sis900.c revision 8c7de408fd2caa11b8b3a1ed8a1b141ce127ad4e
1/* sis900.c: A SiS 900/7016 PCI Fast Ethernet driver for Linux.
2   Copyright 1999 Silicon Integrated System Corporation
3   Revision:	1.08.10 Apr. 2 2006
4
5   Modified from the driver which is originally written by Donald Becker.
6
7   This software may be used and distributed according to the terms
8   of the GNU General Public License (GPL), incorporated herein by reference.
9   Drivers based on this skeleton fall under the GPL and must retain
10   the authorship (implicit copyright) notice.
11
12   References:
13   SiS 7016 Fast Ethernet PCI Bus 10/100 Mbps LAN Controller with OnNow Support,
14   preliminary Rev. 1.0 Jan. 14, 1998
15   SiS 900 Fast Ethernet PCI Bus 10/100 Mbps LAN Single Chip with OnNow Support,
16   preliminary Rev. 1.0 Nov. 10, 1998
17   SiS 7014 Single Chip 100BASE-TX/10BASE-T Physical Layer Solution,
18   preliminary Rev. 1.0 Jan. 18, 1998
19
20   Rev 1.08.10 Apr.  2 2006 Daniele Venzano add vlan (jumbo packets) support
21   Rev 1.08.09 Sep. 19 2005 Daniele Venzano add Wake on LAN support
22   Rev 1.08.08 Jan. 22 2005 Daniele Venzano use netif_msg for debugging messages
23   Rev 1.08.07 Nov.  2 2003 Daniele Venzano <venza@brownhat.org> add suspend/resume support
24   Rev 1.08.06 Sep. 24 2002 Mufasa Yang bug fix for Tx timeout & add SiS963 support
25   Rev 1.08.05 Jun.  6 2002 Mufasa Yang bug fix for read_eeprom & Tx descriptor over-boundary
26   Rev 1.08.04 Apr. 25 2002 Mufasa Yang <mufasa@sis.com.tw> added SiS962 support
27   Rev 1.08.03 Feb.  1 2002 Matt Domsch <Matt_Domsch@dell.com> update to use library crc32 function
28   Rev 1.08.02 Nov. 30 2001 Hui-Fen Hsu workaround for EDB & bug fix for dhcp problem
29   Rev 1.08.01 Aug. 25 2001 Hui-Fen Hsu update for 630ET & workaround for ICS1893 PHY
30   Rev 1.08.00 Jun. 11 2001 Hui-Fen Hsu workaround for RTL8201 PHY and some bug fix
31   Rev 1.07.11 Apr.  2 2001 Hui-Fen Hsu updates PCI drivers to use the new pci_set_dma_mask for kernel 2.4.3
32   Rev 1.07.10 Mar.  1 2001 Hui-Fen Hsu <hfhsu@sis.com.tw> some bug fix & 635M/B support
33   Rev 1.07.09 Feb.  9 2001 Dave Jones <davej@suse.de> PCI enable cleanup
34   Rev 1.07.08 Jan.  8 2001 Lei-Chun Chang added RTL8201 PHY support
35   Rev 1.07.07 Nov. 29 2000 Lei-Chun Chang added kernel-doc extractable documentation and 630 workaround fix
36   Rev 1.07.06 Nov.  7 2000 Jeff Garzik <jgarzik@pobox.com> some bug fix and cleaning
37   Rev 1.07.05 Nov.  6 2000 metapirat<metapirat@gmx.de> contribute media type select by ifconfig
38   Rev 1.07.04 Sep.  6 2000 Lei-Chun Chang added ICS1893 PHY support
39   Rev 1.07.03 Aug. 24 2000 Lei-Chun Chang (lcchang@sis.com.tw) modified 630E equalizer workaround rule
40   Rev 1.07.01 Aug. 08 2000 Ollie Lho minor update for SiS 630E and SiS 630E A1
41   Rev 1.07    Mar. 07 2000 Ollie Lho bug fix in Rx buffer ring
42   Rev 1.06.04 Feb. 11 2000 Jeff Garzik <jgarzik@pobox.com> softnet and init for kernel 2.4
43   Rev 1.06.03 Dec. 23 1999 Ollie Lho Third release
44   Rev 1.06.02 Nov. 23 1999 Ollie Lho bug in mac probing fixed
45   Rev 1.06.01 Nov. 16 1999 Ollie Lho CRC calculation provide by Joseph Zbiciak (im14u2c@primenet.com)
46   Rev 1.06 Nov. 4 1999 Ollie Lho (ollie@sis.com.tw) Second release
47   Rev 1.05.05 Oct. 29 1999 Ollie Lho (ollie@sis.com.tw) Single buffer Tx/Rx
48   Chin-Shan Li (lcs@sis.com.tw) Added AMD Am79c901 HomePNA PHY support
49   Rev 1.05 Aug. 7 1999 Jim Huang (cmhuang@sis.com.tw) Initial release
50*/
51
52#include <linux/module.h>
53#include <linux/moduleparam.h>
54#include <linux/kernel.h>
55#include <linux/sched.h>
56#include <linux/string.h>
57#include <linux/timer.h>
58#include <linux/errno.h>
59#include <linux/ioport.h>
60#include <linux/slab.h>
61#include <linux/interrupt.h>
62#include <linux/pci.h>
63#include <linux/netdevice.h>
64#include <linux/init.h>
65#include <linux/mii.h>
66#include <linux/etherdevice.h>
67#include <linux/skbuff.h>
68#include <linux/delay.h>
69#include <linux/ethtool.h>
70#include <linux/crc32.h>
71#include <linux/bitops.h>
72#include <linux/dma-mapping.h>
73
74#include <asm/processor.h>      /* Processor type for cache alignment. */
75#include <asm/io.h>
76#include <asm/irq.h>
77#include <asm/uaccess.h>	/* User space memory access functions */
78
79#include "sis900.h"
80
81#define SIS900_MODULE_NAME "sis900"
82#define SIS900_DRV_VERSION "v1.08.10 Apr. 2 2006"
83
84static const char version[] __devinitconst =
85	KERN_INFO "sis900.c: " SIS900_DRV_VERSION "\n";
86
87static int max_interrupt_work = 40;
88static int multicast_filter_limit = 128;
89
90static int sis900_debug = -1; /* Use SIS900_DEF_MSG as value */
91
92#define SIS900_DEF_MSG \
93	(NETIF_MSG_DRV		| \
94	 NETIF_MSG_LINK		| \
95	 NETIF_MSG_RX_ERR	| \
96	 NETIF_MSG_TX_ERR)
97
98/* Time in jiffies before concluding the transmitter is hung. */
99#define TX_TIMEOUT  (4*HZ)
100
101enum {
102	SIS_900 = 0,
103	SIS_7016
104};
105static const char * card_names[] = {
106	"SiS 900 PCI Fast Ethernet",
107	"SiS 7016 PCI Fast Ethernet"
108};
109static DEFINE_PCI_DEVICE_TABLE(sis900_pci_tbl) = {
110	{PCI_VENDOR_ID_SI, PCI_DEVICE_ID_SI_900,
111	 PCI_ANY_ID, PCI_ANY_ID, 0, 0, SIS_900},
112	{PCI_VENDOR_ID_SI, PCI_DEVICE_ID_SI_7016,
113	 PCI_ANY_ID, PCI_ANY_ID, 0, 0, SIS_7016},
114	{0,}
115};
116MODULE_DEVICE_TABLE (pci, sis900_pci_tbl);
117
118static void sis900_read_mode(struct net_device *net_dev, int *speed, int *duplex);
119
120static const struct mii_chip_info {
121	const char * name;
122	u16 phy_id0;
123	u16 phy_id1;
124	u8  phy_types;
125#define	HOME 	0x0001
126#define LAN	0x0002
127#define MIX	0x0003
128#define UNKNOWN	0x0
129} mii_chip_table[] = {
130	{ "SiS 900 Internal MII PHY", 		0x001d, 0x8000, LAN },
131	{ "SiS 7014 Physical Layer Solution", 	0x0016, 0xf830, LAN },
132	{ "SiS 900 on Foxconn 661 7MI",         0x0143, 0xBC70, LAN },
133	{ "Altimata AC101LF PHY",               0x0022, 0x5520, LAN },
134	{ "ADM 7001 LAN PHY",			0x002e, 0xcc60, LAN },
135	{ "AMD 79C901 10BASE-T PHY",  		0x0000, 0x6B70, LAN },
136	{ "AMD 79C901 HomePNA PHY",		0x0000, 0x6B90, HOME},
137	{ "ICS LAN PHY",			0x0015, 0xF440, LAN },
138	{ "ICS LAN PHY",			0x0143, 0xBC70, LAN },
139	{ "NS 83851 PHY",			0x2000, 0x5C20, MIX },
140	{ "NS 83847 PHY",                       0x2000, 0x5C30, MIX },
141	{ "Realtek RTL8201 PHY",		0x0000, 0x8200, LAN },
142	{ "VIA 6103 PHY",			0x0101, 0x8f20, LAN },
143	{NULL,},
144};
145
146struct mii_phy {
147	struct mii_phy * next;
148	int phy_addr;
149	u16 phy_id0;
150	u16 phy_id1;
151	u16 status;
152	u8  phy_types;
153};
154
155typedef struct _BufferDesc {
156	u32 link;
157	u32 cmdsts;
158	u32 bufptr;
159} BufferDesc;
160
161struct sis900_private {
162	struct pci_dev * pci_dev;
163
164	spinlock_t lock;
165
166	struct mii_phy * mii;
167	struct mii_phy * first_mii; /* record the first mii structure */
168	unsigned int cur_phy;
169	struct mii_if_info mii_info;
170
171	struct timer_list timer; /* Link status detection timer. */
172	u8 autong_complete; /* 1: auto-negotiate complete  */
173
174	u32 msg_enable;
175
176	unsigned int cur_rx, dirty_rx; /* producer/comsumer pointers for Tx/Rx ring */
177	unsigned int cur_tx, dirty_tx;
178
179	/* The saved address of a sent/receive-in-place packet buffer */
180	struct sk_buff *tx_skbuff[NUM_TX_DESC];
181	struct sk_buff *rx_skbuff[NUM_RX_DESC];
182	BufferDesc *tx_ring;
183	BufferDesc *rx_ring;
184
185	dma_addr_t tx_ring_dma;
186	dma_addr_t rx_ring_dma;
187
188	unsigned int tx_full; /* The Tx queue is full. */
189	u8 host_bridge_rev;
190	u8 chipset_rev;
191};
192
193MODULE_AUTHOR("Jim Huang <cmhuang@sis.com.tw>, Ollie Lho <ollie@sis.com.tw>");
194MODULE_DESCRIPTION("SiS 900 PCI Fast Ethernet driver");
195MODULE_LICENSE("GPL");
196
197module_param(multicast_filter_limit, int, 0444);
198module_param(max_interrupt_work, int, 0444);
199module_param(sis900_debug, int, 0444);
200MODULE_PARM_DESC(multicast_filter_limit, "SiS 900/7016 maximum number of filtered multicast addresses");
201MODULE_PARM_DESC(max_interrupt_work, "SiS 900/7016 maximum events handled per interrupt");
202MODULE_PARM_DESC(sis900_debug, "SiS 900/7016 bitmapped debugging message level");
203
204#ifdef CONFIG_NET_POLL_CONTROLLER
205static void sis900_poll(struct net_device *dev);
206#endif
207static int sis900_open(struct net_device *net_dev);
208static int sis900_mii_probe (struct net_device * net_dev);
209static void sis900_init_rxfilter (struct net_device * net_dev);
210static u16 read_eeprom(long ioaddr, int location);
211static int mdio_read(struct net_device *net_dev, int phy_id, int location);
212static void mdio_write(struct net_device *net_dev, int phy_id, int location, int val);
213static void sis900_timer(unsigned long data);
214static void sis900_check_mode (struct net_device *net_dev, struct mii_phy *mii_phy);
215static void sis900_tx_timeout(struct net_device *net_dev);
216static void sis900_init_tx_ring(struct net_device *net_dev);
217static void sis900_init_rx_ring(struct net_device *net_dev);
218static netdev_tx_t sis900_start_xmit(struct sk_buff *skb,
219				     struct net_device *net_dev);
220static int sis900_rx(struct net_device *net_dev);
221static void sis900_finish_xmit (struct net_device *net_dev);
222static irqreturn_t sis900_interrupt(int irq, void *dev_instance);
223static int sis900_close(struct net_device *net_dev);
224static int mii_ioctl(struct net_device *net_dev, struct ifreq *rq, int cmd);
225static u16 sis900_mcast_bitnr(u8 *addr, u8 revision);
226static void set_rx_mode(struct net_device *net_dev);
227static void sis900_reset(struct net_device *net_dev);
228static void sis630_set_eq(struct net_device *net_dev, u8 revision);
229static int sis900_set_config(struct net_device *dev, struct ifmap *map);
230static u16 sis900_default_phy(struct net_device * net_dev);
231static void sis900_set_capability( struct net_device *net_dev ,struct mii_phy *phy);
232static u16 sis900_reset_phy(struct net_device *net_dev, int phy_addr);
233static void sis900_auto_negotiate(struct net_device *net_dev, int phy_addr);
234static void sis900_set_mode (long ioaddr, int speed, int duplex);
235static const struct ethtool_ops sis900_ethtool_ops;
236
237/**
238 *	sis900_get_mac_addr - Get MAC address for stand alone SiS900 model
239 *	@pci_dev: the sis900 pci device
240 *	@net_dev: the net device to get address for
241 *
242 *	Older SiS900 and friends, use EEPROM to store MAC address.
