e100.c revision 948cd43fed7c7d919fa30e0609b2b5852c4503ef
1/*******************************************************************************
2
3  Intel PRO/100 Linux driver
4  Copyright(c) 1999 - 2006 Intel Corporation.
5
6  This program is free software; you can redistribute it and/or modify it
7  under the terms and conditions of the GNU General Public License,
8  version 2, as published by the Free Software Foundation.
9
10  This program is distributed in the hope it will be useful, but WITHOUT
11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  more details.
14
15  You should have received a copy of the GNU General Public License along with
16  this program; if not, write to the Free Software Foundation, Inc.,
17  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19  The full GNU General Public License is included in this distribution in
20  the file called "COPYING".
21
22  Contact Information:
23  Linux NICS <linux.nics@intel.com>
24  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27*******************************************************************************/
28
29/*
30 *	e100.c: Intel(R) PRO/100 ethernet driver
31 *
32 *	(Re)written 2003 by scott.feldman@intel.com.  Based loosely on
33 *	original e100 driver, but better described as a munging of
34 *	e100, e1000, eepro100, tg3, 8139cp, and other drivers.
35 *
36 *	References:
37 *		Intel 8255x 10/100 Mbps Ethernet Controller Family,
38 *		Open Source Software Developers Manual,
39 *		http://sourceforge.net/projects/e1000
40 *
41 *
42 *	                      Theory of Operation
43 *
44 *	I.   General
45 *
46 *	The driver supports Intel(R) 10/100 Mbps PCI Fast Ethernet
47 *	controller family, which includes the 82557, 82558, 82559, 82550,
48 *	82551, and 82562 devices.  82558 and greater controllers
49 *	integrate the Intel 82555 PHY.  The controllers are used in
50 *	server and client network interface cards, as well as in
51 *	LAN-On-Motherboard (LOM), CardBus, MiniPCI, and ICHx
52 *	configurations.  8255x supports a 32-bit linear addressing
53 *	mode and operates at 33Mhz PCI clock rate.
54 *
55 *	II.  Driver Operation
56 *
57 *	Memory-mapped mode is used exclusively to access the device's
58 *	shared-memory structure, the Control/Status Registers (CSR). All
59 *	setup, configuration, and control of the device, including queuing
60 *	of Tx, Rx, and configuration commands is through the CSR.
61 *	cmd_lock serializes accesses to the CSR command register.  cb_lock
62 *	protects the shared Command Block List (CBL).
63 *
64 *	8255x is highly MII-compliant and all access to the PHY go
65 *	through the Management Data Interface (MDI).  Consequently, the
66 *	driver leverages the mii.c library shared with other MII-compliant
67 *	devices.
68 *
69 *	Big- and Little-Endian byte order as well as 32- and 64-bit
70 *	archs are supported.  Weak-ordered memory and non-cache-coherent
71 *	archs are supported.
72 *
73 *	III. Transmit
74 *
75 *	A Tx skb is mapped and hangs off of a TCB.  TCBs are linked
76 *	together in a fixed-size ring (CBL) thus forming the flexible mode
77 *	memory structure.  A TCB marked with the suspend-bit indicates
78 *	the end of the ring.  The last TCB processed suspends the
79 *	controller, and the controller can be restarted by issue a CU
80 *	resume command to continue from the suspend point, or a CU start
81 *	command to start at a given position in the ring.
82 *
83 *	Non-Tx commands (config, multicast setup, etc) are linked
84 *	into the CBL ring along with Tx commands.  The common structure
85 *	used for both Tx and non-Tx commands is the Command Block (CB).
86 *
87 *	cb_to_use is the next CB to use for queuing a command; cb_to_clean
88 *	is the next CB to check for completion; cb_to_send is the first
89 *	CB to start on in case of a previous failure to resume.  CB clean
90 *	up happens in interrupt context in response to a CU interrupt.
91 *	cbs_avail keeps track of number of free CB resources available.
92 *
93 * 	Hardware padding of short packets to minimum packet size is
94 * 	enabled.  82557 pads with 7Eh, while the later controllers pad
95 * 	with 00h.
96 *
97 *	IV.  Recieve
98 *
99 *	The Receive Frame Area (RFA) comprises a ring of Receive Frame
100 *	Descriptors (RFD) + data buffer, thus forming the simplified mode
101 *	memory structure.  Rx skbs are allocated to contain both the RFD
102 *	and the data buffer, but the RFD is pulled off before the skb is
103 *	indicated.  The data buffer is aligned such that encapsulated
104 *	protocol headers are u32-aligned.  Since the RFD is part of the
105 *	mapped shared memory, and completion status is contained within
106 *	the RFD, the RFD must be dma_sync'ed to maintain a consistent
107 *	view from software and hardware.
108 *
109 *	Under typical operation, the  receive unit (RU) is start once,
110 *	and the controller happily fills RFDs as frames arrive.  If
111 *	replacement RFDs cannot be allocated, or the RU goes non-active,
112 *	the RU must be restarted.  Frame arrival generates an interrupt,
113 *	and Rx indication and re-allocation happen in the same context,
114 *	therefore no locking is required.  A software-generated interrupt
115 *	is generated from the watchdog to recover from a failed allocation
116 *	senario where all Rx resources have been indicated and none re-
117 *	placed.
118 *
119 *	V.   Miscellaneous
120 *
121 * 	VLAN offloading of tagging, stripping and filtering is not
122 * 	supported, but driver will accommodate the extra 4-byte VLAN tag
123 * 	for processing by upper layers.  Tx/Rx Checksum offloading is not
124 * 	supported.  Tx Scatter/Gather is not supported.  Jumbo Frames is
125 * 	not supported (hardware limitation).
126 *
127 * 	MagicPacket(tm) WoL support is enabled/disabled via ethtool.
128 *
129 * 	Thanks to JC (jchapman@katalix.com) for helping with
130 * 	testing/troubleshooting the development driver.
131 *
132 * 	TODO:
133 * 	o several entry points race with dev->close
134 * 	o check for tx-no-resources/stop Q races with tx clean/wake Q
135 *
136 *	FIXES:
137 * 2005/12/02 - Michael O'Donnell <Michael.ODonnell at stratus dot com>
138 *	- Stratus87247: protect MDI control register manipulations
139 */
140
141#include <linux/module.h>
142#include <linux/moduleparam.h>
143#include <linux/kernel.h>
144#include <linux/types.h>
145#include <linux/slab.h>
146#include <linux/delay.h>
147#include <linux/init.h>
148#include <linux/pci.h>
149#include <linux/dma-mapping.h>
150#include <linux/netdevice.h>
151#include <linux/etherdevice.h>
152#include <linux/mii.h>
153#include <linux/if_vlan.h>
154#include <linux/skbuff.h>
155#include <linux/ethtool.h>
156#include <linux/string.h>
157#include <asm/unaligned.h>
158
159
160#define DRV_NAME		"e100"
161#define DRV_EXT			"-NAPI"
162#define DRV_VERSION		"3.5.17-k2"DRV_EXT
163#define DRV_DESCRIPTION		"Intel(R) PRO/100 Network Driver"
164#define DRV_COPYRIGHT		"Copyright(c) 1999-2006 Intel Corporation"
165#define PFX			DRV_NAME ": "
166
167#define E100_WATCHDOG_PERIOD	(2 * HZ)
168#define E100_NAPI_WEIGHT	16
169
170MODULE_DESCRIPTION(DRV_DESCRIPTION);
171MODULE_AUTHOR(DRV_COPYRIGHT);
172MODULE_LICENSE("GPL");
173MODULE_VERSION(DRV_VERSION);
174
175static int debug = 3;
176static int eeprom_bad_csum_allow = 0;
177module_param(debug, int, 0);
178module_param(eeprom_bad_csum_allow, int, 0);
179MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
180MODULE_PARM_DESC(eeprom_bad_csum_allow, "Allow bad eeprom checksums");
181#define DPRINTK(nlevel, klevel, fmt, args...) \
182	(void)((NETIF_MSG_##nlevel & nic->msg_enable) && \
183	printk(KERN_##klevel PFX "%s: %s: " fmt, nic->netdev->name, \
184		__FUNCTION__ , ## args))
185
186#define INTEL_8255X_ETHERNET_DEVICE(device_id, ich) {\
187	PCI_VENDOR_ID_INTEL, device_id, PCI_ANY_ID, PCI_ANY_ID, \
188	PCI_CLASS_NETWORK_ETHERNET << 8, 0xFFFF00, ich }
189static struct pci_device_id e100_id_table[] = {
190	INTEL_8255X_ETHERNET_DEVICE(0x1029, 0),
191	INTEL_8255X_ETHERNET_DEVICE(0x1030, 0),
192	INTEL_8255X_ETHERNET_DEVICE(0x1031, 3),
193	INTEL_8255X_ETHERNET_DEVICE(0x1032, 3),
194	INTEL_8255X_ETHERNET_DEVICE(0x1033, 3),
195	INTEL_8255X_ETHERNET_DEVICE(0x1034, 3),
196	INTEL_8255X_ETHERNET_DEVICE(0x1038, 3),
197	INTEL_8255X_ETHERNET_DEVICE(0x1039, 4),
198	INTEL_8255X_ETHERNET_DEVICE(0x103A, 4),
199	INTEL_8255X_ETHERNET_DEVICE(0x103B, 4),
200	INTEL_8255X_ETHERNET_DEVICE(0x103C, 4),
201	INTEL_8255X_ETHERNET_DEVICE(0x103D, 4),
202	INTEL_8255X_ETHERNET_DEVICE(0x103E, 4),
203	INTEL_8255X_ETHERNET_DEVICE(0x1050, 5),
204	INTEL_8255X_ETHERNET_DEVICE(0x1051, 5),
205	INTEL_8255X_ETHERNET_DEVICE(0x1052, 5),
206	INTEL_8255X_ETHERNET_DEVICE(0x1053, 5),
207	INTEL_8255X_ETHERNET_DEVICE(0x1054, 5),
208	INTEL_8255X_ETHERNET_DEVICE(0x1055, 5),
209	INTEL_8255X_ETHERNET_DEVICE(0x1056, 5),
210	INTEL_8255X_ETHERNET_DEVICE(0x1057, 5),
211	INTEL_8255X_ETHERNET_DEVICE(0x1059, 0),
212	INTEL_8255X_ETHERNET_DEVICE(0x1064, 6),
213	INTEL_8255X_ETHERNET_DEVICE(0x1065, 6),
214	INTEL_8255X_ETHERNET_DEVICE(0x1066, 6),
215	INTEL_8255X_ETHERNET_DEVICE(0x1067, 6),
216	INTEL_8255X_ETHERNET_DEVICE(0x1068, 6),
217	INTEL_8255X_ETHERNET_DEVICE(0x1069, 6),
218	INTEL_8255X_ETHERNET_DEVICE(0x106A, 6),
219	INTEL_8255X_ETHERNET_DEVICE(0x106B, 6),
220	INTEL_8255X_ETHERNET_DEVICE(0x1091, 7),
221	INTEL_8255X_ETHERNET_DEVICE(0x1092, 7),
222	INTEL_8255X_ETHERNET_DEVICE(0x1093, 7),
223	INTEL_8255X_ETHERNET_DEVICE(0x1094, 7),
224	INTEL_8255X_ETHERNET_DEVICE(0x1095, 7),
225	INTEL_8255X_ETHERNET_DEVICE(0x1209, 0),
226	INTEL_8255X_ETHERNET_DEVICE(0x1229, 0),
227	INTEL_8255X_ETHERNET_DEVICE(0x2449, 2),
228	INTEL_8255X_ETHERNET_DEVICE(0x2459, 2),
229	INTEL_8255X_ETHERNET_DEVICE(0x245D, 2),
230	INTEL_8255X_ETHERNET_DEVICE(0x27DC, 7),
231	{ 0, }
232};
233MODULE_DEVICE_TABLE(pci, e100_id_table);
234
235enum mac {
236	mac_82557_D100_A  = 0,
237	mac_82557_D100_B  = 1,
238	mac_82557_D100_C  = 2,
239	mac_82558_D101_A4 = 4,
240	mac_82558_D101_B0 = 5,
241	mac_82559_D101M   = 8,
242	mac_82559_D101S   = 9,
243	mac_82550_D102    = 12,
244	mac_82550_D102_C  = 13,
245	mac_82551_E       = 14,
246	mac_82551_F       = 15,
247	mac_82551_10      = 16,
248	mac_unknown       = 0xFF,
249};
250
251enum phy {
252	phy_100a     = 0x000003E0,
253	phy_100c     = 0x035002A8,
254	phy_82555_tx = 0x015002A8,
255	phy_nsc_tx   = 0x5C002000,
256	phy_82562_et = 0x033002A8,
257	phy_82562_em = 0x032002A8,
258	phy_82562_ek = 0x031002A8,
259	phy_82562_eh = 0x017002A8,
260	phy_unknown  = 0xFFFFFFFF,
261};
262
263/* CSR (Control/Status Registers) */
264struct csr {
265	struct {
266		u8 status;
267		u8 stat_ack;
268		u8 cmd_lo;
269		u8 cmd_hi;
270		u32 gen_ptr;
