bp);
3554		int reg_offset;
3555
3556		reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 :
3557				     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1);
3558
3559		val = REG_RD(bp, reg_offset);
3560		val &= ~(attn & HW_INTERRUT_ASSERT_SET_1);
3561		REG_WR(bp, reg_offset, val);
3562
3563		BNX2X_ERR("FATAL HW block attention set1 0x%x\n",
3564			  (u32)(attn & HW_INTERRUT_ASSERT_SET_1));
3565		bnx2x_panic();
3566	}
3567}
3568
3569static inline void bnx2x_attn_int_deasserted2(struct bnx2x *bp, u32 attn)
3570{
3571	u32 val;
3572
3573	if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) {
3574
3575		val = REG_RD(bp, CFC_REG_CFC_INT_STS_CLR);
3576		BNX2X_ERR("CFC hw attention 0x%x\n", val);
3577		/* CFC error attention */
3578		if (val & 0x2)
3579			BNX2X_ERR("FATAL error from CFC\n");
3580	}
3581
3582	if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) {
3583		val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_0);
3584		BNX2X_ERR("PXP hw attention-0 0x%x\n", val);
3585		/* RQ_USDMDP_FIFO_OVERFLOW */
3586		if (val & 0x18000)
3587			BNX2X_ERR("FATAL error from PXP\n");
3588
3589		if (!CHIP_IS_E1x(bp)) {
3590			val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_1);
3591			BNX2X_ERR("PXP hw attention-1 0x%x\n", val);
3592		}
3593	}
3594
3595	if (attn & HW_INTERRUT_ASSERT_SET_2) {
3596
3597		int port = BP_PORT(bp);
3598		int reg_offset;
3599
3600		reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 :
3601				     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2);
3602
3603		val = REG_RD(bp, reg_offset);
3604		val &= ~(attn & HW_INTERRUT_ASSERT_SET_2);
3605		REG_WR(bp, reg_offset, val);
3606
3607		BNX2X_ERR("FATAL HW block attention set2 0x%x\n",
3608			  (u32)(attn & HW_INTERRUT_ASSERT_SET_2));
3609		bnx2x_panic();
3610	}
3611}
3612
3613static inline void bnx2x_attn_int_deasserted3(struct bnx2x *bp, u32 attn)
3614{
3615	u32 val;
3616
3617	if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) {
3618
3619		if (attn & BNX2X_PMF_LINK_ASSERT) {
3620			int func = BP_FUNC(bp);
3621
3622			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
3623			bp->mf_config[BP_VN(bp)] = MF_CFG_RD(bp,
3624					func_mf_config[BP_ABS_FUNC(bp)].config);
3625			val = SHMEM_RD(bp,
3626				       func_mb[BP_FW_MB_IDX(bp)].drv_status);
3627			if (val & DRV_STATUS_DCC_EVENT_MASK)
3628				bnx2x_dcc_event(bp,
3629					    (val & DRV_STATUS_DCC_EVENT_MASK));
3630
3631			if (val & DRV_STATUS_SET_MF_BW)
3632				bnx2x_set_mf_bw(bp);
3633
3634			if (val & DRV_STATUS_DRV_INFO_REQ)
3635				bnx2x_handle_drv_info_req(bp);
3636			if ((bp->port.pmf == 0) && (val & DRV_STATUS_PMF))
3637				bnx2x_pmf_update(bp);
3638
3639			if (bp->port.pmf &&
3640			    (val & DRV_STATUS_DCBX_NEGOTIATION_RESULTS) &&
3641				bp->dcbx_enabled > 0)
3642				/* start dcbx state machine */
3643				bnx2x_dcbx_set_params(bp,
3644					BNX2X_DCBX_STATE_NEG_RECEIVED);
3645			if (bp->link_vars.periodic_flags &
3646			    PERIODIC_FLAGS_LINK_EVENT) {
3647				/*  sync with link */
3648				bnx2x_acquire_phy_lock(bp);
3649				bp->link_vars.periodic_flags &=
3650					~PERIODIC_FLAGS_LINK_EVENT;
3651				bnx2x_release_phy_lock(bp);
3652				if (IS_MF(bp))
3653					bnx2x_link_sync_notify(bp);
3654				bnx2x_link_report(bp);
3655			}
3656			/* Always call it here: bnx2x_link_report() will
3657			 * prevent the link indication duplication.
3658			 */
3659			bnx2x__link_status_update(bp);
3660		} else if (attn & BNX2X_MC_ASSERT_BITS) {
3661
3662			BNX2X_ERR("MC assert!\n");
3663			bnx2x_mc_assert(bp);
3664			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_10, 0);
3665			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_9, 0);
3666			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_8, 0);
3667			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_7, 0);
3668			bnx2x_panic();
3669
3670		} else if (attn & BNX2X_MCP_ASSERT) {
3671
3672			BNX2X_ERR("MCP assert!\n");
3673			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_11, 0);
3674			bnx2x_fw_dump(bp);
3675
3676		} else
3677			BNX2X_ERR("Unknown HW assert! (attn 0x%x)\n", attn);
3678	}
3679
3680	if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) {
3681		BNX2X_ERR("LATCHED attention 0x%08x (masked)\n", attn);
3682		if (attn & BNX2X_GRC_TIMEOUT) {
3683			val = CHIP_IS_E1(bp) ? 0 :
3684					REG_RD(bp, MISC_REG_GRC_TIMEOUT_ATTN);
3685			BNX2X_ERR("GRC time-out 0x%08x\n", val);
3686		}
3687		if (attn & BNX2X_GRC_RSV) {
3688			val = CHIP_IS_E1(bp) ? 0 :
3689					REG_RD(bp, MISC_REG_GRC_RSV_ATTN);
3690			BNX2X_ERR("GRC reserved 0x%08x\n", val);
3691		}
3692		REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff);
3693	}
3694}
3695
3696/*
3697 * Bits map:
3698 * 0-7   - Engine0 load counter.
3699 * 8-15  - Engine1 load counter.
3700 * 16    - Engine0 RESET_IN_PROGRESS bit.
3701 * 17    - Engine1 RESET_IN_PROGRESS bit.
3702 * 18    - Engine0 ONE_IS_LOADED. Set when there is at least one active function
3703 *         on the engine
3704 * 19    - Engine1 ONE_IS_LOADED.
3705 * 20    - Chip reset flow bit. When set none-leader must wait for both engines
3706 *         leader to complete (check for both RESET_IN_PROGRESS bits and not for
3707 *         just the one belonging to its engine).
3708 *
3709 */
3710#define BNX2X_RECOVERY_GLOB_REG		MISC_REG_GENERIC_POR_1
3711
3712#define BNX2X_PATH0_LOAD_CNT_MASK	0x000000ff
3713#define BNX2X_PATH0_LOAD_CNT_SHIFT	0
3714#define BNX2X_PATH1_LOAD_CNT_MASK	0x0000ff00
3715#define BNX2X_PATH1_LOAD_CNT_SHIFT	8
3716#define BNX2X_PATH0_RST_IN_PROG_BIT	0x00010000
3717#define BNX2X_PATH1_RST_IN_PROG_BIT	0x00020000
3718#define BNX2X_GLOBAL_RESET_BIT		0x00040000
3719
3720/*
3721 * Set the GLOBAL_RESET bit.
3722 *
3723 * Should be run under rtnl lock
3724 */
3725void bnx2x_set_reset_global(struct bnx2x *bp)
3726{
3727	u32 val	= REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3728
3729	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val | BNX2X_GLOBAL_RESET_BIT);
3730	barrier();
3731	mmiowb();
3732}
3733
3734/*
3735 * Clear the GLOBAL_RESET bit.
3736 *
3737 * Should be run under rtnl lock
3738 */
3739static inline void bnx2x_clear_reset_global(struct bnx2x *bp)
3740{
3741	u32 val	= REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3742
3743	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val & (~BNX2X_GLOBAL_RESET_BIT));
3744	barrier();
3745	mmiowb();
3746}
3747
3748/*
3749 * Checks the GLOBAL_RESET bit.
3750 *
3751 * should be run under rtnl lock
3752 */
3753static inline bool bnx2x_reset_is_global(struct bnx2x *bp)
3754{
3755	u32 val	= REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3756
3757	DP(NETIF_MSG_HW, "GEN_REG_VAL=0x%08x\n", val);
3758	return (val & BNX2X_GLOBAL_RESET_BIT) ? true : false;
3759}
3760
3761/*
3762 * Clear RESET_IN_PROGRESS bit for the current engine.
3763 *
3764 * Should be run under rtnl lock
3765 */
3766static inline void bnx2x_set_reset_done(struct bnx2x *bp)
3767{
3768	u32 val	= REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3769	u32 bit = BP_PATH(bp) ?
3770		BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
3771
3772	/* Clear the bit */
3773	val &= ~bit;
3774	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
3775	barrier();
3776	mmiowb();
3777}
3778
3779/*
3780 * Set RESET_IN_PROGRESS for the current engine.
3781 *
3782 * should be run under rtnl lock
3783 */
3784void bnx2x_set_reset_in_progress(struct bnx2x *bp)
3785{
3786	u32 val	= REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3787	u32 bit = BP_PATH(bp) ?
3788		BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
3789
3790	/* Set the bit */
3791	val |= bit;
3792	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
3793	barrier();
3794	mmiowb();
3795}
3796
3797/*
3798 * Checks the RESET_IN_PROGRESS bit for the given engine.
3799 * should be run under rtnl lock
3800 */
3801bool bnx2x_reset_is_done(struct bnx2x *bp, int engine)
3802{
3803	u32 val	= REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3804	u32 bit = engine ?
3805		BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
3806
3807	/* return false if bit is set */
3808	return (val & bit) ? false : true;
3809}
3810
3811/*
3812 * Increment the load counter for the current engine.
3813 *
3814 * should be run under rtnl lock
3815 */
3816void bnx2x_inc_load_cnt(struct bnx2x *bp)
3817{
3818	u32 val1, val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3819	u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
3820			     BNX2X_PATH0_LOAD_CNT_MASK;
3821	u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
3822			     BNX2X_PATH0_LOAD_CNT_SHIFT;
3823
3824	DP(NETIF_MSG_HW, "Old GEN_REG_VAL=0x%08x\n", val);
3825
3826	/* get the current counter value */
3827	val1 = (val & mask) >> shift;
3828
3829	/* increment... */
3830	val1++;
3831
3832	/* clear the old value */
3833	val &= ~mask;
3834
3835	/* set the new one */
3836	val |= ((val1 << shift) & mask);
3837
3838	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
3839	barrier();
3840	mmiowb();
3841}
3842
3843/**
3844 * bnx2x_dec_load_cnt - decrement the load counter
3845 *
3846 * @bp:		driver handle
3847 *
3848 * Should be run under rtnl lock.
3849 * Decrements the load counter for the current engine. Returns
3850 * the new counter value.
3851 */
3852u32 bnx2x_dec_load_cnt(struct bnx2x *bp)
3853{
3854	u32 val1, val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3855	u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
3856			     BNX2X_PATH0_LOAD_CNT_MASK;
3857	u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
3858			     BNX2X_PATH0_LOAD_CNT_SHIFT;
3859
3860	DP(NETIF_MSG_HW, "Old GEN_REG_VAL=0x%08x\n", val);
3861
3862	/* get the current counter value */
3863	val1 = (val & mask) >> shift;
3864
3865	/* decrement... */
3866	val1--;
3867
3868	/* clear the old value */
3869	val &= ~mask;
3870
3871	/* set the new one */
3872	val |= ((val1 << shift) & mask);
3873
3874	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
3875	barrier();
3876	mmiowb();
3877
3878	return val1;
3879}
3880
3881/*
3882 * Read the load counter for the current engine.
3883 *
3884 * should be run under rtnl lock
3885 */
3886static inline u32 bnx2x_get_load_cnt(struct bnx2x *bp, int engine)
3887{
3888	u32 mask = (engine ? BNX2X_PATH1_LOAD_CNT_MASK :
3889			     BNX2X_PATH0_LOAD_CNT_MASK);
3890	u32 shift = (engine ? BNX2X_PATH1_LOAD_CNT_SHIFT :
3891			     BNX2X_PATH0_LOAD_CNT_SHIFT);
3892	u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3893
3894	DP(NETIF_MSG_HW, "GLOB_REG=0x%08x\n", val);
3895
3896	val = (val & mask) >> shift;
3897
3898	DP(NETIF_MSG_HW, "load_cnt for engine %d = %d\n", engine, val);
3899
3900	return val;
3901}
3902
3903/*
3904 * Reset the load counter for the current engine.
3905 *
3906 * should be run under rtnl lock
3907 */
3908static inline void bnx2x_clear_load_cnt(struct bnx2x *bp)
3909{
3910	u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3911	u32 mask = (BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
3912			     BNX2X_PATH0_LOAD_CNT_MASK);
3913
3914	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val & (~mask));
3915}
3916
3917static inline void _print_next_block(int idx, const char *blk)
3918{
3919	pr_cont("%s%s", idx ? ", " : "", blk);
3920}
3921
3922static inline int bnx2x_check_blocks_with_parity0(u32 sig, int par_num,
3923						  bool print)
3924{
3925	int i = 0;
3926	u32 cur_bit = 0;
3927	for (i = 0; sig; i++) {
3928		cur_bit = ((u32)0x1 << i);
3929		if (sig & cur_bit) {
3930			switch (cur_bit) {
3931			case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR:
3932				if (print)
3933					_print_next_block(par_num++, "BRB");
3934				break;
3935			case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR:
3936				if (print)
3937					_print_next_block(par_num++, "PARSER");
3938				break;
3939			case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR:
3940				if (print)
3941					_print_next_block(par_num++, "TSDM");
3942				break;
3943			case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR:
3944				if (print)
3945					_print_next_block(par_num++,
3946							  "SEARCHER");
3947				break;
3948			case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR:
3949				if (print)
3950					_print_next_block(par_num++, "TCM");
3951				break;
3952			case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR:
3953				if (print)
3954					_print_next_block(par_num++, "TSEMI");
3955				break;
3956			case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR:
3957				if (print)
3958					_print_next_block(par_num++, "XPB");
3959				break;
3960			}
3961
3962			/* Clear the bit */
3963			sig &= ~cur_bit;
3964		}
3965	}
3966
3967	return par_num;
3968}
3969
3970static inline int bnx2x_check_blocks_with_parity1(u32 sig, int par_num,
3971						  bool *global, bool print)
3972{
3973	int i = 0;
3974	u32 cur_bit = 0;
3975	for (i = 0; sig; i++) {
3976		cur_bit = ((u32)0x1 << i);
3977		if (sig & cur_bit) {
3978			switch (cur_bit) {
3979			case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR:
3980				if (print)
3981					_print_next_block(par_num++, "PBF");
3982				break;
3983			case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR:
3984				if (print)
3985					_print_next_block(par_num++, "QM");
3986				break;
3987			case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR:
3988				if (print)
3989					_print_next_block(par_num++, "TM");
3990				break;
3991			case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR:
3992				if (print)
3993					_print_next_block(par_num++, "XSDM");
3994				break;
3995			case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR:
3996				if (print)
3997					_print_next_block(par_num++, "XCM");
3998				break;
3999			case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR:
4000				if (print)
4001					_print_next_block(par_num++, "XSEMI");
4002				break;
4003			case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR:
4004				if (print)
4005					_print_next_block(par_num++,
4006							  "DOORBELLQ");
4007				break;
4008			case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR:
4009				if (print)
4010					_print_next_block(par_num++, "NIG");
4011				break;
4012			case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR:
4013				if (print)
4014					_print_next_block(par_num++,
4015							  "VAUX PCI CORE");
4016				*global = true;
4017				break;
4018			case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR:
4019				if (print)
4020					_print_next_block(par_num++, "DEBUG");
4021				break;
4022			case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR:
4023				if (print)
4024					_print_next_block(par_num++, "USDM");
4025				break;
4026			case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR:
4027				if (print)
4028					_print_next_block(par_num++, "UCM");
4029				break;
4030			case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR:
4031				if (print)
4032					_print_next_block(par_num++, "USEMI");
4033				break;
4034			case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR:
4035				if (print)
4036					_print_next_block(par_num++, "UPB");
4037				break;
4038			case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR:
4039				if (print)
4040					_print_next_block(par_num++, "CSDM");
4041				break;
4042			case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR:
4043				if (print)
4044					_print_next_block(par_num++, "CCM");
4045				break;
4046			}
4047
4048			/* Clear the bit */
4049			sig &= ~cur_bit;
4050		}
4051	}
4052
4053	return par_num;
4054}
4055
4056static inline int bnx2x_check_blocks_with_parity2(u32 sig, int par_num,
4057						  bool print)
4058{
4059	int i = 0;
4060	u32 cur_bit = 0;
4061	for (i = 0; sig; i++) {
4062		cur_bit = ((u32)0x1 << i);
4063		if (sig & cur_bit) {
4064			switch (cur_bit) {
4065			case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR:
4066				if (print)
4067					_print_next_block(par_num++, "CSEMI");
4068				break;
4069			case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR:
4070				if (print)
4071					_print_next_block(par_num++, "PXP");
4072				break;
4073			case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR:
4074				if (print)
4075					_print_next_block(par_num++,
4076					"PXPPCICLOCKCLIENT");
4077				break;
4078			case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR:
4079				if (print)
4080					_print_next_block(par_num++, "CFC");
4081				break;
4082			case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR:
4083				if (print)
4084					_print_next_block(par_num++, "CDU");
4085				break;
4086			case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR:
4087				if (print)
4088					_print_next_block(par_num++, "DMAE");
4089				break;
4090			case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR:
4091				if (print)
4092					_print_next_block(par_num++, "IGU");
4093				break;
4094			case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR:
4095				if (print)
4096					_print_next_block(par_num++, "MISC");
4097				break;
4098			}
4099
4100			/* Clear the bit */
4101			sig &= ~cur_bit;
4102		}
4103	}
4104
4105	return par_num;
4106}
4107
4108static inline int bnx2x_check_blocks_with_parity3(u32 sig, int par_num,
4109						  bool *global, bool print)
4110{
4111	int i = 0;
4112	u32 cur_bit = 0;
4113	for (i = 0; sig; i++) {
4114		cur_bit = ((u32)0x1 << i);
4115		if (sig & cur_bit) {
4116			switch (cur_bit) {
4117			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY:
4118				if (print)
4119					_print_next_block(par_num++, "MCP ROM");
4120				*global = true;
4121				break;
4122			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY:
4123				if (print)
4124					_print_next_block(par_num++,
4125							  "MCP UMP RX");
4126				*global = true;
4127				break;
4128			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY:
4129				if (print)
4130					_print_next_block(par_num++,
4131							  "MCP UMP TX");
4132				*global = true;
4133				break;
4134			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY:
4135				if (print)
4136					_print_next_block(par_num++,
4137							  "MCP SCPAD");
4138				*global = true;
4139				break;
4140			}
4141
4142			/* Clear the bit */
4143			sig &= ~cur_bit;
4144		}
4145	}
4146
4147	return par_num;
4148}
4149
4150static inline int bnx2x_check_blocks_with_parity4(u32 sig, int par_num,
4151						  bool print)
4152{
4153	int i = 0;
4154	u32 cur_bit = 0;
4155	for (i = 0; sig; i++) {
4156		cur_bit = ((u32)0x1 << i);
4157		if (sig & cur_bit) {
4158			switch (cur_bit) {
4159			case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR:
4160				if (print)
4161					_print_next_block(par_num++, "PGLUE_B");
4162				break;
4163			case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR:
4164				if (print)
4165					_print_next_block(par_num++, "ATC");
4166				break;
4167			}
4168
4169			/* Clear the bit */
4170			sig &= ~cur_bit;
4171		}
4172	}
4173
4174	return par_num;
4175}
4176
4177static inline bool bnx2x_parity_attn(struct bnx2x *bp, bool *global, bool print,
4178				     u32 *sig)
4179{
4180	if ((sig[0] & HW_PRTY_ASSERT_SET_0) ||
4181	    (sig[1] & HW_PRTY_ASSERT_SET_1) ||
4182	    (sig[2] & HW_PRTY_ASSERT_SET_2) ||
4183	    (sig[3] & HW_PRTY_ASSERT_SET_3) ||
4184	    (sig[4] & HW_PRTY_ASSERT_SET_4)) {
4185		int par_num = 0;
4186		DP(NETIF_MSG_HW, "Was parity error: HW block parity attention: "
4187			"[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x "
4188			"[4]:0x%08x\n",
4189			  sig[0] & HW_PRTY_ASSERT_SET_0,
4190			  sig[1] & HW_PRTY_ASSERT_SET_1,
4191			  sig[2] & HW_PRTY_ASSERT_SET_2,
4192			  sig[3] & HW_PRTY_ASSERT_SET_3,
4193			  sig[4] & HW_PRTY_ASSERT_SET_4);
4194		if (print)
4195			netdev_err(bp->dev,
4196				   "Parity errors detected in blocks: ");
4197		par_num = bnx2x_check_blocks_with_parity0(
4198			sig[0] & HW_PRTY_ASSERT_SET_0, par_num, print);
4199		par_num = bnx2x_check_blocks_with_parity1(
4200			sig[1] & HW_PRTY_ASSERT_SET_1, par_num, global, print);
4201		par_num = bnx2x_check_blocks_with_parity2(
4202			sig[2] & HW_PRTY_ASSERT_SET_2, par_num, print);
4203		par_num = bnx2x_check_blocks_with_parity3(
4204			sig[3] & HW_PRTY_ASSERT_SET_3, par_num, global, print);
4205		par_num = bnx2x_check_blocks_with_parity4(
4206			sig[4] & HW_PRTY_ASSERT_SET_4, par_num, print);
4207
4208		if (print)
4209			pr_cont("\n");
4210
4211		return true;
4212	} else
4213		return false;
4214}
4215
4216/**
4217 * bnx2x_chk_parity_attn - checks for parity attentions.
4218 *
4219 * @bp:		driver handle
4220 * @global:	true if there was a global attention
4221 * @print:	show parity attention in syslog
4222 */
4223bool bnx2x_chk_parity_attn(struct bnx2x *bp, bool *global, bool print)
4224{
4225	struct attn_route attn = { {0} };
4226	int port = BP_PORT(bp);
4227
4228	attn.sig[0] = REG_RD(bp,
4229		MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 +
4230			     port*4);
4231	attn.sig[1] = REG_RD(bp,
4232		MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 +
4233			     port*4);
4234	attn.sig[2] = REG_RD(bp,
4235		MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 +
4236			     port*4);
4237	attn.sig[3] = REG_RD(bp,
4238		MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 +
4239			     port*4);
4240
4241	if (!CHIP_IS_E1x(bp))
4242		attn.sig[4] = REG_RD(bp,
4243			MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 +
4244				     port*4);
4245
4246	return bnx2x_parity_attn(bp, global, print, attn.sig);
4247}
4248
4249
4250static inline void bnx2x_attn_int_deasserted4(struct bnx2x *bp, u32 attn)
4251{
4252	u32 val;
4253	if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) {
4254
4255		val = REG_RD(bp, PGLUE_B_REG_PGLUE_B_INT_STS_CLR);
4256		BNX2X_ERR("PGLUE hw attention 0x%x\n", val);
4257		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR)
4258			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
4259				  "ADDRESS_ERROR\n");
4260		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR)
4261			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
4262				  "INCORRECT_RCV_BEHAVIOR\n");
4263		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN)
4264			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
4265				  "WAS_ERROR_ATTN\n");
4266		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN)
4267			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
4268				  "VF_LENGTH_VIOLATION_ATTN\n");
4269		if (val &
4270		    PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN)
4271			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
4272				  "VF_GRC_SPACE_VIOLATION_ATTN\n");
4273		if (val &
4274		    PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN)
4275			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
4276				  "VF_MSIX_BAR_VIOLATION_ATTN\n");
4277		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN)
4278			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
4279				  "TCPL_ERROR_ATTN\n");
4280		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN)
4281			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
4282				  "TCPL_IN_TWO_RCBS_ATTN\n");
4283		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW)
4284			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
4285				  "CSSNOOP_FIFO_OVERFLOW\n");
4286	}
4287	if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) {
4288		val = REG_RD(bp, ATC_REG_ATC_INT_STS_CLR);
4289		BNX2X_ERR("ATC hw attention 0x%x\n", val);
4290		if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR)
4291			BNX2X_ERR("ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n");
4292		if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND)
4293			BNX2X_ERR("ATC_ATC_INT_STS_REG"
4294				  "_ATC_TCPL_TO_NOT_PEND\n");
4295		if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS)
4296			BNX2X_ERR("ATC_ATC_INT_STS_REG_"
4297				  "ATC_GPA_MULTIPLE_HITS\n");
4298		if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT)
4299			BNX2X_ERR("ATC_ATC_INT_STS_REG_"
4300				  "ATC_RCPL_TO_EMPTY_CNT\n");
4301		if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR)
4302			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n");
4303		if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU)
4304			BNX2X_ERR("ATC_ATC_INT_STS_REG_"
4305				  "ATC_IREQ_LESS_THAN_STU\n");
4306	}
4307
4308	if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
4309		    AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) {
4310		BNX2X_ERR("FATAL parity attention set4 0x%x\n",
4311		(u32)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
4312		    AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)));
4313	}
4314
4315}
4316
4317static void bnx2x_attn_int_deasserted(struct bnx2x *bp, u32 deasserted)
4318{
4319	struct attn_route attn, *group_mask;
4320	int port = BP_PORT(bp);
4321	int index;
4322	u32 reg_addr;
4323	u32 val;
4324	u32 aeu_mask;
4325	bool global = false;
4326
4327	/* need to take HW lock because MCP or other port might also
4328	   try to handle this event */
4329	bnx2x_acquire_alr(bp);
4330
4331	if (bnx2x_chk_parity_attn(bp, &global, true)) {
4332#ifndef BNX2X_STOP_ON_ERROR
4333		bp->recovery_state = BNX2X_RECOVERY_INIT;
4334		schedule_delayed_work(&bp->sp_rtnl_task, 0);
4335		/* Disable HW interrupts */
4336		bnx2x_int_disable(bp);
4337		/* In case of parity errors don't handle attentions so that
4338		 * other function would "see" parity errors.
4339		 */
4340#else
4341		bnx2x_panic();
4342#endif
4343		bnx2x_release_alr(bp);
4344		return;
4345	}
4346
4347	attn.sig[0] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4);
4348	attn.sig[1] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4);
4349	attn.sig[2] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4);
4350	attn.sig[3] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4);
4351	if (!CHIP_IS_E1x(bp))
4352		attn.sig[4] =
4353		      REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4);
4354	else
4355		attn.sig[4] = 0;
4356
4357	DP(NETIF_MSG_HW, "attn: %08x %08x %08x %08x %08x\n",
4358	   attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]);
4359
4360	for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
4361		if (deasserted & (1 << index)) {
4362			group_mask = &bp->attn_group[index];
4363
4364			DP(NETIF_MSG_HW, "group[%d]: %08x %08x "
4365					 "%08x %08x %08x\n",
4366			   index,
4367			   group_mask->sig[0], group_mask->sig[1],
4368			   group_mask->sig[2], group_mask->sig[3],
4369			   group_mask->sig[4]);
4370
4371			bnx2x_attn_int_deasserted4(bp,
4372					attn.sig[4] & group_mask->sig[4]);
4373			bnx2x_attn_int_deasserted3(bp,
4374					attn.sig[3] & group_mask->sig[3]);
4375			bnx2x_attn_int_deasserted1(bp,
4376					attn.sig[1] & group_mask->sig[1]);
4377			bnx2x_attn_int_deasserted2(bp,
4378					attn.sig[2] & group_mask->sig[2]);
4379			bnx2x_attn_int_deasserted0(bp,
4380					attn.sig[0] & group_mask->sig[0]);
4381		}
4382	}
4383
4384	bnx2x_release_alr(bp);
4385
4386	if (bp->common.int_block == INT_BLOCK_HC)
4387		reg_addr = (HC_REG_COMMAND_REG + port*32 +
4388			    COMMAND_REG_ATTN_BITS_CLR);
4389	else
4390		reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8);
4391
4392	val = ~deasserted;
4393	DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", val,
4394	   (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
4395	REG_WR(bp, reg_addr, val);
4396
4397	if (~bp->attn_state & deasserted)
4398		BNX2X_ERR("IGU ERROR\n");
4399
4400	reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
4401			  MISC_REG_AEU_MASK_ATTN_FUNC_0;
4402
4403	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4404	aeu_mask = REG_RD(bp, reg_addr);
4405
4406	DP(NETIF_MSG_HW, "aeu_mask %x  newly deasserted %x\n",
4407	   aeu_mask, deasserted);
4408	aeu_mask |= (deasserted & 0x3ff);
4409	DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
4410
4411	REG_WR(bp, reg_addr, aeu_mask);
4412	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4413
4414	DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
4415	bp->attn_state &= ~deasserted;
4416	DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
4417}
4418
4419static void bnx2x_attn_int(struct bnx2x *bp)
4420{
4421	/* read local copy of bits */
4422	u32 attn_bits = le32_to_cpu(bp->def_status_blk->atten_status_block.
4423								attn_bits);
4424	u32 attn_ack = le32_to_cpu(bp->def_status_blk->atten_status_block.
4425								attn_bits_ack);
4426	u32 attn_state = bp->attn_state;
4427
4428	/* look for changed bits */
4429	u32 asserted   =  attn_bits & ~attn_ack & ~attn_state;
4430	u32 deasserted = ~attn_bits &  attn_ack &  attn_state;
4431
4432	DP(NETIF_MSG_HW,
4433	   "attn_bits %x  attn_ack %x  asserted %x  deasserted %x\n",
4434	   attn_bits, attn_ack, asserted, deasserted);
4435
4436	if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state))
4437		BNX2X_ERR("BAD attention state\n");
4438
4439	/* handle bits that were raised */
4440	if (asserted)
4441		bnx2x_attn_int_asserted(bp, asserted);
4442
4443	if (deasserted)
4444		bnx2x_attn_int_deasserted(bp, deasserted);
4445}
4446
4447void bnx2x_igu_ack_sb(struct bnx2x *bp, u8 igu_sb_id, u8 segment,
4448		      u16 index, u8 op, u8 update)
4449{
4450	u32 igu_addr = BAR_IGU_INTMEM + (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8;
4451
4452	bnx2x_igu_ack_sb_gen(bp, igu_sb_id, segment, index, op, update,
4453			     igu_addr);
4454}
4455
4456static inline void bnx2x_update_eq_prod(struct bnx2x *bp, u16 prod)
4457{
4458	/* No memory barriers */
4459	storm_memset_eq_prod(bp, prod, BP_FUNC(bp));
4460	mmiowb(); /* keep prod updates ordered */
4461}
4462
4463#ifdef BCM_CNIC
4464static int  bnx2x_cnic_handle_cfc_del(struct bnx2x *bp, u32 cid,
4465				      union event_ring_elem *elem)
4466{
4467	u8 err = elem->message.error;
4468
4469	if (!bp->cnic_eth_dev.starting_cid  ||
4470	    (cid < bp->cnic_eth_dev.starting_cid &&
4471	    cid != bp->cnic_eth_dev.iscsi_l2_cid))
4472		return 1;
4473
4474	DP(BNX2X_MSG_SP, "got delete ramrod for CNIC CID %d\n", cid);
4475
4476	if (unlikely(err)) {
4477
4478		BNX2X_ERR("got delete ramrod for CNIC CID %d with error!\n",
4479			  cid);
4480		bnx2x_panic_dump(bp);
4481	}
4482	bnx2x_cnic_cfc_comp(bp, cid, err);
4483	return 0;
4484}
4485#endif
4486
4487static inline void bnx2x_handle_mcast_eqe(struct bnx2x *bp)
4488{
4489	struct bnx2x_mcast_ramrod_params rparam;
4490	int rc;
4491
4492	memset(&rparam, 0, sizeof(rparam));
4493
4494	rparam.mcast_obj = &bp->mcast_obj;
4495
4496	netif_addr_lock_bh(bp->dev);
4497
4498	/* Clear pending state for the last command */
4499	bp->mcast_obj.raw.clear_pending(&bp->mcast_obj.raw);
4500
4501	/* If there are pending mcast commands - send them */
4502	if (bp->mcast_obj.check_pending(&bp->mcast_obj)) {
4503		rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
4504		if (rc < 0)
4505			BNX2X_ERR("Failed to send pending mcast commands: %d\n",
4506				  rc);
4507	}
4508
4509	netif_addr_unlock_bh(bp->dev);
4510}
4511
4512static inline void bnx2x_handle_classification_eqe(struct bnx2x *bp,
4513						   union event_ring_elem *elem)
4514{
4515	unsigned long ramrod_flags = 0;
4516	int rc = 0;
4517	u32 cid = elem->message.data.eth_event.echo & BNX2X_SWCID_MASK;
4518	struct bnx2x_vlan_mac_obj *vlan_mac_obj;
4519
4520	/* Always push next commands out, don't wait here */
4521	__set_bit(RAMROD_CONT, &ramrod_flags);
4522
4523	switch (elem->message.data.eth_event.echo >> BNX2X_SWCID_SHIFT) {
4524	case BNX2X_FILTER_MAC_PENDING:
4525#ifdef BCM_CNIC
4526		if (cid == BNX2X_ISCSI_ETH_CID)
4527			vlan_mac_obj = &bp->iscsi_l2_mac_obj;
4528		else
4529#endif
4530			vlan_mac_obj = &bp->fp[cid].mac_obj;
4531
4532		break;
4533	case BNX2X_FILTER_MCAST_PENDING:
4534		/* This is only relevant for 57710 where multicast MACs are
4535		 * configured as unicast MACs using the same ramrod.
4536		 */
4537		bnx2x_handle_mcast_eqe(bp);
4538		return;
4539	default:
4540		BNX2X_ERR("Unsupported classification command: %d\n",
4541			  elem->message.data.eth_event.echo);
4542		return;
4543	}
4544
4545	rc = vlan_mac_obj->complete(bp, vlan_mac_obj, elem, &ramrod_flags);
4546
4547	if (rc < 0)
4548		BNX2X_ERR("Failed to schedule new commands: %d\n", rc);
4549	else if (rc > 0)
4550		DP(BNX2X_MSG_SP, "Scheduled next pending commands...\n");
4551
4552}
4553
4554#ifdef BCM_CNIC
4555static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start);
4556#endif
4557
4558static inline void bnx2x_handle_rx_mode_eqe(struct bnx2x *bp)
4559{
4560	netif_addr_lock_bh(bp->dev);
4561
4562	clear_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
4563
4564	/* Send rx_mode command again if was requested */
4565	if (test_and_clear_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state))
4566		bnx2x_set_storm_rx_mode(bp);
4567#ifdef BCM_CNIC
4568	else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED,
4569				    &bp->sp_state))
4570		bnx2x_set_iscsi_eth_rx_mode(bp, true);
4571	else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED,
4572				    &bp->sp_state))
4573		bnx2x_set_iscsi_eth_rx_mode(bp, false);
4574#endif
4575
4576	netif_addr_unlock_bh(bp->dev);
4577}
4578
4579static inline struct bnx2x_queue_sp_obj *bnx2x_cid_to_q_obj(
4580	struct bnx2x *bp, u32 cid)
4581{
4582	DP(BNX2X_MSG_SP, "retrieving fp from cid %d\n", cid);
4583#ifdef BCM_CNIC
4584	if (cid == BNX2X_FCOE_ETH_CID)
4585		return &bnx2x_fcoe(bp, q_obj);
4586	else
4587#endif
4588		return &bnx2x_fp(bp, CID_TO_FP(cid), q_obj);
4589}
4590
4591static void bnx2x_eq_int(struct bnx2x *bp)
4592{
4593	u16 hw_cons, sw_cons, sw_prod;
4594	union event_ring_elem *elem;
4595	u32 cid;
4596	u8 opcode;
4597	int spqe_cnt = 0;
4598	struct bnx2x_queue_sp_obj *q_obj;
4599	struct bnx2x_func_sp_obj *f_obj = &bp->func_obj;
4600	struct bnx2x_raw_obj *rss_raw = &bp->rss_conf_obj.raw;
4601
4602	hw_cons = le16_to_cpu(*bp->eq_cons_sb);
4603
4604	/* The hw_cos range is 1-255, 257 - the sw_cons range is 0-254, 256.
4605	 * when we get the the next-page we nned to adjust so the loop
4606	 * condition below will be met. The next element is the size of a
4607	 * regular element and hence incrementing by 1
4608	 */
4609	if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE)
4610		hw_cons++;
4611
4612	/* This function may never run in parallel with itself for a
4613	 * specific bp, thus there is no need in "paired" read memory
4614	 * barrier here.
4615	 */
4616	sw_cons = bp->eq_cons;
4617	sw_prod = bp->eq_prod;
4618
4619	DP(BNX2X_MSG_SP, "EQ:  hw_cons %u  sw_cons %u bp->eq_spq_left %x\n",
4620			hw_cons, sw_cons, atomic_read(&bp->eq_spq_left));
4621
4622	for (; sw_cons != hw_cons;
4623	      sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) {
4624
4625
4626		elem = &bp->eq_ring[EQ_DESC(sw_cons)];
4627
4628		cid = SW_CID(elem->message.data.cfc_del_event.cid);
4629		opcode = elem->message.opcode;
4630
4631
4632		/* handle eq element */
4633		switch (opcode) {
4634		case EVENT_RING_OPCODE_STAT_QUERY:
4635			DP(NETIF_MSG_TIMER, "got statistics comp event %d\n",
4636			   bp->stats_comp++);
4637			/* nothing to do with stats comp */
4638			goto next_spqe;
4639
4640		case EVENT_RING_OPCODE_CFC_DEL:
4641			/* handle according to cid range */
4642			/*
4643			 * we may want to verify here that the bp state is
4644			 * HALTING
4645			 */
4646			DP(BNX2X_MSG_SP,
4647			   "got delete ramrod for MULTI[%d]\n", cid);
4648#ifdef BCM_CNIC
4649			if (!bnx2x_cnic_handle_cfc_del(bp, cid, elem))
4650				goto next_spqe;
4651#endif
4652			q_obj = bnx2x_cid_to_q_obj(bp, cid);
4653
4654			if (q_obj->complete_cmd(bp, q_obj, BNX2X_Q_CMD_CFC_DEL))
4655				break;
4656
4657
4658
4659			goto next_spqe;
4660
4661		case EVENT_RING_OPCODE_STOP_TRAFFIC:
4662			DP(BNX2X_MSG_SP, "got STOP TRAFFIC\n");
4663			if (f_obj->complete_cmd(bp, f_obj,
4664						BNX2X_F_CMD_TX_STOP))
4665				break;
4666			bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_PAUSED);
4667			goto next_spqe;
4668
4669		case EVENT_RING_OPCODE_START_TRAFFIC:
4670			DP(BNX2X_MSG_SP, "got START TRAFFIC\n");
4671			if (f_obj->complete_cmd(bp, f_obj,
4672						BNX2X_F_CMD_TX_START))
4673				break;
4674			bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_RELEASED);
4675			goto next_spqe;
4676		case EVENT_RING_OPCODE_FUNCTION_START:
4677			DP(BNX2X_MSG_SP, "got FUNC_START ramrod\n");
4678			if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_START))
4679				break;
4680
4681			goto next_spqe;
4682
4683		case EVENT_RING_OPCODE_FUNCTION_STOP:
4684			DP(BNX2X_MSG_SP, "got FUNC_STOP ramrod\n");
4685			if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_STOP))
4686				break;
4687
4688			goto next_spqe;
4689		}
4690
4691		switch (opcode | bp->state) {
4692		case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
4693		      BNX2X_STATE_OPEN):
4694		case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
4695		      BNX2X_STATE_OPENING_WAIT4_PORT):
4696			cid = elem->message.data.eth_event.echo &
4697				BNX2X_SWCID_MASK;
4698			DP(BNX2X_MSG_SP, "got RSS_UPDATE ramrod. CID %d\n",
4699			   cid);
4700			rss_raw->clear_pending(rss_raw);
4701			break;
4702
4703		case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_OPEN):
4704		case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_DIAG):
4705		case (EVENT_RING_OPCODE_SET_MAC |
4706		      BNX2X_STATE_CLOSING_WAIT4_HALT):
4707		case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
4708		      BNX2X_STATE_OPEN):
4709		case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
4710		      BNX2X_STATE_DIAG):
4711		case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
4712		      BNX2X_STATE_CLOSING_WAIT4_HALT):
4713			DP(BNX2X_MSG_SP, "got (un)set mac ramrod\n");
4714			bnx2x_handle_classification_eqe(bp, elem);
4715			break;
4716
4717		case (EVENT_RING_OPCODE_MULTICAST_RULES |
4718		      BNX2X_STATE_OPEN):
4719		case (EVENT_RING_OPCODE_MULTICAST_RULES |
4720		      BNX2X_STATE_DIAG):
4721		case (EVENT_RING_OPCODE_MULTICAST_RULES |
4722		      BNX2X_STATE_CLOSING_WAIT4_HALT):
4723			DP(BNX2X_MSG_SP, "got mcast ramrod\n");
4724			bnx2x_handle_mcast_eqe(bp);
4725			break;
4726
4727		case (EVENT_RING_OPCODE_FILTERS_RULES |
4728		      BNX2X_STATE_OPEN):
4729		case (EVENT_RING_OPCODE_FILTERS_RULES |
4730		      BNX2X_STATE_DIAG):
4731		case (EVENT_RING_OPCODE_FILTERS_RULES |
4732		      BNX2X_STATE_CLOSING_WAIT4_HALT):
4733			DP(BNX2X_MSG_SP, "got rx_mode ramrod\n");
4734			bnx2x_handle_rx_mode_eqe(bp);
4735			break;
4736		default:
4737			/* unknown event log error and continue */
4738			BNX2X_ERR("Unknown EQ event %d, bp->state 0x%x\n",
4739				  elem->message.opcode, bp->state);
4740		}
4741next_spqe:
4742		spqe_cnt++;
4743	} /* for */
4744
4745	smp_mb__before_atomic_inc();
4746	atomic_add(spqe_cnt, &bp->eq_spq_left);
4747
4748	bp->eq_cons = sw_cons;
4749	bp->eq_prod = sw_prod;
4750	/* Make sure that above mem writes were issued towards the memory */
4751	smp_wmb();
4752
4753	/* update producer */
4754	bnx2x_update_eq_prod(bp, bp->eq_prod);
4755}
4756
4757static void bnx2x_sp_task(struct work_struct *work)
4758{
4759	struct bnx2x *bp = container_of(work, struct bnx2x, sp_task.work);
4760	u16 status;
4761
4762	status = bnx2x_update_dsb_idx(bp);
4763/*	if (status == 0)				     */
4764/*		BNX2X_ERR("spurious slowpath interrupt!\n"); */
4765
4766	DP(NETIF_MSG_INTR, "got a slowpath interrupt (status 0x%x)\n", status);
4767
4768	/* HW attentions */
4769	if (status & BNX2X_DEF_SB_ATT_IDX) {
4770		bnx2x_attn_int(bp);
4771		status &= ~BNX2X_DEF_SB_ATT_IDX;
4772	}
4773
4774	/* SP events: STAT_QUERY and others */
4775	if (status & BNX2X_DEF_SB_IDX) {
4776#ifdef BCM_CNIC
4777		struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp);
4778
4779		if ((!NO_FCOE(bp)) &&
4780			(bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) {
4781			/*
4782			 * Prevent local bottom-halves from running as
4783			 * we are going to change the local NAPI list.
