1/*******************************************************************************
2
3  Intel(R) Gigabit Ethernet Linux driver
4  Copyright(c) 2007-2012 Intel Corporation.
5
6  This program is free software; you can redistribute it and/or modify it
7  under the terms and conditions of the GNU General Public License,
8  version 2, as published by the Free Software Foundation.
9
10  This program is distributed in the hope it will be useful, but WITHOUT
11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  more details.
14
15  You should have received a copy of the GNU General Public License along with
16  this program; if not, write to the Free Software Foundation, Inc.,
17  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19  The full GNU General Public License is included in this distribution in
20  the file called "COPYING".
21
22  Contact Information:
23  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26*******************************************************************************/
27
28#include <linux/if_ether.h>
29#include <linux/delay.h>
30
31#include "e1000_mac.h"
32#include "e1000_nvm.h"
33
34/**
35 *  igb_raise_eec_clk - Raise EEPROM clock
36 *  @hw: pointer to the HW structure
37 *  @eecd: pointer to the EEPROM
38 *
39 *  Enable/Raise the EEPROM clock bit.
40 **/
41static void igb_raise_eec_clk(struct e1000_hw *hw, u32 *eecd)
42{
43	*eecd = *eecd | E1000_EECD_SK;
44	wr32(E1000_EECD, *eecd);
45	wrfl();
46	udelay(hw->nvm.delay_usec);
47}
48
49/**
50 *  igb_lower_eec_clk - Lower EEPROM clock
51 *  @hw: pointer to the HW structure
52 *  @eecd: pointer to the EEPROM
53 *
54 *  Clear/Lower the EEPROM clock bit.
55 **/
56static void igb_lower_eec_clk(struct e1000_hw *hw, u32 *eecd)
57{
58	*eecd = *eecd & ~E1000_EECD_SK;
59	wr32(E1000_EECD, *eecd);
60	wrfl();
61	udelay(hw->nvm.delay_usec);
62}
63
64/**
65 *  igb_shift_out_eec_bits - Shift data bits our to the EEPROM
66 *  @hw: pointer to the HW structure
67 *  @data: data to send to the EEPROM
68 *  @count: number of bits to shift out
69 *
70 *  We need to shift 'count' bits out to the EEPROM.  So, the value in the
71 *  "data" parameter will be shifted out to the EEPROM one bit at a time.
72 *  In order to do this, "data" must be broken down into bits.
73 **/
74static void igb_shift_out_eec_bits(struct e1000_hw *hw, u16 data, u16 count)
75{
76	struct e1000_nvm_info *nvm = &hw->nvm;
77	u32 eecd = rd32(E1000_EECD);
78	u32 mask;
79
80	mask = 0x01 << (count - 1);
81	if (nvm->type == e1000_nvm_eeprom_spi)
82		eecd |= E1000_EECD_DO;
83
84	do {
85		eecd &= ~E1000_EECD_DI;
86
87		if (data & mask)
88			eecd |= E1000_EECD_DI;
89
90		wr32(E1000_EECD, eecd);
91		wrfl();
92
93		udelay(nvm->delay_usec);
94
95		igb_raise_eec_clk(hw, &eecd);
96		igb_lower_eec_clk(hw, &eecd);
97
98		mask >>= 1;
99	} while (mask);
100
101	eecd &= ~E1000_EECD_DI;
102	wr32(E1000_EECD, eecd);
103}
104
105/**
106 *  igb_shift_in_eec_bits - Shift data bits in from the EEPROM
107 *  @hw: pointer to the HW structure
108 *  @count: number of bits to shift in
109 *
110 *  In order to read a register from the EEPROM, we need to shift 'count' bits
111 *  in from the EEPROM.  Bits are "shifted in" by raising the clock input to
112 *  the EEPROM (setting the SK bit), and then reading the value of the data out
113 *  "DO" bit.  During this "shifting in" process the data in "DI" bit should
114 *  always be clear.