243 *	MAC address is read from read_eeprom() into @net_dev->dev_addr and
244 *	@net_dev->perm_addr.
245 */
246
247static int __devinit sis900_get_mac_addr(struct pci_dev * pci_dev, struct net_device *net_dev)
248{
249	long ioaddr = pci_resource_start(pci_dev, 0);
250	u16 signature;
251	int i;
252
253	/* check to see if we have sane EEPROM */
254	signature = (u16) read_eeprom(ioaddr, EEPROMSignature);
255	if (signature == 0xffff || signature == 0x0000) {
256		printk (KERN_WARNING "%s: Error EERPOM read %x\n",
257			pci_name(pci_dev), signature);
258		return 0;
259	}
260
261	/* get MAC address from EEPROM */
262	for (i = 0; i < 3; i++)
263	        ((u16 *)(net_dev->dev_addr))[i] = read_eeprom(ioaddr, i+EEPROMMACAddr);
264
265	/* Store MAC Address in perm_addr */
266	memcpy(net_dev->perm_addr, net_dev->dev_addr, ETH_ALEN);
267
268	return 1;
269}
270
271/**
272 *	sis630e_get_mac_addr - Get MAC address for SiS630E model
273 *	@pci_dev: the sis900 pci device
274 *	@net_dev: the net device to get address for
275 *
276 *	SiS630E model, use APC CMOS RAM to store MAC address.
277 *	APC CMOS RAM is accessed through ISA bridge.
278 *	MAC address is read into @net_dev->dev_addr and
279 *	@net_dev->perm_addr.
280 */
281
282static int __devinit sis630e_get_mac_addr(struct pci_dev * pci_dev,
283					struct net_device *net_dev)
284{
285	struct pci_dev *isa_bridge = NULL;
286	u8 reg;
287	int i;
288
289	isa_bridge = pci_get_device(PCI_VENDOR_ID_SI, 0x0008, isa_bridge);
290	if (!isa_bridge)
291		isa_bridge = pci_get_device(PCI_VENDOR_ID_SI, 0x0018, isa_bridge);
292	if (!isa_bridge) {
293		printk(KERN_WARNING "%s: Can not find ISA bridge\n",
294		       pci_name(pci_dev));
295		return 0;
296	}
297	pci_read_config_byte(isa_bridge, 0x48, &reg);
298	pci_write_config_byte(isa_bridge, 0x48, reg | 0x40);
299
300	for (i = 0; i < 6; i++) {
301		outb(0x09 + i, 0x70);
302		((u8 *)(net_dev->dev_addr))[i] = inb(0x71);
303	}
304
305	/* Store MAC Address in perm_addr */
306	memcpy(net_dev->perm_addr, net_dev->dev_addr, ETH_ALEN);
307
308	pci_write_config_byte(isa_bridge, 0x48, reg & ~0x40);
309	pci_dev_put(isa_bridge);
310
311	return 1;
312}
313
314
315/**
316 *	sis635_get_mac_addr - Get MAC address for SIS635 model
317 *	@pci_dev: the sis900 pci device
318 *	@net_dev: the net device to get address for
319 *
320 *	SiS635 model, set MAC Reload Bit to load Mac address from APC
321 *	to rfdr. rfdr is accessed through rfcr. MAC address is read into
322 *	@net_dev->dev_addr and @net_dev->perm_addr.
323 */
324
325static int __devinit sis635_get_mac_addr(struct pci_dev * pci_dev,
326					struct net_device *net_dev)
327{
328	long ioaddr = net_dev->base_addr;
329	u32 rfcrSave;
330	u32 i;
331
332	rfcrSave = inl(rfcr + ioaddr);
333
334	outl(rfcrSave | RELOAD, ioaddr + cr);
335	outl(0, ioaddr + cr);
336
337	/* disable packet filtering before setting filter */
338	outl(rfcrSave & ~RFEN, rfcr + ioaddr);
339
340	/* load MAC addr to filter data register */
341	for (i = 0 ; i < 3 ; i++) {
342		outl((i << RFADDR_shift), ioaddr + rfcr);
343		*( ((u16 *)net_dev->dev_addr) + i) = inw(ioaddr + rfdr);
344	}
345
346	/* Store MAC Address in perm_addr */
347	memcpy(net_dev->perm_addr, net_dev->dev_addr, ETH_ALEN);
348
349	/* enable packet filtering */
350	outl(rfcrSave | RFEN, rfcr + ioaddr);
351
352	return 1;
353}
354
355/**
356 *	sis96x_get_mac_addr - Get MAC address for SiS962 or SiS963 model
357 *	@pci_dev: the sis900 pci device
358 *	@net_dev: the net device to get address for
359 *
360 *	SiS962 or SiS963 model, use EEPROM to store MAC address. And EEPROM
361 *	is shared by
362 *	LAN and 1394. When access EEPROM, send EEREQ signal to hardware first
363 *	and wait for EEGNT. If EEGNT is ON, EEPROM is permitted to be access
364 *	by LAN, otherwise is not. After MAC address is read from EEPROM, send
365 *	EEDONE signal to refuse EEPROM access by LAN.
366 *	The EEPROM map of SiS962 or SiS963 is different to SiS900.
367 *	The signature field in SiS962 or SiS963 spec is meaningless.
368 *	MAC address is read into @net_dev->dev_addr and @net_dev->perm_addr.
369 */
370
371static int __devinit sis96x_get_mac_addr(struct pci_dev * pci_dev,
372					struct net_device *net_dev)
373{
374	long ioaddr = net_dev->base_addr;
375	long ee_addr = ioaddr + mear;
376	u32 waittime = 0;
377	int i;
378
379	outl(EEREQ, ee_addr);
380	while(waittime < 2000) {
381		if(inl(ee_addr) & EEGNT) {
382
383			/* get MAC address from EEPROM */
384			for (i = 0; i < 3; i++)
385			        ((u16 *)(net_dev->dev_addr))[i] = read_eeprom(ioaddr, i+EEPROMMACAddr);
386
387			/* Store MAC Address in perm_addr */
388			memcpy(net_dev->perm_addr, net_dev->dev_addr, ETH_ALEN);
389
390			outl(EEDONE, ee_addr);
391			return 1;
392		} else {
393			udelay(1);
394			waittime ++;
395		}
396	}
397	outl(EEDONE, ee_addr);
398	return 0;
399}
400
401static const struct net_device_ops sis900_netdev_ops = {
402	.ndo_open		 = sis900_open,
403	.ndo_stop		= sis900_close,
404	.ndo_start_xmit		= sis900_start_xmit,
405	.ndo_set_config		= sis900_set_config,
406	.ndo_set_multicast_list	= set_rx_mode,
407	.ndo_change_mtu		= eth_change_mtu,
408	.ndo_validate_addr	= eth_validate_addr,
409	.ndo_set_mac_address 	= eth_mac_addr,
410	.ndo_do_ioctl		= mii_ioctl,
411	.ndo_tx_timeout		= sis900_tx_timeout,
412#ifdef CONFIG_NET_POLL_CONTROLLER
413        .ndo_poll_controller	= sis900_poll,
414#endif
415};
416
417/**
418 *	sis900_probe - Probe for sis900 device
419 *	@pci_dev: the sis900 pci device
420 *	@pci_id: the pci device ID
421 *
422 *	Check and probe sis900 net device for @pci_dev.
423 *	Get mac address according to the chip revision,
424 *	and assign SiS900-specific entries in the device structure.
425 *	ie: sis900_open(), sis900_start_xmit(), sis900_close(), etc.
426 */
427
428static int __devinit sis900_probe(struct pci_dev *pci_dev,
429				const struct pci_device_id *pci_id)
430{
431	struct sis900_private *sis_priv;
432	struct net_device *net_dev;
433	struct pci_dev *dev;
434	dma_addr_t ring_dma;
435	void *ring_space;
436	long ioaddr;
437	int i, ret;
438	const char *card_name = card_names[pci_id->driver_data];
439	const char *dev_name = pci_name(pci_dev);
440
441/* when built into the kernel, we only print version if device is found */
442#ifndef MODULE
443	static int printed_version;
444	if (!printed_version++)
445		printk(version);
446#endif
447
448	/* setup various bits in PCI command register */
449	ret = pci_enable_device(pci_dev);
450	if(ret) return ret;
451
452	i = pci_set_dma_mask(pci_dev, DMA_BIT_MASK(32));
453	if(i){
454		printk(KERN_ERR "sis900.c: architecture does not support "
455			"32bit PCI busmaster DMA\n");
456		return i;
457	}
458
459	pci_set_master(pci_dev);
460
461	net_dev = alloc_etherdev(sizeof(struct sis900_private));
462	if (!net_dev)
463		return -ENOMEM;
464	SET_NETDEV_DEV(net_dev, &pci_dev->dev);
465
466	/* We do a request_region() to register /proc/ioports info. */
467	ioaddr = pci_resource_start(pci_dev, 0);
468	ret = pci_request_regions(pci_dev, "sis900");
469	if (ret)
470		goto err_out;
471
472	sis_priv = netdev_priv(net_dev);
473	net_dev->base_addr = ioaddr;
474	net_dev->irq = pci_dev->irq;
475	sis_priv->pci_dev = pci_dev;
476	spin_lock_init(&sis_priv->lock);
477
478	pci_set_drvdata(pci_dev, net_dev);
479
480	ring_space = pci_alloc_consistent(pci_dev, TX_TOTAL_SIZE, &ring_dma);
481	if (!ring_space) {
482		ret = -ENOMEM;
483		goto err_out_cleardev;
484	}
485	sis_priv->tx_ring = ring_space;
486	sis_priv->tx_ring_dma = ring_dma;
487
488	ring_space = pci_alloc_consistent(pci_dev, RX_TOTAL_SIZE, &ring_dma);
489	if (!ring_space) {
490		ret = -ENOMEM;
491		goto err_unmap_tx;
492	}
493	sis_priv->rx_ring = ring_space;
494	sis_priv->rx_ring_dma = ring_dma;
495
496	/* The SiS900-specific entries in the device structure. */
497	net_dev->netdev_ops = &sis900_netdev_ops;
498	net_dev->watchdog_timeo = TX_TIMEOUT;
499	net_dev->ethtool_ops = &sis900_ethtool_ops;
500
501	if (sis900_debug > 0)
502		sis_priv->msg_enable = sis900_debug;
503	else
504		sis_priv->msg_enable = SIS900_DEF_MSG;
505
506	sis_priv->mii_info.dev = net_dev;
507	sis_priv->mii_info.mdio_read = mdio_read;
508	sis_priv->mii_info.mdio_write = mdio_write;
509	sis_priv->mii_info.phy_id_mask = 0x1f;
510	sis_priv->mii_info.reg_num_mask = 0x1f;
511
512	/* Get Mac address according to the chip revision */
513	sis_priv->chipset_rev = pci_dev->revision;
514	if(netif_msg_probe(sis_priv))
515		printk(KERN_DEBUG "%s: detected revision %2.2x, "
516				"trying to get MAC address...\n",
517				dev_name, sis_priv->chipset_rev);
518
519	ret = 0;
520	if (sis_priv->chipset_rev == SIS630E_900_REV)
521		ret = sis630e_get_mac_addr(pci_dev, net_dev);
522	else if ((sis_priv->chipset_rev > 0x81) && (sis_priv->chipset_rev <= 0x90) )
523		ret = sis635_get_mac_addr(pci_dev, net_dev);
524	else if (sis_priv->chipset_rev == SIS96x_900_REV)
525		ret = sis96x_get_mac_addr(pci_dev, net_dev);
526	else
527		ret = sis900_get_mac_addr(pci_dev, net_dev);
528
529	if (!ret || !is_valid_ether_addr(net_dev->dev_addr)) {
530		random_ether_addr(net_dev->dev_addr);
531		printk(KERN_WARNING "%s: Unreadable or invalid MAC address,"
532				"using random generated one\n", dev_name);
533	}
534
535	/* 630ET : set the mii access mode as software-mode */
536	if (sis_priv->chipset_rev == SIS630ET_900_REV)
537		outl(ACCESSMODE | inl(ioaddr + cr), ioaddr + cr);
538
539	/* probe for mii transceiver */
540	if (sis900_mii_probe(net_dev) == 0) {
541		printk(KERN_WARNING "%s: Error probing MII device.\n",
542		       dev_name);
543		ret = -ENODEV;
544		goto err_unmap_rx;
545	}
546
547	/* save our host bridge revision */
548	dev = pci_get_device(PCI_VENDOR_ID_SI, PCI_DEVICE_ID_SI_630, NULL);
549	if (dev) {
550		sis_priv->host_bridge_rev = dev->revision;
551		pci_dev_put(dev);
552	}
553
554	ret = register_netdev(net_dev);
555	if (ret)
556		goto err_unmap_rx;
557
558	/* print some information about our NIC */
559	printk(KERN_INFO "%s: %s at %#lx, IRQ %d, %pM\n",
560	       net_dev->name, card_name, ioaddr, net_dev->irq,
561	       net_dev->dev_addr);
562
563	/* Detect Wake on Lan support */
564	ret = (inl(net_dev->base_addr + CFGPMC) & PMESP) >> 27;
565	if (netif_msg_probe(sis_priv) && (ret & PME_D3C) == 0)
566		printk(KERN_INFO "%s: Wake on LAN only available from suspend to RAM.", net_dev->name);
567
568	return 0;
569
570 err_unmap_rx:
571	pci_free_consistent(pci_dev, RX_TOTAL_SIZE, sis_priv->rx_ring,
572		sis_priv->rx_ring_dma);
573 err_unmap_tx:
574	pci_free_consistent(pci_dev, TX_TOTAL_SIZE, sis_priv->tx_ring,
575		sis_priv->tx_ring_dma);
576 err_out_cleardev:
577 	pci_set_drvdata(pci_dev, NULL);
578	pci_release_regions(pci_dev);
579 err_out:
580	free_netdev(net_dev);
581	return ret;
582}
583
584/**
585 *	sis900_mii_probe - Probe MII PHY for sis900
586 *	@net_dev: the net device to probe for
587 *
588 *	Search for total of 32 possible mii phy addresses.