4784			 */
4785			local_bh_disable();
4786			napi_schedule(&bnx2x_fcoe(bp, napi));
4787			local_bh_enable();
4788		}
4789#endif
4790		/* Handle EQ completions */
4791		bnx2x_eq_int(bp);
4792
4793		bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID,
4794			le16_to_cpu(bp->def_idx), IGU_INT_NOP, 1);
4795
4796		status &= ~BNX2X_DEF_SB_IDX;
4797	}
4798
4799	if (unlikely(status))
4800		DP(NETIF_MSG_INTR, "got an unknown interrupt! (status 0x%x)\n",
4801		   status);
4802
4803	bnx2x_ack_sb(bp, bp->igu_dsb_id, ATTENTION_ID,
4804	     le16_to_cpu(bp->def_att_idx), IGU_INT_ENABLE, 1);
4805}
4806
4807irqreturn_t bnx2x_msix_sp_int(int irq, void *dev_instance)
4808{
4809	struct net_device *dev = dev_instance;
4810	struct bnx2x *bp = netdev_priv(dev);
4811
4812	bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0,
4813		     IGU_INT_DISABLE, 0);
4814
4815#ifdef BNX2X_STOP_ON_ERROR
4816	if (unlikely(bp->panic))
4817		return IRQ_HANDLED;
4818#endif
4819
4820#ifdef BCM_CNIC
4821	{
4822		struct cnic_ops *c_ops;
4823
4824		rcu_read_lock();
4825		c_ops = rcu_dereference(bp->cnic_ops);
4826		if (c_ops)
4827			c_ops->cnic_handler(bp->cnic_data, NULL);
4828		rcu_read_unlock();
4829	}
4830#endif
4831	queue_delayed_work(bnx2x_wq, &bp->sp_task, 0);
4832
4833	return IRQ_HANDLED;
4834}
4835
4836/* end of slow path */
4837
4838
4839void bnx2x_drv_pulse(struct bnx2x *bp)
4840{
4841	SHMEM_WR(bp, func_mb[BP_FW_MB_IDX(bp)].drv_pulse_mb,
4842		 bp->fw_drv_pulse_wr_seq);
4843}
4844
4845
4846static void bnx2x_timer(unsigned long data)
4847{
4848	u8 cos;
4849	struct bnx2x *bp = (struct bnx2x *) data;
4850
4851	if (!netif_running(bp->dev))
4852		return;
4853
4854	if (poll) {
4855		struct bnx2x_fastpath *fp = &bp->fp[0];
4856
4857		for_each_cos_in_tx_queue(fp, cos)
4858			bnx2x_tx_int(bp, &fp->txdata[cos]);
4859		bnx2x_rx_int(fp, 1000);
4860	}
4861
4862	if (!BP_NOMCP(bp)) {
4863		int mb_idx = BP_FW_MB_IDX(bp);
4864		u32 drv_pulse;
4865		u32 mcp_pulse;
4866
4867		++bp->fw_drv_pulse_wr_seq;
4868		bp->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK;
4869		/* TBD - add SYSTEM_TIME */
4870		drv_pulse = bp->fw_drv_pulse_wr_seq;
4871		bnx2x_drv_pulse(bp);
4872
4873		mcp_pulse = (SHMEM_RD(bp, func_mb[mb_idx].mcp_pulse_mb) &
4874			     MCP_PULSE_SEQ_MASK);
4875		/* The delta between driver pulse and mcp response
4876		 * should be 1 (before mcp response) or 0 (after mcp response)
4877		 */
4878		if ((drv_pulse != mcp_pulse) &&
4879		    (drv_pulse != ((mcp_pulse + 1) & MCP_PULSE_SEQ_MASK))) {
4880			/* someone lost a heartbeat... */
4881			BNX2X_ERR("drv_pulse (0x%x) != mcp_pulse (0x%x)\n",
4882				  drv_pulse, mcp_pulse);
4883		}
4884	}
4885
4886	if (bp->state == BNX2X_STATE_OPEN)
4887		bnx2x_stats_handle(bp, STATS_EVENT_UPDATE);
4888
4889	mod_timer(&bp->timer, jiffies + bp->current_interval);
4890}
4891
4892/* end of Statistics */
4893
4894/* nic init */
4895
4896/*
4897 * nic init service functions
4898 */
4899
4900static inline void bnx2x_fill(struct bnx2x *bp, u32 addr, int fill, u32 len)
4901{
4902	u32 i;
4903	if (!(len%4) && !(addr%4))
4904		for (i = 0; i < len; i += 4)
4905			REG_WR(bp, addr + i, fill);
4906	else
4907		for (i = 0; i < len; i++)
4908			REG_WR8(bp, addr + i, fill);
4909
4910}
4911
4912/* helper: writes FP SP data to FW - data_size in dwords */
4913static inline void bnx2x_wr_fp_sb_data(struct bnx2x *bp,
4914				       int fw_sb_id,
4915				       u32 *sb_data_p,
4916				       u32 data_size)
4917{
4918	int index;
4919	for (index = 0; index < data_size; index++)
4920		REG_WR(bp, BAR_CSTRORM_INTMEM +
4921			CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) +
4922			sizeof(u32)*index,
4923			*(sb_data_p + index));
4924}
4925
4926static inline void bnx2x_zero_fp_sb(struct bnx2x *bp, int fw_sb_id)
4927{
4928	u32 *sb_data_p;
4929	u32 data_size = 0;
4930	struct hc_status_block_data_e2 sb_data_e2;
4931	struct hc_status_block_data_e1x sb_data_e1x;
4932
4933	/* disable the function first */
4934	if (!CHIP_IS_E1x(bp)) {
4935		memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
4936		sb_data_e2.common.state = SB_DISABLED;
4937		sb_data_e2.common.p_func.vf_valid = false;
4938		sb_data_p = (u32 *)&sb_data_e2;
4939		data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
4940	} else {
4941		memset(&sb_data_e1x, 0,
4942		       sizeof(struct hc_status_block_data_e1x));
4943		sb_data_e1x.common.state = SB_DISABLED;
4944		sb_data_e1x.common.p_func.vf_valid = false;
4945		sb_data_p = (u32 *)&sb_data_e1x;
4946		data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
4947	}
4948	bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
4949
4950	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
4951			CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id), 0,
4952			CSTORM_STATUS_BLOCK_SIZE);
4953	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
4954			CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id), 0,
4955			CSTORM_SYNC_BLOCK_SIZE);
4956}
4957
4958/* helper:  writes SP SB data to FW */
4959static inline void bnx2x_wr_sp_sb_data(struct bnx2x *bp,
4960		struct hc_sp_status_block_data *sp_sb_data)
4961{
4962	int func = BP_FUNC(bp);
4963	int i;
4964	for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++)
4965		REG_WR(bp, BAR_CSTRORM_INTMEM +
4966			CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) +
4967			i*sizeof(u32),
4968			*((u32 *)sp_sb_data + i));
4969}
4970
4971static inline void bnx2x_zero_sp_sb(struct bnx2x *bp)
4972{
4973	int func = BP_FUNC(bp);
4974	struct hc_sp_status_block_data sp_sb_data;
4975	memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
4976
4977	sp_sb_data.state = SB_DISABLED;
4978	sp_sb_data.p_func.vf_valid = false;
4979
4980	bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
4981
4982	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
4983			CSTORM_SP_STATUS_BLOCK_OFFSET(func), 0,
4984			CSTORM_SP_STATUS_BLOCK_SIZE);
4985	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
4986			CSTORM_SP_SYNC_BLOCK_OFFSET(func), 0,
4987			CSTORM_SP_SYNC_BLOCK_SIZE);
4988
4989}
4990
4991
4992static inline
4993void bnx2x_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm,
4994					   int igu_sb_id, int igu_seg_id)
4995{
4996	hc_sm->igu_sb_id = igu_sb_id;
4997	hc_sm->igu_seg_id = igu_seg_id;
4998	hc_sm->timer_value = 0xFF;
4999	hc_sm->time_to_expire = 0xFFFFFFFF;
5000}
5001
5002
5003/* allocates state machine ids. */
5004static inline
5005void bnx2x_map_sb_state_machines(struct hc_index_data *index_data)
5006{
5007	/* zero out state machine indices */
5008	/* rx indices */
5009	index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
5010
5011	/* tx indices */
5012	index_data[HC_INDEX_OOO_TX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
5013	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID;
5014	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID;
5015	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID;
5016
5017	/* map indices */
5018	/* rx indices */
5019	index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |=
5020		SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5021
5022	/* tx indices */
5023	index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |=
5024		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5025	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |=
5026		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5027	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |=
5028		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5029	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |=
5030		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5031}
5032
5033static void bnx2x_init_sb(struct bnx2x *bp, dma_addr_t mapping, int vfid,
5034			  u8 vf_valid, int fw_sb_id, int igu_sb_id)
5035{
5036	int igu_seg_id;
5037
5038	struct hc_status_block_data_e2 sb_data_e2;
5039	struct hc_status_block_data_e1x sb_data_e1x;
5040	struct hc_status_block_sm  *hc_sm_p;
5041	int data_size;
5042	u32 *sb_data_p;
5043
5044	if (CHIP_INT_MODE_IS_BC(bp))
5045		igu_seg_id = HC_SEG_ACCESS_NORM;
5046	else
5047		igu_seg_id = IGU_SEG_ACCESS_NORM;
5048
5049	bnx2x_zero_fp_sb(bp, fw_sb_id);
5050
5051	if (!CHIP_IS_E1x(bp)) {
5052		memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
5053		sb_data_e2.common.state = SB_ENABLED;
5054		sb_data_e2.common.p_func.pf_id = BP_FUNC(bp);
5055		sb_data_e2.common.p_func.vf_id = vfid;
5056		sb_data_e2.common.p_func.vf_valid = vf_valid;
5057		sb_data_e2.common.p_func.vnic_id = BP_VN(bp);
5058		sb_data_e2.common.same_igu_sb_1b = true;
5059		sb_data_e2.common.host_sb_addr.hi = U64_HI(mapping);
5060		sb_data_e2.common.host_sb_addr.lo = U64_LO(mapping);
5061		hc_sm_p = sb_data_e2.common.state_machine;
5062		sb_data_p = (u32 *)&sb_data_e2;
5063		data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
5064		bnx2x_map_sb_state_machines(sb_data_e2.index_data);
5065	} else {
5066		memset(&sb_data_e1x, 0,
5067		       sizeof(struct hc_status_block_data_e1x));
5068		sb_data_e1x.common.state = SB_ENABLED;
5069		sb_data_e1x.common.p_func.pf_id = BP_FUNC(bp);
5070		sb_data_e1x.common.p_func.vf_id = 0xff;
5071		sb_data_e1x.common.p_func.vf_valid = false;
5072		sb_data_e1x.common.p_func.vnic_id = BP_VN(bp);
5073		sb_data_e1x.common.same_igu_sb_1b = true;
5074		sb_data_e1x.common.host_sb_addr.hi = U64_HI(mapping);
5075		sb_data_e1x.common.host_sb_addr.lo = U64_LO(mapping);
5076		hc_sm_p = sb_data_e1x.common.state_machine;
5077		sb_data_p = (u32 *)&sb_data_e1x;
5078		data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
5079		bnx2x_map_sb_state_machines(sb_data_e1x.index_data);
5080	}
5081
5082	bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID],
5083				       igu_sb_id, igu_seg_id);
5084	bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID],
5085				       igu_sb_id, igu_seg_id);
5086
5087	DP(NETIF_MSG_HW, "Init FW SB %d\n", fw_sb_id);
5088
5089	/* write indecies to HW */
5090	bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
5091}
5092
5093static void bnx2x_update_coalesce_sb(struct bnx2x *bp, u8 fw_sb_id,
5094				     u16 tx_usec, u16 rx_usec)
5095{
5096	bnx2x_update_coalesce_sb_index(bp, fw_sb_id, HC_INDEX_ETH_RX_CQ_CONS,
5097				    false, rx_usec);
5098	bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
5099				       HC_INDEX_ETH_TX_CQ_CONS_COS0, false,
5100				       tx_usec);
5101	bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
5102				       HC_INDEX_ETH_TX_CQ_CONS_COS1, false,
5103				       tx_usec);
5104	bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
5105				       HC_INDEX_ETH_TX_CQ_CONS_COS2, false,
5106				       tx_usec);
5107}
5108
5109static void bnx2x_init_def_sb(struct bnx2x *bp)
5110{
5111	struct host_sp_status_block *def_sb = bp->def_status_blk;
5112	dma_addr_t mapping = bp->def_status_blk_mapping;
5113	int igu_sp_sb_index;
5114	int igu_seg_id;
5115	int port = BP_PORT(bp);
5116	int func = BP_FUNC(bp);
5117	int reg_offset, reg_offset_en5;
5118	u64 section;
5119	int index;
5120	struct hc_sp_status_block_data sp_sb_data;
5121	memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
5122
5123	if (CHIP_INT_MODE_IS_BC(bp)) {
5124		igu_sp_sb_index = DEF_SB_IGU_ID;
5125		igu_seg_id = HC_SEG_ACCESS_DEF;
5126	} else {
5127		igu_sp_sb_index = bp->igu_dsb_id;
5128		igu_seg_id = IGU_SEG_ACCESS_DEF;
5129	}
5130
5131	/* ATTN */
5132	section = ((u64)mapping) + offsetof(struct host_sp_status_block,
5133					    atten_status_block);
5134	def_sb->atten_status_block.status_block_id = igu_sp_sb_index;
5135
5136	bp->attn_state = 0;
5137
5138	reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
5139			     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
5140	reg_offset_en5 = (port ? MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 :
5141				 MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0);
5142	for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
5143		int sindex;
5144		/* take care of sig[0]..sig[4] */
5145		for (sindex = 0; sindex < 4; sindex++)
5146			bp->attn_group[index].sig[sindex] =
5147			   REG_RD(bp, reg_offset + sindex*0x4 + 0x10*index);
5148
5149		if (!CHIP_IS_E1x(bp))
5150			/*
5151			 * enable5 is separate from the rest of the registers,
5152			 * and therefore the address skip is 4
5153			 * and not 16 between the different groups
5154			 */
5155			bp->attn_group[index].sig[4] = REG_RD(bp,
5156					reg_offset_en5 + 0x4*index);
5157		else
5158			bp->attn_group[index].sig[4] = 0;
5159	}
5160
5161	if (bp->common.int_block == INT_BLOCK_HC) {
5162		reg_offset = (port ? HC_REG_ATTN_MSG1_ADDR_L :
5163				     HC_REG_ATTN_MSG0_ADDR_L);
5164
5165		REG_WR(bp, reg_offset, U64_LO(section));
5166		REG_WR(bp, reg_offset + 4, U64_HI(section));
5167	} else if (!CHIP_IS_E1x(bp)) {
5168		REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section));
5169		REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section));
5170	}
5171
5172	section = ((u64)mapping) + offsetof(struct host_sp_status_block,
5173					    sp_sb);
5174
5175	bnx2x_zero_sp_sb(bp);
5176
5177	sp_sb_data.state		= SB_ENABLED;
5178	sp_sb_data.host_sb_addr.lo	= U64_LO(section);
5179	sp_sb_data.host_sb_addr.hi	= U64_HI(section);
5180	sp_sb_data.igu_sb_id		= igu_sp_sb_index;
5181	sp_sb_data.igu_seg_id		= igu_seg_id;
5182	sp_sb_data.p_func.pf_id		= func;
5183	sp_sb_data.p_func.vnic_id	= BP_VN(bp);
5184	sp_sb_data.p_func.vf_id		= 0xff;
5185
5186	bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
5187
5188	bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
5189}
5190
5191void bnx2x_update_coalesce(struct bnx2x *bp)
5192{
5193	int i;
5194
5195	for_each_eth_queue(bp, i)
5196		bnx2x_update_coalesce_sb(bp, bp->fp[i].fw_sb_id,
5197					 bp->tx_ticks, bp->rx_ticks);
5198}
5199
5200static void bnx2x_init_sp_ring(struct bnx2x *bp)
5201{
5202	spin_lock_init(&bp->spq_lock);
5203	atomic_set(&bp->cq_spq_left, MAX_SPQ_PENDING);
5204
5205	bp->spq_prod_idx = 0;
5206	bp->dsb_sp_prod = BNX2X_SP_DSB_INDEX;
5207	bp->spq_prod_bd = bp->spq;
5208	bp->spq_last_bd = bp->spq_prod_bd + MAX_SP_DESC_CNT;
5209}
5210
5211static void bnx2x_init_eq_ring(struct bnx2x *bp)
5212{
5213	int i;
5214	for (i = 1; i <= NUM_EQ_PAGES; i++) {
5215		union event_ring_elem *elem =
5216			&bp->eq_ring[EQ_DESC_CNT_PAGE * i - 1];
5217
5218		elem->next_page.addr.hi =
5219			cpu_to_le32(U64_HI(bp->eq_mapping +
5220				   BCM_PAGE_SIZE * (i % NUM_EQ_PAGES)));
5221		elem->next_page.addr.lo =
5222			cpu_to_le32(U64_LO(bp->eq_mapping +
5223				   BCM_PAGE_SIZE*(i % NUM_EQ_PAGES)));
5224	}
5225	bp->eq_cons = 0;
5226	bp->eq_prod = NUM_EQ_DESC;
5227	bp->eq_cons_sb = BNX2X_EQ_INDEX;
5228	/* we want a warning message before it gets rought... */
5229	atomic_set(&bp->eq_spq_left,
5230		min_t(int, MAX_SP_DESC_CNT - MAX_SPQ_PENDING, NUM_EQ_DESC) - 1);
5231}
5232
5233
5234/* called with netif_addr_lock_bh() */
5235void bnx2x_set_q_rx_mode(struct bnx2x *bp, u8 cl_id,
5236			 unsigned long rx_mode_flags,
5237			 unsigned long rx_accept_flags,
5238			 unsigned long tx_accept_flags,
5239			 unsigned long ramrod_flags)
5240{
5241	struct bnx2x_rx_mode_ramrod_params ramrod_param;
5242	int rc;
5243
5244	memset(&ramrod_param, 0, sizeof(ramrod_param));
5245
5246	/* Prepare ramrod parameters */
5247	ramrod_param.cid = 0;
5248	ramrod_param.cl_id = cl_id;
5249	ramrod_param.rx_mode_obj = &bp->rx_mode_obj;
5250	ramrod_param.func_id = BP_FUNC(bp);
5251
5252	ramrod_param.pstate = &bp->sp_state;
5253	ramrod_param.state = BNX2X_FILTER_RX_MODE_PENDING;
5254
5255	ramrod_param.rdata = bnx2x_sp(bp, rx_mode_rdata);
5256	ramrod_param.rdata_mapping = bnx2x_sp_mapping(bp, rx_mode_rdata);
5257
5258	set_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
5259
5260	ramrod_param.ramrod_flags = ramrod_flags;
5261	ramrod_param.rx_mode_flags = rx_mode_flags;
5262
5263	ramrod_param.rx_accept_flags = rx_accept_flags;
5264	ramrod_param.tx_accept_flags = tx_accept_flags;
5265
5266	rc = bnx2x_config_rx_mode(bp, &ramrod_param);
5267	if (rc < 0) {
5268		BNX2X_ERR("Set rx_mode %d failed\n", bp->rx_mode);
5269		return;
5270	}
5271}
5272
5273/* called with netif_addr_lock_bh() */
5274void bnx2x_set_storm_rx_mode(struct bnx2x *bp)
5275{
5276	unsigned long rx_mode_flags = 0, ramrod_flags = 0;
5277	unsigned long rx_accept_flags = 0, tx_accept_flags = 0;
5278
5279#ifdef BCM_CNIC
5280	if (!NO_FCOE(bp))
5281
5282		/* Configure rx_mode of FCoE Queue */
5283		__set_bit(BNX2X_RX_MODE_FCOE_ETH, &rx_mode_flags);
5284#endif
5285
5286	switch (bp->rx_mode) {
5287	case BNX2X_RX_MODE_NONE:
5288		/*
5289		 * 'drop all' supersedes any accept flags that may have been
5290		 * passed to the function.
5291		 */
5292		break;
5293	case BNX2X_RX_MODE_NORMAL:
5294		__set_bit(BNX2X_ACCEPT_UNICAST, &rx_accept_flags);
5295		__set_bit(BNX2X_ACCEPT_MULTICAST, &rx_accept_flags);
5296		__set_bit(BNX2X_ACCEPT_BROADCAST, &rx_accept_flags);
5297
5298		/* internal switching mode */
5299		__set_bit(BNX2X_ACCEPT_UNICAST, &tx_accept_flags);
5300		__set_bit(BNX2X_ACCEPT_MULTICAST, &tx_accept_flags);
5301		__set_bit(BNX2X_ACCEPT_BROADCAST, &tx_accept_flags);
5302
5303		break;
5304	case BNX2X_RX_MODE_ALLMULTI:
5305		__set_bit(BNX2X_ACCEPT_UNICAST, &rx_accept_flags);
5306		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &rx_accept_flags);
5307		__set_bit(BNX2X_ACCEPT_BROADCAST, &rx_accept_flags);
5308
5309		/* internal switching mode */
5310		__set_bit(BNX2X_ACCEPT_UNICAST, &tx_accept_flags);
5311		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &tx_accept_flags);
5312		__set_bit(BNX2X_ACCEPT_BROADCAST, &tx_accept_flags);
5313
5314		break;
5315	case BNX2X_RX_MODE_PROMISC:
5316		/* According to deffinition of SI mode, iface in promisc mode
5317		 * should receive matched and unmatched (in resolution of port)
5318		 * unicast packets.
5319		 */
5320		__set_bit(BNX2X_ACCEPT_UNMATCHED, &rx_accept_flags);
5321		__set_bit(BNX2X_ACCEPT_UNICAST, &rx_accept_flags);
5322		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &rx_accept_flags);
5323		__set_bit(BNX2X_ACCEPT_BROADCAST, &rx_accept_flags);
5324
5325		/* internal switching mode */
5326		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &tx_accept_flags);
5327		__set_bit(BNX2X_ACCEPT_BROADCAST, &tx_accept_flags);
5328
5329		if (IS_MF_SI(bp))
5330			__set_bit(BNX2X_ACCEPT_ALL_UNICAST, &tx_accept_flags);
5331		else
5332			__set_bit(BNX2X_ACCEPT_UNICAST, &tx_accept_flags);
5333
5334		break;
5335	default:
5336		BNX2X_ERR("Unknown rx_mode: %d\n", bp->rx_mode);
5337		return;
5338	}
5339
5340	if (bp->rx_mode != BNX2X_RX_MODE_NONE) {
5341		__set_bit(BNX2X_ACCEPT_ANY_VLAN, &rx_accept_flags);
5342		__set_bit(BNX2X_ACCEPT_ANY_VLAN, &tx_accept_flags);
5343	}
5344
5345	__set_bit(RAMROD_RX, &ramrod_flags);
5346	__set_bit(RAMROD_TX, &ramrod_flags);
5347
5348	bnx2x_set_q_rx_mode(bp, bp->fp->cl_id, rx_mode_flags, rx_accept_flags,
5349			    tx_accept_flags, ramrod_flags);
5350}
5351
5352static void bnx2x_init_internal_common(struct bnx2x *bp)
5353{
5354	int i;
5355
5356	if (IS_MF_SI(bp))
5357		/*
5358		 * In switch independent mode, the TSTORM needs to accept
5359		 * packets that failed classification, since approximate match
5360		 * mac addresses aren't written to NIG LLH
5361		 */
5362		REG_WR8(bp, BAR_TSTRORM_INTMEM +
5363			    TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET, 2);
5364	else if (!CHIP_IS_E1(bp)) /* 57710 doesn't support MF */
5365		REG_WR8(bp, BAR_TSTRORM_INTMEM +
5366			    TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET, 0);
5367
5368	/* Zero this manually as its initialization is
5369	   currently missing in the initTool */
5370	for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++)
5371		REG_WR(bp, BAR_USTRORM_INTMEM +
5372		       USTORM_AGG_DATA_OFFSET + i * 4, 0);
5373	if (!CHIP_IS_E1x(bp)) {
5374		REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET,
5375			CHIP_INT_MODE_IS_BC(bp) ?
5376			HC_IGU_BC_MODE : HC_IGU_NBC_MODE);
5377	}
5378}
5379
5380static void bnx2x_init_internal(struct bnx2x *bp, u32 load_code)
5381{
5382	switch (load_code) {
5383	case FW_MSG_CODE_DRV_LOAD_COMMON:
5384	case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP:
5385		bnx2x_init_internal_common(bp);
5386		/* no break */
5387
5388	case FW_MSG_CODE_DRV_LOAD_PORT:
5389		/* nothing to do */
5390		/* no break */
5391
5392	case FW_MSG_CODE_DRV_LOAD_FUNCTION:
5393		/* internal memory per function is
5394		   initialized inside bnx2x_pf_init */
5395		break;
5396
5397	default:
5398		BNX2X_ERR("Unknown load_code (0x%x) from MCP\n", load_code);
5399		break;
5400	}
5401}
5402
5403static inline u8 bnx2x_fp_igu_sb_id(struct bnx2x_fastpath *fp)
5404{
5405	return fp->bp->igu_base_sb + fp->index + CNIC_PRESENT;
5406}
5407
5408static inline u8 bnx2x_fp_fw_sb_id(struct bnx2x_fastpath *fp)
5409{
5410	return fp->bp->base_fw_ndsb + fp->index + CNIC_PRESENT;
5411}
5412
5413static inline u8 bnx2x_fp_cl_id(struct bnx2x_fastpath *fp)
5414{
5415	if (CHIP_IS_E1x(fp->bp))
5416		return BP_L_ID(fp->bp) + fp->index;
5417	else	/* We want Client ID to be the same as IGU SB ID for 57712 */
5418		return bnx2x_fp_igu_sb_id(fp);
5419}
5420
5421static void bnx2x_init_eth_fp(struct bnx2x *bp, int fp_idx)
5422{
5423	struct bnx2x_fastpath *fp = &bp->fp[fp_idx];
5424	u8 cos;
5425	unsigned long q_type = 0;
5426	u32 cids[BNX2X_MULTI_TX_COS] = { 0 };
5427	fp->rx_queue = fp_idx;
5428	fp->cid = fp_idx;
5429	fp->cl_id = bnx2x_fp_cl_id(fp);
5430	fp->fw_sb_id = bnx2x_fp_fw_sb_id(fp);
5431	fp->igu_sb_id = bnx2x_fp_igu_sb_id(fp);
5432	/* qZone id equals to FW (per path) client id */
5433	fp->cl_qzone_id  = bnx2x_fp_qzone_id(fp);
5434
5435	/* init shortcut */
5436	fp->ustorm_rx_prods_offset = bnx2x_rx_ustorm_prods_offset(fp);
5437	/* Setup SB indicies */
5438	fp->rx_cons_sb = BNX2X_RX_SB_INDEX;
5439
5440	/* Configure Queue State object */
5441	__set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
5442	__set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
5443
5444	BUG_ON(fp->max_cos > BNX2X_MULTI_TX_COS);
5445
5446	/* init tx data */
5447	for_each_cos_in_tx_queue(fp, cos) {
5448		bnx2x_init_txdata(bp, &fp->txdata[cos],
5449				  CID_COS_TO_TX_ONLY_CID(fp->cid, cos),
5450				  FP_COS_TO_TXQ(fp, cos),
5451				  BNX2X_TX_SB_INDEX_BASE + cos);
5452		cids[cos] = fp->txdata[cos].cid;
5453	}
5454
5455	bnx2x_init_queue_obj(bp, &fp->q_obj, fp->cl_id, cids, fp->max_cos,
5456			     BP_FUNC(bp), bnx2x_sp(bp, q_rdata),
5457			     bnx2x_sp_mapping(bp, q_rdata), q_type);
5458
5459	/**
5460	 * Configure classification DBs: Always enable Tx switching
5461	 */
5462	bnx2x_init_vlan_mac_fp_objs(fp, BNX2X_OBJ_TYPE_RX_TX);
5463
5464	DP(NETIF_MSG_IFUP, "queue[%d]:  bnx2x_init_sb(%p,%p)  "
5465				   "cl_id %d  fw_sb %d  igu_sb %d\n",
5466		   fp_idx, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id,
5467		   fp->igu_sb_id);
5468	bnx2x_init_sb(bp, fp->status_blk_mapping, BNX2X_VF_ID_INVALID, false,
5469		      fp->fw_sb_id, fp->igu_sb_id);
5470
5471	bnx2x_update_fpsb_idx(fp);
5472}
5473
5474void bnx2x_nic_init(struct bnx2x *bp, u32 load_code)
5475{
5476	int i;
5477
5478	for_each_eth_queue(bp, i)
5479		bnx2x_init_eth_fp(bp, i);
5480#ifdef BCM_CNIC
5481	if (!NO_FCOE(bp))
5482		bnx2x_init_fcoe_fp(bp);
5483
5484	bnx2x_init_sb(bp, bp->cnic_sb_mapping,
5485		      BNX2X_VF_ID_INVALID, false,
5486		      bnx2x_cnic_fw_sb_id(bp), bnx2x_cnic_igu_sb_id(bp));
5487
5488#endif
5489
5490	/* Initialize MOD_ABS interrupts */
5491	bnx2x_init_mod_abs_int(bp, &bp->link_vars, bp->common.chip_id,
5492			       bp->common.shmem_base, bp->common.shmem2_base,
5493			       BP_PORT(bp));
5494	/* ensure status block indices were read */
5495	rmb();
5496
5497	bnx2x_init_def_sb(bp);
5498	bnx2x_update_dsb_idx(bp);
5499	bnx2x_init_rx_rings(bp);
5500	bnx2x_init_tx_rings(bp);
5501	bnx2x_init_sp_ring(bp);
5502	bnx2x_init_eq_ring(bp);
5503	bnx2x_init_internal(bp, load_code);
5504	bnx2x_pf_init(bp);
5505	bnx2x_stats_init(bp);
5506
5507	/* flush all before enabling interrupts */
5508	mb();
5509	mmiowb();
5510
5511	bnx2x_int_enable(bp);
5512
5513	/* Check for SPIO5 */
5514	bnx2x_attn_int_deasserted0(bp,
5515		REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + BP_PORT(bp)*4) &
5516				   AEU_INPUTS_ATTN_BITS_SPIO5);
5517}
5518
5519/* end of nic init */
5520
5521/*
5522 * gzip service functions
5523 */
5524
5525static int bnx2x_gunzip_init(struct bnx2x *bp)
5526{
5527	bp->gunzip_buf = dma_alloc_coherent(&bp->pdev->dev, FW_BUF_SIZE,
5528					    &bp->gunzip_mapping, GFP_KERNEL);
5529	if (bp->gunzip_buf  == NULL)
5530		goto gunzip_nomem1;
5531
5532	bp->strm = kmalloc(sizeof(*bp->strm), GFP_KERNEL);
5533	if (bp->strm  == NULL)
5534		goto gunzip_nomem2;
5535
5536	bp->strm->workspace = vmalloc(zlib_inflate_workspacesize());
5537	if (bp->strm->workspace == NULL)
5538		goto gunzip_nomem3;
5539
5540	return 0;
5541
5542gunzip_nomem3:
5543	kfree(bp->strm);
5544	bp->strm = NULL;
5545
5546gunzip_nomem2:
5547	dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
5548			  bp->gunzip_mapping);
5549	bp->gunzip_buf = NULL;
5550
5551gunzip_nomem1:
5552	netdev_err(bp->dev, "Cannot allocate firmware buffer for"
5553	       " un-compression\n");
5554	return -ENOMEM;
5555}
5556
5557static void bnx2x_gunzip_end(struct bnx2x *bp)
5558{
5559	if (bp->strm) {
5560		vfree(bp->strm->workspace);
5561		kfree(bp->strm);
5562		bp->strm = NULL;
5563	}
5564
5565	if (bp->gunzip_buf) {
5566		dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
5567				  bp->gunzip_mapping);
5568		bp->gunzip_buf = NULL;
5569	}
5570}
5571
5572static int bnx2x_gunzip(struct bnx2x *bp, const u8 *zbuf, int len)
5573{
5574	int n, rc;
5575
5576	/* check gzip header */
5577	if ((zbuf[0] != 0x1f) || (zbuf[1] != 0x8b) || (zbuf[2] != Z_DEFLATED)) {
5578		BNX2X_ERR("Bad gzip header\n");
5579		return -EINVAL;
5580	}
5581
5582	n = 10;
5583
5584#define FNAME				0x8
5585
5586	if (zbuf[3] & FNAME)
5587		while ((zbuf[n++] != 0) && (n < len));
5588
5589	bp->strm->next_in = (typeof(bp->strm->next_in))zbuf + n;
5590	bp->strm->avail_in = len - n;
5591	bp->strm->next_out = bp->gunzip_buf;
5592	bp->strm->avail_out = FW_BUF_SIZE;
5593
5594	rc = zlib_inflateInit2(bp->strm, -MAX_WBITS);
5595	if (rc != Z_OK)
5596		return rc;
5597
5598	rc = zlib_inflate(bp->strm, Z_FINISH);
5599	if ((rc != Z_OK) && (rc != Z_STREAM_END))
5600		netdev_err(bp->dev, "Firmware decompression error: %s\n",
5601			   bp->strm->msg);
5602
5603	bp->gunzip_outlen = (FW_BUF_SIZE - bp->strm->avail_out);
5604	if (bp->gunzip_outlen & 0x3)
5605		netdev_err(bp->dev, "Firmware decompression error:"
5606				    " gunzip_outlen (%d) not aligned\n",
5607				bp->gunzip_outlen);
5608	bp->gunzip_outlen >>= 2;
5609
5610	zlib_inflateEnd(bp->strm);
5611
5612	if (rc == Z_STREAM_END)
5613		return 0;
5614
5615	return rc;
5616}
5617
5618/* nic load/unload */
5619
5620/*
5621 * General service functions
5622 */
5623
5624/* send a NIG loopback debug packet */
5625static void bnx2x_lb_pckt(struct bnx2x *bp)
5626{
5627	u32 wb_write[3];
5628
5629	/* Ethernet source and destination addresses */
5630	wb_write[0] = 0x55555555;
5631	wb_write[1] = 0x55555555;
5632	wb_write[2] = 0x20;		/* SOP */
5633	REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
5634
5635	/* NON-IP protocol */
5636	wb_write[0] = 0x09000000;
5637	wb_write[1] = 0x55555555;
5638	wb_write[2] = 0x10;		/* EOP, eop_bvalid = 0 */
5639	REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
5640}
5641
5642/* some of the internal memories
5643 * are not directly readable from the driver
5644 * to test them we send debug packets
5645 */
5646static int bnx2x_int_mem_test(struct bnx2x *bp)
5647{
5648	int factor;
5649	int count, i;
5650	u32 val = 0;
5651
5652	if (CHIP_REV_IS_FPGA(bp))
5653		factor = 120;
5654	else if (CHIP_REV_IS_EMUL(bp))
5655		factor = 200;
5656	else
5657		factor = 1;
5658
5659	/* Disable inputs of parser neighbor blocks */
5660	REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
5661	REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
5662	REG_WR(bp, CFC_REG_DEBUG0, 0x1);
5663	REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
5664
5665	/*  Write 0 to parser credits for CFC search request */
5666	REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
5667
5668	/* send Ethernet packet */
5669	bnx2x_lb_pckt(bp);
5670
5671	/* TODO do i reset NIG statistic? */
5672	/* Wait until NIG register shows 1 packet of size 0x10 */
5673	count = 1000 * factor;
5674	while (count) {
5675
5676		bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
5677		val = *bnx2x_sp(bp, wb_data[0]);
5678		if (val == 0x10)
5679			break;
5680
5681		msleep(10);
5682		count--;
5683	}
5684	if (val != 0x10) {
5685		BNX2X_ERR("NIG timeout  val = 0x%x\n", val);
5686		return -1;
5687	}
5688
5689	/* Wait until PRS register shows 1 packet */
5690	count = 1000 * factor;
5691	while (count) {
5692		val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
5693		if (val == 1)
5694			break;
5695
5696		msleep(10);
5697		count--;
5698	}
5699	if (val != 0x1) {
5700		BNX2X_ERR("PRS timeout val = 0x%x\n", val);
5701		return -2;
5702	}
5703
5704	/* Reset and init BRB, PRS */
5705	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
5706	msleep(50);
5707	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
5708	msleep(50);
5709	bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
5710	bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
5711
5712	DP(NETIF_MSG_HW, "part2\n");
5713
5714	/* Disable inputs of parser neighbor blocks */
5715	REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
5716	REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
5717	REG_WR(bp, CFC_REG_DEBUG0, 0x1);
5718	REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
5719
5720	/* Write 0 to parser credits for CFC search request */
5721	REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
5722
5723	/* send 10 Ethernet packets */
5724	for (i = 0; i < 10; i++)
5725		bnx2x_lb_pckt(bp);
5726
5727	/* Wait until NIG register shows 10 + 1
5728	   packets of size 11*0x10 = 0xb0 */
5729	count = 1000 * factor;
5730	while (count) {
5731
5732		bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
5733		val = *bnx2x_sp(bp, wb_data[0]);
5734		if (val == 0xb0)
5735			break;
5736
5737		msleep(10);
5738		count--;
5739	}
5740	if (val != 0xb0) {
5741		BNX2X_ERR("NIG timeout  val = 0x%x\n", val);
5742		return -3;
5743	}
5744
5745	/* Wait until PRS register shows 2 packets */
5746	val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
5747	if (val != 2)
5748		BNX2X_ERR("PRS timeout  val = 0x%x\n", val);
5749
5750	/* Write 1 to parser credits for CFC search request */
5751	REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1);
5752
5753	/* Wait until PRS register shows 3 packets */
5754	msleep(10 * factor);
5755	/* Wait until NIG register shows 1 packet of size 0x10 */
5756	val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
5757	if (val != 3)
5758		BNX2X_ERR("PRS timeout  val = 0x%x\n", val);
5759
5760	/* clear NIG EOP FIFO */
5761	for (i = 0; i < 11; i++)
5762		REG_RD(bp, NIG_REG_INGRESS_EOP_LB_FIFO);
5763	val = REG_RD(bp, NIG_REG_INGRESS_EOP_LB_EMPTY);
5764	if (val != 1) {
5765		BNX2X_ERR("clear of NIG failed\n");
5766		return -4;
5767	}
5768
5769	/* Reset and init BRB, PRS, NIG */
5770	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
5771	msleep(50);
5772	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
5773	msleep(50);
5774	bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
5775	bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
5776#ifndef BCM_CNIC
5777	/* set NIC mode */
5778	REG_WR(bp, PRS_REG_NIC_MODE, 1);
5779#endif
5780
5781	/* Enable inputs of parser neighbor blocks */
5782	REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x7fffffff);
5783	REG_WR(bp, TCM_REG_PRS_IFEN, 0x1);
5784	REG_WR(bp, CFC_REG_DEBUG0, 0x0);
5785	REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x1);
5786
5787	DP(NETIF_MSG_HW, "done\n");
5788
5789	return 0; /* OK */
5790}
5791
5792static void bnx2x_enable_blocks_attention(struct bnx2x *bp)
5793{
5794	REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
5795	if (!CHIP_IS_E1x(bp))
5796		REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0x40);
5797	else
5798		REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0);
5799	REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
5800	REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
5801	/*
5802	 * mask read length error interrupts in brb for parser
5803	 * (parsing unit and 'checksum and crc' unit)
5804	 * these errors are legal (PU reads fixed length and CAC can cause
5805	 * read length error on truncated packets)
5806	 */
5807	REG_WR(bp, BRB1_REG_BRB1_INT_MASK, 0xFC00);
5808	REG_WR(bp, QM_REG_QM_INT_MASK, 0);
5809	REG_WR(bp, TM_REG_TM_INT_MASK, 0);
5810	REG_WR(bp, XSDM_REG_XSDM_INT_MASK_0, 0);
5811	REG_WR(bp, XSDM_REG_XSDM_INT_MASK_1, 0);
5812	REG_WR(bp, XCM_REG_XCM_INT_MASK, 0);
5813/*	REG_WR(bp, XSEM_REG_XSEM_INT_MASK_0, 0); */
5814/*	REG_WR(bp, XSEM_REG_XSEM_INT_MASK_1, 0); */
5815	REG_WR(bp, USDM_REG_USDM_INT_MASK_0, 0);
5816	REG_WR(bp, USDM_REG_USDM_INT_MASK_1, 0);
5817	REG_WR(bp, UCM_REG_UCM_INT_MASK, 0);
5818/*	REG_WR(bp, USEM_REG_USEM_INT_MASK_0, 0); */
5819/*	REG_WR(bp, USEM_REG_USEM_INT_MASK_1, 0); */
5820	REG_WR(bp, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0);
5821	REG_WR(bp, CSDM_REG_CSDM_INT_MASK_0, 0);
5822	REG_WR(bp, CSDM_REG_CSDM_INT_MASK_1, 0);
5823	REG_WR(bp, CCM_REG_CCM_INT_MASK, 0);
5824/*	REG_WR(bp, CSEM_REG_CSEM_INT_MASK_0, 0); */
5825/*	REG_WR(bp, CSEM_REG_CSEM_INT_MASK_1, 0); */
5826
5827	if (CHIP_REV_IS_FPGA(bp))
5828		REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0, 0x580000);
5829	else if (!CHIP_IS_E1x(bp))
5830		REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0,
5831			   (PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF
5832				| PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT
5833				| PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN
5834				| PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED
5835				| PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED));
5836	else
5837		REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0, 0x480000);
5838	REG_WR(bp, TSDM_REG_TSDM_INT_MASK_0, 0);
5839	REG_WR(bp, TSDM_REG_TSDM_INT_MASK_1, 0);
5840	REG_WR(bp, TCM_REG_TCM_INT_MASK, 0);
5841/*	REG_WR(bp, TSEM_REG_TSEM_INT_MASK_0, 0); */
5842
5843	if (!CHIP_IS_E1x(bp))
5844		/* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */
5845		REG_WR(bp, TSEM_REG_TSEM_INT_MASK_1, 0x07ff);
5846
5847	REG_WR(bp, CDU_REG_CDU_INT_MASK, 0);
5848	REG_WR(bp, DMAE_REG_DMAE_INT_MASK, 0);
5849/*	REG_WR(bp, MISC_REG_MISC_INT_MASK, 0); */
5850	REG_WR(bp, PBF_REG_PBF_INT_MASK, 0x18);		/* bit 3,4 masked */
5851}
5852
5853static void bnx2x_reset_common(struct bnx2x *bp)
5854{
5855	u32 val = 0x1400;
5856
5857	/* reset_common */
5858	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
5859	       0xd3ffff7f);
5860
5861	if (CHIP_IS_E3(bp)) {
5862		val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
5863		val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
5864	}
5865
5866	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR, val);
5867}
5868
5869static void bnx2x_setup_dmae(struct bnx2x *bp)
5870{
5871	bp->dmae_ready = 0;
5872	spin_lock_init(&bp->dmae_lock);
5873}
5874
5875static void bnx2x_init_pxp(struct bnx2x *bp)
5876{
5877	u16 devctl;
5878	int r_order, w_order;
5879
5880	pci_read_config_word(bp->pdev,
5881			     pci_pcie_cap(bp->pdev) + PCI_EXP_DEVCTL, &devctl);
5882	DP(NETIF_MSG_HW, "read 0x%x from devctl\n", devctl);
5883	w_order = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
5884	if (bp->mrrs == -1)
5885		r_order = ((devctl & PCI_EXP_DEVCTL_READRQ) >> 12);
5886	else {
5887		DP(NETIF_MSG_HW, "force read order to %d\n", bp->mrrs);
5888		r_order = bp->mrrs;
5889	}
5890
5891	bnx2x_init_pxp_arb(bp, r_order, w_order);
5892}
5893
5894static void bnx2x_setup_fan_failure_detection(struct bnx2x *bp)
5895{
5896	int is_required;
5897	u32 val;
5898	int port;
5899
5900	if (BP_NOMCP(bp))
5901		return;
5902
5903	is_required = 0;
5904	val = SHMEM_RD(bp, dev_info.shared_hw_config.config2) &
5905	      SHARED_HW_CFG_FAN_FAILURE_MASK;
5906
5907	if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED)
5908		is_required = 1;
5909
5910	/*
5911	 * The fan failure mechanism is usually related to the PHY type since
5912	 * the power consumption of the board is affected by the PHY. Currently,
5913	 * fan is required for most designs with SFX7101, BCM8727 and BCM8481.
