l2t.c revision e48f129c2f200dde8899f6ea5c6e7173674fc482
1/*
2 * Copyright (c) 2003-2008 Chelsio, Inc. All rights reserved.
3 *
4 * This software is available to you under a choice of one of two
5 * licenses.  You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
9 *
10 *     Redistribution and use in source and binary forms, with or
11 *     without modification, are permitted provided that the following
12 *     conditions are met:
13 *
14 *      - Redistributions of source code must retain the above
15 *        copyright notice, this list of conditions and the following
16 *        disclaimer.
17 *
18 *      - Redistributions in binary form must reproduce the above
19 *        copyright notice, this list of conditions and the following
20 *        disclaimer in the documentation and/or other materials
21 *        provided with the distribution.
22 *
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
31 */
32#include <linux/skbuff.h>
33#include <linux/netdevice.h>
34#include <linux/if.h>
35#include <linux/if_vlan.h>
36#include <linux/jhash.h>
37#include <linux/slab.h>
38#include <net/neighbour.h>
39#include "common.h"
40#include "t3cdev.h"
41#include "cxgb3_defs.h"
42#include "l2t.h"
43#include "t3_cpl.h"
44#include "firmware_exports.h"
45
46#define VLAN_NONE 0xfff
47
48/*
49 * Module locking notes:  There is a RW lock protecting the L2 table as a
50 * whole plus a spinlock per L2T entry.  Entry lookups and allocations happen
51 * under the protection of the table lock, individual entry changes happen
52 * while holding that entry's spinlock.  The table lock nests outside the
53 * entry locks.  Allocations of new entries take the table lock as writers so
54 * no other lookups can happen while allocating new entries.  Entry updates
55 * take the table lock as readers so multiple entries can be updated in
56 * parallel.  An L2T entry can be dropped by decrementing its reference count
57 * and therefore can happen in parallel with entry allocation but no entry
58 * can change state or increment its ref count during allocation as both of
59 * these perform lookups.
60 */
61
62static inline unsigned int vlan_prio(const struct l2t_entry *e)
63{
64	return e->vlan >> 13;
65}
66
67static inline unsigned int arp_hash(u32 key, int ifindex,
68				    const struct l2t_data *d)
69{
70	return jhash_2words(key, ifindex, 0) & (d->nentries - 1);
71}
72
73static inline void neigh_replace(struct l2t_entry *e, struct neighbour *n)
74{
75	neigh_hold(n);
76	if (e->neigh)
77		neigh_release(e->neigh);
78	e->neigh = n;
79}
80
81/*
82 * Set up an L2T entry and send any packets waiting in the arp queue.  The
83 * supplied skb is used for the CPL_L2T_WRITE_REQ.  Must be called with the
84 * entry locked.
85 */
86static int setup_l2e_send_pending(struct t3cdev *dev, struct sk_buff *skb,
87				  struct l2t_entry *e)
88{
89	struct cpl_l2t_write_req *req;
90	struct sk_buff *tmp;
91
92	if (!skb) {
93		skb = alloc_skb(sizeof(*req), GFP_ATOMIC);
94		if (!skb)
95			return -ENOMEM;
96	}
97
98	req = (struct cpl_l2t_write_req *)__skb_put(skb, sizeof(*req));
99	req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
100	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_L2T_WRITE_REQ, e->idx));
101	req->params = htonl(V_L2T_W_IDX(e->idx) | V_L2T_W_IFF(e->smt_idx) |
102			    V_L2T_W_VLAN(e->vlan & VLAN_VID_MASK) |
103			    V_L2T_W_PRIO(vlan_prio(e)));
104	memcpy(e->dmac, e->neigh->ha, sizeof(e->dmac));
105	memcpy(req->dst_mac, e->dmac, sizeof(req->dst_mac));
106	skb->priority = CPL_PRIORITY_CONTROL;
107	cxgb3_ofld_send(dev, skb);
108
109	skb_queue_walk_safe(&e->arpq, skb, tmp) {
110		__skb_unlink(skb, &e->arpq);
111		cxgb3_ofld_send(dev, skb);
112	}
113	e->state = L2T_STATE_VALID;
114
115	return 0;
116}
117
118/*
119 * Add a packet to the an L2T entry's queue of packets awaiting resolution.