115 **/
116static u16 igb_shift_in_eec_bits(struct e1000_hw *hw, u16 count)
117{
118	u32 eecd;
119	u32 i;
120	u16 data;
121
122	eecd = rd32(E1000_EECD);
123
124	eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
125	data = 0;
126
127	for (i = 0; i < count; i++) {
128		data <<= 1;
129		igb_raise_eec_clk(hw, &eecd);
130
131		eecd = rd32(E1000_EECD);
132
133		eecd &= ~E1000_EECD_DI;
134		if (eecd & E1000_EECD_DO)
135			data |= 1;
136
137		igb_lower_eec_clk(hw, &eecd);
138	}
139
140	return data;
141}
142
143/**
144 *  igb_poll_eerd_eewr_done - Poll for EEPROM read/write completion
145 *  @hw: pointer to the HW structure
146 *  @ee_reg: EEPROM flag for polling
147 *
148 *  Polls the EEPROM status bit for either read or write completion based
149 *  upon the value of 'ee_reg'.
150 **/
151static s32 igb_poll_eerd_eewr_done(struct e1000_hw *hw, int ee_reg)
152{
153	u32 attempts = 100000;
154	u32 i, reg = 0;
155	s32 ret_val = -E1000_ERR_NVM;
156
157	for (i = 0; i < attempts; i++) {
158		if (ee_reg == E1000_NVM_POLL_READ)
159			reg = rd32(E1000_EERD);
160		else
161			reg = rd32(E1000_EEWR);
162
163		if (reg & E1000_NVM_RW_REG_DONE) {
164			ret_val = 0;
165			break;
166		}
167
168		udelay(5);
169	}
170
171	return ret_val;
172}
173
174/**
175 *  igb_acquire_nvm - Generic request for access to EEPROM
176 *  @hw: pointer to the HW structure
177 *
178 *  Set the EEPROM access request bit and wait for EEPROM access grant bit.
179 *  Return successful if access grant bit set, else clear the request for
180 *  EEPROM access and return -E1000_ERR_NVM (-1).
181 **/
182s32 igb_acquire_nvm(struct e1000_hw *hw)
183{
184	u32 eecd = rd32(E1000_EECD);
185	s32 timeout = E1000_NVM_GRANT_ATTEMPTS;
186	s32 ret_val = 0;
187
188
189	wr32(E1000_EECD, eecd | E1000_EECD_REQ);
190	eecd = rd32(E1000_EECD);
191
192	while (timeout) {
193		if (eecd & E1000_EECD_GNT)
194			break;
195		udelay(5);
196		eecd = rd32(E1000_EECD);
197		timeout--;
198	}
199
200	if (!timeout) {
201		eecd &= ~E1000_EECD_REQ;
202		wr32(E1000_EECD, eecd);
203		hw_dbg("Could not acquire NVM grant\n");
204		ret_val = -E1000_ERR_NVM;
205	}
206
207	return ret_val;
208}
209
210/**
211 *  igb_standby_nvm - Return EEPROM to standby state
212 *  @hw: pointer to the HW structure
213 *
214 *  Return the EEPROM to a standby state.
215 **/
216static void igb_standby_nvm(struct e1000_hw *hw)
217{
218	struct e1000_nvm_info *nvm = &hw->nvm;
219	u32 eecd = rd32(E1000_EECD);
220
221	if (nvm->type == e1000_nvm_eeprom_spi) {
222		/* Toggle CS to flush commands */
223		eecd |= E1000_EECD_CS;
224		wr32(E1000_EECD, eecd);
225		wrfl();
226		udelay(nvm->delay_usec);
227		eecd &= ~E1000_EECD_CS;
228		wr32(E1000_EECD, eecd);
229		wrfl();
230		udelay(nvm->delay_usec);
231	}
232}
233
234/**
235 *  e1000_stop_nvm - Terminate EEPROM command
236 *  @hw: pointer to the HW structure
237 *
238 *  Terminates the current command by inverting the EEPROM's chip select pin.