5914	 */
5915	else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE)
5916		for (port = PORT_0; port < PORT_MAX; port++) {
5917			is_required |=
5918				bnx2x_fan_failure_det_req(
5919					bp,
5920					bp->common.shmem_base,
5921					bp->common.shmem2_base,
5922					port);
5923		}
5924
5925	DP(NETIF_MSG_HW, "fan detection setting: %d\n", is_required);
5926
5927	if (is_required == 0)
5928		return;
5929
5930	/* Fan failure is indicated by SPIO 5 */
5931	bnx2x_set_spio(bp, MISC_REGISTERS_SPIO_5,
5932		       MISC_REGISTERS_SPIO_INPUT_HI_Z);
5933
5934	/* set to active low mode */
5935	val = REG_RD(bp, MISC_REG_SPIO_INT);
5936	val |= ((1 << MISC_REGISTERS_SPIO_5) <<
5937					MISC_REGISTERS_SPIO_INT_OLD_SET_POS);
5938	REG_WR(bp, MISC_REG_SPIO_INT, val);
5939
5940	/* enable interrupt to signal the IGU */
5941	val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
5942	val |= (1 << MISC_REGISTERS_SPIO_5);
5943	REG_WR(bp, MISC_REG_SPIO_EVENT_EN, val);
5944}
5945
5946static void bnx2x_pretend_func(struct bnx2x *bp, u8 pretend_func_num)
5947{
5948	u32 offset = 0;
5949
5950	if (CHIP_IS_E1(bp))
5951		return;
5952	if (CHIP_IS_E1H(bp) && (pretend_func_num >= E1H_FUNC_MAX))
5953		return;
5954
5955	switch (BP_ABS_FUNC(bp)) {
5956	case 0:
5957		offset = PXP2_REG_PGL_PRETEND_FUNC_F0;
5958		break;
5959	case 1:
5960		offset = PXP2_REG_PGL_PRETEND_FUNC_F1;
5961		break;
5962	case 2:
5963		offset = PXP2_REG_PGL_PRETEND_FUNC_F2;
5964		break;
5965	case 3:
5966		offset = PXP2_REG_PGL_PRETEND_FUNC_F3;
5967		break;
5968	case 4:
5969		offset = PXP2_REG_PGL_PRETEND_FUNC_F4;
5970		break;
5971	case 5:
5972		offset = PXP2_REG_PGL_PRETEND_FUNC_F5;
5973		break;
5974	case 6:
5975		offset = PXP2_REG_PGL_PRETEND_FUNC_F6;
5976		break;
5977	case 7:
5978		offset = PXP2_REG_PGL_PRETEND_FUNC_F7;
5979		break;
5980	default:
5981		return;
5982	}
5983
5984	REG_WR(bp, offset, pretend_func_num);
5985	REG_RD(bp, offset);
5986	DP(NETIF_MSG_HW, "Pretending to func %d\n", pretend_func_num);
5987}
5988
5989void bnx2x_pf_disable(struct bnx2x *bp)
5990{
5991	u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
5992	val &= ~IGU_PF_CONF_FUNC_EN;
5993
5994	REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
5995	REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
5996	REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 0);
5997}
5998
5999static inline void bnx2x__common_init_phy(struct bnx2x *bp)
6000{
6001	u32 shmem_base[2], shmem2_base[2];
6002	shmem_base[0] =  bp->common.shmem_base;
6003	shmem2_base[0] = bp->common.shmem2_base;
6004	if (!CHIP_IS_E1x(bp)) {
6005		shmem_base[1] =
6006			SHMEM2_RD(bp, other_shmem_base_addr);
6007		shmem2_base[1] =
6008			SHMEM2_RD(bp, other_shmem2_base_addr);
6009	}
6010	bnx2x_acquire_phy_lock(bp);
6011	bnx2x_common_init_phy(bp, shmem_base, shmem2_base,
6012			      bp->common.chip_id);
6013	bnx2x_release_phy_lock(bp);
6014}
6015
6016/**
6017 * bnx2x_init_hw_common - initialize the HW at the COMMON phase.
6018 *
6019 * @bp:		driver handle
6020 */
6021static int bnx2x_init_hw_common(struct bnx2x *bp)
6022{
6023	u32 val;
6024
6025	DP(BNX2X_MSG_MCP, "starting common init  func %d\n", BP_ABS_FUNC(bp));
6026
6027	/*
6028	 * take the UNDI lock to protect undi_unload flow from accessing
6029	 * registers while we're resetting the chip
6030	 */
6031	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
6032
6033	bnx2x_reset_common(bp);
6034	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0xffffffff);
6035
6036	val = 0xfffc;
6037	if (CHIP_IS_E3(bp)) {
6038		val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
6039		val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
6040	}
6041	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET, val);
6042
6043	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
6044
6045	bnx2x_init_block(bp, BLOCK_MISC, PHASE_COMMON);
6046
6047	if (!CHIP_IS_E1x(bp)) {
6048		u8 abs_func_id;
6049
6050		/**
6051		 * 4-port mode or 2-port mode we need to turn of master-enable
6052		 * for everyone, after that, turn it back on for self.
6053		 * so, we disregard multi-function or not, and always disable
6054		 * for all functions on the given path, this means 0,2,4,6 for
6055		 * path 0 and 1,3,5,7 for path 1
6056		 */
6057		for (abs_func_id = BP_PATH(bp);
6058		     abs_func_id < E2_FUNC_MAX*2; abs_func_id += 2) {
6059			if (abs_func_id == BP_ABS_FUNC(bp)) {
6060				REG_WR(bp,
6061				    PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER,
6062				    1);
6063				continue;
6064			}
6065
6066			bnx2x_pretend_func(bp, abs_func_id);
6067			/* clear pf enable */
6068			bnx2x_pf_disable(bp);
6069			bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
6070		}
6071	}
6072
6073	bnx2x_init_block(bp, BLOCK_PXP, PHASE_COMMON);
6074	if (CHIP_IS_E1(bp)) {
6075		/* enable HW interrupt from PXP on USDM overflow
6076		   bit 16 on INT_MASK_0 */
6077		REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
6078	}
6079
6080	bnx2x_init_block(bp, BLOCK_PXP2, PHASE_COMMON);
6081	bnx2x_init_pxp(bp);
6082
6083#ifdef __BIG_ENDIAN
6084	REG_WR(bp, PXP2_REG_RQ_QM_ENDIAN_M, 1);
6085	REG_WR(bp, PXP2_REG_RQ_TM_ENDIAN_M, 1);
6086	REG_WR(bp, PXP2_REG_RQ_SRC_ENDIAN_M, 1);
6087	REG_WR(bp, PXP2_REG_RQ_CDU_ENDIAN_M, 1);
6088	REG_WR(bp, PXP2_REG_RQ_DBG_ENDIAN_M, 1);
6089	/* make sure this value is 0 */
6090	REG_WR(bp, PXP2_REG_RQ_HC_ENDIAN_M, 0);
6091
6092/*	REG_WR(bp, PXP2_REG_RD_PBF_SWAP_MODE, 1); */
6093	REG_WR(bp, PXP2_REG_RD_QM_SWAP_MODE, 1);
6094	REG_WR(bp, PXP2_REG_RD_TM_SWAP_MODE, 1);
6095	REG_WR(bp, PXP2_REG_RD_SRC_SWAP_MODE, 1);
6096	REG_WR(bp, PXP2_REG_RD_CDURD_SWAP_MODE, 1);
6097#endif
6098
6099	bnx2x_ilt_init_page_size(bp, INITOP_SET);
6100
6101	if (CHIP_REV_IS_FPGA(bp) && CHIP_IS_E1H(bp))
6102		REG_WR(bp, PXP2_REG_PGL_TAGS_LIMIT, 0x1);
6103
6104	/* let the HW do it's magic ... */
6105	msleep(100);
6106	/* finish PXP init */
6107	val = REG_RD(bp, PXP2_REG_RQ_CFG_DONE);
6108	if (val != 1) {
6109		BNX2X_ERR("PXP2 CFG failed\n");
6110		return -EBUSY;
6111	}
6112	val = REG_RD(bp, PXP2_REG_RD_INIT_DONE);
6113	if (val != 1) {
6114		BNX2X_ERR("PXP2 RD_INIT failed\n");
6115		return -EBUSY;
6116	}
6117
6118	/* Timers bug workaround E2 only. We need to set the entire ILT to
6119	 * have entries with value "0" and valid bit on.
6120	 * This needs to be done by the first PF that is loaded in a path
6121	 * (i.e. common phase)
6122	 */
6123	if (!CHIP_IS_E1x(bp)) {
6124/* In E2 there is a bug in the timers block that can cause function 6 / 7
6125 * (i.e. vnic3) to start even if it is marked as "scan-off".
6126 * This occurs when a different function (func2,3) is being marked
6127 * as "scan-off". Real-life scenario for example: if a driver is being
6128 * load-unloaded while func6,7 are down. This will cause the timer to access
6129 * the ilt, translate to a logical address and send a request to read/write.
6130 * Since the ilt for the function that is down is not valid, this will cause
6131 * a translation error which is unrecoverable.
6132 * The Workaround is intended to make sure that when this happens nothing fatal
6133 * will occur. The workaround:
6134 *	1.  First PF driver which loads on a path will:
6135 *		a.  After taking the chip out of reset, by using pretend,
6136 *		    it will write "0" to the following registers of
6137 *		    the other vnics.
6138 *		    REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
6139 *		    REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0);
6140 *		    REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0);
6141 *		    And for itself it will write '1' to
6142 *		    PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable
6143 *		    dmae-operations (writing to pram for example.)
6144 *		    note: can be done for only function 6,7 but cleaner this
6145 *			  way.
6146 *		b.  Write zero+valid to the entire ILT.
6147 *		c.  Init the first_timers_ilt_entry, last_timers_ilt_entry of
6148 *		    VNIC3 (of that port). The range allocated will be the
6149 *		    entire ILT. This is needed to prevent  ILT range error.
6150 *	2.  Any PF driver load flow:
6151 *		a.  ILT update with the physical addresses of the allocated
6152 *		    logical pages.
6153 *		b.  Wait 20msec. - note that this timeout is needed to make
6154 *		    sure there are no requests in one of the PXP internal
6155 *		    queues with "old" ILT addresses.
6156 *		c.  PF enable in the PGLC.
6157 *		d.  Clear the was_error of the PF in the PGLC. (could have
6158 *		    occured while driver was down)
6159 *		e.  PF enable in the CFC (WEAK + STRONG)
6160 *		f.  Timers scan enable
6161 *	3.  PF driver unload flow:
6162 *		a.  Clear the Timers scan_en.
6163 *		b.  Polling for scan_on=0 for that PF.
6164 *		c.  Clear the PF enable bit in the PXP.
6165 *		d.  Clear the PF enable in the CFC (WEAK + STRONG)
6166 *		e.  Write zero+valid to all ILT entries (The valid bit must
6167 *		    stay set)
6168 *		f.  If this is VNIC 3 of a port then also init
6169 *		    first_timers_ilt_entry to zero and last_timers_ilt_entry
6170 *		    to the last enrty in the ILT.
6171 *
6172 *	Notes:
6173 *	Currently the PF error in the PGLC is non recoverable.
6174 *	In the future the there will be a recovery routine for this error.
6175 *	Currently attention is masked.
6176 *	Having an MCP lock on the load/unload process does not guarantee that
6177 *	there is no Timer disable during Func6/7 enable. This is because the
6178 *	Timers scan is currently being cleared by the MCP on FLR.
6179 *	Step 2.d can be done only for PF6/7 and the driver can also check if
6180 *	there is error before clearing it. But the flow above is simpler and
6181 *	more general.
6182 *	All ILT entries are written by zero+valid and not just PF6/7
6183 *	ILT entries since in the future the ILT entries allocation for
6184 *	PF-s might be dynamic.
6185 */
6186		struct ilt_client_info ilt_cli;
6187		struct bnx2x_ilt ilt;
6188		memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
6189		memset(&ilt, 0, sizeof(struct bnx2x_ilt));
6190
6191		/* initialize dummy TM client */
6192		ilt_cli.start = 0;
6193		ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
6194		ilt_cli.client_num = ILT_CLIENT_TM;
6195
6196		/* Step 1: set zeroes to all ilt page entries with valid bit on
6197		 * Step 2: set the timers first/last ilt entry to point
6198		 * to the entire range to prevent ILT range error for 3rd/4th
6199		 * vnic	(this code assumes existance of the vnic)
6200		 *
6201		 * both steps performed by call to bnx2x_ilt_client_init_op()
6202		 * with dummy TM client
6203		 *
6204		 * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT
6205		 * and his brother are split registers
6206		 */
6207		bnx2x_pretend_func(bp, (BP_PATH(bp) + 6));
6208		bnx2x_ilt_client_init_op_ilt(bp, &ilt, &ilt_cli, INITOP_CLEAR);
6209		bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
6210
6211		REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN, BNX2X_PXP_DRAM_ALIGN);
6212		REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_RD, BNX2X_PXP_DRAM_ALIGN);
6213		REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1);
6214	}
6215
6216
6217	REG_WR(bp, PXP2_REG_RQ_DISABLE_INPUTS, 0);
6218	REG_WR(bp, PXP2_REG_RD_DISABLE_INPUTS, 0);
6219
6220	if (!CHIP_IS_E1x(bp)) {
6221		int factor = CHIP_REV_IS_EMUL(bp) ? 1000 :
6222				(CHIP_REV_IS_FPGA(bp) ? 400 : 0);
6223		bnx2x_init_block(bp, BLOCK_PGLUE_B, PHASE_COMMON);
6224
6225		bnx2x_init_block(bp, BLOCK_ATC, PHASE_COMMON);
6226
6227		/* let the HW do it's magic ... */
6228		do {
6229			msleep(200);
6230			val = REG_RD(bp, ATC_REG_ATC_INIT_DONE);
6231		} while (factor-- && (val != 1));
6232
6233		if (val != 1) {
6234			BNX2X_ERR("ATC_INIT failed\n");
6235			return -EBUSY;
6236		}
6237	}
6238
6239	bnx2x_init_block(bp, BLOCK_DMAE, PHASE_COMMON);
6240
6241	/* clean the DMAE memory */
6242	bp->dmae_ready = 1;
6243	bnx2x_init_fill(bp, TSEM_REG_PRAM, 0, 8, 1);
6244
6245	bnx2x_init_block(bp, BLOCK_TCM, PHASE_COMMON);
6246
6247	bnx2x_init_block(bp, BLOCK_UCM, PHASE_COMMON);
6248
6249	bnx2x_init_block(bp, BLOCK_CCM, PHASE_COMMON);
6250
6251	bnx2x_init_block(bp, BLOCK_XCM, PHASE_COMMON);
6252
6253	bnx2x_read_dmae(bp, XSEM_REG_PASSIVE_BUFFER, 3);
6254	bnx2x_read_dmae(bp, CSEM_REG_PASSIVE_BUFFER, 3);
6255	bnx2x_read_dmae(bp, TSEM_REG_PASSIVE_BUFFER, 3);
6256	bnx2x_read_dmae(bp, USEM_REG_PASSIVE_BUFFER, 3);
6257
6258	bnx2x_init_block(bp, BLOCK_QM, PHASE_COMMON);
6259
6260
6261	/* QM queues pointers table */
6262	bnx2x_qm_init_ptr_table(bp, bp->qm_cid_count, INITOP_SET);
6263
6264	/* soft reset pulse */
6265	REG_WR(bp, QM_REG_SOFT_RESET, 1);
6266	REG_WR(bp, QM_REG_SOFT_RESET, 0);
6267
6268#ifdef BCM_CNIC
6269	bnx2x_init_block(bp, BLOCK_TM, PHASE_COMMON);
6270#endif
6271
6272	bnx2x_init_block(bp, BLOCK_DORQ, PHASE_COMMON);
6273	REG_WR(bp, DORQ_REG_DPM_CID_OFST, BNX2X_DB_SHIFT);
6274	if (!CHIP_REV_IS_SLOW(bp))
6275		/* enable hw interrupt from doorbell Q */
6276		REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
6277
6278	bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6279
6280	bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6281	REG_WR(bp, PRS_REG_A_PRSU_20, 0xf);
6282
6283	if (!CHIP_IS_E1(bp))
6284		REG_WR(bp, PRS_REG_E1HOV_MODE, bp->path_has_ovlan);
6285
6286	if (!CHIP_IS_E1x(bp) && !CHIP_IS_E3B0(bp))
6287		/* Bit-map indicating which L2 hdrs may appear
6288		 * after the basic Ethernet header
6289		 */
6290		REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC,
6291		       bp->path_has_ovlan ? 7 : 6);
6292
6293	bnx2x_init_block(bp, BLOCK_TSDM, PHASE_COMMON);
6294	bnx2x_init_block(bp, BLOCK_CSDM, PHASE_COMMON);
6295	bnx2x_init_block(bp, BLOCK_USDM, PHASE_COMMON);
6296	bnx2x_init_block(bp, BLOCK_XSDM, PHASE_COMMON);
6297
6298	if (!CHIP_IS_E1x(bp)) {
6299		/* reset VFC memories */
6300		REG_WR(bp, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
6301			   VFC_MEMORIES_RST_REG_CAM_RST |
6302			   VFC_MEMORIES_RST_REG_RAM_RST);
6303		REG_WR(bp, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
6304			   VFC_MEMORIES_RST_REG_CAM_RST |
6305			   VFC_MEMORIES_RST_REG_RAM_RST);
6306
6307		msleep(20);
6308	}
6309
6310	bnx2x_init_block(bp, BLOCK_TSEM, PHASE_COMMON);
6311	bnx2x_init_block(bp, BLOCK_USEM, PHASE_COMMON);
6312	bnx2x_init_block(bp, BLOCK_CSEM, PHASE_COMMON);
6313	bnx2x_init_block(bp, BLOCK_XSEM, PHASE_COMMON);
6314
6315	/* sync semi rtc */
6316	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
6317	       0x80000000);
6318	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET,
6319	       0x80000000);
6320
6321	bnx2x_init_block(bp, BLOCK_UPB, PHASE_COMMON);
6322	bnx2x_init_block(bp, BLOCK_XPB, PHASE_COMMON);
6323	bnx2x_init_block(bp, BLOCK_PBF, PHASE_COMMON);
6324
6325	if (!CHIP_IS_E1x(bp))
6326		REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC,
6327		       bp->path_has_ovlan ? 7 : 6);
6328
6329	REG_WR(bp, SRC_REG_SOFT_RST, 1);
6330
6331	bnx2x_init_block(bp, BLOCK_SRC, PHASE_COMMON);
6332
6333#ifdef BCM_CNIC
6334	REG_WR(bp, SRC_REG_KEYSEARCH_0, 0x63285672);
6335	REG_WR(bp, SRC_REG_KEYSEARCH_1, 0x24b8f2cc);
6336	REG_WR(bp, SRC_REG_KEYSEARCH_2, 0x223aef9b);
6337	REG_WR(bp, SRC_REG_KEYSEARCH_3, 0x26001e3a);
6338	REG_WR(bp, SRC_REG_KEYSEARCH_4, 0x7ae91116);
6339	REG_WR(bp, SRC_REG_KEYSEARCH_5, 0x5ce5230b);
6340	REG_WR(bp, SRC_REG_KEYSEARCH_6, 0x298d8adf);
6341	REG_WR(bp, SRC_REG_KEYSEARCH_7, 0x6eb0ff09);
6342	REG_WR(bp, SRC_REG_KEYSEARCH_8, 0x1830f82f);
6343	REG_WR(bp, SRC_REG_KEYSEARCH_9, 0x01e46be7);
6344#endif
6345	REG_WR(bp, SRC_REG_SOFT_RST, 0);
6346
6347	if (sizeof(union cdu_context) != 1024)
6348		/* we currently assume that a context is 1024 bytes */
6349		dev_alert(&bp->pdev->dev, "please adjust the size "
6350					  "of cdu_context(%ld)\n",
6351			 (long)sizeof(union cdu_context));
6352
6353	bnx2x_init_block(bp, BLOCK_CDU, PHASE_COMMON);
6354	val = (4 << 24) + (0 << 12) + 1024;
6355	REG_WR(bp, CDU_REG_CDU_GLOBAL_PARAMS, val);
6356
6357	bnx2x_init_block(bp, BLOCK_CFC, PHASE_COMMON);
6358	REG_WR(bp, CFC_REG_INIT_REG, 0x7FF);
6359	/* enable context validation interrupt from CFC */
6360	REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
6361
6362	/* set the thresholds to prevent CFC/CDU race */
6363	REG_WR(bp, CFC_REG_DEBUG0, 0x20020000);
6364
6365	bnx2x_init_block(bp, BLOCK_HC, PHASE_COMMON);
6366
6367	if (!CHIP_IS_E1x(bp) && BP_NOMCP(bp))
6368		REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x36);
6369
6370	bnx2x_init_block(bp, BLOCK_IGU, PHASE_COMMON);
6371	bnx2x_init_block(bp, BLOCK_MISC_AEU, PHASE_COMMON);
6372
6373	/* Reset PCIE errors for debug */
6374	REG_WR(bp, 0x2814, 0xffffffff);
6375	REG_WR(bp, 0x3820, 0xffffffff);
6376
6377	if (!CHIP_IS_E1x(bp)) {
6378		REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_CONTROL_5,
6379			   (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 |
6380				PXPCS_TL_CONTROL_5_ERR_UNSPPORT));
6381		REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT,
6382			   (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 |
6383				PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 |
6384				PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2));
6385		REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT,
6386			   (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 |
6387				PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 |
6388				PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5));
6389	}
6390
6391	bnx2x_init_block(bp, BLOCK_NIG, PHASE_COMMON);
6392	if (!CHIP_IS_E1(bp)) {
6393		/* in E3 this done in per-port section */
6394		if (!CHIP_IS_E3(bp))
6395			REG_WR(bp, NIG_REG_LLH_MF_MODE, IS_MF(bp));
6396	}
6397	if (CHIP_IS_E1H(bp))
6398		/* not applicable for E2 (and above ...) */
6399		REG_WR(bp, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(bp));
6400
6401	if (CHIP_REV_IS_SLOW(bp))
6402		msleep(200);
6403
6404	/* finish CFC init */
6405	val = reg_poll(bp, CFC_REG_LL_INIT_DONE, 1, 100, 10);
6406	if (val != 1) {
6407		BNX2X_ERR("CFC LL_INIT failed\n");
6408		return -EBUSY;
6409	}
6410	val = reg_poll(bp, CFC_REG_AC_INIT_DONE, 1, 100, 10);
6411	if (val != 1) {
6412		BNX2X_ERR("CFC AC_INIT failed\n");
6413		return -EBUSY;
6414	}
6415	val = reg_poll(bp, CFC_REG_CAM_INIT_DONE, 1, 100, 10);
6416	if (val != 1) {
6417		BNX2X_ERR("CFC CAM_INIT failed\n");
6418		return -EBUSY;
6419	}
6420	REG_WR(bp, CFC_REG_DEBUG0, 0);
6421
6422	if (CHIP_IS_E1(bp)) {
6423		/* read NIG statistic
6424		   to see if this is our first up since powerup */
6425		bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
6426		val = *bnx2x_sp(bp, wb_data[0]);
6427
6428		/* do internal memory self test */
6429		if ((val == 0) && bnx2x_int_mem_test(bp)) {
6430			BNX2X_ERR("internal mem self test failed\n");
6431			return -EBUSY;
6432		}
6433	}
6434
6435	bnx2x_setup_fan_failure_detection(bp);
6436
6437	/* clear PXP2 attentions */
6438	REG_RD(bp, PXP2_REG_PXP2_INT_STS_CLR_0);
6439
6440	bnx2x_enable_blocks_attention(bp);
6441	bnx2x_enable_blocks_parity(bp);
6442
6443	if (!BP_NOMCP(bp)) {
6444		if (CHIP_IS_E1x(bp))
6445			bnx2x__common_init_phy(bp);
6446	} else
6447		BNX2X_ERR("Bootcode is missing - can not initialize link\n");
6448
6449	return 0;
6450}
6451
6452/**
6453 * bnx2x_init_hw_common_chip - init HW at the COMMON_CHIP phase.
6454 *
6455 * @bp:		driver handle
6456 */
6457static int bnx2x_init_hw_common_chip(struct bnx2x *bp)
6458{
6459	int rc = bnx2x_init_hw_common(bp);
6460
6461	if (rc)
6462		return rc;
6463
6464	/* In E2 2-PORT mode, same ext phy is used for the two paths */
6465	if (!BP_NOMCP(bp))
6466		bnx2x__common_init_phy(bp);
6467
6468	return 0;
6469}
6470
6471static int bnx2x_init_hw_port(struct bnx2x *bp)
6472{
6473	int port = BP_PORT(bp);
6474	int init_phase = port ? PHASE_PORT1 : PHASE_PORT0;
6475	u32 low, high;
6476	u32 val;
6477
6478	bnx2x__link_reset(bp);
6479
6480	DP(BNX2X_MSG_MCP, "starting port init  port %d\n", port);
6481
6482	REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
6483
6484	bnx2x_init_block(bp, BLOCK_MISC, init_phase);
6485	bnx2x_init_block(bp, BLOCK_PXP, init_phase);
6486	bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
6487
6488	/* Timers bug workaround: disables the pf_master bit in pglue at
6489	 * common phase, we need to enable it here before any dmae access are
6490	 * attempted. Therefore we manually added the enable-master to the
6491	 * port phase (it also happens in the function phase)
6492	 */
6493	if (!CHIP_IS_E1x(bp))
6494		REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
6495
6496	bnx2x_init_block(bp, BLOCK_ATC, init_phase);
6497	bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
6498	bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
6499	bnx2x_init_block(bp, BLOCK_QM, init_phase);
6500
6501	bnx2x_init_block(bp, BLOCK_TCM, init_phase);
6502	bnx2x_init_block(bp, BLOCK_UCM, init_phase);
6503	bnx2x_init_block(bp, BLOCK_CCM, init_phase);
6504	bnx2x_init_block(bp, BLOCK_XCM, init_phase);
6505
6506	/* QM cid (connection) count */
6507	bnx2x_qm_init_cid_count(bp, bp->qm_cid_count, INITOP_SET);
6508
6509#ifdef BCM_CNIC
6510	bnx2x_init_block(bp, BLOCK_TM, init_phase);
6511	REG_WR(bp, TM_REG_LIN0_SCAN_TIME + port*4, 20);
6512	REG_WR(bp, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31);
6513#endif
6514
6515	bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
6516
6517	if (CHIP_IS_E1(bp) || CHIP_IS_E1H(bp)) {
6518		bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
6519
6520		if (IS_MF(bp))
6521			low = ((bp->flags & ONE_PORT_FLAG) ? 160 : 246);
6522		else if (bp->dev->mtu > 4096) {
6523			if (bp->flags & ONE_PORT_FLAG)
6524				low = 160;
6525			else {
6526				val = bp->dev->mtu;
6527				/* (24*1024 + val*4)/256 */
6528				low = 96 + (val/64) +
6529						((val % 64) ? 1 : 0);
6530			}
6531		} else
6532			low = ((bp->flags & ONE_PORT_FLAG) ? 80 : 160);
6533		high = low + 56;	/* 14*1024/256 */
6534		REG_WR(bp, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low);
6535		REG_WR(bp, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high);
6536	}
6537
6538	if (CHIP_MODE_IS_4_PORT(bp))
6539		REG_WR(bp, (BP_PORT(bp) ?
6540			    BRB1_REG_MAC_GUARANTIED_1 :
6541			    BRB1_REG_MAC_GUARANTIED_0), 40);
6542
6543
6544	bnx2x_init_block(bp, BLOCK_PRS, init_phase);
6545	if (CHIP_IS_E3B0(bp))
6546		/* Ovlan exists only if we are in multi-function +
6547		 * switch-dependent mode, in switch-independent there
6548		 * is no ovlan headers
6549		 */
6550		REG_WR(bp, BP_PORT(bp) ?
6551		       PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
6552		       PRS_REG_HDRS_AFTER_BASIC_PORT_0,
6553		       (bp->path_has_ovlan ? 7 : 6));
6554
6555	bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
6556	bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
6557	bnx2x_init_block(bp, BLOCK_USDM, init_phase);
6558	bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
6559
6560	bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
6561	bnx2x_init_block(bp, BLOCK_USEM, init_phase);
6562	bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
6563	bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
6564
6565	bnx2x_init_block(bp, BLOCK_UPB, init_phase);
6566	bnx2x_init_block(bp, BLOCK_XPB, init_phase);
6567
6568	bnx2x_init_block(bp, BLOCK_PBF, init_phase);
6569
6570	if (CHIP_IS_E1x(bp)) {
6571		/* configure PBF to work without PAUSE mtu 9000 */
6572		REG_WR(bp, PBF_REG_P0_PAUSE_ENABLE + port*4, 0);
6573
6574		/* update threshold */
6575		REG_WR(bp, PBF_REG_P0_ARB_THRSH + port*4, (9040/16));
6576		/* update init credit */
6577		REG_WR(bp, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22);
6578
6579		/* probe changes */
6580		REG_WR(bp, PBF_REG_INIT_P0 + port*4, 1);
6581		udelay(50);
6582		REG_WR(bp, PBF_REG_INIT_P0 + port*4, 0);
6583	}
6584
6585#ifdef BCM_CNIC
6586	bnx2x_init_block(bp, BLOCK_SRC, init_phase);
6587#endif
6588	bnx2x_init_block(bp, BLOCK_CDU, init_phase);
6589	bnx2x_init_block(bp, BLOCK_CFC, init_phase);
6590
6591	if (CHIP_IS_E1(bp)) {
6592		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
6593		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
6594	}
6595	bnx2x_init_block(bp, BLOCK_HC, init_phase);
6596
6597	bnx2x_init_block(bp, BLOCK_IGU, init_phase);
6598
6599	bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
6600	/* init aeu_mask_attn_func_0/1:
6601	 *  - SF mode: bits 3-7 are masked. only bits 0-2 are in use
6602	 *  - MF mode: bit 3 is masked. bits 0-2 are in use as in SF
6603	 *             bits 4-7 are used for "per vn group attention" */
6604	val = IS_MF(bp) ? 0xF7 : 0x7;
6605	/* Enable DCBX attention for all but E1 */
6606	val |= CHIP_IS_E1(bp) ? 0 : 0x10;
6607	REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val);
6608
6609	bnx2x_init_block(bp, BLOCK_NIG, init_phase);
6610
6611	if (!CHIP_IS_E1x(bp)) {
6612		/* Bit-map indicating which L2 hdrs may appear after the
6613		 * basic Ethernet header
6614		 */
6615		REG_WR(bp, BP_PORT(bp) ?
6616			   NIG_REG_P1_HDRS_AFTER_BASIC :
6617			   NIG_REG_P0_HDRS_AFTER_BASIC,
6618			   IS_MF_SD(bp) ? 7 : 6);
6619
6620		if (CHIP_IS_E3(bp))
6621			REG_WR(bp, BP_PORT(bp) ?
6622				   NIG_REG_LLH1_MF_MODE :
6623				   NIG_REG_LLH_MF_MODE, IS_MF(bp));
6624	}
6625	if (!CHIP_IS_E3(bp))
6626		REG_WR(bp, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1);
6627
6628	if (!CHIP_IS_E1(bp)) {
6629		/* 0x2 disable mf_ov, 0x1 enable */
6630		REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4,
6631		       (IS_MF_SD(bp) ? 0x1 : 0x2));
6632
6633		if (!CHIP_IS_E1x(bp)) {
6634			val = 0;
6635			switch (bp->mf_mode) {
6636			case MULTI_FUNCTION_SD:
6637				val = 1;
6638				break;
6639			case MULTI_FUNCTION_SI:
6640				val = 2;
6641				break;
6642			}
6643
6644			REG_WR(bp, (BP_PORT(bp) ? NIG_REG_LLH1_CLS_TYPE :
6645						  NIG_REG_LLH0_CLS_TYPE), val);
6646		}
6647		{
6648			REG_WR(bp, NIG_REG_LLFC_ENABLE_0 + port*4, 0);
6649			REG_WR(bp, NIG_REG_LLFC_OUT_EN_0 + port*4, 0);
6650			REG_WR(bp, NIG_REG_PAUSE_ENABLE_0 + port*4, 1);
6651		}
6652	}
6653
6654
6655	/* If SPIO5 is set to generate interrupts, enable it for this port */
6656	val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
6657	if (val & (1 << MISC_REGISTERS_SPIO_5)) {
6658		u32 reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
6659				       MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
6660		val = REG_RD(bp, reg_addr);
6661		val |= AEU_INPUTS_ATTN_BITS_SPIO5;
6662		REG_WR(bp, reg_addr, val);
6663	}
6664
6665	return 0;
6666}
6667
6668static void bnx2x_ilt_wr(struct bnx2x *bp, u32 index, dma_addr_t addr)
6669{
6670	int reg;
6671
6672	if (CHIP_IS_E1(bp))
6673		reg = PXP2_REG_RQ_ONCHIP_AT + index*8;
6674	else
6675		reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8;
6676
6677	bnx2x_wb_wr(bp, reg, ONCHIP_ADDR1(addr), ONCHIP_ADDR2(addr));
6678}
6679
6680static inline void bnx2x_igu_clear_sb(struct bnx2x *bp, u8 idu_sb_id)
6681{
6682	bnx2x_igu_clear_sb_gen(bp, BP_FUNC(bp), idu_sb_id, true /*PF*/);
6683}
6684
6685static inline void bnx2x_clear_func_ilt(struct bnx2x *bp, u32 func)
6686{
6687	u32 i, base = FUNC_ILT_BASE(func);
6688	for (i = base; i < base + ILT_PER_FUNC; i++)
6689		bnx2x_ilt_wr(bp, i, 0);
6690}
6691
6692static int bnx2x_init_hw_func(struct bnx2x *bp)
6693{
6694	int port = BP_PORT(bp);
6695	int func = BP_FUNC(bp);
6696	int init_phase = PHASE_PF0 + func;
6697	struct bnx2x_ilt *ilt = BP_ILT(bp);
6698	u16 cdu_ilt_start;
6699	u32 addr, val;
6700	u32 main_mem_base, main_mem_size, main_mem_prty_clr;
6701	int i, main_mem_width, rc;
6702
6703	DP(BNX2X_MSG_MCP, "starting func init  func %d\n", func);
6704
6705	/* FLR cleanup - hmmm */
6706	if (!CHIP_IS_E1x(bp)) {
6707		rc = bnx2x_pf_flr_clnup(bp);
6708		if (rc)
6709			return rc;
6710	}
6711
6712	/* set MSI reconfigure capability */
6713	if (bp->common.int_block == INT_BLOCK_HC) {
6714		addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0);
6715		val = REG_RD(bp, addr);
6716		val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0;
6717		REG_WR(bp, addr, val);
6718	}
6719
6720	bnx2x_init_block(bp, BLOCK_PXP, init_phase);
6721	bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
6722
6723	ilt = BP_ILT(bp);
6724	cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
6725
6726	for (i = 0; i < L2_ILT_LINES(bp); i++) {
6727		ilt->lines[cdu_ilt_start + i].page =
6728			bp->context.vcxt + (ILT_PAGE_CIDS * i);
6729		ilt->lines[cdu_ilt_start + i].page_mapping =
6730			bp->context.cxt_mapping + (CDU_ILT_PAGE_SZ * i);
6731		/* cdu ilt pages are allocated manually so there's no need to
6732		set the size */
6733	}
6734	bnx2x_ilt_init_op(bp, INITOP_SET);
6735
6736#ifdef BCM_CNIC
6737	bnx2x_src_init_t2(bp, bp->t2, bp->t2_mapping, SRC_CONN_NUM);
6738
6739	/* T1 hash bits value determines the T1 number of entries */
6740	REG_WR(bp, SRC_REG_NUMBER_HASH_BITS0 + port*4, SRC_HASH_BITS);
6741#endif
6742
6743#ifndef BCM_CNIC
6744	/* set NIC mode */
6745	REG_WR(bp, PRS_REG_NIC_MODE, 1);
6746#endif  /* BCM_CNIC */
6747
6748	if (!CHIP_IS_E1x(bp)) {
6749		u32 pf_conf = IGU_PF_CONF_FUNC_EN;
6750
6751		/* Turn on a single ISR mode in IGU if driver is going to use
6752		 * INT#x or MSI
6753		 */
6754		if (!(bp->flags & USING_MSIX_FLAG))
6755			pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
6756		/*
6757		 * Timers workaround bug: function init part.