271	} scb;
272	u32 port;
273	u16 flash_ctrl;
274	u8 eeprom_ctrl_lo;
275	u8 eeprom_ctrl_hi;
276	u32 mdi_ctrl;
277	u32 rx_dma_count;
278};
279
280enum scb_status {
281	rus_ready        = 0x10,
282	rus_mask         = 0x3C,
283};
284
285enum scb_stat_ack {
286	stat_ack_not_ours    = 0x00,
287	stat_ack_sw_gen      = 0x04,
288	stat_ack_rnr         = 0x10,
289	stat_ack_cu_idle     = 0x20,
290	stat_ack_frame_rx    = 0x40,
291	stat_ack_cu_cmd_done = 0x80,
292	stat_ack_not_present = 0xFF,
293	stat_ack_rx = (stat_ack_sw_gen | stat_ack_rnr | stat_ack_frame_rx),
294	stat_ack_tx = (stat_ack_cu_idle | stat_ack_cu_cmd_done),
295};
296
297enum scb_cmd_hi {
298	irq_mask_none = 0x00,
299	irq_mask_all  = 0x01,
300	irq_sw_gen    = 0x02,
301};
302
303enum scb_cmd_lo {
304	cuc_nop        = 0x00,
305	ruc_start      = 0x01,
306	ruc_load_base  = 0x06,
307	cuc_start      = 0x10,
308	cuc_resume     = 0x20,
309	cuc_dump_addr  = 0x40,
310	cuc_dump_stats = 0x50,
311	cuc_load_base  = 0x60,
312	cuc_dump_reset = 0x70,
313};
314
315enum cuc_dump {
316	cuc_dump_complete       = 0x0000A005,
317	cuc_dump_reset_complete = 0x0000A007,
318};
319
320enum port {
321	software_reset  = 0x0000,
322	selftest        = 0x0001,
323	selective_reset = 0x0002,
324};
325
326enum eeprom_ctrl_lo {
327	eesk = 0x01,
328	eecs = 0x02,
329	eedi = 0x04,
330	eedo = 0x08,
331};
332
333enum mdi_ctrl {
334	mdi_write = 0x04000000,
335	mdi_read  = 0x08000000,
336	mdi_ready = 0x10000000,
337};
338
339enum eeprom_op {
340	op_write = 0x05,
341	op_read  = 0x06,
342	op_ewds  = 0x10,
343	op_ewen  = 0x13,
344};
345
346enum eeprom_offsets {
347	eeprom_cnfg_mdix  = 0x03,
348	eeprom_id         = 0x0A,
349	eeprom_config_asf = 0x0D,
350	eeprom_smbus_addr = 0x90,
351};
352
353enum eeprom_cnfg_mdix {
354	eeprom_mdix_enabled = 0x0080,
355};
356
357enum eeprom_id {
358	eeprom_id_wol = 0x0020,
359};
360
361enum eeprom_config_asf {
362	eeprom_asf = 0x8000,
363	eeprom_gcl = 0x4000,
364};
365
366enum cb_status {
367	cb_complete = 0x8000,
368	cb_ok       = 0x2000,
369};
370
371enum cb_command {
372	cb_nop    = 0x0000,
373	cb_iaaddr = 0x0001,
374	cb_config = 0x0002,
375	cb_multi  = 0x0003,
376	cb_tx     = 0x0004,
377	cb_ucode  = 0x0005,
378	cb_dump   = 0x0006,
379	cb_tx_sf  = 0x0008,
380	cb_cid    = 0x1f00,
381	cb_i      = 0x2000,
382	cb_s      = 0x4000,
383	cb_el     = 0x8000,
384};
385
386struct rfd {
387	u16 status;
388	u16 command;
389	u32 link;
390	u32 rbd;
391	u16 actual_size;
392	u16 size;
393};
394
395struct rx {
396	struct rx *next, *prev;
397	struct sk_buff *skb;
398	dma_addr_t dma_addr;
399};
400
401#if defined(__BIG_ENDIAN_BITFIELD)
402#define X(a,b)	b,a
403#else
404#define X(a,b)	a,b
405#endif
406struct config {
407/*0*/	u8 X(byte_count:6, pad0:2);
408/*1*/	u8 X(X(rx_fifo_limit:4, tx_fifo_limit:3), pad1:1);
409/*2*/	u8 adaptive_ifs;
410/*3*/	u8 X(X(X(X(mwi_enable:1, type_enable:1), read_align_enable:1),
411	   term_write_cache_line:1), pad3:4);
412/*4*/	u8 X(rx_dma_max_count:7, pad4:1);
413/*5*/	u8 X(tx_dma_max_count:7, dma_max_count_enable:1);
414/*6*/	u8 X(X(X(X(X(X(X(late_scb_update:1, direct_rx_dma:1),
415	   tno_intr:1), cna_intr:1), standard_tcb:1), standard_stat_counter:1),
416	   rx_discard_overruns:1), rx_save_bad_frames:1);
417/*7*/	u8 X(X(X(X(X(rx_discard_short_frames:1, tx_underrun_retry:2),
418	   pad7:2), rx_extended_rfd:1), tx_two_frames_in_fifo:1),
419	   tx_dynamic_tbd:1);
420/*8*/	u8 X(X(mii_mode:1, pad8:6), csma_disabled:1);
421/*9*/	u8 X(X(X(X(X(rx_tcpudp_checksum:1, pad9:3), vlan_arp_tco:1),
422	   link_status_wake:1), arp_wake:1), mcmatch_wake:1);
423/*10*/	u8 X(X(X(pad10:3, no_source_addr_insertion:1), preamble_length:2),
424	   loopback:2);
425/*11*/	u8 X(linear_priority:3, pad11:5);
426/*12*/	u8 X(X(linear_priority_mode:1, pad12:3), ifs:4);
427/*13*/	u8 ip_addr_lo;
428/*14*/	u8 ip_addr_hi;
429/*15*/	u8 X(X(X(X(X(X(X(promiscuous_mode:1, broadcast_disabled:1),
430	   wait_after_win:1), pad15_1:1), ignore_ul_bit:1), crc_16_bit:1),
431	   pad15_2:1), crs_or_cdt:1);
432/*16*/	u8 fc_delay_lo;
433/*17*/	u8 fc_delay_hi;
434/*18*/	u8 X(X(X(X(X(rx_stripping:1, tx_padding:1), rx_crc_transfer:1),
435	   rx_long_ok:1), fc_priority_threshold:3), pad18:1);
436/*19*/	u8 X(X(X(X(X(X(X(addr_wake:1, magic_packet_disable:1),
437	   fc_disable:1), fc_restop:1), fc_restart:1), fc_reject:1),
438	   full_duplex_force:1), full_duplex_pin:1);
439/*20*/	u8 X(X(X(pad20_1:5, fc_priority_location:1), multi_ia:1), pad20_2:1);
440/*21*/	u8 X(X(pad21_1:3, multicast_all:1), pad21_2:4);
441/*22*/	u8 X(X(rx_d102_mode:1, rx_vlan_drop:1), pad22:6);
442	u8 pad_d102[9];
443};
444
445#define E100_MAX_MULTICAST_ADDRS	64
446struct multi {
447	u16 count;
448	u8 addr[E100_MAX_MULTICAST_ADDRS * ETH_ALEN + 2/*pad*/];
449};
450
451/* Important: keep total struct u32-aligned */
452#define UCODE_SIZE			134
453struct cb {
454	u16 status;
455	u16 command;
456	u32 link;
457	union {
458		u8 iaaddr[ETH_ALEN];
459		u32 ucode[UCODE_SIZE];
460		struct config config;
461		struct multi multi;
462		struct {
463			u32 tbd_array;
464			u16 tcb_byte_count;
465			u8 threshold;
466			u8 tbd_count;
467			struct {
468				u32 buf_addr;
469				u16 size;
470				u16 eol;
471			} tbd;
472		} tcb;
473		u32 dump_buffer_addr;
474	} u;
475	struct cb *next, *prev;
476	dma_addr_t dma_addr;
477	struct sk_buff *skb;
478};
479
480enum loopback {
481	lb_none = 0, lb_mac = 1, lb_phy = 3,
482};
483
484struct stats {
485	u32 tx_good_frames, tx_max_collisions, tx_late_collisions,
486		tx_underruns, tx_lost_crs, tx_deferred, tx_single_collisions,
487		tx_multiple_collisions, tx_total_collisions;
488	u32 rx_good_frames, rx_crc_errors, rx_alignment_errors,
489		rx_resource_errors, rx_overrun_errors, rx_cdt_errors,
490		rx_short_frame_errors;
491	u32 fc_xmt_pause, fc_rcv_pause, fc_rcv_unsupported;
492	u16 xmt_tco_frames, rcv_tco_frames;
493	u32 complete;
494};
495
496struct mem {
497	struct {
498		u32 signature;
499		u32 result;
500	} selftest;
501	struct stats stats;
502	u8 dump_buf[596];
503};
504
505struct param_range {
506	u32 min;
507	u32 max;
508	u32 count;
509};
510
511struct params {
512	struct param_range rfds;
513	struct param_range cbs;
514};
515
516struct nic {
517	/* Begin: frequently used values: keep adjacent for cache effect */
518	u32 msg_enable				____cacheline_aligned;
519	struct net_device *netdev;
520	struct pci_dev *pdev;
521
522	struct rx *rxs				____cacheline_aligned;
523	struct rx *rx_to_use;
524	struct rx *rx_to_clean;
525	struct rfd blank_rfd;
526
527	spinlock_t cb_lock			____cacheline_aligned;
528	spinlock_t cmd_lock;
529	struct csr __iomem *csr;
530	enum scb_cmd_lo cuc_cmd;
531	unsigned int cbs_avail;
532	struct cb *cbs;
533	struct cb *cb_to_use;
534	struct cb *cb_to_send;
535	struct cb *cb_to_clean;
536	u16 tx_command;
537	/* End: frequently used values: keep adjacent for cache effect */
538
539	enum {
540		ich                = (1 << 0),
541		promiscuous        = (1 << 1),
542		multicast_all      = (1 << 2),
543		wol_magic          = (1 << 3),
544		ich_10h_workaround = (1 << 4),
545	} flags					____cacheline_aligned;
546
547	enum mac mac;
548	enum phy phy;
549	struct params params;
550	struct net_device_stats net_stats;
551	struct timer_list watchdog;
552	struct timer_list blink_timer;
553	struct mii_if_info mii;
554	struct work_struct tx_timeout_task;
555	enum loopback loopback;
556
557	struct mem *mem;
558	dma_addr_t dma_addr;
559
560	dma_addr_t cbs_dma_addr;
561	u8 adaptive_ifs;
562	u8 tx_threshold;
563	u32 tx_frames;
564	u32 tx_collisions;
565	u32 tx_deferred;
566	u32 tx_single_collisions;
567	u32 tx_multiple_collisions;
568	u32 tx_fc_pause;
569	u32 tx_tco_frames;
570
571	u32 rx_fc_pause;
572	u32 rx_fc_unsupported;
573	u32 rx_tco_frames;
574	u32 rx_over_length_errors;
575
576	u8 rev_id;
577	u16 leds;
578	u16 eeprom_wc;
579	u16 eeprom[256];
580	spinlock_t mdio_lock;
581};
582
583static inline void e100_write_flush(struct nic *nic)
584{
585	/* Flush previous PCI writes through intermediate bridges
586	 * by doing a benign read */
587	(void)readb(&nic->csr->scb.status);
588}
589
590static void e100_enable_irq(struct nic *nic)
591{
592	unsigned long flags;
593
594	spin_lock_irqsave(&nic->cmd_lock, flags);
595	writeb(irq_mask_none, &nic->csr->scb.cmd_hi);
596	e100_write_flush(nic);
597	spin_unlock_irqrestore(&nic->cmd_lock, flags);
598}
599
600static void e100_disable_irq(struct nic *nic)
601{
602	unsigned long flags;
603
604	spin_lock_irqsave(&nic->cmd_lock, flags);
605	writeb(irq_mask_all, &nic->csr->scb.cmd_hi);
606	e100_write_flush(nic);
607	spin_unlock_irqrestore(&nic->cmd_lock, flags);
608}
609
610static void e100_hw_reset(struct nic *nic)
611{
612	/* Put CU and RU into idle with a selective reset to get
613	 * device off of PCI bus */
614	writel(selective_reset, &nic->csr->port);
615	e100_write_flush(nic); udelay(20);
616
617	/* Now fully reset device */
618	writel(software_reset, &nic->csr->port);
619	e100_write_flush(nic); udelay(20);
620
621	/* Mask off our interrupt line - it's unmasked after reset */
622	e100_disable_irq(nic);
623}
624
625static int e100_self_test(struct nic *nic)
626{
627	u32 dma_addr = nic->dma_addr + offsetof(struct mem, selftest);
628
629	/* Passing the self-test is a pretty good indication
630	 * that the device can DMA to/from host memory */
631
632	nic->mem->selftest.signature = 0;
633	nic->mem->selftest.result = 0xFFFFFFFF;
634
635	writel(selftest | dma_addr, &nic->csr->port);
636	e100_write_flush(nic);
637	/* Wait 10 msec for self-test to complete */
638	msleep(10);
639
640	/* Interrupts are enabled after self-test */
641	e100_disable_irq(nic);
642
643	/* Check results of self-test */
644	if(nic->mem->selftest.result != 0) {
645		DPRINTK(HW, ERR, "Self-test failed: result=0x%08X\n",
646			nic->mem->selftest.result);
647		return -ETIMEDOUT;
648	}
649	if(nic->mem->selftest.signature == 0) {
650		DPRINTK(HW, ERR, "Self-test failed: timed out\n");
651		return -ETIMEDOUT;
652	}
653
654	return 0;
655}
656
657static void e100_eeprom_write(struct nic *nic, u16 addr_len, u16 addr, u16 data)
658{
659	u32 cmd_addr_data[3];
660	u8 ctrl;
661	int i, j;
662
663	/* Three cmds: write/erase enable, write data, write/erase disable */
664	cmd_addr_data[0] = op_ewen << (addr_len - 2);
665	cmd_addr_data[1] = (((op_write << addr_len) | addr) << 16) |
666		cpu_to_le16(data);
667	cmd_addr_data[2] = op_ewds << (addr_len - 2);
668
669	/* Bit-bang cmds to write word to eeprom */
670	for(j = 0; j < 3; j++) {
671
672		/* Chip select */
673		writeb(eecs | eesk, &nic->csr->eeprom_ctrl_lo);
674		e100_write_flush(nic); udelay(4);
675
676		for(i = 31; i >= 0; i--) {
677			ctrl = (cmd_addr_data[j] & (1 << i)) ?