589 *	Identify and set current phy if found one,
590 *	return error if it failed to found.
591 */
592
593static int __devinit sis900_mii_probe(struct net_device * net_dev)
594{
595	struct sis900_private *sis_priv = netdev_priv(net_dev);
596	const char *dev_name = pci_name(sis_priv->pci_dev);
597	u16 poll_bit = MII_STAT_LINK, status = 0;
598	unsigned long timeout = jiffies + 5 * HZ;
599	int phy_addr;
600
601	sis_priv->mii = NULL;
602
603	/* search for total of 32 possible mii phy addresses */
604	for (phy_addr = 0; phy_addr < 32; phy_addr++) {
605		struct mii_phy * mii_phy = NULL;
606		u16 mii_status;
607		int i;
608
609		mii_phy = NULL;
610		for(i = 0; i < 2; i++)
611			mii_status = mdio_read(net_dev, phy_addr, MII_STATUS);
612
613		if (mii_status == 0xffff || mii_status == 0x0000) {
614			if (netif_msg_probe(sis_priv))
615				printk(KERN_DEBUG "%s: MII at address %d"
616						" not accessible\n",
617						dev_name, phy_addr);
618			continue;
619		}
620
621		if ((mii_phy = kmalloc(sizeof(struct mii_phy), GFP_KERNEL)) == NULL) {
622			printk(KERN_WARNING "Cannot allocate mem for struct mii_phy\n");
623			mii_phy = sis_priv->first_mii;
624			while (mii_phy) {
625				struct mii_phy *phy;
626				phy = mii_phy;
627				mii_phy = mii_phy->next;
628				kfree(phy);
629			}
630			return 0;
631		}
632
633		mii_phy->phy_id0 = mdio_read(net_dev, phy_addr, MII_PHY_ID0);
634		mii_phy->phy_id1 = mdio_read(net_dev, phy_addr, MII_PHY_ID1);
635		mii_phy->phy_addr = phy_addr;
636		mii_phy->status = mii_status;
637		mii_phy->next = sis_priv->mii;
638		sis_priv->mii = mii_phy;
639		sis_priv->first_mii = mii_phy;
640
641		for (i = 0; mii_chip_table[i].phy_id1; i++)
642			if ((mii_phy->phy_id0 == mii_chip_table[i].phy_id0 ) &&
643			    ((mii_phy->phy_id1 & 0xFFF0) == mii_chip_table[i].phy_id1)){
644				mii_phy->phy_types = mii_chip_table[i].phy_types;
645				if (mii_chip_table[i].phy_types == MIX)
646					mii_phy->phy_types =
647					    (mii_status & (MII_STAT_CAN_TX_FDX | MII_STAT_CAN_TX)) ? LAN : HOME;
648				printk(KERN_INFO "%s: %s transceiver found "
649							"at address %d.\n",
650							dev_name,
651							mii_chip_table[i].name,
652							phy_addr);
653				break;
654			}
655
656		if( !mii_chip_table[i].phy_id1 ) {
657			printk(KERN_INFO "%s: Unknown PHY transceiver found at address %d.\n",
658			       dev_name, phy_addr);
659			mii_phy->phy_types = UNKNOWN;
660		}
661	}
662
663	if (sis_priv->mii == NULL) {
664		printk(KERN_INFO "%s: No MII transceivers found!\n", dev_name);
665		return 0;
666	}
667
668	/* select default PHY for mac */
669	sis_priv->mii = NULL;
670	sis900_default_phy( net_dev );
671
672	/* Reset phy if default phy is internal sis900 */
673        if ((sis_priv->mii->phy_id0 == 0x001D) &&
674	    ((sis_priv->mii->phy_id1&0xFFF0) == 0x8000))
675        	status = sis900_reset_phy(net_dev, sis_priv->cur_phy);
676
677        /* workaround for ICS1893 PHY */
678        if ((sis_priv->mii->phy_id0 == 0x0015) &&
679            ((sis_priv->mii->phy_id1&0xFFF0) == 0xF440))
680            	mdio_write(net_dev, sis_priv->cur_phy, 0x0018, 0xD200);
681
682	if(status & MII_STAT_LINK){
683		while (poll_bit) {
684			yield();
685
686			poll_bit ^= (mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS) & poll_bit);
687			if (time_after_eq(jiffies, timeout)) {
688				printk(KERN_WARNING "%s: reset phy and link down now\n",
689				       dev_name);
690				return -ETIME;
691			}
692		}
693	}
694
695	if (sis_priv->chipset_rev == SIS630E_900_REV) {
696		/* SiS 630E has some bugs on default value of PHY registers */
697		mdio_write(net_dev, sis_priv->cur_phy, MII_ANADV, 0x05e1);
698		mdio_write(net_dev, sis_priv->cur_phy, MII_CONFIG1, 0x22);
699		mdio_write(net_dev, sis_priv->cur_phy, MII_CONFIG2, 0xff00);
700		mdio_write(net_dev, sis_priv->cur_phy, MII_MASK, 0xffc0);
701		//mdio_write(net_dev, sis_priv->cur_phy, MII_CONTROL, 0x1000);
702	}
703
704	if (sis_priv->mii->status & MII_STAT_LINK)
705		netif_carrier_on(net_dev);
706	else
707		netif_carrier_off(net_dev);
708
709	return 1;
710}
711
712/**
713 *	sis900_default_phy - Select default PHY for sis900 mac.
714 *	@net_dev: the net device to probe for
715 *
716 *	Select first detected PHY with link as default.
717 *	If no one is link on, select PHY whose types is HOME as default.
718 *	If HOME doesn't exist, select LAN.
719 */
720
721static u16 sis900_default_phy(struct net_device * net_dev)
722{
723	struct sis900_private *sis_priv = netdev_priv(net_dev);
724 	struct mii_phy *phy = NULL, *phy_home = NULL,
725		*default_phy = NULL, *phy_lan = NULL;
726	u16 status;
727
728        for (phy=sis_priv->first_mii; phy; phy=phy->next) {
729		status = mdio_read(net_dev, phy->phy_addr, MII_STATUS);
730		status = mdio_read(net_dev, phy->phy_addr, MII_STATUS);
731
732		/* Link ON & Not select default PHY & not ghost PHY */
733		 if ((status & MII_STAT_LINK) && !default_phy &&
734					(phy->phy_types != UNKNOWN))
735		 	default_phy = phy;
736		 else {
737			status = mdio_read(net_dev, phy->phy_addr, MII_CONTROL);
738			mdio_write(net_dev, phy->phy_addr, MII_CONTROL,
739				status | MII_CNTL_AUTO | MII_CNTL_ISOLATE);
740			if (phy->phy_types == HOME)
741				phy_home = phy;
742			else if(phy->phy_types == LAN)
743				phy_lan = phy;
744		 }
745	}
746
747	if (!default_phy && phy_home)
748		default_phy = phy_home;
749	else if (!default_phy && phy_lan)
750		default_phy = phy_lan;
751	else if (!default_phy)
752		default_phy = sis_priv->first_mii;
753
754	if (sis_priv->mii != default_phy) {
755		sis_priv->mii = default_phy;
756		sis_priv->cur_phy = default_phy->phy_addr;
757		printk(KERN_INFO "%s: Using transceiver found at address %d as default\n",
758		       pci_name(sis_priv->pci_dev), sis_priv->cur_phy);
759	}
760
761	sis_priv->mii_info.phy_id = sis_priv->cur_phy;
762
763	status = mdio_read(net_dev, sis_priv->cur_phy, MII_CONTROL);
764	status &= (~MII_CNTL_ISOLATE);
765
766	mdio_write(net_dev, sis_priv->cur_phy, MII_CONTROL, status);
767	status = mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS);
768	status = mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS);
769
770	return status;
771}
772
773
774/**
775 * 	sis900_set_capability - set the media capability of network adapter.
776 *	@net_dev : the net device to probe for
777 *	@phy : default PHY
778 *
779 *	Set the media capability of network adapter according to
780 *	mii status register. It's necessary before auto-negotiate.
781 */
782
783static void sis900_set_capability(struct net_device *net_dev, struct mii_phy *phy)
784{
785	u16 cap;
786	u16 status;
787
788	status = mdio_read(net_dev, phy->phy_addr, MII_STATUS);
789	status = mdio_read(net_dev, phy->phy_addr, MII_STATUS);
790
791	cap = MII_NWAY_CSMA_CD |
792		((phy->status & MII_STAT_CAN_TX_FDX)? MII_NWAY_TX_FDX:0) |
793		((phy->status & MII_STAT_CAN_TX)    ? MII_NWAY_TX:0) |
794		((phy->status & MII_STAT_CAN_T_FDX) ? MII_NWAY_T_FDX:0)|
795		((phy->status & MII_STAT_CAN_T)     ? MII_NWAY_T:0);
796
797	mdio_write(net_dev, phy->phy_addr, MII_ANADV, cap);
798}
799
800
801/* Delay between EEPROM clock transitions. */
802#define eeprom_delay()  inl(ee_addr)
803
804/**
805 *	read_eeprom - Read Serial EEPROM
806 *	@ioaddr: base i/o address
807 *	@location: the EEPROM location to read
808 *
809 *	Read Serial EEPROM through EEPROM Access Register.
810 *	Note that location is in word (16 bits) unit
811 */
812
813static u16 __devinit read_eeprom(long ioaddr, int location)
814{
815	int i;
816	u16 retval = 0;
817	long ee_addr = ioaddr + mear;
818	u32 read_cmd = location | EEread;
819
820	outl(0, ee_addr);
821	eeprom_delay();
822	outl(EECS, ee_addr);
823	eeprom_delay();
824
825	/* Shift the read command (9) bits out. */
826	for (i = 8; i >= 0; i--) {
827		u32 dataval = (read_cmd & (1 << i)) ? EEDI | EECS : EECS;
828		outl(dataval, ee_addr);
829		eeprom_delay();
830		outl(dataval | EECLK, ee_addr);
831		eeprom_delay();
832	}
833	outl(EECS, ee_addr);
834	eeprom_delay();
835
836	/* read the 16-bits data in */
837	for (i = 16; i > 0; i--) {
838		outl(EECS, ee_addr);
839		eeprom_delay();
840		outl(EECS | EECLK, ee_addr);
841		eeprom_delay();
842		retval = (retval << 1) | ((inl(ee_addr) & EEDO) ? 1 : 0);
843		eeprom_delay();
844	}
845
846	/* Terminate the EEPROM access. */
847	outl(0, ee_addr);
848	eeprom_delay();
849
850	return retval;
851}
852
853/* Read and write the MII management registers using software-generated
854   serial MDIO protocol. Note that the command bits and data bits are
855   send out separately */
856#define mdio_delay()    inl(mdio_addr)
857
858static void mdio_idle(long mdio_addr)
859{
860	outl(MDIO | MDDIR, mdio_addr);
861	mdio_delay();
862	outl(MDIO | MDDIR | MDC, mdio_addr);
863}
864
865/* Syncronize the MII management interface by shifting 32 one bits out. */
866static void mdio_reset(long mdio_addr)
867{
868	int i;
869
870	for (i = 31; i >= 0; i--) {
871		outl(MDDIR | MDIO, mdio_addr);
872		mdio_delay();
873		outl(MDDIR | MDIO | MDC, mdio_addr);
874		mdio_delay();
875	}
876}
877
878/**
879 *	mdio_read - read MII PHY register
880 *	@net_dev: the net device to read
881 *	@phy_id: the phy address to read
882 *	@location: the phy regiester id to read
883 *
884 *	Read MII registers through MDIO and MDC
885 *	using MDIO management frame structure and protocol(defined by ISO/IEC).