6758		 * Need to wait 20msec after initializing ILT,
6759		 * needed to make sure there are no requests in
6760		 * one of the PXP internal queues with "old" ILT addresses
6761		 */
6762		msleep(20);
6763		/*
6764		 * Master enable - Due to WB DMAE writes performed before this
6765		 * register is re-initialized as part of the regular function
6766		 * init
6767		 */
6768		REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
6769		/* Enable the function in IGU */
6770		REG_WR(bp, IGU_REG_PF_CONFIGURATION, pf_conf);
6771	}
6772
6773	bp->dmae_ready = 1;
6774
6775	bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
6776
6777	if (!CHIP_IS_E1x(bp))
6778		REG_WR(bp, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, func);
6779
6780	bnx2x_init_block(bp, BLOCK_ATC, init_phase);
6781	bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
6782	bnx2x_init_block(bp, BLOCK_NIG, init_phase);
6783	bnx2x_init_block(bp, BLOCK_SRC, init_phase);
6784	bnx2x_init_block(bp, BLOCK_MISC, init_phase);
6785	bnx2x_init_block(bp, BLOCK_TCM, init_phase);
6786	bnx2x_init_block(bp, BLOCK_UCM, init_phase);
6787	bnx2x_init_block(bp, BLOCK_CCM, init_phase);
6788	bnx2x_init_block(bp, BLOCK_XCM, init_phase);
6789	bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
6790	bnx2x_init_block(bp, BLOCK_USEM, init_phase);
6791	bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
6792	bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
6793
6794	if (!CHIP_IS_E1x(bp))
6795		REG_WR(bp, QM_REG_PF_EN, 1);
6796
6797	if (!CHIP_IS_E1x(bp)) {
6798		REG_WR(bp, TSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
6799		REG_WR(bp, USEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
6800		REG_WR(bp, CSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
6801		REG_WR(bp, XSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
6802	}
6803	bnx2x_init_block(bp, BLOCK_QM, init_phase);
6804
6805	bnx2x_init_block(bp, BLOCK_TM, init_phase);
6806	bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
6807	bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
6808	bnx2x_init_block(bp, BLOCK_PRS, init_phase);
6809	bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
6810	bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
6811	bnx2x_init_block(bp, BLOCK_USDM, init_phase);
6812	bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
6813	bnx2x_init_block(bp, BLOCK_UPB, init_phase);
6814	bnx2x_init_block(bp, BLOCK_XPB, init_phase);
6815	bnx2x_init_block(bp, BLOCK_PBF, init_phase);
6816	if (!CHIP_IS_E1x(bp))
6817		REG_WR(bp, PBF_REG_DISABLE_PF, 0);
6818
6819	bnx2x_init_block(bp, BLOCK_CDU, init_phase);
6820
6821	bnx2x_init_block(bp, BLOCK_CFC, init_phase);
6822
6823	if (!CHIP_IS_E1x(bp))
6824		REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 1);
6825
6826	if (IS_MF(bp)) {
6827		REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 1);
6828		REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + port*8, bp->mf_ov);
6829	}
6830
6831	bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
6832
6833	/* HC init per function */
6834	if (bp->common.int_block == INT_BLOCK_HC) {
6835		if (CHIP_IS_E1H(bp)) {
6836			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
6837
6838			REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
6839			REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
6840		}
6841		bnx2x_init_block(bp, BLOCK_HC, init_phase);
6842
6843	} else {
6844		int num_segs, sb_idx, prod_offset;
6845
6846		REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
6847
6848		if (!CHIP_IS_E1x(bp)) {
6849			REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
6850			REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
6851		}
6852
6853		bnx2x_init_block(bp, BLOCK_IGU, init_phase);
6854
6855		if (!CHIP_IS_E1x(bp)) {
6856			int dsb_idx = 0;
6857			/**
6858			 * Producer memory:
6859			 * E2 mode: address 0-135 match to the mapping memory;
6860			 * 136 - PF0 default prod; 137 - PF1 default prod;
6861			 * 138 - PF2 default prod; 139 - PF3 default prod;
6862			 * 140 - PF0 attn prod;    141 - PF1 attn prod;
6863			 * 142 - PF2 attn prod;    143 - PF3 attn prod;
6864			 * 144-147 reserved.
6865			 *
6866			 * E1.5 mode - In backward compatible mode;
6867			 * for non default SB; each even line in the memory
6868			 * holds the U producer and each odd line hold
6869			 * the C producer. The first 128 producers are for
6870			 * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20
6871			 * producers are for the DSB for each PF.
6872			 * Each PF has five segments: (the order inside each
6873			 * segment is PF0; PF1; PF2; PF3) - 128-131 U prods;
6874			 * 132-135 C prods; 136-139 X prods; 140-143 T prods;
6875			 * 144-147 attn prods;
6876			 */
6877			/* non-default-status-blocks */
6878			num_segs = CHIP_INT_MODE_IS_BC(bp) ?
6879				IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS;
6880			for (sb_idx = 0; sb_idx < bp->igu_sb_cnt; sb_idx++) {
6881				prod_offset = (bp->igu_base_sb + sb_idx) *
6882					num_segs;
6883
6884				for (i = 0; i < num_segs; i++) {
6885					addr = IGU_REG_PROD_CONS_MEMORY +
6886							(prod_offset + i) * 4;
6887					REG_WR(bp, addr, 0);
6888				}
6889				/* send consumer update with value 0 */
6890				bnx2x_ack_sb(bp, bp->igu_base_sb + sb_idx,
6891					     USTORM_ID, 0, IGU_INT_NOP, 1);
6892				bnx2x_igu_clear_sb(bp,
6893						   bp->igu_base_sb + sb_idx);
6894			}
6895
6896			/* default-status-blocks */
6897			num_segs = CHIP_INT_MODE_IS_BC(bp) ?
6898				IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS;
6899
6900			if (CHIP_MODE_IS_4_PORT(bp))
6901				dsb_idx = BP_FUNC(bp);
6902			else
6903				dsb_idx = BP_VN(bp);
6904
6905			prod_offset = (CHIP_INT_MODE_IS_BC(bp) ?
6906				       IGU_BC_BASE_DSB_PROD + dsb_idx :
6907				       IGU_NORM_BASE_DSB_PROD + dsb_idx);
6908
6909			/*
6910			 * igu prods come in chunks of E1HVN_MAX (4) -
6911			 * does not matters what is the current chip mode
6912			 */
6913			for (i = 0; i < (num_segs * E1HVN_MAX);
6914			     i += E1HVN_MAX) {
6915				addr = IGU_REG_PROD_CONS_MEMORY +
6916							(prod_offset + i)*4;
6917				REG_WR(bp, addr, 0);
6918			}
6919			/* send consumer update with 0 */
6920			if (CHIP_INT_MODE_IS_BC(bp)) {
6921				bnx2x_ack_sb(bp, bp->igu_dsb_id,
6922					     USTORM_ID, 0, IGU_INT_NOP, 1);
6923				bnx2x_ack_sb(bp, bp->igu_dsb_id,
6924					     CSTORM_ID, 0, IGU_INT_NOP, 1);
6925				bnx2x_ack_sb(bp, bp->igu_dsb_id,
6926					     XSTORM_ID, 0, IGU_INT_NOP, 1);
6927				bnx2x_ack_sb(bp, bp->igu_dsb_id,
6928					     TSTORM_ID, 0, IGU_INT_NOP, 1);
6929				bnx2x_ack_sb(bp, bp->igu_dsb_id,
6930					     ATTENTION_ID, 0, IGU_INT_NOP, 1);
6931			} else {
6932				bnx2x_ack_sb(bp, bp->igu_dsb_id,
6933					     USTORM_ID, 0, IGU_INT_NOP, 1);
6934				bnx2x_ack_sb(bp, bp->igu_dsb_id,
6935					     ATTENTION_ID, 0, IGU_INT_NOP, 1);
6936			}
6937			bnx2x_igu_clear_sb(bp, bp->igu_dsb_id);
6938
6939			/* !!! these should become driver const once
6940			   rf-tool supports split-68 const */
6941			REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
6942			REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
6943			REG_WR(bp, IGU_REG_SB_MASK_LSB, 0);
6944			REG_WR(bp, IGU_REG_SB_MASK_MSB, 0);
6945			REG_WR(bp, IGU_REG_PBA_STATUS_LSB, 0);
6946			REG_WR(bp, IGU_REG_PBA_STATUS_MSB, 0);
6947		}
6948	}
6949
6950	/* Reset PCIE errors for debug */
6951	REG_WR(bp, 0x2114, 0xffffffff);
6952	REG_WR(bp, 0x2120, 0xffffffff);
6953
6954	if (CHIP_IS_E1x(bp)) {
6955		main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/
6956		main_mem_base = HC_REG_MAIN_MEMORY +
6957				BP_PORT(bp) * (main_mem_size * 4);
6958		main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR;
6959		main_mem_width = 8;
6960
6961		val = REG_RD(bp, main_mem_prty_clr);
6962		if (val)
6963			DP(BNX2X_MSG_MCP, "Hmmm... Parity errors in HC "
6964					  "block during "
6965					  "function init (0x%x)!\n", val);
6966
6967		/* Clear "false" parity errors in MSI-X table */
6968		for (i = main_mem_base;
6969		     i < main_mem_base + main_mem_size * 4;
6970		     i += main_mem_width) {
6971			bnx2x_read_dmae(bp, i, main_mem_width / 4);
6972			bnx2x_write_dmae(bp, bnx2x_sp_mapping(bp, wb_data),
6973					 i, main_mem_width / 4);
6974		}
6975		/* Clear HC parity attention */
6976		REG_RD(bp, main_mem_prty_clr);
6977	}
6978
6979#ifdef BNX2X_STOP_ON_ERROR
6980	/* Enable STORMs SP logging */
6981	REG_WR8(bp, BAR_USTRORM_INTMEM +
6982	       USTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
6983	REG_WR8(bp, BAR_TSTRORM_INTMEM +
6984	       TSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
6985	REG_WR8(bp, BAR_CSTRORM_INTMEM +
6986	       CSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
6987	REG_WR8(bp, BAR_XSTRORM_INTMEM +
6988	       XSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
6989#endif
6990
6991	bnx2x_phy_probe(&bp->link_params);
6992
6993	return 0;
6994}
6995
6996
6997void bnx2x_free_mem(struct bnx2x *bp)
6998{
6999	/* fastpath */
7000	bnx2x_free_fp_mem(bp);
7001	/* end of fastpath */
7002
7003	BNX2X_PCI_FREE(bp->def_status_blk, bp->def_status_blk_mapping,
7004		       sizeof(struct host_sp_status_block));
7005
7006	BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping,
7007		       bp->fw_stats_data_sz + bp->fw_stats_req_sz);
7008
7009	BNX2X_PCI_FREE(bp->slowpath, bp->slowpath_mapping,
7010		       sizeof(struct bnx2x_slowpath));
7011
7012	BNX2X_PCI_FREE(bp->context.vcxt, bp->context.cxt_mapping,
7013		       bp->context.size);
7014
7015	bnx2x_ilt_mem_op(bp, ILT_MEMOP_FREE);
7016
7017	BNX2X_FREE(bp->ilt->lines);
7018
7019#ifdef BCM_CNIC
7020	if (!CHIP_IS_E1x(bp))
7021		BNX2X_PCI_FREE(bp->cnic_sb.e2_sb, bp->cnic_sb_mapping,
7022			       sizeof(struct host_hc_status_block_e2));
7023	else
7024		BNX2X_PCI_FREE(bp->cnic_sb.e1x_sb, bp->cnic_sb_mapping,
7025			       sizeof(struct host_hc_status_block_e1x));
7026
7027	BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ);
7028#endif
7029
7030	BNX2X_PCI_FREE(bp->spq, bp->spq_mapping, BCM_PAGE_SIZE);
7031
7032	BNX2X_PCI_FREE(bp->eq_ring, bp->eq_mapping,
7033		       BCM_PAGE_SIZE * NUM_EQ_PAGES);
7034}
7035
7036static inline int bnx2x_alloc_fw_stats_mem(struct bnx2x *bp)
7037{
7038	int num_groups;
7039	int is_fcoe_stats = NO_FCOE(bp) ? 0 : 1;
7040
7041	/* number of queues for statistics is number of eth queues + FCoE */
7042	u8 num_queue_stats = BNX2X_NUM_ETH_QUEUES(bp) + is_fcoe_stats;
7043
7044	/* Total number of FW statistics requests =
7045	 * 1 for port stats + 1 for PF stats + potential 1 for FCoE stats +
7046	 * num of queues
7047	 */
7048	bp->fw_stats_num = 2 + is_fcoe_stats + num_queue_stats;
7049
7050
7051	/* Request is built from stats_query_header and an array of
7052	 * stats_query_cmd_group each of which contains
7053	 * STATS_QUERY_CMD_COUNT rules. The real number or requests is
7054	 * configured in the stats_query_header.
7055	 */
7056	num_groups = ((bp->fw_stats_num) / STATS_QUERY_CMD_COUNT) +
7057		     (((bp->fw_stats_num) % STATS_QUERY_CMD_COUNT) ? 1 : 0);
7058
7059	bp->fw_stats_req_sz = sizeof(struct stats_query_header) +
7060			num_groups * sizeof(struct stats_query_cmd_group);
7061
7062	/* Data for statistics requests + stats_conter
7063	 *
7064	 * stats_counter holds per-STORM counters that are incremented
7065	 * when STORM has finished with the current request.
7066	 *
7067	 * memory for FCoE offloaded statistics are counted anyway,
7068	 * even if they will not be sent.
7069	 */
7070	bp->fw_stats_data_sz = sizeof(struct per_port_stats) +
7071		sizeof(struct per_pf_stats) +
7072		sizeof(struct fcoe_statistics_params) +
7073		sizeof(struct per_queue_stats) * num_queue_stats +
7074		sizeof(struct stats_counter);
7075
7076	BNX2X_PCI_ALLOC(bp->fw_stats, &bp->fw_stats_mapping,
7077			bp->fw_stats_data_sz + bp->fw_stats_req_sz);
7078
7079	/* Set shortcuts */
7080	bp->fw_stats_req = (struct bnx2x_fw_stats_req *)bp->fw_stats;
7081	bp->fw_stats_req_mapping = bp->fw_stats_mapping;
7082
7083	bp->fw_stats_data = (struct bnx2x_fw_stats_data *)
7084		((u8 *)bp->fw_stats + bp->fw_stats_req_sz);
7085
7086	bp->fw_stats_data_mapping = bp->fw_stats_mapping +
7087				   bp->fw_stats_req_sz;
7088	return 0;
7089
7090alloc_mem_err:
7091	BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping,
7092		       bp->fw_stats_data_sz + bp->fw_stats_req_sz);
7093	return -ENOMEM;
7094}
7095
7096
7097int bnx2x_alloc_mem(struct bnx2x *bp)
7098{
7099#ifdef BCM_CNIC
7100	if (!CHIP_IS_E1x(bp))
7101		/* size = the status block + ramrod buffers */
7102		BNX2X_PCI_ALLOC(bp->cnic_sb.e2_sb, &bp->cnic_sb_mapping,
7103				sizeof(struct host_hc_status_block_e2));
7104	else
7105		BNX2X_PCI_ALLOC(bp->cnic_sb.e1x_sb, &bp->cnic_sb_mapping,
7106				sizeof(struct host_hc_status_block_e1x));
7107
7108	/* allocate searcher T2 table */
7109	BNX2X_PCI_ALLOC(bp->t2, &bp->t2_mapping, SRC_T2_SZ);
7110#endif
7111
7112
7113	BNX2X_PCI_ALLOC(bp->def_status_blk, &bp->def_status_blk_mapping,
7114			sizeof(struct host_sp_status_block));
7115
7116	BNX2X_PCI_ALLOC(bp->slowpath, &bp->slowpath_mapping,
7117			sizeof(struct bnx2x_slowpath));
7118
7119	/* Allocated memory for FW statistics  */
7120	if (bnx2x_alloc_fw_stats_mem(bp))
7121		goto alloc_mem_err;
7122
7123	bp->context.size = sizeof(union cdu_context) * BNX2X_L2_CID_COUNT(bp);
7124
7125	BNX2X_PCI_ALLOC(bp->context.vcxt, &bp->context.cxt_mapping,
7126			bp->context.size);
7127
7128	BNX2X_ALLOC(bp->ilt->lines, sizeof(struct ilt_line) * ILT_MAX_LINES);
7129
7130	if (bnx2x_ilt_mem_op(bp, ILT_MEMOP_ALLOC))
7131		goto alloc_mem_err;
7132
7133	/* Slow path ring */
7134	BNX2X_PCI_ALLOC(bp->spq, &bp->spq_mapping, BCM_PAGE_SIZE);
7135
7136	/* EQ */
7137	BNX2X_PCI_ALLOC(bp->eq_ring, &bp->eq_mapping,
7138			BCM_PAGE_SIZE * NUM_EQ_PAGES);
7139
7140
7141	/* fastpath */
7142	/* need to be done at the end, since it's self adjusting to amount
7143	 * of memory available for RSS queues
7144	 */
7145	if (bnx2x_alloc_fp_mem(bp))
7146		goto alloc_mem_err;
7147	return 0;
7148
7149alloc_mem_err:
7150	bnx2x_free_mem(bp);
7151	return -ENOMEM;
7152}
7153
7154/*
7155 * Init service functions
7156 */
7157
7158int bnx2x_set_mac_one(struct bnx2x *bp, u8 *mac,
7159		      struct bnx2x_vlan_mac_obj *obj, bool set,
7160		      int mac_type, unsigned long *ramrod_flags)
7161{
7162	int rc;
7163	struct bnx2x_vlan_mac_ramrod_params ramrod_param;
7164
7165	memset(&ramrod_param, 0, sizeof(ramrod_param));
7166
7167	/* Fill general parameters */
7168	ramrod_param.vlan_mac_obj = obj;
7169	ramrod_param.ramrod_flags = *ramrod_flags;
7170
7171	/* Fill a user request section if needed */
7172	if (!test_bit(RAMROD_CONT, ramrod_flags)) {
7173		memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN);
7174
7175		__set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags);
7176
7177		/* Set the command: ADD or DEL */
7178		if (set)
7179			ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_ADD;
7180		else
7181			ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_DEL;
7182	}
7183
7184	rc = bnx2x_config_vlan_mac(bp, &ramrod_param);
7185	if (rc < 0)
7186		BNX2X_ERR("%s MAC failed\n", (set ? "Set" : "Del"));
7187	return rc;
7188}
7189
7190int bnx2x_del_all_macs(struct bnx2x *bp,
7191		       struct bnx2x_vlan_mac_obj *mac_obj,
7192		       int mac_type, bool wait_for_comp)
7193{
7194	int rc;
7195	unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
7196
7197	/* Wait for completion of requested */
7198	if (wait_for_comp)
7199		__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
7200
7201	/* Set the mac type of addresses we want to clear */
7202	__set_bit(mac_type, &vlan_mac_flags);
7203
7204	rc = mac_obj->delete_all(bp, mac_obj, &vlan_mac_flags, &ramrod_flags);
7205	if (rc < 0)
7206		BNX2X_ERR("Failed to delete MACs: %d\n", rc);
7207
7208	return rc;
7209}
7210
7211int bnx2x_set_eth_mac(struct bnx2x *bp, bool set)
7212{
7213	unsigned long ramrod_flags = 0;
7214
7215#ifdef BCM_CNIC
7216	if (is_zero_ether_addr(bp->dev->dev_addr) && IS_MF_ISCSI_SD(bp)) {
7217		DP(NETIF_MSG_IFUP, "Ignoring Zero MAC for iSCSI SD mode\n");
7218		return 0;
7219	}
7220#endif
7221
7222	DP(NETIF_MSG_IFUP, "Adding Eth MAC\n");
7223
7224	__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
7225	/* Eth MAC is set on RSS leading client (fp[0]) */
7226	return bnx2x_set_mac_one(bp, bp->dev->dev_addr, &bp->fp->mac_obj, set,
7227				 BNX2X_ETH_MAC, &ramrod_flags);
7228}
7229
7230int bnx2x_setup_leading(struct bnx2x *bp)
7231{
7232	return bnx2x_setup_queue(bp, &bp->fp[0], 1);
7233}
7234
7235/**
7236 * bnx2x_set_int_mode - configure interrupt mode
7237 *
7238 * @bp:		driver handle
7239 *
7240 * In case of MSI-X it will also try to enable MSI-X.
7241 */
7242static void __devinit bnx2x_set_int_mode(struct bnx2x *bp)
7243{
7244	switch (int_mode) {
7245	case INT_MODE_MSI:
7246		bnx2x_enable_msi(bp);
7247		/* falling through... */
7248	case INT_MODE_INTx:
7249		bp->num_queues = 1 + NON_ETH_CONTEXT_USE;
7250		DP(NETIF_MSG_IFUP, "set number of queues to 1\n");
7251		break;
7252	default:
7253		/* Set number of queues according to bp->multi_mode value */
7254		bnx2x_set_num_queues(bp);
7255
7256		DP(NETIF_MSG_IFUP, "set number of queues to %d\n",
7257		   bp->num_queues);
7258
7259		/* if we can't use MSI-X we only need one fp,
7260		 * so try to enable MSI-X with the requested number of fp's
7261		 * and fallback to MSI or legacy INTx with one fp
7262		 */
7263		if (bnx2x_enable_msix(bp)) {
7264			/* failed to enable MSI-X */
7265			if (bp->multi_mode)
7266				DP(NETIF_MSG_IFUP,
7267					  "Multi requested but failed to "
7268					  "enable MSI-X (%d), "
7269					  "set number of queues to %d\n",
7270				   bp->num_queues,
7271				   1 + NON_ETH_CONTEXT_USE);
7272			bp->num_queues = 1 + NON_ETH_CONTEXT_USE;
7273
7274			/* Try to enable MSI */
7275			if (!(bp->flags & DISABLE_MSI_FLAG))
7276				bnx2x_enable_msi(bp);
7277		}
7278		break;
7279	}
7280}
7281
7282/* must be called prioir to any HW initializations */
7283static inline u16 bnx2x_cid_ilt_lines(struct bnx2x *bp)
7284{
7285	return L2_ILT_LINES(bp);
7286}
7287
7288void bnx2x_ilt_set_info(struct bnx2x *bp)
7289{
7290	struct ilt_client_info *ilt_client;
7291	struct bnx2x_ilt *ilt = BP_ILT(bp);
7292	u16 line = 0;
7293
7294	ilt->start_line = FUNC_ILT_BASE(BP_FUNC(bp));
7295	DP(BNX2X_MSG_SP, "ilt starts at line %d\n", ilt->start_line);
7296
7297	/* CDU */
7298	ilt_client = &ilt->clients[ILT_CLIENT_CDU];
7299	ilt_client->client_num = ILT_CLIENT_CDU;
7300	ilt_client->page_size = CDU_ILT_PAGE_SZ;
7301	ilt_client->flags = ILT_CLIENT_SKIP_MEM;
7302	ilt_client->start = line;
7303	line += bnx2x_cid_ilt_lines(bp);
7304#ifdef BCM_CNIC
7305	line += CNIC_ILT_LINES;
7306#endif
7307	ilt_client->end = line - 1;
7308
7309	DP(BNX2X_MSG_SP, "ilt client[CDU]: start %d, end %d, psz 0x%x, "
7310					 "flags 0x%x, hw psz %d\n",
7311	   ilt_client->start,
7312	   ilt_client->end,
7313	   ilt_client->page_size,
7314	   ilt_client->flags,
7315	   ilog2(ilt_client->page_size >> 12));
7316
7317	/* QM */
7318	if (QM_INIT(bp->qm_cid_count)) {
7319		ilt_client = &ilt->clients[ILT_CLIENT_QM];
7320		ilt_client->client_num = ILT_CLIENT_QM;
7321		ilt_client->page_size = QM_ILT_PAGE_SZ;
7322		ilt_client->flags = 0;
7323		ilt_client->start = line;
7324
7325		/* 4 bytes for each cid */
7326		line += DIV_ROUND_UP(bp->qm_cid_count * QM_QUEUES_PER_FUNC * 4,
7327							 QM_ILT_PAGE_SZ);
7328
7329		ilt_client->end = line - 1;
7330
7331		DP(BNX2X_MSG_SP, "ilt client[QM]: start %d, end %d, psz 0x%x, "
7332						 "flags 0x%x, hw psz %d\n",
7333		   ilt_client->start,
7334		   ilt_client->end,
7335		   ilt_client->page_size,
7336		   ilt_client->flags,
7337		   ilog2(ilt_client->page_size >> 12));
7338
7339	}
7340	/* SRC */
7341	ilt_client = &ilt->clients[ILT_CLIENT_SRC];
7342#ifdef BCM_CNIC
7343	ilt_client->client_num = ILT_CLIENT_SRC;
7344	ilt_client->page_size = SRC_ILT_PAGE_SZ;
7345	ilt_client->flags = 0;
7346	ilt_client->start = line;
7347	line += SRC_ILT_LINES;
7348	ilt_client->end = line - 1;
7349
7350	DP(BNX2X_MSG_SP, "ilt client[SRC]: start %d, end %d, psz 0x%x, "
7351					 "flags 0x%x, hw psz %d\n",
7352	   ilt_client->start,
7353	   ilt_client->end,
7354	   ilt_client->page_size,
7355	   ilt_client->flags,
7356	   ilog2(ilt_client->page_size >> 12));
7357
7358#else
7359	ilt_client->flags = (ILT_CLIENT_SKIP_INIT | ILT_CLIENT_SKIP_MEM);
7360#endif
7361
7362	/* TM */
7363	ilt_client = &ilt->clients[ILT_CLIENT_TM];
7364#ifdef BCM_CNIC
7365	ilt_client->client_num = ILT_CLIENT_TM;
7366	ilt_client->page_size = TM_ILT_PAGE_SZ;
7367	ilt_client->flags = 0;
7368	ilt_client->start = line;
7369	line += TM_ILT_LINES;
7370	ilt_client->end = line - 1;
7371
7372	DP(BNX2X_MSG_SP, "ilt client[TM]: start %d, end %d, psz 0x%x, "
7373					 "flags 0x%x, hw psz %d\n",
7374	   ilt_client->start,
7375	   ilt_client->end,
7376	   ilt_client->page_size,
7377	   ilt_client->flags,
7378	   ilog2(ilt_client->page_size >> 12));
7379
7380#else
7381	ilt_client->flags = (ILT_CLIENT_SKIP_INIT | ILT_CLIENT_SKIP_MEM);
7382#endif
7383	BUG_ON(line > ILT_MAX_LINES);
7384}
7385
7386/**
7387 * bnx2x_pf_q_prep_init - prepare INIT transition parameters
7388 *
7389 * @bp:			driver handle
7390 * @fp:			pointer to fastpath
7391 * @init_params:	pointer to parameters structure
7392 *
7393 * parameters configured:
7394 *      - HC configuration
7395 *      - Queue's CDU context
7396 */
7397static inline void bnx2x_pf_q_prep_init(struct bnx2x *bp,
7398	struct bnx2x_fastpath *fp, struct bnx2x_queue_init_params *init_params)
7399{
7400
7401	u8 cos;
7402	/* FCoE Queue uses Default SB, thus has no HC capabilities */
7403	if (!IS_FCOE_FP(fp)) {
7404		__set_bit(BNX2X_Q_FLG_HC, &init_params->rx.flags);
7405		__set_bit(BNX2X_Q_FLG_HC, &init_params->tx.flags);
7406
7407		/* If HC is supporterd, enable host coalescing in the transition
7408		 * to INIT state.
7409		 */
7410		__set_bit(BNX2X_Q_FLG_HC_EN, &init_params->rx.flags);
7411		__set_bit(BNX2X_Q_FLG_HC_EN, &init_params->tx.flags);
7412
7413		/* HC rate */
7414		init_params->rx.hc_rate = bp->rx_ticks ?
7415			(1000000 / bp->rx_ticks) : 0;
7416		init_params->tx.hc_rate = bp->tx_ticks ?
7417			(1000000 / bp->tx_ticks) : 0;
7418
7419		/* FW SB ID */
7420		init_params->rx.fw_sb_id = init_params->tx.fw_sb_id =
7421			fp->fw_sb_id;
7422
7423		/*
7424		 * CQ index among the SB indices: FCoE clients uses the default
7425		 * SB, therefore it's different.
7426		 */
7427		init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
7428		init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS;
7429	}
7430
7431	/* set maximum number of COSs supported by this queue */
7432	init_params->max_cos = fp->max_cos;
7433
7434	DP(BNX2X_MSG_SP, "fp: %d setting queue params max cos to: %d\n",
7435	    fp->index, init_params->max_cos);
7436
7437	/* set the context pointers queue object */
7438	for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++)
7439		init_params->cxts[cos] =
7440			&bp->context.vcxt[fp->txdata[cos].cid].eth;
7441}
7442
7443int bnx2x_setup_tx_only(struct bnx2x *bp, struct bnx2x_fastpath *fp,
7444			struct bnx2x_queue_state_params *q_params,
7445			struct bnx2x_queue_setup_tx_only_params *tx_only_params,
7446			int tx_index, bool leading)
7447{
7448	memset(tx_only_params, 0, sizeof(*tx_only_params));
7449
7450	/* Set the command */
7451	q_params->cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
7452
7453	/* Set tx-only QUEUE flags: don't zero statistics */
7454	tx_only_params->flags = bnx2x_get_common_flags(bp, fp, false);
7455
7456	/* choose the index of the cid to send the slow path on */
7457	tx_only_params->cid_index = tx_index;
7458
7459	/* Set general TX_ONLY_SETUP parameters */
7460	bnx2x_pf_q_prep_general(bp, fp, &tx_only_params->gen_params, tx_index);
7461
7462	/* Set Tx TX_ONLY_SETUP parameters */
7463	bnx2x_pf_tx_q_prep(bp, fp, &tx_only_params->txq_params, tx_index);
7464
7465	DP(BNX2X_MSG_SP, "preparing to send tx-only ramrod for connection:"
7466			 "cos %d, primary cid %d, cid %d, "
7467			 "client id %d, sp-client id %d, flags %lx\n",
7468	   tx_index, q_params->q_obj->cids[FIRST_TX_COS_INDEX],
7469	   q_params->q_obj->cids[tx_index], q_params->q_obj->cl_id,
7470	   tx_only_params->gen_params.spcl_id, tx_only_params->flags);
7471
7472	/* send the ramrod */
7473	return bnx2x_queue_state_change(bp, q_params);
7474}
7475
7476
7477/**
7478 * bnx2x_setup_queue - setup queue
7479 *
7480 * @bp:		driver handle
7481 * @fp:		pointer to fastpath
7482 * @leading:	is leading
7483 *
7484 * This function performs 2 steps in a Queue state machine
7485 *      actually: 1) RESET->INIT 2) INIT->SETUP
7486 */
7487
7488int bnx2x_setup_queue(struct bnx2x *bp, struct bnx2x_fastpath *fp,
7489		       bool leading)
7490{
7491	struct bnx2x_queue_state_params q_params = {0};
7492	struct bnx2x_queue_setup_params *setup_params =
7493						&q_params.params.setup;
7494	struct bnx2x_queue_setup_tx_only_params *tx_only_params =
7495						&q_params.params.tx_only;
7496	int rc;
7497	u8 tx_index;
7498
7499	DP(BNX2X_MSG_SP, "setting up queue %d\n", fp->index);
7500
7501	/* reset IGU state skip FCoE L2 queue */
7502	if (!IS_FCOE_FP(fp))
7503		bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, 0,
7504			     IGU_INT_ENABLE, 0);
7505
7506	q_params.q_obj = &fp->q_obj;
7507	/* We want to wait for completion in this context */
7508	__set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
7509
7510	/* Prepare the INIT parameters */
7511	bnx2x_pf_q_prep_init(bp, fp, &q_params.params.init);
7512
7513	/* Set the command */
7514	q_params.cmd = BNX2X_Q_CMD_INIT;
7515
7516	/* Change the state to INIT */
7517	rc = bnx2x_queue_state_change(bp, &q_params);
7518	if (rc) {
7519		BNX2X_ERR("Queue(%d) INIT failed\n", fp->index);
7520		return rc;
7521	}
7522
7523	DP(BNX2X_MSG_SP, "init complete\n");
7524
7525
7526	/* Now move the Queue to the SETUP state... */
7527	memset(setup_params, 0, sizeof(*setup_params));
7528
7529	/* Set QUEUE flags */
7530	setup_params->flags = bnx2x_get_q_flags(bp, fp, leading);
7531
7532	/* Set general SETUP parameters */
7533	bnx2x_pf_q_prep_general(bp, fp, &setup_params->gen_params,
7534				FIRST_TX_COS_INDEX);
7535
7536	bnx2x_pf_rx_q_prep(bp, fp, &setup_params->pause_params,
7537			    &setup_params->rxq_params);
7538
7539	bnx2x_pf_tx_q_prep(bp, fp, &setup_params->txq_params,
7540			   FIRST_TX_COS_INDEX);
7541
7542	/* Set the command */
7543	q_params.cmd = BNX2X_Q_CMD_SETUP;
7544
7545	/* Change the state to SETUP */
7546	rc = bnx2x_queue_state_change(bp, &q_params);
7547	if (rc) {
7548		BNX2X_ERR("Queue(%d) SETUP failed\n", fp->index);
7549		return rc;
7550	}
7551
7552	/* loop through the relevant tx-only indices */
7553	for (tx_index = FIRST_TX_ONLY_COS_INDEX;
7554	      tx_index < fp->max_cos;
7555	      tx_index++) {
7556
7557		/* prepare and send tx-only ramrod*/
7558		rc = bnx2x_setup_tx_only(bp, fp, &q_params,
7559					  tx_only_params, tx_index, leading);
7560		if (rc) {
7561			BNX2X_ERR("Queue(%d.%d) TX_ONLY_SETUP failed\n",
7562				  fp->index, tx_index);
7563			return rc;
7564		}
7565	}
7566
7567	return rc;
7568}
7569
7570static int bnx2x_stop_queue(struct bnx2x *bp, int index)
7571{
7572	struct bnx2x_fastpath *fp = &bp->fp[index];
7573	struct bnx2x_fp_txdata *txdata;
7574	struct bnx2x_queue_state_params q_params = {0};
7575	int rc, tx_index;
7576
7577	DP(BNX2X_MSG_SP, "stopping queue %d cid %d\n", index, fp->cid);
7578
7579	q_params.q_obj = &fp->q_obj;
7580	/* We want to wait for completion in this context */
7581	__set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
7582
7583
7584	/* close tx-only connections */
7585	for (tx_index = FIRST_TX_ONLY_COS_INDEX;
7586	     tx_index < fp->max_cos;
7587	     tx_index++){
7588
7589		/* ascertain this is a normal queue*/
7590		txdata = &fp->txdata[tx_index];
7591
7592		DP(BNX2X_MSG_SP, "stopping tx-only queue %d\n",
7593							txdata->txq_index);
7594
7595		/* send halt terminate on tx-only connection */
7596		q_params.cmd = BNX2X_Q_CMD_TERMINATE;
7597		memset(&q_params.params.terminate, 0,
7598		       sizeof(q_params.params.terminate));
7599		q_params.params.terminate.cid_index = tx_index;
7600
7601		rc = bnx2x_queue_state_change(bp, &q_params);
7602		if (rc)
7603			return rc;
7604
7605		/* send halt terminate on tx-only connection */
7606		q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
7607		memset(&q_params.params.cfc_del, 0,
7608		       sizeof(q_params.params.cfc_del));
7609		q_params.params.cfc_del.cid_index = tx_index;
7610		rc = bnx2x_queue_state_change(bp, &q_params);
7611		if (rc)
7612			return rc;
7613	}
7614	/* Stop the primary connection: */
7615	/* ...halt the connection */
7616	q_params.cmd = BNX2X_Q_CMD_HALT;
7617	rc = bnx2x_queue_state_change(bp, &q_params);
7618	if (rc)
7619		return rc;
7620
7621	/* ...terminate the connection */
7622	q_params.cmd = BNX2X_Q_CMD_TERMINATE;
7623	memset(&q_params.params.terminate, 0,
7624	       sizeof(q_params.params.terminate));
7625	q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX;
7626	rc = bnx2x_queue_state_change(bp, &q_params);
7627	if (rc)
7628		return rc;
7629	/* ...delete cfc entry */
7630	q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
7631	memset(&q_params.params.cfc_del, 0,
7632	       sizeof(q_params.params.cfc_del));
7633	q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX;
7634	return bnx2x_queue_state_change(bp, &q_params);
7635}
7636
7637
7638static void bnx2x_reset_func(struct bnx2x *bp)
7639{
7640	int port = BP_PORT(bp);
7641	int func = BP_FUNC(bp);
7642	int i;
7643
7644	/* Disable the function in the FW */
7645	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0);
7646	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0);
7647	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0);
7648	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0);
7649
7650	/* FP SBs */
7651	for_each_eth_queue(bp, i) {
7652		struct bnx2x_fastpath *fp = &bp->fp[i];
7653		REG_WR8(bp, BAR_CSTRORM_INTMEM +
7654			   CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id),
7655			   SB_DISABLED);
7656	}
7657
7658#ifdef BCM_CNIC
7659	/* CNIC SB */
7660	REG_WR8(bp, BAR_CSTRORM_INTMEM +
7661		CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(bnx2x_cnic_fw_sb_id(bp)),
7662		SB_DISABLED);
7663#endif
7664	/* SP SB */
7665	REG_WR8(bp, BAR_CSTRORM_INTMEM +
7666		   CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func),
7667		   SB_DISABLED);
7668
7669	for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++)
7670		REG_WR(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func),
7671		       0);
7672
7673	/* Configure IGU */
7674	if (bp->common.int_block == INT_BLOCK_HC) {
7675		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
7676		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
7677	} else {
7678		REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
7679		REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
7680	}
7681
7682#ifdef BCM_CNIC
7683	/* Disable Timer scan */
7684	REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 0);
7685	/*
7686	 * Wait for at least 10ms and up to 2 second for the timers scan to
7687	 * complete
7688	 */
7689	for (i = 0; i < 200; i++) {
7690		msleep(10);
7691		if (!REG_RD(bp, TM_REG_LIN0_SCAN_ON + port*4))
7692			break;
7693	}
7694#endif
7695	/* Clear ILT */
7696	bnx2x_clear_func_ilt(bp, func);
7697
7698	/* Timers workaround bug for E2: if this is vnic-3,
7699	 * we need to set the entire ilt range for this timers.
