cassini.c revision e689cf4a042772f727450035b102579b0c01bdc7
1/* cassini.c: Sun Microsystems Cassini(+) ethernet driver.
2 *
3 * Copyright (C) 2004 Sun Microsystems Inc.
4 * Copyright (C) 2003 Adrian Sun (asun@darksunrising.com)
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License as
8 * published by the Free Software Foundation; either version 2 of the
9 * License, or (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
19 * 02111-1307, USA.
20 *
21 * This driver uses the sungem driver (c) David Miller
22 * (davem@redhat.com) as its basis.
23 *
24 * The cassini chip has a number of features that distinguish it from
25 * the gem chip:
26 *  4 transmit descriptor rings that are used for either QoS (VLAN) or
27 *      load balancing (non-VLAN mode)
28 *  batching of multiple packets
29 *  multiple CPU dispatching
30 *  page-based RX descriptor engine with separate completion rings
31 *  Gigabit support (GMII and PCS interface)
32 *  MIF link up/down detection works
33 *
34 * RX is handled by page sized buffers that are attached as fragments to
35 * the skb. here's what's done:
36 *  -- driver allocates pages at a time and keeps reference counts
37 *     on them.
38 *  -- the upper protocol layers assume that the header is in the skb
39 *     itself. as a result, cassini will copy a small amount (64 bytes)
40 *     to make them happy.
41 *  -- driver appends the rest of the data pages as frags to skbuffs
42 *     and increments the reference count
43 *  -- on page reclamation, the driver swaps the page with a spare page.
44 *     if that page is still in use, it frees its reference to that page,
45 *     and allocates a new page for use. otherwise, it just recycles the
46 *     the page.
47 *
48 * NOTE: cassini can parse the header. however, it's not worth it
49 *       as long as the network stack requires a header copy.
50 *
51 * TX has 4 queues. currently these queues are used in a round-robin
52 * fashion for load balancing. They can also be used for QoS. for that
53 * to work, however, QoS information needs to be exposed down to the driver
54 * level so that subqueues get targeted to particular transmit rings.
55 * alternatively, the queues can be configured via use of the all-purpose
56 * ioctl.
57 *
58 * RX DATA: the rx completion ring has all the info, but the rx desc
59 * ring has all of the data. RX can conceivably come in under multiple
60 * interrupts, but the INT# assignment needs to be set up properly by
61 * the BIOS and conveyed to the driver. PCI BIOSes don't know how to do
62 * that. also, the two descriptor rings are designed to distinguish between
63 * encrypted and non-encrypted packets, but we use them for buffering
64 * instead.
65 *
66 * by default, the selective clear mask is set up to process rx packets.
67 */
68
69#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
70
71#include <linux/module.h>
72#include <linux/kernel.h>
73#include <linux/types.h>
74#include <linux/compiler.h>
75#include <linux/slab.h>
76#include <linux/delay.h>
77#include <linux/init.h>
78#include <linux/interrupt.h>
79#include <linux/vmalloc.h>
80#include <linux/ioport.h>
81#include <linux/pci.h>
82#include <linux/mm.h>
83#include <linux/highmem.h>
84#include <linux/list.h>
85#include <linux/dma-mapping.h>
86
87#include <linux/netdevice.h>
88#include <linux/etherdevice.h>
89#include <linux/skbuff.h>
90#include <linux/ethtool.h>
91#include <linux/crc32.h>
92#include <linux/random.h>
93#include <linux/mii.h>
94#include <linux/ip.h>
95#include <linux/tcp.h>
96#include <linux/mutex.h>
97#include <linux/firmware.h>
98
99#include <net/checksum.h>
100
101#include <linux/atomic.h>
102#include <asm/system.h>
103#include <asm/io.h>
104#include <asm/byteorder.h>
105#include <asm/uaccess.h>
106
107#define cas_page_map(x)      kmap_atomic((x), KM_SKB_DATA_SOFTIRQ)
108#define cas_page_unmap(x)    kunmap_atomic((x), KM_SKB_DATA_SOFTIRQ)
109#define CAS_NCPUS            num_online_cpus()
110
111#define cas_skb_release(x)  netif_rx(x)
112
113/* select which firmware to use */
114#define USE_HP_WORKAROUND
115#define HP_WORKAROUND_DEFAULT /* select which firmware to use as default */
116#define CAS_HP_ALT_FIRMWARE   cas_prog_null /* alternate firmware */
117
118#include "cassini.h"
119
120#define USE_TX_COMPWB      /* use completion writeback registers */
121#define USE_CSMA_CD_PROTO  /* standard CSMA/CD */
122#define USE_RX_BLANK       /* hw interrupt mitigation */
123#undef USE_ENTROPY_DEV     /* don't test for entropy device */
124
125/* NOTE: these aren't useable unless PCI interrupts can be assigned.
126 * also, we need to make cp->lock finer-grained.
127 */
128#undef  USE_PCI_INTB
129#undef  USE_PCI_INTC
130#undef  USE_PCI_INTD
131#undef  USE_QOS
132
133#undef  USE_VPD_DEBUG       /* debug vpd information if defined */
134
135/* rx processing options */
136#define USE_PAGE_ORDER      /* specify to allocate large rx pages */
137#define RX_DONT_BATCH  0    /* if 1, don't batch flows */
138#define RX_COPY_ALWAYS 0    /* if 0, use frags */
139#define RX_COPY_MIN    64   /* copy a little to make upper layers happy */
140#undef  RX_COUNT_BUFFERS    /* define to calculate RX buffer stats */
141
142#define DRV_MODULE_NAME		"cassini"
143#define DRV_MODULE_VERSION	"1.6"
144#define DRV_MODULE_RELDATE	"21 May 2008"
145
146#define CAS_DEF_MSG_ENABLE	  \
147	(NETIF_MSG_DRV		| \
148	 NETIF_MSG_PROBE	| \
149	 NETIF_MSG_LINK		| \
150	 NETIF_MSG_TIMER	| \
151	 NETIF_MSG_IFDOWN	| \
152	 NETIF_MSG_IFUP		| \
153	 NETIF_MSG_RX_ERR	| \
154	 NETIF_MSG_TX_ERR)
155
156/* length of time before we decide the hardware is borked,
157 * and dev->tx_timeout() should be called to fix the problem
158 */
159#define CAS_TX_TIMEOUT			(HZ)
160#define CAS_LINK_TIMEOUT                (22*HZ/10)
161#define CAS_LINK_FAST_TIMEOUT           (1)
162
163/* timeout values for state changing. these specify the number
164 * of 10us delays to be used before giving up.
165 */
166#define STOP_TRIES_PHY 1000
167#define STOP_TRIES     5000
168
169/* specify a minimum frame size to deal with some fifo issues
170 * max mtu == 2 * page size - ethernet header - 64 - swivel =
171 *            2 * page_size - 0x50
172 */
173#define CAS_MIN_FRAME			97
174#define CAS_1000MB_MIN_FRAME            255
175#define CAS_MIN_MTU                     60
176#define CAS_MAX_MTU                     min(((cp->page_size << 1) - 0x50), 9000)
177
178#if 1
179/*
180 * Eliminate these and use separate atomic counters for each, to
181 * avoid a race condition.
182 */
183#else
184#define CAS_RESET_MTU                   1
185#define CAS_RESET_ALL                   2
186#define CAS_RESET_SPARE                 3
187#endif
188
189static char version[] __devinitdata =
190	DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
191
192static int cassini_debug = -1;	/* -1 == use CAS_DEF_MSG_ENABLE as value */
193static int link_mode;
194
195MODULE_AUTHOR("Adrian Sun (asun@darksunrising.com)");
196MODULE_DESCRIPTION("Sun Cassini(+) ethernet driver");
197MODULE_LICENSE("GPL");
198MODULE_FIRMWARE("sun/cassini.bin");
199module_param(cassini_debug, int, 0);
200MODULE_PARM_DESC(cassini_debug, "Cassini bitmapped debugging message enable value");
201module_param(link_mode, int, 0);
202MODULE_PARM_DESC(link_mode, "default link mode");
203
204/*
205 * Work around for a PCS bug in which the link goes down due to the chip
206 * being confused and never showing a link status of "up."
207 */
208#define DEFAULT_LINKDOWN_TIMEOUT 5
209/*
210 * Value in seconds, for user input.
211 */
212static int linkdown_timeout = DEFAULT_LINKDOWN_TIMEOUT;
213module_param(linkdown_timeout, int, 0);
214MODULE_PARM_DESC(linkdown_timeout,
215"min reset interval in sec. for PCS linkdown issue; disabled if not positive");
216
217/*
218 * value in 'ticks' (units used by jiffies). Set when we init the
219 * module because 'HZ' in actually a function call on some flavors of
220 * Linux.  This will default to DEFAULT_LINKDOWN_TIMEOUT * HZ.
221 */
222static int link_transition_timeout;
223
224
225
226static u16 link_modes[] __devinitdata = {
227	BMCR_ANENABLE,			 /* 0 : autoneg */
228	0,				 /* 1 : 10bt half duplex */
229	BMCR_SPEED100,			 /* 2 : 100bt half duplex */
230	BMCR_FULLDPLX,			 /* 3 : 10bt full duplex */
231	BMCR_SPEED100|BMCR_FULLDPLX,	 /* 4 : 100bt full duplex */
232	CAS_BMCR_SPEED1000|BMCR_FULLDPLX /* 5 : 1000bt full duplex */
233};
234
235static DEFINE_PCI_DEVICE_TABLE(cas_pci_tbl) = {
236	{ PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_CASSINI,
237	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
238	{ PCI_VENDOR_ID_NS, PCI_DEVICE_ID_NS_SATURN,
239	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
240	{ 0, }
241};
242
243MODULE_DEVICE_TABLE(pci, cas_pci_tbl);
244
245static void cas_set_link_modes(struct cas *cp);
246
247static inline void cas_lock_tx(struct cas *cp)
248{
249	int i;
250
251	for (i = 0; i < N_TX_RINGS; i++)
252		spin_lock(&cp->tx_lock[i]);
253}
254
255static inline void cas_lock_all(struct cas *cp)
256{
257	spin_lock_irq(&cp->lock);
258	cas_lock_tx(cp);
259}
260
261/* WTZ: QA was finding deadlock problems with the previous
262 * versions after long test runs with multiple cards per machine.
263 * See if replacing cas_lock_all with safer versions helps. The
264 * symptoms QA is reporting match those we'd expect if interrupts
265 * aren't being properly restored, and we fixed a previous deadlock
266 * with similar symptoms by using save/restore versions in other
267 * places.
268 */
269#define cas_lock_all_save(cp, flags) \
270do { \
271	struct cas *xxxcp = (cp); \
272	spin_lock_irqsave(&xxxcp->lock, flags); \
273	cas_lock_tx(xxxcp); \
274} while (0)
275
276static inline void cas_unlock_tx(struct cas *cp)
277{
278	int i;
279
280	for (i = N_TX_RINGS; i > 0; i--)
281		spin_unlock(&cp->tx_lock[i - 1]);
282}
283
284static inline void cas_unlock_all(struct cas *cp)
285{
286	cas_unlock_tx(cp);
287	spin_unlock_irq(&cp->lock);
288}
289
290#define cas_unlock_all_restore(cp, flags) \
291do { \
292	struct cas *xxxcp = (cp); \
293	cas_unlock_tx(xxxcp); \
294	spin_unlock_irqrestore(&xxxcp->lock, flags); \
295} while (0)
296
297static void cas_disable_irq(struct cas *cp, const int ring)
298{
299	/* Make sure we won't get any more interrupts */
300	if (ring == 0) {
301		writel(0xFFFFFFFF, cp->regs + REG_INTR_MASK);
302		return;
303	}
304
305	/* disable completion interrupts and selectively mask */
306	if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
307		switch (ring) {
308#if defined (USE_PCI_INTB) || defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
309#ifdef USE_PCI_INTB
310		case 1:
311#endif
312#ifdef USE_PCI_INTC
313		case 2:
314#endif
315#ifdef USE_PCI_INTD
316		case 3:
317#endif
318			writel(INTRN_MASK_CLEAR_ALL | INTRN_MASK_RX_EN,
319			       cp->regs + REG_PLUS_INTRN_MASK(ring));
320			break;
321#endif
322		default:
323			writel(INTRN_MASK_CLEAR_ALL, cp->regs +
324			       REG_PLUS_INTRN_MASK(ring));
325			break;
326		}
327	}
328}
329
330static inline void cas_mask_intr(struct cas *cp)
331{
332	int i;
333
334	for (i = 0; i < N_RX_COMP_RINGS; i++)
335		cas_disable_irq(cp, i);
336}
337
338static void cas_enable_irq(struct cas *cp, const int ring)
339{
340	if (ring == 0) { /* all but TX_DONE */
341		writel(INTR_TX_DONE, cp->regs + REG_INTR_MASK);
342		return;
343	}
344
345	if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
346		switch (ring) {
347#if defined (USE_PCI_INTB) || defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
348#ifdef USE_PCI_INTB
349		case 1:
350#endif
351#ifdef USE_PCI_INTC
352		case 2:
353#endif
354#ifdef USE_PCI_INTD
355		case 3:
356#endif
357			writel(INTRN_MASK_RX_EN, cp->regs +
358			       REG_PLUS_INTRN_MASK(ring));
359			break;
360#endif
361		default:
362			break;
363		}
364	}
365}
366
367static inline void cas_unmask_intr(struct cas *cp)
368{
369	int i;
370
371	for (i = 0; i < N_RX_COMP_RINGS; i++)
372		cas_enable_irq(cp, i);
373}
374
375static inline void cas_entropy_gather(struct cas *cp)
376{
377#ifdef USE_ENTROPY_DEV
378	if ((cp->cas_flags & CAS_FLAG_ENTROPY_DEV) == 0)
379		return;
380
381	batch_entropy_store(readl(cp->regs + REG_ENTROPY_IV),
382			    readl(cp->regs + REG_ENTROPY_IV),
383			    sizeof(uint64_t)*8);
384#endif
385}
386
387static inline void cas_entropy_reset(struct cas *cp)
388{
389#ifdef USE_ENTROPY_DEV
390	if ((cp->cas_flags & CAS_FLAG_ENTROPY_DEV) == 0)
391		return;
392
393	writel(BIM_LOCAL_DEV_PAD | BIM_LOCAL_DEV_PROM | BIM_LOCAL_DEV_EXT,
394	       cp->regs + REG_BIM_LOCAL_DEV_EN);
395	writeb(ENTROPY_RESET_STC_MODE, cp->regs + REG_ENTROPY_RESET);
396	writeb(0x55, cp->regs + REG_ENTROPY_RAND_REG);
397
398	/* if we read back 0x0, we don't have an entropy device */
399	if (readb(cp->regs + REG_ENTROPY_RAND_REG) == 0)
400		cp->cas_flags &= ~CAS_FLAG_ENTROPY_DEV;
401#endif
402}
403
404/* access to the phy. the following assumes that we've initialized the MIF to
405 * be in frame rather than bit-bang mode
406 */
407static u16 cas_phy_read(struct cas *cp, int reg)
408{
409	u32 cmd;
410	int limit = STOP_TRIES_PHY;
411
412	cmd = MIF_FRAME_ST | MIF_FRAME_OP_READ;
413	cmd |= CAS_BASE(MIF_FRAME_PHY_ADDR, cp->phy_addr);
414	cmd |= CAS_BASE(MIF_FRAME_REG_ADDR, reg);
415	cmd |= MIF_FRAME_TURN_AROUND_MSB;
416	writel(cmd, cp->regs + REG_MIF_FRAME);
417
418	/* poll for completion */
419	while (limit-- > 0) {
420		udelay(10);
421		cmd = readl(cp->regs + REG_MIF_FRAME);
422		if (cmd & MIF_FRAME_TURN_AROUND_LSB)
423			return cmd & MIF_FRAME_DATA_MASK;
424	}
425	return 0xFFFF; /* -1 */
426}
427
428static int cas_phy_write(struct cas *cp, int reg, u16 val)
429{
430	int limit = STOP_TRIES_PHY;
431	u32 cmd;
432
433	cmd = MIF_FRAME_ST | MIF_FRAME_OP_WRITE;
434	cmd |= CAS_BASE(MIF_FRAME_PHY_ADDR, cp->phy_addr);
435	cmd |= CAS_BASE(MIF_FRAME_REG_ADDR, reg);
436	cmd |= MIF_FRAME_TURN_AROUND_MSB;
437	cmd |= val & MIF_FRAME_DATA_MASK;
438	writel(cmd, cp->regs + REG_MIF_FRAME);
439
440	/* poll for completion */
441	while (limit-- > 0) {
442		udelay(10);
443		cmd = readl(cp->regs + REG_MIF_FRAME);
444		if (cmd & MIF_FRAME_TURN_AROUND_LSB)
445			return 0;
446	}
447	return -1;
448}
449
450static void cas_phy_powerup(struct cas *cp)
451{
452	u16 ctl = cas_phy_read(cp, MII_BMCR);
453
454	if ((ctl & BMCR_PDOWN) == 0)
455		return;
456	ctl &= ~BMCR_PDOWN;
457	cas_phy_write(cp, MII_BMCR, ctl);
458}
459
460static void cas_phy_powerdown(struct cas *cp)
461{
462	u16 ctl = cas_phy_read(cp, MII_BMCR);
463
464	if (ctl & BMCR_PDOWN)
465		return;
466	ctl |= BMCR_PDOWN;
467	cas_phy_write(cp, MII_BMCR, ctl);
468}
469
470/* cp->lock held. note: the last put_page will free the buffer */
471static int cas_page_free(struct cas *cp, cas_page_t *page)
472{
473	pci_unmap_page(cp->pdev, page->dma_addr, cp->page_size,
474		       PCI_DMA_FROMDEVICE);
475	__free_pages(page->buffer, cp->page_order);
476	kfree(page);
477	return 0;
478}
479
480#ifdef RX_COUNT_BUFFERS
481#define RX_USED_ADD(x, y)       ((x)->used += (y))
482#define RX_USED_SET(x, y)       ((x)->used  = (y))
483#else
484#define RX_USED_ADD(x, y)
485#define RX_USED_SET(x, y)
486#endif
487
488/* local page allocation routines for the receive buffers. jumbo pages
489 * require at least 8K contiguous and 8K aligned buffers.
490 */
491static cas_page_t *cas_page_alloc(struct cas *cp, const gfp_t flags)
492{
493	cas_page_t *page;
494
495	page = kmalloc(sizeof(cas_page_t), flags);
496	if (!page)
497		return NULL;
498
499	INIT_LIST_HEAD(&page->list);
500	RX_USED_SET(page, 0);
501	page->buffer = alloc_pages(flags, cp->page_order);
502	if (!page->buffer)
503		goto page_err;
504	page->dma_addr = pci_map_page(cp->pdev, page->buffer, 0,
505				      cp->page_size, PCI_DMA_FROMDEVICE);
506	return page;
507
508page_err:
509	kfree(page);
510	return NULL;
511}
512
513/* initialize spare pool of rx buffers, but allocate during the open */
514static void cas_spare_init(struct cas *cp)
515{
516  	spin_lock(&cp->rx_inuse_lock);
517	INIT_LIST_HEAD(&cp->rx_inuse_list);
518	spin_unlock(&cp->rx_inuse_lock);
519
520	spin_lock(&cp->rx_spare_lock);
521	INIT_LIST_HEAD(&cp->rx_spare_list);
522	cp->rx_spares_needed = RX_SPARE_COUNT;
523	spin_unlock(&cp->rx_spare_lock);
524}
525
526/* used on close. free all the spare buffers. */
527static void cas_spare_free(struct cas *cp)
528{
529	struct list_head list, *elem, *tmp;
530
531	/* free spare buffers */
532	INIT_LIST_HEAD(&list);
533	spin_lock(&cp->rx_spare_lock);
534	list_splice_init(&cp->rx_spare_list, &list);
535	spin_unlock(&cp->rx_spare_lock);
536	list_for_each_safe(elem, tmp, &list) {
537		cas_page_free(cp, list_entry(elem, cas_page_t, list));
538	}
539
540	INIT_LIST_HEAD(&list);
541#if 1
542	/*
543	 * Looks like Adrian had protected this with a different
544	 * lock than used everywhere else to manipulate this list.
545	 */
546	spin_lock(&cp->rx_inuse_lock);
547	list_splice_init(&cp->rx_inuse_list, &list);
548	spin_unlock(&cp->rx_inuse_lock);
549#else
550	spin_lock(&cp->rx_spare_lock);
551	list_splice_init(&cp->rx_inuse_list, &list);
552	spin_unlock(&cp->rx_spare_lock);
553#endif
554	list_for_each_safe(elem, tmp, &list) {
555		cas_page_free(cp, list_entry(elem, cas_page_t, list));
556	}
557}
558
559/* replenish spares if needed */
560static void cas_spare_recover(struct cas *cp, const gfp_t flags)
561{
562	struct list_head list, *elem, *tmp;
563	int needed, i;
564
565	/* check inuse list. if we don't need any more free buffers,
566	 * just free it
567	 */
568
569	/* make a local copy of the list */
570	INIT_LIST_HEAD(&list);
571	spin_lock(&cp->rx_inuse_lock);
572	list_splice_init(&cp->rx_inuse_list, &list);
573	spin_unlock(&cp->rx_inuse_lock);
574
575	list_for_each_safe(elem, tmp, &list) {
576		cas_page_t *page = list_entry(elem, cas_page_t, list);
577
578		/*
579		 * With the lockless pagecache, cassini buffering scheme gets
580		 * slightly less accurate: we might find that a page has an
581		 * elevated reference count here, due to a speculative ref,
582		 * and skip it as in-use. Ideally we would be able to reclaim
583		 * it. However this would be such a rare case, it doesn't
584		 * matter too much as we should pick it up the next time round.
585		 *
586		 * Importantly, if we find that the page has a refcount of 1
587		 * here (our refcount), then we know it is definitely not inuse
588		 * so we can reuse it.
589		 */
590		if (page_count(page->buffer) > 1)
591			continue;
592
593		list_del(elem);
594		spin_lock(&cp->rx_spare_lock);
595		if (cp->rx_spares_needed > 0) {
596			list_add(elem, &cp->rx_spare_list);
597			cp->rx_spares_needed--;
598			spin_unlock(&cp->rx_spare_lock);
599		} else {
600			spin_unlock(&cp->rx_spare_lock);
601			cas_page_free(cp, page);
602		}
603	}
604
605	/* put any inuse buffers back on the list */
606	if (!list_empty(&list)) {
607		spin_lock(&cp->rx_inuse_lock);
608		list_splice(&list, &cp->rx_inuse_list);
609		spin_unlock(&cp->rx_inuse_lock);
610	}
611
612	spin_lock(&cp->rx_spare_lock);
613	needed = cp->rx_spares_needed;
614	spin_unlock(&cp->rx_spare_lock);
615	if (!needed)
616		return;
617
618	/* we still need spares, so try to allocate some */
619	INIT_LIST_HEAD(&list);
620	i = 0;
621	while (i < needed) {
622		cas_page_t *spare = cas_page_alloc(cp, flags);
623		if (!spare)
624			break;
625		list_add(&spare->list, &list);
626		i++;
627	}
628
629	spin_lock(&cp->rx_spare_lock);
630	list_splice(&list, &cp->rx_spare_list);
631	cp->rx_spares_needed -= i;
632	spin_unlock(&cp->rx_spare_lock);
633}
634
635/* pull a page from the list. */
636static cas_page_t *cas_page_dequeue(struct cas *cp)
637{
638	struct list_head *entry;
639	int recover;
640
641	spin_lock(&cp->rx_spare_lock);
642	if (list_empty(&cp->rx_spare_list)) {
643		/* try to do a quick recovery */
644		spin_unlock(&cp->rx_spare_lock);
645		cas_spare_recover(cp, GFP_ATOMIC);
646		spin_lock(&cp->rx_spare_lock);
647		if (list_empty(&cp->rx_spare_list)) {
648			netif_err(cp, rx_err, cp->dev,
649				  "no spare buffers available\n");
650			spin_unlock(&cp->rx_spare_lock);
651			return NULL;
652		}
653	}
654
655	entry = cp->rx_spare_list.next;
656	list_del(entry);
657	recover = ++cp->rx_spares_needed;
658	spin_unlock(&cp->rx_spare_lock);
659
660	/* trigger the timer to do the recovery */
661	if ((recover & (RX_SPARE_RECOVER_VAL - 1)) == 0) {
662#if 1
663		atomic_inc(&cp->reset_task_pending);
664		atomic_inc(&cp->reset_task_pending_spare);
665		schedule_work(&cp->reset_task);
666#else
667		atomic_set(&cp->reset_task_pending, CAS_RESET_SPARE);
668		schedule_work(&cp->reset_task);
669#endif
670	}
671	return list_entry(entry, cas_page_t, list);
672}
673
674
675static void cas_mif_poll(struct cas *cp, const int enable)
676{
677	u32 cfg;
678
679	cfg  = readl(cp->regs + REG_MIF_CFG);
680	cfg &= (MIF_CFG_MDIO_0 | MIF_CFG_MDIO_1);
681
682	if (cp->phy_type & CAS_PHY_MII_MDIO1)
683		cfg |= MIF_CFG_PHY_SELECT;
684
685	/* poll and interrupt on link status change. */
686	if (enable) {
687		cfg |= MIF_CFG_POLL_EN;
688		cfg |= CAS_BASE(MIF_CFG_POLL_REG, MII_BMSR);
689		cfg |= CAS_BASE(MIF_CFG_POLL_PHY, cp->phy_addr);
690	}
691	writel((enable) ? ~(BMSR_LSTATUS | BMSR_ANEGCOMPLETE) : 0xFFFF,
692	       cp->regs + REG_MIF_MASK);
693	writel(cfg, cp->regs + REG_MIF_CFG);
694}
695
696/* Must be invoked under cp->lock */
697static void cas_begin_auto_negotiation(struct cas *cp, struct ethtool_cmd *ep)
698{
699	u16 ctl;
700#if 1
701	int lcntl;
702	int changed = 0;
703	int oldstate = cp->lstate;
704	int link_was_not_down = !(oldstate == link_down);
705#endif
706	/* Setup link parameters */
707	if (!ep)
708		goto start_aneg;
709	lcntl = cp->link_cntl;
710	if (ep->autoneg == AUTONEG_ENABLE)
711		cp->link_cntl = BMCR_ANENABLE;
712	else {
713		u32 speed = ethtool_cmd_speed(ep);
714		cp->link_cntl = 0;
715		if (speed == SPEED_100)
716			cp->link_cntl |= BMCR_SPEED100;
717		else if (speed == SPEED_1000)
718			cp->link_cntl |= CAS_BMCR_SPEED1000;
719		if (ep->duplex == DUPLEX_FULL)
720			cp->link_cntl |= BMCR_FULLDPLX;
721	}
722#if 1
723	changed = (lcntl != cp->link_cntl);
724#endif
725start_aneg:
726	if (cp->lstate == link_up) {
727		netdev_info(cp->dev, "PCS link down\n");
728	} else {
729		if (changed) {
730			netdev_info(cp->dev, "link configuration changed\n");
731		}
732	}
733	cp->lstate = link_down;
734	cp->link_transition = LINK_TRANSITION_LINK_DOWN;
735	if (!cp->hw_running)
736		return;
737#if 1
738	/*
739	 * WTZ: If the old state was link_up, we turn off the carrier
740	 * to replicate everything we do elsewhere on a link-down
741	 * event when we were already in a link-up state..