886 *	Please see SiS7014 or ICS spec
887 */
888
889static int mdio_read(struct net_device *net_dev, int phy_id, int location)
890{
891	long mdio_addr = net_dev->base_addr + mear;
892	int mii_cmd = MIIread|(phy_id<<MIIpmdShift)|(location<<MIIregShift);
893	u16 retval = 0;
894	int i;
895
896	mdio_reset(mdio_addr);
897	mdio_idle(mdio_addr);
898
899	for (i = 15; i >= 0; i--) {
900		int dataval = (mii_cmd & (1 << i)) ? MDDIR | MDIO : MDDIR;
901		outl(dataval, mdio_addr);
902		mdio_delay();
903		outl(dataval | MDC, mdio_addr);
904		mdio_delay();
905	}
906
907	/* Read the 16 data bits. */
908	for (i = 16; i > 0; i--) {
909		outl(0, mdio_addr);
910		mdio_delay();
911		retval = (retval << 1) | ((inl(mdio_addr) & MDIO) ? 1 : 0);
912		outl(MDC, mdio_addr);
913		mdio_delay();
914	}
915	outl(0x00, mdio_addr);
916
917	return retval;
918}
919
920/**
921 *	mdio_write - write MII PHY register
922 *	@net_dev: the net device to write
923 *	@phy_id: the phy address to write
924 *	@location: the phy regiester id to write
925 *	@value: the register value to write with
926 *
927 *	Write MII registers with @value through MDIO and MDC
928 *	using MDIO management frame structure and protocol(defined by ISO/IEC)
929 *	please see SiS7014 or ICS spec
930 */
931
932static void mdio_write(struct net_device *net_dev, int phy_id, int location,
933			int value)
934{
935	long mdio_addr = net_dev->base_addr + mear;
936	int mii_cmd = MIIwrite|(phy_id<<MIIpmdShift)|(location<<MIIregShift);
937	int i;
938
939	mdio_reset(mdio_addr);
940	mdio_idle(mdio_addr);
941
942	/* Shift the command bits out. */
943	for (i = 15; i >= 0; i--) {
944		int dataval = (mii_cmd & (1 << i)) ? MDDIR | MDIO : MDDIR;
945		outb(dataval, mdio_addr);
946		mdio_delay();
947		outb(dataval | MDC, mdio_addr);
948		mdio_delay();
949	}
950	mdio_delay();
951
952	/* Shift the value bits out. */
953	for (i = 15; i >= 0; i--) {
954		int dataval = (value & (1 << i)) ? MDDIR | MDIO : MDDIR;
955		outl(dataval, mdio_addr);
956		mdio_delay();
957		outl(dataval | MDC, mdio_addr);
958		mdio_delay();
959	}
960	mdio_delay();
961
962	/* Clear out extra bits. */
963	for (i = 2; i > 0; i--) {
964		outb(0, mdio_addr);
965		mdio_delay();
966		outb(MDC, mdio_addr);
967		mdio_delay();
968	}
969	outl(0x00, mdio_addr);
970}
971
972
973/**
974 *	sis900_reset_phy - reset sis900 mii phy.
975 *	@net_dev: the net device to write
976 *	@phy_addr: default phy address
977 *
978 *	Some specific phy can't work properly without reset.
979 *	This function will be called during initialization and
980 *	link status change from ON to DOWN.
981 */
982
983static u16 sis900_reset_phy(struct net_device *net_dev, int phy_addr)
984{
985	int i;
986	u16 status;
987
988	for (i = 0; i < 2; i++)
989		status = mdio_read(net_dev, phy_addr, MII_STATUS);
990
991	mdio_write( net_dev, phy_addr, MII_CONTROL, MII_CNTL_RESET );
992
993	return status;
994}
995
996#ifdef CONFIG_NET_POLL_CONTROLLER
997/*
998 * Polling 'interrupt' - used by things like netconsole to send skbs
999 * without having to re-enable interrupts. It's not called while
1000 * the interrupt routine is executing.
1001*/
1002static void sis900_poll(struct net_device *dev)
1003{
1004	disable_irq(dev->irq);
1005	sis900_interrupt(dev->irq, dev);
1006	enable_irq(dev->irq);
1007}
1008#endif
1009
1010/**
1011 *	sis900_open - open sis900 device
1012 *	@net_dev: the net device to open
1013 *
1014 *	Do some initialization and start net interface.
1015 *	enable interrupts and set sis900 timer.
1016 */
1017
1018static int
1019sis900_open(struct net_device *net_dev)
1020{
1021	struct sis900_private *sis_priv = netdev_priv(net_dev);
1022	long ioaddr = net_dev->base_addr;
1023	int ret;
1024
1025	/* Soft reset the chip. */
1026	sis900_reset(net_dev);
1027
1028	/* Equalizer workaround Rule */
1029	sis630_set_eq(net_dev, sis_priv->chipset_rev);
1030
1031	ret = request_irq(net_dev->irq, sis900_interrupt, IRQF_SHARED,
1032						net_dev->name, net_dev);
1033	if (ret)
1034		return ret;
1035
1036	sis900_init_rxfilter(net_dev);
1037
1038	sis900_init_tx_ring(net_dev);
1039	sis900_init_rx_ring(net_dev);
1040
1041	set_rx_mode(net_dev);
1042
1043	netif_start_queue(net_dev);
1044
1045	/* Workaround for EDB */
1046	sis900_set_mode(ioaddr, HW_SPEED_10_MBPS, FDX_CAPABLE_HALF_SELECTED);
1047
1048	/* Enable all known interrupts by setting the interrupt mask. */
1049	outl((RxSOVR|RxORN|RxERR|RxOK|TxURN|TxERR|TxIDLE), ioaddr + imr);
1050	outl(RxENA | inl(ioaddr + cr), ioaddr + cr);
1051	outl(IE, ioaddr + ier);
1052
1053	sis900_check_mode(net_dev, sis_priv->mii);
1054
1055	/* Set the timer to switch to check for link beat and perhaps switch
1056	   to an alternate media type. */
1057	init_timer(&sis_priv->timer);
1058	sis_priv->timer.expires = jiffies + HZ;
1059	sis_priv->timer.data = (unsigned long)net_dev;
1060	sis_priv->timer.function = sis900_timer;
1061	add_timer(&sis_priv->timer);
1062
1063	return 0;
1064}
1065
1066/**
1067 *	sis900_init_rxfilter - Initialize the Rx filter
1068 *	@net_dev: the net device to initialize for
1069 *
1070 *	Set receive filter address to our MAC address
1071 *	and enable packet filtering.
1072 */
1073
1074static void
1075sis900_init_rxfilter (struct net_device * net_dev)
1076{
1077	struct sis900_private *sis_priv = netdev_priv(net_dev);
1078	long ioaddr = net_dev->base_addr;
1079	u32 rfcrSave;
1080	u32 i;
1081
1082	rfcrSave = inl(rfcr + ioaddr);
1083
1084	/* disable packet filtering before setting filter */
1085	outl(rfcrSave & ~RFEN, rfcr + ioaddr);
1086
1087	/* load MAC addr to filter data register */
1088	for (i = 0 ; i < 3 ; i++) {
1089		u32 w;
1090
1091		w = (u32) *((u16 *)(net_dev->dev_addr)+i);
1092		outl((i << RFADDR_shift), ioaddr + rfcr);
1093		outl(w, ioaddr + rfdr);
1094
1095		if (netif_msg_hw(sis_priv)) {
1096			printk(KERN_DEBUG "%s: Receive Filter Addrss[%d]=%x\n",
1097			       net_dev->name, i, inl(ioaddr + rfdr));
1098		}
1099	}
1100
1101	/* enable packet filtering */
1102	outl(rfcrSave | RFEN, rfcr + ioaddr);
1103}
1104
1105/**
1106 *	sis900_init_tx_ring - Initialize the Tx descriptor ring
1107 *	@net_dev: the net device to initialize for
1108 *
1109 *	Initialize the Tx descriptor ring,
1110 */
1111
1112static void
1113sis900_init_tx_ring(struct net_device *net_dev)
1114{
1115	struct sis900_private *sis_priv = netdev_priv(net_dev);
1116	long ioaddr = net_dev->base_addr;
1117	int i;
1118
1119	sis_priv->tx_full = 0;
1120	sis_priv->dirty_tx = sis_priv->cur_tx = 0;
1121
1122	for (i = 0; i < NUM_TX_DESC; i++) {
1123		sis_priv->tx_skbuff[i] = NULL;
1124
1125		sis_priv->tx_ring[i].link = sis_priv->tx_ring_dma +
1126			((i+1)%NUM_TX_DESC)*sizeof(BufferDesc);
1127		sis_priv->tx_ring[i].cmdsts = 0;
1128		sis_priv->tx_ring[i].bufptr = 0;
1129	}
1130
1131	/* load Transmit Descriptor Register */
1132	outl(sis_priv->tx_ring_dma, ioaddr + txdp);
1133	if (netif_msg_hw(sis_priv))
1134		printk(KERN_DEBUG "%s: TX descriptor register loaded with: %8.8x\n",
1135		       net_dev->name, inl(ioaddr + txdp));
1136}
1137
1138/**
1139 *	sis900_init_rx_ring - Initialize the Rx descriptor ring
1140 *	@net_dev: the net device to initialize for
1141 *
1142 *	Initialize the Rx descriptor ring,
1143 *	and pre-allocate recevie buffers (socket buffer)
1144 */
1145
1146static void
1147sis900_init_rx_ring(struct net_device *net_dev)
1148{
1149	struct sis900_private *sis_priv = netdev_priv(net_dev);
1150	long ioaddr = net_dev->base_addr;
1151	int i;
1152
1153	sis_priv->cur_rx = 0;
1154	sis_priv->dirty_rx = 0;
1155
1156	/* init RX descriptor */
1157	for (i = 0; i < NUM_RX_DESC; i++) {
1158		sis_priv->rx_skbuff[i] = NULL;
1159
1160		sis_priv->rx_ring[i].link = sis_priv->rx_ring_dma +
1161			((i+1)%NUM_RX_DESC)*sizeof(BufferDesc);
1162		sis_priv->rx_ring[i].cmdsts = 0;
1163		sis_priv->rx_ring[i].bufptr = 0;
1164	}
1165
1166	/* allocate sock buffers */
1167	for (i = 0; i < NUM_RX_DESC; i++) {
1168		struct sk_buff *skb;
1169
1170		if ((skb = dev_alloc_skb(RX_BUF_SIZE)) == NULL) {
1171			/* not enough memory for skbuff, this makes a "hole"
1172			   on the buffer ring, it is not clear how the
1173			   hardware will react to this kind of degenerated
1174			   buffer */
1175			break;
1176		}
1177		sis_priv->rx_skbuff[i] = skb;
1178		sis_priv->rx_ring[i].cmdsts = RX_BUF_SIZE;
1179                sis_priv->rx_ring[i].bufptr = pci_map_single(sis_priv->pci_dev,
1180                        skb->data, RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
1181	}
1182	sis_priv->dirty_rx = (unsigned int) (i - NUM_RX_DESC);
1183
1184	/* load Receive Descriptor Register */
1185	outl(sis_priv->rx_ring_dma, ioaddr + rxdp);
1186	if (netif_msg_hw(sis_priv))
1187		printk(KERN_DEBUG "%s: RX descriptor register loaded with: %8.8x\n",
1188		       net_dev->name, inl(ioaddr + rxdp));
1189}
1190
1191/**
1192 *	sis630_set_eq - set phy equalizer value for 630 LAN
1193 *	@net_dev: the net device to set equalizer value
1194 *	@revision: 630 LAN revision number
1195 *
1196 *	630E equalizer workaround rule(Cyrus Huang 08/15)
1197 *	PHY register 14h(Test)
1198 *	Bit 14: 0 -- Automatically detect (default)
1199 *		1 -- Manually set Equalizer filter
1200 *	Bit 13: 0 -- (Default)
1201 *		1 -- Speed up convergence of equalizer setting
1202 *	Bit 9 : 0 -- (Default)
1203 *		1 -- Disable Baseline Wander
1204 *	Bit 3~7   -- Equalizer filter setting
1205 *	Link ON: Set Bit 9, 13 to 1, Bit 14 to 0
1206 *	Then calculate equalizer value
1207 *	Then set equalizer value, and set Bit 14 to 1, Bit 9 to 0
1208 *	Link Off:Set Bit 13 to 1, Bit 14 to 0
1209 *	Calculate Equalizer value:
1210 *	When Link is ON and Bit 14 is 0, SIS900PHY will auto-detect proper equalizer value.
1211 *	When the equalizer is stable, this value is not a fixed value. It will be within
1212 *	a small range(eg. 7~9). Then we get a minimum and a maximum value(eg. min=7, max=9)
1213 *	0 <= max <= 4  --> set equalizer to max
1214 *	5 <= max <= 14 --> set equalizer to max+1 or set equalizer to max+2 if max == min
1215 *	max >= 15      --> set equalizer to max+5 or set equalizer to max+6 if max == min
1216 */
1217
1218static void sis630_set_eq(struct net_device *net_dev, u8 revision)
1219{
1220	struct sis900_private *sis_priv = netdev_priv(net_dev);
1221	u16 reg14h, eq_value=0, max_value=0, min_value=0;
1222	int i, maxcount=10;
1223
1224	if ( !(revision == SIS630E_900_REV || revision == SIS630EA1_900_REV ||
1225	       revision == SIS630A_900_REV || revision ==  SIS630ET_900_REV) )
1226		return;
1227
1228	if (netif_carrier_ok(net_dev)) {
1229		reg14h = mdio_read(net_dev, sis_priv->cur_phy, MII_RESV);
1230		mdio_write(net_dev, sis_priv->cur_phy, MII_RESV,
1231					(0x2200 | reg14h) & 0xBFFF);
1232		for (i=0; i < maxcount; i++) {
1233			eq_value = (0x00F8 & mdio_read(net_dev,
1234					sis_priv->cur_phy, MII_RESV)) >> 3;
1235			if (i == 0)
1236				max_value=min_value=eq_value;
1237			max_value = (eq_value > max_value) ?