7700	 */
7701	if (!CHIP_IS_E1x(bp) && BP_VN(bp) == 3) {
7702		struct ilt_client_info ilt_cli;
7703		/* use dummy TM client */
7704		memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
7705		ilt_cli.start = 0;
7706		ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
7707		ilt_cli.client_num = ILT_CLIENT_TM;
7708
7709		bnx2x_ilt_boundry_init_op(bp, &ilt_cli, 0, INITOP_CLEAR);
7710	}
7711
7712	/* this assumes that reset_port() called before reset_func()*/
7713	if (!CHIP_IS_E1x(bp))
7714		bnx2x_pf_disable(bp);
7715
7716	bp->dmae_ready = 0;
7717}
7718
7719static void bnx2x_reset_port(struct bnx2x *bp)
7720{
7721	int port = BP_PORT(bp);
7722	u32 val;
7723
7724	/* Reset physical Link */
7725	bnx2x__link_reset(bp);
7726
7727	REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
7728
7729	/* Do not rcv packets to BRB */
7730	REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0);
7731	/* Do not direct rcv packets that are not for MCP to the BRB */
7732	REG_WR(bp, (port ? NIG_REG_LLH1_BRB1_NOT_MCP :
7733			   NIG_REG_LLH0_BRB1_NOT_MCP), 0x0);
7734
7735	/* Configure AEU */
7736	REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0);
7737
7738	msleep(100);
7739	/* Check for BRB port occupancy */
7740	val = REG_RD(bp, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4);
7741	if (val)
7742		DP(NETIF_MSG_IFDOWN,
7743		   "BRB1 is not empty  %d blocks are occupied\n", val);
7744
7745	/* TODO: Close Doorbell port? */
7746}
7747
7748static inline int bnx2x_reset_hw(struct bnx2x *bp, u32 load_code)
7749{
7750	struct bnx2x_func_state_params func_params = {0};
7751
7752	/* Prepare parameters for function state transitions */
7753	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
7754
7755	func_params.f_obj = &bp->func_obj;
7756	func_params.cmd = BNX2X_F_CMD_HW_RESET;
7757
7758	func_params.params.hw_init.load_phase = load_code;
7759
7760	return bnx2x_func_state_change(bp, &func_params);
7761}
7762
7763static inline int bnx2x_func_stop(struct bnx2x *bp)
7764{
7765	struct bnx2x_func_state_params func_params = {0};
7766	int rc;
7767
7768	/* Prepare parameters for function state transitions */
7769	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
7770	func_params.f_obj = &bp->func_obj;
7771	func_params.cmd = BNX2X_F_CMD_STOP;
7772
7773	/*
7774	 * Try to stop the function the 'good way'. If fails (in case
7775	 * of a parity error during bnx2x_chip_cleanup()) and we are
7776	 * not in a debug mode, perform a state transaction in order to
7777	 * enable further HW_RESET transaction.
7778	 */
7779	rc = bnx2x_func_state_change(bp, &func_params);
7780	if (rc) {
7781#ifdef BNX2X_STOP_ON_ERROR
7782		return rc;
7783#else
7784		BNX2X_ERR("FUNC_STOP ramrod failed. Running a dry "
7785			  "transaction\n");
7786		__set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
7787		return bnx2x_func_state_change(bp, &func_params);
7788#endif
7789	}
7790
7791	return 0;
7792}
7793
7794/**
7795 * bnx2x_send_unload_req - request unload mode from the MCP.
7796 *
7797 * @bp:			driver handle
7798 * @unload_mode:	requested function's unload mode
7799 *
7800 * Return unload mode returned by the MCP: COMMON, PORT or FUNC.
7801 */
7802u32 bnx2x_send_unload_req(struct bnx2x *bp, int unload_mode)
7803{
7804	u32 reset_code = 0;
7805	int port = BP_PORT(bp);
7806
7807	/* Select the UNLOAD request mode */
7808	if (unload_mode == UNLOAD_NORMAL)
7809		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
7810
7811	else if (bp->flags & NO_WOL_FLAG)
7812		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP;
7813
7814	else if (bp->wol) {
7815		u32 emac_base = port ? GRCBASE_EMAC1 : GRCBASE_EMAC0;
7816		u8 *mac_addr = bp->dev->dev_addr;
7817		u32 val;
7818		u16 pmc;
7819
7820		/* The mac address is written to entries 1-4 to
7821		 * preserve entry 0 which is used by the PMF
7822		 */
7823		u8 entry = (BP_VN(bp) + 1)*8;
7824
7825		val = (mac_addr[0] << 8) | mac_addr[1];
7826		EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry, val);
7827
7828		val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
7829		      (mac_addr[4] << 8) | mac_addr[5];
7830		EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry + 4, val);
7831
7832		/* Enable the PME and clear the status */
7833		pci_read_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, &pmc);
7834		pmc |= PCI_PM_CTRL_PME_ENABLE | PCI_PM_CTRL_PME_STATUS;
7835		pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, pmc);
7836
7837		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_EN;
7838
7839	} else
7840		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
7841
7842	/* Send the request to the MCP */
7843	if (!BP_NOMCP(bp))
7844		reset_code = bnx2x_fw_command(bp, reset_code, 0);
7845	else {
7846		int path = BP_PATH(bp);
7847
7848		DP(NETIF_MSG_IFDOWN, "NO MCP - load counts[%d]      "
7849				     "%d, %d, %d\n",
7850		   path, load_count[path][0], load_count[path][1],
7851		   load_count[path][2]);
7852		load_count[path][0]--;
7853		load_count[path][1 + port]--;
7854		DP(NETIF_MSG_IFDOWN, "NO MCP - new load counts[%d]  "
7855				     "%d, %d, %d\n",
7856		   path, load_count[path][0], load_count[path][1],
7857		   load_count[path][2]);
7858		if (load_count[path][0] == 0)
7859			reset_code = FW_MSG_CODE_DRV_UNLOAD_COMMON;
7860		else if (load_count[path][1 + port] == 0)
7861			reset_code = FW_MSG_CODE_DRV_UNLOAD_PORT;
7862		else
7863			reset_code = FW_MSG_CODE_DRV_UNLOAD_FUNCTION;
7864	}
7865
7866	return reset_code;
7867}
7868
7869/**
7870 * bnx2x_send_unload_done - send UNLOAD_DONE command to the MCP.
7871 *
7872 * @bp:		driver handle
7873 */
7874void bnx2x_send_unload_done(struct bnx2x *bp)
7875{
7876	/* Report UNLOAD_DONE to MCP */
7877	if (!BP_NOMCP(bp))
7878		bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0);
7879}
7880
7881static inline int bnx2x_func_wait_started(struct bnx2x *bp)
7882{
7883	int tout = 50;
7884	int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
7885
7886	if (!bp->port.pmf)
7887		return 0;
7888
7889	/*
7890	 * (assumption: No Attention from MCP at this stage)
7891	 * PMF probably in the middle of TXdisable/enable transaction
7892	 * 1. Sync IRS for default SB
7893	 * 2. Sync SP queue - this guarantes us that attention handling started
7894	 * 3. Wait, that TXdisable/enable transaction completes
7895	 *
7896	 * 1+2 guranty that if DCBx attention was scheduled it already changed
7897	 * pending bit of transaction from STARTED-->TX_STOPPED, if we alredy
7898	 * received complettion for the transaction the state is TX_STOPPED.
7899	 * State will return to STARTED after completion of TX_STOPPED-->STARTED
7900	 * transaction.
7901	 */
7902
7903	/* make sure default SB ISR is done */
7904	if (msix)
7905		synchronize_irq(bp->msix_table[0].vector);
7906	else
7907		synchronize_irq(bp->pdev->irq);
7908
7909	flush_workqueue(bnx2x_wq);
7910
7911	while (bnx2x_func_get_state(bp, &bp->func_obj) !=
7912				BNX2X_F_STATE_STARTED && tout--)
7913		msleep(20);
7914
7915	if (bnx2x_func_get_state(bp, &bp->func_obj) !=
7916						BNX2X_F_STATE_STARTED) {
7917#ifdef BNX2X_STOP_ON_ERROR
7918		return -EBUSY;
7919#else
7920		/*
7921		 * Failed to complete the transaction in a "good way"
7922		 * Force both transactions with CLR bit
7923		 */
7924		struct bnx2x_func_state_params func_params = {0};
7925
7926		DP(BNX2X_MSG_SP, "Hmmm... unexpected function state! "
7927			  "Forcing STARTED-->TX_ST0PPED-->STARTED\n");
7928
7929		func_params.f_obj = &bp->func_obj;
7930		__set_bit(RAMROD_DRV_CLR_ONLY,
7931					&func_params.ramrod_flags);
7932
7933		/* STARTED-->TX_ST0PPED */
7934		func_params.cmd = BNX2X_F_CMD_TX_STOP;
7935		bnx2x_func_state_change(bp, &func_params);
7936
7937		/* TX_ST0PPED-->STARTED */
7938		func_params.cmd = BNX2X_F_CMD_TX_START;
7939		return bnx2x_func_state_change(bp, &func_params);
7940#endif
7941	}
7942
7943	return 0;
7944}
7945
7946void bnx2x_chip_cleanup(struct bnx2x *bp, int unload_mode)
7947{
7948	int port = BP_PORT(bp);
7949	int i, rc = 0;
7950	u8 cos;
7951	struct bnx2x_mcast_ramrod_params rparam = {0};
7952	u32 reset_code;
7953
7954	/* Wait until tx fastpath tasks complete */
7955	for_each_tx_queue(bp, i) {
7956		struct bnx2x_fastpath *fp = &bp->fp[i];
7957
7958		for_each_cos_in_tx_queue(fp, cos)
7959			rc = bnx2x_clean_tx_queue(bp, &fp->txdata[cos]);
7960#ifdef BNX2X_STOP_ON_ERROR
7961		if (rc)
7962			return;
7963#endif
7964	}
7965
7966	/* Give HW time to discard old tx messages */
7967	usleep_range(1000, 1000);
7968
7969	/* Clean all ETH MACs */
7970	rc = bnx2x_del_all_macs(bp, &bp->fp[0].mac_obj, BNX2X_ETH_MAC, false);
7971	if (rc < 0)
7972		BNX2X_ERR("Failed to delete all ETH macs: %d\n", rc);
7973
7974	/* Clean up UC list  */
7975	rc = bnx2x_del_all_macs(bp, &bp->fp[0].mac_obj, BNX2X_UC_LIST_MAC,
7976				true);
7977	if (rc < 0)
7978		BNX2X_ERR("Failed to schedule DEL commands for UC MACs list: "
7979			  "%d\n", rc);
7980
7981	/* Disable LLH */
7982	if (!CHIP_IS_E1(bp))
7983		REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
7984
7985	/* Set "drop all" (stop Rx).
7986	 * We need to take a netif_addr_lock() here in order to prevent
7987	 * a race between the completion code and this code.
7988	 */
7989	netif_addr_lock_bh(bp->dev);
7990	/* Schedule the rx_mode command */
7991	if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
7992		set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
7993	else
7994		bnx2x_set_storm_rx_mode(bp);
7995
7996	/* Cleanup multicast configuration */
7997	rparam.mcast_obj = &bp->mcast_obj;
7998	rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
7999	if (rc < 0)
8000		BNX2X_ERR("Failed to send DEL multicast command: %d\n", rc);
8001
8002	netif_addr_unlock_bh(bp->dev);
8003
8004
8005
8006	/*
8007	 * Send the UNLOAD_REQUEST to the MCP. This will return if
8008	 * this function should perform FUNC, PORT or COMMON HW
8009	 * reset.
8010	 */
8011	reset_code = bnx2x_send_unload_req(bp, unload_mode);
8012
8013	/*
8014	 * (assumption: No Attention from MCP at this stage)
8015	 * PMF probably in the middle of TXdisable/enable transaction
8016	 */
8017	rc = bnx2x_func_wait_started(bp);
8018	if (rc) {
8019		BNX2X_ERR("bnx2x_func_wait_started failed\n");
8020#ifdef BNX2X_STOP_ON_ERROR
8021		return;
8022#endif
8023	}
8024
8025	/* Close multi and leading connections
8026	 * Completions for ramrods are collected in a synchronous way
8027	 */
8028	for_each_queue(bp, i)
8029		if (bnx2x_stop_queue(bp, i))
8030#ifdef BNX2X_STOP_ON_ERROR
8031			return;
8032#else
8033			goto unload_error;
8034#endif
8035	/* If SP settings didn't get completed so far - something
8036	 * very wrong has happen.
8037	 */
8038	if (!bnx2x_wait_sp_comp(bp, ~0x0UL))
8039		BNX2X_ERR("Hmmm... Common slow path ramrods got stuck!\n");
8040
8041#ifndef BNX2X_STOP_ON_ERROR
8042unload_error:
8043#endif
8044	rc = bnx2x_func_stop(bp);
8045	if (rc) {
8046		BNX2X_ERR("Function stop failed!\n");
8047#ifdef BNX2X_STOP_ON_ERROR
8048		return;
8049#endif
8050	}
8051
8052	/* Disable HW interrupts, NAPI */
8053	bnx2x_netif_stop(bp, 1);
8054
8055	/* Release IRQs */
8056	bnx2x_free_irq(bp);
8057
8058	/* Reset the chip */
8059	rc = bnx2x_reset_hw(bp, reset_code);
8060	if (rc)
8061		BNX2X_ERR("HW_RESET failed\n");
8062
8063
8064	/* Report UNLOAD_DONE to MCP */
8065	bnx2x_send_unload_done(bp);
8066}
8067
8068void bnx2x_disable_close_the_gate(struct bnx2x *bp)
8069{
8070	u32 val;
8071
8072	DP(NETIF_MSG_HW, "Disabling \"close the gates\"\n");
8073
8074	if (CHIP_IS_E1(bp)) {
8075		int port = BP_PORT(bp);
8076		u32 addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
8077			MISC_REG_AEU_MASK_ATTN_FUNC_0;
8078
8079		val = REG_RD(bp, addr);
8080		val &= ~(0x300);
8081		REG_WR(bp, addr, val);
8082	} else {
8083		val = REG_RD(bp, MISC_REG_AEU_GENERAL_MASK);
8084		val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK |
8085			 MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK);
8086		REG_WR(bp, MISC_REG_AEU_GENERAL_MASK, val);
8087	}
8088}
8089
8090/* Close gates #2, #3 and #4: */
8091static void bnx2x_set_234_gates(struct bnx2x *bp, bool close)
8092{
8093	u32 val;
8094
8095	/* Gates #2 and #4a are closed/opened for "not E1" only */
8096	if (!CHIP_IS_E1(bp)) {
8097		/* #4 */
8098		REG_WR(bp, PXP_REG_HST_DISCARD_DOORBELLS, !!close);
8099		/* #2 */
8100		REG_WR(bp, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close);
8101	}
8102
8103	/* #3 */
8104	if (CHIP_IS_E1x(bp)) {
8105		/* Prevent interrupts from HC on both ports */
8106		val = REG_RD(bp, HC_REG_CONFIG_1);
8107		REG_WR(bp, HC_REG_CONFIG_1,
8108		       (!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) :
8109		       (val & ~(u32)HC_CONFIG_1_REG_BLOCK_DISABLE_1));
8110
8111		val = REG_RD(bp, HC_REG_CONFIG_0);
8112		REG_WR(bp, HC_REG_CONFIG_0,
8113		       (!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) :
8114		       (val & ~(u32)HC_CONFIG_0_REG_BLOCK_DISABLE_0));
8115	} else {
8116		/* Prevent incomming interrupts in IGU */
8117		val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
8118
8119		REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION,
8120		       (!close) ?
8121		       (val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) :
8122		       (val & ~(u32)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE));
8123	}
8124
8125	DP(NETIF_MSG_HW, "%s gates #2, #3 and #4\n",
8126		close ? "closing" : "opening");
8127	mmiowb();
8128}
8129
8130#define SHARED_MF_CLP_MAGIC  0x80000000 /* `magic' bit */
8131
8132static void bnx2x_clp_reset_prep(struct bnx2x *bp, u32 *magic_val)
8133{
8134	/* Do some magic... */
8135	u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
8136	*magic_val = val & SHARED_MF_CLP_MAGIC;
8137	MF_CFG_WR(bp, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC);
8138}
8139
8140/**
8141 * bnx2x_clp_reset_done - restore the value of the `magic' bit.
8142 *
8143 * @bp:		driver handle
8144 * @magic_val:	old value of the `magic' bit.
8145 */
8146static void bnx2x_clp_reset_done(struct bnx2x *bp, u32 magic_val)
8147{
8148	/* Restore the `magic' bit value... */
8149	u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
8150	MF_CFG_WR(bp, shared_mf_config.clp_mb,
8151		(val & (~SHARED_MF_CLP_MAGIC)) | magic_val);
8152}
8153
8154/**
8155 * bnx2x_reset_mcp_prep - prepare for MCP reset.
8156 *
8157 * @bp:		driver handle
8158 * @magic_val:	old value of 'magic' bit.
8159 *
8160 * Takes care of CLP configurations.
8161 */
8162static void bnx2x_reset_mcp_prep(struct bnx2x *bp, u32 *magic_val)
8163{
8164	u32 shmem;
8165	u32 validity_offset;
8166
8167	DP(NETIF_MSG_HW, "Starting\n");
8168
8169	/* Set `magic' bit in order to save MF config */
8170	if (!CHIP_IS_E1(bp))
8171		bnx2x_clp_reset_prep(bp, magic_val);
8172
8173	/* Get shmem offset */
8174	shmem = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
8175	validity_offset = offsetof(struct shmem_region, validity_map[0]);
8176
8177	/* Clear validity map flags */
8178	if (shmem > 0)
8179		REG_WR(bp, shmem + validity_offset, 0);
8180}
8181
8182#define MCP_TIMEOUT      5000   /* 5 seconds (in ms) */
8183#define MCP_ONE_TIMEOUT  100    /* 100 ms */
8184
8185/**
8186 * bnx2x_mcp_wait_one - wait for MCP_ONE_TIMEOUT
8187 *
8188 * @bp:	driver handle
8189 */
8190static inline void bnx2x_mcp_wait_one(struct bnx2x *bp)
8191{
8192	/* special handling for emulation and FPGA,
8193	   wait 10 times longer */
8194	if (CHIP_REV_IS_SLOW(bp))
8195		msleep(MCP_ONE_TIMEOUT*10);
8196	else
8197		msleep(MCP_ONE_TIMEOUT);
8198}
8199
8200/*
8201 * initializes bp->common.shmem_base and waits for validity signature to appear
8202 */
8203static int bnx2x_init_shmem(struct bnx2x *bp)
8204{
8205	int cnt = 0;
8206	u32 val = 0;
8207
8208	do {
8209		bp->common.shmem_base = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
8210		if (bp->common.shmem_base) {
8211			val = SHMEM_RD(bp, validity_map[BP_PORT(bp)]);
8212			if (val & SHR_MEM_VALIDITY_MB)
8213				return 0;
8214		}
8215
8216		bnx2x_mcp_wait_one(bp);
8217
8218	} while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT));
8219
8220	BNX2X_ERR("BAD MCP validity signature\n");
8221
8222	return -ENODEV;
8223}
8224
8225static int bnx2x_reset_mcp_comp(struct bnx2x *bp, u32 magic_val)
8226{
8227	int rc = bnx2x_init_shmem(bp);
8228
8229	/* Restore the `magic' bit value */
8230	if (!CHIP_IS_E1(bp))
8231		bnx2x_clp_reset_done(bp, magic_val);
8232
8233	return rc;
8234}
8235
8236static void bnx2x_pxp_prep(struct bnx2x *bp)
8237{
8238	if (!CHIP_IS_E1(bp)) {
8239		REG_WR(bp, PXP2_REG_RD_START_INIT, 0);
8240		REG_WR(bp, PXP2_REG_RQ_RBC_DONE, 0);
8241		mmiowb();
8242	}
8243}
8244
8245/*
8246 * Reset the whole chip except for:
8247 *      - PCIE core
8248 *      - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by
8249 *              one reset bit)
8250 *      - IGU
8251 *      - MISC (including AEU)
8252 *      - GRC
8253 *      - RBCN, RBCP
8254 */
8255static void bnx2x_process_kill_chip_reset(struct bnx2x *bp, bool global)
8256{
8257	u32 not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2;
8258	u32 global_bits2, stay_reset2;
8259
8260	/*
8261	 * Bits that have to be set in reset_mask2 if we want to reset 'global'
8262	 * (per chip) blocks.
8263	 */
8264	global_bits2 =
8265		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU |
8266		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE;
8267
8268	/* Don't reset the following blocks */
8269	not_reset_mask1 =
8270		MISC_REGISTERS_RESET_REG_1_RST_HC |
8271		MISC_REGISTERS_RESET_REG_1_RST_PXPV |
8272		MISC_REGISTERS_RESET_REG_1_RST_PXP;
8273
8274	not_reset_mask2 =
8275		MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO |
8276		MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE |
8277		MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE |
8278		MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE |
8279		MISC_REGISTERS_RESET_REG_2_RST_RBCN |
8280		MISC_REGISTERS_RESET_REG_2_RST_GRC  |
8281		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE |
8282		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B |
8283		MISC_REGISTERS_RESET_REG_2_RST_ATC |
8284		MISC_REGISTERS_RESET_REG_2_PGLC;
8285
8286	/*
8287	 * Keep the following blocks in reset:
8288	 *  - all xxMACs are handled by the bnx2x_link code.
8289	 */
8290	stay_reset2 =
8291		MISC_REGISTERS_RESET_REG_2_RST_BMAC0 |
8292		MISC_REGISTERS_RESET_REG_2_RST_BMAC1 |
8293		MISC_REGISTERS_RESET_REG_2_RST_EMAC0 |
8294		MISC_REGISTERS_RESET_REG_2_RST_EMAC1 |
8295		MISC_REGISTERS_RESET_REG_2_UMAC0 |
8296		MISC_REGISTERS_RESET_REG_2_UMAC1 |
8297		MISC_REGISTERS_RESET_REG_2_XMAC |
8298		MISC_REGISTERS_RESET_REG_2_XMAC_SOFT;
8299
8300	/* Full reset masks according to the chip */
8301	reset_mask1 = 0xffffffff;
8302
8303	if (CHIP_IS_E1(bp))
8304		reset_mask2 = 0xffff;
8305	else if (CHIP_IS_E1H(bp))
8306		reset_mask2 = 0x1ffff;
8307	else if (CHIP_IS_E2(bp))
8308		reset_mask2 = 0xfffff;
8309	else /* CHIP_IS_E3 */
8310		reset_mask2 = 0x3ffffff;
8311
8312	/* Don't reset global blocks unless we need to */
8313	if (!global)
8314		reset_mask2 &= ~global_bits2;
8315
8316	/*
8317	 * In case of attention in the QM, we need to reset PXP
8318	 * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM
8319	 * because otherwise QM reset would release 'close the gates' shortly
8320	 * before resetting the PXP, then the PSWRQ would send a write
8321	 * request to PGLUE. Then when PXP is reset, PGLUE would try to
8322	 * read the payload data from PSWWR, but PSWWR would not
8323	 * respond. The write queue in PGLUE would stuck, dmae commands
8324	 * would not return. Therefore it's important to reset the second
8325	 * reset register (containing the
8326	 * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the
8327	 * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM
8328	 * bit).
8329	 */
8330	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
8331	       reset_mask2 & (~not_reset_mask2));
8332
8333	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
8334	       reset_mask1 & (~not_reset_mask1));
8335
8336	barrier();
8337	mmiowb();
8338
8339	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET,
8340	       reset_mask2 & (~stay_reset2));
8341
8342	barrier();
8343	mmiowb();
8344
8345	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1);
8346	mmiowb();
8347}
8348
8349/**
8350 * bnx2x_er_poll_igu_vq - poll for pending writes bit.
8351 * It should get cleared in no more than 1s.
8352 *
8353 * @bp:	driver handle
8354 *
8355 * It should get cleared in no more than 1s. Returns 0 if
8356 * pending writes bit gets cleared.
8357 */
8358static int bnx2x_er_poll_igu_vq(struct bnx2x *bp)
8359{
8360	u32 cnt = 1000;
8361	u32 pend_bits = 0;
8362
8363	do {
8364		pend_bits  = REG_RD(bp, IGU_REG_PENDING_BITS_STATUS);
8365
8366		if (pend_bits == 0)
8367			break;
8368
8369		usleep_range(1000, 1000);
8370	} while (cnt-- > 0);
8371
8372	if (cnt <= 0) {
8373		BNX2X_ERR("Still pending IGU requests pend_bits=%x!\n",
8374			  pend_bits);
8375		return -EBUSY;
8376	}
8377
8378	return 0;
8379}
8380
8381static int bnx2x_process_kill(struct bnx2x *bp, bool global)
8382{
8383	int cnt = 1000;
8384	u32 val = 0;
8385	u32 sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2;
8386
8387
8388	/* Empty the Tetris buffer, wait for 1s */
8389	do {
8390		sr_cnt  = REG_RD(bp, PXP2_REG_RD_SR_CNT);
8391		blk_cnt = REG_RD(bp, PXP2_REG_RD_BLK_CNT);
8392		port_is_idle_0 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_0);
8393		port_is_idle_1 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_1);
8394		pgl_exp_rom2 = REG_RD(bp, PXP2_REG_PGL_EXP_ROM2);
8395		if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) &&
8396		    ((port_is_idle_0 & 0x1) == 0x1) &&
8397		    ((port_is_idle_1 & 0x1) == 0x1) &&
8398		    (pgl_exp_rom2 == 0xffffffff))
8399			break;
8400		usleep_range(1000, 1000);
8401	} while (cnt-- > 0);
8402
8403	if (cnt <= 0) {
8404		DP(NETIF_MSG_HW, "Tetris buffer didn't get empty or there"
8405			  " are still"
8406			  " outstanding read requests after 1s!\n");
8407		DP(NETIF_MSG_HW, "sr_cnt=0x%08x, blk_cnt=0x%08x,"
8408			  " port_is_idle_0=0x%08x,"
8409			  " port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n",
8410			  sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1,
8411			  pgl_exp_rom2);
8412		return -EAGAIN;
8413	}
8414
8415	barrier();
8416
8417	/* Close gates #2, #3 and #4 */
8418	bnx2x_set_234_gates(bp, true);
8419
8420	/* Poll for IGU VQs for 57712 and newer chips */
8421	if (!CHIP_IS_E1x(bp) && bnx2x_er_poll_igu_vq(bp))
8422		return -EAGAIN;
8423
8424
8425	/* TBD: Indicate that "process kill" is in progress to MCP */
8426
8427	/* Clear "unprepared" bit */
8428	REG_WR(bp, MISC_REG_UNPREPARED, 0);
8429	barrier();
8430
8431	/* Make sure all is written to the chip before the reset */
8432	mmiowb();
8433
8434	/* Wait for 1ms to empty GLUE and PCI-E core queues,
8435	 * PSWHST, GRC and PSWRD Tetris buffer.
8436	 */
8437	usleep_range(1000, 1000);
8438
8439	/* Prepare to chip reset: */
8440	/* MCP */
8441	if (global)
8442		bnx2x_reset_mcp_prep(bp, &val);
8443
8444	/* PXP */
8445	bnx2x_pxp_prep(bp);
8446	barrier();
8447
8448	/* reset the chip */
8449	bnx2x_process_kill_chip_reset(bp, global);
8450	barrier();
8451
8452	/* Recover after reset: */
8453	/* MCP */
8454	if (global && bnx2x_reset_mcp_comp(bp, val))
8455		return -EAGAIN;
8456
8457	/* TBD: Add resetting the NO_MCP mode DB here */
8458
8459	/* PXP */
8460	bnx2x_pxp_prep(bp);
8461
8462	/* Open the gates #2, #3 and #4 */
8463	bnx2x_set_234_gates(bp, false);
8464
8465	/* TBD: IGU/AEU preparation bring back the AEU/IGU to a
8466	 * reset state, re-enable attentions. */
8467
8468	return 0;
8469}
8470
8471int bnx2x_leader_reset(struct bnx2x *bp)
8472{
8473	int rc = 0;
8474	bool global = bnx2x_reset_is_global(bp);
8475
8476	/* Try to recover after the failure */
8477	if (bnx2x_process_kill(bp, global)) {
8478		netdev_err(bp->dev, "Something bad had happen on engine %d! "
8479				    "Aii!\n", BP_PATH(bp));
8480		rc = -EAGAIN;
8481		goto exit_leader_reset;
8482	}
8483
8484	/*
8485	 * Clear RESET_IN_PROGRES and RESET_GLOBAL bits and update the driver
8486	 * state.
8487	 */
8488	bnx2x_set_reset_done(bp);
8489	if (global)
8490		bnx2x_clear_reset_global(bp);
8491
8492exit_leader_reset:
8493	bp->is_leader = 0;
8494	bnx2x_release_leader_lock(bp);
8495	smp_mb();
8496	return rc;
8497}
8498
8499static inline void bnx2x_recovery_failed(struct bnx2x *bp)
8500{
8501	netdev_err(bp->dev, "Recovery has failed. Power cycle is needed.\n");
8502
8503	/* Disconnect this device */
8504	netif_device_detach(bp->dev);
8505
8506	/*
8507	 * Block ifup for all function on this engine until "process kill"
8508	 * or power cycle.
8509	 */
8510	bnx2x_set_reset_in_progress(bp);
8511
8512	/* Shut down the power */
8513	bnx2x_set_power_state(bp, PCI_D3hot);
8514
8515	bp->recovery_state = BNX2X_RECOVERY_FAILED;
8516
8517	smp_mb();
8518}
8519
8520/*
8521 * Assumption: runs under rtnl lock. This together with the fact
8522 * that it's called only from bnx2x_sp_rtnl() ensure that it
8523 * will never be called when netif_running(bp->dev) is false.
8524 */
8525static void bnx2x_parity_recover(struct bnx2x *bp)
8526{
8527	bool global = false;
8528
8529	DP(NETIF_MSG_HW, "Handling parity\n");
8530	while (1) {
8531		switch (bp->recovery_state) {
8532		case BNX2X_RECOVERY_INIT:
8533			DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_INIT\n");
8534			bnx2x_chk_parity_attn(bp, &global, false);
8535
8536			/* Try to get a LEADER_LOCK HW lock */
8537			if (bnx2x_trylock_leader_lock(bp)) {
8538				bnx2x_set_reset_in_progress(bp);
8539				/*
8540				 * Check if there is a global attention and if
8541				 * there was a global attention, set the global
8542				 * reset bit.
8543				 */
8544
8545				if (global)
8546					bnx2x_set_reset_global(bp);
8547
8548				bp->is_leader = 1;
8549			}
8550
8551			/* Stop the driver */
8552			/* If interface has been removed - break */
8553			if (bnx2x_nic_unload(bp, UNLOAD_RECOVERY))
8554				return;
8555
8556			bp->recovery_state = BNX2X_RECOVERY_WAIT;
8557
8558			/*
8559			 * Reset MCP command sequence number and MCP mail box
8560			 * sequence as we are going to reset the MCP.
8561			 */
8562			if (global) {
8563				bp->fw_seq = 0;
8564				bp->fw_drv_pulse_wr_seq = 0;
8565			}
8566
8567			/* Ensure "is_leader", MCP command sequence and
8568			 * "recovery_state" update values are seen on other
8569			 * CPUs.
8570			 */
8571			smp_mb();
8572			break;
8573
8574		case BNX2X_RECOVERY_WAIT:
8575			DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_WAIT\n");
8576			if (bp->is_leader) {
8577				int other_engine = BP_PATH(bp) ? 0 : 1;
8578				u32 other_load_counter =
8579					bnx2x_get_load_cnt(bp, other_engine);
8580				u32 load_counter =
8581					bnx2x_get_load_cnt(bp, BP_PATH(bp));
8582				global = bnx2x_reset_is_global(bp);
8583
8584				/*
8585				 * In case of a parity in a global block, let
8586				 * the first leader that performs a
8587				 * leader_reset() reset the global blocks in
8588				 * order to clear global attentions. Otherwise
8589				 * the the gates will remain closed for that
8590				 * engine.
8591				 */
8592				if (load_counter ||
8593				    (global && other_load_counter)) {
8594					/* Wait until all other functions get
8595					 * down.
8596					 */
8597					schedule_delayed_work(&bp->sp_rtnl_task,
8598								HZ/10);
8599					return;
8600				} else {
8601					/* If all other functions got down -
8602					 * try to bring the chip back to
8603					 * normal. In any case it's an exit
8604					 * point for a leader.
8605					 */
8606					if (bnx2x_leader_reset(bp)) {
8607						bnx2x_recovery_failed(bp);
8608						return;
8609					}
8610
8611					/* If we are here, means that the
8612					 * leader has succeeded and doesn't
8613					 * want to be a leader any more. Try
8614					 * to continue as a none-leader.
8615					 */
8616					break;
8617				}
8618			} else { /* non-leader */
8619				if (!bnx2x_reset_is_done(bp, BP_PATH(bp))) {
8620					/* Try to get a LEADER_LOCK HW lock as
8621					 * long as a former leader may have
8622					 * been unloaded by the user or
8623					 * released a leadership by another
8624					 * reason.
8625					 */
8626					if (bnx2x_trylock_leader_lock(bp)) {
8627						/* I'm a leader now! Restart a
8628						 * switch case.
8629						 */
8630						bp->is_leader = 1;
8631						break;
8632					}
8633
8634					schedule_delayed_work(&bp->sp_rtnl_task,
8635								HZ/10);
8636					return;
8637
8638				} else {
8639					/*
8640					 * If there was a global attention, wait
8641					 * for it to be cleared.
8642					 */
8643					if (bnx2x_reset_is_global(bp)) {
8644						schedule_delayed_work(
8645							&bp->sp_rtnl_task,
8646							HZ/10);
8647						return;
8648					}
8649
8650					if (bnx2x_nic_load(bp, LOAD_NORMAL))
8651						bnx2x_recovery_failed(bp);
8652					else {
8653						bp->recovery_state =
8654							BNX2X_RECOVERY_DONE;
8655						smp_mb();
8656					}
8657
8658					return;
8659				}
8660			}
8661		default:
8662			return;
8663		}
8664	}
8665}
8666
8667/* bnx2x_nic_unload() flushes the bnx2x_wq, thus reset task is
8668 * scheduled on a general queue in order to prevent a dead lock.
8669 */
8670static void bnx2x_sp_rtnl_task(struct work_struct *work)
8671{
8672	struct bnx2x *bp = container_of(work, struct bnx2x, sp_rtnl_task.work);
8673
8674	rtnl_lock();
8675
8676	if (!netif_running(bp->dev))
8677		goto sp_rtnl_exit;
8678
8679	/* if stop on error is defined no recovery flows should be executed */
8680#ifdef BNX2X_STOP_ON_ERROR
8681	BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined "
8682		  "so reset not done to allow debug dump,\n"
8683		  "you will need to reboot when done\n");
8684	goto sp_rtnl_not_reset;
8685#endif
8686
8687	if (unlikely(bp->recovery_state != BNX2X_RECOVERY_DONE)) {
8688		/*
8689		 * Clear all pending SP commands as we are going to reset the
8690		 * function anyway.
8691		 */
8692		bp->sp_rtnl_state = 0;
8693		smp_mb();
8694
8695		bnx2x_parity_recover(bp);
8696
8697		goto sp_rtnl_exit;
8698	}
8699
8700	if (test_and_clear_bit(BNX2X_SP_RTNL_TX_TIMEOUT, &bp->sp_rtnl_state)) {
8701		/*
8702		 * Clear all pending SP commands as we are going to reset the
8703		 * function anyway.
8704		 */
8705		bp->sp_rtnl_state = 0;
8706		smp_mb();
8707
8708		bnx2x_nic_unload(bp, UNLOAD_NORMAL);
8709		bnx2x_nic_load(bp, LOAD_NORMAL);
8710
8711		goto sp_rtnl_exit;
8712	}
8713#ifdef BNX2X_STOP_ON_ERROR
8714sp_rtnl_not_reset:
8715#endif
8716	if (test_and_clear_bit(BNX2X_SP_RTNL_SETUP_TC, &bp->sp_rtnl_state))
8717		bnx2x_setup_tc(bp->dev, bp->dcbx_port_params.ets.num_of_cos);
8718
8719	/*
8720	 * in case of fan failure we need to reset id if the "stop on error"
8721	 * debug flag is set, since we trying to prevent permanent overheating
8722	 * damage
8723	 */
8724	if (test_and_clear_bit(BNX2X_SP_RTNL_FAN_FAILURE, &bp->sp_rtnl_state)) {
8725		DP(BNX2X_MSG_SP, "fan failure detected. Unloading driver\n");
8726		netif_device_detach(bp->dev);
8727		bnx2x_close(bp->dev);
8728	}
8729
8730sp_rtnl_exit:
8731	rtnl_unlock();
8732}
8733
8734/* end of nic load/unload */
8735
8736static void bnx2x_period_task(struct work_struct *work)
8737{
8738	struct bnx2x *bp = container_of(work, struct bnx2x, period_task.work);
8739
8740	if (!netif_running(bp->dev))
8741		goto period_task_exit;
8742
8743	if (CHIP_REV_IS_SLOW(bp)) {
8744		BNX2X_ERR("period task called on emulation, ignoring\n");
8745		goto period_task_exit;
8746	}
8747
8748	bnx2x_acquire_phy_lock(bp);
8749	/*
8750	 * The barrier is needed to ensure the ordering between the writing to
8751	 * the bp->port.pmf in the bnx2x_nic_load() or bnx2x_pmf_update() and
8752	 * the reading here.