742	 */
743	if (oldstate == link_up)
744		netif_carrier_off(cp->dev);
745	if (changed  && link_was_not_down) {
746		/*
747		 * WTZ: This branch will simply schedule a full reset after
748		 * we explicitly changed link modes in an ioctl. See if this
749		 * fixes the link-problems we were having for forced mode.
750		 */
751		atomic_inc(&cp->reset_task_pending);
752		atomic_inc(&cp->reset_task_pending_all);
753		schedule_work(&cp->reset_task);
754		cp->timer_ticks = 0;
755		mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT);
756		return;
757	}
758#endif
759	if (cp->phy_type & CAS_PHY_SERDES) {
760		u32 val = readl(cp->regs + REG_PCS_MII_CTRL);
761
762		if (cp->link_cntl & BMCR_ANENABLE) {
763			val |= (PCS_MII_RESTART_AUTONEG | PCS_MII_AUTONEG_EN);
764			cp->lstate = link_aneg;
765		} else {
766			if (cp->link_cntl & BMCR_FULLDPLX)
767				val |= PCS_MII_CTRL_DUPLEX;
768			val &= ~PCS_MII_AUTONEG_EN;
769			cp->lstate = link_force_ok;
770		}
771		cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
772		writel(val, cp->regs + REG_PCS_MII_CTRL);
773
774	} else {
775		cas_mif_poll(cp, 0);
776		ctl = cas_phy_read(cp, MII_BMCR);
777		ctl &= ~(BMCR_FULLDPLX | BMCR_SPEED100 |
778			 CAS_BMCR_SPEED1000 | BMCR_ANENABLE);
779		ctl |= cp->link_cntl;
780		if (ctl & BMCR_ANENABLE) {
781			ctl |= BMCR_ANRESTART;
782			cp->lstate = link_aneg;
783		} else {
784			cp->lstate = link_force_ok;
785		}
786		cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
787		cas_phy_write(cp, MII_BMCR, ctl);
788		cas_mif_poll(cp, 1);
789	}
790
791	cp->timer_ticks = 0;
792	mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT);
793}
794
795/* Must be invoked under cp->lock. */
796static int cas_reset_mii_phy(struct cas *cp)
797{
798	int limit = STOP_TRIES_PHY;
799	u16 val;
800
801	cas_phy_write(cp, MII_BMCR, BMCR_RESET);
802	udelay(100);
803	while (--limit) {
804		val = cas_phy_read(cp, MII_BMCR);
805		if ((val & BMCR_RESET) == 0)
806			break;
807		udelay(10);
808	}
809	return limit <= 0;
810}
811
812static int cas_saturn_firmware_init(struct cas *cp)
813{
814	const struct firmware *fw;
815	const char fw_name[] = "sun/cassini.bin";
816	int err;
817
818	if (PHY_NS_DP83065 != cp->phy_id)
819		return 0;
820
821	err = request_firmware(&fw, fw_name, &cp->pdev->dev);
822	if (err) {
823		pr_err("Failed to load firmware \"%s\"\n",
824		       fw_name);
825		return err;
826	}
827	if (fw->size < 2) {
828		pr_err("bogus length %zu in \"%s\"\n",
829		       fw->size, fw_name);
830		err = -EINVAL;
831		goto out;
832	}
833	cp->fw_load_addr= fw->data[1] << 8 | fw->data[0];
834	cp->fw_size = fw->size - 2;
835	cp->fw_data = vmalloc(cp->fw_size);
836	if (!cp->fw_data) {
837		err = -ENOMEM;
838		pr_err("\"%s\" Failed %d\n", fw_name, err);
839		goto out;
840	}
841	memcpy(cp->fw_data, &fw->data[2], cp->fw_size);
842out:
843	release_firmware(fw);
844	return err;
845}
846
847static void cas_saturn_firmware_load(struct cas *cp)
848{
849	int i;
850
851	cas_phy_powerdown(cp);
852
853	/* expanded memory access mode */
854	cas_phy_write(cp, DP83065_MII_MEM, 0x0);
855
856	/* pointer configuration for new firmware */
857	cas_phy_write(cp, DP83065_MII_REGE, 0x8ff9);
858	cas_phy_write(cp, DP83065_MII_REGD, 0xbd);
859	cas_phy_write(cp, DP83065_MII_REGE, 0x8ffa);
860	cas_phy_write(cp, DP83065_MII_REGD, 0x82);
861	cas_phy_write(cp, DP83065_MII_REGE, 0x8ffb);
862	cas_phy_write(cp, DP83065_MII_REGD, 0x0);
863	cas_phy_write(cp, DP83065_MII_REGE, 0x8ffc);
864	cas_phy_write(cp, DP83065_MII_REGD, 0x39);
865
866	/* download new firmware */
867	cas_phy_write(cp, DP83065_MII_MEM, 0x1);
868	cas_phy_write(cp, DP83065_MII_REGE, cp->fw_load_addr);
869	for (i = 0; i < cp->fw_size; i++)
870		cas_phy_write(cp, DP83065_MII_REGD, cp->fw_data[i]);
871
872	/* enable firmware */
873	cas_phy_write(cp, DP83065_MII_REGE, 0x8ff8);
874	cas_phy_write(cp, DP83065_MII_REGD, 0x1);
875}
876
877
878/* phy initialization */
879static void cas_phy_init(struct cas *cp)
880{
881	u16 val;
882
883	/* if we're in MII/GMII mode, set up phy */
884	if (CAS_PHY_MII(cp->phy_type)) {
885		writel(PCS_DATAPATH_MODE_MII,
886		       cp->regs + REG_PCS_DATAPATH_MODE);
887
888		cas_mif_poll(cp, 0);
889		cas_reset_mii_phy(cp); /* take out of isolate mode */
890
891		if (PHY_LUCENT_B0 == cp->phy_id) {
892			/* workaround link up/down issue with lucent */
893			cas_phy_write(cp, LUCENT_MII_REG, 0x8000);
894			cas_phy_write(cp, MII_BMCR, 0x00f1);
895			cas_phy_write(cp, LUCENT_MII_REG, 0x0);
896
897		} else if (PHY_BROADCOM_B0 == (cp->phy_id & 0xFFFFFFFC)) {
898			/* workarounds for broadcom phy */
899			cas_phy_write(cp, BROADCOM_MII_REG8, 0x0C20);
900			cas_phy_write(cp, BROADCOM_MII_REG7, 0x0012);
901			cas_phy_write(cp, BROADCOM_MII_REG5, 0x1804);
902			cas_phy_write(cp, BROADCOM_MII_REG7, 0x0013);
903			cas_phy_write(cp, BROADCOM_MII_REG5, 0x1204);
904			cas_phy_write(cp, BROADCOM_MII_REG7, 0x8006);
905			cas_phy_write(cp, BROADCOM_MII_REG5, 0x0132);
906			cas_phy_write(cp, BROADCOM_MII_REG7, 0x8006);
907			cas_phy_write(cp, BROADCOM_MII_REG5, 0x0232);
908			cas_phy_write(cp, BROADCOM_MII_REG7, 0x201F);
909			cas_phy_write(cp, BROADCOM_MII_REG5, 0x0A20);
910
911		} else if (PHY_BROADCOM_5411 == cp->phy_id) {
912			val = cas_phy_read(cp, BROADCOM_MII_REG4);
913			val = cas_phy_read(cp, BROADCOM_MII_REG4);
914			if (val & 0x0080) {
915				/* link workaround */
916				cas_phy_write(cp, BROADCOM_MII_REG4,
917					      val & ~0x0080);
918			}
919
920		} else if (cp->cas_flags & CAS_FLAG_SATURN) {
921			writel((cp->phy_type & CAS_PHY_MII_MDIO0) ?
922			       SATURN_PCFG_FSI : 0x0,
923			       cp->regs + REG_SATURN_PCFG);
924
925			/* load firmware to address 10Mbps auto-negotiation
926			 * issue. NOTE: this will need to be changed if the
927			 * default firmware gets fixed.
928			 */
929			if (PHY_NS_DP83065 == cp->phy_id) {
930				cas_saturn_firmware_load(cp);
931			}
932			cas_phy_powerup(cp);
933		}
934
935		/* advertise capabilities */
936		val = cas_phy_read(cp, MII_BMCR);
937		val &= ~BMCR_ANENABLE;
938		cas_phy_write(cp, MII_BMCR, val);
939		udelay(10);
940
941		cas_phy_write(cp, MII_ADVERTISE,
942			      cas_phy_read(cp, MII_ADVERTISE) |
943			      (ADVERTISE_10HALF | ADVERTISE_10FULL |
944			       ADVERTISE_100HALF | ADVERTISE_100FULL |
945			       CAS_ADVERTISE_PAUSE |
946			       CAS_ADVERTISE_ASYM_PAUSE));
947
948		if (cp->cas_flags & CAS_FLAG_1000MB_CAP) {
949			/* make sure that we don't advertise half
950			 * duplex to avoid a chip issue
951			 */
952			val  = cas_phy_read(cp, CAS_MII_1000_CTRL);
953			val &= ~CAS_ADVERTISE_1000HALF;
954			val |= CAS_ADVERTISE_1000FULL;
955			cas_phy_write(cp, CAS_MII_1000_CTRL, val);
956		}
957
958	} else {
959		/* reset pcs for serdes */
960		u32 val;
961		int limit;
962
963		writel(PCS_DATAPATH_MODE_SERDES,
964		       cp->regs + REG_PCS_DATAPATH_MODE);
965
966		/* enable serdes pins on saturn */
967		if (cp->cas_flags & CAS_FLAG_SATURN)
968			writel(0, cp->regs + REG_SATURN_PCFG);
969
970		/* Reset PCS unit. */
971		val = readl(cp->regs + REG_PCS_MII_CTRL);
972		val |= PCS_MII_RESET;
973		writel(val, cp->regs + REG_PCS_MII_CTRL);
974
975		limit = STOP_TRIES;
976		while (--limit > 0) {
977			udelay(10);
978			if ((readl(cp->regs + REG_PCS_MII_CTRL) &
979			     PCS_MII_RESET) == 0)
980				break;
981		}
982		if (limit <= 0)
983			netdev_warn(cp->dev, "PCS reset bit would not clear [%08x]\n",
984				    readl(cp->regs + REG_PCS_STATE_MACHINE));
985
986		/* Make sure PCS is disabled while changing advertisement
987		 * configuration.
988		 */
989		writel(0x0, cp->regs + REG_PCS_CFG);
990
991		/* Advertise all capabilities except half-duplex. */
992		val  = readl(cp->regs + REG_PCS_MII_ADVERT);
993		val &= ~PCS_MII_ADVERT_HD;
994		val |= (PCS_MII_ADVERT_FD | PCS_MII_ADVERT_SYM_PAUSE |
995			PCS_MII_ADVERT_ASYM_PAUSE);
996		writel(val, cp->regs + REG_PCS_MII_ADVERT);
997
998		/* enable PCS */
999		writel(PCS_CFG_EN, cp->regs + REG_PCS_CFG);
1000
1001		/* pcs workaround: enable sync detect */
1002		writel(PCS_SERDES_CTRL_SYNCD_EN,
1003		       cp->regs + REG_PCS_SERDES_CTRL);
1004	}
1005}
1006
1007
1008static int cas_pcs_link_check(struct cas *cp)
1009{
1010	u32 stat, state_machine;
1011	int retval = 0;
1012
1013	/* The link status bit latches on zero, so you must
1014	 * read it twice in such a case to see a transition
1015	 * to the link being up.
1016	 */
1017	stat = readl(cp->regs + REG_PCS_MII_STATUS);
1018	if ((stat & PCS_MII_STATUS_LINK_STATUS) == 0)
1019		stat = readl(cp->regs + REG_PCS_MII_STATUS);
1020
1021	/* The remote-fault indication is only valid
1022	 * when autoneg has completed.
1023	 */
1024	if ((stat & (PCS_MII_STATUS_AUTONEG_COMP |
1025		     PCS_MII_STATUS_REMOTE_FAULT)) ==
1026	    (PCS_MII_STATUS_AUTONEG_COMP | PCS_MII_STATUS_REMOTE_FAULT))
1027		netif_info(cp, link, cp->dev, "PCS RemoteFault\n");
1028
1029	/* work around link detection issue by querying the PCS state
1030	 * machine directly.
1031	 */
1032	state_machine = readl(cp->regs + REG_PCS_STATE_MACHINE);
1033	if ((state_machine & PCS_SM_LINK_STATE_MASK) != SM_LINK_STATE_UP) {
1034		stat &= ~PCS_MII_STATUS_LINK_STATUS;
1035	} else if (state_machine & PCS_SM_WORD_SYNC_STATE_MASK) {
1036		stat |= PCS_MII_STATUS_LINK_STATUS;
1037	}
1038
1039	if (stat & PCS_MII_STATUS_LINK_STATUS) {
1040		if (cp->lstate != link_up) {
1041			if (cp->opened) {
1042				cp->lstate = link_up;
1043				cp->link_transition = LINK_TRANSITION_LINK_UP;
1044
1045				cas_set_link_modes(cp);
1046				netif_carrier_on(cp->dev);
1047			}
1048		}
1049	} else if (cp->lstate == link_up) {
1050		cp->lstate = link_down;
1051		if (link_transition_timeout != 0 &&
1052		    cp->link_transition != LINK_TRANSITION_REQUESTED_RESET &&
1053		    !cp->link_transition_jiffies_valid) {
1054			/*
1055			 * force a reset, as a workaround for the
1056			 * link-failure problem. May want to move this to a
1057			 * point a bit earlier in the sequence. If we had
1058			 * generated a reset a short time ago, we'll wait for
1059			 * the link timer to check the status until a
1060			 * timer expires (link_transistion_jiffies_valid is
1061			 * true when the timer is running.)  Instead of using
1062			 * a system timer, we just do a check whenever the
1063			 * link timer is running - this clears the flag after
1064			 * a suitable delay.
1065			 */
1066			retval = 1;
1067			cp->link_transition = LINK_TRANSITION_REQUESTED_RESET;
1068			cp->link_transition_jiffies = jiffies;
1069			cp->link_transition_jiffies_valid = 1;
1070		} else {
1071			cp->link_transition = LINK_TRANSITION_ON_FAILURE;
1072		}
1073		netif_carrier_off(cp->dev);
1074		if (cp->opened)
1075			netif_info(cp, link, cp->dev, "PCS link down\n");
1076
1077		/* Cassini only: if you force a mode, there can be
1078		 * sync problems on link down. to fix that, the following
1079		 * things need to be checked:
1080		 * 1) read serialink state register
1081		 * 2) read pcs status register to verify link down.
1082		 * 3) if link down and serial link == 0x03, then you need
1083		 *    to global reset the chip.
1084		 */
1085		if ((cp->cas_flags & CAS_FLAG_REG_PLUS) == 0) {
1086			/* should check to see if we're in a forced mode */
1087			stat = readl(cp->regs + REG_PCS_SERDES_STATE);
1088			if (stat == 0x03)
1089				return 1;
1090		}
1091	} else if (cp->lstate == link_down) {
1092		if (link_transition_timeout != 0 &&
1093		    cp->link_transition != LINK_TRANSITION_REQUESTED_RESET &&
1094		    !cp->link_transition_jiffies_valid) {
1095			/* force a reset, as a workaround for the
1096			 * link-failure problem.  May want to move
1097			 * this to a point a bit earlier in the
1098			 * sequence.
1099			 */
1100			retval = 1;
1101			cp->link_transition = LINK_TRANSITION_REQUESTED_RESET;
1102			cp->link_transition_jiffies = jiffies;
1103			cp->link_transition_jiffies_valid = 1;
1104		} else {
1105			cp->link_transition = LINK_TRANSITION_STILL_FAILED;
1106		}
1107	}
1108
1109	return retval;
1110}
1111
1112static int cas_pcs_interrupt(struct net_device *dev,
1113			     struct cas *cp, u32 status)
1114{
1115	u32 stat = readl(cp->regs + REG_PCS_INTR_STATUS);
1116
1117	if ((stat & PCS_INTR_STATUS_LINK_CHANGE) == 0)
1118		return 0;
1119	return cas_pcs_link_check(cp);
1120}
1121
1122static int cas_txmac_interrupt(struct net_device *dev,
1123			       struct cas *cp, u32 status)
1124{
1125	u32 txmac_stat = readl(cp->regs + REG_MAC_TX_STATUS);
1126
1127	if (!txmac_stat)
1128		return 0;
1129
1130	netif_printk(cp, intr, KERN_DEBUG, cp->dev,
1131		     "txmac interrupt, txmac_stat: 0x%x\n", txmac_stat);
1132
1133	/* Defer timer expiration is quite normal,
1134	 * don't even log the event.
1135	 */
1136	if ((txmac_stat & MAC_TX_DEFER_TIMER) &&
1137	    !(txmac_stat & ~MAC_TX_DEFER_TIMER))
1138		return 0;
1139
1140	spin_lock(&cp->stat_lock[0]);
1141	if (txmac_stat & MAC_TX_UNDERRUN) {
1142		netdev_err(dev, "TX MAC xmit underrun\n");
1143		cp->net_stats[0].tx_fifo_errors++;
1144	}
1145
1146	if (txmac_stat & MAC_TX_MAX_PACKET_ERR) {
1147		netdev_err(dev, "TX MAC max packet size error\n");
1148		cp->net_stats[0].tx_errors++;
1149	}
1150
1151	/* The rest are all cases of one of the 16-bit TX
1152	 * counters expiring.
1153	 */
1154	if (txmac_stat & MAC_TX_COLL_NORMAL)
1155		cp->net_stats[0].collisions += 0x10000;
1156
1157	if (txmac_stat & MAC_TX_COLL_EXCESS) {
1158		cp->net_stats[0].tx_aborted_errors += 0x10000;
1159		cp->net_stats[0].collisions += 0x10000;
1160	}
1161
1162	if (txmac_stat & MAC_TX_COLL_LATE) {
1163		cp->net_stats[0].tx_aborted_errors += 0x10000;
1164		cp->net_stats[0].collisions += 0x10000;
1165	}
1166	spin_unlock(&cp->stat_lock[0]);
1167
1168	/* We do not keep track of MAC_TX_COLL_FIRST and
1169	 * MAC_TX_PEAK_ATTEMPTS events.
1170	 */
1171	return 0;
1172}
1173
1174static void cas_load_firmware(struct cas *cp, cas_hp_inst_t *firmware)
1175{
1176	cas_hp_inst_t *inst;
1177	u32 val;
1178	int i;
1179
1180	i = 0;
1181	while ((inst = firmware) && inst->note) {
1182		writel(i, cp->regs + REG_HP_INSTR_RAM_ADDR);
1183
1184		val = CAS_BASE(HP_INSTR_RAM_HI_VAL, inst->val);
1185		val |= CAS_BASE(HP_INSTR_RAM_HI_MASK, inst->mask);
1186		writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_HI);
1187
1188		val = CAS_BASE(HP_INSTR_RAM_MID_OUTARG, inst->outarg >> 10);
1189		val |= CAS_BASE(HP_INSTR_RAM_MID_OUTOP, inst->outop);
1190		val |= CAS_BASE(HP_INSTR_RAM_MID_FNEXT, inst->fnext);
1191		val |= CAS_BASE(HP_INSTR_RAM_MID_FOFF, inst->foff);
1192		val |= CAS_BASE(HP_INSTR_RAM_MID_SNEXT, inst->snext);
1193		val |= CAS_BASE(HP_INSTR_RAM_MID_SOFF, inst->soff);
1194		val |= CAS_BASE(HP_INSTR_RAM_MID_OP, inst->op);
1195		writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_MID);
1196
1197		val = CAS_BASE(HP_INSTR_RAM_LOW_OUTMASK, inst->outmask);
1198		val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTSHIFT, inst->outshift);
1199		val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTEN, inst->outenab);
1200		val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTARG, inst->outarg);
1201		writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_LOW);
1202		++firmware;
1203		++i;
1204	}
1205}
1206
1207static void cas_init_rx_dma(struct cas *cp)
1208{
1209	u64 desc_dma = cp->block_dvma;
1210	u32 val;
1211	int i, size;
1212
1213	/* rx free descriptors */
1214	val = CAS_BASE(RX_CFG_SWIVEL, RX_SWIVEL_OFF_VAL);
1215	val |= CAS_BASE(RX_CFG_DESC_RING, RX_DESC_RINGN_INDEX(0));
1216	val |= CAS_BASE(RX_CFG_COMP_RING, RX_COMP_RINGN_INDEX(0));
1217	if ((N_RX_DESC_RINGS > 1) &&
1218	    (cp->cas_flags & CAS_FLAG_REG_PLUS))  /* do desc 2 */
1219		val |= CAS_BASE(RX_CFG_DESC_RING1, RX_DESC_RINGN_INDEX(1));
1220	writel(val, cp->regs + REG_RX_CFG);
1221
1222	val = (unsigned long) cp->init_rxds[0] -
1223		(unsigned long) cp->init_block;
1224	writel((desc_dma + val) >> 32, cp->regs + REG_RX_DB_HI);
1225	writel((desc_dma + val) & 0xffffffff, cp->regs + REG_RX_DB_LOW);
1226	writel(RX_DESC_RINGN_SIZE(0) - 4, cp->regs + REG_RX_KICK);
1227
1228	if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1229		/* rx desc 2 is for IPSEC packets. however,
1230		 * we don't it that for that purpose.
1231		 */
1232		val = (unsigned long) cp->init_rxds[1] -
1233			(unsigned long) cp->init_block;
1234		writel((desc_dma + val) >> 32, cp->regs + REG_PLUS_RX_DB1_HI);
1235		writel((desc_dma + val) & 0xffffffff, cp->regs +
1236		       REG_PLUS_RX_DB1_LOW);
1237		writel(RX_DESC_RINGN_SIZE(1) - 4, cp->regs +
1238		       REG_PLUS_RX_KICK1);
1239	}
1240
1241	/* rx completion registers */
1242	val = (unsigned long) cp->init_rxcs[0] -
1243		(unsigned long) cp->init_block;
1244	writel((desc_dma + val) >> 32, cp->regs + REG_RX_CB_HI);
1245	writel((desc_dma + val) & 0xffffffff, cp->regs + REG_RX_CB_LOW);
1246
1247	if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1248		/* rx comp 2-4 */
1249		for (i = 1; i < MAX_RX_COMP_RINGS; i++) {
1250			val = (unsigned long) cp->init_rxcs[i] -
1251				(unsigned long) cp->init_block;
1252			writel((desc_dma + val) >> 32, cp->regs +
1253			       REG_PLUS_RX_CBN_HI(i));
1254			writel((desc_dma + val) & 0xffffffff, cp->regs +
1255			       REG_PLUS_RX_CBN_LOW(i));
1256		}
1257	}
1258
1259	/* read selective clear regs to prevent spurious interrupts
1260	 * on reset because complete == kick.
1261	 * selective clear set up to prevent interrupts on resets
1262	 */
1263	readl(cp->regs + REG_INTR_STATUS_ALIAS);
1264	writel(INTR_RX_DONE | INTR_RX_BUF_UNAVAIL, cp->regs + REG_ALIAS_CLEAR);
1265	if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1266		for (i = 1; i < N_RX_COMP_RINGS; i++)
1267			readl(cp->regs + REG_PLUS_INTRN_STATUS_ALIAS(i));
1268
1269		/* 2 is different from 3 and 4 */
1270		if (N_RX_COMP_RINGS > 1)
1271			writel(INTR_RX_DONE_ALT | INTR_RX_BUF_UNAVAIL_1,
1272			       cp->regs + REG_PLUS_ALIASN_CLEAR(1));
1273
1274		for (i = 2; i < N_RX_COMP_RINGS; i++)
1275			writel(INTR_RX_DONE_ALT,
1276			       cp->regs + REG_PLUS_ALIASN_CLEAR(i));
1277	}
1278
1279	/* set up pause thresholds */
1280	val  = CAS_BASE(RX_PAUSE_THRESH_OFF,
1281			cp->rx_pause_off / RX_PAUSE_THRESH_QUANTUM);
1282	val |= CAS_BASE(RX_PAUSE_THRESH_ON,
1283			cp->rx_pause_on / RX_PAUSE_THRESH_QUANTUM);
1284	writel(val, cp->regs + REG_RX_PAUSE_THRESH);
1285
1286	/* zero out dma reassembly buffers */
1287	for (i = 0; i < 64; i++) {
1288		writel(i, cp->regs + REG_RX_TABLE_ADDR);
1289		writel(0x0, cp->regs + REG_RX_TABLE_DATA_LOW);
1290		writel(0x0, cp->regs + REG_RX_TABLE_DATA_MID);
1291		writel(0x0, cp->regs + REG_RX_TABLE_DATA_HI);
1292	}
1293
1294	/* make sure address register is 0 for normal operation */
1295	writel(0x0, cp->regs + REG_RX_CTRL_FIFO_ADDR);
1296	writel(0x0, cp->regs + REG_RX_IPP_FIFO_ADDR);
1297
1298	/* interrupt mitigation */
1299#ifdef USE_RX_BLANK
1300	val = CAS_BASE(RX_BLANK_INTR_TIME, RX_BLANK_INTR_TIME_VAL);
1301	val |= CAS_BASE(RX_BLANK_INTR_PKT, RX_BLANK_INTR_PKT_VAL);
1302	writel(val, cp->regs + REG_RX_BLANK);
1303#else
1304	writel(0x0, cp->regs + REG_RX_BLANK);
1305#endif
1306
1307	/* interrupt generation as a function of low water marks for
1308	 * free desc and completion entries. these are used to trigger
1309	 * housekeeping for rx descs. we don't use the free interrupt
1310	 * as it's not very useful
1311	 */
1312	/* val = CAS_BASE(RX_AE_THRESH_FREE, RX_AE_FREEN_VAL(0)); */
1313	val = CAS_BASE(RX_AE_THRESH_COMP, RX_AE_COMP_VAL);
1314	writel(val, cp->regs + REG_RX_AE_THRESH);
1315	if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1316		val = CAS_BASE(RX_AE1_THRESH_FREE, RX_AE_FREEN_VAL(1));
1317		writel(val, cp->regs + REG_PLUS_RX_AE1_THRESH);
1318	}
1319
1320	/* Random early detect registers. useful for congestion avoidance.
1321	 * this should be tunable.