120 * Must be called with the entry's lock held.
121 */
122static inline void arpq_enqueue(struct l2t_entry *e, struct sk_buff *skb)
123{
124	__skb_queue_tail(&e->arpq, skb);
125}
126
127int t3_l2t_send_slow(struct t3cdev *dev, struct sk_buff *skb,
128		     struct l2t_entry *e)
129{
130again:
131	switch (e->state) {
132	case L2T_STATE_STALE:	/* entry is stale, kick off revalidation */
133		neigh_event_send(e->neigh, NULL);
134		spin_lock_bh(&e->lock);
135		if (e->state == L2T_STATE_STALE)
136			e->state = L2T_STATE_VALID;
137		spin_unlock_bh(&e->lock);
138	case L2T_STATE_VALID:	/* fast-path, send the packet on */
139		return cxgb3_ofld_send(dev, skb);
140	case L2T_STATE_RESOLVING:
141		spin_lock_bh(&e->lock);
142		if (e->state != L2T_STATE_RESOLVING) {
143			/* ARP already completed */
144			spin_unlock_bh(&e->lock);
145			goto again;
146		}
147		arpq_enqueue(e, skb);
148		spin_unlock_bh(&e->lock);
149
150		/*
151		 * Only the first packet added to the arpq should kick off
152		 * resolution.  However, because the alloc_skb below can fail,
153		 * we allow each packet added to the arpq to retry resolution
154		 * as a way of recovering from transient memory exhaustion.
155		 * A better way would be to use a work request to retry L2T
156		 * entries when there's no memory.
157		 */
158		if (!neigh_event_send(e->neigh, NULL)) {
159			skb = alloc_skb(sizeof(struct cpl_l2t_write_req),
160					GFP_ATOMIC);
161			if (!skb)
162				break;
163
164			spin_lock_bh(&e->lock);
165			if (!skb_queue_empty(&e->arpq))
166				setup_l2e_send_pending(dev, skb, e);
167			else	/* we lost the race */
168				__kfree_skb(skb);
169			spin_unlock_bh(&e->lock);
170		}
171	}
172	return 0;
173}
174
175EXPORT_SYMBOL(t3_l2t_send_slow);
176
177void t3_l2t_send_event(struct t3cdev *dev, struct l2t_entry *e)
178{
179again:
180	switch (e->state) {
181	case L2T_STATE_STALE:	/* entry is stale, kick off revalidation */
182		neigh_event_send(e->neigh, NULL);
183		spin_lock_bh(&e->lock);
184		if (e->state == L2T_STATE_STALE) {
185			e->state = L2T_STATE_VALID;
186		}
187		spin_unlock_bh(&e->lock);
188		return;
189	case L2T_STATE_VALID:	/* fast-path, send the packet on */
190		return;
191	case L2T_STATE_RESOLVING:
192		spin_lock_bh(&e->lock);
193		if (e->state != L2T_STATE_RESOLVING) {
194			/* ARP already completed */
195			spin_unlock_bh(&e->lock);
196			goto again;
197		}
198		spin_unlock_bh(&e->lock);
199
200		/*
201		 * Only the first packet added to the arpq should kick off
202		 * resolution.  However, because the alloc_skb below can fail,
203		 * we allow each packet added to the arpq to retry resolution
204		 * as a way of recovering from transient memory exhaustion.
205		 * A better way would be to use a work request to retry L2T
206		 * entries when there's no memory.
207		 */
208		neigh_event_send(e->neigh, NULL);
209	}
210}
211
212EXPORT_SYMBOL(t3_l2t_send_event);
213
214/*
215 * Allocate a free L2T entry.  Must be called with l2t_data.lock held.
216 */
217static struct l2t_entry *alloc_l2e(struct l2t_data *d)
218{
219	struct l2t_entry *end, *e, **p;
220
221	if (!atomic_read(&d->nfree))
222		return NULL;
223
224	/* there's definitely a free entry */
225	for (e = d->rover, end = &d->l2tab[d->nentries]; e != end; ++e)
226		if (atomic_read(&e->refcnt) == 0)
227			goto found;
228
229	for (e = &d->l2tab[1]; atomic_read(&e->refcnt); ++e) ;
230found:
231	d->rover = e + 1;
232	atomic_dec(&d->nfree);
233
234	/*
235	 * The entry we found may be an inactive entry that is
236	 * presently in the hash table.  We need to remove it.