1238						eq_value : max_value;
1239			min_value = (eq_value < min_value) ?
1240						eq_value : min_value;
1241		}
1242		/* 630E rule to determine the equalizer value */
1243		if (revision == SIS630E_900_REV || revision == SIS630EA1_900_REV ||
1244		    revision == SIS630ET_900_REV) {
1245			if (max_value < 5)
1246				eq_value = max_value;
1247			else if (max_value >= 5 && max_value < 15)
1248				eq_value = (max_value == min_value) ?
1249						max_value+2 : max_value+1;
1250			else if (max_value >= 15)
1251				eq_value=(max_value == min_value) ?
1252						max_value+6 : max_value+5;
1253		}
1254		/* 630B0&B1 rule to determine the equalizer value */
1255		if (revision == SIS630A_900_REV &&
1256		    (sis_priv->host_bridge_rev == SIS630B0 ||
1257		     sis_priv->host_bridge_rev == SIS630B1)) {
1258			if (max_value == 0)
1259				eq_value = 3;
1260			else
1261				eq_value = (max_value + min_value + 1)/2;
1262		}
1263		/* write equalizer value and setting */
1264		reg14h = mdio_read(net_dev, sis_priv->cur_phy, MII_RESV);
1265		reg14h = (reg14h & 0xFF07) | ((eq_value << 3) & 0x00F8);
1266		reg14h = (reg14h | 0x6000) & 0xFDFF;
1267		mdio_write(net_dev, sis_priv->cur_phy, MII_RESV, reg14h);
1268	} else {
1269		reg14h = mdio_read(net_dev, sis_priv->cur_phy, MII_RESV);
1270		if (revision == SIS630A_900_REV &&
1271		    (sis_priv->host_bridge_rev == SIS630B0 ||
1272		     sis_priv->host_bridge_rev == SIS630B1))
1273			mdio_write(net_dev, sis_priv->cur_phy, MII_RESV,
1274						(reg14h | 0x2200) & 0xBFFF);
1275		else
1276			mdio_write(net_dev, sis_priv->cur_phy, MII_RESV,
1277						(reg14h | 0x2000) & 0xBFFF);
1278	}
1279}
1280
1281/**
1282 *	sis900_timer - sis900 timer routine
1283 *	@data: pointer to sis900 net device
1284 *
1285 *	On each timer ticks we check two things,
1286 *	link status (ON/OFF) and link mode (10/100/Full/Half)
1287 */
1288
1289static void sis900_timer(unsigned long data)
1290{
1291	struct net_device *net_dev = (struct net_device *)data;
1292	struct sis900_private *sis_priv = netdev_priv(net_dev);
1293	struct mii_phy *mii_phy = sis_priv->mii;
1294	static const int next_tick = 5*HZ;
1295	u16 status;
1296
1297	if (!sis_priv->autong_complete){
1298		int uninitialized_var(speed), duplex = 0;
1299
1300		sis900_read_mode(net_dev, &speed, &duplex);
1301		if (duplex){
1302			sis900_set_mode(net_dev->base_addr, speed, duplex);
1303			sis630_set_eq(net_dev, sis_priv->chipset_rev);
1304			netif_start_queue(net_dev);
1305		}
1306
1307		sis_priv->timer.expires = jiffies + HZ;
1308		add_timer(&sis_priv->timer);
1309		return;
1310	}
1311
1312	status = mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS);
1313	status = mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS);
1314
1315	/* Link OFF -> ON */
1316	if (!netif_carrier_ok(net_dev)) {
1317	LookForLink:
1318		/* Search for new PHY */
1319		status = sis900_default_phy(net_dev);
1320		mii_phy = sis_priv->mii;
1321
1322		if (status & MII_STAT_LINK){
1323			sis900_check_mode(net_dev, mii_phy);
1324			netif_carrier_on(net_dev);
1325		}
1326	} else {
1327	/* Link ON -> OFF */
1328                if (!(status & MII_STAT_LINK)){
1329                	netif_carrier_off(net_dev);
1330			if(netif_msg_link(sis_priv))
1331                		printk(KERN_INFO "%s: Media Link Off\n", net_dev->name);
1332
1333                	/* Change mode issue */
1334                	if ((mii_phy->phy_id0 == 0x001D) &&
1335			    ((mii_phy->phy_id1 & 0xFFF0) == 0x8000))
1336               			sis900_reset_phy(net_dev,  sis_priv->cur_phy);
1337
1338			sis630_set_eq(net_dev, sis_priv->chipset_rev);
1339
1340                	goto LookForLink;
1341                }
1342	}
1343
1344	sis_priv->timer.expires = jiffies + next_tick;
1345	add_timer(&sis_priv->timer);
1346}
1347
1348/**
1349 *	sis900_check_mode - check the media mode for sis900
1350 *	@net_dev: the net device to be checked
1351 *	@mii_phy: the mii phy
1352 *
1353 *	Older driver gets the media mode from mii status output
1354 *	register. Now we set our media capability and auto-negotiate
1355 *	to get the upper bound of speed and duplex between two ends.
1356 *	If the types of mii phy is HOME, it doesn't need to auto-negotiate
1357 *	and autong_complete should be set to 1.
1358 */
1359
1360static void sis900_check_mode(struct net_device *net_dev, struct mii_phy *mii_phy)
1361{
1362	struct sis900_private *sis_priv = netdev_priv(net_dev);
1363	long ioaddr = net_dev->base_addr;
1364	int speed, duplex;
1365
1366	if (mii_phy->phy_types == LAN) {
1367		outl(~EXD & inl(ioaddr + cfg), ioaddr + cfg);
1368		sis900_set_capability(net_dev , mii_phy);
1369		sis900_auto_negotiate(net_dev, sis_priv->cur_phy);
1370	} else {
1371		outl(EXD | inl(ioaddr + cfg), ioaddr + cfg);
1372		speed = HW_SPEED_HOME;
1373		duplex = FDX_CAPABLE_HALF_SELECTED;
1374		sis900_set_mode(ioaddr, speed, duplex);
1375		sis_priv->autong_complete = 1;
1376	}
1377}
1378
1379/**
1380 *	sis900_set_mode - Set the media mode of mac register.
1381 *	@ioaddr: the address of the device
1382 *	@speed : the transmit speed to be determined
1383 *	@duplex: the duplex mode to be determined
1384 *
1385 *	Set the media mode of mac register txcfg/rxcfg according to
1386 *	speed and duplex of phy. Bit EDB_MASTER_EN indicates the EDB
1387 *	bus is used instead of PCI bus. When this bit is set 1, the
1388 *	Max DMA Burst Size for TX/RX DMA should be no larger than 16
1389 *	double words.
1390 */
1391
1392static void sis900_set_mode (long ioaddr, int speed, int duplex)
1393{
1394	u32 tx_flags = 0, rx_flags = 0;
1395
1396	if (inl(ioaddr + cfg) & EDB_MASTER_EN) {
1397		tx_flags = TxATP | (DMA_BURST_64 << TxMXDMA_shift) |
1398					(TX_FILL_THRESH << TxFILLT_shift);
1399		rx_flags = DMA_BURST_64 << RxMXDMA_shift;
1400	} else {
1401		tx_flags = TxATP | (DMA_BURST_512 << TxMXDMA_shift) |
1402					(TX_FILL_THRESH << TxFILLT_shift);
1403		rx_flags = DMA_BURST_512 << RxMXDMA_shift;
1404	}
1405
1406	if (speed == HW_SPEED_HOME || speed == HW_SPEED_10_MBPS) {
1407		rx_flags |= (RxDRNT_10 << RxDRNT_shift);
1408		tx_flags |= (TxDRNT_10 << TxDRNT_shift);
1409	} else {
1410		rx_flags |= (RxDRNT_100 << RxDRNT_shift);
1411		tx_flags |= (TxDRNT_100 << TxDRNT_shift);
1412	}
1413
1414	if (duplex == FDX_CAPABLE_FULL_SELECTED) {
1415		tx_flags |= (TxCSI | TxHBI);
1416		rx_flags |= RxATX;
1417	}
1418
1419#if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
1420	/* Can accept Jumbo packet */
1421	rx_flags |= RxAJAB;
1422#endif
1423
1424	outl (tx_flags, ioaddr + txcfg);
1425	outl (rx_flags, ioaddr + rxcfg);
1426}
1427
1428/**
1429 *	sis900_auto_negotiate - Set the Auto-Negotiation Enable/Reset bit.
1430 *	@net_dev: the net device to read mode for
1431 *	@phy_addr: mii phy address
1432 *
1433 *	If the adapter is link-on, set the auto-negotiate enable/reset bit.
1434 *	autong_complete should be set to 0 when starting auto-negotiation.
1435 *	autong_complete should be set to 1 if we didn't start auto-negotiation.
1436 *	sis900_timer will wait for link on again if autong_complete = 0.
1437 */
1438
1439static void sis900_auto_negotiate(struct net_device *net_dev, int phy_addr)
1440{
1441	struct sis900_private *sis_priv = netdev_priv(net_dev);
1442	int i = 0;
1443	u32 status;
1444
1445	for (i = 0; i < 2; i++)
1446		status = mdio_read(net_dev, phy_addr, MII_STATUS);
1447
1448	if (!(status & MII_STAT_LINK)){
1449		if(netif_msg_link(sis_priv))
1450			printk(KERN_INFO "%s: Media Link Off\n", net_dev->name);
1451		sis_priv->autong_complete = 1;
1452		netif_carrier_off(net_dev);
1453		return;
1454	}
1455
1456	/* (Re)start AutoNegotiate */
1457	mdio_write(net_dev, phy_addr, MII_CONTROL,
1458		   MII_CNTL_AUTO | MII_CNTL_RST_AUTO);
1459	sis_priv->autong_complete = 0;
1460}
1461
1462
1463/**
1464 *	sis900_read_mode - read media mode for sis900 internal phy
1465 *	@net_dev: the net device to read mode for
1466 *	@speed  : the transmit speed to be determined
1467 *	@duplex : the duplex mode to be determined
1468 *
1469 *	The capability of remote end will be put in mii register autorec
1470 *	after auto-negotiation. Use AND operation to get the upper bound
1471 *	of speed and duplex between two ends.
1472 */
1473
1474static void sis900_read_mode(struct net_device *net_dev, int *speed, int *duplex)
1475{
1476	struct sis900_private *sis_priv = netdev_priv(net_dev);
1477	struct mii_phy *phy = sis_priv->mii;
1478	int phy_addr = sis_priv->cur_phy;
1479	u32 status;
1480	u16 autoadv, autorec;
1481	int i;
1482
1483	for (i = 0; i < 2; i++)
1484		status = mdio_read(net_dev, phy_addr, MII_STATUS);
1485
1486	if (!(status & MII_STAT_LINK))
1487		return;
1488
1489	/* AutoNegotiate completed */
1490	autoadv = mdio_read(net_dev, phy_addr, MII_ANADV);
1491	autorec = mdio_read(net_dev, phy_addr, MII_ANLPAR);
1492	status = autoadv & autorec;
1493
1494	*speed = HW_SPEED_10_MBPS;
1495	*duplex = FDX_CAPABLE_HALF_SELECTED;
1496
1497	if (status & (MII_NWAY_TX | MII_NWAY_TX_FDX))
1498		*speed = HW_SPEED_100_MBPS;
1499	if (status & ( MII_NWAY_TX_FDX | MII_NWAY_T_FDX))
1500		*duplex = FDX_CAPABLE_FULL_SELECTED;
1501
1502	sis_priv->autong_complete = 1;
1503
1504	/* Workaround for Realtek RTL8201 PHY issue */
1505	if ((phy->phy_id0 == 0x0000) && ((phy->phy_id1 & 0xFFF0) == 0x8200)) {
1506		if (mdio_read(net_dev, phy_addr, MII_CONTROL) & MII_CNTL_FDX)
1507			*duplex = FDX_CAPABLE_FULL_SELECTED;
1508		if (mdio_read(net_dev, phy_addr, 0x0019) & 0x01)
1509			*speed = HW_SPEED_100_MBPS;
1510	}
1511
1512	if(netif_msg_link(sis_priv))
1513		printk(KERN_INFO "%s: Media Link On %s %s-duplex\n",
1514	       				net_dev->name,
1515	       				*speed == HW_SPEED_100_MBPS ?
1516	       					"100mbps" : "10mbps",
1517	       				*duplex == FDX_CAPABLE_FULL_SELECTED ?