1322	 */
1323	writel(0x0, cp->regs + REG_RX_RED);
1324
1325	/* receive page sizes. default == 2K (0x800) */
1326	val = 0;
1327	if (cp->page_size == 0x1000)
1328		val = 0x1;
1329	else if (cp->page_size == 0x2000)
1330		val = 0x2;
1331	else if (cp->page_size == 0x4000)
1332		val = 0x3;
1333
1334	/* round mtu + offset. constrain to page size. */
1335	size = cp->dev->mtu + 64;
1336	if (size > cp->page_size)
1337		size = cp->page_size;
1338
1339	if (size <= 0x400)
1340		i = 0x0;
1341	else if (size <= 0x800)
1342		i = 0x1;
1343	else if (size <= 0x1000)
1344		i = 0x2;
1345	else
1346		i = 0x3;
1347
1348	cp->mtu_stride = 1 << (i + 10);
1349	val  = CAS_BASE(RX_PAGE_SIZE, val);
1350	val |= CAS_BASE(RX_PAGE_SIZE_MTU_STRIDE, i);
1351	val |= CAS_BASE(RX_PAGE_SIZE_MTU_COUNT, cp->page_size >> (i + 10));
1352	val |= CAS_BASE(RX_PAGE_SIZE_MTU_OFF, 0x1);
1353	writel(val, cp->regs + REG_RX_PAGE_SIZE);
1354
1355	/* enable the header parser if desired */
1356	if (CAS_HP_FIRMWARE == cas_prog_null)
1357		return;
1358
1359	val = CAS_BASE(HP_CFG_NUM_CPU, CAS_NCPUS > 63 ? 0 : CAS_NCPUS);
1360	val |= HP_CFG_PARSE_EN | HP_CFG_SYN_INC_MASK;
1361	val |= CAS_BASE(HP_CFG_TCP_THRESH, HP_TCP_THRESH_VAL);
1362	writel(val, cp->regs + REG_HP_CFG);
1363}
1364
1365static inline void cas_rxc_init(struct cas_rx_comp *rxc)
1366{
1367	memset(rxc, 0, sizeof(*rxc));
1368	rxc->word4 = cpu_to_le64(RX_COMP4_ZERO);
1369}
1370
1371/* NOTE: we use the ENC RX DESC ring for spares. the rx_page[0,1]
1372 * flipping is protected by the fact that the chip will not
1373 * hand back the same page index while it's being processed.
1374 */
1375static inline cas_page_t *cas_page_spare(struct cas *cp, const int index)
1376{
1377	cas_page_t *page = cp->rx_pages[1][index];
1378	cas_page_t *new;
1379
1380	if (page_count(page->buffer) == 1)
1381		return page;
1382
1383	new = cas_page_dequeue(cp);
1384	if (new) {
1385		spin_lock(&cp->rx_inuse_lock);
1386		list_add(&page->list, &cp->rx_inuse_list);
1387		spin_unlock(&cp->rx_inuse_lock);
1388	}
1389	return new;
1390}
1391
1392/* this needs to be changed if we actually use the ENC RX DESC ring */
1393static cas_page_t *cas_page_swap(struct cas *cp, const int ring,
1394				 const int index)
1395{
1396	cas_page_t **page0 = cp->rx_pages[0];
1397	cas_page_t **page1 = cp->rx_pages[1];
1398
1399	/* swap if buffer is in use */
1400	if (page_count(page0[index]->buffer) > 1) {
1401		cas_page_t *new = cas_page_spare(cp, index);
1402		if (new) {
1403			page1[index] = page0[index];
1404			page0[index] = new;
1405		}
1406	}
1407	RX_USED_SET(page0[index], 0);
1408	return page0[index];
1409}
1410
1411static void cas_clean_rxds(struct cas *cp)
1412{
1413	/* only clean ring 0 as ring 1 is used for spare buffers */
1414        struct cas_rx_desc *rxd = cp->init_rxds[0];
1415	int i, size;
1416
1417	/* release all rx flows */
1418	for (i = 0; i < N_RX_FLOWS; i++) {
1419		struct sk_buff *skb;
1420		while ((skb = __skb_dequeue(&cp->rx_flows[i]))) {
1421			cas_skb_release(skb);
1422		}
1423	}
1424
1425	/* initialize descriptors */
1426	size = RX_DESC_RINGN_SIZE(0);
1427	for (i = 0; i < size; i++) {
1428		cas_page_t *page = cas_page_swap(cp, 0, i);
1429		rxd[i].buffer = cpu_to_le64(page->dma_addr);
1430		rxd[i].index  = cpu_to_le64(CAS_BASE(RX_INDEX_NUM, i) |
1431					    CAS_BASE(RX_INDEX_RING, 0));
1432	}
1433
1434	cp->rx_old[0]  = RX_DESC_RINGN_SIZE(0) - 4;
1435	cp->rx_last[0] = 0;
1436	cp->cas_flags &= ~CAS_FLAG_RXD_POST(0);
1437}
1438
1439static void cas_clean_rxcs(struct cas *cp)
1440{
1441	int i, j;
1442
1443	/* take ownership of rx comp descriptors */
1444	memset(cp->rx_cur, 0, sizeof(*cp->rx_cur)*N_RX_COMP_RINGS);
1445	memset(cp->rx_new, 0, sizeof(*cp->rx_new)*N_RX_COMP_RINGS);
1446	for (i = 0; i < N_RX_COMP_RINGS; i++) {
1447		struct cas_rx_comp *rxc = cp->init_rxcs[i];
1448		for (j = 0; j < RX_COMP_RINGN_SIZE(i); j++) {
1449			cas_rxc_init(rxc + j);
1450		}
1451	}
1452}
1453
1454#if 0
1455/* When we get a RX fifo overflow, the RX unit is probably hung
1456 * so we do the following.
1457 *
1458 * If any part of the reset goes wrong, we return 1 and that causes the
1459 * whole chip to be reset.
1460 */
1461static int cas_rxmac_reset(struct cas *cp)
1462{
1463	struct net_device *dev = cp->dev;
1464	int limit;
1465	u32 val;
1466
1467	/* First, reset MAC RX. */
1468	writel(cp->mac_rx_cfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
1469	for (limit = 0; limit < STOP_TRIES; limit++) {
1470		if (!(readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_EN))
1471			break;
1472		udelay(10);
1473	}
1474	if (limit == STOP_TRIES) {
1475		netdev_err(dev, "RX MAC will not disable, resetting whole chip\n");
1476		return 1;
1477	}
1478
1479	/* Second, disable RX DMA. */
1480	writel(0, cp->regs + REG_RX_CFG);
1481	for (limit = 0; limit < STOP_TRIES; limit++) {
1482		if (!(readl(cp->regs + REG_RX_CFG) & RX_CFG_DMA_EN))
1483			break;
1484		udelay(10);
1485	}
1486	if (limit == STOP_TRIES) {
1487		netdev_err(dev, "RX DMA will not disable, resetting whole chip\n");
1488		return 1;
1489	}
1490
1491	mdelay(5);
1492
1493	/* Execute RX reset command. */
1494	writel(SW_RESET_RX, cp->regs + REG_SW_RESET);
1495	for (limit = 0; limit < STOP_TRIES; limit++) {
1496		if (!(readl(cp->regs + REG_SW_RESET) & SW_RESET_RX))
1497			break;
1498		udelay(10);
1499	}
1500	if (limit == STOP_TRIES) {
1501		netdev_err(dev, "RX reset command will not execute, resetting whole chip\n");
1502		return 1;
1503	}
1504
1505	/* reset driver rx state */
1506	cas_clean_rxds(cp);
1507	cas_clean_rxcs(cp);
1508
1509	/* Now, reprogram the rest of RX unit. */
1510	cas_init_rx_dma(cp);
1511
1512	/* re-enable */
1513	val = readl(cp->regs + REG_RX_CFG);
1514	writel(val | RX_CFG_DMA_EN, cp->regs + REG_RX_CFG);
1515	writel(MAC_RX_FRAME_RECV, cp->regs + REG_MAC_RX_MASK);
1516	val = readl(cp->regs + REG_MAC_RX_CFG);
1517	writel(val | MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
1518	return 0;
1519}
1520#endif
1521
1522static int cas_rxmac_interrupt(struct net_device *dev, struct cas *cp,
1523			       u32 status)
1524{
1525	u32 stat = readl(cp->regs + REG_MAC_RX_STATUS);
1526
1527	if (!stat)
1528		return 0;
1529
1530	netif_dbg(cp, intr, cp->dev, "rxmac interrupt, stat: 0x%x\n", stat);
1531
1532	/* these are all rollovers */
1533	spin_lock(&cp->stat_lock[0]);
1534	if (stat & MAC_RX_ALIGN_ERR)
1535		cp->net_stats[0].rx_frame_errors += 0x10000;
1536
1537	if (stat & MAC_RX_CRC_ERR)
1538		cp->net_stats[0].rx_crc_errors += 0x10000;
1539
1540	if (stat & MAC_RX_LEN_ERR)
1541		cp->net_stats[0].rx_length_errors += 0x10000;
1542
1543	if (stat & MAC_RX_OVERFLOW) {
1544		cp->net_stats[0].rx_over_errors++;
1545		cp->net_stats[0].rx_fifo_errors++;
1546	}
1547
1548	/* We do not track MAC_RX_FRAME_COUNT and MAC_RX_VIOL_ERR
1549	 * events.
1550	 */
1551	spin_unlock(&cp->stat_lock[0]);
1552	return 0;
1553}
1554
1555static int cas_mac_interrupt(struct net_device *dev, struct cas *cp,
1556			     u32 status)
1557{
1558	u32 stat = readl(cp->regs + REG_MAC_CTRL_STATUS);
1559
1560	if (!stat)
1561		return 0;
1562
1563	netif_printk(cp, intr, KERN_DEBUG, cp->dev,
1564		     "mac interrupt, stat: 0x%x\n", stat);
1565
1566	/* This interrupt is just for pause frame and pause
1567	 * tracking.  It is useful for diagnostics and debug
1568	 * but probably by default we will mask these events.
1569	 */
1570	if (stat & MAC_CTRL_PAUSE_STATE)
1571		cp->pause_entered++;
1572
1573	if (stat & MAC_CTRL_PAUSE_RECEIVED)
1574		cp->pause_last_time_recvd = (stat >> 16);
1575
1576	return 0;
1577}
1578
1579
1580/* Must be invoked under cp->lock. */
1581static inline int cas_mdio_link_not_up(struct cas *cp)
1582{
1583	u16 val;
1584
1585	switch (cp->lstate) {
1586	case link_force_ret:
1587		netif_info(cp, link, cp->dev, "Autoneg failed again, keeping forced mode\n");
1588		cas_phy_write(cp, MII_BMCR, cp->link_fcntl);
1589		cp->timer_ticks = 5;
1590		cp->lstate = link_force_ok;
1591		cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
1592		break;
1593
1594	case link_aneg:
1595		val = cas_phy_read(cp, MII_BMCR);
1596
1597		/* Try forced modes. we try things in the following order:
1598		 * 1000 full -> 100 full/half -> 10 half
1599		 */
1600		val &= ~(BMCR_ANRESTART | BMCR_ANENABLE);
1601		val |= BMCR_FULLDPLX;
1602		val |= (cp->cas_flags & CAS_FLAG_1000MB_CAP) ?
1603			CAS_BMCR_SPEED1000 : BMCR_SPEED100;
1604		cas_phy_write(cp, MII_BMCR, val);
1605		cp->timer_ticks = 5;
1606		cp->lstate = link_force_try;
1607		cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
1608		break;
1609
1610	case link_force_try:
1611		/* Downgrade from 1000 to 100 to 10 Mbps if necessary. */
1612		val = cas_phy_read(cp, MII_BMCR);
1613		cp->timer_ticks = 5;
1614		if (val & CAS_BMCR_SPEED1000) { /* gigabit */
1615			val &= ~CAS_BMCR_SPEED1000;
1616			val |= (BMCR_SPEED100 | BMCR_FULLDPLX);
1617			cas_phy_write(cp, MII_BMCR, val);
1618			break;
1619		}
1620
1621		if (val & BMCR_SPEED100) {
1622			if (val & BMCR_FULLDPLX) /* fd failed */
1623				val &= ~BMCR_FULLDPLX;
1624			else { /* 100Mbps failed */
1625				val &= ~BMCR_SPEED100;
1626			}
1627			cas_phy_write(cp, MII_BMCR, val);
1628			break;
1629		}
1630	default:
1631		break;
1632	}
1633	return 0;
1634}
1635
1636
1637/* must be invoked with cp->lock held */
1638static int cas_mii_link_check(struct cas *cp, const u16 bmsr)
1639{
1640	int restart;
1641
1642	if (bmsr & BMSR_LSTATUS) {
1643		/* Ok, here we got a link. If we had it due to a forced
1644		 * fallback, and we were configured for autoneg, we
1645		 * retry a short autoneg pass. If you know your hub is
1646		 * broken, use ethtool ;)
1647		 */
1648		if ((cp->lstate == link_force_try) &&
1649		    (cp->link_cntl & BMCR_ANENABLE)) {
1650			cp->lstate = link_force_ret;
1651			cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
1652			cas_mif_poll(cp, 0);
1653			cp->link_fcntl = cas_phy_read(cp, MII_BMCR);
1654			cp->timer_ticks = 5;
1655			if (cp->opened)
1656				netif_info(cp, link, cp->dev,
1657					   "Got link after fallback, retrying autoneg once...\n");
1658			cas_phy_write(cp, MII_BMCR,
1659				      cp->link_fcntl | BMCR_ANENABLE |
1660				      BMCR_ANRESTART);
1661			cas_mif_poll(cp, 1);
1662
1663		} else if (cp->lstate != link_up) {
1664			cp->lstate = link_up;
1665			cp->link_transition = LINK_TRANSITION_LINK_UP;
1666
1667			if (cp->opened) {
1668				cas_set_link_modes(cp);
1669				netif_carrier_on(cp->dev);
1670			}
1671		}
1672		return 0;
1673	}
1674
1675	/* link not up. if the link was previously up, we restart the
1676	 * whole process
1677	 */
1678	restart = 0;
1679	if (cp->lstate == link_up) {
1680		cp->lstate = link_down;
1681		cp->link_transition = LINK_TRANSITION_LINK_DOWN;
1682
1683		netif_carrier_off(cp->dev);
1684		if (cp->opened)
1685			netif_info(cp, link, cp->dev, "Link down\n");
1686		restart = 1;
1687
1688	} else if (++cp->timer_ticks > 10)
1689		cas_mdio_link_not_up(cp);
1690
1691	return restart;
1692}
1693
1694static int cas_mif_interrupt(struct net_device *dev, struct cas *cp,
1695			     u32 status)
1696{
1697	u32 stat = readl(cp->regs + REG_MIF_STATUS);
1698	u16 bmsr;
1699
1700	/* check for a link change */
1701	if (CAS_VAL(MIF_STATUS_POLL_STATUS, stat) == 0)
1702		return 0;
1703
1704	bmsr = CAS_VAL(MIF_STATUS_POLL_DATA, stat);
1705	return cas_mii_link_check(cp, bmsr);
1706}
1707
1708static int cas_pci_interrupt(struct net_device *dev, struct cas *cp,
1709			     u32 status)
1710{
1711	u32 stat = readl(cp->regs + REG_PCI_ERR_STATUS);
1712
1713	if (!stat)
1714		return 0;
1715
1716	netdev_err(dev, "PCI error [%04x:%04x]",
1717		   stat, readl(cp->regs + REG_BIM_DIAG));
1718
1719	/* cassini+ has this reserved */
1720	if ((stat & PCI_ERR_BADACK) &&
1721	    ((cp->cas_flags & CAS_FLAG_REG_PLUS) == 0))
1722		pr_cont(" <No ACK64# during ABS64 cycle>");
1723
1724	if (stat & PCI_ERR_DTRTO)
1725		pr_cont(" <Delayed transaction timeout>");
1726	if (stat & PCI_ERR_OTHER)
1727		pr_cont(" <other>");
1728	if (stat & PCI_ERR_BIM_DMA_WRITE)
1729		pr_cont(" <BIM DMA 0 write req>");
1730	if (stat & PCI_ERR_BIM_DMA_READ)
1731		pr_cont(" <BIM DMA 0 read req>");
1732	pr_cont("\n");
1733
1734	if (stat & PCI_ERR_OTHER) {
1735		u16 cfg;
1736
1737		/* Interrogate PCI config space for the
1738		 * true cause.
1739		 */
1740		pci_read_config_word(cp->pdev, PCI_STATUS, &cfg);
1741		netdev_err(dev, "Read PCI cfg space status [%04x]\n", cfg);
1742		if (cfg & PCI_STATUS_PARITY)
1743			netdev_err(dev, "PCI parity error detected\n");
1744		if (cfg & PCI_STATUS_SIG_TARGET_ABORT)
1745			netdev_err(dev, "PCI target abort\n");
1746		if (cfg & PCI_STATUS_REC_TARGET_ABORT)
1747			netdev_err(dev, "PCI master acks target abort\n");
1748		if (cfg & PCI_STATUS_REC_MASTER_ABORT)
1749			netdev_err(dev, "PCI master abort\n");
1750		if (cfg & PCI_STATUS_SIG_SYSTEM_ERROR)
1751			netdev_err(dev, "PCI system error SERR#\n");
1752		if (cfg & PCI_STATUS_DETECTED_PARITY)
1753			netdev_err(dev, "PCI parity error\n");
1754
1755		/* Write the error bits back to clear them. */
1756		cfg &= (PCI_STATUS_PARITY |
1757			PCI_STATUS_SIG_TARGET_ABORT |
1758			PCI_STATUS_REC_TARGET_ABORT |
1759			PCI_STATUS_REC_MASTER_ABORT |
1760			PCI_STATUS_SIG_SYSTEM_ERROR |
1761			PCI_STATUS_DETECTED_PARITY);
1762		pci_write_config_word(cp->pdev, PCI_STATUS, cfg);
1763	}
1764
1765	/* For all PCI errors, we should reset the chip. */
1766	return 1;
1767}
1768
1769/* All non-normal interrupt conditions get serviced here.
1770 * Returns non-zero if we should just exit the interrupt
1771 * handler right now (ie. if we reset the card which invalidates
1772 * all of the other original irq status bits).
1773 */
1774static int cas_abnormal_irq(struct net_device *dev, struct cas *cp,
1775			    u32 status)
1776{
1777	if (status & INTR_RX_TAG_ERROR) {
1778		/* corrupt RX tag framing */
1779		netif_printk(cp, rx_err, KERN_DEBUG, cp->dev,
1780			     "corrupt rx tag framing\n");
1781		spin_lock(&cp->stat_lock[0]);
1782		cp->net_stats[0].rx_errors++;
1783		spin_unlock(&cp->stat_lock[0]);
1784		goto do_reset;
1785	}
1786
1787	if (status & INTR_RX_LEN_MISMATCH) {
1788		/* length mismatch. */
1789		netif_printk(cp, rx_err, KERN_DEBUG, cp->dev,
1790			     "length mismatch for rx frame\n");
1791		spin_lock(&cp->stat_lock[0]);
1792		cp->net_stats[0].rx_errors++;
1793		spin_unlock(&cp->stat_lock[0]);
1794		goto do_reset;
1795	}
1796
1797	if (status & INTR_PCS_STATUS) {
1798		if (cas_pcs_interrupt(dev, cp, status))
1799			goto do_reset;
1800	}
1801
1802	if (status & INTR_TX_MAC_STATUS) {
1803		if (cas_txmac_interrupt(dev, cp, status))
1804			goto do_reset;
1805	}
1806
1807	if (status & INTR_RX_MAC_STATUS) {
1808		if (cas_rxmac_interrupt(dev, cp, status))
1809			goto do_reset;
1810	}
1811
1812	if (status & INTR_MAC_CTRL_STATUS) {
1813		if (cas_mac_interrupt(dev, cp, status))
1814			goto do_reset;
1815	}
1816
1817	if (status & INTR_MIF_STATUS) {
1818		if (cas_mif_interrupt(dev, cp, status))
1819			goto do_reset;
1820	}
1821
1822	if (status & INTR_PCI_ERROR_STATUS) {
1823		if (cas_pci_interrupt(dev, cp, status))
1824			goto do_reset;
1825	}
1826	return 0;
1827
1828do_reset:
1829#if 1
1830	atomic_inc(&cp->reset_task_pending);
1831	atomic_inc(&cp->reset_task_pending_all);
1832	netdev_err(dev, "reset called in cas_abnormal_irq [0x%x]\n", status);
1833	schedule_work(&cp->reset_task);
1834#else
1835	atomic_set(&cp->reset_task_pending, CAS_RESET_ALL);
1836	netdev_err(dev, "reset called in cas_abnormal_irq\n");
1837	schedule_work(&cp->reset_task);
1838#endif
1839	return 1;
1840}
1841
1842/* NOTE: CAS_TABORT returns 1 or 2 so that it can be used when
1843 *       determining whether to do a netif_stop/wakeup
1844 */
1845#define CAS_TABORT(x)      (((x)->cas_flags & CAS_FLAG_TARGET_ABORT) ? 2 : 1)
1846#define CAS_ROUND_PAGE(x)  (((x) + PAGE_SIZE - 1) & PAGE_MASK)
1847static inline int cas_calc_tabort(struct cas *cp, const unsigned long addr,
1848				  const int len)
1849{
1850	unsigned long off = addr + len;
1851
1852	if (CAS_TABORT(cp) == 1)
1853		return 0;
1854	if ((CAS_ROUND_PAGE(off) - off) > TX_TARGET_ABORT_LEN)
1855		return 0;
1856	return TX_TARGET_ABORT_LEN;
1857}
1858
1859static inline void cas_tx_ringN(struct cas *cp, int ring, int limit)
1860{
1861	struct cas_tx_desc *txds;
1862	struct sk_buff **skbs;
1863	struct net_device *dev = cp->dev;
1864	int entry, count;
1865
1866	spin_lock(&cp->tx_lock[ring]);
1867	txds = cp->init_txds[ring];
1868	skbs = cp->tx_skbs[ring];
1869	entry = cp->tx_old[ring];
1870
1871	count = TX_BUFF_COUNT(ring, entry, limit);
1872	while (entry != limit) {
1873		struct sk_buff *skb = skbs[entry];
1874		dma_addr_t daddr;
1875		u32 dlen;
1876		int frag;
1877
1878		if (!skb) {
1879			/* this should never occur */
1880			entry = TX_DESC_NEXT(ring, entry);
1881			continue;
1882		}
1883
1884		/* however, we might get only a partial skb release. */
1885		count -= skb_shinfo(skb)->nr_frags +
1886			+ cp->tx_tiny_use[ring][entry].nbufs + 1;
1887		if (count < 0)
1888			break;
1889
1890		netif_printk(cp, tx_done, KERN_DEBUG, cp->dev,
1891			     "tx[%d] done, slot %d\n", ring, entry);
1892
1893		skbs[entry] = NULL;
1894		cp->tx_tiny_use[ring][entry].nbufs = 0;
1895
1896		for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
1897			struct cas_tx_desc *txd = txds + entry;
1898
1899			daddr = le64_to_cpu(txd->buffer);
1900			dlen = CAS_VAL(TX_DESC_BUFLEN,
1901				       le64_to_cpu(txd->control));
1902			pci_unmap_page(cp->pdev, daddr, dlen,
1903				       PCI_DMA_TODEVICE);
1904			entry = TX_DESC_NEXT(ring, entry);
1905
1906			/* tiny buffer may follow */
1907			if (cp->tx_tiny_use[ring][entry].used) {
1908				cp->tx_tiny_use[ring][entry].used = 0;
1909				entry = TX_DESC_NEXT(ring, entry);
1910			}
1911		}
1912
1913		spin_lock(&cp->stat_lock[ring]);
1914		cp->net_stats[ring].tx_packets++;
1915		cp->net_stats[ring].tx_bytes += skb->len;
1916		spin_unlock(&cp->stat_lock[ring]);
1917		dev_kfree_skb_irq(skb);
1918	}
1919	cp->tx_old[ring] = entry;
1920
1921	/* this is wrong for multiple tx rings. the net device needs
1922	 * multiple queues for this to do the right thing.  we wait
1923	 * for 2*packets to be available when using tiny buffers
1924	 */
1925	if (netif_queue_stopped(dev) &&
1926	    (TX_BUFFS_AVAIL(cp, ring) > CAS_TABORT(cp)*(MAX_SKB_FRAGS + 1)))
1927		netif_wake_queue(dev);
1928	spin_unlock(&cp->tx_lock[ring]);
1929}
1930
1931static void cas_tx(struct net_device *dev, struct cas *cp,
1932		   u32 status)
1933{
1934        int limit, ring;
1935#ifdef USE_TX_COMPWB
1936	u64 compwb = le64_to_cpu(cp->init_block->tx_compwb);
1937#endif
1938	netif_printk(cp, intr, KERN_DEBUG, cp->dev,
1939		     "tx interrupt, status: 0x%x, %llx\n",
1940		     status, (unsigned long long)compwb);
1941	/* process all the rings */
1942	for (ring = 0; ring < N_TX_RINGS; ring++) {
1943#ifdef USE_TX_COMPWB
1944		/* use the completion writeback registers */
1945		limit = (CAS_VAL(TX_COMPWB_MSB, compwb) << 8) |
1946			CAS_VAL(TX_COMPWB_LSB, compwb);
1947		compwb = TX_COMPWB_NEXT(compwb);
1948#else
1949		limit = readl(cp->regs + REG_TX_COMPN(ring));
1950#endif
1951		if (cp->tx_old[ring] != limit)
1952			cas_tx_ringN(cp, ring, limit);
1953	}
1954}
1955
1956
1957static int cas_rx_process_pkt(struct cas *cp, struct cas_rx_comp *rxc,
1958			      int entry, const u64 *words,
1959			      struct sk_buff **skbref)
1960{
1961	int dlen, hlen, len, i, alloclen;
1962	int off, swivel = RX_SWIVEL_OFF_VAL;
1963	struct cas_page *page;
1964	struct sk_buff *skb;
1965	void *addr, *crcaddr;
1966	__sum16 csum;
1967	char *p;
1968
1969	hlen = CAS_VAL(RX_COMP2_HDR_SIZE, words[1]);
1970	dlen = CAS_VAL(RX_COMP1_DATA_SIZE, words[0]);
1971	len  = hlen + dlen;
1972
1973	if (RX_COPY_ALWAYS || (words[2] & RX_COMP3_SMALL_PKT))
1974		alloclen = len;
1975	else
1976		alloclen = max(hlen, RX_COPY_MIN);
1977
1978	skb = dev_alloc_skb(alloclen + swivel + cp->crc_size);
1979	if (skb == NULL)
1980		return -1;
1981
1982	*skbref = skb;
1983	skb_reserve(skb, swivel);
1984
1985	p = skb->data;
1986	addr = crcaddr = NULL;
1987	if (hlen) { /* always copy header pages */
1988		i = CAS_VAL(RX_COMP2_HDR_INDEX, words[1]);
1989		page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
1990		off = CAS_VAL(RX_COMP2_HDR_OFF, words[1]) * 0x100 +
1991			swivel;
1992
1993		i = hlen;
1994		if (!dlen) /* attach FCS */
1995			i += cp->crc_size;
1996		pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr + off, i,
1997				    PCI_DMA_FROMDEVICE);
1998		addr = cas_page_map(page->buffer);
1999		memcpy(p, addr + off, i);
2000		pci_dma_sync_single_for_device(cp->pdev, page->dma_addr + off, i,
2001				    PCI_DMA_FROMDEVICE);
2002		cas_page_unmap(addr);
2003		RX_USED_ADD(page, 0x100);
2004		p += hlen;
2005		swivel = 0;
2006	}
2007
2008
2009	if (alloclen < (hlen + dlen)) {
2010		skb_frag_t *frag = skb_shinfo(skb)->frags;
2011
2012		/* normal or jumbo packets. we use frags */
2013		i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]);
2014		page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2015		off = CAS_VAL(RX_COMP1_DATA_OFF, words[0]) + swivel;
2016
2017		hlen = min(cp->page_size - off, dlen);
2018		if (hlen < 0) {
2019			netif_printk(cp, rx_err, KERN_DEBUG, cp->dev,
2020				     "rx page overflow: %d\n", hlen);
2021			dev_kfree_skb_irq(skb);
2022			return -1;
2023		}
2024		i = hlen;
2025		if (i == dlen)  /* attach FCS */
2026			i += cp->crc_size;
2027		pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr + off, i,
2028				    PCI_DMA_FROMDEVICE);
2029
2030		/* make sure we always copy a header */
2031		swivel = 0;
2032		if (p == (char *) skb->data) { /* not split */
2033			addr = cas_page_map(page->buffer);
2034			memcpy(p, addr + off, RX_COPY_MIN);
2035			pci_dma_sync_single_for_device(cp->pdev, page->dma_addr + off, i,
2036					PCI_DMA_FROMDEVICE);
2037			cas_page_unmap(addr);
2038			off += RX_COPY_MIN;
2039			swivel = RX_COPY_MIN;
2040			RX_USED_ADD(page, cp->mtu_stride);
2041		} else {
2042			RX_USED_ADD(page, hlen);
2043		}
2044		skb_put(skb, alloclen);
2045
2046		skb_shinfo(skb)->nr_frags++;
2047		skb->data_len += hlen - swivel;
2048		skb->truesize += hlen - swivel;
2049		skb->len      += hlen - swivel;
2050
2051		get_page(page->buffer);
2052		frag->page = page->buffer;
2053		frag->page_offset = off;
2054		frag->size = hlen - swivel;
2055
2056		/* any more data? */
2057		if ((words[0] & RX_COMP1_SPLIT_PKT) && ((dlen -= hlen) > 0)) {
2058			hlen = dlen;
2059			off = 0;
2060
2061			i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]);
2062			page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2063			pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr,
2064					    hlen + cp->crc_size,
2065					    PCI_DMA_FROMDEVICE);
2066			pci_dma_sync_single_for_device(cp->pdev, page->dma_addr,
2067					    hlen + cp->crc_size,
2068					    PCI_DMA_FROMDEVICE);
2069
2070			skb_shinfo(skb)->nr_frags++;
2071			skb->data_len += hlen;
2072			skb->len      += hlen;
2073			frag++;
2074
2075			get_page(page->buffer);
2076			frag->page = page->buffer;
2077			frag->page_offset = 0;
2078			frag->size = hlen;
2079			RX_USED_ADD(page, hlen + cp->crc_size);
2080		}
2081
2082		if (cp->crc_size) {
2083			addr = cas_page_map(page->buffer);
2084			crcaddr  = addr + off + hlen;
2085		}
2086
2087	} else {
2088		/* copying packet */
2089		if (!dlen)
2090			goto end_copy_pkt;
2091
2092		i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]);
2093		page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2094		off = CAS_VAL(RX_COMP1_DATA_OFF, words[0]) + swivel;
2095		hlen = min(cp->page_size - off, dlen);
2096		if (hlen < 0) {
2097			netif_printk(cp, rx_err, KERN_DEBUG, cp->dev,
2098				     "rx page overflow: %d\n", hlen);
2099			dev_kfree_skb_irq(skb);
2100			return -1;
2101		}
2102		i = hlen;
2103		if (i == dlen) /* attach FCS */
2104			i += cp->crc_size;
2105		pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr + off, i,
2106				    PCI_DMA_FROMDEVICE);
2107		addr = cas_page_map(page->buffer);
2108		memcpy(p, addr + off, i);
2109		pci_dma_sync_single_for_device(cp->pdev, page->dma_addr + off, i,
2110				    PCI_DMA_FROMDEVICE);
2111		cas_page_unmap(addr);
2112		if (p == (char *) skb->data) /* not split */
2113			RX_USED_ADD(page, cp->mtu_stride);
2114		else
2115			RX_USED_ADD(page, i);
2116
2117		/* any more data? */
2118		if ((words[0] & RX_COMP1_SPLIT_PKT) && ((dlen -= hlen) > 0)) {
2119			p += hlen;
2120			i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]);
2121			page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2122			pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr,
2123					    dlen + cp->crc_size,
2124					    PCI_DMA_FROMDEVICE);
2125			addr = cas_page_map(page->buffer);
2126			memcpy(p, addr, dlen + cp->crc_size);
2127			pci_dma_sync_single_for_device(cp->pdev, page->dma_addr,
2128					    dlen + cp->crc_size,
2129					    PCI_DMA_FROMDEVICE);
2130			cas_page_unmap(addr);
2131			RX_USED_ADD(page, dlen + cp->crc_size);
2132		}
2133end_copy_pkt:
2134		if (cp->crc_size) {
2135			addr    = NULL;
2136			crcaddr = skb->data + alloclen;
2137		}
2138		skb_put(skb, alloclen);
2139	}
2140
2141	csum = (__force __sum16)htons(CAS_VAL(RX_COMP4_TCP_CSUM, words[3]));
2142	if (cp->crc_size) {
2143		/* checksum includes FCS. strip it out. */
2144		csum = csum_fold(csum_partial(crcaddr, cp->crc_size,
2145					      csum_unfold(csum)));
2146		if (addr)
2147			cas_page_unmap(addr);
2148	}
2149	skb->protocol = eth_type_trans(skb, cp->dev);
2150	if (skb->protocol == htons(ETH_P_IP)) {
2151		skb->csum = csum_unfold(~csum);
2152		skb->ip_summed = CHECKSUM_COMPLETE;
2153	} else
2154		skb_checksum_none_assert(skb);
2155	return len;
2156}
2157
2158
2159/* we can handle up to 64 rx flows at a time. we do the same thing
2160 * as nonreassm except that we batch up the buffers.