678				eecs | eedi : eecs;
679			writeb(ctrl, &nic->csr->eeprom_ctrl_lo);
680			e100_write_flush(nic); udelay(4);
681
682			writeb(ctrl | eesk, &nic->csr->eeprom_ctrl_lo);
683			e100_write_flush(nic); udelay(4);
684		}
685		/* Wait 10 msec for cmd to complete */
686		msleep(10);
687
688		/* Chip deselect */
689		writeb(0, &nic->csr->eeprom_ctrl_lo);
690		e100_write_flush(nic); udelay(4);
691	}
692};
693
694/* General technique stolen from the eepro100 driver - very clever */
695static u16 e100_eeprom_read(struct nic *nic, u16 *addr_len, u16 addr)
696{
697	u32 cmd_addr_data;
698	u16 data = 0;
699	u8 ctrl;
700	int i;
701
702	cmd_addr_data = ((op_read << *addr_len) | addr) << 16;
703
704	/* Chip select */
705	writeb(eecs | eesk, &nic->csr->eeprom_ctrl_lo);
706	e100_write_flush(nic); udelay(4);
707
708	/* Bit-bang to read word from eeprom */
709	for(i = 31; i >= 0; i--) {
710		ctrl = (cmd_addr_data & (1 << i)) ? eecs | eedi : eecs;
711		writeb(ctrl, &nic->csr->eeprom_ctrl_lo);
712		e100_write_flush(nic); udelay(4);
713
714		writeb(ctrl | eesk, &nic->csr->eeprom_ctrl_lo);
715		e100_write_flush(nic); udelay(4);
716
717		/* Eeprom drives a dummy zero to EEDO after receiving
718		 * complete address.  Use this to adjust addr_len. */
719		ctrl = readb(&nic->csr->eeprom_ctrl_lo);
720		if(!(ctrl & eedo) && i > 16) {
721			*addr_len -= (i - 16);
722			i = 17;
723		}
724
725		data = (data << 1) | (ctrl & eedo ? 1 : 0);
726	}
727
728	/* Chip deselect */
729	writeb(0, &nic->csr->eeprom_ctrl_lo);
730	e100_write_flush(nic); udelay(4);
731
732	return le16_to_cpu(data);
733};
734
735/* Load entire EEPROM image into driver cache and validate checksum */
736static int e100_eeprom_load(struct nic *nic)
737{
738	u16 addr, addr_len = 8, checksum = 0;
739
740	/* Try reading with an 8-bit addr len to discover actual addr len */
741	e100_eeprom_read(nic, &addr_len, 0);
742	nic->eeprom_wc = 1 << addr_len;
743
744	for(addr = 0; addr < nic->eeprom_wc; addr++) {
745		nic->eeprom[addr] = e100_eeprom_read(nic, &addr_len, addr);
746		if(addr < nic->eeprom_wc - 1)
747			checksum += cpu_to_le16(nic->eeprom[addr]);
748	}
749
750	/* The checksum, stored in the last word, is calculated such that
751	 * the sum of words should be 0xBABA */
752	checksum = le16_to_cpu(0xBABA - checksum);
753	if(checksum != nic->eeprom[nic->eeprom_wc - 1]) {
754		DPRINTK(PROBE, ERR, "EEPROM corrupted\n");
755		if (!eeprom_bad_csum_allow)
756			return -EAGAIN;
757	}
758
759	return 0;
760}
761
762/* Save (portion of) driver EEPROM cache to device and update checksum */
763static int e100_eeprom_save(struct nic *nic, u16 start, u16 count)
764{
765	u16 addr, addr_len = 8, checksum = 0;
766
767	/* Try reading with an 8-bit addr len to discover actual addr len */
768	e100_eeprom_read(nic, &addr_len, 0);
769	nic->eeprom_wc = 1 << addr_len;
770
771	if(start + count >= nic->eeprom_wc)
772		return -EINVAL;
773
774	for(addr = start; addr < start + count; addr++)
775		e100_eeprom_write(nic, addr_len, addr, nic->eeprom[addr]);
776
777	/* The checksum, stored in the last word, is calculated such that
778	 * the sum of words should be 0xBABA */
779	for(addr = 0; addr < nic->eeprom_wc - 1; addr++)
780		checksum += cpu_to_le16(nic->eeprom[addr]);
781	nic->eeprom[nic->eeprom_wc - 1] = le16_to_cpu(0xBABA - checksum);
782	e100_eeprom_write(nic, addr_len, nic->eeprom_wc - 1,
783		nic->eeprom[nic->eeprom_wc - 1]);
784
785	return 0;
786}
787
788#define E100_WAIT_SCB_TIMEOUT 20000 /* we might have to wait 100ms!!! */
789#define E100_WAIT_SCB_FAST 20       /* delay like the old code */
790static int e100_exec_cmd(struct nic *nic, u8 cmd, dma_addr_t dma_addr)
791{
792	unsigned long flags;
793	unsigned int i;
794	int err = 0;
795
796	spin_lock_irqsave(&nic->cmd_lock, flags);
797
798	/* Previous command is accepted when SCB clears */
799	for(i = 0; i < E100_WAIT_SCB_TIMEOUT; i++) {
800		if(likely(!readb(&nic->csr->scb.cmd_lo)))
801			break;
802		cpu_relax();
803		if(unlikely(i > E100_WAIT_SCB_FAST))
804			udelay(5);
805	}
806	if(unlikely(i == E100_WAIT_SCB_TIMEOUT)) {
807		err = -EAGAIN;
808		goto err_unlock;
809	}
810
811	if(unlikely(cmd != cuc_resume))
812		writel(dma_addr, &nic->csr->scb.gen_ptr);
813	writeb(cmd, &nic->csr->scb.cmd_lo);
814
815err_unlock:
816	spin_unlock_irqrestore(&nic->cmd_lock, flags);
817
818	return err;
819}
820
821static int e100_exec_cb(struct nic *nic, struct sk_buff *skb,
822	void (*cb_prepare)(struct nic *, struct cb *, struct sk_buff *))
823{
824	struct cb *cb;
825	unsigned long flags;
826	int err = 0;
827
828	spin_lock_irqsave(&nic->cb_lock, flags);
829
830	if(unlikely(!nic->cbs_avail)) {
831		err = -ENOMEM;
832		goto err_unlock;
833	}
834
835	cb = nic->cb_to_use;
836	nic->cb_to_use = cb->next;
837	nic->cbs_avail--;
838	cb->skb = skb;
839
840	if(unlikely(!nic->cbs_avail))
841		err = -ENOSPC;
842
843	cb_prepare(nic, cb, skb);
844
845	/* Order is important otherwise we'll be in a race with h/w:
846	 * set S-bit in current first, then clear S-bit in previous. */
847	cb->command |= cpu_to_le16(cb_s);
848	wmb();
849	cb->prev->command &= cpu_to_le16(~cb_s);
850
851	while(nic->cb_to_send != nic->cb_to_use) {
852		if(unlikely(e100_exec_cmd(nic, nic->cuc_cmd,
853			nic->cb_to_send->dma_addr))) {
854			/* Ok, here's where things get sticky.  It's
855			 * possible that we can't schedule the command
856			 * because the controller is too busy, so
857			 * let's just queue the command and try again
858			 * when another command is scheduled. */
859			if(err == -ENOSPC) {
860				//request a reset
861				schedule_work(&nic->tx_timeout_task);
862			}
863			break;
864		} else {
865			nic->cuc_cmd = cuc_resume;
866			nic->cb_to_send = nic->cb_to_send->next;
867		}
868	}
869
870err_unlock:
871	spin_unlock_irqrestore(&nic->cb_lock, flags);
872
873	return err;
874}
875
876static u16 mdio_ctrl(struct nic *nic, u32 addr, u32 dir, u32 reg, u16 data)
877{
878	u32 data_out = 0;
879	unsigned int i;
880	unsigned long flags;
881
882
883	/*
884	 * Stratus87247: we shouldn't be writing the MDI control
885	 * register until the Ready bit shows True.  Also, since
886	 * manipulation of the MDI control registers is a multi-step
887	 * procedure it should be done under lock.
888	 */
889	spin_lock_irqsave(&nic->mdio_lock, flags);
890	for (i = 100; i; --i) {
891		if (readl(&nic->csr->mdi_ctrl) & mdi_ready)
892			break;
893		udelay(20);
894	}
895	if (unlikely(!i)) {
896		printk("e100.mdio_ctrl(%s) won't go Ready\n",
897			nic->netdev->name );
898		spin_unlock_irqrestore(&nic->mdio_lock, flags);
899		return 0;		/* No way to indicate timeout error */
900	}
901	writel((reg << 16) | (addr << 21) | dir | data, &nic->csr->mdi_ctrl);
902
903	for (i = 0; i < 100; i++) {
904		udelay(20);
905		if ((data_out = readl(&nic->csr->mdi_ctrl)) & mdi_ready)
906			break;
907	}
908	spin_unlock_irqrestore(&nic->mdio_lock, flags);
909	DPRINTK(HW, DEBUG,
910		"%s:addr=%d, reg=%d, data_in=0x%04X, data_out=0x%04X\n",
911		dir == mdi_read ? "READ" : "WRITE", addr, reg, data, data_out);
912	return (u16)data_out;
913}
914
915static int mdio_read(struct net_device *netdev, int addr, int reg)
916{
917	return mdio_ctrl(netdev_priv(netdev), addr, mdi_read, reg, 0);
918}
919
920static void mdio_write(struct net_device *netdev, int addr, int reg, int data)
921{
922	mdio_ctrl(netdev_priv(netdev), addr, mdi_write, reg, data);
923}
924
925static void e100_get_defaults(struct nic *nic)
926{
927	struct param_range rfds = { .min = 16, .max = 256, .count = 256 };
928	struct param_range cbs  = { .min = 64, .max = 256, .count = 128 };
929
930	pci_read_config_byte(nic->pdev, PCI_REVISION_ID, &nic->rev_id);
931	/* MAC type is encoded as rev ID; exception: ICH is treated as 82559 */
932	nic->mac = (nic->flags & ich) ? mac_82559_D101M : nic->rev_id;
933	if(nic->mac == mac_unknown)
934		nic->mac = mac_82557_D100_A;
935
936	nic->params.rfds = rfds;
937	nic->params.cbs = cbs;
938
939	/* Quadwords to DMA into FIFO before starting frame transmit */
940	nic->tx_threshold = 0xE0;
941
942	/* no interrupt for every tx completion, delay = 256us if not 557*/
943	nic->tx_command = cpu_to_le16(cb_tx | cb_tx_sf |
944		((nic->mac >= mac_82558_D101_A4) ? cb_cid : cb_i));
945
946	/* Template for a freshly allocated RFD */
947	nic->blank_rfd.command = cpu_to_le16(cb_el & cb_s);
948	nic->blank_rfd.rbd = 0xFFFFFFFF;
949	nic->blank_rfd.size = cpu_to_le16(VLAN_ETH_FRAME_LEN);
950
951	/* MII setup */
952	nic->mii.phy_id_mask = 0x1F;
953	nic->mii.reg_num_mask = 0x1F;
954	nic->mii.dev = nic->netdev;
955	nic->mii.mdio_read = mdio_read;
956	nic->mii.mdio_write = mdio_write;
957}
958
959static void e100_configure(struct nic *nic, struct cb *cb, struct sk_buff *skb)
960{
961	struct config *config = &cb->u.config;
962	u8 *c = (u8 *)config;
963
964	cb->command = cpu_to_le16(cb_config);
965
966	memset(config, 0, sizeof(struct config));
967
968	config->byte_count = 0x16;		/* bytes in this struct */
969	config->rx_fifo_limit = 0x8;		/* bytes in FIFO before DMA */
970	config->direct_rx_dma = 0x1;		/* reserved */
971	config->standard_tcb = 0x1;		/* 1=standard, 0=extended */
972	config->standard_stat_counter = 0x1;	/* 1=standard, 0=extended */
973	config->rx_discard_short_frames = 0x1;	/* 1=discard, 0=pass */
974	config->tx_underrun_retry = 0x3;	/* # of underrun retries */
975	config->mii_mode = 0x1;			/* 1=MII mode, 0=503 mode */
976	config->pad10 = 0x6;
977	config->no_source_addr_insertion = 0x1;	/* 1=no, 0=yes */
978	config->preamble_length = 0x2;		/* 0=1, 1=3, 2=7, 3=15 bytes */
979	config->ifs = 0x6;			/* x16 = inter frame spacing */
980	config->ip_addr_hi = 0xF2;		/* ARP IP filter - not used */
981	config->pad15_1 = 0x1;
982	config->pad15_2 = 0x1;
983	config->crs_or_cdt = 0x0;		/* 0=CRS only, 1=CRS or CDT */
984	config->fc_delay_hi = 0x40;		/* time delay for fc frame */
985	config->tx_padding = 0x1;		/* 1=pad short frames */
986	config->fc_priority_threshold = 0x7;	/* 7=priority fc disabled */
987	config->pad18 = 0x1;
988	config->full_duplex_pin = 0x1;		/* 1=examine FDX# pin */
989	config->pad20_1 = 0x1F;
990	config->fc_priority_location = 0x1;	/* 1=byte#31, 0=byte#19 */
991	config->pad21_1 = 0x5;
992
993	config->adaptive_ifs = nic->adaptive_ifs;
994	config->loopback = nic->loopback;
995
996	if(nic->mii.force_media && nic->mii.full_duplex)
997		config->full_duplex_force = 0x1;	/* 1=force, 0=auto */
998
999	if(nic->flags & promiscuous || nic->loopback) {
1000		config->rx_save_bad_frames = 0x1;	/* 1=save, 0=discard */
1001		config->rx_discard_short_frames = 0x0;	/* 1=discard, 0=save */
1002		config->promiscuous_mode = 0x1;		/* 1=on, 0=off */
1003	}
1004
1005	if(nic->flags & multicast_all)
1006		config->multicast_all = 0x1;		/* 1=accept, 0=no */
1007
1008	/* disable WoL when up */
1009	if(netif_running(nic->netdev) || !(nic->flags & wol_magic))
1010		config->magic_packet_disable = 0x1;	/* 1=off, 0=on */
1011
1012	if(nic->mac >= mac_82558_D101_A4) {
1013		config->fc_disable = 0x1;	/* 1=Tx fc off, 0=Tx fc on */
1014		config->mwi_enable = 0x1;	/* 1=enable, 0=disable */
1015		config->standard_tcb = 0x0;	/* 1=standard, 0=extended */
1016		config->rx_long_ok = 0x1;	/* 1=VLANs ok, 0=standard */
1017		if(nic->mac >= mac_82559_D101M)
1018			config->tno_intr = 0x1;		/* TCO stats enable */
1019		else
1020			config->standard_stat_counter = 0x0;
1021	}
1022
1023	DPRINTK(HW, DEBUG, "[00-07]=%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n",
1024		c[0], c[1], c[2], c[3], c[4], c[5], c[6], c[7]);
1025	DPRINTK(HW, DEBUG, "[08-15]=%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n",
1026		c[8], c[9], c[10], c[11], c[12], c[13], c[14], c[15]);
1027	DPRINTK(HW, DEBUG, "[16-23]=%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n",
1028		c[16], c[17], c[18], c[19], c[20], c[21], c[22], c[23]);
1029}
1030