1518	       					"full" : "half");
1519}
1520
1521/**
1522 *	sis900_tx_timeout - sis900 transmit timeout routine
1523 *	@net_dev: the net device to transmit
1524 *
1525 *	print transmit timeout status
1526 *	disable interrupts and do some tasks
1527 */
1528
1529static void sis900_tx_timeout(struct net_device *net_dev)
1530{
1531	struct sis900_private *sis_priv = netdev_priv(net_dev);
1532	long ioaddr = net_dev->base_addr;
1533	unsigned long flags;
1534	int i;
1535
1536	if(netif_msg_tx_err(sis_priv))
1537		printk(KERN_INFO "%s: Transmit timeout, status %8.8x %8.8x\n",
1538	       		net_dev->name, inl(ioaddr + cr), inl(ioaddr + isr));
1539
1540	/* Disable interrupts by clearing the interrupt mask. */
1541	outl(0x0000, ioaddr + imr);
1542
1543	/* use spinlock to prevent interrupt handler accessing buffer ring */
1544	spin_lock_irqsave(&sis_priv->lock, flags);
1545
1546	/* discard unsent packets */
1547	sis_priv->dirty_tx = sis_priv->cur_tx = 0;
1548	for (i = 0; i < NUM_TX_DESC; i++) {
1549		struct sk_buff *skb = sis_priv->tx_skbuff[i];
1550
1551		if (skb) {
1552			pci_unmap_single(sis_priv->pci_dev,
1553				sis_priv->tx_ring[i].bufptr, skb->len,
1554				PCI_DMA_TODEVICE);
1555			dev_kfree_skb_irq(skb);
1556			sis_priv->tx_skbuff[i] = NULL;
1557			sis_priv->tx_ring[i].cmdsts = 0;
1558			sis_priv->tx_ring[i].bufptr = 0;
1559			net_dev->stats.tx_dropped++;
1560		}
1561	}
1562	sis_priv->tx_full = 0;
1563	netif_wake_queue(net_dev);
1564
1565	spin_unlock_irqrestore(&sis_priv->lock, flags);
1566
1567	net_dev->trans_start = jiffies; /* prevent tx timeout */
1568
1569	/* load Transmit Descriptor Register */
1570	outl(sis_priv->tx_ring_dma, ioaddr + txdp);
1571
1572	/* Enable all known interrupts by setting the interrupt mask. */
1573	outl((RxSOVR|RxORN|RxERR|RxOK|TxURN|TxERR|TxIDLE), ioaddr + imr);
1574}
1575
1576/**
1577 *	sis900_start_xmit - sis900 start transmit routine
1578 *	@skb: socket buffer pointer to put the data being transmitted
1579 *	@net_dev: the net device to transmit with
1580 *
1581 *	Set the transmit buffer descriptor,
1582 *	and write TxENA to enable transmit state machine.
1583 *	tell upper layer if the buffer is full
1584 */
1585
1586static netdev_tx_t
1587sis900_start_xmit(struct sk_buff *skb, struct net_device *net_dev)
1588{
1589	struct sis900_private *sis_priv = netdev_priv(net_dev);
1590	long ioaddr = net_dev->base_addr;
1591	unsigned int  entry;
1592	unsigned long flags;
1593	unsigned int  index_cur_tx, index_dirty_tx;
1594	unsigned int  count_dirty_tx;
1595
1596	/* Don't transmit data before the complete of auto-negotiation */
1597	if(!sis_priv->autong_complete){
1598		netif_stop_queue(net_dev);
1599		return NETDEV_TX_BUSY;
1600	}
1601
1602	spin_lock_irqsave(&sis_priv->lock, flags);
1603
1604	/* Calculate the next Tx descriptor entry. */
1605	entry = sis_priv->cur_tx % NUM_TX_DESC;
1606	sis_priv->tx_skbuff[entry] = skb;
1607
1608	/* set the transmit buffer descriptor and enable Transmit State Machine */
1609	sis_priv->tx_ring[entry].bufptr = pci_map_single(sis_priv->pci_dev,
1610		skb->data, skb->len, PCI_DMA_TODEVICE);
1611	sis_priv->tx_ring[entry].cmdsts = (OWN | skb->len);
1612	outl(TxENA | inl(ioaddr + cr), ioaddr + cr);
1613
1614	sis_priv->cur_tx ++;
1615	index_cur_tx = sis_priv->cur_tx;
1616	index_dirty_tx = sis_priv->dirty_tx;
1617
1618	for (count_dirty_tx = 0; index_cur_tx != index_dirty_tx; index_dirty_tx++)
1619		count_dirty_tx ++;
1620
1621	if (index_cur_tx == index_dirty_tx) {
1622		/* dirty_tx is met in the cycle of cur_tx, buffer full */
1623		sis_priv->tx_full = 1;
1624		netif_stop_queue(net_dev);
1625	} else if (count_dirty_tx < NUM_TX_DESC) {
1626		/* Typical path, tell upper layer that more transmission is possible */
1627		netif_start_queue(net_dev);
1628	} else {
1629		/* buffer full, tell upper layer no more transmission */
1630		sis_priv->tx_full = 1;
1631		netif_stop_queue(net_dev);
1632	}
1633
1634	spin_unlock_irqrestore(&sis_priv->lock, flags);
1635
1636	if (netif_msg_tx_queued(sis_priv))
1637		printk(KERN_DEBUG "%s: Queued Tx packet at %p size %d "
1638		       "to slot %d.\n",
1639		       net_dev->name, skb->data, (int)skb->len, entry);
1640
1641	return NETDEV_TX_OK;
1642}
1643
1644/**
1645 *	sis900_interrupt - sis900 interrupt handler
1646 *	@irq: the irq number
1647 *	@dev_instance: the client data object
1648 *
1649 *	The interrupt handler does all of the Rx thread work,
1650 *	and cleans up after the Tx thread
1651 */
1652
1653static irqreturn_t sis900_interrupt(int irq, void *dev_instance)
1654{
1655	struct net_device *net_dev = dev_instance;
1656	struct sis900_private *sis_priv = netdev_priv(net_dev);
1657	int boguscnt = max_interrupt_work;
1658	long ioaddr = net_dev->base_addr;
1659	u32 status;
1660	unsigned int handled = 0;
1661
1662	spin_lock (&sis_priv->lock);
1663
1664	do {
1665		status = inl(ioaddr + isr);
1666
1667		if ((status & (HIBERR|TxURN|TxERR|TxIDLE|RxORN|RxERR|RxOK)) == 0)
1668			/* nothing intresting happened */
1669			break;
1670		handled = 1;
1671
1672		/* why dow't we break after Tx/Rx case ?? keyword: full-duplex */
1673		if (status & (RxORN | RxERR | RxOK))
1674			/* Rx interrupt */
1675			sis900_rx(net_dev);
1676
1677		if (status & (TxURN | TxERR | TxIDLE))
1678			/* Tx interrupt */
1679			sis900_finish_xmit(net_dev);
1680
1681		/* something strange happened !!! */
1682		if (status & HIBERR) {
1683			if(netif_msg_intr(sis_priv))
1684				printk(KERN_INFO "%s: Abnormal interrupt, "
1685					"status %#8.8x.\n", net_dev->name, status);
1686			break;
1687		}
1688		if (--boguscnt < 0) {
1689			if(netif_msg_intr(sis_priv))
1690				printk(KERN_INFO "%s: Too much work at interrupt, "
1691					"interrupt status = %#8.8x.\n",
1692					net_dev->name, status);
1693			break;
1694		}
1695	} while (1);
1696
1697	if(netif_msg_intr(sis_priv))
1698		printk(KERN_DEBUG "%s: exiting interrupt, "
1699		       "interrupt status = 0x%#8.8x.\n",
1700		       net_dev->name, inl(ioaddr + isr));
1701
1702	spin_unlock (&sis_priv->lock);
1703	return IRQ_RETVAL(handled);
1704}
1705
1706/**
1707 *	sis900_rx - sis900 receive routine
1708 *	@net_dev: the net device which receives data
1709 *
1710 *	Process receive interrupt events,
1711 *	put buffer to higher layer and refill buffer pool
1712 *	Note: This function is called by interrupt handler,
1713 *	don't do "too much" work here
1714 */
1715
1716static int sis900_rx(struct net_device *net_dev)
1717{
1718	struct sis900_private *sis_priv = netdev_priv(net_dev);
1719	long ioaddr = net_dev->base_addr;
1720	unsigned int entry = sis_priv->cur_rx % NUM_RX_DESC;
1721	u32 rx_status = sis_priv->rx_ring[entry].cmdsts;
1722	int rx_work_limit;
1723
1724	if (netif_msg_rx_status(sis_priv))
1725		printk(KERN_DEBUG "sis900_rx, cur_rx:%4.4d, dirty_rx:%4.4d "
1726		       "status:0x%8.8x\n",
1727		       sis_priv->cur_rx, sis_priv->dirty_rx, rx_status);
1728	rx_work_limit = sis_priv->dirty_rx + NUM_RX_DESC - sis_priv->cur_rx;
1729
1730	while (rx_status & OWN) {
1731		unsigned int rx_size;
1732		unsigned int data_size;
1733
1734		if (--rx_work_limit < 0)
1735			break;
1736
1737		data_size = rx_status & DSIZE;
1738		rx_size = data_size - CRC_SIZE;
1739
1740#if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
1741		/* ``TOOLONG'' flag means jumbo packet received. */
1742		if ((rx_status & TOOLONG) && data_size <= MAX_FRAME_SIZE)
1743			rx_status &= (~ ((unsigned int)TOOLONG));
1744#endif
1745
1746		if (rx_status & (ABORT|OVERRUN|TOOLONG|RUNT|RXISERR|CRCERR|FAERR)) {
1747			/* corrupted packet received */
1748			if (netif_msg_rx_err(sis_priv))
1749				printk(KERN_DEBUG "%s: Corrupted packet "
1750				       "received, buffer status = 0x%8.8x/%d.\n",
1751				       net_dev->name, rx_status, data_size);
1752			net_dev->stats.rx_errors++;
1753			if (rx_status & OVERRUN)
1754				net_dev->stats.rx_over_errors++;
1755			if (rx_status & (TOOLONG|RUNT))
1756				net_dev->stats.rx_length_errors++;
1757			if (rx_status & (RXISERR | FAERR))
1758				net_dev->stats.rx_frame_errors++;
1759			if (rx_status & CRCERR)
1760				net_dev->stats.rx_crc_errors++;
1761			/* reset buffer descriptor state */
1762			sis_priv->rx_ring[entry].cmdsts = RX_BUF_SIZE;
1763		} else {
1764			struct sk_buff * skb;
1765			struct sk_buff * rx_skb;
1766
1767			pci_unmap_single(sis_priv->pci_dev,
1768				sis_priv->rx_ring[entry].bufptr, RX_BUF_SIZE,
1769				PCI_DMA_FROMDEVICE);
1770
1771			/* refill the Rx buffer, what if there is not enough
1772			 * memory for new socket buffer ?? */
1773			if ((skb = dev_alloc_skb(RX_BUF_SIZE)) == NULL) {
1774				/*
1775				 * Not enough memory to refill the buffer
1776				 * so we need to recycle the old one so
1777				 * as to avoid creating a memory hole
1778				 * in the rx ring
1779				 */
1780				skb = sis_priv->rx_skbuff[entry];
1781				net_dev->stats.rx_dropped++;
1782				goto refill_rx_ring;
1783			}
1784
1785			/* This situation should never happen, but due to
1786			   some unknown bugs, it is possible that
1787			   we are working on NULL sk_buff :-( */
1788			if (sis_priv->rx_skbuff[entry] == NULL) {
1789				if (netif_msg_rx_err(sis_priv))
1790					printk(KERN_WARNING "%s: NULL pointer "
1791					      "encountered in Rx ring\n"
1792					      "cur_rx:%4.4d, dirty_rx:%4.4d\n",
1793					      net_dev->name, sis_priv->cur_rx,
1794					      sis_priv->dirty_rx);
1795				dev_kfree_skb(skb);
1796				break;
1797			}
1798
1799			/* give the socket buffer to upper layers */
1800			rx_skb = sis_priv->rx_skbuff[entry];
1801			skb_put(rx_skb, rx_size);
1802			rx_skb->protocol = eth_type_trans(rx_skb, net_dev);
1803			netif_rx(rx_skb);
1804
1805			/* some network statistics */
1806			if ((rx_status & BCAST) == MCAST)
1807				net_dev->stats.multicast++;
1808			net_dev->stats.rx_bytes += rx_size;
1809			net_dev->stats.rx_packets++;
1810			sis_priv->dirty_rx++;
1811refill_rx_ring:
1812			sis_priv->rx_skbuff[entry] = skb;
1813			sis_priv->rx_ring[entry].cmdsts = RX_BUF_SIZE;
1814                	sis_priv->rx_ring[entry].bufptr =
1815				pci_map_single(sis_priv->pci_dev, skb->data,
1816					RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
1817		}
1818		sis_priv->cur_rx++;
1819		entry = sis_priv->cur_rx % NUM_RX_DESC;
1820		rx_status = sis_priv->rx_ring[entry].cmdsts;
1821	} // while
1822
1823	/* refill the Rx buffer, what if the rate of refilling is slower
1824	 * than consuming ?? */
1825	for (; sis_priv->cur_rx != sis_priv->dirty_rx; sis_priv->dirty_rx++) {
1826		struct sk_buff *skb;
1827
1828		entry = sis_priv->dirty_rx % NUM_RX_DESC;
1829
1830		if (sis_priv->rx_skbuff[entry] == NULL) {
1831			if ((skb = dev_alloc_skb(RX_BUF_SIZE)) == NULL) {
1832				/* not enough memory for skbuff, this makes a
1833				 * "hole" on the buffer ring, it is not clear
1834				 * how the hardware will react to this kind
1835				 * of degenerated buffer */
1836				if (netif_msg_rx_err(sis_priv))
1837					printk(KERN_INFO "%s: Memory squeeze, "
1838						"deferring packet.\n",
1839						net_dev->name);
1840				net_dev->stats.rx_dropped++;
1841				break;
1842			}
1843			sis_priv->rx_skbuff[entry] = skb;
1844			sis_priv->rx_ring[entry].cmdsts = RX_BUF_SIZE;
1845                	sis_priv->rx_ring[entry].bufptr =
1846				pci_map_single(sis_priv->pci_dev, skb->data,
1847					RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
1848		}
1849	}
1850	/* re-enable the potentially idle receive state matchine */
1851	outl(RxENA | inl(ioaddr + cr), ioaddr + cr );
1852
1853	return 0;
1854}
1855
1856/**
1857 *	sis900_finish_xmit - finish up transmission of packets
1858 *	@net_dev: the net device to be transmitted on
1859 *
1860 *	Check for error condition and free socket buffer etc
1861 *	schedule for more transmission as needed
1862 *	Note: This function is called by interrupt handler,
1863 *	don't do "too much" work here
1864 */
1865
1866static void sis900_finish_xmit (struct net_device *net_dev)
1867{
1868	struct sis900_private *sis_priv = netdev_priv(net_dev);
1869
1870	for (; sis_priv->dirty_tx != sis_priv->cur_tx; sis_priv->dirty_tx++) {
1871		struct sk_buff *skb;
1872		unsigned int entry;
1873		u32 tx_status;
1874
1875		entry = sis_priv->dirty_tx % NUM_TX_DESC;
1876		tx_status = sis_priv->tx_ring[entry].cmdsts;
1877
1878		if (tx_status & OWN) {
1879			/* The packet is not transmitted yet (owned by hardware) !