2161 * NOTE: we currently just treat each flow as a bunch of packets that
2162 *       we pass up. a better way would be to coalesce the packets
2163 *       into a jumbo packet. to do that, we need to do the following:
2164 *       1) the first packet will have a clean split between header and
2165 *          data. save both.
2166 *       2) each time the next flow packet comes in, extend the
2167 *          data length and merge the checksums.
2168 *       3) on flow release, fix up the header.
2169 *       4) make sure the higher layer doesn't care.
2170 * because packets get coalesced, we shouldn't run into fragment count
2171 * issues.
2172 */
2173static inline void cas_rx_flow_pkt(struct cas *cp, const u64 *words,
2174				   struct sk_buff *skb)
2175{
2176	int flowid = CAS_VAL(RX_COMP3_FLOWID, words[2]) & (N_RX_FLOWS - 1);
2177	struct sk_buff_head *flow = &cp->rx_flows[flowid];
2178
2179	/* this is protected at a higher layer, so no need to
2180	 * do any additional locking here. stick the buffer
2181	 * at the end.
2182	 */
2183	__skb_queue_tail(flow, skb);
2184	if (words[0] & RX_COMP1_RELEASE_FLOW) {
2185		while ((skb = __skb_dequeue(flow))) {
2186			cas_skb_release(skb);
2187		}
2188	}
2189}
2190
2191/* put rx descriptor back on ring. if a buffer is in use by a higher
2192 * layer, this will need to put in a replacement.
2193 */
2194static void cas_post_page(struct cas *cp, const int ring, const int index)
2195{
2196	cas_page_t *new;
2197	int entry;
2198
2199	entry = cp->rx_old[ring];
2200
2201	new = cas_page_swap(cp, ring, index);
2202	cp->init_rxds[ring][entry].buffer = cpu_to_le64(new->dma_addr);
2203	cp->init_rxds[ring][entry].index  =
2204		cpu_to_le64(CAS_BASE(RX_INDEX_NUM, index) |
2205			    CAS_BASE(RX_INDEX_RING, ring));
2206
2207	entry = RX_DESC_ENTRY(ring, entry + 1);
2208	cp->rx_old[ring] = entry;
2209
2210	if (entry % 4)
2211		return;
2212
2213	if (ring == 0)
2214		writel(entry, cp->regs + REG_RX_KICK);
2215	else if ((N_RX_DESC_RINGS > 1) &&
2216		 (cp->cas_flags & CAS_FLAG_REG_PLUS))
2217		writel(entry, cp->regs + REG_PLUS_RX_KICK1);
2218}
2219
2220
2221/* only when things are bad */
2222static int cas_post_rxds_ringN(struct cas *cp, int ring, int num)
2223{
2224	unsigned int entry, last, count, released;
2225	int cluster;
2226	cas_page_t **page = cp->rx_pages[ring];
2227
2228	entry = cp->rx_old[ring];
2229
2230	netif_printk(cp, intr, KERN_DEBUG, cp->dev,
2231		     "rxd[%d] interrupt, done: %d\n", ring, entry);
2232
2233	cluster = -1;
2234	count = entry & 0x3;
2235	last = RX_DESC_ENTRY(ring, num ? entry + num - 4: entry - 4);
2236	released = 0;
2237	while (entry != last) {
2238		/* make a new buffer if it's still in use */
2239		if (page_count(page[entry]->buffer) > 1) {
2240			cas_page_t *new = cas_page_dequeue(cp);
2241			if (!new) {
2242				/* let the timer know that we need to
2243				 * do this again
2244				 */
2245				cp->cas_flags |= CAS_FLAG_RXD_POST(ring);
2246				if (!timer_pending(&cp->link_timer))
2247					mod_timer(&cp->link_timer, jiffies +
2248						  CAS_LINK_FAST_TIMEOUT);
2249				cp->rx_old[ring]  = entry;
2250				cp->rx_last[ring] = num ? num - released : 0;
2251				return -ENOMEM;
2252			}
2253			spin_lock(&cp->rx_inuse_lock);
2254			list_add(&page[entry]->list, &cp->rx_inuse_list);
2255			spin_unlock(&cp->rx_inuse_lock);
2256			cp->init_rxds[ring][entry].buffer =
2257				cpu_to_le64(new->dma_addr);
2258			page[entry] = new;
2259
2260		}
2261
2262		if (++count == 4) {
2263			cluster = entry;
2264			count = 0;
2265		}
2266		released++;
2267		entry = RX_DESC_ENTRY(ring, entry + 1);
2268	}
2269	cp->rx_old[ring] = entry;
2270
2271	if (cluster < 0)
2272		return 0;
2273
2274	if (ring == 0)
2275		writel(cluster, cp->regs + REG_RX_KICK);
2276	else if ((N_RX_DESC_RINGS > 1) &&
2277		 (cp->cas_flags & CAS_FLAG_REG_PLUS))
2278		writel(cluster, cp->regs + REG_PLUS_RX_KICK1);
2279	return 0;
2280}
2281
2282
2283/* process a completion ring. packets are set up in three basic ways:
2284 * small packets: should be copied header + data in single buffer.
2285 * large packets: header and data in a single buffer.
2286 * split packets: header in a separate buffer from data.
2287 *                data may be in multiple pages. data may be > 256
2288 *                bytes but in a single page.
2289 *
2290 * NOTE: RX page posting is done in this routine as well. while there's
2291 *       the capability of using multiple RX completion rings, it isn't
2292 *       really worthwhile due to the fact that the page posting will
2293 *       force serialization on the single descriptor ring.
2294 */
2295static int cas_rx_ringN(struct cas *cp, int ring, int budget)
2296{
2297	struct cas_rx_comp *rxcs = cp->init_rxcs[ring];
2298	int entry, drops;
2299	int npackets = 0;
2300
2301	netif_printk(cp, intr, KERN_DEBUG, cp->dev,
2302		     "rx[%d] interrupt, done: %d/%d\n",
2303		     ring,
2304		     readl(cp->regs + REG_RX_COMP_HEAD), cp->rx_new[ring]);
2305
2306	entry = cp->rx_new[ring];
2307	drops = 0;
2308	while (1) {
2309		struct cas_rx_comp *rxc = rxcs + entry;
2310		struct sk_buff *uninitialized_var(skb);
2311		int type, len;
2312		u64 words[4];
2313		int i, dring;
2314
2315		words[0] = le64_to_cpu(rxc->word1);
2316		words[1] = le64_to_cpu(rxc->word2);
2317		words[2] = le64_to_cpu(rxc->word3);
2318		words[3] = le64_to_cpu(rxc->word4);
2319
2320		/* don't touch if still owned by hw */
2321		type = CAS_VAL(RX_COMP1_TYPE, words[0]);
2322		if (type == 0)
2323			break;
2324
2325		/* hw hasn't cleared the zero bit yet */
2326		if (words[3] & RX_COMP4_ZERO) {
2327			break;
2328		}
2329
2330		/* get info on the packet */
2331		if (words[3] & (RX_COMP4_LEN_MISMATCH | RX_COMP4_BAD)) {
2332			spin_lock(&cp->stat_lock[ring]);
2333			cp->net_stats[ring].rx_errors++;
2334			if (words[3] & RX_COMP4_LEN_MISMATCH)
2335				cp->net_stats[ring].rx_length_errors++;
2336			if (words[3] & RX_COMP4_BAD)
2337				cp->net_stats[ring].rx_crc_errors++;
2338			spin_unlock(&cp->stat_lock[ring]);
2339
2340			/* We'll just return it to Cassini. */
2341		drop_it:
2342			spin_lock(&cp->stat_lock[ring]);
2343			++cp->net_stats[ring].rx_dropped;
2344			spin_unlock(&cp->stat_lock[ring]);
2345			goto next;
2346		}
2347
2348		len = cas_rx_process_pkt(cp, rxc, entry, words, &skb);
2349		if (len < 0) {
2350			++drops;
2351			goto drop_it;
2352		}
2353
2354		/* see if it's a flow re-assembly or not. the driver
2355		 * itself handles release back up.
2356		 */
2357		if (RX_DONT_BATCH || (type == 0x2)) {
2358			/* non-reassm: these always get released */
2359			cas_skb_release(skb);
2360		} else {
2361			cas_rx_flow_pkt(cp, words, skb);
2362		}
2363
2364		spin_lock(&cp->stat_lock[ring]);
2365		cp->net_stats[ring].rx_packets++;
2366		cp->net_stats[ring].rx_bytes += len;
2367		spin_unlock(&cp->stat_lock[ring]);
2368
2369	next:
2370		npackets++;
2371
2372		/* should it be released? */
2373		if (words[0] & RX_COMP1_RELEASE_HDR) {
2374			i = CAS_VAL(RX_COMP2_HDR_INDEX, words[1]);
2375			dring = CAS_VAL(RX_INDEX_RING, i);
2376			i = CAS_VAL(RX_INDEX_NUM, i);
2377			cas_post_page(cp, dring, i);
2378		}
2379
2380		if (words[0] & RX_COMP1_RELEASE_DATA) {
2381			i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]);
2382			dring = CAS_VAL(RX_INDEX_RING, i);
2383			i = CAS_VAL(RX_INDEX_NUM, i);
2384			cas_post_page(cp, dring, i);
2385		}
2386
2387		if (words[0] & RX_COMP1_RELEASE_NEXT) {
2388			i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]);
2389			dring = CAS_VAL(RX_INDEX_RING, i);
2390			i = CAS_VAL(RX_INDEX_NUM, i);
2391			cas_post_page(cp, dring, i);
2392		}
2393
2394		/* skip to the next entry */
2395		entry = RX_COMP_ENTRY(ring, entry + 1 +
2396				      CAS_VAL(RX_COMP1_SKIP, words[0]));
2397#ifdef USE_NAPI
2398		if (budget && (npackets >= budget))
2399			break;
2400#endif
2401	}
2402	cp->rx_new[ring] = entry;
2403
2404	if (drops)
2405		netdev_info(cp->dev, "Memory squeeze, deferring packet\n");
2406	return npackets;
2407}
2408
2409
2410/* put completion entries back on the ring */
2411static void cas_post_rxcs_ringN(struct net_device *dev,
2412				struct cas *cp, int ring)
2413{
2414	struct cas_rx_comp *rxc = cp->init_rxcs[ring];
2415	int last, entry;
2416
2417	last = cp->rx_cur[ring];
2418	entry = cp->rx_new[ring];
2419	netif_printk(cp, intr, KERN_DEBUG, dev,
2420		     "rxc[%d] interrupt, done: %d/%d\n",
2421		     ring, readl(cp->regs + REG_RX_COMP_HEAD), entry);
2422
2423	/* zero and re-mark descriptors */
2424	while (last != entry) {
2425		cas_rxc_init(rxc + last);
2426		last = RX_COMP_ENTRY(ring, last + 1);
2427	}
2428	cp->rx_cur[ring] = last;
2429
2430	if (ring == 0)
2431		writel(last, cp->regs + REG_RX_COMP_TAIL);
2432	else if (cp->cas_flags & CAS_FLAG_REG_PLUS)
2433		writel(last, cp->regs + REG_PLUS_RX_COMPN_TAIL(ring));
2434}
2435
2436
2437
2438/* cassini can use all four PCI interrupts for the completion ring.
2439 * rings 3 and 4 are identical
2440 */
2441#if defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
2442static inline void cas_handle_irqN(struct net_device *dev,
2443				   struct cas *cp, const u32 status,
2444				   const int ring)
2445{
2446	if (status & (INTR_RX_COMP_FULL_ALT | INTR_RX_COMP_AF_ALT))
2447		cas_post_rxcs_ringN(dev, cp, ring);
2448}
2449
2450static irqreturn_t cas_interruptN(int irq, void *dev_id)
2451{
2452	struct net_device *dev = dev_id;
2453	struct cas *cp = netdev_priv(dev);
2454	unsigned long flags;
2455	int ring;
2456	u32 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(ring));
2457
2458	/* check for shared irq */
2459	if (status == 0)
2460		return IRQ_NONE;
2461
2462	ring = (irq == cp->pci_irq_INTC) ? 2 : 3;
2463	spin_lock_irqsave(&cp->lock, flags);
2464	if (status & INTR_RX_DONE_ALT) { /* handle rx separately */
2465#ifdef USE_NAPI
2466		cas_mask_intr(cp);
2467		napi_schedule(&cp->napi);
2468#else
2469		cas_rx_ringN(cp, ring, 0);
2470#endif
2471		status &= ~INTR_RX_DONE_ALT;
2472	}
2473
2474	if (status)
2475		cas_handle_irqN(dev, cp, status, ring);
2476	spin_unlock_irqrestore(&cp->lock, flags);
2477	return IRQ_HANDLED;
2478}
2479#endif
2480
2481#ifdef USE_PCI_INTB
2482/* everything but rx packets */
2483static inline void cas_handle_irq1(struct cas *cp, const u32 status)
2484{
2485	if (status & INTR_RX_BUF_UNAVAIL_1) {
2486		/* Frame arrived, no free RX buffers available.
2487		 * NOTE: we can get this on a link transition. */
2488		cas_post_rxds_ringN(cp, 1, 0);
2489		spin_lock(&cp->stat_lock[1]);
2490		cp->net_stats[1].rx_dropped++;
2491		spin_unlock(&cp->stat_lock[1]);
2492	}
2493
2494	if (status & INTR_RX_BUF_AE_1)
2495		cas_post_rxds_ringN(cp, 1, RX_DESC_RINGN_SIZE(1) -
2496				    RX_AE_FREEN_VAL(1));
2497
2498	if (status & (INTR_RX_COMP_AF | INTR_RX_COMP_FULL))
2499		cas_post_rxcs_ringN(cp, 1);
2500}
2501
2502/* ring 2 handles a few more events than 3 and 4 */
2503static irqreturn_t cas_interrupt1(int irq, void *dev_id)
2504{
2505	struct net_device *dev = dev_id;
2506	struct cas *cp = netdev_priv(dev);
2507	unsigned long flags;
2508	u32 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(1));
2509
2510	/* check for shared interrupt */
2511	if (status == 0)
2512		return IRQ_NONE;
2513
2514	spin_lock_irqsave(&cp->lock, flags);
2515	if (status & INTR_RX_DONE_ALT) { /* handle rx separately */
2516#ifdef USE_NAPI
2517		cas_mask_intr(cp);
2518		napi_schedule(&cp->napi);
2519#else
2520		cas_rx_ringN(cp, 1, 0);
2521#endif
2522		status &= ~INTR_RX_DONE_ALT;
2523	}
2524	if (status)
2525		cas_handle_irq1(cp, status);
2526	spin_unlock_irqrestore(&cp->lock, flags);
2527	return IRQ_HANDLED;
2528}
2529#endif
2530
2531static inline void cas_handle_irq(struct net_device *dev,
2532				  struct cas *cp, const u32 status)
2533{
2534	/* housekeeping interrupts */
2535	if (status & INTR_ERROR_MASK)
2536		cas_abnormal_irq(dev, cp, status);
2537
2538	if (status & INTR_RX_BUF_UNAVAIL) {
2539		/* Frame arrived, no free RX buffers available.
2540		 * NOTE: we can get this on a link transition.