1031/********************************************************/
1032/*  Micro code for 8086:1229 Rev 8                      */
1033/********************************************************/
1034
1035/*  Parameter values for the D101M B-step  */
1036#define D101M_CPUSAVER_TIMER_DWORD		78
1037#define D101M_CPUSAVER_BUNDLE_DWORD		65
1038#define D101M_CPUSAVER_MIN_SIZE_DWORD		126
1039
1040#define D101M_B_RCVBUNDLE_UCODE \
1041{\
10420x00550215, 0xFFFF0437, 0xFFFFFFFF, 0x06A70789, 0xFFFFFFFF, 0x0558FFFF, \
10430x000C0001, 0x00101312, 0x000C0008, 0x00380216, \
10440x0010009C, 0x00204056, 0x002380CC, 0x00380056, \
10450x0010009C, 0x00244C0B, 0x00000800, 0x00124818, \
10460x00380438, 0x00000000, 0x00140000, 0x00380555, \
10470x00308000, 0x00100662, 0x00100561, 0x000E0408, \
10480x00134861, 0x000C0002, 0x00103093, 0x00308000, \
10490x00100624, 0x00100561, 0x000E0408, 0x00100861, \
10500x000C007E, 0x00222C21, 0x000C0002, 0x00103093, \
10510x00380C7A, 0x00080000, 0x00103090, 0x00380C7A, \
10520x00000000, 0x00000000, 0x00000000, 0x00000000, \
10530x0010009C, 0x00244C2D, 0x00010004, 0x00041000, \
10540x003A0437, 0x00044010, 0x0038078A, 0x00000000, \
10550x00100099, 0x00206C7A, 0x0010009C, 0x00244C48, \
10560x00130824, 0x000C0001, 0x00101213, 0x00260C75, \
10570x00041000, 0x00010004, 0x00130826, 0x000C0006, \
10580x002206A8, 0x0013C926, 0x00101313, 0x003806A8, \
10590x00000000, 0x00000000, 0x00000000, 0x00000000, \
10600x00000000, 0x00000000, 0x00000000, 0x00000000, \
10610x00080600, 0x00101B10, 0x00050004, 0x00100826, \
10620x00101210, 0x00380C34, 0x00000000, 0x00000000, \
10630x0021155B, 0x00100099, 0x00206559, 0x0010009C, \
10640x00244559, 0x00130836, 0x000C0000, 0x00220C62, \
10650x000C0001, 0x00101B13, 0x00229C0E, 0x00210C0E, \
10660x00226C0E, 0x00216C0E, 0x0022FC0E, 0x00215C0E, \
10670x00214C0E, 0x00380555, 0x00010004, 0x00041000, \
10680x00278C67, 0x00040800, 0x00018100, 0x003A0437, \
10690x00130826, 0x000C0001, 0x00220559, 0x00101313, \
10700x00380559, 0x00000000, 0x00000000, 0x00000000, \
10710x00000000, 0x00000000, 0x00000000, 0x00000000, \
10720x00000000, 0x00130831, 0x0010090B, 0x00124813, \
10730x000CFF80, 0x002606AB, 0x00041000, 0x00010004, \
10740x003806A8, 0x00000000, 0x00000000, 0x00000000, \
1075}
1076
1077/********************************************************/
1078/*  Micro code for 8086:1229 Rev 9                      */
1079/********************************************************/
1080
1081/*  Parameter values for the D101S  */
1082#define D101S_CPUSAVER_TIMER_DWORD		78
1083#define D101S_CPUSAVER_BUNDLE_DWORD		67
1084#define D101S_CPUSAVER_MIN_SIZE_DWORD		128
1085
1086#define D101S_RCVBUNDLE_UCODE \
1087{\
10880x00550242, 0xFFFF047E, 0xFFFFFFFF, 0x06FF0818, 0xFFFFFFFF, 0x05A6FFFF, \
10890x000C0001, 0x00101312, 0x000C0008, 0x00380243, \
10900x0010009C, 0x00204056, 0x002380D0, 0x00380056, \
10910x0010009C, 0x00244F8B, 0x00000800, 0x00124818, \
10920x0038047F, 0x00000000, 0x00140000, 0x003805A3, \
10930x00308000, 0x00100610, 0x00100561, 0x000E0408, \
10940x00134861, 0x000C0002, 0x00103093, 0x00308000, \
10950x00100624, 0x00100561, 0x000E0408, 0x00100861, \
10960x000C007E, 0x00222FA1, 0x000C0002, 0x00103093, \
10970x00380F90, 0x00080000, 0x00103090, 0x00380F90, \
10980x00000000, 0x00000000, 0x00000000, 0x00000000, \
10990x0010009C, 0x00244FAD, 0x00010004, 0x00041000, \
11000x003A047E, 0x00044010, 0x00380819, 0x00000000, \
11010x00100099, 0x00206FFD, 0x0010009A, 0x0020AFFD, \
11020x0010009C, 0x00244FC8, 0x00130824, 0x000C0001, \
11030x00101213, 0x00260FF7, 0x00041000, 0x00010004, \
11040x00130826, 0x000C0006, 0x00220700, 0x0013C926, \
11050x00101313, 0x00380700, 0x00000000, 0x00000000, \
11060x00000000, 0x00000000, 0x00000000, 0x00000000, \
11070x00080600, 0x00101B10, 0x00050004, 0x00100826, \
11080x00101210, 0x00380FB6, 0x00000000, 0x00000000, \
11090x002115A9, 0x00100099, 0x002065A7, 0x0010009A, \
11100x0020A5A7, 0x0010009C, 0x002445A7, 0x00130836, \
11110x000C0000, 0x00220FE4, 0x000C0001, 0x00101B13, \
11120x00229F8E, 0x00210F8E, 0x00226F8E, 0x00216F8E, \
11130x0022FF8E, 0x00215F8E, 0x00214F8E, 0x003805A3, \
11140x00010004, 0x00041000, 0x00278FE9, 0x00040800, \
11150x00018100, 0x003A047E, 0x00130826, 0x000C0001, \
11160x002205A7, 0x00101313, 0x003805A7, 0x00000000, \
11170x00000000, 0x00000000, 0x00000000, 0x00000000, \
11180x00000000, 0x00000000, 0x00000000, 0x00130831, \
11190x0010090B, 0x00124813, 0x000CFF80, 0x00260703, \
11200x00041000, 0x00010004, 0x00380700  \
1121}
1122
1123/********************************************************/
1124/*  Micro code for the 8086:1229 Rev F/10               */
1125/********************************************************/
1126
1127/*  Parameter values for the D102 E-step  */
1128#define D102_E_CPUSAVER_TIMER_DWORD		42
1129#define D102_E_CPUSAVER_BUNDLE_DWORD		54
1130#define D102_E_CPUSAVER_MIN_SIZE_DWORD		46
1131
1132#define     D102_E_RCVBUNDLE_UCODE \
1133{\
11340x007D028F, 0x0E4204F9, 0x14ED0C85, 0x14FA14E9, 0x0EF70E36, 0x1FFF1FFF, \
11350x00E014B9, 0x00000000, 0x00000000, 0x00000000, \
11360x00E014BD, 0x00000000, 0x00000000, 0x00000000, \
11370x00E014D5, 0x00000000, 0x00000000, 0x00000000, \
11380x00000000, 0x00000000, 0x00000000, 0x00000000, \
11390x00E014C1, 0x00000000, 0x00000000, 0x00000000, \
11400x00000000, 0x00000000, 0x00000000, 0x00000000, \
11410x00000000, 0x00000000, 0x00000000, 0x00000000, \
11420x00000000, 0x00000000, 0x00000000, 0x00000000, \
11430x00E014C8, 0x00000000, 0x00000000, 0x00000000, \
11440x00200600, 0x00E014EE, 0x00000000, 0x00000000, \
11450x0030FF80, 0x00940E46, 0x00038200, 0x00102000, \
11460x00E00E43, 0x00000000, 0x00000000, 0x00000000, \
11470x00300006, 0x00E014FB, 0x00000000, 0x00000000, \
11480x00000000, 0x00000000, 0x00000000, 0x00000000, \
11490x00000000, 0x00000000, 0x00000000, 0x00000000, \
11500x00000000, 0x00000000, 0x00000000, 0x00000000, \
11510x00906E41, 0x00800E3C, 0x00E00E39, 0x00000000, \
11520x00906EFD, 0x00900EFD, 0x00E00EF8, 0x00000000, \
11530x00000000, 0x00000000, 0x00000000, 0x00000000, \
11540x00000000, 0x00000000, 0x00000000, 0x00000000, \
11550x00000000, 0x00000000, 0x00000000, 0x00000000, \
11560x00000000, 0x00000000, 0x00000000, 0x00000000, \
11570x00000000, 0x00000000, 0x00000000, 0x00000000, \
11580x00000000, 0x00000000, 0x00000000, 0x00000000, \
11590x00000000, 0x00000000, 0x00000000, 0x00000000, \
11600x00000000, 0x00000000, 0x00000000, 0x00000000, \
11610x00000000, 0x00000000, 0x00000000, 0x00000000, \
11620x00000000, 0x00000000, 0x00000000, 0x00000000, \
11630x00000000, 0x00000000, 0x00000000, 0x00000000, \
11640x00000000, 0x00000000, 0x00000000, 0x00000000, \
11650x00000000, 0x00000000, 0x00000000, 0x00000000, \
11660x00000000, 0x00000000, 0x00000000, 0x00000000, \
1167}
1168
1169static void e100_setup_ucode(struct nic *nic, struct cb *cb, struct sk_buff *skb)
1170{
1171/* *INDENT-OFF* */
1172	static struct {
1173		u32 ucode[UCODE_SIZE + 1];
1174		u8 mac;
1175		u8 timer_dword;
1176		u8 bundle_dword;
1177		u8 min_size_dword;
1178	} ucode_opts[] = {
1179		{ D101M_B_RCVBUNDLE_UCODE,
1180		  mac_82559_D101M,
1181		  D101M_CPUSAVER_TIMER_DWORD,
1182		  D101M_CPUSAVER_BUNDLE_DWORD,
1183		  D101M_CPUSAVER_MIN_SIZE_DWORD },
1184		{ D101S_RCVBUNDLE_UCODE,
1185		  mac_82559_D101S,
1186		  D101S_CPUSAVER_TIMER_DWORD,
1187		  D101S_CPUSAVER_BUNDLE_DWORD,
1188		  D101S_CPUSAVER_MIN_SIZE_DWORD },
1189		{ D102_E_RCVBUNDLE_UCODE,
1190		  mac_82551_F,
1191		  D102_E_CPUSAVER_TIMER_DWORD,
1192		  D102_E_CPUSAVER_BUNDLE_DWORD,
1193		  D102_E_CPUSAVER_MIN_SIZE_DWORD },
1194		{ D102_E_RCVBUNDLE_UCODE,
1195		  mac_82551_10,
1196		  D102_E_CPUSAVER_TIMER_DWORD,
1197		  D102_E_CPUSAVER_BUNDLE_DWORD,
1198		  D102_E_CPUSAVER_MIN_SIZE_DWORD },
1199		{ {0}, 0, 0, 0, 0}
1200	}, *opts;
1201/* *INDENT-ON* */
1202
1203/*************************************************************************
1204*  CPUSaver parameters
1205*
1206*  All CPUSaver parameters are 16-bit literals that are part of a
1207*  "move immediate value" instruction.  By changing the value of
1208*  the literal in the instruction before the code is loaded, the
1209*  driver can change the algorithm.
1210*
1211*  INTDELAY - This loads the dead-man timer with its initial value.
1212*    When this timer expires the interrupt is asserted, and the
1213*    timer is reset each time a new packet is received.  (see
1214*    BUNDLEMAX below to set the limit on number of chained packets)
1215*    The current default is 0x600 or 1536.  Experiments show that
1216*    the value should probably stay within the 0x200 - 0x1000.
1217*
1218*  BUNDLEMAX -
1219*    This sets the maximum number of frames that will be bundled.  In
1220*    some situations, such as the TCP windowing algorithm, it may be
1221*    better to limit the growth of the bundle size than let it go as
1222*    high as it can, because that could cause too much added latency.
1223*    The default is six, because this is the number of packets in the
1224*    default TCP window size.  A value of 1 would make CPUSaver indicate
1225*    an interrupt for every frame received.  If you do not want to put
1226*    a limit on the bundle size, set this value to xFFFF.
1227*
1228*  BUNDLESMALL -
1229*    This contains a bit-mask describing the minimum size frame that
1230*    will be bundled.  The default masks the lower 7 bits, which means
1231*    that any frame less than 128 bytes in length will not be bundled,
1232*    but will instead immediately generate an interrupt.  This does
1233*    not affect the current bundle in any way.  Any frame that is 128
1234*    bytes or large will be bundled normally.  This feature is meant
1235*    to provide immediate indication of ACK frames in a TCP environment.
1236*    Customers were seeing poor performance when a machine with CPUSaver
1237*    enabled was sending but not receiving.  The delay introduced when
1238*    the ACKs were received was enough to reduce total throughput, because
1239*    the sender would sit idle until the ACK was finally seen.
1240*
1241*    The current default is 0xFF80, which masks out the lower 7 bits.
1242*    This means that any frame which is x7F (127) bytes or smaller
1243*    will cause an immediate interrupt.  Because this value must be a
1244*    bit mask, there are only a few valid values that can be used.  To
1245*    turn this feature off, the driver can write the value xFFFF to the
1246*    lower word of this instruction (in the same way that the other
1247*    parameters are used).  Likewise, a value of 0xF800 (2047) would
1248*    cause an interrupt to be generated for every frame, because all
1249*    standard Ethernet frames are <= 2047 bytes in length.
1250*************************************************************************/
1251
1252/* if you wish to disable the ucode functionality, while maintaining the
1253 * workarounds it provides, set the following defines to:
1254 * BUNDLESMALL 0
1255 * BUNDLEMAX 1
1256 * INTDELAY 1
1257 */
1258#define BUNDLESMALL 1
1259#define BUNDLEMAX (u16)6
1260#define INTDELAY (u16)1536 /* 0x600 */
1261
1262	/* do not load u-code for ICH devices */
1263	if (nic->flags & ich)
1264		goto noloaducode;
1265
1266	/* Search for ucode match against h/w rev_id */
1267	for (opts = ucode_opts; opts->mac; opts++) {
1268		int i;
1269		u32 *ucode = opts->ucode;
1270		if (nic->mac != opts->mac)
1271			continue;
1272
1273		/* Insert user-tunable settings */
1274		ucode[opts->timer_dword] &= 0xFFFF0000;
1275		ucode[opts->timer_dword] |= INTDELAY;
1276		ucode[opts->bundle_dword] &= 0xFFFF0000;
1277		ucode[opts->bundle_dword] |= BUNDLEMAX;
1278		ucode[opts->min_size_dword] &= 0xFFFF0000;
1279		ucode[opts->min_size_dword] |= (BUNDLESMALL) ? 0xFFFF : 0xFF80;
1280
1281		for (i = 0; i < UCODE_SIZE; i++)
1282			cb->u.ucode[i] = cpu_to_le32(ucode[i]);