8753	 */
8754	smp_mb();
8755	if (bp->port.pmf) {
8756		bnx2x_period_func(&bp->link_params, &bp->link_vars);
8757
8758		/* Re-queue task in 1 sec */
8759		queue_delayed_work(bnx2x_wq, &bp->period_task, 1*HZ);
8760	}
8761
8762	bnx2x_release_phy_lock(bp);
8763period_task_exit:
8764	return;
8765}
8766
8767/*
8768 * Init service functions
8769 */
8770
8771static u32 bnx2x_get_pretend_reg(struct bnx2x *bp)
8772{
8773	u32 base = PXP2_REG_PGL_PRETEND_FUNC_F0;
8774	u32 stride = PXP2_REG_PGL_PRETEND_FUNC_F1 - base;
8775	return base + (BP_ABS_FUNC(bp)) * stride;
8776}
8777
8778static void bnx2x_undi_int_disable_e1h(struct bnx2x *bp)
8779{
8780	u32 reg = bnx2x_get_pretend_reg(bp);
8781
8782	/* Flush all outstanding writes */
8783	mmiowb();
8784
8785	/* Pretend to be function 0 */
8786	REG_WR(bp, reg, 0);
8787	REG_RD(bp, reg);	/* Flush the GRC transaction (in the chip) */
8788
8789	/* From now we are in the "like-E1" mode */
8790	bnx2x_int_disable(bp);
8791
8792	/* Flush all outstanding writes */
8793	mmiowb();
8794
8795	/* Restore the original function */
8796	REG_WR(bp, reg, BP_ABS_FUNC(bp));
8797	REG_RD(bp, reg);
8798}
8799
8800static inline void bnx2x_undi_int_disable(struct bnx2x *bp)
8801{
8802	if (CHIP_IS_E1(bp))
8803		bnx2x_int_disable(bp);
8804	else
8805		bnx2x_undi_int_disable_e1h(bp);
8806}
8807
8808static void __devinit bnx2x_undi_unload(struct bnx2x *bp)
8809{
8810	u32 val;
8811
8812	/* Check if there is any driver already loaded */
8813	val = REG_RD(bp, MISC_REG_UNPREPARED);
8814	if (val == 0x1) {
8815
8816		bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
8817		/*
8818		 * Check if it is the UNDI driver
8819		 * UNDI driver initializes CID offset for normal bell to 0x7
8820		 */
8821		val = REG_RD(bp, DORQ_REG_NORM_CID_OFST);
8822		if (val == 0x7) {
8823			u32 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
8824			/* save our pf_num */
8825			int orig_pf_num = bp->pf_num;
8826			int port;
8827			u32 swap_en, swap_val, value;
8828
8829			/* clear the UNDI indication */
8830			REG_WR(bp, DORQ_REG_NORM_CID_OFST, 0);
8831
8832			BNX2X_DEV_INFO("UNDI is active! reset device\n");
8833
8834			/* try unload UNDI on port 0 */
8835			bp->pf_num = 0;
8836			bp->fw_seq =
8837			      (SHMEM_RD(bp, func_mb[bp->pf_num].drv_mb_header) &
8838				DRV_MSG_SEQ_NUMBER_MASK);
8839			reset_code = bnx2x_fw_command(bp, reset_code, 0);
8840
8841			/* if UNDI is loaded on the other port */
8842			if (reset_code != FW_MSG_CODE_DRV_UNLOAD_COMMON) {
8843
8844				/* send "DONE" for previous unload */
8845				bnx2x_fw_command(bp,
8846						 DRV_MSG_CODE_UNLOAD_DONE, 0);
8847
8848				/* unload UNDI on port 1 */
8849				bp->pf_num = 1;
8850				bp->fw_seq =
8851			      (SHMEM_RD(bp, func_mb[bp->pf_num].drv_mb_header) &
8852					DRV_MSG_SEQ_NUMBER_MASK);
8853				reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
8854
8855				bnx2x_fw_command(bp, reset_code, 0);
8856			}
8857
8858			bnx2x_undi_int_disable(bp);
8859			port = BP_PORT(bp);
8860
8861			/* close input traffic and wait for it */
8862			/* Do not rcv packets to BRB */
8863			REG_WR(bp, (port ? NIG_REG_LLH1_BRB1_DRV_MASK :
8864					   NIG_REG_LLH0_BRB1_DRV_MASK), 0x0);
8865			/* Do not direct rcv packets that are not for MCP to
8866			 * the BRB */
8867			REG_WR(bp, (port ? NIG_REG_LLH1_BRB1_NOT_MCP :
8868					   NIG_REG_LLH0_BRB1_NOT_MCP), 0x0);
8869			/* clear AEU */
8870			REG_WR(bp, (port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
8871					   MISC_REG_AEU_MASK_ATTN_FUNC_0), 0);
8872			msleep(10);
8873
8874			/* save NIG port swap info */
8875			swap_val = REG_RD(bp, NIG_REG_PORT_SWAP);
8876			swap_en = REG_RD(bp, NIG_REG_STRAP_OVERRIDE);
8877			/* reset device */
8878			REG_WR(bp,
8879			       GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
8880			       0xd3ffffff);
8881
8882			value = 0x1400;
8883			if (CHIP_IS_E3(bp)) {
8884				value |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
8885				value |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
8886			}
8887
8888			REG_WR(bp,
8889			       GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
8890			       value);
8891
8892			/* take the NIG out of reset and restore swap values */
8893			REG_WR(bp,
8894			       GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET,
8895			       MISC_REGISTERS_RESET_REG_1_RST_NIG);
8896			REG_WR(bp, NIG_REG_PORT_SWAP, swap_val);
8897			REG_WR(bp, NIG_REG_STRAP_OVERRIDE, swap_en);
8898
8899			/* send unload done to the MCP */
8900			bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0);
8901
8902			/* restore our func and fw_seq */
8903			bp->pf_num = orig_pf_num;
8904			bp->fw_seq =
8905			      (SHMEM_RD(bp, func_mb[bp->pf_num].drv_mb_header) &
8906				DRV_MSG_SEQ_NUMBER_MASK);
8907		}
8908
8909		/* now it's safe to release the lock */
8910		bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
8911	}
8912}
8913
8914static void __devinit bnx2x_get_common_hwinfo(struct bnx2x *bp)
8915{
8916	u32 val, val2, val3, val4, id, boot_mode;
8917	u16 pmc;
8918
8919	/* Get the chip revision id and number. */
8920	/* chip num:16-31, rev:12-15, metal:4-11, bond_id:0-3 */
8921	val = REG_RD(bp, MISC_REG_CHIP_NUM);
8922	id = ((val & 0xffff) << 16);
8923	val = REG_RD(bp, MISC_REG_CHIP_REV);
8924	id |= ((val & 0xf) << 12);
8925	val = REG_RD(bp, MISC_REG_CHIP_METAL);
8926	id |= ((val & 0xff) << 4);
8927	val = REG_RD(bp, MISC_REG_BOND_ID);
8928	id |= (val & 0xf);
8929	bp->common.chip_id = id;
8930
8931	/* Set doorbell size */
8932	bp->db_size = (1 << BNX2X_DB_SHIFT);
8933
8934	if (!CHIP_IS_E1x(bp)) {
8935		val = REG_RD(bp, MISC_REG_PORT4MODE_EN_OVWR);
8936		if ((val & 1) == 0)
8937			val = REG_RD(bp, MISC_REG_PORT4MODE_EN);
8938		else
8939			val = (val >> 1) & 1;
8940		BNX2X_DEV_INFO("chip is in %s\n", val ? "4_PORT_MODE" :
8941						       "2_PORT_MODE");
8942		bp->common.chip_port_mode = val ? CHIP_4_PORT_MODE :
8943						 CHIP_2_PORT_MODE;
8944
8945		if (CHIP_MODE_IS_4_PORT(bp))
8946			bp->pfid = (bp->pf_num >> 1);	/* 0..3 */
8947		else
8948			bp->pfid = (bp->pf_num & 0x6);	/* 0, 2, 4, 6 */
8949	} else {
8950		bp->common.chip_port_mode = CHIP_PORT_MODE_NONE; /* N/A */
8951		bp->pfid = bp->pf_num;			/* 0..7 */
8952	}
8953
8954	bp->link_params.chip_id = bp->common.chip_id;
8955	BNX2X_DEV_INFO("chip ID is 0x%x\n", id);
8956
8957	val = (REG_RD(bp, 0x2874) & 0x55);
8958	if ((bp->common.chip_id & 0x1) ||
8959	    (CHIP_IS_E1(bp) && val) || (CHIP_IS_E1H(bp) && (val == 0x55))) {
8960		bp->flags |= ONE_PORT_FLAG;
8961		BNX2X_DEV_INFO("single port device\n");
8962	}
8963
8964	val = REG_RD(bp, MCP_REG_MCPR_NVM_CFG4);
8965	bp->common.flash_size = (BNX2X_NVRAM_1MB_SIZE <<
8966				 (val & MCPR_NVM_CFG4_FLASH_SIZE));
8967	BNX2X_DEV_INFO("flash_size 0x%x (%d)\n",
8968		       bp->common.flash_size, bp->common.flash_size);
8969
8970	bnx2x_init_shmem(bp);
8971
8972
8973
8974	bp->common.shmem2_base = REG_RD(bp, (BP_PATH(bp) ?
8975					MISC_REG_GENERIC_CR_1 :
8976					MISC_REG_GENERIC_CR_0));
8977
8978	bp->link_params.shmem_base = bp->common.shmem_base;
8979	bp->link_params.shmem2_base = bp->common.shmem2_base;
8980	BNX2X_DEV_INFO("shmem offset 0x%x  shmem2 offset 0x%x\n",
8981		       bp->common.shmem_base, bp->common.shmem2_base);
8982
8983	if (!bp->common.shmem_base) {
8984		BNX2X_DEV_INFO("MCP not active\n");
8985		bp->flags |= NO_MCP_FLAG;
8986		return;
8987	}
8988
8989	bp->common.hw_config = SHMEM_RD(bp, dev_info.shared_hw_config.config);
8990	BNX2X_DEV_INFO("hw_config 0x%08x\n", bp->common.hw_config);
8991
8992	bp->link_params.hw_led_mode = ((bp->common.hw_config &
8993					SHARED_HW_CFG_LED_MODE_MASK) >>
8994				       SHARED_HW_CFG_LED_MODE_SHIFT);
8995
8996	bp->link_params.feature_config_flags = 0;
8997	val = SHMEM_RD(bp, dev_info.shared_feature_config.config);
8998	if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED)
8999		bp->link_params.feature_config_flags |=
9000				FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
9001	else
9002		bp->link_params.feature_config_flags &=
9003				~FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
9004
9005	val = SHMEM_RD(bp, dev_info.bc_rev) >> 8;
9006	bp->common.bc_ver = val;
9007	BNX2X_DEV_INFO("bc_ver %X\n", val);
9008	if (val < BNX2X_BC_VER) {
9009		/* for now only warn
9010		 * later we might need to enforce this */
9011		BNX2X_ERR("This driver needs bc_ver %X but found %X, "
9012			  "please upgrade BC\n", BNX2X_BC_VER, val);
9013	}
9014	bp->link_params.feature_config_flags |=
9015				(val >= REQ_BC_VER_4_VRFY_FIRST_PHY_OPT_MDL) ?
9016				FEATURE_CONFIG_BC_SUPPORTS_OPT_MDL_VRFY : 0;
9017
9018	bp->link_params.feature_config_flags |=
9019		(val >= REQ_BC_VER_4_VRFY_SPECIFIC_PHY_OPT_MDL) ?
9020		FEATURE_CONFIG_BC_SUPPORTS_DUAL_PHY_OPT_MDL_VRFY : 0;
9021
9022	bp->link_params.feature_config_flags |=
9023		(val >= REQ_BC_VER_4_SFP_TX_DISABLE_SUPPORTED) ?
9024		FEATURE_CONFIG_BC_SUPPORTS_SFP_TX_DISABLED : 0;
9025	bp->flags |= (val >= REQ_BC_VER_4_PFC_STATS_SUPPORTED) ?
9026			BC_SUPPORTS_PFC_STATS : 0;
9027
9028	boot_mode = SHMEM_RD(bp,
9029			dev_info.port_feature_config[BP_PORT(bp)].mba_config) &
9030			PORT_FEATURE_MBA_BOOT_AGENT_TYPE_MASK;
9031	switch (boot_mode) {
9032	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_PXE:
9033		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_PXE;
9034		break;
9035	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_ISCSIB:
9036		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_ISCSI;
9037		break;
9038	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_FCOE_BOOT:
9039		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_FCOE;
9040		break;
9041	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_NONE:
9042		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_NONE;
9043		break;
9044	}
9045
9046	pci_read_config_word(bp->pdev, bp->pm_cap + PCI_PM_PMC, &pmc);
9047	bp->flags |= (pmc & PCI_PM_CAP_PME_D3cold) ? 0 : NO_WOL_FLAG;
9048
9049	BNX2X_DEV_INFO("%sWoL capable\n",
9050		       (bp->flags & NO_WOL_FLAG) ? "not " : "");
9051
9052	val = SHMEM_RD(bp, dev_info.shared_hw_config.part_num);
9053	val2 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[4]);
9054	val3 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[8]);
9055	val4 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[12]);
9056
9057	dev_info(&bp->pdev->dev, "part number %X-%X-%X-%X\n",
9058		 val, val2, val3, val4);
9059}
9060
9061#define IGU_FID(val)	GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID)
9062#define IGU_VEC(val)	GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR)
9063
9064static void __devinit bnx2x_get_igu_cam_info(struct bnx2x *bp)
9065{
9066	int pfid = BP_FUNC(bp);
9067	int igu_sb_id;
9068	u32 val;
9069	u8 fid, igu_sb_cnt = 0;
9070
9071	bp->igu_base_sb = 0xff;
9072	if (CHIP_INT_MODE_IS_BC(bp)) {
9073		int vn = BP_VN(bp);
9074		igu_sb_cnt = bp->igu_sb_cnt;
9075		bp->igu_base_sb = (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn) *
9076			FP_SB_MAX_E1x;
9077
9078		bp->igu_dsb_id =  E1HVN_MAX * FP_SB_MAX_E1x +
9079			(CHIP_MODE_IS_4_PORT(bp) ? pfid : vn);
9080
9081		return;
9082	}
9083
9084	/* IGU in normal mode - read CAM */
9085	for (igu_sb_id = 0; igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE;
9086	     igu_sb_id++) {
9087		val = REG_RD(bp, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4);
9088		if (!(val & IGU_REG_MAPPING_MEMORY_VALID))
9089			continue;
9090		fid = IGU_FID(val);
9091		if ((fid & IGU_FID_ENCODE_IS_PF)) {
9092			if ((fid & IGU_FID_PF_NUM_MASK) != pfid)
9093				continue;
9094			if (IGU_VEC(val) == 0)
9095				/* default status block */
9096				bp->igu_dsb_id = igu_sb_id;
9097			else {
9098				if (bp->igu_base_sb == 0xff)
9099					bp->igu_base_sb = igu_sb_id;
9100				igu_sb_cnt++;
9101			}
9102		}
9103	}
9104
9105#ifdef CONFIG_PCI_MSI
9106	/*
9107	 * It's expected that number of CAM entries for this functions is equal
9108	 * to the number evaluated based on the MSI-X table size. We want a
9109	 * harsh warning if these values are different!
9110	 */
9111	WARN_ON(bp->igu_sb_cnt != igu_sb_cnt);
9112#endif
9113
9114	if (igu_sb_cnt == 0)
9115		BNX2X_ERR("CAM configuration error\n");
9116}
9117
9118static void __devinit bnx2x_link_settings_supported(struct bnx2x *bp,
9119						    u32 switch_cfg)
9120{
9121	int cfg_size = 0, idx, port = BP_PORT(bp);
9122
9123	/* Aggregation of supported attributes of all external phys */
9124	bp->port.supported[0] = 0;
9125	bp->port.supported[1] = 0;
9126	switch (bp->link_params.num_phys) {
9127	case 1:
9128		bp->port.supported[0] = bp->link_params.phy[INT_PHY].supported;
9129		cfg_size = 1;
9130		break;
9131	case 2:
9132		bp->port.supported[0] = bp->link_params.phy[EXT_PHY1].supported;
9133		cfg_size = 1;
9134		break;
9135	case 3:
9136		if (bp->link_params.multi_phy_config &
9137		    PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
9138			bp->port.supported[1] =
9139				bp->link_params.phy[EXT_PHY1].supported;
9140			bp->port.supported[0] =
9141				bp->link_params.phy[EXT_PHY2].supported;
9142		} else {
9143			bp->port.supported[0] =
9144				bp->link_params.phy[EXT_PHY1].supported;
9145			bp->port.supported[1] =
9146				bp->link_params.phy[EXT_PHY2].supported;
9147		}
9148		cfg_size = 2;
9149		break;
9150	}
9151
9152	if (!(bp->port.supported[0] || bp->port.supported[1])) {
9153		BNX2X_ERR("NVRAM config error. BAD phy config."
9154			  "PHY1 config 0x%x, PHY2 config 0x%x\n",
9155			   SHMEM_RD(bp,
9156			   dev_info.port_hw_config[port].external_phy_config),
9157			   SHMEM_RD(bp,
9158			   dev_info.port_hw_config[port].external_phy_config2));
9159			return;
9160	}
9161
9162	if (CHIP_IS_E3(bp))
9163		bp->port.phy_addr = REG_RD(bp, MISC_REG_WC0_CTRL_PHY_ADDR);
9164	else {
9165		switch (switch_cfg) {
9166		case SWITCH_CFG_1G:
9167			bp->port.phy_addr = REG_RD(
9168				bp, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10);
9169			break;
9170		case SWITCH_CFG_10G:
9171			bp->port.phy_addr = REG_RD(
9172				bp, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18);
9173			break;
9174		default:
9175			BNX2X_ERR("BAD switch_cfg link_config 0x%x\n",
9176				  bp->port.link_config[0]);
9177			return;
9178		}
9179	}
9180	BNX2X_DEV_INFO("phy_addr 0x%x\n", bp->port.phy_addr);
9181	/* mask what we support according to speed_cap_mask per configuration */
9182	for (idx = 0; idx < cfg_size; idx++) {
9183		if (!(bp->link_params.speed_cap_mask[idx] &
9184				PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF))
9185			bp->port.supported[idx] &= ~SUPPORTED_10baseT_Half;
9186
9187		if (!(bp->link_params.speed_cap_mask[idx] &
9188				PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL))
9189			bp->port.supported[idx] &= ~SUPPORTED_10baseT_Full;
9190
9191		if (!(bp->link_params.speed_cap_mask[idx] &
9192				PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF))
9193			bp->port.supported[idx] &= ~SUPPORTED_100baseT_Half;
9194
9195		if (!(bp->link_params.speed_cap_mask[idx] &
9196				PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL))
9197			bp->port.supported[idx] &= ~SUPPORTED_100baseT_Full;
9198
9199		if (!(bp->link_params.speed_cap_mask[idx] &
9200					PORT_HW_CFG_SPEED_CAPABILITY_D0_1G))
9201			bp->port.supported[idx] &= ~(SUPPORTED_1000baseT_Half |
9202						     SUPPORTED_1000baseT_Full);
9203
9204		if (!(bp->link_params.speed_cap_mask[idx] &
9205					PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G))
9206			bp->port.supported[idx] &= ~SUPPORTED_2500baseX_Full;
9207
9208		if (!(bp->link_params.speed_cap_mask[idx] &
9209					PORT_HW_CFG_SPEED_CAPABILITY_D0_10G))
9210			bp->port.supported[idx] &= ~SUPPORTED_10000baseT_Full;
9211
9212	}
9213
9214	BNX2X_DEV_INFO("supported 0x%x 0x%x\n", bp->port.supported[0],
9215		       bp->port.supported[1]);
9216}
9217
9218static void __devinit bnx2x_link_settings_requested(struct bnx2x *bp)
9219{
9220	u32 link_config, idx, cfg_size = 0;
9221	bp->port.advertising[0] = 0;
9222	bp->port.advertising[1] = 0;
9223	switch (bp->link_params.num_phys) {
9224	case 1:
9225	case 2:
9226		cfg_size = 1;
9227		break;
9228	case 3:
9229		cfg_size = 2;
9230		break;
9231	}
9232	for (idx = 0; idx < cfg_size; idx++) {
9233		bp->link_params.req_duplex[idx] = DUPLEX_FULL;
9234		link_config = bp->port.link_config[idx];
9235		switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) {
9236		case PORT_FEATURE_LINK_SPEED_AUTO:
9237			if (bp->port.supported[idx] & SUPPORTED_Autoneg) {
9238				bp->link_params.req_line_speed[idx] =
9239					SPEED_AUTO_NEG;
9240				bp->port.advertising[idx] |=
9241					bp->port.supported[idx];
9242			} else {
9243				/* force 10G, no AN */
9244				bp->link_params.req_line_speed[idx] =
9245					SPEED_10000;
9246				bp->port.advertising[idx] |=
9247					(ADVERTISED_10000baseT_Full |
9248					 ADVERTISED_FIBRE);
9249				continue;
9250			}
9251			break;
9252
9253		case PORT_FEATURE_LINK_SPEED_10M_FULL:
9254			if (bp->port.supported[idx] & SUPPORTED_10baseT_Full) {
9255				bp->link_params.req_line_speed[idx] =
9256					SPEED_10;
9257				bp->port.advertising[idx] |=
9258					(ADVERTISED_10baseT_Full |
9259					 ADVERTISED_TP);
9260			} else {
9261				BNX2X_ERR("NVRAM config error. "
9262					    "Invalid link_config 0x%x"
9263					    "  speed_cap_mask 0x%x\n",
9264					    link_config,
9265				    bp->link_params.speed_cap_mask[idx]);
9266				return;
9267			}
9268			break;
9269
9270		case PORT_FEATURE_LINK_SPEED_10M_HALF:
9271			if (bp->port.supported[idx] & SUPPORTED_10baseT_Half) {
9272				bp->link_params.req_line_speed[idx] =
9273					SPEED_10;
9274				bp->link_params.req_duplex[idx] =
9275					DUPLEX_HALF;
9276				bp->port.advertising[idx] |=
9277					(ADVERTISED_10baseT_Half |
9278					 ADVERTISED_TP);
9279			} else {
9280				BNX2X_ERR("NVRAM config error. "
9281					    "Invalid link_config 0x%x"
9282					    "  speed_cap_mask 0x%x\n",
9283					    link_config,
9284					  bp->link_params.speed_cap_mask[idx]);
9285				return;
9286			}
9287			break;
9288
9289		case PORT_FEATURE_LINK_SPEED_100M_FULL:
9290			if (bp->port.supported[idx] &
9291			    SUPPORTED_100baseT_Full) {
9292				bp->link_params.req_line_speed[idx] =
9293					SPEED_100;
9294				bp->port.advertising[idx] |=
9295					(ADVERTISED_100baseT_Full |
9296					 ADVERTISED_TP);
9297			} else {
9298				BNX2X_ERR("NVRAM config error. "
9299					    "Invalid link_config 0x%x"
9300					    "  speed_cap_mask 0x%x\n",
9301					    link_config,
9302					  bp->link_params.speed_cap_mask[idx]);
9303				return;
9304			}
9305			break;
9306
9307		case PORT_FEATURE_LINK_SPEED_100M_HALF:
9308			if (bp->port.supported[idx] &
9309			    SUPPORTED_100baseT_Half) {
9310				bp->link_params.req_line_speed[idx] =
9311								SPEED_100;
9312				bp->link_params.req_duplex[idx] =
9313								DUPLEX_HALF;
9314				bp->port.advertising[idx] |=
9315					(ADVERTISED_100baseT_Half |
9316					 ADVERTISED_TP);
9317			} else {
9318				BNX2X_ERR("NVRAM config error. "
9319				    "Invalid link_config 0x%x"
9320				    "  speed_cap_mask 0x%x\n",
9321				    link_config,
9322				    bp->link_params.speed_cap_mask[idx]);
9323				return;
9324			}
9325			break;
9326
9327		case PORT_FEATURE_LINK_SPEED_1G:
9328			if (bp->port.supported[idx] &
9329			    SUPPORTED_1000baseT_Full) {
9330				bp->link_params.req_line_speed[idx] =
9331					SPEED_1000;
9332				bp->port.advertising[idx] |=
9333					(ADVERTISED_1000baseT_Full |
9334					 ADVERTISED_TP);
9335			} else {
9336				BNX2X_ERR("NVRAM config error. "
9337				    "Invalid link_config 0x%x"
9338				    "  speed_cap_mask 0x%x\n",
9339				    link_config,
9340				    bp->link_params.speed_cap_mask[idx]);
9341				return;
9342			}
9343			break;
9344
9345		case PORT_FEATURE_LINK_SPEED_2_5G:
9346			if (bp->port.supported[idx] &
9347			    SUPPORTED_2500baseX_Full) {
9348				bp->link_params.req_line_speed[idx] =
9349					SPEED_2500;
9350				bp->port.advertising[idx] |=
9351					(ADVERTISED_2500baseX_Full |
9352						ADVERTISED_TP);
9353			} else {
9354				BNX2X_ERR("NVRAM config error. "
9355				    "Invalid link_config 0x%x"
9356				    "  speed_cap_mask 0x%x\n",
9357				    link_config,
9358				    bp->link_params.speed_cap_mask[idx]);
9359				return;
9360			}
9361			break;
9362
9363		case PORT_FEATURE_LINK_SPEED_10G_CX4:
9364			if (bp->port.supported[idx] &
9365			    SUPPORTED_10000baseT_Full) {
9366				bp->link_params.req_line_speed[idx] =
9367					SPEED_10000;
9368				bp->port.advertising[idx] |=
9369					(ADVERTISED_10000baseT_Full |
9370						ADVERTISED_FIBRE);
9371			} else {
9372				BNX2X_ERR("NVRAM config error. "
9373				    "Invalid link_config 0x%x"
9374				    "  speed_cap_mask 0x%x\n",
9375				    link_config,
9376				    bp->link_params.speed_cap_mask[idx]);
9377				return;
9378			}
9379			break;
9380		case PORT_FEATURE_LINK_SPEED_20G:
9381			bp->link_params.req_line_speed[idx] = SPEED_20000;
9382
9383			break;
9384		default:
9385			BNX2X_ERR("NVRAM config error. "
9386				  "BAD link speed link_config 0x%x\n",
9387				  link_config);
9388				bp->link_params.req_line_speed[idx] =
9389							SPEED_AUTO_NEG;
9390				bp->port.advertising[idx] =
9391						bp->port.supported[idx];
9392			break;
9393		}
9394
9395		bp->link_params.req_flow_ctrl[idx] = (link_config &
9396					 PORT_FEATURE_FLOW_CONTROL_MASK);
9397		if ((bp->link_params.req_flow_ctrl[idx] ==
9398		     BNX2X_FLOW_CTRL_AUTO) &&
9399		    !(bp->port.supported[idx] & SUPPORTED_Autoneg)) {
9400			bp->link_params.req_flow_ctrl[idx] =
9401				BNX2X_FLOW_CTRL_NONE;
9402		}
9403
9404		BNX2X_DEV_INFO("req_line_speed %d  req_duplex %d req_flow_ctrl"
9405			       " 0x%x advertising 0x%x\n",
9406			       bp->link_params.req_line_speed[idx],
9407			       bp->link_params.req_duplex[idx],
9408			       bp->link_params.req_flow_ctrl[idx],
9409			       bp->port.advertising[idx]);
9410	}
9411}
9412
9413static void __devinit bnx2x_set_mac_buf(u8 *mac_buf, u32 mac_lo, u16 mac_hi)
9414{
9415	mac_hi = cpu_to_be16(mac_hi);
9416	mac_lo = cpu_to_be32(mac_lo);
9417	memcpy(mac_buf, &mac_hi, sizeof(mac_hi));
9418	memcpy(mac_buf + sizeof(mac_hi), &mac_lo, sizeof(mac_lo));
9419}
9420
9421static void __devinit bnx2x_get_port_hwinfo(struct bnx2x *bp)
9422{
9423	int port = BP_PORT(bp);
9424	u32 config;
9425	u32 ext_phy_type, ext_phy_config;
9426
9427	bp->link_params.bp = bp;
9428	bp->link_params.port = port;
9429
9430	bp->link_params.lane_config =
9431		SHMEM_RD(bp, dev_info.port_hw_config[port].lane_config);
9432
9433	bp->link_params.speed_cap_mask[0] =
9434		SHMEM_RD(bp,
9435			 dev_info.port_hw_config[port].speed_capability_mask);
9436	bp->link_params.speed_cap_mask[1] =
9437		SHMEM_RD(bp,
9438			 dev_info.port_hw_config[port].speed_capability_mask2);
9439	bp->port.link_config[0] =
9440		SHMEM_RD(bp, dev_info.port_feature_config[port].link_config);
9441
9442	bp->port.link_config[1] =
9443		SHMEM_RD(bp, dev_info.port_feature_config[port].link_config2);
9444
9445	bp->link_params.multi_phy_config =
9446		SHMEM_RD(bp, dev_info.port_hw_config[port].multi_phy_config);
9447	/* If the device is capable of WoL, set the default state according
9448	 * to the HW
9449	 */
9450	config = SHMEM_RD(bp, dev_info.port_feature_config[port].config);
9451	bp->wol = (!(bp->flags & NO_WOL_FLAG) &&
9452		   (config & PORT_FEATURE_WOL_ENABLED));
9453
9454	BNX2X_DEV_INFO("lane_config 0x%08x  "
9455		       "speed_cap_mask0 0x%08x  link_config0 0x%08x\n",
9456		       bp->link_params.lane_config,
9457		       bp->link_params.speed_cap_mask[0],
9458		       bp->port.link_config[0]);
9459
9460	bp->link_params.switch_cfg = (bp->port.link_config[0] &
9461				      PORT_FEATURE_CONNECTED_SWITCH_MASK);
9462	bnx2x_phy_probe(&bp->link_params);
9463	bnx2x_link_settings_supported(bp, bp->link_params.switch_cfg);
9464
9465	bnx2x_link_settings_requested(bp);
9466
9467	/*
9468	 * If connected directly, work with the internal PHY, otherwise, work
9469	 * with the external PHY
9470	 */
9471	ext_phy_config =
9472		SHMEM_RD(bp,
9473			 dev_info.port_hw_config[port].external_phy_config);
9474	ext_phy_type = XGXS_EXT_PHY_TYPE(ext_phy_config);
9475	if (ext_phy_type == PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT)
9476		bp->mdio.prtad = bp->port.phy_addr;
9477
9478	else if ((ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE) &&
9479		 (ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_NOT_CONN))
9480		bp->mdio.prtad =
9481			XGXS_EXT_PHY_ADDR(ext_phy_config);
9482
9483	/*
9484	 * Check if hw lock is required to access MDC/MDIO bus to the PHY(s)
9485	 * In MF mode, it is set to cover self test cases
9486	 */
9487	if (IS_MF(bp))
9488		bp->port.need_hw_lock = 1;
9489	else
9490		bp->port.need_hw_lock = bnx2x_hw_lock_required(bp,
9491							bp->common.shmem_base,
9492							bp->common.shmem2_base);
9493}
9494
9495void bnx2x_get_iscsi_info(struct bnx2x *bp)
9496{
9497#ifdef BCM_CNIC
9498	int port = BP_PORT(bp);
9499
9500	u32 max_iscsi_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
9501				drv_lic_key[port].max_iscsi_conn);
9502
9503	/* Get the number of maximum allowed iSCSI connections */
9504	bp->cnic_eth_dev.max_iscsi_conn =
9505		(max_iscsi_conn & BNX2X_MAX_ISCSI_INIT_CONN_MASK) >>
9506		BNX2X_MAX_ISCSI_INIT_CONN_SHIFT;
9507
9508	BNX2X_DEV_INFO("max_iscsi_conn 0x%x\n",
9509		       bp->cnic_eth_dev.max_iscsi_conn);
9510
9511	/*
9512	 * If maximum allowed number of connections is zero -
9513	 * disable the feature.
9514	 */
9515	if (!bp->cnic_eth_dev.max_iscsi_conn)
9516		bp->flags |= NO_ISCSI_FLAG;
9517#else
9518	bp->flags |= NO_ISCSI_FLAG;
9519#endif
9520}
9521
9522static void __devinit bnx2x_get_fcoe_info(struct bnx2x *bp)
9523{
9524#ifdef BCM_CNIC
9525	int port = BP_PORT(bp);
9526	int func = BP_ABS_FUNC(bp);
9527
9528	u32 max_fcoe_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
9529				drv_lic_key[port].max_fcoe_conn);
9530
9531	/* Get the number of maximum allowed FCoE connections */
9532	bp->cnic_eth_dev.max_fcoe_conn =
9533		(max_fcoe_conn & BNX2X_MAX_FCOE_INIT_CONN_MASK) >>
9534		BNX2X_MAX_FCOE_INIT_CONN_SHIFT;
9535
9536	/* Read the WWN: */
9537	if (!IS_MF(bp)) {
9538		/* Port info */
9539		bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
9540			SHMEM_RD(bp,
9541				dev_info.port_hw_config[port].
9542				 fcoe_wwn_port_name_upper);
9543		bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
9544			SHMEM_RD(bp,
9545				dev_info.port_hw_config[port].
9546				 fcoe_wwn_port_name_lower);
9547
9548		/* Node info */
9549		bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
9550			SHMEM_RD(bp,
9551				dev_info.port_hw_config[port].
9552				 fcoe_wwn_node_name_upper);
9553		bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
9554			SHMEM_RD(bp,
9555				dev_info.port_hw_config[port].
9556				 fcoe_wwn_node_name_lower);
9557	} else if (!IS_MF_SD(bp)) {
9558		u32 cfg = MF_CFG_RD(bp, func_ext_config[func].func_cfg);
9559
9560		/*
9561		 * Read the WWN info only if the FCoE feature is enabled for
9562		 * this function.
9563		 */
9564		if (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) {
9565			/* Port info */
9566			bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
9567				MF_CFG_RD(bp, func_ext_config[func].
9568						fcoe_wwn_port_name_upper);
9569			bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
9570				MF_CFG_RD(bp, func_ext_config[func].
9571						fcoe_wwn_port_name_lower);
9572
9573			/* Node info */
9574			bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
9575				MF_CFG_RD(bp, func_ext_config[func].
9576						fcoe_wwn_node_name_upper);
9577			bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
9578				MF_CFG_RD(bp, func_ext_config[func].
9579						fcoe_wwn_node_name_lower);
9580		}
9581	}
9582
9583	BNX2X_DEV_INFO("max_fcoe_conn 0x%x\n", bp->cnic_eth_dev.max_fcoe_conn);
9584
9585	/*
9586	 * If maximum allowed number of connections is zero -
9587	 * disable the feature.
9588	 */
9589	if (!bp->cnic_eth_dev.max_fcoe_conn)
9590		bp->flags |= NO_FCOE_FLAG;
9591#else
9592	bp->flags |= NO_FCOE_FLAG;
9593#endif
9594}
9595
9596static void __devinit bnx2x_get_cnic_info(struct bnx2x *bp)
9597{
9598	/*
9599	 * iSCSI may be dynamically disabled but reading
9600	 * info here we will decrease memory usage by driver
9601	 * if the feature is disabled for good
9602	 */
9603	bnx2x_get_iscsi_info(bp);
9604	bnx2x_get_fcoe_info(bp);
9605}
9606
9607static void __devinit bnx2x_get_mac_hwinfo(struct bnx2x *bp)
9608{
9609	u32 val, val2;
9610	int func = BP_ABS_FUNC(bp);
9611	int port = BP_PORT(bp);
9612#ifdef BCM_CNIC
9613	u8 *iscsi_mac = bp->cnic_eth_dev.iscsi_mac;
9614	u8 *fip_mac = bp->fip_mac;
9615#endif
9616
9617	/* Zero primary MAC configuration */
9618	memset(bp->dev->dev_addr, 0, ETH_ALEN);
9619
9620	if (BP_NOMCP(bp)) {
9621		BNX2X_ERROR("warning: random MAC workaround active\n");
9622		random_ether_addr(bp->dev->dev_addr);
9623	} else if (IS_MF(bp)) {
9624		val2 = MF_CFG_RD(bp, func_mf_config[func].mac_upper);
9625		val = MF_CFG_RD(bp, func_mf_config[func].mac_lower);
9626		if ((val2 != FUNC_MF_CFG_UPPERMAC_DEFAULT) &&
9627		    (val != FUNC_MF_CFG_LOWERMAC_DEFAULT))
9628			bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
9629
9630#ifdef BCM_CNIC
9631		/*
9632		 * iSCSI and FCoE NPAR MACs: if there is no either iSCSI or
9633		 * FCoE MAC then the appropriate feature should be disabled.
9634		 */
9635		if (IS_MF_SI(bp)) {
9636			u32 cfg = MF_CFG_RD(bp, func_ext_config[func].func_cfg);
9637			if (cfg & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) {
9638				val2 = MF_CFG_RD(bp, func_ext_config[func].
9639						     iscsi_mac_addr_upper);
9640				val = MF_CFG_RD(bp, func_ext_config[func].
9641						    iscsi_mac_addr_lower);
9642				bnx2x_set_mac_buf(iscsi_mac, val, val2);
9643				BNX2X_DEV_INFO("Read iSCSI MAC: %pM\n",
9644					       iscsi_mac);
9645			} else
9646				bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
9647
9648			if (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) {
9649				val2 = MF_CFG_RD(bp, func_ext_config[func].
9650						     fcoe_mac_addr_upper);
9651				val = MF_CFG_RD(bp, func_ext_config[func].
9652						    fcoe_mac_addr_lower);
9653				bnx2x_set_mac_buf(fip_mac, val, val2);
9654				BNX2X_DEV_INFO("Read FCoE L2 MAC: %pM\n",
9655					       fip_mac);
9656
9657			} else
9658				bp->flags |= NO_FCOE_FLAG;
9659		} else { /* SD mode */
9660			if (BNX2X_IS_MF_PROTOCOL_ISCSI(bp)) {
9661				/* use primary mac as iscsi mac */
9662				memcpy(iscsi_mac, bp->dev->dev_addr, ETH_ALEN);
9663				/* Zero primary MAC configuration */
9664				memset(bp->dev->dev_addr, 0, ETH_ALEN);
9665
9666				BNX2X_DEV_INFO("SD ISCSI MODE\n");
9667				BNX2X_DEV_INFO("Read iSCSI MAC: %pM\n",
9668					       iscsi_mac);
9669			}
9670		}
9671#endif
9672	} else {
9673		/* in SF read MACs from port configuration */
9674		val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper);
9675		val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower);
9676		bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
9677
9678#ifdef BCM_CNIC
9679		val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
9680				    iscsi_mac_upper);
9681		val = SHMEM_RD(bp, dev_info.port_hw_config[port].
9682				   iscsi_mac_lower);
9683		bnx2x_set_mac_buf(iscsi_mac, val, val2);
9684
9685		val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
9686				    fcoe_fip_mac_upper);
9687		val = SHMEM_RD(bp, dev_info.port_hw_config[port].
9688				   fcoe_fip_mac_lower);
9689		bnx2x_set_mac_buf(fip_mac, val, val2);
9690#endif
9691	}
9692
9693	memcpy(bp->link_params.mac_addr, bp->dev->dev_addr, ETH_ALEN);
9694	memcpy(bp->dev->perm_addr, bp->dev->dev_addr, ETH_ALEN);
9695
9696#ifdef BCM_CNIC
9697	/* Set the FCoE MAC in MF_SD mode */
9698	if (!CHIP_IS_E1x(bp) && IS_MF_SD(bp))
9699		memcpy(fip_mac, bp->dev->dev_addr, ETH_ALEN);
9700
9701	/* Disable iSCSI if MAC configuration is
9702	 * invalid.
9703	 */
9704	if (!is_valid_ether_addr(iscsi_mac)) {
9705		bp->flags |= NO_ISCSI_FLAG;
9706		memset(iscsi_mac, 0, ETH_ALEN);
9707	}
9708
9709	/* Disable FCoE if MAC configuration is
9710	 * invalid.
9711	 */
9712	if (!is_valid_ether_addr(fip_mac)) {
9713		bp->flags |= NO_FCOE_FLAG;
9714		memset(bp->fip_mac, 0, ETH_ALEN);
9715	}
9716#endif
9717
9718	if (!bnx2x_is_valid_ether_addr(bp, bp->dev->dev_addr))
9719		dev_err(&bp->pdev->dev,
9720			"bad Ethernet MAC address configuration: "
9721			"%pM, change it manually before bringing up "
9722			"the appropriate network interface\n",
9723			bp->dev->dev_addr);
9724}
9725
9726static int __devinit bnx2x_get_hwinfo(struct bnx2x *bp)
9727{
9728	int /*abs*/func = BP_ABS_FUNC(bp);
9729	int vn;
9730	u32 val = 0;
9731	int rc = 0;
9732
9733	bnx2x_get_common_hwinfo(bp);
9734
9735	/*
9736	 * initialize IGU parameters
9737	 */
9738	if (CHIP_IS_E1x(bp)) {
9739		bp->common.int_block = INT_BLOCK_HC;
9740
9741		bp->igu_dsb_id = DEF_SB_IGU_ID;
9742		bp->igu_base_sb = 0;
9743	} else {
9744		bp->common.int_block = INT_BLOCK_IGU;
9745
9746		/* do not allow device reset during IGU info preocessing */
9747		bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
9748
9749		val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
9750
9751		if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
9752			int tout = 5000;
9753
9754			BNX2X_DEV_INFO("FORCING Normal Mode\n");
9755
9756			val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN);
9757			REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION, val);
9758			REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x7f);
9759
9760			while (tout && REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
9761				tout--;
9762				usleep_range(1000, 1000);
9763			}
9764
9765			if (REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
9766				dev_err(&bp->pdev->dev,
9767					"FORCING Normal Mode failed!!!\n");
9768				return -EPERM;
9769			}
9770		}
9771
9772		if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
9773			BNX2X_DEV_INFO("IGU Backward Compatible Mode\n");
9774			bp->common.int_block |= INT_BLOCK_MODE_BW_COMP;
9775		} else
9776			BNX2X_DEV_INFO("IGU Normal Mode\n");
9777
9778		bnx2x_get_igu_cam_info(bp);
9779
9780		bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
9781	}
9782
9783	/*
9784	 * set base FW non-default (fast path) status block id, this value is
9785	 * used to initialize the fw_sb_id saved on the fp/queue structure to
9786	 * determine the id used by the FW.
9787	 */
9788	if (CHIP_IS_E1x(bp))
9789		bp->base_fw_ndsb = BP_PORT(bp) * FP_SB_MAX_E1x + BP_L_ID(bp);
9790	else /*
9791	      * 57712 - we currently use one FW SB per IGU SB (Rx and Tx of
9792	      * the same queue are indicated on the same IGU SB). So we prefer
9793	      * FW and IGU SBs to be the same value.
9794	      */
9795		bp->base_fw_ndsb = bp->igu_base_sb;
9796
9797	BNX2X_DEV_INFO("igu_dsb_id %d  igu_base_sb %d  igu_sb_cnt %d\n"
9798		       "base_fw_ndsb %d\n", bp->igu_dsb_id, bp->igu_base_sb,
9799		       bp->igu_sb_cnt, bp->base_fw_ndsb);
9800
9801	/*
9802	 * Initialize MF configuration
9803	 */
9804
9805	bp->mf_ov = 0;
9806	bp->mf_mode = 0;
9807	vn = BP_VN(bp);
9808
9809	if (!CHIP_IS_E1(bp) && !BP_NOMCP(bp)) {
9810		BNX2X_DEV_INFO("shmem2base 0x%x, size %d, mfcfg offset %d\n",
9811			       bp->common.shmem2_base, SHMEM2_RD(bp, size),
9812			      (u32)offsetof(struct shmem2_region, mf_cfg_addr));
9813
9814		if (SHMEM2_HAS(bp, mf_cfg_addr))
9815			bp->common.mf_cfg_base = SHMEM2_RD(bp, mf_cfg_addr);
9816		else
9817			bp->common.mf_cfg_base = bp->common.shmem_base +
9818				offsetof(struct shmem_region, func_mb) +
9819				E1H_FUNC_MAX * sizeof(struct drv_func_mb);
9820		/*
9821		 * get mf configuration:
9822		 * 1. existence of MF configuration
9823		 * 2. MAC address must be legal (check only upper bytes)
9824		 *    for  Switch-Independent mode;
9825		 *    OVLAN must be legal for Switch-Dependent mode
9826		 * 3. SF_MODE configures specific MF mode
9827		 */
9828		if (bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
9829			/* get mf configuration */
9830			val = SHMEM_RD(bp,
9831				       dev_info.shared_feature_config.config);
9832			val &= SHARED_FEAT_CFG_FORCE_SF_MODE_MASK;
9833
9834			switch (val) {
9835			case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT:
9836				val = MF_CFG_RD(bp, func_mf_config[func].