2541		 */
2542		cas_post_rxds_ringN(cp, 0, 0);
2543		spin_lock(&cp->stat_lock[0]);
2544		cp->net_stats[0].rx_dropped++;
2545		spin_unlock(&cp->stat_lock[0]);
2546	} else if (status & INTR_RX_BUF_AE) {
2547		cas_post_rxds_ringN(cp, 0, RX_DESC_RINGN_SIZE(0) -
2548				    RX_AE_FREEN_VAL(0));
2549	}
2550
2551	if (status & (INTR_RX_COMP_AF | INTR_RX_COMP_FULL))
2552		cas_post_rxcs_ringN(dev, cp, 0);
2553}
2554
2555static irqreturn_t cas_interrupt(int irq, void *dev_id)
2556{
2557	struct net_device *dev = dev_id;
2558	struct cas *cp = netdev_priv(dev);
2559	unsigned long flags;
2560	u32 status = readl(cp->regs + REG_INTR_STATUS);
2561
2562	if (status == 0)
2563		return IRQ_NONE;
2564
2565	spin_lock_irqsave(&cp->lock, flags);
2566	if (status & (INTR_TX_ALL | INTR_TX_INTME)) {
2567		cas_tx(dev, cp, status);
2568		status &= ~(INTR_TX_ALL | INTR_TX_INTME);
2569	}
2570
2571	if (status & INTR_RX_DONE) {
2572#ifdef USE_NAPI
2573		cas_mask_intr(cp);
2574		napi_schedule(&cp->napi);
2575#else
2576		cas_rx_ringN(cp, 0, 0);
2577#endif
2578		status &= ~INTR_RX_DONE;
2579	}
2580
2581	if (status)
2582		cas_handle_irq(dev, cp, status);
2583	spin_unlock_irqrestore(&cp->lock, flags);
2584	return IRQ_HANDLED;
2585}
2586
2587
2588#ifdef USE_NAPI
2589static int cas_poll(struct napi_struct *napi, int budget)
2590{
2591	struct cas *cp = container_of(napi, struct cas, napi);
2592	struct net_device *dev = cp->dev;
2593	int i, enable_intr, credits;
2594	u32 status = readl(cp->regs + REG_INTR_STATUS);
2595	unsigned long flags;
2596
2597	spin_lock_irqsave(&cp->lock, flags);
2598	cas_tx(dev, cp, status);
2599	spin_unlock_irqrestore(&cp->lock, flags);
2600
2601	/* NAPI rx packets. we spread the credits across all of the
2602	 * rxc rings
2603	 *
2604	 * to make sure we're fair with the work we loop through each
2605	 * ring N_RX_COMP_RING times with a request of
2606	 * budget / N_RX_COMP_RINGS
2607	 */
2608	enable_intr = 1;
2609	credits = 0;
2610	for (i = 0; i < N_RX_COMP_RINGS; i++) {
2611		int j;
2612		for (j = 0; j < N_RX_COMP_RINGS; j++) {
2613			credits += cas_rx_ringN(cp, j, budget / N_RX_COMP_RINGS);
2614			if (credits >= budget) {
2615				enable_intr = 0;
2616				goto rx_comp;
2617			}
2618		}
2619	}
2620
2621rx_comp:
2622	/* final rx completion */
2623	spin_lock_irqsave(&cp->lock, flags);
2624	if (status)
2625		cas_handle_irq(dev, cp, status);
2626
2627#ifdef USE_PCI_INTB
2628	if (N_RX_COMP_RINGS > 1) {
2629		status = readl(cp->regs + REG_PLUS_INTRN_STATUS(1));
2630		if (status)
2631			cas_handle_irq1(dev, cp, status);
2632	}
2633#endif
2634
2635#ifdef USE_PCI_INTC
2636	if (N_RX_COMP_RINGS > 2) {
2637		status = readl(cp->regs + REG_PLUS_INTRN_STATUS(2));
2638		if (status)
2639			cas_handle_irqN(dev, cp, status, 2);
2640	}
2641#endif
2642
2643#ifdef USE_PCI_INTD
2644	if (N_RX_COMP_RINGS > 3) {
2645		status = readl(cp->regs + REG_PLUS_INTRN_STATUS(3));
2646		if (status)
2647			cas_handle_irqN(dev, cp, status, 3);
2648	}
2649#endif
2650	spin_unlock_irqrestore(&cp->lock, flags);
2651	if (enable_intr) {
2652		napi_complete(napi);
2653		cas_unmask_intr(cp);
2654	}
2655	return credits;
2656}
2657#endif
2658
2659#ifdef CONFIG_NET_POLL_CONTROLLER
2660static void cas_netpoll(struct net_device *dev)
2661{
2662	struct cas *cp = netdev_priv(dev);
2663
2664	cas_disable_irq(cp, 0);
2665	cas_interrupt(cp->pdev->irq, dev);
2666	cas_enable_irq(cp, 0);
2667
2668#ifdef USE_PCI_INTB
2669	if (N_RX_COMP_RINGS > 1) {
2670		/* cas_interrupt1(); */
2671	}
2672#endif
2673#ifdef USE_PCI_INTC
2674	if (N_RX_COMP_RINGS > 2) {
2675		/* cas_interruptN(); */
2676	}
2677#endif
2678#ifdef USE_PCI_INTD
2679	if (N_RX_COMP_RINGS > 3) {
2680		/* cas_interruptN(); */
2681	}
2682#endif
2683}
2684#endif
2685
2686static void cas_tx_timeout(struct net_device *dev)
2687{
2688	struct cas *cp = netdev_priv(dev);
2689
2690	netdev_err(dev, "transmit timed out, resetting\n");
2691	if (!cp->hw_running) {
2692		netdev_err(dev, "hrm.. hw not running!\n");
2693		return;
2694	}
2695
2696	netdev_err(dev, "MIF_STATE[%08x]\n",
2697		   readl(cp->regs + REG_MIF_STATE_MACHINE));
2698
2699	netdev_err(dev, "MAC_STATE[%08x]\n",
2700		   readl(cp->regs + REG_MAC_STATE_MACHINE));
2701
2702	netdev_err(dev, "TX_STATE[%08x:%08x:%08x] FIFO[%08x:%08x:%08x] SM1[%08x] SM2[%08x]\n",
2703		   readl(cp->regs + REG_TX_CFG),
2704		   readl(cp->regs + REG_MAC_TX_STATUS),
2705		   readl(cp->regs + REG_MAC_TX_CFG),
2706		   readl(cp->regs + REG_TX_FIFO_PKT_CNT),
2707		   readl(cp->regs + REG_TX_FIFO_WRITE_PTR),
2708		   readl(cp->regs + REG_TX_FIFO_READ_PTR),
2709		   readl(cp->regs + REG_TX_SM_1),
2710		   readl(cp->regs + REG_TX_SM_2));
2711
2712	netdev_err(dev, "RX_STATE[%08x:%08x:%08x]\n",
2713		   readl(cp->regs + REG_RX_CFG),
2714		   readl(cp->regs + REG_MAC_RX_STATUS),
2715		   readl(cp->regs + REG_MAC_RX_CFG));
2716
2717	netdev_err(dev, "HP_STATE[%08x:%08x:%08x:%08x]\n",
2718		   readl(cp->regs + REG_HP_STATE_MACHINE),
2719		   readl(cp->regs + REG_HP_STATUS0),
2720		   readl(cp->regs + REG_HP_STATUS1),
2721		   readl(cp->regs + REG_HP_STATUS2));
2722
2723#if 1
2724	atomic_inc(&cp->reset_task_pending);
2725	atomic_inc(&cp->reset_task_pending_all);
2726	schedule_work(&cp->reset_task);
2727#else
2728	atomic_set(&cp->reset_task_pending, CAS_RESET_ALL);
2729	schedule_work(&cp->reset_task);
2730#endif
2731}
2732
2733static inline int cas_intme(int ring, int entry)
2734{
2735	/* Algorithm: IRQ every 1/2 of descriptors. */
2736	if (!(entry & ((TX_DESC_RINGN_SIZE(ring) >> 1) - 1)))
2737		return 1;
2738	return 0;
2739}
2740
2741
2742static void cas_write_txd(struct cas *cp, int ring, int entry,
2743			  dma_addr_t mapping, int len, u64 ctrl, int last)
2744{
2745	struct cas_tx_desc *txd = cp->init_txds[ring] + entry;
2746
2747	ctrl |= CAS_BASE(TX_DESC_BUFLEN, len);
2748	if (cas_intme(ring, entry))
2749		ctrl |= TX_DESC_INTME;
2750	if (last)
2751		ctrl |= TX_DESC_EOF;
2752	txd->control = cpu_to_le64(ctrl);
2753	txd->buffer = cpu_to_le64(mapping);
2754}
2755
2756static inline void *tx_tiny_buf(struct cas *cp, const int ring,
2757				const int entry)
2758{
2759	return cp->tx_tiny_bufs[ring] + TX_TINY_BUF_LEN*entry;
2760}
2761
2762static inline dma_addr_t tx_tiny_map(struct cas *cp, const int ring,
2763				     const int entry, const int tentry)
2764{
2765	cp->tx_tiny_use[ring][tentry].nbufs++;
2766	cp->tx_tiny_use[ring][entry].used = 1;
2767	return cp->tx_tiny_dvma[ring] + TX_TINY_BUF_LEN*entry;
2768}
2769
2770static inline int cas_xmit_tx_ringN(struct cas *cp, int ring,
2771				    struct sk_buff *skb)
2772{
2773	struct net_device *dev = cp->dev;
2774	int entry, nr_frags, frag, tabort, tentry;
2775	dma_addr_t mapping;
2776	unsigned long flags;
2777	u64 ctrl;
2778	u32 len;
2779
2780	spin_lock_irqsave(&cp->tx_lock[ring], flags);
2781
2782	/* This is a hard error, log it. */
2783	if (TX_BUFFS_AVAIL(cp, ring) <=
2784	    CAS_TABORT(cp)*(skb_shinfo(skb)->nr_frags + 1)) {
2785		netif_stop_queue(dev);
2786		spin_unlock_irqrestore(&cp->tx_lock[ring], flags);
2787		netdev_err(dev, "BUG! Tx Ring full when queue awake!\n");
2788		return 1;
2789	}
2790
2791	ctrl = 0;
2792	if (skb->ip_summed == CHECKSUM_PARTIAL) {
2793		const u64 csum_start_off = skb_checksum_start_offset(skb);
2794		const u64 csum_stuff_off = csum_start_off + skb->csum_offset;
2795
2796		ctrl =  TX_DESC_CSUM_EN |
2797			CAS_BASE(TX_DESC_CSUM_START, csum_start_off) |
2798			CAS_BASE(TX_DESC_CSUM_STUFF, csum_stuff_off);
2799	}
2800
2801	entry = cp->tx_new[ring];
2802	cp->tx_skbs[ring][entry] = skb;
2803
2804	nr_frags = skb_shinfo(skb)->nr_frags;
2805	len = skb_headlen(skb);
2806	mapping = pci_map_page(cp->pdev, virt_to_page(skb->data),
2807			       offset_in_page(skb->data), len,
2808			       PCI_DMA_TODEVICE);
2809
2810	tentry = entry;
2811	tabort = cas_calc_tabort(cp, (unsigned long) skb->data, len);
2812	if (unlikely(tabort)) {
2813		/* NOTE: len is always >  tabort */
2814		cas_write_txd(cp, ring, entry, mapping, len - tabort,
2815			      ctrl | TX_DESC_SOF, 0);
2816		entry = TX_DESC_NEXT(ring, entry);
2817
2818		skb_copy_from_linear_data_offset(skb, len - tabort,
2819			      tx_tiny_buf(cp, ring, entry), tabort);
2820		mapping = tx_tiny_map(cp, ring, entry, tentry);
2821		cas_write_txd(cp, ring, entry, mapping, tabort, ctrl,
2822			      (nr_frags == 0));
2823	} else {
2824		cas_write_txd(cp, ring, entry, mapping, len, ctrl |
2825			      TX_DESC_SOF, (nr_frags == 0));
2826	}
2827	entry = TX_DESC_NEXT(ring, entry);
2828
2829	for (frag = 0; frag < nr_frags; frag++) {
2830		skb_frag_t *fragp = &skb_shinfo(skb)->frags[frag];
2831
2832		len = fragp->size;
2833		mapping = pci_map_page(cp->pdev, fragp->page,
2834				       fragp->page_offset, len,
2835				       PCI_DMA_TODEVICE);
2836
2837		tabort = cas_calc_tabort(cp, fragp->page_offset, len);
2838		if (unlikely(tabort)) {
2839			void *addr;
2840
2841			/* NOTE: len is always > tabort */
2842			cas_write_txd(cp, ring, entry, mapping, len - tabort,
2843				      ctrl, 0);
2844			entry = TX_DESC_NEXT(ring, entry);
2845
2846			addr = cas_page_map(fragp->page);
2847			memcpy(tx_tiny_buf(cp, ring, entry),
2848			       addr + fragp->page_offset + len - tabort,
2849			       tabort);
2850			cas_page_unmap(addr);
2851			mapping = tx_tiny_map(cp, ring, entry, tentry);
2852			len     = tabort;
2853		}
2854
2855		cas_write_txd(cp, ring, entry, mapping, len, ctrl,
2856			      (frag + 1 == nr_frags));
2857		entry = TX_DESC_NEXT(ring, entry);
2858	}
2859
2860	cp->tx_new[ring] = entry;
2861	if (TX_BUFFS_AVAIL(cp, ring) <= CAS_TABORT(cp)*(MAX_SKB_FRAGS + 1))
2862		netif_stop_queue(dev);
2863
2864	netif_printk(cp, tx_queued, KERN_DEBUG, dev,
2865		     "tx[%d] queued, slot %d, skblen %d, avail %d\n",
2866		     ring, entry, skb->len, TX_BUFFS_AVAIL(cp, ring));
2867	writel(entry, cp->regs + REG_TX_KICKN(ring));
2868	spin_unlock_irqrestore(&cp->tx_lock[ring], flags);
2869	return 0;
2870}
2871
2872static netdev_tx_t cas_start_xmit(struct sk_buff *skb, struct net_device *dev)
2873{
2874	struct cas *cp = netdev_priv(dev);
2875
2876	/* this is only used as a load-balancing hint, so it doesn't
2877	 * need to be SMP safe
2878	 */
2879	static int ring;
2880
2881	if (skb_padto(skb, cp->min_frame_size))
2882		return NETDEV_TX_OK;
2883
2884	/* XXX: we need some higher-level QoS hooks to steer packets to
2885	 *      individual queues.
2886	 */
2887	if (cas_xmit_tx_ringN(cp, ring++ & N_TX_RINGS_MASK, skb))
2888		return NETDEV_TX_BUSY;
2889	return NETDEV_TX_OK;
2890}
2891
2892static void cas_init_tx_dma(struct cas *cp)
2893{
2894	u64 desc_dma = cp->block_dvma;
2895	unsigned long off;
2896	u32 val;
2897	int i;
2898
2899	/* set up tx completion writeback registers. must be 8-byte aligned */
2900#ifdef USE_TX_COMPWB
2901	off = offsetof(struct cas_init_block, tx_compwb);
2902	writel((desc_dma + off) >> 32, cp->regs + REG_TX_COMPWB_DB_HI);
2903	writel((desc_dma + off) & 0xffffffff, cp->regs + REG_TX_COMPWB_DB_LOW);
2904#endif
2905
2906	/* enable completion writebacks, enable paced mode,
2907	 * disable read pipe, and disable pre-interrupt compwbs
2908	 */
2909	val =   TX_CFG_COMPWB_Q1 | TX_CFG_COMPWB_Q2 |
2910		TX_CFG_COMPWB_Q3 | TX_CFG_COMPWB_Q4 |
2911		TX_CFG_DMA_RDPIPE_DIS | TX_CFG_PACED_MODE |
2912		TX_CFG_INTR_COMPWB_DIS;
2913
2914	/* write out tx ring info and tx desc bases */
2915	for (i = 0; i < MAX_TX_RINGS; i++) {
2916		off = (unsigned long) cp->init_txds[i] -
2917			(unsigned long) cp->init_block;
2918
2919		val |= CAS_TX_RINGN_BASE(i);
2920		writel((desc_dma + off) >> 32, cp->regs + REG_TX_DBN_HI(i));
2921		writel((desc_dma + off) & 0xffffffff, cp->regs +
2922		       REG_TX_DBN_LOW(i));
2923		/* don't zero out the kick register here as the system
2924		 * will wedge
2925		 */
2926	}
2927	writel(val, cp->regs + REG_TX_CFG);
2928
2929	/* program max burst sizes. these numbers should be different
2930	 * if doing QoS.
2931	 */
2932#ifdef USE_QOS
2933	writel(0x800, cp->regs + REG_TX_MAXBURST_0);
2934	writel(0x1600, cp->regs + REG_TX_MAXBURST_1);
2935	writel(0x2400, cp->regs + REG_TX_MAXBURST_2);
2936	writel(0x4800, cp->regs + REG_TX_MAXBURST_3);
2937#else
2938	writel(0x800, cp->regs + REG_TX_MAXBURST_0);
2939	writel(0x800, cp->regs + REG_TX_MAXBURST_1);
2940	writel(0x800, cp->regs + REG_TX_MAXBURST_2);
2941	writel(0x800, cp->regs + REG_TX_MAXBURST_3);
2942#endif
2943}
2944
2945/* Must be invoked under cp->lock. */
2946static inline void cas_init_dma(struct cas *cp)
2947{
2948	cas_init_tx_dma(cp);
2949	cas_init_rx_dma(cp);
2950}
2951
2952static void cas_process_mc_list(struct cas *cp)
2953{
2954	u16 hash_table[16];
2955	u32 crc;
2956	struct netdev_hw_addr *ha;
2957	int i = 1;
2958
2959	memset(hash_table, 0, sizeof(hash_table));
2960	netdev_for_each_mc_addr(ha, cp->dev) {
2961		if (i <= CAS_MC_EXACT_MATCH_SIZE) {
2962			/* use the alternate mac address registers for the
2963			 * first 15 multicast addresses
2964			 */
2965			writel((ha->addr[4] << 8) | ha->addr[5],
2966			       cp->regs + REG_MAC_ADDRN(i*3 + 0));
2967			writel((ha->addr[2] << 8) | ha->addr[3],
2968			       cp->regs + REG_MAC_ADDRN(i*3 + 1));
2969			writel((ha->addr[0] << 8) | ha->addr[1],
2970			       cp->regs + REG_MAC_ADDRN(i*3 + 2));
2971			i++;
2972		}
2973		else {
2974			/* use hw hash table for the next series of
2975			 * multicast addresses
2976			 */
2977			crc = ether_crc_le(ETH_ALEN, ha->addr);
2978			crc >>= 24;
2979			hash_table[crc >> 4] |= 1 << (15 - (crc & 0xf));
2980		}
2981	}
2982	for (i = 0; i < 16; i++)
2983		writel(hash_table[i], cp->regs + REG_MAC_HASH_TABLEN(i));
2984}
2985
2986/* Must be invoked under cp->lock. */
2987static u32 cas_setup_multicast(struct cas *cp)
2988{
2989	u32 rxcfg = 0;
2990	int i;
2991
2992	if (cp->dev->flags & IFF_PROMISC) {
2993		rxcfg |= MAC_RX_CFG_PROMISC_EN;
2994
2995	} else if (cp->dev->flags & IFF_ALLMULTI) {
2996	    	for (i=0; i < 16; i++)
2997			writel(0xFFFF, cp->regs + REG_MAC_HASH_TABLEN(i));
2998		rxcfg |= MAC_RX_CFG_HASH_FILTER_EN;
2999
3000	} else {
3001		cas_process_mc_list(cp);
3002		rxcfg |= MAC_RX_CFG_HASH_FILTER_EN;
3003	}
3004
3005	return rxcfg;
3006}
3007
3008/* must be invoked under cp->stat_lock[N_TX_RINGS] */
3009static void cas_clear_mac_err(struct cas *cp)
3010{
3011	writel(0, cp->regs + REG_MAC_COLL_NORMAL);
3012	writel(0, cp->regs + REG_MAC_COLL_FIRST);
3013	writel(0, cp->regs + REG_MAC_COLL_EXCESS);
3014	writel(0, cp->regs + REG_MAC_COLL_LATE);
3015	writel(0, cp->regs + REG_MAC_TIMER_DEFER);
3016	writel(0, cp->regs + REG_MAC_ATTEMPTS_PEAK);
3017	writel(0, cp->regs + REG_MAC_RECV_FRAME);
3018	writel(0, cp->regs + REG_MAC_LEN_ERR);
3019	writel(0, cp->regs + REG_MAC_ALIGN_ERR);
3020	writel(0, cp->regs + REG_MAC_FCS_ERR);
3021	writel(0, cp->regs + REG_MAC_RX_CODE_ERR);
3022}
3023
3024
3025static void cas_mac_reset(struct cas *cp)
3026{
3027	int i;
3028
3029	/* do both TX and RX reset */
3030	writel(0x1, cp->regs + REG_MAC_TX_RESET);
3031	writel(0x1, cp->regs + REG_MAC_RX_RESET);
3032
3033	/* wait for TX */
3034	i = STOP_TRIES;
3035	while (i-- > 0) {
3036		if (readl(cp->regs + REG_MAC_TX_RESET) == 0)
3037			break;
3038		udelay(10);
3039	}
3040
3041	/* wait for RX */
3042	i = STOP_TRIES;
3043	while (i-- > 0) {
3044		if (readl(cp->regs + REG_MAC_RX_RESET) == 0)
3045			break;
3046		udelay(10);
3047	}
3048
3049	if (readl(cp->regs + REG_MAC_TX_RESET) |
3050	    readl(cp->regs + REG_MAC_RX_RESET))
3051		netdev_err(cp->dev, "mac tx[%d]/rx[%d] reset failed [%08x]\n",
3052			   readl(cp->regs + REG_MAC_TX_RESET),
3053			   readl(cp->regs + REG_MAC_RX_RESET),
3054			   readl(cp->regs + REG_MAC_STATE_MACHINE));
3055}
3056
3057
3058/* Must be invoked under cp->lock. */
3059static void cas_init_mac(struct cas *cp)
3060{
3061	unsigned char *e = &cp->dev->dev_addr[0];
3062	int i;
3063	cas_mac_reset(cp);
3064
3065	/* setup core arbitration weight register */
3066	writel(CAWR_RR_DIS, cp->regs + REG_CAWR);
3067
3068	/* XXX Use pci_dma_burst_advice() */
3069#if !defined(CONFIG_SPARC64) && !defined(CONFIG_ALPHA)
3070	/* set the infinite burst register for chips that don't have
3071	 * pci issues.
3072	 */
3073	if ((cp->cas_flags & CAS_FLAG_TARGET_ABORT) == 0)
3074		writel(INF_BURST_EN, cp->regs + REG_INF_BURST);
3075#endif
3076
3077	writel(0x1BF0, cp->regs + REG_MAC_SEND_PAUSE);
3078
3079	writel(0x00, cp->regs + REG_MAC_IPG0);
3080	writel(0x08, cp->regs + REG_MAC_IPG1);
3081	writel(0x04, cp->regs + REG_MAC_IPG2);
3082
3083	/* change later for 802.3z */
3084	writel(0x40, cp->regs + REG_MAC_SLOT_TIME);
3085
3086	/* min frame + FCS */
3087	writel(ETH_ZLEN + 4, cp->regs + REG_MAC_FRAMESIZE_MIN);
3088
3089	/* Ethernet payload + header + FCS + optional VLAN tag. NOTE: we
3090	 * specify the maximum frame size to prevent RX tag errors on
3091	 * oversized frames.
3092	 */
3093	writel(CAS_BASE(MAC_FRAMESIZE_MAX_BURST, 0x2000) |
3094	       CAS_BASE(MAC_FRAMESIZE_MAX_FRAME,
3095			(CAS_MAX_MTU + ETH_HLEN + 4 + 4)),
3096	       cp->regs + REG_MAC_FRAMESIZE_MAX);
3097
3098	/* NOTE: crc_size is used as a surrogate for half-duplex.
3099	 * workaround saturn half-duplex issue by increasing preamble
3100	 * size to 65 bytes.
3101	 */
3102	if ((cp->cas_flags & CAS_FLAG_SATURN) && cp->crc_size)
3103		writel(0x41, cp->regs + REG_MAC_PA_SIZE);
3104	else
3105		writel(0x07, cp->regs + REG_MAC_PA_SIZE);
3106	writel(0x04, cp->regs + REG_MAC_JAM_SIZE);
3107	writel(0x10, cp->regs + REG_MAC_ATTEMPT_LIMIT);
3108	writel(0x8808, cp->regs + REG_MAC_CTRL_TYPE);
3109
3110	writel((e[5] | (e[4] << 8)) & 0x3ff, cp->regs + REG_MAC_RANDOM_SEED);
3111
3112	writel(0, cp->regs + REG_MAC_ADDR_FILTER0);
3113	writel(0, cp->regs + REG_MAC_ADDR_FILTER1);
3114	writel(0, cp->regs + REG_MAC_ADDR_FILTER2);
3115	writel(0, cp->regs + REG_MAC_ADDR_FILTER2_1_MASK);
3116	writel(0, cp->regs + REG_MAC_ADDR_FILTER0_MASK);
3117
3118	/* setup mac address in perfect filter array */
3119	for (i = 0; i < 45; i++)
3120		writel(0x0, cp->regs + REG_MAC_ADDRN(i));
3121
3122	writel((e[4] << 8) | e[5], cp->regs + REG_MAC_ADDRN(0));
3123	writel((e[2] << 8) | e[3], cp->regs + REG_MAC_ADDRN(1));
3124	writel((e[0] << 8) | e[1], cp->regs + REG_MAC_ADDRN(2));
3125
3126	writel(0x0001, cp->regs + REG_MAC_ADDRN(42));
3127	writel(0xc200, cp->regs + REG_MAC_ADDRN(43));
3128	writel(0x0180, cp->regs + REG_MAC_ADDRN(44));
3129
3130	cp->mac_rx_cfg = cas_setup_multicast(cp);
3131
3132	spin_lock(&cp->stat_lock[N_TX_RINGS]);
3133	cas_clear_mac_err(cp);
3134	spin_unlock(&cp->stat_lock[N_TX_RINGS]);
3135
3136	/* Setup MAC interrupts.  We want to get all of the interesting
3137	 * counter expiration events, but we do not want to hear about
3138	 * normal rx/tx as the DMA engine tells us that.
3139	 */
3140	writel(MAC_TX_FRAME_XMIT, cp->regs + REG_MAC_TX_MASK);
3141	writel(MAC_RX_FRAME_RECV, cp->regs + REG_MAC_RX_MASK);
3142
3143	/* Don't enable even the PAUSE interrupts for now, we
3144	 * make no use of those events other than to record them.
3145	 */
3146	writel(0xffffffff, cp->regs + REG_MAC_CTRL_MASK);
3147}
3148
3149/* Must be invoked under cp->lock. */
3150static void cas_init_pause_thresholds(struct cas *cp)
3151{
3152	/* Calculate pause thresholds.  Setting the OFF threshold to the
3153	 * full RX fifo size effectively disables PAUSE generation
3154	 */
3155	if (cp->rx_fifo_size <= (2 * 1024)) {
3156		cp->rx_pause_off = cp->rx_pause_on = cp->rx_fifo_size;
3157	} else {
3158		int max_frame = (cp->dev->mtu + ETH_HLEN + 4 + 4 + 64) & ~63;
3159		if (max_frame * 3 > cp->rx_fifo_size) {
3160			cp->rx_pause_off = 7104;
3161			cp->rx_pause_on  = 960;
3162		} else {
3163			int off = (cp->rx_fifo_size - (max_frame * 2));
3164			int on = off - max_frame;
3165			cp->rx_pause_off = off;
3166			cp->rx_pause_on = on;
3167		}
3168	}
3169}
3170
3171static int cas_vpd_match(const void __iomem *p, const char *str)
3172{
3173	int len = strlen(str) + 1;
3174	int i;
3175
3176	for (i = 0; i < len; i++) {
3177		if (readb(p + i) != str[i])
3178			return 0;
3179	}
3180	return 1;
3181}
3182
3183
3184/* get the mac address by reading the vpd information in the rom.
3185 * also get the phy type and determine if there's an entropy generator.
3186 * NOTE: this is a bit convoluted for the following reasons:
3187 *  1) vpd info has order-dependent mac addresses for multinic cards
3188 *  2) the only way to determine the nic order is to use the slot
3189 *     number.
3190 *  3) fiber cards don't have bridges, so their slot numbers don't
3191 *     mean anything.
3192 *  4) we don't actually know we have a fiber card until after
3193 *     the mac addresses are parsed.
3194 */
3195static int cas_get_vpd_info(struct cas *cp, unsigned char *dev_addr,
3196			    const int offset)
3197{
3198	void __iomem *p = cp->regs + REG_EXPANSION_ROM_RUN_START;
3199	void __iomem *base, *kstart;
3200	int i, len;
3201	int found = 0;
3202#define VPD_FOUND_MAC        0x01
3203#define VPD_FOUND_PHY        0x02
3204
3205	int phy_type = CAS_PHY_MII_MDIO0; /* default phy type */
3206	int mac_off  = 0;
3207
3208#if defined(CONFIG_SPARC)
3209	const unsigned char *addr;
3210#endif
3211
3212	/* give us access to the PROM */
3213	writel(BIM_LOCAL_DEV_PROM | BIM_LOCAL_DEV_PAD,
3214	       cp->regs + REG_BIM_LOCAL_DEV_EN);
3215
3216	/* check for an expansion rom */
3217	if (readb(p) != 0x55 || readb(p + 1) != 0xaa)
3218		goto use_random_mac_addr;
3219
3220	/* search for beginning of vpd */
3221	base = NULL;
3222	for (i = 2; i < EXPANSION_ROM_SIZE; i++) {
3223		/* check for PCIR */
3224		if ((readb(p + i + 0) == 0x50) &&
3225		    (readb(p + i + 1) == 0x43) &&
3226		    (readb(p + i + 2) == 0x49) &&
3227		    (readb(p + i + 3) == 0x52)) {
3228			base = p + (readb(p + i + 8) |
3229				    (readb(p + i + 9) << 8));
3230			break;
3231		}
3232	}
3233
3234	if (!base || (readb(base) != 0x82))
3235		goto use_random_mac_addr;
3236
3237	i = (readb(base + 1) | (readb(base + 2) << 8)) + 3;
3238	while (i < EXPANSION_ROM_SIZE) {
3239		if (readb(base + i) != 0x90) /* no vpd found */
3240			goto use_random_mac_addr;
3241
3242		/* found a vpd field */
3243		len = readb(base + i + 1) | (readb(base + i + 2) << 8);
3244
3245		/* extract keywords */
3246		kstart = base + i + 3;
3247		p = kstart;
3248		while ((p - kstart) < len) {
3249			int klen = readb(p + 2);
3250			int j;
3251			char type;
3252
3253			p += 3;
3254
3255			/* look for the following things:
3256			 * -- correct length == 29
3257			 * 3 (type) + 2 (size) +
3258			 * 18 (strlen("local-mac-address") + 1) +
3259			 * 6 (mac addr)
3260			 * -- VPD Instance 'I'
3261			 * -- VPD Type Bytes 'B'
3262			 * -- VPD data length == 6
3263			 * -- property string == local-mac-address
3264			 *
3265			 * -- correct length == 24
3266			 * 3 (type) + 2 (size) +
3267			 * 12 (strlen("entropy-dev") + 1) +
3268			 * 7 (strlen("vms110") + 1)
3269			 * -- VPD Instance 'I'
3270			 * -- VPD Type String 'B'
3271			 * -- VPD data length == 7
3272			 * -- property string == entropy-dev
3273			 *
3274			 * -- correct length == 18
3275			 * 3 (type) + 2 (size) +
3276			 * 9 (strlen("phy-type") + 1) +
3277			 * 4 (strlen("pcs") + 1)
3278			 * -- VPD Instance 'I'
3279			 * -- VPD Type String 'S'
3280			 * -- VPD data length == 4
3281			 * -- property string == phy-type
3282			 *
3283			 * -- correct length == 23
3284			 * 3 (type) + 2 (size) +
3285			 * 14 (strlen("phy-interface") + 1) +
3286			 * 4 (strlen("pcs") + 1)
3287			 * -- VPD Instance 'I'
3288			 * -- VPD Type String 'S'
3289			 * -- VPD data length == 4
3290			 * -- property string == phy-interface
3291			 */
3292			if (readb(p) != 'I')
3293				goto next;
3294
3295			/* finally, check string and length */
3296			type = readb(p + 3);
3297			if (type == 'B') {
3298				if ((klen == 29) && readb(p + 4) == 6 &&
3299				    cas_vpd_match(p + 5,
3300						  "local-mac-address")) {
3301					if (mac_off++ > offset)
3302						goto next;
3303
3304					/* set mac address */
3305					for (j = 0; j < 6; j++)
3306						dev_addr[j] =
3307							readb(p + 23 + j);
3308					goto found_mac;
3309				}
3310			}
3311
3312			if (type != 'S')
3313				goto next;
3314
3315#ifdef USE_ENTROPY_DEV
3316			if ((klen == 24) &&
3317			    cas_vpd_match(p + 5, "entropy-dev") &&
3318			    cas_vpd_match(p + 17, "vms110")) {
3319				cp->cas_flags |= CAS_FLAG_ENTROPY_DEV;
3320				goto next;
3321			}
3322#endif
3323
3324			if (found & VPD_FOUND_PHY)
3325				goto next;
3326
3327			if ((klen == 18) && readb(p + 4) == 4 &&
3328			    cas_vpd_match(p + 5, "phy-type")) {
3329				if (cas_vpd_match(p + 14, "pcs")) {
3330					phy_type = CAS_PHY_SERDES;
3331					goto found_phy;
3332				}
3333			}
3334
3335			if ((klen == 23) && readb(p + 4) == 4 &&
3336			    cas_vpd_match(p + 5, "phy-interface")) {
3337				if (cas_vpd_match(p + 19, "pcs")) {
3338					phy_type = CAS_PHY_SERDES;
3339					goto found_phy;
3340				}
3341			}
3342found_mac:
3343			found |= VPD_FOUND_MAC;
3344			goto next;
3345
3346found_phy:
3347			found |= VPD_FOUND_PHY;
3348
3349next:
3350			p += klen;
3351		}
3352		i += len + 3;
3353	}
3354
3355use_random_mac_addr:
3356	if (found & VPD_FOUND_MAC)
3357		goto done;
3358
3359#if defined(CONFIG_SPARC)
3360	addr = of_get_property(cp->of_node, "local-mac-address", NULL);
3361	if (addr != NULL) {
3362		memcpy(dev_addr, addr, 6);
3363		goto done;
3364	}
3365#endif
3366
3367	/* Sun MAC prefix then 3 random bytes. */
3368	pr_info("MAC address not found in ROM VPD\n");
3369	dev_addr[0] = 0x08;
3370	dev_addr[1] = 0x00;
3371	dev_addr[2] = 0x20;
3372	get_random_bytes(dev_addr + 3, 3);
3373
3374done:
3375	writel(0, cp->regs + REG_BIM_LOCAL_DEV_EN);
3376	return phy_type;
3377}
3378
3379/* check pci invariants */
3380static void cas_check_pci_invariants(struct cas *cp)
3381{
3382	struct pci_dev *pdev = cp->pdev;
3383
3384	cp->cas_flags = 0;
3385	if ((pdev->vendor == PCI_VENDOR_ID_SUN) &&
3386	    (pdev->device == PCI_DEVICE_ID_SUN_CASSINI)) {
3387		if (pdev->revision >= CAS_ID_REVPLUS)
3388			cp->cas_flags |= CAS_FLAG_REG_PLUS;
3389		if (pdev->revision < CAS_ID_REVPLUS02u)
3390			cp->cas_flags |= CAS_FLAG_TARGET_ABORT;
3391
3392		/* Original Cassini supports HW CSUM, but it's not
3393		 * enabled by default as it can trigger TX hangs.