1283		cb->command = cpu_to_le16(cb_ucode | cb_el);
1284		return;
1285	}
1286
1287noloaducode:
1288	cb->command = cpu_to_le16(cb_nop | cb_el);
1289}
1290
1291static inline int e100_exec_cb_wait(struct nic *nic, struct sk_buff *skb,
1292	void (*cb_prepare)(struct nic *, struct cb *, struct sk_buff *))
1293{
1294	int err = 0, counter = 50;
1295	struct cb *cb = nic->cb_to_clean;
1296
1297	if ((err = e100_exec_cb(nic, NULL, e100_setup_ucode)))
1298		DPRINTK(PROBE,ERR, "ucode cmd failed with error %d\n", err);
1299
1300	/* must restart cuc */
1301	nic->cuc_cmd = cuc_start;
1302
1303	/* wait for completion */
1304	e100_write_flush(nic);
1305	udelay(10);
1306
1307	/* wait for possibly (ouch) 500ms */
1308	while (!(cb->status & cpu_to_le16(cb_complete))) {
1309		msleep(10);
1310		if (!--counter) break;
1311	}
1312
1313	/* ack any interupts, something could have been set */
1314	writeb(~0, &nic->csr->scb.stat_ack);
1315
1316	/* if the command failed, or is not OK, notify and return */
1317	if (!counter || !(cb->status & cpu_to_le16(cb_ok))) {
1318		DPRINTK(PROBE,ERR, "ucode load failed\n");
1319		err = -EPERM;
1320	}
1321
1322	return err;
1323}
1324
1325static void e100_setup_iaaddr(struct nic *nic, struct cb *cb,
1326	struct sk_buff *skb)
1327{
1328	cb->command = cpu_to_le16(cb_iaaddr);
1329	memcpy(cb->u.iaaddr, nic->netdev->dev_addr, ETH_ALEN);
1330}
1331
1332static void e100_dump(struct nic *nic, struct cb *cb, struct sk_buff *skb)
1333{
1334	cb->command = cpu_to_le16(cb_dump);
1335	cb->u.dump_buffer_addr = cpu_to_le32(nic->dma_addr +
1336		offsetof(struct mem, dump_buf));
1337}
1338
1339#define NCONFIG_AUTO_SWITCH	0x0080
1340#define MII_NSC_CONG		MII_RESV1
1341#define NSC_CONG_ENABLE		0x0100
1342#define NSC_CONG_TXREADY	0x0400
1343#define ADVERTISE_FC_SUPPORTED	0x0400
1344static int e100_phy_init(struct nic *nic)
1345{
1346	struct net_device *netdev = nic->netdev;
1347	u32 addr;
1348	u16 bmcr, stat, id_lo, id_hi, cong;
1349
1350	/* Discover phy addr by searching addrs in order {1,0,2,..., 31} */
1351	for(addr = 0; addr < 32; addr++) {
1352		nic->mii.phy_id = (addr == 0) ? 1 : (addr == 1) ? 0 : addr;
1353		bmcr = mdio_read(netdev, nic->mii.phy_id, MII_BMCR);
1354		stat = mdio_read(netdev, nic->mii.phy_id, MII_BMSR);
1355		stat = mdio_read(netdev, nic->mii.phy_id, MII_BMSR);
1356		if(!((bmcr == 0xFFFF) || ((stat == 0) && (bmcr == 0))))
1357			break;
1358	}
1359	DPRINTK(HW, DEBUG, "phy_addr = %d\n", nic->mii.phy_id);
1360	if(addr == 32)
1361		return -EAGAIN;
1362
1363	/* Selected the phy and isolate the rest */
1364	for(addr = 0; addr < 32; addr++) {
1365		if(addr != nic->mii.phy_id) {
1366			mdio_write(netdev, addr, MII_BMCR, BMCR_ISOLATE);
1367		} else {
1368			bmcr = mdio_read(netdev, addr, MII_BMCR);
1369			mdio_write(netdev, addr, MII_BMCR,
1370				bmcr & ~BMCR_ISOLATE);
1371		}
1372	}
1373
1374	/* Get phy ID */
1375	id_lo = mdio_read(netdev, nic->mii.phy_id, MII_PHYSID1);
1376	id_hi = mdio_read(netdev, nic->mii.phy_id, MII_PHYSID2);
1377	nic->phy = (u32)id_hi << 16 | (u32)id_lo;
1378	DPRINTK(HW, DEBUG, "phy ID = 0x%08X\n", nic->phy);
1379
1380	/* Handle National tx phys */
1381#define NCS_PHY_MODEL_MASK	0xFFF0FFFF
1382	if((nic->phy & NCS_PHY_MODEL_MASK) == phy_nsc_tx) {
1383		/* Disable congestion control */
1384		cong = mdio_read(netdev, nic->mii.phy_id, MII_NSC_CONG);
1385		cong |= NSC_CONG_TXREADY;
1386		cong &= ~NSC_CONG_ENABLE;
1387		mdio_write(netdev, nic->mii.phy_id, MII_NSC_CONG, cong);
1388	}
1389
1390	if((nic->mac >= mac_82550_D102) || ((nic->flags & ich) &&
1391	   (mdio_read(netdev, nic->mii.phy_id, MII_TPISTATUS) & 0x8000) &&
1392		!(nic->eeprom[eeprom_cnfg_mdix] & eeprom_mdix_enabled))) {
1393		/* enable/disable MDI/MDI-X auto-switching. */
1394		mdio_write(netdev, nic->mii.phy_id, MII_NCONFIG,
1395				nic->mii.force_media ? 0 : NCONFIG_AUTO_SWITCH);
1396	}
1397
1398	return 0;
1399}
1400
1401static int e100_hw_init(struct nic *nic)
1402{
1403	int err;
1404
1405	e100_hw_reset(nic);
1406
1407	DPRINTK(HW, ERR, "e100_hw_init\n");
1408	if(!in_interrupt() && (err = e100_self_test(nic)))
1409		return err;
1410
1411	if((err = e100_phy_init(nic)))
1412		return err;
1413	if((err = e100_exec_cmd(nic, cuc_load_base, 0)))
1414		return err;
1415	if((err = e100_exec_cmd(nic, ruc_load_base, 0)))
1416		return err;
1417	if ((err = e100_exec_cb_wait(nic, NULL, e100_setup_ucode)))
1418		return err;
1419	if((err = e100_exec_cb(nic, NULL, e100_configure)))
1420		return err;
1421	if((err = e100_exec_cb(nic, NULL, e100_setup_iaaddr)))
1422		return err;
1423	if((err = e100_exec_cmd(nic, cuc_dump_addr,
1424		nic->dma_addr + offsetof(struct mem, stats))))
1425		return err;
1426	if((err = e100_exec_cmd(nic, cuc_dump_reset, 0)))
1427		return err;
1428
1429	e100_disable_irq(nic);
1430
1431	return 0;
1432}
1433
1434static void e100_multi(struct nic *nic, struct cb *cb, struct sk_buff *skb)
1435{
1436	struct net_device *netdev = nic->netdev;
1437	struct dev_mc_list *list = netdev->mc_list;
1438	u16 i, count = min(netdev->mc_count, E100_MAX_MULTICAST_ADDRS);
1439
1440	cb->command = cpu_to_le16(cb_multi);
1441	cb->u.multi.count = cpu_to_le16(count * ETH_ALEN);
1442	for(i = 0; list && i < count; i++, list = list->next)
1443		memcpy(&cb->u.multi.addr[i*ETH_ALEN], &list->dmi_addr,
1444			ETH_ALEN);
1445}
1446
1447static void e100_set_multicast_list(struct net_device *netdev)
1448{
1449	struct nic *nic = netdev_priv(netdev);
1450
1451	DPRINTK(HW, DEBUG, "mc_count=%d, flags=0x%04X\n",
1452		netdev->mc_count, netdev->flags);
1453
1454	if(netdev->flags & IFF_PROMISC)
1455		nic->flags |= promiscuous;
1456	else
1457		nic->flags &= ~promiscuous;
1458
1459	if(netdev->flags & IFF_ALLMULTI ||
1460		netdev->mc_count > E100_MAX_MULTICAST_ADDRS)
1461		nic->flags |= multicast_all;
1462	else
1463		nic->flags &= ~multicast_all;
1464
1465	e100_exec_cb(nic, NULL, e100_configure);
1466	e100_exec_cb(nic, NULL, e100_multi);
1467}
1468
1469static void e100_update_stats(struct nic *nic)
1470{
1471	struct net_device_stats *ns = &nic->net_stats;
1472	struct stats *s = &nic->mem->stats;
1473	u32 *complete = (nic->mac < mac_82558_D101_A4) ? &s->fc_xmt_pause :
1474		(nic->mac < mac_82559_D101M) ? (u32 *)&s->xmt_tco_frames :
1475		&s->complete;
1476
1477	/* Device's stats reporting may take several microseconds to
1478	 * complete, so where always waiting for results of the
1479	 * previous command. */
1480
1481	if(*complete == le32_to_cpu(cuc_dump_reset_complete)) {
1482		*complete = 0;
1483		nic->tx_frames = le32_to_cpu(s->tx_good_frames);
1484		nic->tx_collisions = le32_to_cpu(s->tx_total_collisions);
1485		ns->tx_aborted_errors += le32_to_cpu(s->tx_max_collisions);
1486		ns->tx_window_errors += le32_to_cpu(s->tx_late_collisions);
1487		ns->tx_carrier_errors += le32_to_cpu(s->tx_lost_crs);
1488		ns->tx_fifo_errors += le32_to_cpu(s->tx_underruns);
1489		ns->collisions += nic->tx_collisions;
1490		ns->tx_errors += le32_to_cpu(s->tx_max_collisions) +
1491			le32_to_cpu(s->tx_lost_crs);
1492		ns->rx_length_errors += le32_to_cpu(s->rx_short_frame_errors) +
1493			nic->rx_over_length_errors;
1494		ns->rx_crc_errors += le32_to_cpu(s->rx_crc_errors);
1495		ns->rx_frame_errors += le32_to_cpu(s->rx_alignment_errors);
1496		ns->rx_over_errors += le32_to_cpu(s->rx_overrun_errors);
1497		ns->rx_fifo_errors += le32_to_cpu(s->rx_overrun_errors);
1498		ns->rx_missed_errors += le32_to_cpu(s->rx_resource_errors);
1499		ns->rx_errors += le32_to_cpu(s->rx_crc_errors) +
1500			le32_to_cpu(s->rx_alignment_errors) +
1501			le32_to_cpu(s->rx_short_frame_errors) +
1502			le32_to_cpu(s->rx_cdt_errors);
1503		nic->tx_deferred += le32_to_cpu(s->tx_deferred);
1504		nic->tx_single_collisions +=
1505			le32_to_cpu(s->tx_single_collisions);
1506		nic->tx_multiple_collisions +=
1507			le32_to_cpu(s->tx_multiple_collisions);
1508		if(nic->mac >= mac_82558_D101_A4) {
1509			nic->tx_fc_pause += le32_to_cpu(s->fc_xmt_pause);
1510			nic->rx_fc_pause += le32_to_cpu(s->fc_rcv_pause);
1511			nic->rx_fc_unsupported +=
1512				le32_to_cpu(s->fc_rcv_unsupported);
1513			if(nic->mac >= mac_82559_D101M) {
1514				nic->tx_tco_frames +=
1515					le16_to_cpu(s->xmt_tco_frames);
1516				nic->rx_tco_frames +=
1517					le16_to_cpu(s->rcv_tco_frames);
1518			}
1519		}
1520	}
1521
1522
1523	if(e100_exec_cmd(nic, cuc_dump_reset, 0))
1524		DPRINTK(TX_ERR, DEBUG, "exec cuc_dump_reset failed\n");
1525}
1526
1527static void e100_adjust_adaptive_ifs(struct nic *nic, int speed, int duplex)
1528{
1529	/* Adjust inter-frame-spacing (IFS) between two transmits if
1530	 * we're getting collisions on a half-duplex connection. */
1531
1532	if(duplex == DUPLEX_HALF) {
1533		u32 prev = nic->adaptive_ifs;
1534		u32 min_frames = (speed == SPEED_100) ? 1000 : 100;
1535
1536		if((nic->tx_frames / 32 < nic->tx_collisions) &&
1537		   (nic->tx_frames > min_frames)) {
1538			if(nic->adaptive_ifs < 60)
1539				nic->adaptive_ifs += 5;
1540		} else if (nic->tx_frames < min_frames) {
1541			if(nic->adaptive_ifs >= 5)
1542				nic->adaptive_ifs -= 5;
1543		}
1544		if(nic->adaptive_ifs != prev)
1545			e100_exec_cb(nic, NULL, e100_configure);
1546	}
1547}
1548
1549static void e100_watchdog(unsigned long data)
1550{
1551	struct nic *nic = (struct nic *)data;
1552	struct ethtool_cmd cmd;
1553
1554	DPRINTK(TIMER, DEBUG, "right now = %ld\n", jiffies);
1555
1556	/* mii library handles link maintenance tasks */
1557
1558	mii_ethtool_gset(&nic->mii, &cmd);
1559
1560	if(mii_link_ok(&nic->mii) && !netif_carrier_ok(nic->netdev)) {
1561		DPRINTK(LINK, INFO, "link up, %sMbps, %s-duplex\n",
1562			cmd.speed == SPEED_100 ? "100" : "10",
1563			cmd.duplex == DUPLEX_FULL ? "full" : "half");
1564	} else if(!mii_link_ok(&nic->mii) && netif_carrier_ok(nic->netdev)) {
1565		DPRINTK(LINK, INFO, "link down\n");
1566	}
1567
1568	mii_check_link(&nic->mii);
1569
1570	/* Software generated interrupt to recover from (rare) Rx
1571	 * allocation failure.
1572	 * Unfortunately have to use a spinlock to not re-enable interrupts
1573	 * accidentally, due to hardware that shares a register between the
1574	 * interrupt mask bit and the SW Interrupt generation bit */
1575	spin_lock_irq(&nic->cmd_lock);
1576	writeb(readb(&nic->csr->scb.cmd_hi) | irq_sw_gen,&nic->csr->scb.cmd_hi);
1577	e100_write_flush(nic);
1578	spin_unlock_irq(&nic->cmd_lock);
1579
1580	e100_update_stats(nic);
1581	e100_adjust_adaptive_ifs(nic, cmd.speed, cmd.duplex);
1582
1583	if(nic->mac <= mac_82557_D100_C)
1584		/* Issue a multicast command to workaround a 557 lock up */
1585		e100_set_multicast_list(nic->netdev);
1586
1587	if(nic->flags & ich && cmd.speed==SPEED_10 && cmd.duplex==DUPLEX_HALF)
1588		/* Need SW workaround for ICH[x] 10Mbps/half duplex Tx hang. */
1589		nic->flags |= ich_10h_workaround;
1590	else
1591		nic->flags &= ~ich_10h_workaround;
1592
1593	mod_timer(&nic->watchdog, jiffies + E100_WATCHDOG_PERIOD);
1594}
1595
1596static void e100_xmit_prepare(struct nic *nic, struct cb *cb,
1597	struct sk_buff *skb)
1598{
1599	cb->command = nic->tx_command;
1600	/* interrupt every 16 packets regardless of delay */
1601	if((nic->cbs_avail & ~15) == nic->cbs_avail)
1602		cb->command |= cpu_to_le16(cb_i);
1603	cb->u.tcb.tbd_array = cb->dma_addr + offsetof(struct cb, u.tcb.tbd);
1604	cb->u.tcb.tcb_byte_count = 0;
1605	cb->u.tcb.threshold = nic->tx_threshold;
1606	cb->u.tcb.tbd_count = 1;
1607	cb->u.tcb.tbd.buf_addr = cpu_to_le32(pci_map_single(nic->pdev,
1608		skb->data, skb->len, PCI_DMA_TODEVICE));
1609	/* check for mapping failure? */
1610	cb->u.tcb.tbd.size = cpu_to_le16(skb->len);
1611}
1612
1613static int e100_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
1614{
1615	struct nic *nic = netdev_priv(netdev);
1616	int err;
1617
1618	if(nic->flags & ich_10h_workaround) {
1619		/* SW workaround for ICH[x] 10Mbps/half duplex Tx hang.