239 **/
240static void e1000_stop_nvm(struct e1000_hw *hw)
241{
242	u32 eecd;
243
244	eecd = rd32(E1000_EECD);
245	if (hw->nvm.type == e1000_nvm_eeprom_spi) {
246		/* Pull CS high */
247		eecd |= E1000_EECD_CS;
248		igb_lower_eec_clk(hw, &eecd);
249	}
250}
251
252/**
253 *  igb_release_nvm - Release exclusive access to EEPROM
254 *  @hw: pointer to the HW structure
255 *
256 *  Stop any current commands to the EEPROM and clear the EEPROM request bit.
257 **/
258void igb_release_nvm(struct e1000_hw *hw)
259{
260	u32 eecd;
261
262	e1000_stop_nvm(hw);
263
264	eecd = rd32(E1000_EECD);
265	eecd &= ~E1000_EECD_REQ;
266	wr32(E1000_EECD, eecd);
267}
268
269/**
270 *  igb_ready_nvm_eeprom - Prepares EEPROM for read/write
271 *  @hw: pointer to the HW structure
272 *
273 *  Setups the EEPROM for reading and writing.
274 **/
275static s32 igb_ready_nvm_eeprom(struct e1000_hw *hw)
276{
277	struct e1000_nvm_info *nvm = &hw->nvm;
278	u32 eecd = rd32(E1000_EECD);
279	s32 ret_val = 0;
280	u16 timeout = 0;
281	u8 spi_stat_reg;
282
283
284	if (nvm->type == e1000_nvm_eeprom_spi) {
285		/* Clear SK and CS */
286		eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
287		wr32(E1000_EECD, eecd);
288		wrfl();
289		udelay(1);
290		timeout = NVM_MAX_RETRY_SPI;
291
292		/*
293		 * Read "Status Register" repeatedly until the LSB is cleared.
294		 * The EEPROM will signal that the command has been completed
295		 * by clearing bit 0 of the internal status register.  If it's
296		 * not cleared within 'timeout', then error out.
297		 */
298		while (timeout) {
299			igb_shift_out_eec_bits(hw, NVM_RDSR_OPCODE_SPI,
300						 hw->nvm.opcode_bits);
301			spi_stat_reg = (u8)igb_shift_in_eec_bits(hw, 8);
302			if (!(spi_stat_reg & NVM_STATUS_RDY_SPI))
303				break;
304
305			udelay(5);
306			igb_standby_nvm(hw);
307			timeout--;
308		}
309
310		if (!timeout) {
311			hw_dbg("SPI NVM Status error\n");
312			ret_val = -E1000_ERR_NVM;
313			goto out;
314		}
315	}
316
317out:
318	return ret_val;
319}
320
321/**
322 *  igb_read_nvm_spi - Read EEPROM's using SPI
323 *  @hw: pointer to the HW structure
324 *  @offset: offset of word in the EEPROM to read
325 *  @words: number of words to read
326 *  @data: word read from the EEPROM
327 *
328 *  Reads a 16 bit word from the EEPROM.
329 **/
330s32 igb_read_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
331{
332	struct e1000_nvm_info *nvm = &hw->nvm;
333	u32 i = 0;
334	s32 ret_val;
335	u16 word_in;
336	u8 read_opcode = NVM_READ_OPCODE_SPI;
337
338	/*
339	 * A check for invalid values:  offset too large, too many words,
340	 * and not enough words.