3394		 */
3395		if (pdev->revision < CAS_ID_REV2)
3396			cp->cas_flags |= CAS_FLAG_NO_HW_CSUM;
3397	} else {
3398		/* Only sun has original cassini chips.  */
3399		cp->cas_flags |= CAS_FLAG_REG_PLUS;
3400
3401		/* We use a flag because the same phy might be externally
3402		 * connected.
3403		 */
3404		if ((pdev->vendor == PCI_VENDOR_ID_NS) &&
3405		    (pdev->device == PCI_DEVICE_ID_NS_SATURN))
3406			cp->cas_flags |= CAS_FLAG_SATURN;
3407	}
3408}
3409
3410
3411static int cas_check_invariants(struct cas *cp)
3412{
3413	struct pci_dev *pdev = cp->pdev;
3414	u32 cfg;
3415	int i;
3416
3417	/* get page size for rx buffers. */
3418	cp->page_order = 0;
3419#ifdef USE_PAGE_ORDER
3420	if (PAGE_SHIFT < CAS_JUMBO_PAGE_SHIFT) {
3421		/* see if we can allocate larger pages */
3422		struct page *page = alloc_pages(GFP_ATOMIC,
3423						CAS_JUMBO_PAGE_SHIFT -
3424						PAGE_SHIFT);
3425		if (page) {
3426			__free_pages(page, CAS_JUMBO_PAGE_SHIFT - PAGE_SHIFT);
3427			cp->page_order = CAS_JUMBO_PAGE_SHIFT - PAGE_SHIFT;
3428		} else {
3429			printk("MTU limited to %d bytes\n", CAS_MAX_MTU);
3430		}
3431	}
3432#endif
3433	cp->page_size = (PAGE_SIZE << cp->page_order);
3434
3435	/* Fetch the FIFO configurations. */
3436	cp->tx_fifo_size = readl(cp->regs + REG_TX_FIFO_SIZE) * 64;
3437	cp->rx_fifo_size = RX_FIFO_SIZE;
3438
3439	/* finish phy determination. MDIO1 takes precedence over MDIO0 if
3440	 * they're both connected.
3441	 */
3442	cp->phy_type = cas_get_vpd_info(cp, cp->dev->dev_addr,
3443					PCI_SLOT(pdev->devfn));
3444	if (cp->phy_type & CAS_PHY_SERDES) {
3445		cp->cas_flags |= CAS_FLAG_1000MB_CAP;
3446		return 0; /* no more checking needed */
3447	}
3448
3449	/* MII */
3450	cfg = readl(cp->regs + REG_MIF_CFG);
3451	if (cfg & MIF_CFG_MDIO_1) {
3452		cp->phy_type = CAS_PHY_MII_MDIO1;
3453	} else if (cfg & MIF_CFG_MDIO_0) {
3454		cp->phy_type = CAS_PHY_MII_MDIO0;
3455	}
3456
3457	cas_mif_poll(cp, 0);
3458	writel(PCS_DATAPATH_MODE_MII, cp->regs + REG_PCS_DATAPATH_MODE);
3459
3460	for (i = 0; i < 32; i++) {
3461		u32 phy_id;
3462		int j;
3463
3464		for (j = 0; j < 3; j++) {
3465			cp->phy_addr = i;
3466			phy_id = cas_phy_read(cp, MII_PHYSID1) << 16;
3467			phy_id |= cas_phy_read(cp, MII_PHYSID2);
3468			if (phy_id && (phy_id != 0xFFFFFFFF)) {
3469				cp->phy_id = phy_id;
3470				goto done;
3471			}
3472		}
3473	}
3474	pr_err("MII phy did not respond [%08x]\n",
3475	       readl(cp->regs + REG_MIF_STATE_MACHINE));
3476	return -1;
3477
3478done:
3479	/* see if we can do gigabit */
3480	cfg = cas_phy_read(cp, MII_BMSR);
3481	if ((cfg & CAS_BMSR_1000_EXTEND) &&
3482	    cas_phy_read(cp, CAS_MII_1000_EXTEND))
3483		cp->cas_flags |= CAS_FLAG_1000MB_CAP;
3484	return 0;
3485}
3486
3487/* Must be invoked under cp->lock. */
3488static inline void cas_start_dma(struct cas *cp)
3489{
3490	int i;
3491	u32 val;
3492	int txfailed = 0;
3493
3494	/* enable dma */
3495	val = readl(cp->regs + REG_TX_CFG) | TX_CFG_DMA_EN;
3496	writel(val, cp->regs + REG_TX_CFG);
3497	val = readl(cp->regs + REG_RX_CFG) | RX_CFG_DMA_EN;
3498	writel(val, cp->regs + REG_RX_CFG);
3499
3500	/* enable the mac */
3501	val = readl(cp->regs + REG_MAC_TX_CFG) | MAC_TX_CFG_EN;
3502	writel(val, cp->regs + REG_MAC_TX_CFG);
3503	val = readl(cp->regs + REG_MAC_RX_CFG) | MAC_RX_CFG_EN;
3504	writel(val, cp->regs + REG_MAC_RX_CFG);
3505
3506	i = STOP_TRIES;
3507	while (i-- > 0) {
3508		val = readl(cp->regs + REG_MAC_TX_CFG);
3509		if ((val & MAC_TX_CFG_EN))
3510			break;
3511		udelay(10);
3512	}
3513	if (i < 0) txfailed = 1;
3514	i = STOP_TRIES;
3515	while (i-- > 0) {
3516		val = readl(cp->regs + REG_MAC_RX_CFG);
3517		if ((val & MAC_RX_CFG_EN)) {
3518			if (txfailed) {
3519				netdev_err(cp->dev,
3520					   "enabling mac failed [tx:%08x:%08x]\n",
3521					   readl(cp->regs + REG_MIF_STATE_MACHINE),
3522					   readl(cp->regs + REG_MAC_STATE_MACHINE));
3523			}
3524			goto enable_rx_done;
3525		}
3526		udelay(10);
3527	}
3528	netdev_err(cp->dev, "enabling mac failed [%s:%08x:%08x]\n",
3529		   (txfailed ? "tx,rx" : "rx"),
3530		   readl(cp->regs + REG_MIF_STATE_MACHINE),
3531		   readl(cp->regs + REG_MAC_STATE_MACHINE));
3532
3533enable_rx_done:
3534	cas_unmask_intr(cp); /* enable interrupts */
3535	writel(RX_DESC_RINGN_SIZE(0) - 4, cp->regs + REG_RX_KICK);
3536	writel(0, cp->regs + REG_RX_COMP_TAIL);
3537
3538	if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
3539		if (N_RX_DESC_RINGS > 1)
3540			writel(RX_DESC_RINGN_SIZE(1) - 4,
3541			       cp->regs + REG_PLUS_RX_KICK1);
3542
3543		for (i = 1; i < N_RX_COMP_RINGS; i++)
3544			writel(0, cp->regs + REG_PLUS_RX_COMPN_TAIL(i));
3545	}
3546}
3547
3548/* Must be invoked under cp->lock. */
3549static void cas_read_pcs_link_mode(struct cas *cp, int *fd, int *spd,
3550				   int *pause)
3551{
3552	u32 val = readl(cp->regs + REG_PCS_MII_LPA);
3553	*fd     = (val & PCS_MII_LPA_FD) ? 1 : 0;
3554	*pause  = (val & PCS_MII_LPA_SYM_PAUSE) ? 0x01 : 0x00;
3555	if (val & PCS_MII_LPA_ASYM_PAUSE)
3556		*pause |= 0x10;
3557	*spd = 1000;
3558}
3559
3560/* Must be invoked under cp->lock. */
3561static void cas_read_mii_link_mode(struct cas *cp, int *fd, int *spd,
3562				   int *pause)
3563{
3564	u32 val;
3565
3566	*fd = 0;
3567	*spd = 10;
3568	*pause = 0;
3569
3570	/* use GMII registers */
3571	val = cas_phy_read(cp, MII_LPA);
3572	if (val & CAS_LPA_PAUSE)
3573		*pause = 0x01;
3574
3575	if (val & CAS_LPA_ASYM_PAUSE)
3576		*pause |= 0x10;
3577
3578	if (val & LPA_DUPLEX)
3579		*fd = 1;
3580	if (val & LPA_100)
3581		*spd = 100;
3582
3583	if (cp->cas_flags & CAS_FLAG_1000MB_CAP) {
3584		val = cas_phy_read(cp, CAS_MII_1000_STATUS);
3585		if (val & (CAS_LPA_1000FULL | CAS_LPA_1000HALF))
3586			*spd = 1000;
3587		if (val & CAS_LPA_1000FULL)
3588			*fd = 1;
3589	}
3590}
3591
3592/* A link-up condition has occurred, initialize and enable the
3593 * rest of the chip.
3594 *
3595 * Must be invoked under cp->lock.
3596 */
3597static void cas_set_link_modes(struct cas *cp)
3598{
3599	u32 val;
3600	int full_duplex, speed, pause;
3601
3602	full_duplex = 0;
3603	speed = 10;
3604	pause = 0;
3605
3606	if (CAS_PHY_MII(cp->phy_type)) {
3607		cas_mif_poll(cp, 0);
3608		val = cas_phy_read(cp, MII_BMCR);
3609		if (val & BMCR_ANENABLE) {
3610			cas_read_mii_link_mode(cp, &full_duplex, &speed,
3611					       &pause);
3612		} else {
3613			if (val & BMCR_FULLDPLX)
3614				full_duplex = 1;
3615
3616			if (val & BMCR_SPEED100)
3617				speed = 100;
3618			else if (val & CAS_BMCR_SPEED1000)
3619				speed = (cp->cas_flags & CAS_FLAG_1000MB_CAP) ?
3620					1000 : 100;
3621		}
3622		cas_mif_poll(cp, 1);
3623
3624	} else {
3625		val = readl(cp->regs + REG_PCS_MII_CTRL);
3626		cas_read_pcs_link_mode(cp, &full_duplex, &speed, &pause);
3627		if ((val & PCS_MII_AUTONEG_EN) == 0) {
3628			if (val & PCS_MII_CTRL_DUPLEX)
3629				full_duplex = 1;
3630		}
3631	}
3632
3633	netif_info(cp, link, cp->dev, "Link up at %d Mbps, %s-duplex\n",
3634		   speed, full_duplex ? "full" : "half");
3635
3636	val = MAC_XIF_TX_MII_OUTPUT_EN | MAC_XIF_LINK_LED;
3637	if (CAS_PHY_MII(cp->phy_type)) {
3638		val |= MAC_XIF_MII_BUFFER_OUTPUT_EN;
3639		if (!full_duplex)
3640			val |= MAC_XIF_DISABLE_ECHO;
3641	}
3642	if (full_duplex)
3643		val |= MAC_XIF_FDPLX_LED;
3644	if (speed == 1000)
3645		val |= MAC_XIF_GMII_MODE;
3646	writel(val, cp->regs + REG_MAC_XIF_CFG);
3647
3648	/* deal with carrier and collision detect. */
3649	val = MAC_TX_CFG_IPG_EN;
3650	if (full_duplex) {
3651		val |= MAC_TX_CFG_IGNORE_CARRIER;
3652		val |= MAC_TX_CFG_IGNORE_COLL;
3653	} else {
3654#ifndef USE_CSMA_CD_PROTO
3655		val |= MAC_TX_CFG_NEVER_GIVE_UP_EN;
3656		val |= MAC_TX_CFG_NEVER_GIVE_UP_LIM;
3657#endif
3658	}
3659	/* val now set up for REG_MAC_TX_CFG */
3660
3661	/* If gigabit and half-duplex, enable carrier extension
3662	 * mode.  increase slot time to 512 bytes as well.
3663	 * else, disable it and make sure slot time is 64 bytes.
3664	 * also activate checksum bug workaround
3665	 */
3666	if ((speed == 1000) && !full_duplex) {
3667		writel(val | MAC_TX_CFG_CARRIER_EXTEND,
3668		       cp->regs + REG_MAC_TX_CFG);
3669
3670		val = readl(cp->regs + REG_MAC_RX_CFG);
3671		val &= ~MAC_RX_CFG_STRIP_FCS; /* checksum workaround */
3672		writel(val | MAC_RX_CFG_CARRIER_EXTEND,
3673		       cp->regs + REG_MAC_RX_CFG);
3674
3675		writel(0x200, cp->regs + REG_MAC_SLOT_TIME);
3676
3677		cp->crc_size = 4;
3678		/* minimum size gigabit frame at half duplex */
3679		cp->min_frame_size = CAS_1000MB_MIN_FRAME;
3680
3681	} else {
3682		writel(val, cp->regs + REG_MAC_TX_CFG);
3683
3684		/* checksum bug workaround. don't strip FCS when in
3685		 * half-duplex mode
3686		 */
3687		val = readl(cp->regs + REG_MAC_RX_CFG);
3688		if (full_duplex) {
3689			val |= MAC_RX_CFG_STRIP_FCS;
3690			cp->crc_size = 0;
3691			cp->min_frame_size = CAS_MIN_MTU;
3692		} else {
3693			val &= ~MAC_RX_CFG_STRIP_FCS;
3694			cp->crc_size = 4;
3695			cp->min_frame_size = CAS_MIN_FRAME;
3696		}
3697		writel(val & ~MAC_RX_CFG_CARRIER_EXTEND,
3698		       cp->regs + REG_MAC_RX_CFG);
3699		writel(0x40, cp->regs + REG_MAC_SLOT_TIME);
3700	}
3701
3702	if (netif_msg_link(cp)) {
3703		if (pause & 0x01) {
3704			netdev_info(cp->dev, "Pause is enabled (rxfifo: %d off: %d on: %d)\n",
3705				    cp->rx_fifo_size,
3706				    cp->rx_pause_off,
3707				    cp->rx_pause_on);
3708		} else if (pause & 0x10) {
3709			netdev_info(cp->dev, "TX pause enabled\n");
3710		} else {
3711			netdev_info(cp->dev, "Pause is disabled\n");
3712		}
3713	}
3714
3715	val = readl(cp->regs + REG_MAC_CTRL_CFG);
3716	val &= ~(MAC_CTRL_CFG_SEND_PAUSE_EN | MAC_CTRL_CFG_RECV_PAUSE_EN);
3717	if (pause) { /* symmetric or asymmetric pause */
3718		val |= MAC_CTRL_CFG_SEND_PAUSE_EN;
3719		if (pause & 0x01) { /* symmetric pause */
3720			val |= MAC_CTRL_CFG_RECV_PAUSE_EN;
3721		}
3722	}
3723	writel(val, cp->regs + REG_MAC_CTRL_CFG);
3724	cas_start_dma(cp);
3725}
3726
3727/* Must be invoked under cp->lock. */
3728static void cas_init_hw(struct cas *cp, int restart_link)
3729{
3730	if (restart_link)
3731		cas_phy_init(cp);
3732
3733	cas_init_pause_thresholds(cp);
3734	cas_init_mac(cp);
3735	cas_init_dma(cp);
3736
3737	if (restart_link) {
3738		/* Default aneg parameters */
3739		cp->timer_ticks = 0;
3740		cas_begin_auto_negotiation(cp, NULL);
3741	} else if (cp->lstate == link_up) {
3742		cas_set_link_modes(cp);
3743		netif_carrier_on(cp->dev);
3744	}
3745}
3746
3747/* Must be invoked under cp->lock. on earlier cassini boards,
3748 * SOFT_0 is tied to PCI reset. we use this to force a pci reset,
3749 * let it settle out, and then restore pci state.
3750 */
3751static void cas_hard_reset(struct cas *cp)
3752{
3753	writel(BIM_LOCAL_DEV_SOFT_0, cp->regs + REG_BIM_LOCAL_DEV_EN);
3754	udelay(20);
3755	pci_restore_state(cp->pdev);
3756}
3757
3758
3759static void cas_global_reset(struct cas *cp, int blkflag)
3760{
3761	int limit;
3762
3763	/* issue a global reset. don't use RSTOUT. */
3764	if (blkflag && !CAS_PHY_MII(cp->phy_type)) {
3765		/* For PCS, when the blkflag is set, we should set the
3766		 * SW_REST_BLOCK_PCS_SLINK bit to prevent the results of
3767		 * the last autonegotiation from being cleared.  We'll
3768		 * need some special handling if the chip is set into a
3769		 * loopback mode.
3770		 */
3771		writel((SW_RESET_TX | SW_RESET_RX | SW_RESET_BLOCK_PCS_SLINK),
3772		       cp->regs + REG_SW_RESET);
3773	} else {
3774		writel(SW_RESET_TX | SW_RESET_RX, cp->regs + REG_SW_RESET);
3775	}
3776
3777	/* need to wait at least 3ms before polling register */
3778	mdelay(3);
3779
3780	limit = STOP_TRIES;
3781	while (limit-- > 0) {
3782		u32 val = readl(cp->regs + REG_SW_RESET);
3783		if ((val & (SW_RESET_TX | SW_RESET_RX)) == 0)
3784			goto done;
3785		udelay(10);
3786	}
3787	netdev_err(cp->dev, "sw reset failed\n");
3788
3789done:
3790	/* enable various BIM interrupts */
3791	writel(BIM_CFG_DPAR_INTR_ENABLE | BIM_CFG_RMA_INTR_ENABLE |
3792	       BIM_CFG_RTA_INTR_ENABLE, cp->regs + REG_BIM_CFG);
3793
3794	/* clear out pci error status mask for handled errors.
3795	 * we don't deal with DMA counter overflows as they happen
3796	 * all the time.
3797	 */
3798	writel(0xFFFFFFFFU & ~(PCI_ERR_BADACK | PCI_ERR_DTRTO |
3799			       PCI_ERR_OTHER | PCI_ERR_BIM_DMA_WRITE |
3800			       PCI_ERR_BIM_DMA_READ), cp->regs +
3801	       REG_PCI_ERR_STATUS_MASK);
3802
3803	/* set up for MII by default to address mac rx reset timeout
3804	 * issue
3805	 */
3806	writel(PCS_DATAPATH_MODE_MII, cp->regs + REG_PCS_DATAPATH_MODE);
3807}
3808
3809static void cas_reset(struct cas *cp, int blkflag)
3810{
3811	u32 val;
3812
3813	cas_mask_intr(cp);
3814	cas_global_reset(cp, blkflag);
3815	cas_mac_reset(cp);
3816	cas_entropy_reset(cp);
3817
3818	/* disable dma engines. */
3819	val = readl(cp->regs + REG_TX_CFG);
3820	val &= ~TX_CFG_DMA_EN;
3821	writel(val, cp->regs + REG_TX_CFG);
3822
3823	val = readl(cp->regs + REG_RX_CFG);
3824	val &= ~RX_CFG_DMA_EN;
3825	writel(val, cp->regs + REG_RX_CFG);
3826
3827	/* program header parser */
3828	if ((cp->cas_flags & CAS_FLAG_TARGET_ABORT) ||
3829	    (CAS_HP_ALT_FIRMWARE == cas_prog_null)) {
3830		cas_load_firmware(cp, CAS_HP_FIRMWARE);
3831	} else {
3832		cas_load_firmware(cp, CAS_HP_ALT_FIRMWARE);
3833	}
3834
3835	/* clear out error registers */
3836	spin_lock(&cp->stat_lock[N_TX_RINGS]);
3837	cas_clear_mac_err(cp);
3838	spin_unlock(&cp->stat_lock[N_TX_RINGS]);
3839}
3840
3841/* Shut down the chip, must be called with pm_mutex held.  */
3842static void cas_shutdown(struct cas *cp)
3843{
3844	unsigned long flags;
3845
3846	/* Make us not-running to avoid timers respawning */
3847	cp->hw_running = 0;
3848
3849	del_timer_sync(&cp->link_timer);
3850
3851	/* Stop the reset task */
3852#if 0
3853	while (atomic_read(&cp->reset_task_pending_mtu) ||
3854	       atomic_read(&cp->reset_task_pending_spare) ||
3855	       atomic_read(&cp->reset_task_pending_all))
3856		schedule();
3857
3858#else
3859	while (atomic_read(&cp->reset_task_pending))
3860		schedule();
3861#endif
3862	/* Actually stop the chip */
3863	cas_lock_all_save(cp, flags);
3864	cas_reset(cp, 0);
3865	if (cp->cas_flags & CAS_FLAG_SATURN)
3866		cas_phy_powerdown(cp);
3867	cas_unlock_all_restore(cp, flags);
3868}
3869
3870static int cas_change_mtu(struct net_device *dev, int new_mtu)
3871{
3872	struct cas *cp = netdev_priv(dev);
3873
3874	if (new_mtu < CAS_MIN_MTU || new_mtu > CAS_MAX_MTU)
3875		return -EINVAL;
3876
3877	dev->mtu = new_mtu;
3878	if (!netif_running(dev) || !netif_device_present(dev))
3879		return 0;
3880
3881	/* let the reset task handle it */
3882#if 1
3883	atomic_inc(&cp->reset_task_pending);
3884	if ((cp->phy_type & CAS_PHY_SERDES)) {
3885		atomic_inc(&cp->reset_task_pending_all);
3886	} else {
3887		atomic_inc(&cp->reset_task_pending_mtu);
3888	}
3889	schedule_work(&cp->reset_task);
3890#else
3891	atomic_set(&cp->reset_task_pending, (cp->phy_type & CAS_PHY_SERDES) ?
3892		   CAS_RESET_ALL : CAS_RESET_MTU);
3893	pr_err("reset called in cas_change_mtu\n");
3894	schedule_work(&cp->reset_task);
3895#endif
3896
3897	flush_work_sync(&cp->reset_task);
3898	return 0;
3899}
3900
3901static void cas_clean_txd(struct cas *cp, int ring)
3902{
3903	struct cas_tx_desc *txd = cp->init_txds[ring];
3904	struct sk_buff *skb, **skbs = cp->tx_skbs[ring];
3905	u64 daddr, dlen;
3906	int i, size;
3907
3908	size = TX_DESC_RINGN_SIZE(ring);
3909	for (i = 0; i < size; i++) {
3910		int frag;
3911
3912		if (skbs[i] == NULL)
3913			continue;
3914
3915		skb = skbs[i];
3916		skbs[i] = NULL;
3917
3918		for (frag = 0; frag <= skb_shinfo(skb)->nr_frags;  frag++) {
3919			int ent = i & (size - 1);
3920
3921			/* first buffer is never a tiny buffer and so
3922			 * needs to be unmapped.
3923			 */
3924			daddr = le64_to_cpu(txd[ent].buffer);
3925			dlen  =  CAS_VAL(TX_DESC_BUFLEN,
3926					 le64_to_cpu(txd[ent].control));
3927			pci_unmap_page(cp->pdev, daddr, dlen,
3928				       PCI_DMA_TODEVICE);
3929
3930			if (frag != skb_shinfo(skb)->nr_frags) {
3931				i++;
3932
3933				/* next buffer might by a tiny buffer.
3934				 * skip past it.