1880			 * Note: the interrupt is generated only when Tx Machine
1881			 * is idle, so this is an almost impossible case */
1882			break;
1883		}
1884
1885		if (tx_status & (ABORT | UNDERRUN | OWCOLL)) {
1886			/* packet unsuccessfully transmitted */
1887			if (netif_msg_tx_err(sis_priv))
1888				printk(KERN_DEBUG "%s: Transmit "
1889				       "error, Tx status %8.8x.\n",
1890				       net_dev->name, tx_status);
1891			net_dev->stats.tx_errors++;
1892			if (tx_status & UNDERRUN)
1893				net_dev->stats.tx_fifo_errors++;
1894			if (tx_status & ABORT)
1895				net_dev->stats.tx_aborted_errors++;
1896			if (tx_status & NOCARRIER)
1897				net_dev->stats.tx_carrier_errors++;
1898			if (tx_status & OWCOLL)
1899				net_dev->stats.tx_window_errors++;
1900		} else {
1901			/* packet successfully transmitted */
1902			net_dev->stats.collisions += (tx_status & COLCNT) >> 16;
1903			net_dev->stats.tx_bytes += tx_status & DSIZE;
1904			net_dev->stats.tx_packets++;
1905		}
1906		/* Free the original skb. */
1907		skb = sis_priv->tx_skbuff[entry];
1908		pci_unmap_single(sis_priv->pci_dev,
1909			sis_priv->tx_ring[entry].bufptr, skb->len,
1910			PCI_DMA_TODEVICE);
1911		dev_kfree_skb_irq(skb);
1912		sis_priv->tx_skbuff[entry] = NULL;
1913		sis_priv->tx_ring[entry].bufptr = 0;
1914		sis_priv->tx_ring[entry].cmdsts = 0;
1915	}
1916
1917	if (sis_priv->tx_full && netif_queue_stopped(net_dev) &&
1918	    sis_priv->cur_tx - sis_priv->dirty_tx < NUM_TX_DESC - 4) {
1919		/* The ring is no longer full, clear tx_full and schedule
1920		 * more transmission by netif_wake_queue(net_dev) */
1921		sis_priv->tx_full = 0;
1922		netif_wake_queue (net_dev);
1923	}
1924}
1925
1926/**
1927 *	sis900_close - close sis900 device
1928 *	@net_dev: the net device to be closed
1929 *
1930 *	Disable interrupts, stop the Tx and Rx Status Machine
1931 *	free Tx and RX socket buffer
1932 */
1933
1934static int sis900_close(struct net_device *net_dev)
1935{
1936	long ioaddr = net_dev->base_addr;
1937	struct sis900_private *sis_priv = netdev_priv(net_dev);
1938	struct sk_buff *skb;
1939	int i;
1940
1941	netif_stop_queue(net_dev);
1942
1943	/* Disable interrupts by clearing the interrupt mask. */
1944	outl(0x0000, ioaddr + imr);
1945	outl(0x0000, ioaddr + ier);
1946
1947	/* Stop the chip's Tx and Rx Status Machine */
1948	outl(RxDIS | TxDIS | inl(ioaddr + cr), ioaddr + cr);
1949
1950	del_timer(&sis_priv->timer);
1951
1952	free_irq(net_dev->irq, net_dev);
1953
1954	/* Free Tx and RX skbuff */
1955	for (i = 0; i < NUM_RX_DESC; i++) {
1956		skb = sis_priv->rx_skbuff[i];
1957		if (skb) {
1958			pci_unmap_single(sis_priv->pci_dev,
1959				sis_priv->rx_ring[i].bufptr,
1960				RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
1961			dev_kfree_skb(skb);
1962			sis_priv->rx_skbuff[i] = NULL;
1963		}
1964	}
1965	for (i = 0; i < NUM_TX_DESC; i++) {
1966		skb = sis_priv->tx_skbuff[i];
1967		if (skb) {
1968			pci_unmap_single(sis_priv->pci_dev,
1969				sis_priv->tx_ring[i].bufptr, skb->len,
1970				PCI_DMA_TODEVICE);
1971			dev_kfree_skb(skb);
1972			sis_priv->tx_skbuff[i] = NULL;
1973		}
1974	}
1975
1976	/* Green! Put the chip in low-power mode. */
1977
1978	return 0;
1979}
1980
1981/**
1982 *	sis900_get_drvinfo - Return information about driver
1983 *	@net_dev: the net device to probe
1984 *	@info: container for info returned
1985 *
1986 *	Process ethtool command such as "ehtool -i" to show information
1987 */
1988
1989static void sis900_get_drvinfo(struct net_device *net_dev,
1990			       struct ethtool_drvinfo *info)
1991{
1992	struct sis900_private *sis_priv = netdev_priv(net_dev);
1993
1994	strcpy (info->driver, SIS900_MODULE_NAME);
1995	strcpy (info->version, SIS900_DRV_VERSION);
1996	strcpy (info->bus_info, pci_name(sis_priv->pci_dev));
1997}
1998
1999static u32 sis900_get_msglevel(struct net_device *net_dev)
2000{
2001	struct sis900_private *sis_priv = netdev_priv(net_dev);
2002	return sis_priv->msg_enable;
2003}
2004
2005static void sis900_set_msglevel(struct net_device *net_dev, u32 value)
2006{
2007	struct sis900_private *sis_priv = netdev_priv(net_dev);
2008	sis_priv->msg_enable = value;
2009}
2010
2011static u32 sis900_get_link(struct net_device *net_dev)
2012{
2013	struct sis900_private *sis_priv = netdev_priv(net_dev);
2014	return mii_link_ok(&sis_priv->mii_info);
2015}
2016
2017static int sis900_get_settings(struct net_device *net_dev,
2018				struct ethtool_cmd *cmd)
2019{
2020	struct sis900_private *sis_priv = netdev_priv(net_dev);
2021	spin_lock_irq(&sis_priv->lock);
2022	mii_ethtool_gset(&sis_priv->mii_info, cmd);
2023	spin_unlock_irq(&sis_priv->lock);
2024	return 0;
2025}
2026
2027static int sis900_set_settings(struct net_device *net_dev,
2028				struct ethtool_cmd *cmd)
2029{
2030	struct sis900_private *sis_priv = netdev_priv(net_dev);
2031	int rt;
2032	spin_lock_irq(&sis_priv->lock);
2033	rt = mii_ethtool_sset(&sis_priv->mii_info, cmd);
2034	spin_unlock_irq(&sis_priv->lock);
2035	return rt;
2036}
2037
2038static int sis900_nway_reset(struct net_device *net_dev)
2039{
2040	struct sis900_private *sis_priv = netdev_priv(net_dev);
2041	return mii_nway_restart(&sis_priv->mii_info);
2042}
2043
2044/**
2045 *	sis900_set_wol - Set up Wake on Lan registers
2046 *	@net_dev: the net device to probe
2047 *	@wol: container for info passed to the driver
2048 *
2049 *	Process ethtool command "wol" to setup wake on lan features.
2050 *	SiS900 supports sending WoL events if a correct packet is received,
2051 *	but there is no simple way to filter them to only a subset (broadcast,
2052 *	multicast, unicast or arp).
2053 */
2054
2055static int sis900_set_wol(struct net_device *net_dev, struct ethtool_wolinfo *wol)
2056{
2057	struct sis900_private *sis_priv = netdev_priv(net_dev);
2058	long pmctrl_addr = net_dev->base_addr + pmctrl;
2059	u32 cfgpmcsr = 0, pmctrl_bits = 0;
2060
2061	if (wol->wolopts == 0) {
2062		pci_read_config_dword(sis_priv->pci_dev, CFGPMCSR, &cfgpmcsr);
2063		cfgpmcsr &= ~PME_EN;
2064		pci_write_config_dword(sis_priv->pci_dev, CFGPMCSR, cfgpmcsr);
2065		outl(pmctrl_bits, pmctrl_addr);
2066		if (netif_msg_wol(sis_priv))
2067			printk(KERN_DEBUG "%s: Wake on LAN disabled\n", net_dev->name);
2068		return 0;
2069	}
2070
2071	if (wol->wolopts & (WAKE_MAGICSECURE | WAKE_UCAST | WAKE_MCAST
2072				| WAKE_BCAST | WAKE_ARP))
2073		return -EINVAL;
2074
2075	if (wol->wolopts & WAKE_MAGIC)
2076		pmctrl_bits |= MAGICPKT;
2077	if (wol->wolopts & WAKE_PHY)
2078		pmctrl_bits |= LINKON;
2079
2080	outl(pmctrl_bits, pmctrl_addr);
2081
2082	pci_read_config_dword(sis_priv->pci_dev, CFGPMCSR, &cfgpmcsr);
2083	cfgpmcsr |= PME_EN;
2084	pci_write_config_dword(sis_priv->pci_dev, CFGPMCSR, cfgpmcsr);
2085	if (netif_msg_wol(sis_priv))
2086		printk(KERN_DEBUG "%s: Wake on LAN enabled\n", net_dev->name);
2087
2088	return 0;
2089}
2090
2091static void sis900_get_wol(struct net_device *net_dev, struct ethtool_wolinfo *wol)
2092{
2093	long pmctrl_addr = net_dev->base_addr + pmctrl;
2094	u32 pmctrl_bits;
2095
2096	pmctrl_bits = inl(pmctrl_addr);
2097	if (pmctrl_bits & MAGICPKT)
2098		wol->wolopts |= WAKE_MAGIC;
2099	if (pmctrl_bits & LINKON)
2100		wol->wolopts |= WAKE_PHY;
2101
2102	wol->supported = (WAKE_PHY | WAKE_MAGIC);
2103}
2104
2105static const struct ethtool_ops sis900_ethtool_ops = {
2106	.get_drvinfo 	= sis900_get_drvinfo,
2107	.get_msglevel	= sis900_get_msglevel,
2108	.set_msglevel	= sis900_set_msglevel,
2109	.get_link	= sis900_get_link,
2110	.get_settings	= sis900_get_settings,
2111	.set_settings	= sis900_set_settings,
2112	.nway_reset	= sis900_nway_reset,
2113	.get_wol	= sis900_get_wol,
2114	.set_wol	= sis900_set_wol
2115};
2116
2117/**
2118 *	mii_ioctl - process MII i/o control command
2119 *	@net_dev: the net device to command for
2120 *	@rq: parameter for command
2121 *	@cmd: the i/o command
2122 *
2123 *	Process MII command like read/write MII register
2124 */
2125
2126static int mii_ioctl(struct net_device *net_dev, struct ifreq *rq, int cmd)
2127{
2128	struct sis900_private *sis_priv = netdev_priv(net_dev);
2129	struct mii_ioctl_data *data = if_mii(rq);
2130
2131	switch(cmd) {
2132	case SIOCGMIIPHY:		/* Get address of MII PHY in use. */
2133		data->phy_id = sis_priv->mii->phy_addr;
2134		/* Fall Through */
2135
2136	case SIOCGMIIREG:		/* Read MII PHY register. */
2137		data->val_out = mdio_read(net_dev, data->phy_id & 0x1f, data->reg_num & 0x1f);
2138		return 0;
2139
2140	case SIOCSMIIREG:		/* Write MII PHY register. */
2141		mdio_write(net_dev, data->phy_id & 0x1f, data->reg_num & 0x1f, data->val_in);
2142		return 0;
2143	default:
2144		return -EOPNOTSUPP;
2145	}
2146}
2147
2148/**
2149 *	sis900_set_config - Set media type by net_device.set_config
2150 *	@dev: the net device for media type change
2151 *	@map: ifmap passed by ifconfig
2152 *
2153 *	Set media type to 10baseT, 100baseT or 0(for auto) by ifconfig
2154 *	we support only port changes. All other runtime configuration
2155 *	changes will be ignored
2156 */
2157
2158static int sis900_set_config(struct net_device *dev, struct ifmap *map)
2159{
2160	struct sis900_private *sis_priv = netdev_priv(dev);
2161	struct mii_phy *mii_phy = sis_priv->mii;
2162
2163	u16 status;
2164
2165	if ((map->port != (u_char)(-1)) && (map->port != dev->if_port)) {
2166		/* we switch on the ifmap->port field. I couldn't find anything
2167		 * like a definition or standard for the values of that field.