237	 */
238	if (e->state != L2T_STATE_UNUSED) {
239		int hash = arp_hash(e->addr, e->ifindex, d);
240
241		for (p = &d->l2tab[hash].first; *p; p = &(*p)->next)
242			if (*p == e) {
243				*p = e->next;
244				break;
245			}
246		e->state = L2T_STATE_UNUSED;
247	}
248	return e;
249}
250
251/*
252 * Called when an L2T entry has no more users.  The entry is left in the hash
253 * table since it is likely to be reused but we also bump nfree to indicate
254 * that the entry can be reallocated for a different neighbor.  We also drop
255 * the existing neighbor reference in case the neighbor is going away and is
256 * waiting on our reference.
257 *
258 * Because entries can be reallocated to other neighbors once their ref count
259 * drops to 0 we need to take the entry's lock to avoid races with a new
260 * incarnation.
261 */
262void t3_l2e_free(struct l2t_data *d, struct l2t_entry *e)
263{
264	spin_lock_bh(&e->lock);
265	if (atomic_read(&e->refcnt) == 0) {	/* hasn't been recycled */
266		if (e->neigh) {
267			neigh_release(e->neigh);
268			e->neigh = NULL;
269		}
270	}
271	spin_unlock_bh(&e->lock);
272	atomic_inc(&d->nfree);
273}
274
275EXPORT_SYMBOL(t3_l2e_free);
276
277/*
278 * Update an L2T entry that was previously used for the same next hop as neigh.
279 * Must be called with softirqs disabled.
280 */
281static inline void reuse_entry(struct l2t_entry *e, struct neighbour *neigh)
282{
283	unsigned int nud_state;
284
285	spin_lock(&e->lock);	/* avoid race with t3_l2t_free */
286
287	if (neigh != e->neigh)
288		neigh_replace(e, neigh);
289	nud_state = neigh->nud_state;
290	if (memcmp(e->dmac, neigh->ha, sizeof(e->dmac)) ||
291	    !(nud_state & NUD_VALID))
292		e->state = L2T_STATE_RESOLVING;
293	else if (nud_state & NUD_CONNECTED)
294		e->state = L2T_STATE_VALID;
295	else
296		e->state = L2T_STATE_STALE;
297	spin_unlock(&e->lock);
298}
299
300struct l2t_entry *t3_l2t_get(struct t3cdev *cdev, struct neighbour *neigh,
301			     struct net_device *dev)
302{
303	struct l2t_entry *e = NULL;
304	struct l2t_data *d;
305	int hash;
306	u32 addr = *(u32 *) neigh->primary_key;
307	int ifidx = neigh->dev->ifindex;
308	struct port_info *p = netdev_priv(dev);
309	int smt_idx = p->port_id;
310
311	rcu_read_lock();
312	d = L2DATA(cdev);
313	if (!d)
314		goto done_rcu;
315
316	hash = arp_hash(addr, ifidx, d);
317
318	write_lock_bh(&d->lock);
319	for (e = d->l2tab[hash].first; e; e = e->next)
320		if (e->addr == addr && e->ifindex == ifidx &&
321		    e->smt_idx == smt_idx) {
322			l2t_hold(d, e);
323			if (atomic_read(&e->refcnt) == 1)
324				reuse_entry(e, neigh);
325			goto done;
326		}
327
328	/* Need to allocate a new entry */
329	e = alloc_l2e(d);
330	if (e) {
331		spin_lock(&e->lock);	/* avoid race with t3_l2t_free */
332		e->next = d->l2tab[hash].first;
333		d->l2tab[hash].first = e;
334		e->state = L2T_STATE_RESOLVING;
335		e->addr = addr;
336		e->ifindex = ifidx;
337		e->smt_idx = smt_idx;
338		atomic_set(&e->refcnt, 1);
339		neigh_replace(e, neigh);
340		if (neigh->dev->priv_flags & IFF_802_1Q_VLAN)
341			e->vlan = vlan_dev_vlan_id(neigh->dev);
342		else
343			e->vlan = VLAN_NONE;
344		spin_unlock(&e->lock);
345	}
346done:
347	write_unlock_bh(&d->lock);
348done_rcu:
349	rcu_read_unlock();
350	return e;
351}
352
353EXPORT_SYMBOL(t3_l2t_get);
354
355/*
356 * Called when address resolution fails for an L2T entry to handle packets
357 * on the arpq head.  If a packet specifies a failure handler it is invoked,
358 * otherwise the packets is sent to the offload device.