3935				 */
3936				ent = i & (size - 1);
3937				if (cp->tx_tiny_use[ring][ent].used)
3938					i++;
3939			}
3940		}
3941		dev_kfree_skb_any(skb);
3942	}
3943
3944	/* zero out tiny buf usage */
3945	memset(cp->tx_tiny_use[ring], 0, size*sizeof(*cp->tx_tiny_use[ring]));
3946}
3947
3948/* freed on close */
3949static inline void cas_free_rx_desc(struct cas *cp, int ring)
3950{
3951	cas_page_t **page = cp->rx_pages[ring];
3952	int i, size;
3953
3954	size = RX_DESC_RINGN_SIZE(ring);
3955	for (i = 0; i < size; i++) {
3956		if (page[i]) {
3957			cas_page_free(cp, page[i]);
3958			page[i] = NULL;
3959		}
3960	}
3961}
3962
3963static void cas_free_rxds(struct cas *cp)
3964{
3965	int i;
3966
3967	for (i = 0; i < N_RX_DESC_RINGS; i++)
3968		cas_free_rx_desc(cp, i);
3969}
3970
3971/* Must be invoked under cp->lock. */
3972static void cas_clean_rings(struct cas *cp)
3973{
3974	int i;
3975
3976	/* need to clean all tx rings */
3977	memset(cp->tx_old, 0, sizeof(*cp->tx_old)*N_TX_RINGS);
3978	memset(cp->tx_new, 0, sizeof(*cp->tx_new)*N_TX_RINGS);
3979	for (i = 0; i < N_TX_RINGS; i++)
3980		cas_clean_txd(cp, i);
3981
3982	/* zero out init block */
3983	memset(cp->init_block, 0, sizeof(struct cas_init_block));
3984	cas_clean_rxds(cp);
3985	cas_clean_rxcs(cp);
3986}
3987
3988/* allocated on open */
3989static inline int cas_alloc_rx_desc(struct cas *cp, int ring)
3990{
3991	cas_page_t **page = cp->rx_pages[ring];
3992	int size, i = 0;
3993
3994	size = RX_DESC_RINGN_SIZE(ring);
3995	for (i = 0; i < size; i++) {
3996		if ((page[i] = cas_page_alloc(cp, GFP_KERNEL)) == NULL)
3997			return -1;
3998	}
3999	return 0;
4000}
4001
4002static int cas_alloc_rxds(struct cas *cp)
4003{
4004	int i;
4005
4006	for (i = 0; i < N_RX_DESC_RINGS; i++) {
4007		if (cas_alloc_rx_desc(cp, i) < 0) {
4008			cas_free_rxds(cp);
4009			return -1;
4010		}
4011	}
4012	return 0;
4013}
4014
4015static void cas_reset_task(struct work_struct *work)
4016{
4017	struct cas *cp = container_of(work, struct cas, reset_task);
4018#if 0
4019	int pending = atomic_read(&cp->reset_task_pending);
4020#else
4021	int pending_all = atomic_read(&cp->reset_task_pending_all);
4022	int pending_spare = atomic_read(&cp->reset_task_pending_spare);
4023	int pending_mtu = atomic_read(&cp->reset_task_pending_mtu);
4024
4025	if (pending_all == 0 && pending_spare == 0 && pending_mtu == 0) {
4026		/* We can have more tasks scheduled than actually
4027		 * needed.
4028		 */
4029		atomic_dec(&cp->reset_task_pending);
4030		return;
4031	}
4032#endif
4033	/* The link went down, we reset the ring, but keep
4034	 * DMA stopped. Use this function for reset
4035	 * on error as well.
4036	 */
4037	if (cp->hw_running) {
4038		unsigned long flags;
4039
4040		/* Make sure we don't get interrupts or tx packets */
4041		netif_device_detach(cp->dev);
4042		cas_lock_all_save(cp, flags);
4043
4044		if (cp->opened) {
4045			/* We call cas_spare_recover when we call cas_open.
4046			 * but we do not initialize the lists cas_spare_recover
4047			 * uses until cas_open is called.
4048			 */
4049			cas_spare_recover(cp, GFP_ATOMIC);
4050		}
4051#if 1
4052		/* test => only pending_spare set */
4053		if (!pending_all && !pending_mtu)
4054			goto done;
4055#else
4056		if (pending == CAS_RESET_SPARE)
4057			goto done;
4058#endif
4059		/* when pending == CAS_RESET_ALL, the following
4060		 * call to cas_init_hw will restart auto negotiation.
4061		 * Setting the second argument of cas_reset to
4062		 * !(pending == CAS_RESET_ALL) will set this argument
4063		 * to 1 (avoiding reinitializing the PHY for the normal
4064		 * PCS case) when auto negotiation is not restarted.
4065		 */
4066#if 1
4067		cas_reset(cp, !(pending_all > 0));
4068		if (cp->opened)
4069			cas_clean_rings(cp);
4070		cas_init_hw(cp, (pending_all > 0));
4071#else
4072		cas_reset(cp, !(pending == CAS_RESET_ALL));
4073		if (cp->opened)
4074			cas_clean_rings(cp);
4075		cas_init_hw(cp, pending == CAS_RESET_ALL);
4076#endif
4077
4078done:
4079		cas_unlock_all_restore(cp, flags);
4080		netif_device_attach(cp->dev);
4081	}
4082#if 1
4083	atomic_sub(pending_all, &cp->reset_task_pending_all);
4084	atomic_sub(pending_spare, &cp->reset_task_pending_spare);
4085	atomic_sub(pending_mtu, &cp->reset_task_pending_mtu);
4086	atomic_dec(&cp->reset_task_pending);
4087#else
4088	atomic_set(&cp->reset_task_pending, 0);
4089#endif
4090}
4091
4092static void cas_link_timer(unsigned long data)
4093{
4094	struct cas *cp = (struct cas *) data;
4095	int mask, pending = 0, reset = 0;
4096	unsigned long flags;
4097
4098	if (link_transition_timeout != 0 &&
4099	    cp->link_transition_jiffies_valid &&
4100	    ((jiffies - cp->link_transition_jiffies) >
4101	      (link_transition_timeout))) {
4102		/* One-second counter so link-down workaround doesn't
4103		 * cause resets to occur so fast as to fool the switch
4104		 * into thinking the link is down.
4105		 */
4106		cp->link_transition_jiffies_valid = 0;
4107	}
4108
4109	if (!cp->hw_running)
4110		return;
4111
4112	spin_lock_irqsave(&cp->lock, flags);
4113	cas_lock_tx(cp);
4114	cas_entropy_gather(cp);
4115
4116	/* If the link task is still pending, we just
4117	 * reschedule the link timer
4118	 */
4119#if 1
4120	if (atomic_read(&cp->reset_task_pending_all) ||
4121	    atomic_read(&cp->reset_task_pending_spare) ||
4122	    atomic_read(&cp->reset_task_pending_mtu))
4123		goto done;
4124#else
4125	if (atomic_read(&cp->reset_task_pending))
4126		goto done;
4127#endif
4128
4129	/* check for rx cleaning */
4130	if ((mask = (cp->cas_flags & CAS_FLAG_RXD_POST_MASK))) {
4131		int i, rmask;
4132
4133		for (i = 0; i < MAX_RX_DESC_RINGS; i++) {
4134			rmask = CAS_FLAG_RXD_POST(i);
4135			if ((mask & rmask) == 0)
4136				continue;
4137
4138			/* post_rxds will do a mod_timer */
4139			if (cas_post_rxds_ringN(cp, i, cp->rx_last[i]) < 0) {
4140				pending = 1;
4141				continue;
4142			}
4143			cp->cas_flags &= ~rmask;
4144		}
4145	}
4146
4147	if (CAS_PHY_MII(cp->phy_type)) {
4148		u16 bmsr;
4149		cas_mif_poll(cp, 0);
4150		bmsr = cas_phy_read(cp, MII_BMSR);
4151		/* WTZ: Solaris driver reads this twice, but that
4152		 * may be due to the PCS case and the use of a
4153		 * common implementation. Read it twice here to be
4154		 * safe.
4155		 */
4156		bmsr = cas_phy_read(cp, MII_BMSR);
4157		cas_mif_poll(cp, 1);
4158		readl(cp->regs + REG_MIF_STATUS); /* avoid dups */
4159		reset = cas_mii_link_check(cp, bmsr);
4160	} else {
4161		reset = cas_pcs_link_check(cp);
4162	}
4163
4164	if (reset)
4165		goto done;
4166
4167	/* check for tx state machine confusion */
4168	if ((readl(cp->regs + REG_MAC_TX_STATUS) & MAC_TX_FRAME_XMIT) == 0) {
4169		u32 val = readl(cp->regs + REG_MAC_STATE_MACHINE);
4170		u32 wptr, rptr;
4171		int tlm  = CAS_VAL(MAC_SM_TLM, val);
4172
4173		if (((tlm == 0x5) || (tlm == 0x3)) &&
4174		    (CAS_VAL(MAC_SM_ENCAP_SM, val) == 0)) {
4175			netif_printk(cp, tx_err, KERN_DEBUG, cp->dev,
4176				     "tx err: MAC_STATE[%08x]\n", val);
4177			reset = 1;
4178			goto done;
4179		}
4180
4181		val  = readl(cp->regs + REG_TX_FIFO_PKT_CNT);
4182		wptr = readl(cp->regs + REG_TX_FIFO_WRITE_PTR);
4183		rptr = readl(cp->regs + REG_TX_FIFO_READ_PTR);
4184		if ((val == 0) && (wptr != rptr)) {
4185			netif_printk(cp, tx_err, KERN_DEBUG, cp->dev,
4186				     "tx err: TX_FIFO[%08x:%08x:%08x]\n",
4187				     val, wptr, rptr);
4188			reset = 1;
4189		}
4190
4191		if (reset)
4192			cas_hard_reset(cp);
4193	}
4194
4195done:
4196	if (reset) {
4197#if 1
4198		atomic_inc(&cp->reset_task_pending);
4199		atomic_inc(&cp->reset_task_pending_all);
4200		schedule_work(&cp->reset_task);
4201#else
4202		atomic_set(&cp->reset_task_pending, CAS_RESET_ALL);
4203		pr_err("reset called in cas_link_timer\n");
4204		schedule_work(&cp->reset_task);
4205#endif
4206	}
4207
4208	if (!pending)
4209		mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT);
4210	cas_unlock_tx(cp);
4211	spin_unlock_irqrestore(&cp->lock, flags);
4212}
4213
4214/* tiny buffers are used to avoid target abort issues with
4215 * older cassini's
4216 */
4217static void cas_tx_tiny_free(struct cas *cp)
4218{
4219	struct pci_dev *pdev = cp->pdev;
4220	int i;
4221
4222	for (i = 0; i < N_TX_RINGS; i++) {
4223		if (!cp->tx_tiny_bufs[i])
4224			continue;
4225
4226		pci_free_consistent(pdev, TX_TINY_BUF_BLOCK,
4227				    cp->tx_tiny_bufs[i],
4228				    cp->tx_tiny_dvma[i]);
4229		cp->tx_tiny_bufs[i] = NULL;
4230	}
4231}
4232
4233static int cas_tx_tiny_alloc(struct cas *cp)
4234{
4235	struct pci_dev *pdev = cp->pdev;
4236	int i;
4237
4238	for (i = 0; i < N_TX_RINGS; i++) {
4239		cp->tx_tiny_bufs[i] =
4240			pci_alloc_consistent(pdev, TX_TINY_BUF_BLOCK,
4241					     &cp->tx_tiny_dvma[i]);
4242		if (!cp->tx_tiny_bufs[i]) {
4243			cas_tx_tiny_free(cp);
4244			return -1;
4245		}
4246	}
4247	return 0;
4248}
4249
4250
4251static int cas_open(struct net_device *dev)
4252{
4253	struct cas *cp = netdev_priv(dev);
4254	int hw_was_up, err;
4255	unsigned long flags;
4256
4257	mutex_lock(&cp->pm_mutex);
4258
4259	hw_was_up = cp->hw_running;
4260
4261	/* The power-management mutex protects the hw_running
4262	 * etc. state so it is safe to do this bit without cp->lock
4263	 */
4264	if (!cp->hw_running) {
4265		/* Reset the chip */
4266		cas_lock_all_save(cp, flags);
4267		/* We set the second arg to cas_reset to zero
4268		 * because cas_init_hw below will have its second
4269		 * argument set to non-zero, which will force
4270		 * autonegotiation to start.
4271		 */
4272		cas_reset(cp, 0);
4273		cp->hw_running = 1;
4274		cas_unlock_all_restore(cp, flags);
4275	}
4276
4277	err = -ENOMEM;
4278	if (cas_tx_tiny_alloc(cp) < 0)
4279		goto err_unlock;
4280
4281	/* alloc rx descriptors */
4282	if (cas_alloc_rxds(cp) < 0)
4283		goto err_tx_tiny;
4284
4285	/* allocate spares */
4286	cas_spare_init(cp);
4287	cas_spare_recover(cp, GFP_KERNEL);
4288
4289	/* We can now request the interrupt as we know it's masked
4290	 * on the controller. cassini+ has up to 4 interrupts
4291	 * that can be used, but you need to do explicit pci interrupt
4292	 * mapping to expose them
4293	 */
4294	if (request_irq(cp->pdev->irq, cas_interrupt,
4295			IRQF_SHARED, dev->name, (void *) dev)) {
4296		netdev_err(cp->dev, "failed to request irq !\n");
4297		err = -EAGAIN;
4298		goto err_spare;
4299	}
4300
4301#ifdef USE_NAPI
4302	napi_enable(&cp->napi);
4303#endif
4304	/* init hw */
4305	cas_lock_all_save(cp, flags);
4306	cas_clean_rings(cp);
4307	cas_init_hw(cp, !hw_was_up);
4308	cp->opened = 1;
4309	cas_unlock_all_restore(cp, flags);
4310
4311	netif_start_queue(dev);
4312	mutex_unlock(&cp->pm_mutex);
4313	return 0;
4314
4315err_spare:
4316	cas_spare_free(cp);
4317	cas_free_rxds(cp);
4318err_tx_tiny:
4319	cas_tx_tiny_free(cp);
4320err_unlock:
4321	mutex_unlock(&cp->pm_mutex);
4322	return err;
4323}
4324
4325static int cas_close(struct net_device *dev)
4326{
4327	unsigned long flags;
4328	struct cas *cp = netdev_priv(dev);
4329
4330#ifdef USE_NAPI
4331	napi_disable(&cp->napi);
4332#endif
4333	/* Make sure we don't get distracted by suspend/resume */
4334	mutex_lock(&cp->pm_mutex);
4335
4336	netif_stop_queue(dev);
4337
4338	/* Stop traffic, mark us closed */
4339	cas_lock_all_save(cp, flags);
4340	cp->opened = 0;
4341	cas_reset(cp, 0);
4342	cas_phy_init(cp);
4343	cas_begin_auto_negotiation(cp, NULL);
4344	cas_clean_rings(cp);
4345	cas_unlock_all_restore(cp, flags);
4346
4347	free_irq(cp->pdev->irq, (void *) dev);
4348	cas_spare_free(cp);
4349	cas_free_rxds(cp);
4350	cas_tx_tiny_free(cp);
4351	mutex_unlock(&cp->pm_mutex);
4352	return 0;
4353}
4354
4355static struct {
4356	const char name[ETH_GSTRING_LEN];
4357} ethtool_cassini_statnames[] = {
4358	{"collisions"},
4359	{"rx_bytes"},
4360	{"rx_crc_errors"},
4361	{"rx_dropped"},
4362	{"rx_errors"},
4363	{"rx_fifo_errors"},
4364	{"rx_frame_errors"},
4365	{"rx_length_errors"},
4366	{"rx_over_errors"},
4367	{"rx_packets"},
4368	{"tx_aborted_errors"},
4369	{"tx_bytes"},
4370	{"tx_dropped"},
4371	{"tx_errors"},
4372	{"tx_fifo_errors"},
4373	{"tx_packets"}
4374};
4375#define CAS_NUM_STAT_KEYS ARRAY_SIZE(ethtool_cassini_statnames)
4376
4377static struct {
4378	const int offsets;	/* neg. values for 2nd arg to cas_read_phy */
4379} ethtool_register_table[] = {
4380	{-MII_BMSR},
4381	{-MII_BMCR},
4382	{REG_CAWR},
4383	{REG_INF_BURST},
4384	{REG_BIM_CFG},
4385	{REG_RX_CFG},
4386	{REG_HP_CFG},
4387	{REG_MAC_TX_CFG},
4388	{REG_MAC_RX_CFG},
4389	{REG_MAC_CTRL_CFG},
4390	{REG_MAC_XIF_CFG},
4391	{REG_MIF_CFG},
4392	{REG_PCS_CFG},
4393	{REG_SATURN_PCFG},
4394	{REG_PCS_MII_STATUS},
4395	{REG_PCS_STATE_MACHINE},
4396	{REG_MAC_COLL_EXCESS},
4397	{REG_MAC_COLL_LATE}
4398};
4399#define CAS_REG_LEN 	ARRAY_SIZE(ethtool_register_table)
4400#define CAS_MAX_REGS 	(sizeof (u32)*CAS_REG_LEN)
4401
4402static void cas_read_regs(struct cas *cp, u8 *ptr, int len)
4403{
4404	u8 *p;
4405	int i;
4406	unsigned long flags;
4407
4408	spin_lock_irqsave(&cp->lock, flags);
4409	for (i = 0, p = ptr; i < len ; i ++, p += sizeof(u32)) {
4410		u16 hval;
4411		u32 val;
4412		if (ethtool_register_table[i].offsets < 0) {
4413			hval = cas_phy_read(cp,
4414				    -ethtool_register_table[i].offsets);
4415			val = hval;
4416		} else {
4417			val= readl(cp->regs+ethtool_register_table[i].offsets);
4418		}
4419		memcpy(p, (u8 *)&val, sizeof(u32));
4420	}
4421	spin_unlock_irqrestore(&cp->lock, flags);
4422}
4423
4424static struct net_device_stats *cas_get_stats(struct net_device *dev)
4425{
4426	struct cas *cp = netdev_priv(dev);
4427	struct net_device_stats *stats = cp->net_stats;
4428	unsigned long flags;
4429	int i;
4430	unsigned long tmp;
4431
4432	/* we collate all of the stats into net_stats[N_TX_RING] */
4433	if (!cp->hw_running)
4434		return stats + N_TX_RINGS;
4435
4436	/* collect outstanding stats */
4437	/* WTZ: the Cassini spec gives these as 16 bit counters but
4438	 * stored in 32-bit words.  Added a mask of 0xffff to be safe,
4439	 * in case the chip somehow puts any garbage in the other bits.
4440	 * Also, counter usage didn't seem to mach what Adrian did
4441	 * in the parts of the code that set these quantities. Made
4442	 * that consistent.
4443	 */
4444	spin_lock_irqsave(&cp->stat_lock[N_TX_RINGS], flags);
4445	stats[N_TX_RINGS].rx_crc_errors +=
4446	  readl(cp->regs + REG_MAC_FCS_ERR) & 0xffff;
4447	stats[N_TX_RINGS].rx_frame_errors +=
4448		readl(cp->regs + REG_MAC_ALIGN_ERR) &0xffff;
4449	stats[N_TX_RINGS].rx_length_errors +=
4450		readl(cp->regs + REG_MAC_LEN_ERR) & 0xffff;
4451#if 1
4452	tmp = (readl(cp->regs + REG_MAC_COLL_EXCESS) & 0xffff) +
4453		(readl(cp->regs + REG_MAC_COLL_LATE) & 0xffff);
4454	stats[N_TX_RINGS].tx_aborted_errors += tmp;
4455	stats[N_TX_RINGS].collisions +=
4456	  tmp + (readl(cp->regs + REG_MAC_COLL_NORMAL) & 0xffff);
4457#else
4458	stats[N_TX_RINGS].tx_aborted_errors +=
4459		readl(cp->regs + REG_MAC_COLL_EXCESS);
4460	stats[N_TX_RINGS].collisions += readl(cp->regs + REG_MAC_COLL_EXCESS) +
4461		readl(cp->regs + REG_MAC_COLL_LATE);
4462#endif
4463	cas_clear_mac_err(cp);
4464
4465	/* saved bits that are unique to ring 0 */
4466	spin_lock(&cp->stat_lock[0]);
4467	stats[N_TX_RINGS].collisions        += stats[0].collisions;
4468	stats[N_TX_RINGS].rx_over_errors    += stats[0].rx_over_errors;
4469	stats[N_TX_RINGS].rx_frame_errors   += stats[0].rx_frame_errors;
4470	stats[N_TX_RINGS].rx_fifo_errors    += stats[0].rx_fifo_errors;
4471	stats[N_TX_RINGS].tx_aborted_errors += stats[0].tx_aborted_errors;
4472	stats[N_TX_RINGS].tx_fifo_errors    += stats[0].tx_fifo_errors;
4473	spin_unlock(&cp->stat_lock[0]);
4474
4475	for (i = 0; i < N_TX_RINGS; i++) {
4476		spin_lock(&cp->stat_lock[i]);
4477		stats[N_TX_RINGS].rx_length_errors +=
4478			stats[i].rx_length_errors;
4479		stats[N_TX_RINGS].rx_crc_errors += stats[i].rx_crc_errors;
4480		stats[N_TX_RINGS].rx_packets    += stats[i].rx_packets;
4481		stats[N_TX_RINGS].tx_packets    += stats[i].tx_packets;
4482		stats[N_TX_RINGS].rx_bytes      += stats[i].rx_bytes;
4483		stats[N_TX_RINGS].tx_bytes      += stats[i].tx_bytes;
4484		stats[N_TX_RINGS].rx_errors     += stats[i].rx_errors;
4485		stats[N_TX_RINGS].tx_errors     += stats[i].tx_errors;
4486		stats[N_TX_RINGS].rx_dropped    += stats[i].rx_dropped;
4487		stats[N_TX_RINGS].tx_dropped    += stats[i].tx_dropped;
4488		memset(stats + i, 0, sizeof(struct net_device_stats));
4489		spin_unlock(&cp->stat_lock[i]);
4490	}
4491	spin_unlock_irqrestore(&cp->stat_lock[N_TX_RINGS], flags);
4492	return stats + N_TX_RINGS;
4493}
4494
4495
4496static void cas_set_multicast(struct net_device *dev)
4497{
4498	struct cas *cp = netdev_priv(dev);
4499	u32 rxcfg, rxcfg_new;
4500	unsigned long flags;
4501	int limit = STOP_TRIES;
4502
4503	if (!cp->hw_running)
4504		return;
4505
4506	spin_lock_irqsave(&cp->lock, flags);
4507	rxcfg = readl(cp->regs + REG_MAC_RX_CFG);
4508
4509	/* disable RX MAC and wait for completion */
4510	writel(rxcfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
4511	while (readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_EN) {
4512		if (!limit--)
4513			break;
4514		udelay(10);
4515	}
4516
4517	/* disable hash filter and wait for completion */
4518	limit = STOP_TRIES;
4519	rxcfg &= ~(MAC_RX_CFG_PROMISC_EN | MAC_RX_CFG_HASH_FILTER_EN);
4520	writel(rxcfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
4521	while (readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_HASH_FILTER_EN) {
4522		if (!limit--)
4523			break;
4524		udelay(10);
4525	}
4526
4527	/* program hash filters */
4528	cp->mac_rx_cfg = rxcfg_new = cas_setup_multicast(cp);
4529	rxcfg |= rxcfg_new;
4530	writel(rxcfg, cp->regs + REG_MAC_RX_CFG);
4531	spin_unlock_irqrestore(&cp->lock, flags);
4532}
4533
4534static void cas_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
4535{
4536	struct cas *cp = netdev_priv(dev);
4537	strncpy(info->driver, DRV_MODULE_NAME, ETHTOOL_BUSINFO_LEN);
4538	strncpy(info->version, DRV_MODULE_VERSION, ETHTOOL_BUSINFO_LEN);
4539	info->fw_version[0] = '\0';
4540	strncpy(info->bus_info, pci_name(cp->pdev), ETHTOOL_BUSINFO_LEN);
4541	info->regdump_len = cp->casreg_len < CAS_MAX_REGS ?
4542		cp->casreg_len : CAS_MAX_REGS;
4543	info->n_stats = CAS_NUM_STAT_KEYS;
4544}
4545
4546static int cas_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
4547{
4548	struct cas *cp = netdev_priv(dev);
4549	u16 bmcr;
4550	int full_duplex, speed, pause;
4551	unsigned long flags;
4552	enum link_state linkstate = link_up;
4553
4554	cmd->advertising = 0;
4555	cmd->supported = SUPPORTED_Autoneg;
4556	if (cp->cas_flags & CAS_FLAG_1000MB_CAP) {
4557		cmd->supported |= SUPPORTED_1000baseT_Full;
4558		cmd->advertising |= ADVERTISED_1000baseT_Full;
4559	}
4560
4561	/* Record PHY settings if HW is on. */
4562	spin_lock_irqsave(&cp->lock, flags);
4563	bmcr = 0;
4564	linkstate = cp->lstate;
4565	if (CAS_PHY_MII(cp->phy_type)) {
4566		cmd->port = PORT_MII;
4567		cmd->transceiver = (cp->cas_flags & CAS_FLAG_SATURN) ?
4568			XCVR_INTERNAL : XCVR_EXTERNAL;
4569		cmd->phy_address = cp->phy_addr;
4570		cmd->advertising |= ADVERTISED_TP | ADVERTISED_MII |
4571			ADVERTISED_10baseT_Half |
4572			ADVERTISED_10baseT_Full |
4573			ADVERTISED_100baseT_Half |
4574			ADVERTISED_100baseT_Full;
4575
4576		cmd->supported |=
4577			(SUPPORTED_10baseT_Half |
4578			 SUPPORTED_10baseT_Full |
4579			 SUPPORTED_100baseT_Half |
4580			 SUPPORTED_100baseT_Full |
4581			 SUPPORTED_TP | SUPPORTED_MII);
4582
4583		if (cp->hw_running) {
4584			cas_mif_poll(cp, 0);
4585			bmcr = cas_phy_read(cp, MII_BMCR);
4586			cas_read_mii_link_mode(cp, &full_duplex,
4587					       &speed, &pause);
4588			cas_mif_poll(cp, 1);
4589		}
4590
4591	} else {
4592		cmd->port = PORT_FIBRE;
4593		cmd->transceiver = XCVR_INTERNAL;
4594		cmd->phy_address = 0;
4595		cmd->supported   |= SUPPORTED_FIBRE;
4596		cmd->advertising |= ADVERTISED_FIBRE;
4597
4598		if (cp->hw_running) {
4599			/* pcs uses the same bits as mii */
4600			bmcr = readl(cp->regs + REG_PCS_MII_CTRL);
4601			cas_read_pcs_link_mode(cp, &full_duplex,
4602					       &speed, &pause);
4603		}
4604	}
4605	spin_unlock_irqrestore(&cp->lock, flags);
4606
4607	if (bmcr & BMCR_ANENABLE) {
4608		cmd->advertising |= ADVERTISED_Autoneg;
4609		cmd->autoneg = AUTONEG_ENABLE;
4610		ethtool_cmd_speed_set(cmd, ((speed == 10) ?
4611					    SPEED_10 :
4612					    ((speed == 1000) ?
4613					     SPEED_1000 : SPEED_100)));
4614		cmd->duplex = full_duplex ? DUPLEX_FULL : DUPLEX_HALF;
4615	} else {
4616		cmd->autoneg = AUTONEG_DISABLE;
4617		ethtool_cmd_speed_set(cmd, ((bmcr & CAS_BMCR_SPEED1000) ?