1620		   Issue a NOP command followed by a 1us delay before
1621		   issuing the Tx command. */
1622		if(e100_exec_cmd(nic, cuc_nop, 0))
1623			DPRINTK(TX_ERR, DEBUG, "exec cuc_nop failed\n");
1624		udelay(1);
1625	}
1626
1627	err = e100_exec_cb(nic, skb, e100_xmit_prepare);
1628
1629	switch(err) {
1630	case -ENOSPC:
1631		/* We queued the skb, but now we're out of space. */
1632		DPRINTK(TX_ERR, DEBUG, "No space for CB\n");
1633		netif_stop_queue(netdev);
1634		break;
1635	case -ENOMEM:
1636		/* This is a hard error - log it. */
1637		DPRINTK(TX_ERR, DEBUG, "Out of Tx resources, returning skb\n");
1638		netif_stop_queue(netdev);
1639		return 1;
1640	}
1641
1642	netdev->trans_start = jiffies;
1643	return 0;
1644}
1645
1646static int e100_tx_clean(struct nic *nic)
1647{
1648	struct cb *cb;
1649	int tx_cleaned = 0;
1650
1651	spin_lock(&nic->cb_lock);
1652
1653	/* Clean CBs marked complete */
1654	for(cb = nic->cb_to_clean;
1655	    cb->status & cpu_to_le16(cb_complete);
1656	    cb = nic->cb_to_clean = cb->next) {
1657		DPRINTK(TX_DONE, DEBUG, "cb[%d]->status = 0x%04X\n",
1658		        (int)(((void*)cb - (void*)nic->cbs)/sizeof(struct cb)),
1659		        cb->status);
1660
1661		if(likely(cb->skb != NULL)) {
1662			nic->net_stats.tx_packets++;
1663			nic->net_stats.tx_bytes += cb->skb->len;
1664
1665			pci_unmap_single(nic->pdev,
1666				le32_to_cpu(cb->u.tcb.tbd.buf_addr),
1667				le16_to_cpu(cb->u.tcb.tbd.size),
1668				PCI_DMA_TODEVICE);
1669			dev_kfree_skb_any(cb->skb);
1670			cb->skb = NULL;
1671			tx_cleaned = 1;
1672		}
1673		cb->status = 0;
1674		nic->cbs_avail++;
1675	}
1676
1677	spin_unlock(&nic->cb_lock);
1678
1679	/* Recover from running out of Tx resources in xmit_frame */
1680	if(unlikely(tx_cleaned && netif_queue_stopped(nic->netdev)))
1681		netif_wake_queue(nic->netdev);
1682
1683	return tx_cleaned;
1684}
1685
1686static void e100_clean_cbs(struct nic *nic)
1687{
1688	if(nic->cbs) {
1689		while(nic->cbs_avail != nic->params.cbs.count) {
1690			struct cb *cb = nic->cb_to_clean;
1691			if(cb->skb) {
1692				pci_unmap_single(nic->pdev,
1693					le32_to_cpu(cb->u.tcb.tbd.buf_addr),
1694					le16_to_cpu(cb->u.tcb.tbd.size),
1695					PCI_DMA_TODEVICE);
1696				dev_kfree_skb(cb->skb);
1697			}
1698			nic->cb_to_clean = nic->cb_to_clean->next;
1699			nic->cbs_avail++;
1700		}
1701		pci_free_consistent(nic->pdev,
1702			sizeof(struct cb) * nic->params.cbs.count,
1703			nic->cbs, nic->cbs_dma_addr);
1704		nic->cbs = NULL;
1705		nic->cbs_avail = 0;
1706	}
1707	nic->cuc_cmd = cuc_start;
1708	nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean =
1709		nic->cbs;
1710}
1711
1712static int e100_alloc_cbs(struct nic *nic)
1713{
1714	struct cb *cb;
1715	unsigned int i, count = nic->params.cbs.count;
1716
1717	nic->cuc_cmd = cuc_start;
1718	nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = NULL;
1719	nic->cbs_avail = 0;
1720
1721	nic->cbs = pci_alloc_consistent(nic->pdev,
1722		sizeof(struct cb) * count, &nic->cbs_dma_addr);
1723	if(!nic->cbs)
1724		return -ENOMEM;
1725
1726	for(cb = nic->cbs, i = 0; i < count; cb++, i++) {
1727		cb->next = (i + 1 < count) ? cb + 1 : nic->cbs;
1728		cb->prev = (i == 0) ? nic->cbs + count - 1 : cb - 1;
1729
1730		cb->dma_addr = nic->cbs_dma_addr + i * sizeof(struct cb);
1731		cb->link = cpu_to_le32(nic->cbs_dma_addr +
1732			((i+1) % count) * sizeof(struct cb));
1733		cb->skb = NULL;
1734	}
1735
1736	nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = nic->cbs;
1737	nic->cbs_avail = count;
1738
1739	return 0;
1740}
1741
1742static inline void e100_start_receiver(struct nic *nic)
1743{
1744	/* Start if RFA is non-NULL */
1745	if(nic->rx_to_clean->skb)
1746		e100_exec_cmd(nic, ruc_start, nic->rx_to_clean->dma_addr);
1747}
1748
1749#define RFD_BUF_LEN (sizeof(struct rfd) + VLAN_ETH_FRAME_LEN)
1750static int e100_rx_alloc_skb(struct nic *nic, struct rx *rx)
1751{
1752	if(!(rx->skb = netdev_alloc_skb(nic->netdev, RFD_BUF_LEN + NET_IP_ALIGN)))
1753		return -ENOMEM;
1754
1755	/* Align, init, and map the RFD. */
1756	skb_reserve(rx->skb, NET_IP_ALIGN);
1757	skb_copy_to_linear_data(rx->skb, &nic->blank_rfd, sizeof(struct rfd));
1758	rx->dma_addr = pci_map_single(nic->pdev, rx->skb->data,
1759		RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL);
1760
1761	if(pci_dma_mapping_error(rx->dma_addr)) {
1762		dev_kfree_skb_any(rx->skb);
1763		rx->skb = NULL;
1764		rx->dma_addr = 0;
1765		return -ENOMEM;
1766	}
1767
1768	/* Link the RFD to end of RFA by linking previous RFD to
1769	 * this one, and clearing EL bit of previous.  */
1770	if(rx->prev->skb) {
1771		struct rfd *prev_rfd = (struct rfd *)rx->prev->skb->data;
1772		put_unaligned(cpu_to_le32(rx->dma_addr),
1773			(u32 *)&prev_rfd->link);
1774		wmb();
1775		prev_rfd->command &= ~cpu_to_le16(cb_el & cb_s);
1776		pci_dma_sync_single_for_device(nic->pdev, rx->prev->dma_addr,
1777			sizeof(struct rfd), PCI_DMA_TODEVICE);
1778	}
1779
1780	return 0;
1781}
1782
1783static int e100_rx_indicate(struct nic *nic, struct rx *rx,
1784	unsigned int *work_done, unsigned int work_to_do)
1785{
1786	struct sk_buff *skb = rx->skb;
1787	struct rfd *rfd = (struct rfd *)skb->data;
1788	u16 rfd_status, actual_size;
1789
1790	if(unlikely(work_done && *work_done >= work_to_do))
1791		return -EAGAIN;
1792
1793	/* Need to sync before taking a peek at cb_complete bit */
1794	pci_dma_sync_single_for_cpu(nic->pdev, rx->dma_addr,
1795		sizeof(struct rfd), PCI_DMA_FROMDEVICE);
1796	rfd_status = le16_to_cpu(rfd->status);
1797
1798	DPRINTK(RX_STATUS, DEBUG, "status=0x%04X\n", rfd_status);
1799
1800	/* If data isn't ready, nothing to indicate */
1801	if(unlikely(!(rfd_status & cb_complete)))
1802		return -ENODATA;
1803
1804	/* Get actual data size */
1805	actual_size = le16_to_cpu(rfd->actual_size) & 0x3FFF;
1806	if(unlikely(actual_size > RFD_BUF_LEN - sizeof(struct rfd)))
1807		actual_size = RFD_BUF_LEN - sizeof(struct rfd);
1808
1809	/* Get data */
1810	pci_unmap_single(nic->pdev, rx->dma_addr,
1811		RFD_BUF_LEN, PCI_DMA_FROMDEVICE);
1812
1813	/* Pull off the RFD and put the actual data (minus eth hdr) */
1814	skb_reserve(skb, sizeof(struct rfd));
1815	skb_put(skb, actual_size);
1816	skb->protocol = eth_type_trans(skb, nic->netdev);
1817
1818	if(unlikely(!(rfd_status & cb_ok))) {
1819		/* Don't indicate if hardware indicates errors */
1820		dev_kfree_skb_any(skb);
1821	} else if(actual_size > ETH_DATA_LEN + VLAN_ETH_HLEN) {
1822		/* Don't indicate oversized frames */
1823		nic->rx_over_length_errors++;
1824		dev_kfree_skb_any(skb);
1825	} else {
1826		nic->net_stats.rx_packets++;
1827		nic->net_stats.rx_bytes += actual_size;
1828		nic->netdev->last_rx = jiffies;
1829		netif_receive_skb(skb);
1830		if(work_done)
1831			(*work_done)++;
1832	}
1833
1834	rx->skb = NULL;
1835
1836	return 0;
1837}
1838
1839static void e100_rx_clean(struct nic *nic, unsigned int *work_done,
1840	unsigned int work_to_do)
1841{
1842	struct rx *rx;
1843
1844	/* Indicate newly arrived packets */
1845	for(rx = nic->rx_to_clean; rx->skb; rx = nic->rx_to_clean = rx->next) {
1846		if(e100_rx_indicate(nic, rx, work_done, work_to_do))
1847			break; /* No more to clean */
1848	}
1849
1850	/* Alloc new skbs to refill list */
1851	for(rx = nic->rx_to_use; !rx->skb; rx = nic->rx_to_use = rx->next) {
1852		if(unlikely(e100_rx_alloc_skb(nic, rx)))
1853			break; /* Better luck next time (see watchdog) */
1854	}
1855}
1856
1857static void e100_rx_clean_list(struct nic *nic)
1858{
1859	struct rx *rx;
1860	unsigned int i, count = nic->params.rfds.count;
1861
1862	if(nic->rxs) {
1863		for(rx = nic->rxs, i = 0; i < count; rx++, i++) {
1864			if(rx->skb) {
1865				pci_unmap_single(nic->pdev, rx->dma_addr,
1866					RFD_BUF_LEN, PCI_DMA_FROMDEVICE);
1867				dev_kfree_skb(rx->skb);
1868			}
1869		}
1870		kfree(nic->rxs);
1871		nic->rxs = NULL;
1872	}
1873
1874	nic->rx_to_use = nic->rx_to_clean = NULL;
1875}
1876
1877static int e100_rx_alloc_list(struct nic *nic)
1878{
1879	struct rx *rx;
1880	unsigned int i, count = nic->params.rfds.count;
1881
1882	nic->rx_to_use = nic->rx_to_clean = NULL;
1883
1884	if(!(nic->rxs = kcalloc(count, sizeof(struct rx), GFP_ATOMIC)))
1885		return -ENOMEM;
1886
1887	for(rx = nic->rxs, i = 0; i < count; rx++, i++) {
1888		rx->next = (i + 1 < count) ? rx + 1 : nic->rxs;
1889		rx->prev = (i == 0) ? nic->rxs + count - 1 : rx - 1;
1890		if(e100_rx_alloc_skb(nic, rx)) {
1891			e100_rx_clean_list(nic);
1892			return -ENOMEM;
1893		}
1894	}
1895
1896	nic->rx_to_use = nic->rx_to_clean = nic->rxs;
1897
1898	return 0;
1899}
1900
1901static irqreturn_t e100_intr(int irq, void *dev_id)
1902{
1903	struct net_device *netdev = dev_id;
1904	struct nic *nic = netdev_priv(netdev);
1905	u8 stat_ack = readb(&nic->csr->scb.stat_ack);
1906
1907	DPRINTK(INTR, DEBUG, "stat_ack = 0x%02X\n", stat_ack);
1908
1909	if(stat_ack == stat_ack_not_ours ||	/* Not our interrupt */
1910	   stat_ack == stat_ack_not_present)	/* Hardware is ejected */
1911		return IRQ_NONE;
1912
1913	/* Ack interrupt(s) */
1914	writeb(stat_ack, &nic->csr->scb.stat_ack);
1915
1916	if(likely(netif_rx_schedule_prep(netdev))) {
1917		e100_disable_irq(nic);
1918		__netif_rx_schedule(netdev);
1919	}
1920
1921	return IRQ_HANDLED;
1922}
1923
1924static int e100_poll(struct net_device *netdev, int *budget)
1925{
1926	struct nic *nic = netdev_priv(netdev);
1927	unsigned int work_to_do = min(netdev->quota, *budget);
1928	unsigned int work_done = 0;
1929	int tx_cleaned;
1930
1931	e100_rx_clean(nic, &work_done, work_to_do);
1932	tx_cleaned = e100_tx_clean(nic);
1933
1934	/* If no Rx and Tx cleanup work was done, exit polling mode. */
1935	if((!tx_cleaned && (work_done == 0)) || !netif_running(netdev)) {
1936		netif_rx_complete(netdev);
1937		e100_enable_irq(nic);
1938		return 0;
1939	}
1940
1941	*budget -= work_done;
1942	netdev->quota -= work_done;
1943
1944	return 1;
1945}
1946
1947#ifdef CONFIG_NET_POLL_CONTROLLER
1948static void e100_netpoll(struct net_device *netdev)
1949{
1950	struct nic *nic = netdev_priv(netdev);
1951
1952	e100_disable_irq(nic);
1953	e100_intr(nic->pdev->irq, netdev);
1954	e100_tx_clean(nic);
1955	e100_enable_irq(nic);
1956}
1957#endif
1958
1959static struct net_device_stats *e100_get_stats(struct net_device *netdev)
1960{
1961	struct nic *nic = netdev_priv(netdev);
1962	return &nic->net_stats;
1963}
1964
1965static int e100_set_mac_address(struct net_device *netdev, void *p)
1966{
1967	struct nic *nic = netdev_priv(netdev);
1968	struct sockaddr *addr = p;
1969
1970	if (!is_valid_ether_addr(addr->sa_data))
1971		return -EADDRNOTAVAIL;
1972
1973	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
1974	e100_exec_cb(nic, NULL, e100_setup_iaaddr);
1975
1976	return 0;
1977}
1978
1979static int e100_change_mtu(struct net_device *netdev, int new_mtu)
1980{
1981	if(new_mtu < ETH_ZLEN || new_mtu > ETH_DATA_LEN)
1982		return -EINVAL;
1983	netdev->mtu = new_mtu;
1984	return 0;
1985}
1986
1987static int e100_asf(struct nic *nic)
1988{
1989	/* ASF can be enabled from eeprom */
1990	return((nic->pdev->device >= 0x1050) && (nic->pdev->device <= 0x1057) &&
1991	   (nic->eeprom[eeprom_config_asf] & eeprom_asf) &&
1992	   !(nic->eeprom[eeprom_config_asf] & eeprom_gcl) &&
1993	   ((nic->eeprom[eeprom_smbus_addr] & 0xFF) != 0xFE));
1994}
1995
1996static int e100_up(struct nic *nic)
1997{
1998	int err;
1999
2000	if((err = e100_rx_alloc_list(nic)))
2001		return err;
2002	if((err = e100_alloc_cbs(nic)))
2003		goto err_rx_clean_list;
2004	if((err = e100_hw_init(nic)))
2005		goto err_clean_cbs;
2006	e100_set_multicast_list(nic->netdev);
2007	e100_start_receiver(nic);
2008	mod_timer(&nic->watchdog, jiffies);
2009	if((err = request_irq(nic->pdev->irq, e100_intr, IRQF_SHARED,
2010		nic->netdev->name, nic->netdev)))
2011		goto err_no_irq;
2012	netif_wake_queue(nic->netdev);
2013	netif_poll_enable(nic->netdev);
2014	/* enable ints _after_ enabling poll, preventing a race between
2015	 * disable ints+schedule */
2016	e100_enable_irq(nic);
2017	return 0;
2018
2019err_no_irq:
2020	del_timer_sync(&nic->watchdog);
2021err_clean_cbs:
2022	e100_clean_cbs(nic);
2023err_rx_clean_list:
2024	e100_rx_clean_list(nic);
2025	return err;
2026}
2027
2028static void e100_down(struct nic *nic)
2029{
2030	/* wait here for poll to complete */
2031	netif_poll_disable(nic->netdev);
2032	netif_stop_queue(nic->netdev);
2033	e100_hw_reset(nic);