2168		 * I think the meaning of those values is device specific. But
2169		 * since I would like to change the media type via the ifconfig
2170		 * command I use the definition from linux/netdevice.h
2171		 * (which seems to be different from the ifport(pcmcia) definition) */
2172		switch(map->port){
2173		case IF_PORT_UNKNOWN: /* use auto here */
2174			dev->if_port = map->port;
2175			/* we are going to change the media type, so the Link
2176			 * will be temporary down and we need to reflect that
2177			 * here. When the Link comes up again, it will be
2178			 * sensed by the sis_timer procedure, which also does
2179			 * all the rest for us */
2180			netif_carrier_off(dev);
2181
2182			/* read current state */
2183			status = mdio_read(dev, mii_phy->phy_addr, MII_CONTROL);
2184
2185			/* enable auto negotiation and reset the negotioation
2186			 * (I don't really know what the auto negatiotiation
2187			 * reset really means, but it sounds for me right to
2188			 * do one here) */
2189			mdio_write(dev, mii_phy->phy_addr,
2190				   MII_CONTROL, status | MII_CNTL_AUTO | MII_CNTL_RST_AUTO);
2191
2192			break;
2193
2194		case IF_PORT_10BASET: /* 10BaseT */
2195			dev->if_port = map->port;
2196
2197			/* we are going to change the media type, so the Link
2198			 * will be temporary down and we need to reflect that
2199			 * here. When the Link comes up again, it will be
2200			 * sensed by the sis_timer procedure, which also does
2201			 * all the rest for us */
2202			netif_carrier_off(dev);
2203
2204			/* set Speed to 10Mbps */
2205			/* read current state */
2206			status = mdio_read(dev, mii_phy->phy_addr, MII_CONTROL);
2207
2208			/* disable auto negotiation and force 10MBit mode*/
2209			mdio_write(dev, mii_phy->phy_addr,
2210				   MII_CONTROL, status & ~(MII_CNTL_SPEED |
2211					MII_CNTL_AUTO));
2212			break;
2213
2214		case IF_PORT_100BASET: /* 100BaseT */
2215		case IF_PORT_100BASETX: /* 100BaseTx */
2216			dev->if_port = map->port;
2217
2218			/* we are going to change the media type, so the Link
2219			 * will be temporary down and we need to reflect that
2220			 * here. When the Link comes up again, it will be
2221			 * sensed by the sis_timer procedure, which also does
2222			 * all the rest for us */
2223			netif_carrier_off(dev);
2224
2225			/* set Speed to 100Mbps */
2226			/* disable auto negotiation and enable 100MBit Mode */
2227			status = mdio_read(dev, mii_phy->phy_addr, MII_CONTROL);
2228			mdio_write(dev, mii_phy->phy_addr,
2229				   MII_CONTROL, (status & ~MII_CNTL_SPEED) |
2230				   MII_CNTL_SPEED);
2231
2232			break;
2233
2234		case IF_PORT_10BASE2: /* 10Base2 */
2235		case IF_PORT_AUI: /* AUI */
2236		case IF_PORT_100BASEFX: /* 100BaseFx */
2237                	/* These Modes are not supported (are they?)*/
2238			return -EOPNOTSUPP;
2239			break;
2240
2241		default:
2242			return -EINVAL;
2243		}
2244	}
2245	return 0;
2246}
2247
2248/**
2249 *	sis900_mcast_bitnr - compute hashtable index
2250 *	@addr: multicast address
2251 *	@revision: revision id of chip
2252 *
2253 *	SiS 900 uses the most sigificant 7 bits to index a 128 bits multicast
2254 *	hash table, which makes this function a little bit different from other drivers
2255 *	SiS 900 B0 & 635 M/B uses the most significat 8 bits to index 256 bits
2256 *   	multicast hash table.
2257 */
2258
2259static inline u16 sis900_mcast_bitnr(u8 *addr, u8 revision)
2260{
2261
2262	u32 crc = ether_crc(6, addr);
2263
2264	/* leave 8 or 7 most siginifant bits */
2265	if ((revision >= SIS635A_900_REV) || (revision == SIS900B_900_REV))
2266		return (int)(crc >> 24);
2267	else
2268		return (int)(crc >> 25);
2269}
2270
2271/**
2272 *	set_rx_mode - Set SiS900 receive mode
2273 *	@net_dev: the net device to be set
2274 *
2275 *	Set SiS900 receive mode for promiscuous, multicast, or broadcast mode.
2276 *	And set the appropriate multicast filter.
2277 *	Multicast hash table changes from 128 to 256 bits for 635M/B & 900B0.
2278 */
2279
2280static void set_rx_mode(struct net_device *net_dev)
2281{
2282	long ioaddr = net_dev->base_addr;
2283	struct sis900_private *sis_priv = netdev_priv(net_dev);
2284	u16 mc_filter[16] = {0};	/* 256/128 bits multicast hash table */
2285	int i, table_entries;
2286	u32 rx_mode;
2287
2288	/* 635 Hash Table entries = 256(2^16) */
2289	if((sis_priv->chipset_rev >= SIS635A_900_REV) ||
2290			(sis_priv->chipset_rev == SIS900B_900_REV))
2291		table_entries = 16;
2292	else
2293		table_entries = 8;
2294
2295	if (net_dev->flags & IFF_PROMISC) {
2296		/* Accept any kinds of packets */
2297		rx_mode = RFPromiscuous;
2298		for (i = 0; i < table_entries; i++)
2299			mc_filter[i] = 0xffff;
2300	} else if ((netdev_mc_count(net_dev) > multicast_filter_limit) ||
2301		   (net_dev->flags & IFF_ALLMULTI)) {
2302		/* too many multicast addresses or accept all multicast packet */
2303		rx_mode = RFAAB | RFAAM;
2304		for (i = 0; i < table_entries; i++)
2305			mc_filter[i] = 0xffff;
2306	} else {
2307		/* Accept Broadcast packet, destination address matchs our
2308		 * MAC address, use Receive Filter to reject unwanted MCAST
2309		 * packets */
2310		struct netdev_hw_addr *ha;
2311		rx_mode = RFAAB;
2312
2313		netdev_for_each_mc_addr(ha, net_dev) {
2314			unsigned int bit_nr;
2315
2316			bit_nr = sis900_mcast_bitnr(ha->addr,
2317						    sis_priv->chipset_rev);
2318			mc_filter[bit_nr >> 4] |= (1 << (bit_nr & 0xf));
2319		}
2320	}
2321
2322	/* update Multicast Hash Table in Receive Filter */
2323	for (i = 0; i < table_entries; i++) {
2324                /* why plus 0x04 ??, That makes the correct value for hash table. */
2325		outl((u32)(0x00000004+i) << RFADDR_shift, ioaddr + rfcr);
2326		outl(mc_filter[i], ioaddr + rfdr);
2327	}
2328
2329	outl(RFEN | rx_mode, ioaddr + rfcr);
2330
2331	/* sis900 is capable of looping back packets at MAC level for
2332	 * debugging purpose */
2333	if (net_dev->flags & IFF_LOOPBACK) {
2334		u32 cr_saved;
2335		/* We must disable Tx/Rx before setting loopback mode */
2336		cr_saved = inl(ioaddr + cr);
2337		outl(cr_saved | TxDIS | RxDIS, ioaddr + cr);
2338		/* enable loopback */
2339		outl(inl(ioaddr + txcfg) | TxMLB, ioaddr + txcfg);
2340		outl(inl(ioaddr + rxcfg) | RxATX, ioaddr + rxcfg);
2341		/* restore cr */
2342		outl(cr_saved, ioaddr + cr);
2343	}
2344}
2345
2346/**
2347 *	sis900_reset - Reset sis900 MAC
2348 *	@net_dev: the net device to reset
2349 *
2350 *	reset sis900 MAC and wait until finished
2351 *	reset through command register
2352 *	change backoff algorithm for 900B0 & 635 M/B
2353 */
2354
2355static void sis900_reset(struct net_device *net_dev)
2356{
2357	struct sis900_private *sis_priv = netdev_priv(net_dev);
2358	long ioaddr = net_dev->base_addr;
2359	int i = 0;
2360	u32 status = TxRCMP | RxRCMP;
2361
2362	outl(0, ioaddr + ier);
2363	outl(0, ioaddr + imr);
2364	outl(0, ioaddr + rfcr);
2365
2366	outl(RxRESET | TxRESET | RESET | inl(ioaddr + cr), ioaddr + cr);
2367
2368	/* Check that the chip has finished the reset. */
2369	while (status && (i++ < 1000)) {
2370		status ^= (inl(isr + ioaddr) & status);
2371	}
2372
2373	if( (sis_priv->chipset_rev >= SIS635A_900_REV) ||
2374			(sis_priv->chipset_rev == SIS900B_900_REV) )
2375		outl(PESEL | RND_CNT, ioaddr + cfg);
2376	else
2377		outl(PESEL, ioaddr + cfg);
2378}
2379
2380/**
2381 *	sis900_remove - Remove sis900 device
2382 *	@pci_dev: the pci device to be removed
2383 *
2384 *	remove and release SiS900 net device
2385 */
2386
2387static void __devexit sis900_remove(struct pci_dev *pci_dev)
2388{
2389	struct net_device *net_dev = pci_get_drvdata(pci_dev);
2390	struct sis900_private *sis_priv = netdev_priv(net_dev);
2391	struct mii_phy *phy = NULL;
2392
2393	while (sis_priv->first_mii) {
2394		phy = sis_priv->first_mii;
2395		sis_priv->first_mii = phy->next;
2396		kfree(phy);
2397	}
2398
2399	pci_free_consistent(pci_dev, RX_TOTAL_SIZE, sis_priv->rx_ring,
2400		sis_priv->rx_ring_dma);
2401	pci_free_consistent(pci_dev, TX_TOTAL_SIZE, sis_priv->tx_ring,
2402		sis_priv->tx_ring_dma);
2403	unregister_netdev(net_dev);
2404	free_netdev(net_dev);
2405	pci_release_regions(pci_dev);
2406	pci_set_drvdata(pci_dev, NULL);
2407}
2408
2409#ifdef CONFIG_PM
2410
2411static int sis900_suspend(struct pci_dev *pci_dev, pm_message_t state)
2412{
2413	struct net_device *net_dev = pci_get_drvdata(pci_dev);
2414	long ioaddr = net_dev->base_addr;
2415
2416	if(!netif_running(net_dev))
2417		return 0;
2418
2419	netif_stop_queue(net_dev);
2420	netif_device_detach(net_dev);
2421
2422	/* Stop the chip's Tx and Rx Status Machine */
2423	outl(RxDIS | TxDIS | inl(ioaddr + cr), ioaddr + cr);
2424
2425	pci_set_power_state(pci_dev, PCI_D3hot);
2426	pci_save_state(pci_dev);
2427
2428	return 0;
2429}
2430
2431static int sis900_resume(struct pci_dev *pci_dev)
2432{
2433	struct net_device *net_dev = pci_get_drvdata(pci_dev);
2434	struct sis900_private *sis_priv = netdev_priv(net_dev);
2435	long ioaddr = net_dev->base_addr;
2436
2437	if(!netif_running(net_dev))
2438		return 0;
2439	pci_restore_state(pci_dev);
2440	pci_set_power_state(pci_dev, PCI_D0);
2441
2442	sis900_init_rxfilter(net_dev);
2443
2444	sis900_init_tx_ring(net_dev);
2445	sis900_init_rx_ring(net_dev);
2446
2447	set_rx_mode(net_dev);
2448
2449	netif_device_attach(net_dev);
2450	netif_start_queue(net_dev);
2451
2452	/* Workaround for EDB */
2453	sis900_set_mode(ioaddr, HW_SPEED_10_MBPS, FDX_CAPABLE_HALF_SELECTED);
2454
2455	/* Enable all known interrupts by setting the interrupt mask. */
2456	outl((RxSOVR|RxORN|RxERR|RxOK|TxURN|TxERR|TxIDLE), ioaddr + imr);
2457	outl(RxENA | inl(ioaddr + cr), ioaddr + cr);
2458	outl(IE, ioaddr + ier);
2459
2460	sis900_check_mode(net_dev, sis_priv->mii);
2461
2462	return 0;
2463}
2464#endif /* CONFIG_PM */
2465
2466static struct pci_driver sis900_pci_driver = {
2467	.name		= SIS900_MODULE_NAME,
2468	.id_table	= sis900_pci_tbl,
2469	.probe		= sis900_probe,
2470	.remove		= __devexit_p(sis900_remove),
2471#ifdef CONFIG_PM
2472	.suspend	= sis900_suspend,
2473	.resume		= sis900_resume,
2474#endif /* CONFIG_PM */
2475};
2476
2477static int __init sis900_init_module(void)
2478{
2479/* when a module, this is printed whether or not devices are found in probe */
2480#ifdef MODULE
2481	printk(version);
2482#endif
2483
2484	return pci_register_driver(&sis900_pci_driver);
2485}
2486
2487static void __exit sis900_cleanup_module(void)
2488{
2489	pci_unregister_driver(&sis900_pci_driver);
2490}
2491
2492module_init(sis900_init_module);
2493module_exit(sis900_cleanup_module);
2494
2495