341	 */
342	if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
343	    (words == 0)) {
344		hw_dbg("nvm parameter(s) out of bounds\n");
345		ret_val = -E1000_ERR_NVM;
346		goto out;
347	}
348
349	ret_val = nvm->ops.acquire(hw);
350	if (ret_val)
351		goto out;
352
353	ret_val = igb_ready_nvm_eeprom(hw);
354	if (ret_val)
355		goto release;
356
357	igb_standby_nvm(hw);
358
359	if ((nvm->address_bits == 8) && (offset >= 128))
360		read_opcode |= NVM_A8_OPCODE_SPI;
361
362	/* Send the READ command (opcode + addr) */
363	igb_shift_out_eec_bits(hw, read_opcode, nvm->opcode_bits);
364	igb_shift_out_eec_bits(hw, (u16)(offset*2), nvm->address_bits);
365
366	/*
367	 * Read the data.  SPI NVMs increment the address with each byte
368	 * read and will roll over if reading beyond the end.  This allows
369	 * us to read the whole NVM from any offset
370	 */
371	for (i = 0; i < words; i++) {
372		word_in = igb_shift_in_eec_bits(hw, 16);
373		data[i] = (word_in >> 8) | (word_in << 8);
374	}
375
376release:
377	nvm->ops.release(hw);
378
379out:
380	return ret_val;
381}
382
383/**
384 *  igb_read_nvm_eerd - Reads EEPROM using EERD register
385 *  @hw: pointer to the HW structure
386 *  @offset: offset of word in the EEPROM to read
387 *  @words: number of words to read
388 *  @data: word read from the EEPROM
389 *
390 *  Reads a 16 bit word from the EEPROM using the EERD register.
391 **/
392s32 igb_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
393{
394	struct e1000_nvm_info *nvm = &hw->nvm;
395	u32 i, eerd = 0;
396	s32 ret_val = 0;
397
398	/*
399	 * A check for invalid values:  offset too large, too many words,
400	 * and not enough words.
401	 */
402	if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
403	    (words == 0)) {
404		hw_dbg("nvm parameter(s) out of bounds\n");
405		ret_val = -E1000_ERR_NVM;
406		goto out;
407	}
408
409	for (i = 0; i < words; i++) {
410		eerd = ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) +
411		       E1000_NVM_RW_REG_START;
412
413		wr32(E1000_EERD, eerd);
414		ret_val = igb_poll_eerd_eewr_done(hw, E1000_NVM_POLL_READ);
415		if (ret_val)
416			break;
417
418		data[i] = (rd32(E1000_EERD) >>
419			E1000_NVM_RW_REG_DATA);
420	}
421
422out:
423	return ret_val;
424}
425
426/**
427 *  igb_write_nvm_spi - Write to EEPROM using SPI
428 *  @hw: pointer to the HW structure
429 *  @offset: offset within the EEPROM to be written to
430 *  @words: number of words to write
431 *  @data: 16 bit word(s) to be written to the EEPROM
432 *
433 *  Writes data to EEPROM at offset using SPI interface.
434 *
435 *  If e1000_update_nvm_checksum is not called after this function , the
436 *  EEPROM will most likley contain an invalid checksum.
437 **/
438s32 igb_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
439{
440	struct e1000_nvm_info *nvm = &hw->nvm;
441	s32 ret_val;
442	u16 widx = 0;
443
444	/*
445	 * A check for invalid values:  offset too large, too many words,
446	 * and not enough words.