2034	free_irq(nic->pdev->irq, nic->netdev);
2035	del_timer_sync(&nic->watchdog);
2036	netif_carrier_off(nic->netdev);
2037	e100_clean_cbs(nic);
2038	e100_rx_clean_list(nic);
2039}
2040
2041static void e100_tx_timeout(struct net_device *netdev)
2042{
2043	struct nic *nic = netdev_priv(netdev);
2044
2045	/* Reset outside of interrupt context, to avoid request_irq
2046	 * in interrupt context */
2047	schedule_work(&nic->tx_timeout_task);
2048}
2049
2050static void e100_tx_timeout_task(struct work_struct *work)
2051{
2052	struct nic *nic = container_of(work, struct nic, tx_timeout_task);
2053	struct net_device *netdev = nic->netdev;
2054
2055	DPRINTK(TX_ERR, DEBUG, "scb.status=0x%02X\n",
2056		readb(&nic->csr->scb.status));
2057	e100_down(netdev_priv(netdev));
2058	e100_up(netdev_priv(netdev));
2059}
2060
2061static int e100_loopback_test(struct nic *nic, enum loopback loopback_mode)
2062{
2063	int err;
2064	struct sk_buff *skb;
2065
2066	/* Use driver resources to perform internal MAC or PHY
2067	 * loopback test.  A single packet is prepared and transmitted
2068	 * in loopback mode, and the test passes if the received
2069	 * packet compares byte-for-byte to the transmitted packet. */
2070
2071	if((err = e100_rx_alloc_list(nic)))
2072		return err;
2073	if((err = e100_alloc_cbs(nic)))
2074		goto err_clean_rx;
2075
2076	/* ICH PHY loopback is broken so do MAC loopback instead */
2077	if(nic->flags & ich && loopback_mode == lb_phy)
2078		loopback_mode = lb_mac;
2079
2080	nic->loopback = loopback_mode;
2081	if((err = e100_hw_init(nic)))
2082		goto err_loopback_none;
2083
2084	if(loopback_mode == lb_phy)
2085		mdio_write(nic->netdev, nic->mii.phy_id, MII_BMCR,
2086			BMCR_LOOPBACK);
2087
2088	e100_start_receiver(nic);
2089
2090	if(!(skb = netdev_alloc_skb(nic->netdev, ETH_DATA_LEN))) {
2091		err = -ENOMEM;
2092		goto err_loopback_none;
2093	}
2094	skb_put(skb, ETH_DATA_LEN);
2095	memset(skb->data, 0xFF, ETH_DATA_LEN);
2096	e100_xmit_frame(skb, nic->netdev);
2097
2098	msleep(10);
2099
2100	pci_dma_sync_single_for_cpu(nic->pdev, nic->rx_to_clean->dma_addr,
2101			RFD_BUF_LEN, PCI_DMA_FROMDEVICE);
2102
2103	if(memcmp(nic->rx_to_clean->skb->data + sizeof(struct rfd),
2104	   skb->data, ETH_DATA_LEN))
2105		err = -EAGAIN;
2106
2107err_loopback_none:
2108	mdio_write(nic->netdev, nic->mii.phy_id, MII_BMCR, 0);
2109	nic->loopback = lb_none;
2110	e100_clean_cbs(nic);
2111	e100_hw_reset(nic);
2112err_clean_rx:
2113	e100_rx_clean_list(nic);
2114	return err;
2115}
2116
2117#define MII_LED_CONTROL	0x1B
2118static void e100_blink_led(unsigned long data)
2119{
2120	struct nic *nic = (struct nic *)data;
2121	enum led_state {
2122		led_on     = 0x01,
2123		led_off    = 0x04,
2124		led_on_559 = 0x05,
2125		led_on_557 = 0x07,
2126	};
2127
2128	nic->leds = (nic->leds & led_on) ? led_off :
2129		(nic->mac < mac_82559_D101M) ? led_on_557 : led_on_559;
2130	mdio_write(nic->netdev, nic->mii.phy_id, MII_LED_CONTROL, nic->leds);
2131	mod_timer(&nic->blink_timer, jiffies + HZ / 4);
2132}
2133
2134static int e100_get_settings(struct net_device *netdev, struct ethtool_cmd *cmd)
2135{
2136	struct nic *nic = netdev_priv(netdev);
2137	return mii_ethtool_gset(&nic->mii, cmd);
2138}
2139
2140static int e100_set_settings(struct net_device *netdev, struct ethtool_cmd *cmd)
2141{
2142	struct nic *nic = netdev_priv(netdev);
2143	int err;
2144
2145	mdio_write(netdev, nic->mii.phy_id, MII_BMCR, BMCR_RESET);
2146	err = mii_ethtool_sset(&nic->mii, cmd);
2147	e100_exec_cb(nic, NULL, e100_configure);
2148
2149	return err;
2150}
2151
2152static void e100_get_drvinfo(struct net_device *netdev,
2153	struct ethtool_drvinfo *info)
2154{
2155	struct nic *nic = netdev_priv(netdev);
2156	strcpy(info->driver, DRV_NAME);
2157	strcpy(info->version, DRV_VERSION);
2158	strcpy(info->fw_version, "N/A");
2159	strcpy(info->bus_info, pci_name(nic->pdev));
2160}
2161
2162static int e100_get_regs_len(struct net_device *netdev)
2163{
2164	struct nic *nic = netdev_priv(netdev);
2165#define E100_PHY_REGS		0x1C
2166#define E100_REGS_LEN		1 + E100_PHY_REGS + \
2167	sizeof(nic->mem->dump_buf) / sizeof(u32)
2168	return E100_REGS_LEN * sizeof(u32);
2169}
2170
2171static void e100_get_regs(struct net_device *netdev,
2172	struct ethtool_regs *regs, void *p)
2173{
2174	struct nic *nic = netdev_priv(netdev);
2175	u32 *buff = p;
2176	int i;
2177
2178	regs->version = (1 << 24) | nic->rev_id;
2179	buff[0] = readb(&nic->csr->scb.cmd_hi) << 24 |
2180		readb(&nic->csr->scb.cmd_lo) << 16 |
2181		readw(&nic->csr->scb.status);
2182	for(i = E100_PHY_REGS; i >= 0; i--)
2183		buff[1 + E100_PHY_REGS - i] =
2184			mdio_read(netdev, nic->mii.phy_id, i);
2185	memset(nic->mem->dump_buf, 0, sizeof(nic->mem->dump_buf));
2186	e100_exec_cb(nic, NULL, e100_dump);
2187	msleep(10);
2188	memcpy(&buff[2 + E100_PHY_REGS], nic->mem->dump_buf,
2189		sizeof(nic->mem->dump_buf));
2190}
2191
2192static void e100_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2193{
2194	struct nic *nic = netdev_priv(netdev);
2195	wol->supported = (nic->mac >= mac_82558_D101_A4) ?  WAKE_MAGIC : 0;
2196	wol->wolopts = (nic->flags & wol_magic) ? WAKE_MAGIC : 0;
2197}
2198
2199static int e100_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2200{
2201	struct nic *nic = netdev_priv(netdev);
2202
2203	if(wol->wolopts != WAKE_MAGIC && wol->wolopts != 0)
2204		return -EOPNOTSUPP;
2205
2206	if(wol->wolopts)
2207		nic->flags |= wol_magic;
2208	else
2209		nic->flags &= ~wol_magic;
2210
2211	e100_exec_cb(nic, NULL, e100_configure);
2212
2213	return 0;
2214}
2215
2216static u32 e100_get_msglevel(struct net_device *netdev)
2217{
2218	struct nic *nic = netdev_priv(netdev);
2219	return nic->msg_enable;
2220}
2221
2222static void e100_set_msglevel(struct net_device *netdev, u32 value)
2223{
2224	struct nic *nic = netdev_priv(netdev);
2225	nic->msg_enable = value;
2226}
2227
2228static int e100_nway_reset(struct net_device *netdev)
2229{
2230	struct nic *nic = netdev_priv(netdev);
2231	return mii_nway_restart(&nic->mii);
2232}
2233
2234static u32 e100_get_link(struct net_device *netdev)
2235{
2236	struct nic *nic = netdev_priv(netdev);
2237	return mii_link_ok(&nic->mii);
2238}
2239
2240static int e100_get_eeprom_len(struct net_device *netdev)
2241{
2242	struct nic *nic = netdev_priv(netdev);
2243	return nic->eeprom_wc << 1;
2244}
2245
2246#define E100_EEPROM_MAGIC	0x1234
2247static int e100_get_eeprom(struct net_device *netdev,
2248	struct ethtool_eeprom *eeprom, u8 *bytes)
2249{
2250	struct nic *nic = netdev_priv(netdev);
2251
2252	eeprom->magic = E100_EEPROM_MAGIC;
2253	memcpy(bytes, &((u8 *)nic->eeprom)[eeprom->offset], eeprom->len);
2254
2255	return 0;
2256}
2257
2258static int e100_set_eeprom(struct net_device *netdev,
2259	struct ethtool_eeprom *eeprom, u8 *bytes)
2260{
2261	struct nic *nic = netdev_priv(netdev);
2262
2263	if(eeprom->magic != E100_EEPROM_MAGIC)
2264		return -EINVAL;
2265
2266	memcpy(&((u8 *)nic->eeprom)[eeprom->offset], bytes, eeprom->len);
2267
2268	return e100_eeprom_save(nic, eeprom->offset >> 1,
2269		(eeprom->len >> 1) + 1);
2270}
2271
2272static void e100_get_ringparam(struct net_device *netdev,
2273	struct ethtool_ringparam *ring)
2274{
2275	struct nic *nic = netdev_priv(netdev);
2276	struct param_range *rfds = &nic->params.rfds;
2277	struct param_range *cbs = &nic->params.cbs;
2278
2279	ring->rx_max_pending = rfds->max;
2280	ring->tx_max_pending = cbs->max;
2281	ring->rx_mini_max_pending = 0;
2282	ring->rx_jumbo_max_pending = 0;
2283	ring->rx_pending = rfds->count;
2284	ring->tx_pending = cbs->count;
2285	ring->rx_mini_pending = 0;
2286	ring->rx_jumbo_pending = 0;
2287}
2288
2289static int e100_set_ringparam(struct net_device *netdev,
2290	struct ethtool_ringparam *ring)
2291{
2292	struct nic *nic = netdev_priv(netdev);
2293	struct param_range *rfds = &nic->params.rfds;
2294	struct param_range *cbs = &nic->params.cbs;
2295
2296	if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
2297		return -EINVAL;
2298
2299	if(netif_running(netdev))
2300		e100_down(nic);
2301	rfds->count = max(ring->rx_pending, rfds->min);
2302	rfds->count = min(rfds->count, rfds->max);
2303	cbs->count = max(ring->tx_pending, cbs->min);
2304	cbs->count = min(cbs->count, cbs->max);
2305	DPRINTK(DRV, INFO, "Ring Param settings: rx: %d, tx %d\n",
2306	        rfds->count, cbs->count);
2307	if(netif_running(netdev))
2308		e100_up(nic);
2309
2310	return 0;
2311}
2312
2313static const char e100_gstrings_test[][ETH_GSTRING_LEN] = {
2314	"Link test     (on/offline)",
2315	"Eeprom test   (on/offline)",
2316	"Self test        (offline)",
2317	"Mac loopback     (offline)",
2318	"Phy loopback     (offline)",
2319};
2320#define E100_TEST_LEN	sizeof(e100_gstrings_test) / ETH_GSTRING_LEN
2321
2322static int e100_diag_test_count(struct net_device *netdev)
2323{
2324	return E100_TEST_LEN;
2325}
2326
2327static void e100_diag_test(struct net_device *netdev,
2328	struct ethtool_test *test, u64 *data)
2329{
2330	struct ethtool_cmd cmd;
2331	struct nic *nic = netdev_priv(netdev);
2332	int i, err;
2333
2334	memset(data, 0, E100_TEST_LEN * sizeof(u64));
2335	data[0] = !mii_link_ok(&nic->mii);
2336	data[1] = e100_eeprom_load(nic);
2337	if(test->flags & ETH_TEST_FL_OFFLINE) {
2338
2339		/* save speed, duplex & autoneg settings */
2340		err = mii_ethtool_gset(&nic->mii, &cmd);
2341
2342		if(netif_running(netdev))
2343			e100_down(nic);
2344		data[2] = e100_self_test(nic);
2345		data[3] = e100_loopback_test(nic, lb_mac);
2346		data[4] = e100_loopback_test(nic, lb_phy);
2347
2348		/* restore speed, duplex & autoneg settings */
2349		err = mii_ethtool_sset(&nic->mii, &cmd);
2350
2351		if(netif_running(netdev))
2352			e100_up(nic);
2353	}
2354	for(i = 0; i < E100_TEST_LEN; i++)
2355		test->flags |= data[i] ? ETH_TEST_FL_FAILED : 0;
2356
2357	msleep_interruptible(4 * 1000);
2358}
2359
2360static int e100_phys_id(struct net_device *netdev, u32 data)
2361{
2362	struct nic *nic = netdev_priv(netdev);
2363
2364	if(!data || data > (u32)(MAX_SCHEDULE_TIMEOUT / HZ))
2365		data = (u32)(MAX_SCHEDULE_TIMEOUT / HZ);
2366	mod_timer(&nic->blink_timer, jiffies);
2367	msleep_interruptible(data * 1000);
2368	del_timer_sync(&nic->blink_timer);
2369	mdio_write(netdev, nic->mii.phy_id, MII_LED_CONTROL, 0);
2370
2371	return 0;
2372}
2373
2374static const char e100_gstrings_stats[][ETH_GSTRING_LEN] = {
2375	"rx_packets", "tx_packets", "rx_bytes", "tx_bytes", "rx_errors",
2376	"tx_errors", "rx_dropped", "tx_dropped", "multicast", "collisions",
2377	"rx_length_errors", "rx_over_errors", "rx_crc_errors",
2378	"rx_frame_errors", "rx_fifo_errors", "rx_missed_errors",
2379	"tx_aborted_errors", "tx_carrier_errors", "tx_fifo_errors",
2380	"tx_heartbeat_errors", "tx_window_errors",
2381	/* device-specific stats */
2382	"tx_deferred", "tx_single_collisions", "tx_multi_collisions",
2383	"tx_flow_control_pause", "rx_flow_control_pause",
2384	"rx_flow_control_unsupported", "tx_tco_packets", "rx_tco_packets",
2385};
2386#define E100_NET_STATS_LEN	21
2387#define E100_STATS_LEN	sizeof(e100_gstrings_stats) / ETH_GSTRING_LEN
2388
2389static int e100_get_stats_count(struct net_device *netdev)
2390{
2391	return E100_STATS_LEN;
2392}
2393
2394static void e100_get_ethtool_stats(struct net_device *netdev,
2395	struct ethtool_stats *stats, u64 *data)
2396{
2397	struct nic *nic = netdev_priv(netdev);
2398	int i;
2399
2400	for(i = 0; i < E100_NET_STATS_LEN; i++)
2401		data[i] = ((unsigned long *)&nic->net_stats)[i];
2402
2403	data[i++] = nic->tx_deferred;
2404	data[i++] = nic->tx_single_collisions;
2405	data[i++] = nic->tx_multiple_collisions;
2406	data[i++] = nic->tx_fc_pause;
2407	data[i++] = nic->rx_fc_pause;
2408	data[i++] = nic->rx_fc_unsupported;
2409	data[i++] = nic->tx_tco_frames;
2410	data[i++] = nic->rx_tco_frames;
2411}
2412
2413static void e100_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
2414{
2415	switch(stringset) {
2416	case ETH_SS_TEST:
2417		memcpy(data, *e100_gstrings_test, sizeof(e100_gstrings_test));
2418		break;
2419	case ETH_SS_STATS:
2420		memcpy(data, *e100_gstrings_stats, sizeof(e100_gstrings_stats));
2421		break;
2422	}
2423}
2424
2425static const struct ethtool_ops e100_ethtool_ops = {
2426	.get_settings		= e100_get_settings,
2427	.set_settings		= e100_set_settings,
2428	.get_drvinfo		= e100_get_drvinfo,
2429	.get_regs_len		= e100_get_regs_len,
2430	.get_regs		= e100_get_regs,