4618					    SPEED_1000 :
4619					    ((bmcr & BMCR_SPEED100) ?
4620					     SPEED_100 : SPEED_10)));
4621		cmd->duplex =
4622			(bmcr & BMCR_FULLDPLX) ?
4623			DUPLEX_FULL : DUPLEX_HALF;
4624	}
4625	if (linkstate != link_up) {
4626		/* Force these to "unknown" if the link is not up and
4627		 * autonogotiation in enabled. We can set the link
4628		 * speed to 0, but not cmd->duplex,
4629		 * because its legal values are 0 and 1.  Ethtool will
4630		 * print the value reported in parentheses after the
4631		 * word "Unknown" for unrecognized values.
4632		 *
4633		 * If in forced mode, we report the speed and duplex
4634		 * settings that we configured.
4635		 */
4636		if (cp->link_cntl & BMCR_ANENABLE) {
4637			ethtool_cmd_speed_set(cmd, 0);
4638			cmd->duplex = 0xff;
4639		} else {
4640			ethtool_cmd_speed_set(cmd, SPEED_10);
4641			if (cp->link_cntl & BMCR_SPEED100) {
4642				ethtool_cmd_speed_set(cmd, SPEED_100);
4643			} else if (cp->link_cntl & CAS_BMCR_SPEED1000) {
4644				ethtool_cmd_speed_set(cmd, SPEED_1000);
4645			}
4646			cmd->duplex = (cp->link_cntl & BMCR_FULLDPLX)?
4647				DUPLEX_FULL : DUPLEX_HALF;
4648		}
4649	}
4650	return 0;
4651}
4652
4653static int cas_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
4654{
4655	struct cas *cp = netdev_priv(dev);
4656	unsigned long flags;
4657	u32 speed = ethtool_cmd_speed(cmd);
4658
4659	/* Verify the settings we care about. */
4660	if (cmd->autoneg != AUTONEG_ENABLE &&
4661	    cmd->autoneg != AUTONEG_DISABLE)
4662		return -EINVAL;
4663
4664	if (cmd->autoneg == AUTONEG_DISABLE &&
4665	    ((speed != SPEED_1000 &&
4666	      speed != SPEED_100 &&
4667	      speed != SPEED_10) ||
4668	     (cmd->duplex != DUPLEX_HALF &&
4669	      cmd->duplex != DUPLEX_FULL)))
4670		return -EINVAL;
4671
4672	/* Apply settings and restart link process. */
4673	spin_lock_irqsave(&cp->lock, flags);
4674	cas_begin_auto_negotiation(cp, cmd);
4675	spin_unlock_irqrestore(&cp->lock, flags);
4676	return 0;
4677}
4678
4679static int cas_nway_reset(struct net_device *dev)
4680{
4681	struct cas *cp = netdev_priv(dev);
4682	unsigned long flags;
4683
4684	if ((cp->link_cntl & BMCR_ANENABLE) == 0)
4685		return -EINVAL;
4686
4687	/* Restart link process. */
4688	spin_lock_irqsave(&cp->lock, flags);
4689	cas_begin_auto_negotiation(cp, NULL);
4690	spin_unlock_irqrestore(&cp->lock, flags);
4691
4692	return 0;
4693}
4694
4695static u32 cas_get_link(struct net_device *dev)
4696{
4697	struct cas *cp = netdev_priv(dev);
4698	return cp->lstate == link_up;
4699}
4700
4701static u32 cas_get_msglevel(struct net_device *dev)
4702{
4703	struct cas *cp = netdev_priv(dev);
4704	return cp->msg_enable;
4705}
4706
4707static void cas_set_msglevel(struct net_device *dev, u32 value)
4708{
4709	struct cas *cp = netdev_priv(dev);
4710	cp->msg_enable = value;
4711}
4712
4713static int cas_get_regs_len(struct net_device *dev)
4714{
4715	struct cas *cp = netdev_priv(dev);
4716	return cp->casreg_len < CAS_MAX_REGS ? cp->casreg_len: CAS_MAX_REGS;
4717}
4718
4719static void cas_get_regs(struct net_device *dev, struct ethtool_regs *regs,
4720			     void *p)
4721{
4722	struct cas *cp = netdev_priv(dev);
4723	regs->version = 0;
4724	/* cas_read_regs handles locks (cp->lock).  */
4725	cas_read_regs(cp, p, regs->len / sizeof(u32));
4726}
4727
4728static int cas_get_sset_count(struct net_device *dev, int sset)
4729{
4730	switch (sset) {
4731	case ETH_SS_STATS:
4732		return CAS_NUM_STAT_KEYS;
4733	default:
4734		return -EOPNOTSUPP;
4735	}
4736}
4737
4738static void cas_get_strings(struct net_device *dev, u32 stringset, u8 *data)
4739{
4740	 memcpy(data, &ethtool_cassini_statnames,
4741					 CAS_NUM_STAT_KEYS * ETH_GSTRING_LEN);
4742}
4743
4744static void cas_get_ethtool_stats(struct net_device *dev,
4745				      struct ethtool_stats *estats, u64 *data)
4746{
4747	struct cas *cp = netdev_priv(dev);
4748	struct net_device_stats *stats = cas_get_stats(cp->dev);
4749	int i = 0;
4750	data[i++] = stats->collisions;
4751	data[i++] = stats->rx_bytes;
4752	data[i++] = stats->rx_crc_errors;
4753	data[i++] = stats->rx_dropped;
4754	data[i++] = stats->rx_errors;
4755	data[i++] = stats->rx_fifo_errors;
4756	data[i++] = stats->rx_frame_errors;
4757	data[i++] = stats->rx_length_errors;
4758	data[i++] = stats->rx_over_errors;
4759	data[i++] = stats->rx_packets;
4760	data[i++] = stats->tx_aborted_errors;
4761	data[i++] = stats->tx_bytes;
4762	data[i++] = stats->tx_dropped;
4763	data[i++] = stats->tx_errors;
4764	data[i++] = stats->tx_fifo_errors;
4765	data[i++] = stats->tx_packets;
4766	BUG_ON(i != CAS_NUM_STAT_KEYS);
4767}
4768
4769static const struct ethtool_ops cas_ethtool_ops = {
4770	.get_drvinfo		= cas_get_drvinfo,
4771	.get_settings		= cas_get_settings,
4772	.set_settings		= cas_set_settings,
4773	.nway_reset		= cas_nway_reset,
4774	.get_link		= cas_get_link,
4775	.get_msglevel		= cas_get_msglevel,
4776	.set_msglevel		= cas_set_msglevel,
4777	.get_regs_len		= cas_get_regs_len,
4778	.get_regs		= cas_get_regs,
4779	.get_sset_count		= cas_get_sset_count,
4780	.get_strings		= cas_get_strings,
4781	.get_ethtool_stats	= cas_get_ethtool_stats,
4782};
4783
4784static int cas_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
4785{
4786	struct cas *cp = netdev_priv(dev);
4787	struct mii_ioctl_data *data = if_mii(ifr);
4788	unsigned long flags;
4789	int rc = -EOPNOTSUPP;
4790
4791	/* Hold the PM mutex while doing ioctl's or we may collide
4792	 * with open/close and power management and oops.
4793	 */
4794	mutex_lock(&cp->pm_mutex);
4795	switch (cmd) {
4796	case SIOCGMIIPHY:		/* Get address of MII PHY in use. */
4797		data->phy_id = cp->phy_addr;
4798		/* Fallthrough... */
4799
4800	case SIOCGMIIREG:		/* Read MII PHY register. */
4801		spin_lock_irqsave(&cp->lock, flags);
4802		cas_mif_poll(cp, 0);
4803		data->val_out = cas_phy_read(cp, data->reg_num & 0x1f);
4804		cas_mif_poll(cp, 1);
4805		spin_unlock_irqrestore(&cp->lock, flags);
4806		rc = 0;
4807		break;
4808
4809	case SIOCSMIIREG:		/* Write MII PHY register. */
4810		spin_lock_irqsave(&cp->lock, flags);
4811		cas_mif_poll(cp, 0);
4812		rc = cas_phy_write(cp, data->reg_num & 0x1f, data->val_in);
4813		cas_mif_poll(cp, 1);
4814		spin_unlock_irqrestore(&cp->lock, flags);
4815		break;
4816	default:
4817		break;
4818	}
4819
4820	mutex_unlock(&cp->pm_mutex);
4821	return rc;
4822}
4823
4824/* When this chip sits underneath an Intel 31154 bridge, it is the
4825 * only subordinate device and we can tweak the bridge settings to
4826 * reflect that fact.
4827 */
4828static void __devinit cas_program_bridge(struct pci_dev *cas_pdev)
4829{
4830	struct pci_dev *pdev = cas_pdev->bus->self;
4831	u32 val;
4832
4833	if (!pdev)
4834		return;
4835
4836	if (pdev->vendor != 0x8086 || pdev->device != 0x537c)
4837		return;
4838
4839	/* Clear bit 10 (Bus Parking Control) in the Secondary
4840	 * Arbiter Control/Status Register which lives at offset
4841	 * 0x41.  Using a 32-bit word read/modify/write at 0x40
4842	 * is much simpler so that's how we do this.
4843	 */
4844	pci_read_config_dword(pdev, 0x40, &val);
4845	val &= ~0x00040000;
4846	pci_write_config_dword(pdev, 0x40, val);
4847
4848	/* Max out the Multi-Transaction Timer settings since
4849	 * Cassini is the only device present.
4850	 *
4851	 * The register is 16-bit and lives at 0x50.  When the
4852	 * settings are enabled, it extends the GRANT# signal
4853	 * for a requestor after a transaction is complete.  This
4854	 * allows the next request to run without first needing
4855	 * to negotiate the GRANT# signal back.
4856	 *
4857	 * Bits 12:10 define the grant duration:
4858	 *
4859	 *	1	--	16 clocks
4860	 *	2	--	32 clocks
4861	 *	3	--	64 clocks
4862	 *	4	--	128 clocks
4863	 *	5	--	256 clocks
4864	 *
4865	 * All other values are illegal.
4866	 *
4867	 * Bits 09:00 define which REQ/GNT signal pairs get the
4868	 * GRANT# signal treatment.  We set them all.
4869	 */
4870	pci_write_config_word(pdev, 0x50, (5 << 10) | 0x3ff);
4871
4872	/* The Read Prefecth Policy register is 16-bit and sits at
4873	 * offset 0x52.  It enables a "smart" pre-fetch policy.  We
4874	 * enable it and max out all of the settings since only one
4875	 * device is sitting underneath and thus bandwidth sharing is
4876	 * not an issue.
4877	 *
4878	 * The register has several 3 bit fields, which indicates a
4879	 * multiplier applied to the base amount of prefetching the
4880	 * chip would do.  These fields are at:
4881	 *
4882	 *	15:13	---	ReRead Primary Bus
4883	 *	12:10	---	FirstRead Primary Bus
4884	 *	09:07	---	ReRead Secondary Bus
4885	 *	06:04	---	FirstRead Secondary Bus
4886	 *
4887	 * Bits 03:00 control which REQ/GNT pairs the prefetch settings
4888	 * get enabled on.  Bit 3 is a grouped enabler which controls
4889	 * all of the REQ/GNT pairs from [8:3].  Bits 2 to 0 control
4890	 * the individual REQ/GNT pairs [2:0].
4891	 */
4892	pci_write_config_word(pdev, 0x52,
4893			      (0x7 << 13) |
4894			      (0x7 << 10) |
4895			      (0x7 <<  7) |
4896			      (0x7 <<  4) |
4897			      (0xf <<  0));
4898
4899	/* Force cacheline size to 0x8 */
4900	pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, 0x08);
4901
4902	/* Force latency timer to maximum setting so Cassini can
4903	 * sit on the bus as long as it likes.
4904	 */
4905	pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0xff);
4906}
4907
4908static const struct net_device_ops cas_netdev_ops = {
4909	.ndo_open		= cas_open,
4910	.ndo_stop		= cas_close,
4911	.ndo_start_xmit		= cas_start_xmit,
4912	.ndo_get_stats 		= cas_get_stats,
4913	.ndo_set_multicast_list = cas_set_multicast,
4914	.ndo_do_ioctl		= cas_ioctl,
4915	.ndo_tx_timeout		= cas_tx_timeout,
4916	.ndo_change_mtu		= cas_change_mtu,
4917	.ndo_set_mac_address	= eth_mac_addr,
4918	.ndo_validate_addr	= eth_validate_addr,
4919#ifdef CONFIG_NET_POLL_CONTROLLER
4920	.ndo_poll_controller	= cas_netpoll,
4921#endif
4922};
4923
4924static int __devinit cas_init_one(struct pci_dev *pdev,
4925				  const struct pci_device_id *ent)
4926{
4927	static int cas_version_printed = 0;
4928	unsigned long casreg_len;
4929	struct net_device *dev;
4930	struct cas *cp;
4931	int i, err, pci_using_dac;
4932	u16 pci_cmd;
4933	u8 orig_cacheline_size = 0, cas_cacheline_size = 0;
4934
4935	if (cas_version_printed++ == 0)
4936		pr_info("%s", version);
4937
4938	err = pci_enable_device(pdev);
4939	if (err) {
4940		dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n");
4941		return err;
4942	}
4943
4944	if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
4945		dev_err(&pdev->dev, "Cannot find proper PCI device "
4946		       "base address, aborting\n");
4947		err = -ENODEV;
4948		goto err_out_disable_pdev;
4949	}
4950
4951	dev = alloc_etherdev(sizeof(*cp));
4952	if (!dev) {
4953		dev_err(&pdev->dev, "Etherdev alloc failed, aborting\n");
4954		err = -ENOMEM;
4955		goto err_out_disable_pdev;
4956	}
4957	SET_NETDEV_DEV(dev, &pdev->dev);
4958
4959	err = pci_request_regions(pdev, dev->name);
4960	if (err) {
4961		dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n");
4962		goto err_out_free_netdev;
4963	}
4964	pci_set_master(pdev);
4965
4966	/* we must always turn on parity response or else parity
4967	 * doesn't get generated properly. disable SERR/PERR as well.
4968	 * in addition, we want to turn MWI on.
4969	 */
4970	pci_read_config_word(pdev, PCI_COMMAND, &pci_cmd);
4971	pci_cmd &= ~PCI_COMMAND_SERR;
4972	pci_cmd |= PCI_COMMAND_PARITY;
4973	pci_write_config_word(pdev, PCI_COMMAND, pci_cmd);
4974	if (pci_try_set_mwi(pdev))
4975		pr_warning("Could not enable MWI for %s\n", pci_name(pdev));
4976
4977	cas_program_bridge(pdev);
4978
4979	/*
4980	 * On some architectures, the default cache line size set
4981	 * by pci_try_set_mwi reduces perforamnce.  We have to increase
4982	 * it for this case.  To start, we'll print some configuration
4983	 * data.
4984	 */
4985#if 1
4986	pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE,
4987			     &orig_cacheline_size);
4988	if (orig_cacheline_size < CAS_PREF_CACHELINE_SIZE) {
4989		cas_cacheline_size =
4990			(CAS_PREF_CACHELINE_SIZE < SMP_CACHE_BYTES) ?
4991			CAS_PREF_CACHELINE_SIZE : SMP_CACHE_BYTES;
4992		if (pci_write_config_byte(pdev,
4993					  PCI_CACHE_LINE_SIZE,
4994					  cas_cacheline_size)) {
4995			dev_err(&pdev->dev, "Could not set PCI cache "
4996			       "line size\n");
4997			goto err_write_cacheline;
4998		}
4999	}
5000#endif
5001
5002
5003	/* Configure DMA attributes. */
5004	if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
5005		pci_using_dac = 1;
5006		err = pci_set_consistent_dma_mask(pdev,
5007						  DMA_BIT_MASK(64));
5008		if (err < 0) {
5009			dev_err(&pdev->dev, "Unable to obtain 64-bit DMA "
5010			       "for consistent allocations\n");
5011			goto err_out_free_res;
5012		}
5013
5014	} else {
5015		err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
5016		if (err) {
5017			dev_err(&pdev->dev, "No usable DMA configuration, "
5018			       "aborting\n");
5019			goto err_out_free_res;
5020		}
5021		pci_using_dac = 0;
5022	}
5023
5024	casreg_len = pci_resource_len(pdev, 0);
5025
5026	cp = netdev_priv(dev);
5027	cp->pdev = pdev;
5028#if 1
5029	/* A value of 0 indicates we never explicitly set it */
5030	cp->orig_cacheline_size = cas_cacheline_size ? orig_cacheline_size: 0;
5031#endif
5032	cp->dev = dev;
5033	cp->msg_enable = (cassini_debug < 0) ? CAS_DEF_MSG_ENABLE :
5034	  cassini_debug;
5035
5036#if defined(CONFIG_SPARC)
5037	cp->of_node = pci_device_to_OF_node(pdev);
5038#endif
5039
5040	cp->link_transition = LINK_TRANSITION_UNKNOWN;
5041	cp->link_transition_jiffies_valid = 0;
5042
5043	spin_lock_init(&cp->lock);
5044	spin_lock_init(&cp->rx_inuse_lock);
5045	spin_lock_init(&cp->rx_spare_lock);
5046	for (i = 0; i < N_TX_RINGS; i++) {
5047		spin_lock_init(&cp->stat_lock[i]);
5048		spin_lock_init(&cp->tx_lock[i]);
5049	}
5050	spin_lock_init(&cp->stat_lock[N_TX_RINGS]);
5051	mutex_init(&cp->pm_mutex);
5052
5053	init_timer(&cp->link_timer);
5054	cp->link_timer.function = cas_link_timer;
5055	cp->link_timer.data = (unsigned long) cp;
5056
5057#if 1
5058	/* Just in case the implementation of atomic operations
5059	 * change so that an explicit initialization is necessary.
5060	 */
5061	atomic_set(&cp->reset_task_pending, 0);
5062	atomic_set(&cp->reset_task_pending_all, 0);
5063	atomic_set(&cp->reset_task_pending_spare, 0);
5064	atomic_set(&cp->reset_task_pending_mtu, 0);
5065#endif
5066	INIT_WORK(&cp->reset_task, cas_reset_task);
5067
5068	/* Default link parameters */
5069	if (link_mode >= 0 && link_mode < 6)
5070		cp->link_cntl = link_modes[link_mode];
5071	else
5072		cp->link_cntl = BMCR_ANENABLE;
5073	cp->lstate = link_down;
5074	cp->link_transition = LINK_TRANSITION_LINK_DOWN;
5075	netif_carrier_off(cp->dev);
5076	cp->timer_ticks = 0;
5077
5078	/* give us access to cassini registers */
5079	cp->regs = pci_iomap(pdev, 0, casreg_len);
5080	if (!cp->regs) {
5081		dev_err(&pdev->dev, "Cannot map device registers, aborting\n");
5082		goto err_out_free_res;
5083	}
5084	cp->casreg_len = casreg_len;
5085
5086	pci_save_state(pdev);
5087	cas_check_pci_invariants(cp);
5088	cas_hard_reset(cp);
5089	cas_reset(cp, 0);
5090	if (cas_check_invariants(cp))
5091		goto err_out_iounmap;
5092	if (cp->cas_flags & CAS_FLAG_SATURN)
5093		if (cas_saturn_firmware_init(cp))
5094			goto err_out_iounmap;
5095
5096	cp->init_block = (struct cas_init_block *)
5097		pci_alloc_consistent(pdev, sizeof(struct cas_init_block),
5098				     &cp->block_dvma);
5099	if (!cp->init_block) {
5100		dev_err(&pdev->dev, "Cannot allocate init block, aborting\n");
5101		goto err_out_iounmap;
5102	}
5103
5104	for (i = 0; i < N_TX_RINGS; i++)
5105		cp->init_txds[i] = cp->init_block->txds[i];
5106
5107	for (i = 0; i < N_RX_DESC_RINGS; i++)
5108		cp->init_rxds[i] = cp->init_block->rxds[i];
5109
5110	for (i = 0; i < N_RX_COMP_RINGS; i++)
5111		cp->init_rxcs[i] = cp->init_block->rxcs[i];
5112
5113	for (i = 0; i < N_RX_FLOWS; i++)
5114		skb_queue_head_init(&cp->rx_flows[i]);
5115
5116	dev->netdev_ops = &cas_netdev_ops;
5117	dev->ethtool_ops = &cas_ethtool_ops;
5118	dev->watchdog_timeo = CAS_TX_TIMEOUT;
5119
5120#ifdef USE_NAPI
5121	netif_napi_add(dev, &cp->napi, cas_poll, 64);
5122#endif
5123	dev->irq = pdev->irq;
5124	dev->dma = 0;
5125
5126	/* Cassini features. */
5127	if ((cp->cas_flags & CAS_FLAG_NO_HW_CSUM) == 0)
5128		dev->features |= NETIF_F_HW_CSUM | NETIF_F_SG;
5129
5130	if (pci_using_dac)
5131		dev->features |= NETIF_F_HIGHDMA;
5132
5133	if (register_netdev(dev)) {
5134		dev_err(&pdev->dev, "Cannot register net device, aborting\n");
5135		goto err_out_free_consistent;
5136	}
5137
5138	i = readl(cp->regs + REG_BIM_CFG);
5139	netdev_info(dev, "Sun Cassini%s (%sbit/%sMHz PCI/%s) Ethernet[%d] %pM\n",
5140		    (cp->cas_flags & CAS_FLAG_REG_PLUS) ? "+" : "",
5141		    (i & BIM_CFG_32BIT) ? "32" : "64",
5142		    (i & BIM_CFG_66MHZ) ? "66" : "33",
5143		    (cp->phy_type == CAS_PHY_SERDES) ? "Fi" : "Cu", pdev->irq,
5144		    dev->dev_addr);
5145
5146	pci_set_drvdata(pdev, dev);
5147	cp->hw_running = 1;
5148	cas_entropy_reset(cp);
5149	cas_phy_init(cp);
5150	cas_begin_auto_negotiation(cp, NULL);
5151	return 0;
5152
5153err_out_free_consistent:
5154	pci_free_consistent(pdev, sizeof(struct cas_init_block),
5155			    cp->init_block, cp->block_dvma);
5156
5157err_out_iounmap:
5158	mutex_lock(&cp->pm_mutex);
5159	if (cp->hw_running)
5160		cas_shutdown(cp);
5161	mutex_unlock(&cp->pm_mutex);
5162
5163	pci_iounmap(pdev, cp->regs);
5164
5165
5166err_out_free_res:
5167	pci_release_regions(pdev);
5168
5169err_write_cacheline:
5170	/* Try to restore it in case the error occurred after we
5171	 * set it.
5172	 */
5173	pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, orig_cacheline_size);
5174
5175err_out_free_netdev:
5176	free_netdev(dev);
5177
5178err_out_disable_pdev:
5179	pci_disable_device(pdev);
5180	pci_set_drvdata(pdev, NULL);
5181	return -ENODEV;
5182}
5183
5184static void __devexit cas_remove_one(struct pci_dev *pdev)
5185{
5186	struct net_device *dev = pci_get_drvdata(pdev);
5187	struct cas *cp;
5188	if (!dev)
5189		return;
5190
5191	cp = netdev_priv(dev);
5192	unregister_netdev(dev);
5193
5194	if (cp->fw_data)
5195		vfree(cp->fw_data);
5196
5197	mutex_lock(&cp->pm_mutex);
5198	cancel_work_sync(&cp->reset_task);
5199	if (cp->hw_running)
5200		cas_shutdown(cp);
5201	mutex_unlock(&cp->pm_mutex);
5202
5203#if 1
5204	if (cp->orig_cacheline_size) {
5205		/* Restore the cache line size if we had modified
5206		 * it.
5207		 */
5208		pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE,
5209				      cp->orig_cacheline_size);
5210	}
5211#endif
5212	pci_free_consistent(pdev, sizeof(struct cas_init_block),
5213			    cp->init_block, cp->block_dvma);
5214	pci_iounmap(pdev, cp->regs);
5215	free_netdev(dev);
5216	pci_release_regions(pdev);
5217	pci_disable_device(pdev);
5218	pci_set_drvdata(pdev, NULL);
5219}
5220
5221#ifdef CONFIG_PM
5222static int cas_suspend(struct pci_dev *pdev, pm_message_t state)
5223{
5224	struct net_device *dev = pci_get_drvdata(pdev);
5225	struct cas *cp = netdev_priv(dev);
5226	unsigned long flags;
5227
5228	mutex_lock(&cp->pm_mutex);
5229
5230	/* If the driver is opened, we stop the DMA */
5231	if (cp->opened) {
5232		netif_device_detach(dev);
5233
5234		cas_lock_all_save(cp, flags);
5235
5236		/* We can set the second arg of cas_reset to 0
5237		 * because on resume, we'll call cas_init_hw with
5238		 * its second arg set so that autonegotiation is
5239		 * restarted.
5240		 */
5241		cas_reset(cp, 0);
5242		cas_clean_rings(cp);
5243		cas_unlock_all_restore(cp, flags);
5244	}
5245
5246	if (cp->hw_running)
5247		cas_shutdown(cp);
5248	mutex_unlock(&cp->pm_mutex);
5249
5250	return 0;
5251}
5252
5253static int cas_resume(struct pci_dev *pdev)
5254{
5255	struct net_device *dev = pci_get_drvdata(pdev);
5256	struct cas *cp = netdev_priv(dev);
5257
5258	netdev_info(dev, "resuming\n");
5259
5260	mutex_lock(&cp->pm_mutex);
5261	cas_hard_reset(cp);
5262	if (cp->opened) {
5263		unsigned long flags;
5264		cas_lock_all_save(cp, flags);
5265		cas_reset(cp, 0);
5266		cp->hw_running = 1;
5267		cas_clean_rings(cp);
5268		cas_init_hw(cp, 1);
5269		cas_unlock_all_restore(cp, flags);
5270
5271		netif_device_attach(dev);
5272	}
5273	mutex_unlock(&cp->pm_mutex);
5274	return 0;
5275}
5276#endif /* CONFIG_PM */
5277
5278static struct pci_driver cas_driver = {
5279	.name		= DRV_MODULE_NAME,
5280	.id_table	= cas_pci_tbl,
5281	.probe		= cas_init_one,
5282	.remove		= __devexit_p(cas_remove_one),
5283#ifdef CONFIG_PM
5284	.suspend	= cas_suspend,
5285	.resume		= cas_resume
5286#endif
5287};
5288
5289static int __init cas_init(void)
5290{
5291	if (linkdown_timeout > 0)
5292		link_transition_timeout = linkdown_timeout * HZ;
5293	else
5294		link_transition_timeout = 0;
5295
5296	return pci_register_driver(&cas_driver);
5297}
5298
5299static void __exit cas_cleanup(void)
5300{
5301	pci_unregister_driver(&cas_driver);
5302}
5303
5304module_init(cas_init);
5305module_exit(cas_cleanup);
5306