447	 */
448	if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
449	    (words == 0)) {
450		hw_dbg("nvm parameter(s) out of bounds\n");
451		ret_val = -E1000_ERR_NVM;
452		goto out;
453	}
454
455	ret_val = hw->nvm.ops.acquire(hw);
456	if (ret_val)
457		goto out;
458
459	msleep(10);
460
461	while (widx < words) {
462		u8 write_opcode = NVM_WRITE_OPCODE_SPI;
463
464		ret_val = igb_ready_nvm_eeprom(hw);
465		if (ret_val)
466			goto release;
467
468		igb_standby_nvm(hw);
469
470		/* Send the WRITE ENABLE command (8 bit opcode) */
471		igb_shift_out_eec_bits(hw, NVM_WREN_OPCODE_SPI,
472					 nvm->opcode_bits);
473
474		igb_standby_nvm(hw);
475
476		/*
477		 * Some SPI eeproms use the 8th address bit embedded in the
478		 * opcode
479		 */
480		if ((nvm->address_bits == 8) && (offset >= 128))
481			write_opcode |= NVM_A8_OPCODE_SPI;
482
483		/* Send the Write command (8-bit opcode + addr) */
484		igb_shift_out_eec_bits(hw, write_opcode, nvm->opcode_bits);
485		igb_shift_out_eec_bits(hw, (u16)((offset + widx) * 2),
486					 nvm->address_bits);
487
488		/* Loop to allow for up to whole page write of eeprom */
489		while (widx < words) {
490			u16 word_out = data[widx];
491			word_out = (word_out >> 8) | (word_out << 8);
492			igb_shift_out_eec_bits(hw, word_out, 16);
493			widx++;
494
495			if ((((offset + widx) * 2) % nvm->page_size) == 0) {
496				igb_standby_nvm(hw);
497				break;
498			}
499		}
500	}
501
502	msleep(10);
503release:
504	hw->nvm.ops.release(hw);
505
506out:
507	return ret_val;
508}
509
510/**
511 *  igb_read_part_string - Read device part number
512 *  @hw: pointer to the HW structure
513 *  @part_num: pointer to device part number
514 *  @part_num_size: size of part number buffer
515 *
516 *  Reads the product board assembly (PBA) number from the EEPROM and stores
517 *  the value in part_num.
518 **/
519s32 igb_read_part_string(struct e1000_hw *hw, u8 *part_num, u32 part_num_size)
520{
521	s32 ret_val;
522	u16 nvm_data;
523	u16 pointer;
524	u16 offset;
525	u16 length;
526
527	if (part_num == NULL) {
528		hw_dbg("PBA string buffer was null\n");
529		ret_val = E1000_ERR_INVALID_ARGUMENT;
530		goto out;
531	}
532
533	ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_0, 1, &nvm_data);
534	if (ret_val) {
535		hw_dbg("NVM Read Error\n");
536		goto out;
537	}
538
539	ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_1, 1, &pointer);
540	if (ret_val) {
541		hw_dbg("NVM Read Error\n");
542		goto out;
543	}
544
545	/*
546	 * if nvm_data is not ptr guard the PBA must be in legacy format which
547	 * means pointer is actually our second data word for the PBA number
548	 * and we can decode it into an ascii string
549	 */
550	if (nvm_data != NVM_PBA_PTR_GUARD) {
551		hw_dbg("NVM PBA number is not stored as string\n");
552
553		/* we will need 11 characters to store the PBA */
554		if (part_num_size < 11) {
555			hw_dbg("PBA string buffer too small\n");
556			return E1000_ERR_NO_SPACE;
557		}
558
559		/* extract hex string from data and pointer */
560		part_num[0] = (nvm_data >> 12) & 0xF;
561		part_num[1] = (nvm_data >> 8) & 0xF;
562		part_num[2] = (nvm_data >> 4) & 0xF;
563		part_num[3] = nvm_data & 0xF;
564		part_num[4] = (pointer >> 12) & 0xF;
565		part_num[5] = (pointer >> 8) & 0xF;
566		part_num[6] = '-';
567		part_num[7] = 0;
568		part_num[8] = (pointer >> 4) & 0xF;
569		part_num[9] = pointer & 0xF;
570
571		/* put a null character on the end of our string */
572		part_num[10] = '\0';
573
574		/* switch all the data but the '-' to hex char */
575		for (offset = 0; offset < 10; offset++) {
576			if (part_num[offset] < 0xA)
577				part_num[offset] += '0';
578			else if (part_num[offset] < 0x10)
579				part_num[offset] += 'A' - 0xA;
580		}
581
582		goto out;
583	}
584
585	ret_val = hw->nvm.ops.read(hw, pointer, 1, &length);
586	if (ret_val) {
587		hw_dbg("NVM Read Error\n");
588		goto out;
589	}
590
591	if (length == 0xFFFF || length == 0) {
592		hw_dbg("NVM PBA number section invalid length\n");
593		ret_val = E1000_ERR_NVM_PBA_SECTION;
594		goto out;
595	}
596	/* check if part_num buffer is big enough */
597	if (part_num_size < (((u32)length * 2) - 1)) {
598		hw_dbg("PBA string buffer too small\n");
599		ret_val = E1000_ERR_NO_SPACE;
600		goto out;
601	}
602
603	/* trim pba length from start of string */
604	pointer++;
605	length--;
606
607	for (offset = 0; offset < length; offset++) {
608		ret_val = hw->nvm.ops.read(hw, pointer + offset, 1, &nvm_data);
609		if (ret_val) {
610			hw_dbg("NVM Read Error\n");
611			goto out;
612		}
613		part_num[offset * 2] = (u8)(nvm_data >> 8);
614		part_num[(offset * 2) + 1] = (u8)(nvm_data & 0xFF);
615	}
616	part_num[offset * 2] = '\0';
617
618out:
619	return ret_val;
620}
621
622/**
623 *  igb_read_mac_addr - Read device MAC address
624 *  @hw: pointer to the HW structure
625 *
626 *  Reads the device MAC address from the EEPROM and stores the value.