9837						mac_upper);
9838				/* check for legal mac (upper bytes)*/
9839				if (val != 0xffff) {
9840					bp->mf_mode = MULTI_FUNCTION_SI;
9841					bp->mf_config[vn] = MF_CFG_RD(bp,
9842						   func_mf_config[func].config);
9843				} else
9844					BNX2X_DEV_INFO("illegal MAC address "
9845						       "for SI\n");
9846				break;
9847			case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED:
9848				/* get OV configuration */
9849				val = MF_CFG_RD(bp,
9850					func_mf_config[FUNC_0].e1hov_tag);
9851				val &= FUNC_MF_CFG_E1HOV_TAG_MASK;
9852
9853				if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
9854					bp->mf_mode = MULTI_FUNCTION_SD;
9855					bp->mf_config[vn] = MF_CFG_RD(bp,
9856						func_mf_config[func].config);
9857				} else
9858					BNX2X_DEV_INFO("illegal OV for SD\n");
9859				break;
9860			default:
9861				/* Unknown configuration: reset mf_config */
9862				bp->mf_config[vn] = 0;
9863				BNX2X_DEV_INFO("unkown MF mode 0x%x\n", val);
9864			}
9865		}
9866
9867		BNX2X_DEV_INFO("%s function mode\n",
9868			       IS_MF(bp) ? "multi" : "single");
9869
9870		switch (bp->mf_mode) {
9871		case MULTI_FUNCTION_SD:
9872			val = MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
9873			      FUNC_MF_CFG_E1HOV_TAG_MASK;
9874			if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
9875				bp->mf_ov = val;
9876				bp->path_has_ovlan = true;
9877
9878				BNX2X_DEV_INFO("MF OV for func %d is %d "
9879					       "(0x%04x)\n", func, bp->mf_ov,
9880					       bp->mf_ov);
9881			} else {
9882				dev_err(&bp->pdev->dev,
9883					"No valid MF OV for func %d, "
9884					"aborting\n", func);
9885				return -EPERM;
9886			}
9887			break;
9888		case MULTI_FUNCTION_SI:
9889			BNX2X_DEV_INFO("func %d is in MF "
9890				       "switch-independent mode\n", func);
9891			break;
9892		default:
9893			if (vn) {
9894				dev_err(&bp->pdev->dev,
9895					"VN %d is in a single function mode, "
9896					"aborting\n", vn);
9897				return -EPERM;
9898			}
9899			break;
9900		}
9901
9902		/* check if other port on the path needs ovlan:
9903		 * Since MF configuration is shared between ports
9904		 * Possible mixed modes are only
9905		 * {SF, SI} {SF, SD} {SD, SF} {SI, SF}
9906		 */
9907		if (CHIP_MODE_IS_4_PORT(bp) &&
9908		    !bp->path_has_ovlan &&
9909		    !IS_MF(bp) &&
9910		    bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
9911			u8 other_port = !BP_PORT(bp);
9912			u8 other_func = BP_PATH(bp) + 2*other_port;
9913			val = MF_CFG_RD(bp,
9914					func_mf_config[other_func].e1hov_tag);
9915			if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT)
9916				bp->path_has_ovlan = true;
9917		}
9918	}
9919
9920	/* adjust igu_sb_cnt to MF for E1x */
9921	if (CHIP_IS_E1x(bp) && IS_MF(bp))
9922		bp->igu_sb_cnt /= E1HVN_MAX;
9923
9924	/* port info */
9925	bnx2x_get_port_hwinfo(bp);
9926
9927	/* Get MAC addresses */
9928	bnx2x_get_mac_hwinfo(bp);
9929
9930	bnx2x_get_cnic_info(bp);
9931
9932	/* Get current FW pulse sequence */
9933	if (!BP_NOMCP(bp)) {
9934		int mb_idx = BP_FW_MB_IDX(bp);
9935
9936		bp->fw_drv_pulse_wr_seq =
9937				(SHMEM_RD(bp, func_mb[mb_idx].drv_pulse_mb) &
9938				 DRV_PULSE_SEQ_MASK);
9939		BNX2X_DEV_INFO("drv_pulse 0x%x\n", bp->fw_drv_pulse_wr_seq);
9940	}
9941
9942	return rc;
9943}
9944
9945static void __devinit bnx2x_read_fwinfo(struct bnx2x *bp)
9946{
9947	int cnt, i, block_end, rodi;
9948	char vpd_start[BNX2X_VPD_LEN+1];
9949	char str_id_reg[VENDOR_ID_LEN+1];
9950	char str_id_cap[VENDOR_ID_LEN+1];
9951	char *vpd_data;
9952	char *vpd_extended_data = NULL;
9953	u8 len;
9954
9955	cnt = pci_read_vpd(bp->pdev, 0, BNX2X_VPD_LEN, vpd_start);
9956	memset(bp->fw_ver, 0, sizeof(bp->fw_ver));
9957
9958	if (cnt < BNX2X_VPD_LEN)
9959		goto out_not_found;
9960
9961	/* VPD RO tag should be first tag after identifier string, hence
9962	 * we should be able to find it in first BNX2X_VPD_LEN chars
9963	 */
9964	i = pci_vpd_find_tag(vpd_start, 0, BNX2X_VPD_LEN,
9965			     PCI_VPD_LRDT_RO_DATA);
9966	if (i < 0)
9967		goto out_not_found;
9968
9969	block_end = i + PCI_VPD_LRDT_TAG_SIZE +
9970		    pci_vpd_lrdt_size(&vpd_start[i]);
9971
9972	i += PCI_VPD_LRDT_TAG_SIZE;
9973
9974	if (block_end > BNX2X_VPD_LEN) {
9975		vpd_extended_data = kmalloc(block_end, GFP_KERNEL);
9976		if (vpd_extended_data  == NULL)
9977			goto out_not_found;
9978
9979		/* read rest of vpd image into vpd_extended_data */
9980		memcpy(vpd_extended_data, vpd_start, BNX2X_VPD_LEN);
9981		cnt = pci_read_vpd(bp->pdev, BNX2X_VPD_LEN,
9982				   block_end - BNX2X_VPD_LEN,
9983				   vpd_extended_data + BNX2X_VPD_LEN);
9984		if (cnt < (block_end - BNX2X_VPD_LEN))
9985			goto out_not_found;
9986		vpd_data = vpd_extended_data;
9987	} else
9988		vpd_data = vpd_start;
9989
9990	/* now vpd_data holds full vpd content in both cases */
9991
9992	rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
9993				   PCI_VPD_RO_KEYWORD_MFR_ID);
9994	if (rodi < 0)
9995		goto out_not_found;
9996
9997	len = pci_vpd_info_field_size(&vpd_data[rodi]);
9998
9999	if (len != VENDOR_ID_LEN)
10000		goto out_not_found;
10001
10002	rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
10003
10004	/* vendor specific info */
10005	snprintf(str_id_reg, VENDOR_ID_LEN + 1, "%04x", PCI_VENDOR_ID_DELL);
10006	snprintf(str_id_cap, VENDOR_ID_LEN + 1, "%04X", PCI_VENDOR_ID_DELL);
10007	if (!strncmp(str_id_reg, &vpd_data[rodi], VENDOR_ID_LEN) ||
10008	    !strncmp(str_id_cap, &vpd_data[rodi], VENDOR_ID_LEN)) {
10009
10010		rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
10011						PCI_VPD_RO_KEYWORD_VENDOR0);
10012		if (rodi >= 0) {
10013			len = pci_vpd_info_field_size(&vpd_data[rodi]);
10014
10015			rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
10016
10017			if (len < 32 && (len + rodi) <= BNX2X_VPD_LEN) {
10018				memcpy(bp->fw_ver, &vpd_data[rodi], len);
10019				bp->fw_ver[len] = ' ';
10020			}
10021		}
10022		kfree(vpd_extended_data);
10023		return;
10024	}
10025out_not_found:
10026	kfree(vpd_extended_data);
10027	return;
10028}
10029
10030static void __devinit bnx2x_set_modes_bitmap(struct bnx2x *bp)
10031{
10032	u32 flags = 0;
10033
10034	if (CHIP_REV_IS_FPGA(bp))
10035		SET_FLAGS(flags, MODE_FPGA);
10036	else if (CHIP_REV_IS_EMUL(bp))
10037		SET_FLAGS(flags, MODE_EMUL);
10038	else
10039		SET_FLAGS(flags, MODE_ASIC);
10040
10041	if (CHIP_MODE_IS_4_PORT(bp))
10042		SET_FLAGS(flags, MODE_PORT4);
10043	else
10044		SET_FLAGS(flags, MODE_PORT2);
10045
10046	if (CHIP_IS_E2(bp))
10047		SET_FLAGS(flags, MODE_E2);
10048	else if (CHIP_IS_E3(bp)) {
10049		SET_FLAGS(flags, MODE_E3);
10050		if (CHIP_REV(bp) == CHIP_REV_Ax)
10051			SET_FLAGS(flags, MODE_E3_A0);
10052		else /*if (CHIP_REV(bp) == CHIP_REV_Bx)*/
10053			SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3);
10054	}
10055
10056	if (IS_MF(bp)) {
10057		SET_FLAGS(flags, MODE_MF);
10058		switch (bp->mf_mode) {
10059		case MULTI_FUNCTION_SD:
10060			SET_FLAGS(flags, MODE_MF_SD);
10061			break;
10062		case MULTI_FUNCTION_SI:
10063			SET_FLAGS(flags, MODE_MF_SI);
10064			break;
10065		}
10066	} else
10067		SET_FLAGS(flags, MODE_SF);
10068
10069#if defined(__LITTLE_ENDIAN)
10070	SET_FLAGS(flags, MODE_LITTLE_ENDIAN);
10071#else /*(__BIG_ENDIAN)*/
10072	SET_FLAGS(flags, MODE_BIG_ENDIAN);
10073#endif
10074	INIT_MODE_FLAGS(bp) = flags;
10075}
10076
10077static int __devinit bnx2x_init_bp(struct bnx2x *bp)
10078{
10079	int func;
10080	int timer_interval;
10081	int rc;
10082
10083	mutex_init(&bp->port.phy_mutex);
10084	mutex_init(&bp->fw_mb_mutex);
10085	spin_lock_init(&bp->stats_lock);
10086#ifdef BCM_CNIC
10087	mutex_init(&bp->cnic_mutex);
10088#endif
10089
10090	INIT_DELAYED_WORK(&bp->sp_task, bnx2x_sp_task);
10091	INIT_DELAYED_WORK(&bp->sp_rtnl_task, bnx2x_sp_rtnl_task);
10092	INIT_DELAYED_WORK(&bp->period_task, bnx2x_period_task);
10093	rc = bnx2x_get_hwinfo(bp);
10094	if (rc)
10095		return rc;
10096
10097	bnx2x_set_modes_bitmap(bp);
10098
10099	rc = bnx2x_alloc_mem_bp(bp);
10100	if (rc)
10101		return rc;
10102
10103	bnx2x_read_fwinfo(bp);
10104
10105	func = BP_FUNC(bp);
10106
10107	/* need to reset chip if undi was active */
10108	if (!BP_NOMCP(bp))
10109		bnx2x_undi_unload(bp);
10110
10111	/* init fw_seq after undi_unload! */
10112	if (!BP_NOMCP(bp)) {
10113		bp->fw_seq =
10114			(SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
10115			 DRV_MSG_SEQ_NUMBER_MASK);
10116		BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp->fw_seq);
10117	}
10118
10119	if (CHIP_REV_IS_FPGA(bp))
10120		dev_err(&bp->pdev->dev, "FPGA detected\n");
10121
10122	if (BP_NOMCP(bp) && (func == 0))
10123		dev_err(&bp->pdev->dev, "MCP disabled, "
10124					"must load devices in order!\n");
10125
10126	bp->multi_mode = multi_mode;
10127
10128	bp->disable_tpa = disable_tpa;
10129
10130#ifdef BCM_CNIC
10131	bp->disable_tpa |= IS_MF_ISCSI_SD(bp);
10132#endif
10133
10134	/* Set TPA flags */
10135	if (bp->disable_tpa) {
10136		bp->flags &= ~TPA_ENABLE_FLAG;
10137		bp->dev->features &= ~NETIF_F_LRO;
10138	} else {
10139		bp->flags |= TPA_ENABLE_FLAG;
10140		bp->dev->features |= NETIF_F_LRO;
10141	}
10142
10143	if (CHIP_IS_E1(bp))
10144		bp->dropless_fc = 0;
10145	else
10146		bp->dropless_fc = dropless_fc;
10147
10148	bp->mrrs = mrrs;
10149
10150	bp->tx_ring_size = MAX_TX_AVAIL;
10151
10152	/* make sure that the numbers are in the right granularity */
10153	bp->tx_ticks = (50 / BNX2X_BTR) * BNX2X_BTR;
10154	bp->rx_ticks = (25 / BNX2X_BTR) * BNX2X_BTR;
10155
10156	timer_interval = (CHIP_REV_IS_SLOW(bp) ? 5*HZ : HZ);
10157	bp->current_interval = (poll ? poll : timer_interval);
10158
10159	init_timer(&bp->timer);
10160	bp->timer.expires = jiffies + bp->current_interval;
10161	bp->timer.data = (unsigned long) bp;
10162	bp->timer.function = bnx2x_timer;
10163
10164	bnx2x_dcbx_set_state(bp, true, BNX2X_DCBX_ENABLED_ON_NEG_ON);
10165	bnx2x_dcbx_init_params(bp);
10166
10167#ifdef BCM_CNIC
10168	if (CHIP_IS_E1x(bp))
10169		bp->cnic_base_cl_id = FP_SB_MAX_E1x;
10170	else
10171		bp->cnic_base_cl_id = FP_SB_MAX_E2;
10172#endif
10173
10174	/* multiple tx priority */
10175	if (CHIP_IS_E1x(bp))
10176		bp->max_cos = BNX2X_MULTI_TX_COS_E1X;
10177	if (CHIP_IS_E2(bp) || CHIP_IS_E3A0(bp))
10178		bp->max_cos = BNX2X_MULTI_TX_COS_E2_E3A0;
10179	if (CHIP_IS_E3B0(bp))
10180		bp->max_cos = BNX2X_MULTI_TX_COS_E3B0;
10181
10182	return rc;
10183}
10184
10185
10186/****************************************************************************
10187* General service functions
10188****************************************************************************/
10189
10190/*
10191 * net_device service functions
10192 */
10193
10194/* called with rtnl_lock */
10195static int bnx2x_open(struct net_device *dev)
10196{
10197	struct bnx2x *bp = netdev_priv(dev);
10198	bool global = false;
10199	int other_engine = BP_PATH(bp) ? 0 : 1;
10200	u32 other_load_counter, load_counter;
10201
10202	netif_carrier_off(dev);
10203
10204	bnx2x_set_power_state(bp, PCI_D0);
10205
10206	other_load_counter = bnx2x_get_load_cnt(bp, other_engine);
10207	load_counter = bnx2x_get_load_cnt(bp, BP_PATH(bp));
10208
10209	/*
10210	 * If parity had happen during the unload, then attentions
10211	 * and/or RECOVERY_IN_PROGRES may still be set. In this case we
10212	 * want the first function loaded on the current engine to
10213	 * complete the recovery.
10214	 */
10215	if (!bnx2x_reset_is_done(bp, BP_PATH(bp)) ||
10216	    bnx2x_chk_parity_attn(bp, &global, true))
10217		do {
10218			/*
10219			 * If there are attentions and they are in a global
10220			 * blocks, set the GLOBAL_RESET bit regardless whether
10221			 * it will be this function that will complete the
10222			 * recovery or not.
10223			 */
10224			if (global)
10225				bnx2x_set_reset_global(bp);
10226
10227			/*
10228			 * Only the first function on the current engine should
10229			 * try to recover in open. In case of attentions in
10230			 * global blocks only the first in the chip should try
10231			 * to recover.
10232			 */
10233			if ((!load_counter &&
10234			     (!global || !other_load_counter)) &&
10235			    bnx2x_trylock_leader_lock(bp) &&
10236			    !bnx2x_leader_reset(bp)) {
10237				netdev_info(bp->dev, "Recovered in open\n");
10238				break;
10239			}
10240
10241			/* recovery has failed... */
10242			bnx2x_set_power_state(bp, PCI_D3hot);
10243			bp->recovery_state = BNX2X_RECOVERY_FAILED;
10244
10245			netdev_err(bp->dev, "Recovery flow hasn't been properly"
10246			" completed yet. Try again later. If u still see this"
10247			" message after a few retries then power cycle is"
10248			" required.\n");
10249
10250			return -EAGAIN;
10251		} while (0);
10252
10253	bp->recovery_state = BNX2X_RECOVERY_DONE;
10254	return bnx2x_nic_load(bp, LOAD_OPEN);
10255}
10256
10257/* called with rtnl_lock */
10258int bnx2x_close(struct net_device *dev)
10259{
10260	struct bnx2x *bp = netdev_priv(dev);
10261
10262	/* Unload the driver, release IRQs */
10263	bnx2x_nic_unload(bp, UNLOAD_CLOSE);
10264
10265	/* Power off */
10266	bnx2x_set_power_state(bp, PCI_D3hot);
10267
10268	return 0;
10269}
10270
10271static inline int bnx2x_init_mcast_macs_list(struct bnx2x *bp,
10272					 struct bnx2x_mcast_ramrod_params *p)
10273{
10274	int mc_count = netdev_mc_count(bp->dev);
10275	struct bnx2x_mcast_list_elem *mc_mac =
10276		kzalloc(sizeof(*mc_mac) * mc_count, GFP_ATOMIC);
10277	struct netdev_hw_addr *ha;
10278
10279	if (!mc_mac)
10280		return -ENOMEM;
10281
10282	INIT_LIST_HEAD(&p->mcast_list);
10283
10284	netdev_for_each_mc_addr(ha, bp->dev) {
10285		mc_mac->mac = bnx2x_mc_addr(ha);
10286		list_add_tail(&mc_mac->link, &p->mcast_list);
10287		mc_mac++;
10288	}
10289
10290	p->mcast_list_len = mc_count;
10291
10292	return 0;
10293}
10294
10295static inline void bnx2x_free_mcast_macs_list(
10296	struct bnx2x_mcast_ramrod_params *p)
10297{
10298	struct bnx2x_mcast_list_elem *mc_mac =
10299		list_first_entry(&p->mcast_list, struct bnx2x_mcast_list_elem,
10300				 link);
10301
10302	WARN_ON(!mc_mac);
10303	kfree(mc_mac);
10304}
10305
10306/**
10307 * bnx2x_set_uc_list - configure a new unicast MACs list.
10308 *
10309 * @bp: driver handle
10310 *
10311 * We will use zero (0) as a MAC type for these MACs.
10312 */
10313static inline int bnx2x_set_uc_list(struct bnx2x *bp)
10314{
10315	int rc;
10316	struct net_device *dev = bp->dev;
10317	struct netdev_hw_addr *ha;
10318	struct bnx2x_vlan_mac_obj *mac_obj = &bp->fp->mac_obj;
10319	unsigned long ramrod_flags = 0;
10320
10321	/* First schedule a cleanup up of old configuration */
10322	rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_UC_LIST_MAC, false);
10323	if (rc < 0) {
10324		BNX2X_ERR("Failed to schedule DELETE operations: %d\n", rc);
10325		return rc;
10326	}
10327
10328	netdev_for_each_uc_addr(ha, dev) {
10329		rc = bnx2x_set_mac_one(bp, bnx2x_uc_addr(ha), mac_obj, true,
10330				       BNX2X_UC_LIST_MAC, &ramrod_flags);
10331		if (rc < 0) {
10332			BNX2X_ERR("Failed to schedule ADD operations: %d\n",
10333				  rc);
10334			return rc;
10335		}
10336	}
10337
10338	/* Execute the pending commands */
10339	__set_bit(RAMROD_CONT, &ramrod_flags);
10340	return bnx2x_set_mac_one(bp, NULL, mac_obj, false /* don't care */,
10341				 BNX2X_UC_LIST_MAC, &ramrod_flags);
10342}
10343
10344static inline int bnx2x_set_mc_list(struct bnx2x *bp)
10345{
10346	struct net_device *dev = bp->dev;
10347	struct bnx2x_mcast_ramrod_params rparam = {0};
10348	int rc = 0;
10349
10350	rparam.mcast_obj = &bp->mcast_obj;
10351
10352	/* first, clear all configured multicast MACs */
10353	rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
10354	if (rc < 0) {
10355		BNX2X_ERR("Failed to clear multicast "
10356			  "configuration: %d\n", rc);
10357		return rc;
10358	}
10359
10360	/* then, configure a new MACs list */
10361	if (netdev_mc_count(dev)) {
10362		rc = bnx2x_init_mcast_macs_list(bp, &rparam);
10363		if (rc) {
10364			BNX2X_ERR("Failed to create multicast MACs "
10365				  "list: %d\n", rc);
10366			return rc;
10367		}
10368
10369		/* Now add the new MACs */
10370		rc = bnx2x_config_mcast(bp, &rparam,
10371					BNX2X_MCAST_CMD_ADD);
10372		if (rc < 0)
10373			BNX2X_ERR("Failed to set a new multicast "
10374				  "configuration: %d\n", rc);
10375
10376		bnx2x_free_mcast_macs_list(&rparam);
10377	}
10378
10379	return rc;
10380}
10381
10382
10383/* If bp->state is OPEN, should be called with netif_addr_lock_bh() */
10384void bnx2x_set_rx_mode(struct net_device *dev)
10385{
10386	struct bnx2x *bp = netdev_priv(dev);
10387	u32 rx_mode = BNX2X_RX_MODE_NORMAL;
10388
10389	if (bp->state != BNX2X_STATE_OPEN) {
10390		DP(NETIF_MSG_IFUP, "state is %x, returning\n", bp->state);
10391		return;
10392	}
10393
10394	DP(NETIF_MSG_IFUP, "dev->flags = %x\n", bp->dev->flags);
10395
10396	if (dev->flags & IFF_PROMISC)
10397		rx_mode = BNX2X_RX_MODE_PROMISC;
10398	else if ((dev->flags & IFF_ALLMULTI) ||
10399		 ((netdev_mc_count(dev) > BNX2X_MAX_MULTICAST) &&
10400		  CHIP_IS_E1(bp)))
10401		rx_mode = BNX2X_RX_MODE_ALLMULTI;
10402	else {
10403		/* some multicasts */
10404		if (bnx2x_set_mc_list(bp) < 0)
10405			rx_mode = BNX2X_RX_MODE_ALLMULTI;
10406
10407		if (bnx2x_set_uc_list(bp) < 0)
10408			rx_mode = BNX2X_RX_MODE_PROMISC;
10409	}
10410
10411	bp->rx_mode = rx_mode;
10412#ifdef BCM_CNIC
10413	/* handle ISCSI SD mode */
10414	if (IS_MF_ISCSI_SD(bp))
10415		bp->rx_mode = BNX2X_RX_MODE_NONE;
10416#endif
10417
10418	/* Schedule the rx_mode command */
10419	if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state)) {
10420		set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
10421		return;
10422	}
10423
10424	bnx2x_set_storm_rx_mode(bp);
10425}
10426
10427/* called with rtnl_lock */
10428static int bnx2x_mdio_read(struct net_device *netdev, int prtad,
10429			   int devad, u16 addr)
10430{
10431	struct bnx2x *bp = netdev_priv(netdev);
10432	u16 value;
10433	int rc;
10434
10435	DP(NETIF_MSG_LINK, "mdio_read: prtad 0x%x, devad 0x%x, addr 0x%x\n",
10436	   prtad, devad, addr);
10437
10438	/* The HW expects different devad if CL22 is used */
10439	devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
10440
10441	bnx2x_acquire_phy_lock(bp);
10442	rc = bnx2x_phy_read(&bp->link_params, prtad, devad, addr, &value);
10443	bnx2x_release_phy_lock(bp);
10444	DP(NETIF_MSG_LINK, "mdio_read_val 0x%x rc = 0x%x\n", value, rc);
10445
10446	if (!rc)
10447		rc = value;
10448	return rc;
10449}
10450
10451/* called with rtnl_lock */
10452static int bnx2x_mdio_write(struct net_device *netdev, int prtad, int devad,
10453			    u16 addr, u16 value)
10454{
10455	struct bnx2x *bp = netdev_priv(netdev);
10456	int rc;
10457
10458	DP(NETIF_MSG_LINK, "mdio_write: prtad 0x%x, devad 0x%x, addr 0x%x,"
10459			   " value 0x%x\n", prtad, devad, addr, value);
10460
10461	/* The HW expects different devad if CL22 is used */
10462	devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
10463
10464	bnx2x_acquire_phy_lock(bp);
10465	rc = bnx2x_phy_write(&bp->link_params, prtad, devad, addr, value);
10466	bnx2x_release_phy_lock(bp);
10467	return rc;
10468}
10469
10470/* called with rtnl_lock */
10471static int bnx2x_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
10472{
10473	struct bnx2x *bp = netdev_priv(dev);
10474	struct mii_ioctl_data *mdio = if_mii(ifr);
10475
10476	DP(NETIF_MSG_LINK, "ioctl: phy id 0x%x, reg 0x%x, val_in 0x%x\n",
10477	   mdio->phy_id, mdio->reg_num, mdio->val_in);
10478
10479	if (!netif_running(dev))
10480		return -EAGAIN;
10481
10482	return mdio_mii_ioctl(&bp->mdio, mdio, cmd);
10483}
10484
10485#ifdef CONFIG_NET_POLL_CONTROLLER
10486static void poll_bnx2x(struct net_device *dev)
10487{
10488	struct bnx2x *bp = netdev_priv(dev);
10489
10490	disable_irq(bp->pdev->irq);
10491	bnx2x_interrupt(bp->pdev->irq, dev);
10492	enable_irq(bp->pdev->irq);
10493}
10494#endif
10495
10496static int bnx2x_validate_addr(struct net_device *dev)
10497{
10498	struct bnx2x *bp = netdev_priv(dev);
10499
10500	if (!bnx2x_is_valid_ether_addr(bp, dev->dev_addr))
10501		return -EADDRNOTAVAIL;
10502	return 0;
10503}
10504
10505static const struct net_device_ops bnx2x_netdev_ops = {
10506	.ndo_open		= bnx2x_open,
10507	.ndo_stop		= bnx2x_close,
10508	.ndo_start_xmit		= bnx2x_start_xmit,
10509	.ndo_select_queue	= bnx2x_select_queue,
10510	.ndo_set_rx_mode	= bnx2x_set_rx_mode,
10511	.ndo_set_mac_address	= bnx2x_change_mac_addr,
10512	.ndo_validate_addr	= bnx2x_validate_addr,
10513	.ndo_do_ioctl		= bnx2x_ioctl,
10514	.ndo_change_mtu		= bnx2x_change_mtu,
10515	.ndo_fix_features	= bnx2x_fix_features,
10516	.ndo_set_features	= bnx2x_set_features,
10517	.ndo_tx_timeout		= bnx2x_tx_timeout,
10518#ifdef CONFIG_NET_POLL_CONTROLLER
10519	.ndo_poll_controller	= poll_bnx2x,
10520#endif
10521	.ndo_setup_tc		= bnx2x_setup_tc,
10522
10523#if defined(NETDEV_FCOE_WWNN) && defined(BCM_CNIC)
10524	.ndo_fcoe_get_wwn	= bnx2x_fcoe_get_wwn,
10525#endif
10526};
10527
10528static inline int bnx2x_set_coherency_mask(struct bnx2x *bp)
10529{
10530	struct device *dev = &bp->pdev->dev;
10531
10532	if (dma_set_mask(dev, DMA_BIT_MASK(64)) == 0) {
10533		bp->flags |= USING_DAC_FLAG;
10534		if (dma_set_coherent_mask(dev, DMA_BIT_MASK(64)) != 0) {
10535			dev_err(dev, "dma_set_coherent_mask failed, "
10536				     "aborting\n");
10537			return -EIO;
10538		}
10539	} else if (dma_set_mask(dev, DMA_BIT_MASK(32)) != 0) {
10540		dev_err(dev, "System does not support DMA, aborting\n");
10541		return -EIO;
10542	}
10543
10544	return 0;
10545}
10546
10547static int __devinit bnx2x_init_dev(struct pci_dev *pdev,
10548				    struct net_device *dev,
10549				    unsigned long board_type)
10550{
10551	struct bnx2x *bp;
10552	int rc;
10553	u32 pci_cfg_dword;
10554	bool chip_is_e1x = (board_type == BCM57710 ||
10555			    board_type == BCM57711 ||
10556			    board_type == BCM57711E);
10557
10558	SET_NETDEV_DEV(dev, &pdev->dev);
10559	bp = netdev_priv(dev);
10560
10561	bp->dev = dev;
10562	bp->pdev = pdev;
10563	bp->flags = 0;
10564
10565	rc = pci_enable_device(pdev);
10566	if (rc) {
10567		dev_err(&bp->pdev->dev,
10568			"Cannot enable PCI device, aborting\n");
10569		goto err_out;
10570	}
10571
10572	if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
10573		dev_err(&bp->pdev->dev,
10574			"Cannot find PCI device base address, aborting\n");
10575		rc = -ENODEV;
10576		goto err_out_disable;
10577	}
10578
10579	if (!(pci_resource_flags(pdev, 2) & IORESOURCE_MEM)) {
10580		dev_err(&bp->pdev->dev, "Cannot find second PCI device"
10581		       " base address, aborting\n");
10582		rc = -ENODEV;
10583		goto err_out_disable;
10584	}
10585
10586	if (atomic_read(&pdev->enable_cnt) == 1) {
10587		rc = pci_request_regions(pdev, DRV_MODULE_NAME);
10588		if (rc) {
10589			dev_err(&bp->pdev->dev,
10590				"Cannot obtain PCI resources, aborting\n");
10591			goto err_out_disable;
10592		}
10593
10594		pci_set_master(pdev);
10595		pci_save_state(pdev);
10596	}
10597
10598	bp->pm_cap = pci_find_capability(pdev, PCI_CAP_ID_PM);
10599	if (bp->pm_cap == 0) {
10600		dev_err(&bp->pdev->dev,
10601			"Cannot find power management capability, aborting\n");
10602		rc = -EIO;
10603		goto err_out_release;
10604	}
10605
10606	if (!pci_is_pcie(pdev)) {
10607		dev_err(&bp->pdev->dev,	"Not PCI Express, aborting\n");
10608		rc = -EIO;
10609		goto err_out_release;
10610	}
10611
10612	rc = bnx2x_set_coherency_mask(bp);
10613	if (rc)
10614		goto err_out_release;
10615
10616	dev->mem_start = pci_resource_start(pdev, 0);
10617	dev->base_addr = dev->mem_start;
10618	dev->mem_end = pci_resource_end(pdev, 0);
10619
10620	dev->irq = pdev->irq;
10621
10622	bp->regview = pci_ioremap_bar(pdev, 0);
10623	if (!bp->regview) {
10624		dev_err(&bp->pdev->dev,
10625			"Cannot map register space, aborting\n");
10626		rc = -ENOMEM;
10627		goto err_out_release;
10628	}
10629
10630	/* In E1/E1H use pci device function given by kernel.
10631	 * In E2/E3 read physical function from ME register since these chips
10632	 * support Physical Device Assignment where kernel BDF maybe arbitrary
10633	 * (depending on hypervisor).
10634	 */
10635	if (chip_is_e1x)
10636		bp->pf_num = PCI_FUNC(pdev->devfn);
10637	else {/* chip is E2/3*/
10638		pci_read_config_dword(bp->pdev,
10639				      PCICFG_ME_REGISTER, &pci_cfg_dword);
10640		bp->pf_num = (u8)((pci_cfg_dword & ME_REG_ABS_PF_NUM) >>
10641		    ME_REG_ABS_PF_NUM_SHIFT);
10642	}
10643	DP(BNX2X_MSG_SP, "me reg PF num: %d\n", bp->pf_num);
10644
10645	bnx2x_set_power_state(bp, PCI_D0);
10646
10647	/* clean indirect addresses */
10648	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
10649			       PCICFG_VENDOR_ID_OFFSET);
10650	/*
10651	 * Clean the following indirect addresses for all functions since it
10652	 * is not used by the driver.
10653	 */
10654	REG_WR(bp, PXP2_REG_PGL_ADDR_88_F0, 0);
10655	REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F0, 0);
10656	REG_WR(bp, PXP2_REG_PGL_ADDR_90_F0, 0);
10657	REG_WR(bp, PXP2_REG_PGL_ADDR_94_F0, 0);
10658
10659	if (chip_is_e1x) {
10660		REG_WR(bp, PXP2_REG_PGL_ADDR_88_F1, 0);
10661		REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F1, 0);
10662		REG_WR(bp, PXP2_REG_PGL_ADDR_90_F1, 0);
10663		REG_WR(bp, PXP2_REG_PGL_ADDR_94_F1, 0);
10664	}
10665
10666	/*
10667	 * Enable internal target-read (in case we are probed after PF FLR).
10668	 * Must be done prior to any BAR read access. Only for 57712 and up
10669	 */
10670	if (!chip_is_e1x)
10671		REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
10672
10673	/* Reset the load counter */
10674	bnx2x_clear_load_cnt(bp);
10675
10676	dev->watchdog_timeo = TX_TIMEOUT;
10677
10678	dev->netdev_ops = &bnx2x_netdev_ops;
10679	bnx2x_set_ethtool_ops(dev);
10680
10681	dev->priv_flags |= IFF_UNICAST_FLT;
10682
10683	dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
10684		NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 | NETIF_F_LRO |
10685		NETIF_F_RXCSUM | NETIF_F_RXHASH | NETIF_F_HW_VLAN_TX;
10686
10687	dev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
10688		NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 | NETIF_F_HIGHDMA;
10689
10690	dev->features |= dev->hw_features | NETIF_F_HW_VLAN_RX;
10691	if (bp->flags & USING_DAC_FLAG)
10692		dev->features |= NETIF_F_HIGHDMA;
10693
10694	/* Add Loopback capability to the device */
10695	dev->hw_features |= NETIF_F_LOOPBACK;
10696
10697#ifdef BCM_DCBNL
10698	dev->dcbnl_ops = &bnx2x_dcbnl_ops;
10699#endif
10700
10701	/* get_port_hwinfo() will set prtad and mmds properly */
10702	bp->mdio.prtad = MDIO_PRTAD_NONE;
10703	bp->mdio.mmds = 0;
10704	bp->mdio.mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22;
10705	bp->mdio.dev = dev;
10706	bp->mdio.mdio_read = bnx2x_mdio_read;
10707	bp->mdio.mdio_write = bnx2x_mdio_write;
10708
10709	return 0;
10710
10711err_out_release:
10712	if (atomic_read(&pdev->enable_cnt) == 1)
10713		pci_release_regions(pdev);
10714
10715err_out_disable:
10716	pci_disable_device(pdev);
10717	pci_set_drvdata(pdev, NULL);
10718
10719err_out:
10720	return rc;
10721}
10722
10723static void __devinit bnx2x_get_pcie_width_speed(struct bnx2x *bp,
10724						 int *width, int *speed)
10725{
10726	u32 val = REG_RD(bp, PCICFG_OFFSET + PCICFG_LINK_CONTROL);
10727
10728	*width = (val & PCICFG_LINK_WIDTH) >> PCICFG_LINK_WIDTH_SHIFT;
10729
10730	/* return value of 1=2.5GHz 2=5GHz */
10731	*speed = (val & PCICFG_LINK_SPEED) >> PCICFG_LINK_SPEED_SHIFT;
10732}
10733
10734static int bnx2x_check_firmware(struct bnx2x *bp)
10735{
10736	const struct firmware *firmware = bp->firmware;
10737	struct bnx2x_fw_file_hdr *fw_hdr;
10738	struct bnx2x_fw_file_section *sections;
10739	u32 offset, len, num_ops;
10740	u16 *ops_offsets;
10741	int i;
10742	const u8 *fw_ver;
10743
10744	if (firmware->size < sizeof(struct bnx2x_fw_file_hdr))
10745		return -EINVAL;
10746
10747	fw_hdr = (struct bnx2x_fw_file_hdr *)firmware->data;
10748	sections = (struct bnx2x_fw_file_section *)fw_hdr;
10749
10750	/* Make sure none of the offsets and sizes make us read beyond
10751	 * the end of the firmware data */
10752	for (i = 0; i < sizeof(*fw_hdr) / sizeof(*sections); i++) {
10753		offset = be32_to_cpu(sections[i].offset);
10754		len = be32_to_cpu(sections[i].len);
10755		if (offset + len > firmware->size) {
10756			dev_err(&bp->pdev->dev,
10757				"Section %d length is out of bounds\n", i);
10758			return -EINVAL;
10759		}
10760	}
10761
10762	/* Likewise for the init_ops offsets */
10763	offset = be32_to_cpu(fw_hdr->init_ops_offsets.offset);
10764	ops_offsets = (u16 *)(firmware->data + offset);
10765	num_ops = be32_to_cpu(fw_hdr->init_ops.len) / sizeof(struct raw_op);
10766
10767	for (i = 0; i < be32_to_cpu(fw_hdr->init_ops_offsets.len) / 2; i++) {
10768		if (be16_to_cpu(ops_offsets[i]) > num_ops) {
10769			dev_err(&bp->pdev->dev,
10770				"Section offset %d is out of bounds\n", i);
10771			return -EINVAL;
10772		}
10773	}
10774
10775	/* Check FW version */
10776	offset = be32_to_cpu(fw_hdr->fw_version.offset);
10777	fw_ver = firmware->data + offset;
10778	if ((fw_ver[0] != BCM_5710_FW_MAJOR_VERSION) ||
10779	    (fw_ver[1] != BCM_5710_FW_MINOR_VERSION) ||
10780	    (fw_ver[2] != BCM_5710_FW_REVISION_VERSION) ||
10781	    (fw_ver[3] != BCM_5710_FW_ENGINEERING_VERSION)) {
10782		dev_err(&bp->pdev->dev,
10783			"Bad FW version:%d.%d.%d.%d. Should be %d.%d.%d.%d\n",
10784		       fw_ver[0], fw_ver[1], fw_ver[2],
10785		       fw_ver[3], BCM_5710_FW_MAJOR_VERSION,
10786		       BCM_5710_FW_MINOR_VERSION,
10787		       BCM_5710_FW_REVISION_VERSION,
10788		       BCM_5710_FW_ENGINEERING_VERSION);
10789		return -EINVAL;
10790	}
10791
10792	return 0;
10793}
10794
10795static inline void be32_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
10796{
10797	const __be32 *source = (const __be32 *)_source;
10798	u32 *target = (u32 *)_target;
10799	u32 i;
10800
10801	for (i = 0; i < n/4; i++)
10802		target[i] = be32_to_cpu(source[i]);
10803}
10804
10805/*
10806   Ops array is stored in the following format:
10807   {op(8bit), offset(24bit, big endian), data(32bit, big endian)}
10808 */
10809static inline void bnx2x_prep_ops(const u8 *_source, u8 *_target, u32 n)
10810{
10811	const __be32 *source = (const __be32 *)_source;
10812	struct raw_op *target = (struct raw_op *)_target;
10813	u32 i, j, tmp;
10814
10815	for (i = 0, j = 0; i < n/8; i++, j += 2) {
10816		tmp = be32_to_cpu(source[j]);
10817		target[i].op = (tmp >> 24) & 0xff;
10818		target[i].offset = tmp & 0xffffff;
10819		target[i].raw_data = be32_to_cpu(source[j + 1]);
10820	}
10821}
10822
10823/**
10824 * IRO array is stored in the following format:
10825 * {base(24bit), m1(16bit), m2(16bit), m3(16bit), size(16bit) }
10826 */
10827static inline void bnx2x_prep_iro(const u8 *_source, u8 *_target, u32 n)
10828{
10829	const __be32 *source = (const __be32 *)_source;
10830	struct iro *target = (struct iro *)_target;
10831	u32 i, j, tmp;
10832
10833	for (i = 0, j = 0; i < n/sizeof(struct iro); i++) {
10834		target[i].base = be32_to_cpu(source[j]);
10835		j++;
10836		tmp = be32_to_cpu(source[j]);
10837		target[i].m1 = (tmp >> 16) & 0xffff;
10838		target[i].m2 = tmp & 0xffff;
10839		j++;
10840		tmp = be32_to_cpu(source[j]);
10841		target[i].m3 = (tmp >> 16) & 0xffff;
10842		target[i].size = tmp & 0xffff;
10843		j++;
10844	}
10845}
10846
10847static inline void be16_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
10848{
10849	const __be16 *source = (const __be16 *)_source;
10850	u16 *target = (u16 *)_target;
10851	u32 i;
10852
10853	for (i = 0; i < n/2; i++)
10854		target[i] = be16_to_cpu(source[i]);
10855}
10856
10857#define BNX2X_ALLOC_AND_SET(arr, lbl, func)				\
10858do {									\
10859	u32 len = be32_to_cpu(fw_hdr->arr.len);				\
10860	bp->arr = kmalloc(len, GFP_KERNEL);				\
10861	if (!bp->arr) {							\
10862		pr_err("Failed to allocate %d bytes for "#arr"\n", len); \
10863		goto lbl;						\
10864	}								\
10865	func(bp->firmware->data + be32_to_cpu(fw_hdr->arr.offset),	\
10866	     (u8 *)bp->arr, len);					\
10867} while (0)
10868
10869int bnx2x_init_firmware(struct bnx2x *bp)
10870{
10871	struct bnx2x_fw_file_hdr *fw_hdr;
10872	int rc;
10873
10874
10875	if (!bp->firmware) {
10876		const char *fw_file_name;
10877
10878		if (CHIP_IS_E1(bp))
10879			fw_file_name = FW_FILE_NAME_E1;
10880		else if (CHIP_IS_E1H(bp))
10881			fw_file_name = FW_FILE_NAME_E1H;
10882		else if (!CHIP_IS_E1x(bp))
10883			fw_file_name = FW_FILE_NAME_E2;
10884		else {
10885			BNX2X_ERR("Unsupported chip revision\n");
10886			return -EINVAL;
10887		}
10888		BNX2X_DEV_INFO("Loading %s\n", fw_file_name);
10889
10890		rc = request_firmware(&bp->firmware, fw_file_name,
10891				      &bp->pdev->dev);
10892		if (rc) {
10893			BNX2X_ERR("Can't load firmware file %s\n",
10894				  fw_file_name);
10895			goto request_firmware_exit;
10896		}
10897
10898		rc = bnx2x_check_firmware(bp);
10899		if (rc) {
10900			BNX2X_ERR("Corrupt firmware file %s\n", fw_file_name);
10901			goto request_firmware_exit;
10902		}
10903	}
10904
10905	fw_hdr = (struct bnx2x_fw_file_hdr *)bp->firmware->data;
10906
10907	/* Initialize the pointers to the init arrays */
10908	/* Blob */
10909	BNX2X_ALLOC_AND_SET(init_data, request_firmware_exit, be32_to_cpu_n);
10910
10911	/* Opcodes */
10912	BNX2X_ALLOC_AND_SET(init_ops, init_ops_alloc_err, bnx2x_prep_ops);
10913
10914	/* Offsets */
10915	BNX2X_ALLOC_AND_SET(init_ops_offsets, init_offsets_alloc_err,
10916			    be16_to_cpu_n);
10917
10918	/* STORMs firmware */
10919	INIT_TSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
10920			be32_to_cpu(fw_hdr->tsem_int_table_data.offset);
10921	INIT_TSEM_PRAM_DATA(bp)      = bp->firmware->data +
10922			be32_to_cpu(fw_hdr->tsem_pram_data.offset);
10923	INIT_USEM_INT_TABLE_DATA(bp) = bp->firmware->data +
10924			be32_to_cpu(fw_hdr->usem_int_table_data.offset);
10925	INIT_USEM_PRAM_DATA(bp)      = bp->firmware->data +
10926			be32_to_cpu(fw_hdr->usem_pram_data.offset);
10927	INIT_XSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
10928			be32_to_cpu(fw_hdr->xsem_int_table_data.offset);
10929	INIT_XSEM_PRAM_DATA(bp)      = bp->firmware->data +
10930			be32_to_cpu(fw_hdr->xsem_pram_data.offset);
10931	INIT_CSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
10932			be32_to_cpu(fw_hdr->csem_int_table_data.offset);
10933	INIT_CSEM_PRAM_DATA(bp)      = bp->firmware->data +
10934			be32_to_cpu(fw_hdr->csem_pram_data.offset);
10935	/* IRO */
10936	BNX2X_ALLOC_AND_SET(iro_arr, iro_alloc_err, bnx2x_prep_iro);
10937
10938	return 0;
10939
10940iro_alloc_err:
10941	kfree(bp->init_ops_offsets);
10942init_offsets_alloc_err:
10943	kfree(bp->init_ops);
10944init_ops_alloc_err:
10945	kfree(bp->init_data);
10946request_firmware_exit:
10947	release_firmware(bp->firmware);
10948
10949	return rc;
10950}
10951
10952static void bnx2x_release_firmware(struct bnx2x *bp)
10953{
10954	kfree(bp->init_ops_offsets);
10955	kfree(bp->init_ops);
10956	kfree(bp->init_data);
10957	release_firmware(bp->firmware);
10958	bp->firmware = NULL;
10959}
10960
10961
10962static struct bnx2x_func_sp_drv_ops bnx2x_func_sp_drv = {
10963	.init_hw_cmn_chip = bnx2x_init_hw_common_chip,
10964	.init_hw_cmn      = bnx2x_init_hw_common,
10965	.init_hw_port     = bnx2x_init_hw_port,
10966	.init_hw_func     = bnx2x_init_hw_func,
10967
10968	.reset_hw_cmn     = bnx2x_reset_common,
10969	.reset_hw_port    = bnx2x_reset_port,
10970	.reset_hw_func    = bnx2x_reset_func,
10971
10972	.gunzip_init      = bnx2x_gunzip_init,
10973	.gunzip_end       = bnx2x_gunzip_end,
10974
10975	.init_fw          = bnx2x_init_firmware,
10976	.release_fw       = bnx2x_release_firmware,
10977};
10978
10979void bnx2x__init_func_obj(struct bnx2x *bp)
10980{
10981	/* Prepare DMAE related driver resources */
10982	bnx2x_setup_dmae(bp);
10983
10984	bnx2x_init_func_obj(bp, &bp->func_obj,
10985			    bnx2x_sp(bp, func_rdata),
10986			    bnx2x_sp_mapping(bp, func_rdata),
10987			    &bnx2x_func_sp_drv);
10988}
10989
10990/* must be called after sriov-enable */
10991static inline int bnx2x_set_qm_cid_count(struct bnx2x *bp)
10992{
10993	int cid_count = BNX2X_L2_CID_COUNT(bp);
10994
10995#ifdef BCM_CNIC
10996	cid_count += CNIC_CID_MAX;
10997#endif
10998	return roundup(cid_count, QM_CID_ROUND);
10999}
11000
11001/**
11002 * bnx2x_get_num_none_def_sbs - return the number of none default SBs
11003 *
11004 * @dev:	pci device
11005 *
11006 */
11007static inline int bnx2x_get_num_non_def_sbs(struct pci_dev *pdev)
11008{
11009	int pos;
11010	u16 control;
11011
11012	pos = pci_find_capability(pdev, PCI_CAP_ID_MSIX);
11013
11014	/*
11015	 * If MSI-X is not supported - return number of SBs needed to support
11016	 * one fast path queue: one FP queue + SB for CNIC
11017	 */
11018	if (!pos)
11019		return 1 + CNIC_PRESENT;
11020
11021	/*
11022	 * The value in the PCI configuration space is the index of the last
11023	 * entry, namely one less than the actual size of the table, which is
11024	 * exactly what we want to return from this function: number of all SBs
11025	 * without the default SB.