359 *
360 * XXX: maybe we should abandon the latter behavior and just require a failure
361 * handler.
362 */
363static void handle_failed_resolution(struct t3cdev *dev, struct sk_buff_head *arpq)
364{
365	struct sk_buff *skb, *tmp;
366
367	skb_queue_walk_safe(arpq, skb, tmp) {
368		struct l2t_skb_cb *cb = L2T_SKB_CB(skb);
369
370		__skb_unlink(skb, arpq);
371		if (cb->arp_failure_handler)
372			cb->arp_failure_handler(dev, skb);
373		else
374			cxgb3_ofld_send(dev, skb);
375	}
376}
377
378/*
379 * Called when the host's ARP layer makes a change to some entry that is
380 * loaded into the HW L2 table.
381 */
382void t3_l2t_update(struct t3cdev *dev, struct neighbour *neigh)
383{
384	struct sk_buff_head arpq;
385	struct l2t_entry *e;
386	struct l2t_data *d = L2DATA(dev);
387	u32 addr = *(u32 *) neigh->primary_key;
388	int ifidx = neigh->dev->ifindex;
389	int hash = arp_hash(addr, ifidx, d);
390
391	read_lock_bh(&d->lock);
392	for (e = d->l2tab[hash].first; e; e = e->next)
393		if (e->addr == addr && e->ifindex == ifidx) {
394			spin_lock(&e->lock);
395			goto found;
396		}
397	read_unlock_bh(&d->lock);
398	return;
399
400found:
401	__skb_queue_head_init(&arpq);
402
403	read_unlock(&d->lock);
404	if (atomic_read(&e->refcnt)) {
405		if (neigh != e->neigh)
406			neigh_replace(e, neigh);
407
408		if (e->state == L2T_STATE_RESOLVING) {
409			if (neigh->nud_state & NUD_FAILED) {
410				skb_queue_splice_init(&e->arpq, &arpq);
411			} else if (neigh->nud_state & (NUD_CONNECTED|NUD_STALE))
412				setup_l2e_send_pending(dev, NULL, e);
413		} else {
414			e->state = neigh->nud_state & NUD_CONNECTED ?
415			    L2T_STATE_VALID : L2T_STATE_STALE;
416			if (memcmp(e->dmac, neigh->ha, 6))
417				setup_l2e_send_pending(dev, NULL, e);
418		}
419	}
420	spin_unlock_bh(&e->lock);
421
422	if (!skb_queue_empty(&arpq))
423		handle_failed_resolution(dev, &arpq);
424}
425
426struct l2t_data *t3_init_l2t(unsigned int l2t_capacity)
427{
428	struct l2t_data *d;
429	int i, size = sizeof(*d) + l2t_capacity * sizeof(struct l2t_entry);
430
431	d = cxgb_alloc_mem(size);
432	if (!d)
433		return NULL;
434
435	d->nentries = l2t_capacity;
436	d->rover = &d->l2tab[1];	/* entry 0 is not used */
437	atomic_set(&d->nfree, l2t_capacity - 1);
438	rwlock_init(&d->lock);
439
440	for (i = 0; i < l2t_capacity; ++i) {
441		d->l2tab[i].idx = i;
442		d->l2tab[i].state = L2T_STATE_UNUSED;
443		__skb_queue_head_init(&d->l2tab[i].arpq);
444		spin_lock_init(&d->l2tab[i].lock);
445		atomic_set(&d->l2tab[i].refcnt, 0);
446	}
447	return d;
448}
449
450void t3_free_l2t(struct l2t_data *d)
451{
452	cxgb_free_mem(d);
453}
454
455