627 *  Since devices with two ports use the same EEPROM, we increment the
628 *  last bit in the MAC address for the second port.
629 **/
630s32 igb_read_mac_addr(struct e1000_hw *hw)
631{
632	u32 rar_high;
633	u32 rar_low;
634	u16 i;
635
636	rar_high = rd32(E1000_RAH(0));
637	rar_low = rd32(E1000_RAL(0));
638
639	for (i = 0; i < E1000_RAL_MAC_ADDR_LEN; i++)
640		hw->mac.perm_addr[i] = (u8)(rar_low >> (i*8));
641
642	for (i = 0; i < E1000_RAH_MAC_ADDR_LEN; i++)
643		hw->mac.perm_addr[i+4] = (u8)(rar_high >> (i*8));
644
645	for (i = 0; i < ETH_ALEN; i++)
646		hw->mac.addr[i] = hw->mac.perm_addr[i];
647
648	return 0;
649}
650
651/**
652 *  igb_validate_nvm_checksum - Validate EEPROM checksum
653 *  @hw: pointer to the HW structure
654 *
655 *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
656 *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
657 **/
658s32 igb_validate_nvm_checksum(struct e1000_hw *hw)
659{
660	s32 ret_val = 0;
661	u16 checksum = 0;
662	u16 i, nvm_data;
663
664	for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
665		ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
666		if (ret_val) {
667			hw_dbg("NVM Read Error\n");
668			goto out;
669		}
670		checksum += nvm_data;
671	}
672
673	if (checksum != (u16) NVM_SUM) {
674		hw_dbg("NVM Checksum Invalid\n");
675		ret_val = -E1000_ERR_NVM;
676		goto out;
677	}
678
679out:
680	return ret_val;
681}
682
683/**
684 *  igb_update_nvm_checksum - Update EEPROM checksum
685 *  @hw: pointer to the HW structure
686 *
687 *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
688 *  up to the checksum.  Then calculates the EEPROM checksum and writes the
689 *  value to the EEPROM.
690 **/
691s32 igb_update_nvm_checksum(struct e1000_hw *hw)
692{
693	s32  ret_val;
694	u16 checksum = 0;
695	u16 i, nvm_data;
696
697	for (i = 0; i < NVM_CHECKSUM_REG; i++) {
698		ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
699		if (ret_val) {
700			hw_dbg("NVM Read Error while updating checksum.\n");
701			goto out;
702		}
703		checksum += nvm_data;
704	}
705	checksum = (u16) NVM_SUM - checksum;
706	ret_val = hw->nvm.ops.write(hw, NVM_CHECKSUM_REG, 1, &checksum);
707	if (ret_val)
708		hw_dbg("NVM Write Error while updating checksum.\n");
709
710out:
711	return ret_val;
712}
713
714