11026	 */
11027	pci_read_config_word(pdev, pos  + PCI_MSI_FLAGS, &control);
11028	return control & PCI_MSIX_FLAGS_QSIZE;
11029}
11030
11031static int __devinit bnx2x_init_one(struct pci_dev *pdev,
11032				    const struct pci_device_id *ent)
11033{
11034	struct net_device *dev = NULL;
11035	struct bnx2x *bp;
11036	int pcie_width, pcie_speed;
11037	int rc, max_non_def_sbs;
11038	int rx_count, tx_count, rss_count;
11039	/*
11040	 * An estimated maximum supported CoS number according to the chip
11041	 * version.
11042	 * We will try to roughly estimate the maximum number of CoSes this chip
11043	 * may support in order to minimize the memory allocated for Tx
11044	 * netdev_queue's. This number will be accurately calculated during the
11045	 * initialization of bp->max_cos based on the chip versions AND chip
11046	 * revision in the bnx2x_init_bp().
11047	 */
11048	u8 max_cos_est = 0;
11049
11050	switch (ent->driver_data) {
11051	case BCM57710:
11052	case BCM57711:
11053	case BCM57711E:
11054		max_cos_est = BNX2X_MULTI_TX_COS_E1X;
11055		break;
11056
11057	case BCM57712:
11058	case BCM57712_MF:
11059		max_cos_est = BNX2X_MULTI_TX_COS_E2_E3A0;
11060		break;
11061
11062	case BCM57800:
11063	case BCM57800_MF:
11064	case BCM57810:
11065	case BCM57810_MF:
11066	case BCM57840:
11067	case BCM57840_MF:
11068		max_cos_est = BNX2X_MULTI_TX_COS_E3B0;
11069		break;
11070
11071	default:
11072		pr_err("Unknown board_type (%ld), aborting\n",
11073			   ent->driver_data);
11074		return -ENODEV;
11075	}
11076
11077	max_non_def_sbs = bnx2x_get_num_non_def_sbs(pdev);
11078
11079	/* !!! FIXME !!!
11080	 * Do not allow the maximum SB count to grow above 16
11081	 * since Special CIDs starts from 16*BNX2X_MULTI_TX_COS=48.
11082	 * We will use the FP_SB_MAX_E1x macro for this matter.
11083	 */
11084	max_non_def_sbs = min_t(int, FP_SB_MAX_E1x, max_non_def_sbs);
11085
11086	WARN_ON(!max_non_def_sbs);
11087
11088	/* Maximum number of RSS queues: one IGU SB goes to CNIC */
11089	rss_count = max_non_def_sbs - CNIC_PRESENT;
11090
11091	/* Maximum number of netdev Rx queues: RSS + FCoE L2 */
11092	rx_count = rss_count + FCOE_PRESENT;
11093
11094	/*
11095	 * Maximum number of netdev Tx queues:
11096	 *      Maximum TSS queues * Maximum supported number of CoS  + FCoE L2
11097	 */
11098	tx_count = MAX_TXQS_PER_COS * max_cos_est + FCOE_PRESENT;
11099
11100	/* dev zeroed in init_etherdev */
11101	dev = alloc_etherdev_mqs(sizeof(*bp), tx_count, rx_count);
11102	if (!dev) {
11103		dev_err(&pdev->dev, "Cannot allocate net device\n");
11104		return -ENOMEM;
11105	}
11106
11107	bp = netdev_priv(dev);
11108
11109	DP(NETIF_MSG_DRV, "Allocated netdev with %d tx and %d rx queues\n",
11110			  tx_count, rx_count);
11111
11112	bp->igu_sb_cnt = max_non_def_sbs;
11113	bp->msg_enable = debug;
11114	pci_set_drvdata(pdev, dev);
11115
11116	rc = bnx2x_init_dev(pdev, dev, ent->driver_data);
11117	if (rc < 0) {
11118		free_netdev(dev);
11119		return rc;
11120	}
11121
11122	DP(NETIF_MSG_DRV, "max_non_def_sbs %d\n", max_non_def_sbs);
11123
11124	rc = bnx2x_init_bp(bp);
11125	if (rc)
11126		goto init_one_exit;
11127
11128	/*
11129	 * Map doorbels here as we need the real value of bp->max_cos which
11130	 * is initialized in bnx2x_init_bp().
11131	 */
11132	bp->doorbells = ioremap_nocache(pci_resource_start(pdev, 2),
11133					min_t(u64, BNX2X_DB_SIZE(bp),
11134					      pci_resource_len(pdev, 2)));
11135	if (!bp->doorbells) {
11136		dev_err(&bp->pdev->dev,
11137			"Cannot map doorbell space, aborting\n");
11138		rc = -ENOMEM;
11139		goto init_one_exit;
11140	}
11141
11142	/* calc qm_cid_count */
11143	bp->qm_cid_count = bnx2x_set_qm_cid_count(bp);
11144
11145#ifdef BCM_CNIC
11146	/* disable FCOE L2 queue for E1x */
11147	if (CHIP_IS_E1x(bp))
11148		bp->flags |= NO_FCOE_FLAG;
11149
11150#endif
11151
11152	/* Configure interrupt mode: try to enable MSI-X/MSI if
11153	 * needed, set bp->num_queues appropriately.
11154	 */
11155	bnx2x_set_int_mode(bp);
11156
11157	/* Add all NAPI objects */
11158	bnx2x_add_all_napi(bp);
11159
11160	rc = register_netdev(dev);
11161	if (rc) {
11162		dev_err(&pdev->dev, "Cannot register net device\n");
11163		goto init_one_exit;
11164	}
11165
11166#ifdef BCM_CNIC
11167	if (!NO_FCOE(bp)) {
11168		/* Add storage MAC address */
11169		rtnl_lock();
11170		dev_addr_add(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
11171		rtnl_unlock();
11172	}
11173#endif
11174
11175	bnx2x_get_pcie_width_speed(bp, &pcie_width, &pcie_speed);
11176
11177	netdev_info(dev, "%s (%c%d) PCI-E x%d %s found at mem %lx, IRQ %d, node addr %pM\n",
11178		    board_info[ent->driver_data].name,
11179		    (CHIP_REV(bp) >> 12) + 'A', (CHIP_METAL(bp) >> 4),
11180		    pcie_width,
11181		    ((!CHIP_IS_E2(bp) && pcie_speed == 2) ||
11182		     (CHIP_IS_E2(bp) && pcie_speed == 1)) ?
11183		    "5GHz (Gen2)" : "2.5GHz",
11184		    dev->base_addr, bp->pdev->irq, dev->dev_addr);
11185
11186	return 0;
11187
11188init_one_exit:
11189	if (bp->regview)
11190		iounmap(bp->regview);
11191
11192	if (bp->doorbells)
11193		iounmap(bp->doorbells);
11194
11195	free_netdev(dev);
11196
11197	if (atomic_read(&pdev->enable_cnt) == 1)
11198		pci_release_regions(pdev);
11199
11200	pci_disable_device(pdev);
11201	pci_set_drvdata(pdev, NULL);
11202
11203	return rc;
11204}
11205
11206static void __devexit bnx2x_remove_one(struct pci_dev *pdev)
11207{
11208	struct net_device *dev = pci_get_drvdata(pdev);
11209	struct bnx2x *bp;
11210
11211	if (!dev) {
11212		dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n");
11213		return;
11214	}
11215	bp = netdev_priv(dev);
11216
11217#ifdef BCM_CNIC
11218	/* Delete storage MAC address */
11219	if (!NO_FCOE(bp)) {
11220		rtnl_lock();
11221		dev_addr_del(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
11222		rtnl_unlock();
11223	}
11224#endif
11225
11226#ifdef BCM_DCBNL
11227	/* Delete app tlvs from dcbnl */
11228	bnx2x_dcbnl_update_applist(bp, true);
11229#endif
11230
11231	unregister_netdev(dev);
11232
11233	/* Delete all NAPI objects */
11234	bnx2x_del_all_napi(bp);
11235
11236	/* Power on: we can't let PCI layer write to us while we are in D3 */
11237	bnx2x_set_power_state(bp, PCI_D0);
11238
11239	/* Disable MSI/MSI-X */
11240	bnx2x_disable_msi(bp);
11241
11242	/* Power off */
11243	bnx2x_set_power_state(bp, PCI_D3hot);
11244
11245	/* Make sure RESET task is not scheduled before continuing */
11246	cancel_delayed_work_sync(&bp->sp_rtnl_task);
11247
11248	if (bp->regview)
11249		iounmap(bp->regview);
11250
11251	if (bp->doorbells)
11252		iounmap(bp->doorbells);
11253
11254	bnx2x_release_firmware(bp);
11255
11256	bnx2x_free_mem_bp(bp);
11257
11258	free_netdev(dev);
11259
11260	if (atomic_read(&pdev->enable_cnt) == 1)
11261		pci_release_regions(pdev);
11262
11263	pci_disable_device(pdev);
11264	pci_set_drvdata(pdev, NULL);
11265}
11266
11267static int bnx2x_eeh_nic_unload(struct bnx2x *bp)
11268{
11269	int i;
11270
11271	bp->state = BNX2X_STATE_ERROR;
11272
11273	bp->rx_mode = BNX2X_RX_MODE_NONE;
11274
11275#ifdef BCM_CNIC
11276	bnx2x_cnic_notify(bp, CNIC_CTL_STOP_CMD);
11277#endif
11278	/* Stop Tx */
11279	bnx2x_tx_disable(bp);
11280
11281	bnx2x_netif_stop(bp, 0);
11282
11283	del_timer_sync(&bp->timer);
11284
11285	bnx2x_stats_handle(bp, STATS_EVENT_STOP);
11286
11287	/* Release IRQs */
11288	bnx2x_free_irq(bp);
11289
11290	/* Free SKBs, SGEs, TPA pool and driver internals */
11291	bnx2x_free_skbs(bp);
11292
11293	for_each_rx_queue(bp, i)
11294		bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE);
11295
11296	bnx2x_free_mem(bp);
11297
11298	bp->state = BNX2X_STATE_CLOSED;
11299
11300	netif_carrier_off(bp->dev);
11301
11302	return 0;
11303}
11304
11305static void bnx2x_eeh_recover(struct bnx2x *bp)
11306{
11307	u32 val;
11308
11309	mutex_init(&bp->port.phy_mutex);
11310
11311	bp->common.shmem_base = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
11312	bp->link_params.shmem_base = bp->common.shmem_base;
11313	BNX2X_DEV_INFO("shmem offset is 0x%x\n", bp->common.shmem_base);
11314
11315	if (!bp->common.shmem_base ||
11316	    (bp->common.shmem_base < 0xA0000) ||
11317	    (bp->common.shmem_base >= 0xC0000)) {
11318		BNX2X_DEV_INFO("MCP not active\n");
11319		bp->flags |= NO_MCP_FLAG;
11320		return;
11321	}
11322
11323	val = SHMEM_RD(bp, validity_map[BP_PORT(bp)]);
11324	if ((val & (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB))
11325		!= (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB))
11326		BNX2X_ERR("BAD MCP validity signature\n");
11327
11328	if (!BP_NOMCP(bp)) {
11329		bp->fw_seq =
11330		    (SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
11331		    DRV_MSG_SEQ_NUMBER_MASK);
11332		BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp->fw_seq);
11333	}
11334}
11335
11336/**
11337 * bnx2x_io_error_detected - called when PCI error is detected
11338 * @pdev: Pointer to PCI device
11339 * @state: The current pci connection state
11340 *
11341 * This function is called after a PCI bus error affecting
11342 * this device has been detected.
11343 */
11344static pci_ers_result_t bnx2x_io_error_detected(struct pci_dev *pdev,
11345						pci_channel_state_t state)
11346{
11347	struct net_device *dev = pci_get_drvdata(pdev);
11348	struct bnx2x *bp = netdev_priv(dev);
11349
11350	rtnl_lock();
11351
11352	netif_device_detach(dev);
11353
11354	if (state == pci_channel_io_perm_failure) {
11355		rtnl_unlock();
11356		return PCI_ERS_RESULT_DISCONNECT;
11357	}
11358
11359	if (netif_running(dev))
11360		bnx2x_eeh_nic_unload(bp);
11361
11362	pci_disable_device(pdev);
11363
11364	rtnl_unlock();
11365
11366	/* Request a slot reset */
11367	return PCI_ERS_RESULT_NEED_RESET;
11368}
11369
11370/**
11371 * bnx2x_io_slot_reset - called after the PCI bus has been reset
11372 * @pdev: Pointer to PCI device
11373 *
11374 * Restart the card from scratch, as if from a cold-boot.
11375 */
11376static pci_ers_result_t bnx2x_io_slot_reset(struct pci_dev *pdev)
11377{
11378	struct net_device *dev = pci_get_drvdata(pdev);
11379	struct bnx2x *bp = netdev_priv(dev);
11380
11381	rtnl_lock();
11382
11383	if (pci_enable_device(pdev)) {
11384		dev_err(&pdev->dev,
11385			"Cannot re-enable PCI device after reset\n");
11386		rtnl_unlock();
11387		return PCI_ERS_RESULT_DISCONNECT;
11388	}
11389
11390	pci_set_master(pdev);
11391	pci_restore_state(pdev);
11392
11393	if (netif_running(dev))
11394		bnx2x_set_power_state(bp, PCI_D0);
11395
11396	rtnl_unlock();
11397
11398	return PCI_ERS_RESULT_RECOVERED;
11399}
11400
11401/**
11402 * bnx2x_io_resume - called when traffic can start flowing again
11403 * @pdev: Pointer to PCI device
11404 *
11405 * This callback is called when the error recovery driver tells us that
11406 * its OK to resume normal operation.
11407 */
11408static void bnx2x_io_resume(struct pci_dev *pdev)
11409{
11410	struct net_device *dev = pci_get_drvdata(pdev);
11411	struct bnx2x *bp = netdev_priv(dev);
11412
11413	if (bp->recovery_state != BNX2X_RECOVERY_DONE) {
11414		netdev_err(bp->dev, "Handling parity error recovery. "
11415				    "Try again later\n");
11416		return;
11417	}
11418
11419	rtnl_lock();
11420
11421	bnx2x_eeh_recover(bp);
11422
11423	if (netif_running(dev))
11424		bnx2x_nic_load(bp, LOAD_NORMAL);
11425
11426	netif_device_attach(dev);
11427
11428	rtnl_unlock();
11429}
11430
11431static struct pci_error_handlers bnx2x_err_handler = {
11432	.error_detected = bnx2x_io_error_detected,
11433	.slot_reset     = bnx2x_io_slot_reset,
11434	.resume         = bnx2x_io_resume,
11435};
11436
11437static struct pci_driver bnx2x_pci_driver = {
11438	.name        = DRV_MODULE_NAME,
11439	.id_table    = bnx2x_pci_tbl,
11440	.probe       = bnx2x_init_one,
11441	.remove      = __devexit_p(bnx2x_remove_one),
11442	.suspend     = bnx2x_suspend,
11443	.resume      = bnx2x_resume,
11444	.err_handler = &bnx2x_err_handler,
11445};
11446
11447static int __init bnx2x_init(void)
11448{
11449	int ret;
11450
11451	pr_info("%s", version);
11452
11453	bnx2x_wq = create_singlethread_workqueue("bnx2x");
11454	if (bnx2x_wq == NULL) {
11455		pr_err("Cannot create workqueue\n");
11456		return -ENOMEM;
11457	}
11458
11459	ret = pci_register_driver(&bnx2x_pci_driver);
11460	if (ret) {
11461		pr_err("Cannot register driver\n");
11462		destroy_workqueue(bnx2x_wq);
11463	}
11464	return ret;
11465}
11466
11467static void __exit bnx2x_cleanup(void)
11468{
11469	pci_unregister_driver(&bnx2x_pci_driver);
11470
11471	destroy_workqueue(bnx2x_wq);
11472}
11473
11474void bnx2x_notify_link_changed(struct bnx2x *bp)
11475{
11476	REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + BP_FUNC(bp)*sizeof(u32), 1);
11477}
11478
11479module_init(bnx2x_init);
11480module_exit(bnx2x_cleanup);
11481
11482#ifdef BCM_CNIC
11483/**
11484 * bnx2x_set_iscsi_eth_mac_addr - set iSCSI MAC(s).
11485 *
11486 * @bp:		driver handle
11487 * @set:	set or clear the CAM entry
11488 *
11489 * This function will wait until the ramdord completion returns.
11490 * Return 0 if success, -ENODEV if ramrod doesn't return.
11491 */
11492static inline int bnx2x_set_iscsi_eth_mac_addr(struct bnx2x *bp)
11493{
11494	unsigned long ramrod_flags = 0;
11495
11496	__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
11497	return bnx2x_set_mac_one(bp, bp->cnic_eth_dev.iscsi_mac,
11498				 &bp->iscsi_l2_mac_obj, true,
11499				 BNX2X_ISCSI_ETH_MAC, &ramrod_flags);
11500}
11501
11502/* count denotes the number of new completions we have seen */
11503static void bnx2x_cnic_sp_post(struct bnx2x *bp, int count)
11504{
11505	struct eth_spe *spe;
11506
11507#ifdef BNX2X_STOP_ON_ERROR
11508	if (unlikely(bp->panic))
11509		return;
11510#endif
11511
11512	spin_lock_bh(&bp->spq_lock);
11513	BUG_ON(bp->cnic_spq_pending < count);
11514	bp->cnic_spq_pending -= count;
11515
11516
11517	for (; bp->cnic_kwq_pending; bp->cnic_kwq_pending--) {
11518		u16 type =  (le16_to_cpu(bp->cnic_kwq_cons->hdr.type)
11519				& SPE_HDR_CONN_TYPE) >>
11520				SPE_HDR_CONN_TYPE_SHIFT;
11521		u8 cmd = (le32_to_cpu(bp->cnic_kwq_cons->hdr.conn_and_cmd_data)
11522				>> SPE_HDR_CMD_ID_SHIFT) & 0xff;
11523
11524		/* Set validation for iSCSI L2 client before sending SETUP
11525		 *  ramrod
11526		 */
11527		if (type == ETH_CONNECTION_TYPE) {
11528			if (cmd == RAMROD_CMD_ID_ETH_CLIENT_SETUP)
11529				bnx2x_set_ctx_validation(bp, &bp->context.
11530					vcxt[BNX2X_ISCSI_ETH_CID].eth,
11531					BNX2X_ISCSI_ETH_CID);
11532		}
11533
11534		/*
11535		 * There may be not more than 8 L2, not more than 8 L5 SPEs
11536		 * and in the air. We also check that number of outstanding
11537		 * COMMON ramrods is not more than the EQ and SPQ can
11538		 * accommodate.
11539		 */
11540		if (type == ETH_CONNECTION_TYPE) {
11541			if (!atomic_read(&bp->cq_spq_left))
11542				break;
11543			else
11544				atomic_dec(&bp->cq_spq_left);
11545		} else if (type == NONE_CONNECTION_TYPE) {
11546			if (!atomic_read(&bp->eq_spq_left))
11547				break;
11548			else
11549				atomic_dec(&bp->eq_spq_left);
11550		} else if ((type == ISCSI_CONNECTION_TYPE) ||
11551			   (type == FCOE_CONNECTION_TYPE)) {
11552			if (bp->cnic_spq_pending >=
11553			    bp->cnic_eth_dev.max_kwqe_pending)
11554				break;
11555			else
11556				bp->cnic_spq_pending++;
11557		} else {
11558			BNX2X_ERR("Unknown SPE type: %d\n", type);
11559			bnx2x_panic();
11560			break;
11561		}
11562
11563		spe = bnx2x_sp_get_next(bp);
11564		*spe = *bp->cnic_kwq_cons;
11565
11566		DP(NETIF_MSG_TIMER, "pending on SPQ %d, on KWQ %d count %d\n",
11567		   bp->cnic_spq_pending, bp->cnic_kwq_pending, count);
11568
11569		if (bp->cnic_kwq_cons == bp->cnic_kwq_last)
11570			bp->cnic_kwq_cons = bp->cnic_kwq;
11571		else
11572			bp->cnic_kwq_cons++;
11573	}
11574	bnx2x_sp_prod_update(bp);
11575	spin_unlock_bh(&bp->spq_lock);
11576}
11577
11578static int bnx2x_cnic_sp_queue(struct net_device *dev,
11579			       struct kwqe_16 *kwqes[], u32 count)
11580{
11581	struct bnx2x *bp = netdev_priv(dev);
11582	int i;
11583
11584#ifdef BNX2X_STOP_ON_ERROR
11585	if (unlikely(bp->panic))
11586		return -EIO;
11587#endif
11588
11589	spin_lock_bh(&bp->spq_lock);
11590
11591	for (i = 0; i < count; i++) {
11592		struct eth_spe *spe = (struct eth_spe *)kwqes[i];
11593
11594		if (bp->cnic_kwq_pending == MAX_SP_DESC_CNT)
11595			break;
11596
11597		*bp->cnic_kwq_prod = *spe;
11598
11599		bp->cnic_kwq_pending++;
11600
11601		DP(NETIF_MSG_TIMER, "L5 SPQE %x %x %x:%x pos %d\n",
11602		   spe->hdr.conn_and_cmd_data, spe->hdr.type,
11603		   spe->data.update_data_addr.hi,
11604		   spe->data.update_data_addr.lo,
11605		   bp->cnic_kwq_pending);
11606
11607		if (bp->cnic_kwq_prod == bp->cnic_kwq_last)
11608			bp->cnic_kwq_prod = bp->cnic_kwq;
11609		else
11610			bp->cnic_kwq_prod++;
11611	}
11612
11613	spin_unlock_bh(&bp->spq_lock);
11614
11615	if (bp->cnic_spq_pending < bp->cnic_eth_dev.max_kwqe_pending)
11616		bnx2x_cnic_sp_post(bp, 0);
11617
11618	return i;
11619}
11620
11621static int bnx2x_cnic_ctl_send(struct bnx2x *bp, struct cnic_ctl_info *ctl)
11622{
11623	struct cnic_ops *c_ops;
11624	int rc = 0;
11625
11626	mutex_lock(&bp->cnic_mutex);
11627	c_ops = rcu_dereference_protected(bp->cnic_ops,
11628					  lockdep_is_held(&bp->cnic_mutex));
11629	if (c_ops)
11630		rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
11631	mutex_unlock(&bp->cnic_mutex);
11632
11633	return rc;
11634}
11635
11636static int bnx2x_cnic_ctl_send_bh(struct bnx2x *bp, struct cnic_ctl_info *ctl)
11637{
11638	struct cnic_ops *c_ops;
11639	int rc = 0;
11640
11641	rcu_read_lock();
11642	c_ops = rcu_dereference(bp->cnic_ops);
11643	if (c_ops)
11644		rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
11645	rcu_read_unlock();
11646
11647	return rc;
11648}
11649
11650/*
11651 * for commands that have no data
11652 */
11653int bnx2x_cnic_notify(struct bnx2x *bp, int cmd)
11654{
11655	struct cnic_ctl_info ctl = {0};
11656
11657	ctl.cmd = cmd;
11658
11659	return bnx2x_cnic_ctl_send(bp, &ctl);
11660}
11661
11662static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err)
11663{
11664	struct cnic_ctl_info ctl = {0};
11665
11666	/* first we tell CNIC and only then we count this as a completion */
11667	ctl.cmd = CNIC_CTL_COMPLETION_CMD;
11668	ctl.data.comp.cid = cid;
11669	ctl.data.comp.error = err;
11670
11671	bnx2x_cnic_ctl_send_bh(bp, &ctl);
11672	bnx2x_cnic_sp_post(bp, 0);
11673}
11674
11675
11676/* Called with netif_addr_lock_bh() taken.
11677 * Sets an rx_mode config for an iSCSI ETH client.
11678 * Doesn't block.
11679 * Completion should be checked outside.
11680 */
11681static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start)
11682{
11683	unsigned long accept_flags = 0, ramrod_flags = 0;
11684	u8 cl_id = bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
11685	int sched_state = BNX2X_FILTER_ISCSI_ETH_STOP_SCHED;
11686
11687	if (start) {
11688		/* Start accepting on iSCSI L2 ring. Accept all multicasts
11689		 * because it's the only way for UIO Queue to accept
11690		 * multicasts (in non-promiscuous mode only one Queue per
11691		 * function will receive multicast packets (leading in our
11692		 * case).
11693		 */
11694		__set_bit(BNX2X_ACCEPT_UNICAST, &accept_flags);
11695		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &accept_flags);
11696		__set_bit(BNX2X_ACCEPT_BROADCAST, &accept_flags);
11697		__set_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags);
11698
11699		/* Clear STOP_PENDING bit if START is requested */
11700		clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &bp->sp_state);
11701
11702		sched_state = BNX2X_FILTER_ISCSI_ETH_START_SCHED;
11703	} else
11704		/* Clear START_PENDING bit if STOP is requested */
11705		clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &bp->sp_state);
11706
11707	if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
11708		set_bit(sched_state, &bp->sp_state);
11709	else {
11710		__set_bit(RAMROD_RX, &ramrod_flags);
11711		bnx2x_set_q_rx_mode(bp, cl_id, 0, accept_flags, 0,
11712				    ramrod_flags);
11713	}
11714}
11715
11716
11717static int bnx2x_drv_ctl(struct net_device *dev, struct drv_ctl_info *ctl)
11718{
11719	struct bnx2x *bp = netdev_priv(dev);
11720	int rc = 0;
11721
11722	switch (ctl->cmd) {
11723	case DRV_CTL_CTXTBL_WR_CMD: {
11724		u32 index = ctl->data.io.offset;
11725		dma_addr_t addr = ctl->data.io.dma_addr;
11726
11727		bnx2x_ilt_wr(bp, index, addr);
11728		break;
11729	}
11730
11731	case DRV_CTL_RET_L5_SPQ_CREDIT_CMD: {
11732		int count = ctl->data.credit.credit_count;
11733
11734		bnx2x_cnic_sp_post(bp, count);
11735		break;
11736	}
11737
11738	/* rtnl_lock is held.  */
11739	case DRV_CTL_START_L2_CMD: {
11740		struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
11741		unsigned long sp_bits = 0;
11742
11743		/* Configure the iSCSI classification object */
11744		bnx2x_init_mac_obj(bp, &bp->iscsi_l2_mac_obj,
11745				   cp->iscsi_l2_client_id,
11746				   cp->iscsi_l2_cid, BP_FUNC(bp),
11747				   bnx2x_sp(bp, mac_rdata),
11748				   bnx2x_sp_mapping(bp, mac_rdata),
11749				   BNX2X_FILTER_MAC_PENDING,
11750				   &bp->sp_state, BNX2X_OBJ_TYPE_RX,
11751				   &bp->macs_pool);
11752
11753		/* Set iSCSI MAC address */
11754		rc = bnx2x_set_iscsi_eth_mac_addr(bp);
11755		if (rc)
11756			break;
11757
11758		mmiowb();
11759		barrier();
11760
11761		/* Start accepting on iSCSI L2 ring */
11762
11763		netif_addr_lock_bh(dev);
11764		bnx2x_set_iscsi_eth_rx_mode(bp, true);
11765		netif_addr_unlock_bh(dev);
11766
11767		/* bits to wait on */
11768		__set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
11769		__set_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &sp_bits);
11770
11771		if (!bnx2x_wait_sp_comp(bp, sp_bits))
11772			BNX2X_ERR("rx_mode completion timed out!\n");
11773
11774		break;
11775	}
11776
11777	/* rtnl_lock is held.  */
11778	case DRV_CTL_STOP_L2_CMD: {
11779		unsigned long sp_bits = 0;
11780
11781		/* Stop accepting on iSCSI L2 ring */
11782		netif_addr_lock_bh(dev);
11783		bnx2x_set_iscsi_eth_rx_mode(bp, false);
11784		netif_addr_unlock_bh(dev);
11785
11786		/* bits to wait on */
11787		__set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
11788		__set_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &sp_bits);
11789
11790		if (!bnx2x_wait_sp_comp(bp, sp_bits))
11791			BNX2X_ERR("rx_mode completion timed out!\n");
11792
11793		mmiowb();
11794		barrier();
11795
11796		/* Unset iSCSI L2 MAC */
11797		rc = bnx2x_del_all_macs(bp, &bp->iscsi_l2_mac_obj,
11798					BNX2X_ISCSI_ETH_MAC, true);
11799		break;
11800	}
11801	case DRV_CTL_RET_L2_SPQ_CREDIT_CMD: {
11802		int count = ctl->data.credit.credit_count;
11803
11804		smp_mb__before_atomic_inc();
11805		atomic_add(count, &bp->cq_spq_left);
11806		smp_mb__after_atomic_inc();
11807		break;
11808	}
11809	case DRV_CTL_ULP_REGISTER_CMD: {
11810		int ulp_type = ctl->data.ulp_type;
11811
11812		if (CHIP_IS_E3(bp)) {
11813			int idx = BP_FW_MB_IDX(bp);
11814			u32 cap;
11815
11816			cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
11817			if (ulp_type == CNIC_ULP_ISCSI)
11818				cap |= DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
11819			else if (ulp_type == CNIC_ULP_FCOE)
11820				cap |= DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
11821			SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
11822		}
11823		break;
11824	}
11825	case DRV_CTL_ULP_UNREGISTER_CMD: {
11826		int ulp_type = ctl->data.ulp_type;
11827
11828		if (CHIP_IS_E3(bp)) {
11829			int idx = BP_FW_MB_IDX(bp);
11830			u32 cap;
11831
11832			cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
11833			if (ulp_type == CNIC_ULP_ISCSI)
11834				cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
11835			else if (ulp_type == CNIC_ULP_FCOE)
11836				cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
11837			SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
11838		}
11839		break;
11840	}
11841
11842	default:
11843		BNX2X_ERR("unknown command %x\n", ctl->cmd);
11844		rc = -EINVAL;
11845	}
11846
11847	return rc;
11848}
11849
11850void bnx2x_setup_cnic_irq_info(struct bnx2x *bp)
11851{
11852	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
11853
11854	if (bp->flags & USING_MSIX_FLAG) {
11855		cp->drv_state |= CNIC_DRV_STATE_USING_MSIX;
11856		cp->irq_arr[0].irq_flags |= CNIC_IRQ_FL_MSIX;
11857		cp->irq_arr[0].vector = bp->msix_table[1].vector;
11858	} else {
11859		cp->drv_state &= ~CNIC_DRV_STATE_USING_MSIX;
11860		cp->irq_arr[0].irq_flags &= ~CNIC_IRQ_FL_MSIX;
11861	}
11862	if (!CHIP_IS_E1x(bp))
11863		cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e2_sb;
11864	else
11865		cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e1x_sb;
11866
11867	cp->irq_arr[0].status_blk_num =  bnx2x_cnic_fw_sb_id(bp);
11868	cp->irq_arr[0].status_blk_num2 = bnx2x_cnic_igu_sb_id(bp);
11869	cp->irq_arr[1].status_blk = bp->def_status_blk;
11870	cp->irq_arr[1].status_blk_num = DEF_SB_ID;
11871	cp->irq_arr[1].status_blk_num2 = DEF_SB_IGU_ID;
11872
11873	cp->num_irq = 2;
11874}
11875
11876static int bnx2x_register_cnic(struct net_device *dev, struct cnic_ops *ops,
11877			       void *data)
11878{
11879	struct bnx2x *bp = netdev_priv(dev);
11880	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
11881
11882	if (ops == NULL)
11883		return -EINVAL;
11884
11885	bp->cnic_kwq = kzalloc(PAGE_SIZE, GFP_KERNEL);
11886	if (!bp->cnic_kwq)
11887		return -ENOMEM;
11888
11889	bp->cnic_kwq_cons = bp->cnic_kwq;
11890	bp->cnic_kwq_prod = bp->cnic_kwq;
11891	bp->cnic_kwq_last = bp->cnic_kwq + MAX_SP_DESC_CNT;
11892
11893	bp->cnic_spq_pending = 0;
11894	bp->cnic_kwq_pending = 0;
11895
11896	bp->cnic_data = data;
11897
11898	cp->num_irq = 0;
11899	cp->drv_state |= CNIC_DRV_STATE_REGD;
11900	cp->iro_arr = bp->iro_arr;
11901
11902	bnx2x_setup_cnic_irq_info(bp);
11903
11904	rcu_assign_pointer(bp->cnic_ops, ops);
11905
11906	return 0;
11907}
11908
11909static int bnx2x_unregister_cnic(struct net_device *dev)
11910{
11911	struct bnx2x *bp = netdev_priv(dev);
11912	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
11913
11914	mutex_lock(&bp->cnic_mutex);
11915	cp->drv_state = 0;
11916	RCU_INIT_POINTER(bp->cnic_ops, NULL);
11917	mutex_unlock(&bp->cnic_mutex);
11918	synchronize_rcu();
11919	kfree(bp->cnic_kwq);
11920	bp->cnic_kwq = NULL;
11921
11922	return 0;
11923}
11924
11925struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev)
11926{
11927	struct bnx2x *bp = netdev_priv(dev);
11928	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
11929
11930	/* If both iSCSI and FCoE are disabled - return NULL in
11931	 * order to indicate CNIC that it should not try to work
11932	 * with this device.
11933	 */
11934	if (NO_ISCSI(bp) && NO_FCOE(bp))
11935		return NULL;
11936
11937	cp->drv_owner = THIS_MODULE;
11938	cp->chip_id = CHIP_ID(bp);
11939	cp->pdev = bp->pdev;
11940	cp->io_base = bp->regview;
11941	cp->io_base2 = bp->doorbells;
11942	cp->max_kwqe_pending = 8;
11943	cp->ctx_blk_size = CDU_ILT_PAGE_SZ;
11944	cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
11945			     bnx2x_cid_ilt_lines(bp);
11946	cp->ctx_tbl_len = CNIC_ILT_LINES;
11947	cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
11948	cp->drv_submit_kwqes_16 = bnx2x_cnic_sp_queue;
11949	cp->drv_ctl = bnx2x_drv_ctl;
11950	cp->drv_register_cnic = bnx2x_register_cnic;
11951	cp->drv_unregister_cnic = bnx2x_unregister_cnic;
11952	cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID;
11953	cp->iscsi_l2_client_id =
11954		bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
11955	cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID;
11956
11957	if (NO_ISCSI_OOO(bp))
11958		cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
11959
11960	if (NO_ISCSI(bp))
11961		cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI;
11962
11963	if (NO_FCOE(bp))
11964		cp->drv_state |= CNIC_DRV_STATE_NO_FCOE;
11965
11966	DP(BNX2X_MSG_SP, "page_size %d, tbl_offset %d, tbl_lines %d, "
11967			 "starting cid %d\n",
11968	   cp->ctx_blk_size,
11969	   cp->ctx_tbl_offset,
11970	   cp->ctx_tbl_len,
11971	   cp->starting_cid);
11972	return cp;
11973}
11974EXPORT_SYMBOL(bnx2x_cnic_probe);
11975
11976#endif /* BCM_CNIC */
11977
11978