2431	.get_wol		= e100_get_wol,
2432	.set_wol		= e100_set_wol,
2433	.get_msglevel		= e100_get_msglevel,
2434	.set_msglevel		= e100_set_msglevel,
2435	.nway_reset		= e100_nway_reset,
2436	.get_link		= e100_get_link,
2437	.get_eeprom_len		= e100_get_eeprom_len,
2438	.get_eeprom		= e100_get_eeprom,
2439	.set_eeprom		= e100_set_eeprom,
2440	.get_ringparam		= e100_get_ringparam,
2441	.set_ringparam		= e100_set_ringparam,
2442	.self_test_count	= e100_diag_test_count,
2443	.self_test		= e100_diag_test,
2444	.get_strings		= e100_get_strings,
2445	.phys_id		= e100_phys_id,
2446	.get_stats_count	= e100_get_stats_count,
2447	.get_ethtool_stats	= e100_get_ethtool_stats,
2448	.get_perm_addr		= ethtool_op_get_perm_addr,
2449};
2450
2451static int e100_do_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
2452{
2453	struct nic *nic = netdev_priv(netdev);
2454
2455	return generic_mii_ioctl(&nic->mii, if_mii(ifr), cmd, NULL);
2456}
2457
2458static int e100_alloc(struct nic *nic)
2459{
2460	nic->mem = pci_alloc_consistent(nic->pdev, sizeof(struct mem),
2461		&nic->dma_addr);
2462	return nic->mem ? 0 : -ENOMEM;
2463}
2464
2465static void e100_free(struct nic *nic)
2466{
2467	if(nic->mem) {
2468		pci_free_consistent(nic->pdev, sizeof(struct mem),
2469			nic->mem, nic->dma_addr);
2470		nic->mem = NULL;
2471	}
2472}
2473
2474static int e100_open(struct net_device *netdev)
2475{
2476	struct nic *nic = netdev_priv(netdev);
2477	int err = 0;
2478
2479	netif_carrier_off(netdev);
2480	if((err = e100_up(nic)))
2481		DPRINTK(IFUP, ERR, "Cannot open interface, aborting.\n");
2482	return err;
2483}
2484
2485static int e100_close(struct net_device *netdev)
2486{
2487	e100_down(netdev_priv(netdev));
2488	return 0;
2489}
2490
2491static int __devinit e100_probe(struct pci_dev *pdev,
2492	const struct pci_device_id *ent)
2493{
2494	struct net_device *netdev;
2495	struct nic *nic;
2496	int err;
2497
2498	if(!(netdev = alloc_etherdev(sizeof(struct nic)))) {
2499		if(((1 << debug) - 1) & NETIF_MSG_PROBE)
2500			printk(KERN_ERR PFX "Etherdev alloc failed, abort.\n");
2501		return -ENOMEM;
2502	}
2503
2504	netdev->open = e100_open;
2505	netdev->stop = e100_close;
2506	netdev->hard_start_xmit = e100_xmit_frame;
2507	netdev->get_stats = e100_get_stats;
2508	netdev->set_multicast_list = e100_set_multicast_list;
2509	netdev->set_mac_address = e100_set_mac_address;
2510	netdev->change_mtu = e100_change_mtu;
2511	netdev->do_ioctl = e100_do_ioctl;
2512	SET_ETHTOOL_OPS(netdev, &e100_ethtool_ops);
2513	netdev->tx_timeout = e100_tx_timeout;
2514	netdev->watchdog_timeo = E100_WATCHDOG_PERIOD;
2515	netdev->poll = e100_poll;
2516	netdev->weight = E100_NAPI_WEIGHT;
2517#ifdef CONFIG_NET_POLL_CONTROLLER
2518	netdev->poll_controller = e100_netpoll;
2519#endif
2520	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2521
2522	nic = netdev_priv(netdev);
2523	nic->netdev = netdev;
2524	nic->pdev = pdev;
2525	nic->msg_enable = (1 << debug) - 1;
2526	pci_set_drvdata(pdev, netdev);
2527
2528	if((err = pci_enable_device(pdev))) {
2529		DPRINTK(PROBE, ERR, "Cannot enable PCI device, aborting.\n");
2530		goto err_out_free_dev;
2531	}
2532
2533	if(!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
2534		DPRINTK(PROBE, ERR, "Cannot find proper PCI device "
2535			"base address, aborting.\n");
2536		err = -ENODEV;
2537		goto err_out_disable_pdev;
2538	}
2539
2540	if((err = pci_request_regions(pdev, DRV_NAME))) {
2541		DPRINTK(PROBE, ERR, "Cannot obtain PCI resources, aborting.\n");
2542		goto err_out_disable_pdev;
2543	}
2544
2545	if((err = pci_set_dma_mask(pdev, DMA_32BIT_MASK))) {
2546		DPRINTK(PROBE, ERR, "No usable DMA configuration, aborting.\n");
2547		goto err_out_free_res;
2548	}
2549
2550	SET_MODULE_OWNER(netdev);
2551	SET_NETDEV_DEV(netdev, &pdev->dev);
2552
2553	nic->csr = ioremap(pci_resource_start(pdev, 0), sizeof(struct csr));
2554	if(!nic->csr) {
2555		DPRINTK(PROBE, ERR, "Cannot map device registers, aborting.\n");
2556		err = -ENOMEM;
2557		goto err_out_free_res;
2558	}
2559
2560	if(ent->driver_data)
2561		nic->flags |= ich;
2562	else
2563		nic->flags &= ~ich;
2564
2565	e100_get_defaults(nic);
2566
2567	/* locks must be initialized before calling hw_reset */
2568	spin_lock_init(&nic->cb_lock);
2569	spin_lock_init(&nic->cmd_lock);
2570	spin_lock_init(&nic->mdio_lock);
2571
2572	/* Reset the device before pci_set_master() in case device is in some
2573	 * funky state and has an interrupt pending - hint: we don't have the
2574	 * interrupt handler registered yet. */
2575	e100_hw_reset(nic);
2576
2577	pci_set_master(pdev);
2578
2579	init_timer(&nic->watchdog);
2580	nic->watchdog.function = e100_watchdog;
2581	nic->watchdog.data = (unsigned long)nic;
2582	init_timer(&nic->blink_timer);
2583	nic->blink_timer.function = e100_blink_led;
2584	nic->blink_timer.data = (unsigned long)nic;
2585
2586	INIT_WORK(&nic->tx_timeout_task, e100_tx_timeout_task);
2587
2588	if((err = e100_alloc(nic))) {
2589		DPRINTK(PROBE, ERR, "Cannot alloc driver memory, aborting.\n");
2590		goto err_out_iounmap;
2591	}
2592
2593	if((err = e100_eeprom_load(nic)))
2594		goto err_out_free;
2595
2596	e100_phy_init(nic);
2597
2598	memcpy(netdev->dev_addr, nic->eeprom, ETH_ALEN);
2599	memcpy(netdev->perm_addr, nic->eeprom, ETH_ALEN);
2600	if (!is_valid_ether_addr(netdev->perm_addr)) {
2601		if (!eeprom_bad_csum_allow) {
2602			DPRINTK(PROBE, ERR, "Invalid MAC address from "
2603			        "EEPROM, aborting.\n");
2604			err = -EAGAIN;
2605			goto err_out_free;
2606		} else {
2607			DPRINTK(PROBE, ERR, "Invalid MAC address from EEPROM, "
2608			        "you MUST configure one.\n");
2609		}
2610	}
2611
2612	/* Wol magic packet can be enabled from eeprom */
2613	if((nic->mac >= mac_82558_D101_A4) &&
2614	   (nic->eeprom[eeprom_id] & eeprom_id_wol))
2615		nic->flags |= wol_magic;
2616
2617	/* ack any pending wake events, disable PME */
2618	err = pci_enable_wake(pdev, 0, 0);
2619	if (err)
2620		DPRINTK(PROBE, ERR, "Error clearing wake event\n");
2621
2622	strcpy(netdev->name, "eth%d");
2623	if((err = register_netdev(netdev))) {
2624		DPRINTK(PROBE, ERR, "Cannot register net device, aborting.\n");
2625		goto err_out_free;
2626	}
2627
2628	DPRINTK(PROBE, INFO, "addr 0x%llx, irq %d, "
2629		"MAC addr %02X:%02X:%02X:%02X:%02X:%02X\n",
2630		(unsigned long long)pci_resource_start(pdev, 0), pdev->irq,
2631		netdev->dev_addr[0], netdev->dev_addr[1], netdev->dev_addr[2],
2632		netdev->dev_addr[3], netdev->dev_addr[4], netdev->dev_addr[5]);
2633
2634	return 0;
2635
2636err_out_free:
2637	e100_free(nic);
2638err_out_iounmap:
2639	iounmap(nic->csr);
2640err_out_free_res:
2641	pci_release_regions(pdev);
2642err_out_disable_pdev:
2643	pci_disable_device(pdev);
2644err_out_free_dev:
2645	pci_set_drvdata(pdev, NULL);
2646	free_netdev(netdev);
2647	return err;
2648}
2649
2650static void __devexit e100_remove(struct pci_dev *pdev)
2651{
2652	struct net_device *netdev = pci_get_drvdata(pdev);
2653
2654	if(netdev) {
2655		struct nic *nic = netdev_priv(netdev);
2656		unregister_netdev(netdev);
2657		e100_free(nic);
2658		iounmap(nic->csr);
2659		free_netdev(netdev);
2660		pci_release_regions(pdev);
2661		pci_disable_device(pdev);
2662		pci_set_drvdata(pdev, NULL);
2663	}
2664}
2665
2666#ifdef CONFIG_PM
2667static int e100_suspend(struct pci_dev *pdev, pm_message_t state)
2668{
2669	struct net_device *netdev = pci_get_drvdata(pdev);
2670	struct nic *nic = netdev_priv(netdev);
2671
2672	if (netif_running(netdev))
2673		netif_poll_disable(nic->netdev);
2674	del_timer_sync(&nic->watchdog);
2675	netif_carrier_off(nic->netdev);
2676	netif_device_detach(netdev);
2677
2678	pci_save_state(pdev);
2679
2680	if ((nic->flags & wol_magic) | e100_asf(nic)) {
2681		pci_enable_wake(pdev, PCI_D3hot, 1);
2682		pci_enable_wake(pdev, PCI_D3cold, 1);
2683	} else {
2684		pci_enable_wake(pdev, PCI_D3hot, 0);
2685		pci_enable_wake(pdev, PCI_D3cold, 0);
2686	}
2687
2688	pci_disable_device(pdev);
2689	free_irq(pdev->irq, netdev);
2690	pci_set_power_state(pdev, PCI_D3hot);
2691
2692	return 0;
2693}
2694
2695static int e100_resume(struct pci_dev *pdev)
2696{
2697	struct net_device *netdev = pci_get_drvdata(pdev);
2698	struct nic *nic = netdev_priv(netdev);
2699
2700	pci_set_power_state(pdev, PCI_D0);
2701	pci_restore_state(pdev);
2702	/* ack any pending wake events, disable PME */
2703	pci_enable_wake(pdev, 0, 0);
2704
2705	netif_device_attach(netdev);
2706	if (netif_running(netdev))
2707		e100_up(nic);
2708
2709	return 0;
2710}
2711#endif /* CONFIG_PM */
2712
2713static void e100_shutdown(struct pci_dev *pdev)
2714{
2715	struct net_device *netdev = pci_get_drvdata(pdev);
2716	struct nic *nic = netdev_priv(netdev);
2717
2718	if (netif_running(netdev))
2719		netif_poll_disable(nic->netdev);
2720	del_timer_sync(&nic->watchdog);
2721	netif_carrier_off(nic->netdev);
2722
2723	if ((nic->flags & wol_magic) | e100_asf(nic)) {
2724		pci_enable_wake(pdev, PCI_D3hot, 1);
2725		pci_enable_wake(pdev, PCI_D3cold, 1);
2726	} else {
2727		pci_enable_wake(pdev, PCI_D3hot, 0);
2728		pci_enable_wake(pdev, PCI_D3cold, 0);
2729	}
2730
2731	pci_disable_device(pdev);
2732	pci_set_power_state(pdev, PCI_D3hot);
2733}
2734
2735/* ------------------ PCI Error Recovery infrastructure  -------------- */
2736/**
2737 * e100_io_error_detected - called when PCI error is detected.
2738 * @pdev: Pointer to PCI device
2739 * @state: The current pci conneection state
2740 */
2741static pci_ers_result_t e100_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state)
2742{
2743	struct net_device *netdev = pci_get_drvdata(pdev);
2744
2745	/* Similar to calling e100_down(), but avoids adpater I/O. */
2746	netdev->stop(netdev);
2747
2748	/* Detach; put netif into state similar to hotplug unplug. */
2749	netif_poll_enable(netdev);
2750	netif_device_detach(netdev);
2751	pci_disable_device(pdev);
2752
2753	/* Request a slot reset. */
2754	return PCI_ERS_RESULT_NEED_RESET;
2755}
2756
2757/**
2758 * e100_io_slot_reset - called after the pci bus has been reset.
2759 * @pdev: Pointer to PCI device
2760 *
2761 * Restart the card from scratch.
2762 */
2763static pci_ers_result_t e100_io_slot_reset(struct pci_dev *pdev)
2764{
2765	struct net_device *netdev = pci_get_drvdata(pdev);
2766	struct nic *nic = netdev_priv(netdev);
2767
2768	if (pci_enable_device(pdev)) {
2769		printk(KERN_ERR "e100: Cannot re-enable PCI device after reset.\n");
2770		return PCI_ERS_RESULT_DISCONNECT;
2771	}
2772	pci_set_master(pdev);
2773
2774	/* Only one device per card can do a reset */
2775	if (0 != PCI_FUNC(pdev->devfn))
2776		return PCI_ERS_RESULT_RECOVERED;
2777	e100_hw_reset(nic);
2778	e100_phy_init(nic);
2779
2780	return PCI_ERS_RESULT_RECOVERED;
2781}
2782
2783/**
2784 * e100_io_resume - resume normal operations
2785 * @pdev: Pointer to PCI device
2786 *
2787 * Resume normal operations after an error recovery
2788 * sequence has been completed.
2789 */
2790static void e100_io_resume(struct pci_dev *pdev)
2791{
2792	struct net_device *netdev = pci_get_drvdata(pdev);
2793	struct nic *nic = netdev_priv(netdev);
2794
2795	/* ack any pending wake events, disable PME */
2796	pci_enable_wake(pdev, 0, 0);
2797
2798	netif_device_attach(netdev);
2799	if (netif_running(netdev)) {
2800		e100_open(netdev);
2801		mod_timer(&nic->watchdog, jiffies);
2802	}
2803}
2804
2805static struct pci_error_handlers e100_err_handler = {
2806	.error_detected = e100_io_error_detected,
2807	.slot_reset = e100_io_slot_reset,
2808	.resume = e100_io_resume,
2809};
2810
2811static struct pci_driver e100_driver = {
2812	.name =         DRV_NAME,
2813	.id_table =     e100_id_table,
2814	.probe =        e100_probe,
2815	.remove =       __devexit_p(e100_remove),
2816#ifdef CONFIG_PM
2817	/* Power Management hooks */
2818	.suspend =      e100_suspend,
2819	.resume =       e100_resume,
2820#endif
2821	.shutdown =     e100_shutdown,
2822	.err_handler = &e100_err_handler,
2823};
2824
2825static int __init e100_init_module(void)
2826{
2827	if(((1 << debug) - 1) & NETIF_MSG_DRV) {
2828		printk(KERN_INFO PFX "%s, %s\n", DRV_DESCRIPTION, DRV_VERSION);
2829		printk(KERN_INFO PFX "%s\n", DRV_COPYRIGHT);
2830	}
2831	return pci_register_driver(&e100_driver);
2832}
2833
2834static void __exit e100_cleanup_module(void)
2835{
2836	pci_unregister_driver(&e100_driver);
2837}
2838
2839module_init(e100_init_module);
2840module_exit(e100_cleanup_module);
2841