tc35815.c revision f2cedb63df14342ad40a8b5b324fc5d94a60b665
1/*
2 * tc35815.c: A TOSHIBA TC35815CF PCI 10/100Mbps ethernet driver for linux.
3 *
4 * Based on skelton.c by Donald Becker.
5 *
6 * This driver is a replacement of older and less maintained version.
7 * This is a header of the older version:
8 *	-----<snip>-----
9 *	Copyright 2001 MontaVista Software Inc.
10 *	Author: MontaVista Software, Inc.
11 *		ahennessy@mvista.com
12 *	Copyright (C) 2000-2001 Toshiba Corporation
13 *	static const char *version =
14 *		"tc35815.c:v0.00 26/07/2000 by Toshiba Corporation\n";
15 *	-----<snip>-----
16 *
17 * This file is subject to the terms and conditions of the GNU General Public
18 * License.  See the file "COPYING" in the main directory of this archive
19 * for more details.
20 *
21 * (C) Copyright TOSHIBA CORPORATION 2004-2005
22 * All Rights Reserved.
23 */
24
25#define DRV_VERSION	"1.39"
26static const char *version = "tc35815.c:v" DRV_VERSION "\n";
27#define MODNAME			"tc35815"
28
29#include <linux/module.h>
30#include <linux/kernel.h>
31#include <linux/types.h>
32#include <linux/fcntl.h>
33#include <linux/interrupt.h>
34#include <linux/ioport.h>
35#include <linux/in.h>
36#include <linux/if_vlan.h>
37#include <linux/slab.h>
38#include <linux/string.h>
39#include <linux/spinlock.h>
40#include <linux/errno.h>
41#include <linux/init.h>
42#include <linux/netdevice.h>
43#include <linux/etherdevice.h>
44#include <linux/skbuff.h>
45#include <linux/delay.h>
46#include <linux/pci.h>
47#include <linux/phy.h>
48#include <linux/workqueue.h>
49#include <linux/platform_device.h>
50#include <linux/prefetch.h>
51#include <asm/io.h>
52#include <asm/byteorder.h>
53
54enum tc35815_chiptype {
55	TC35815CF = 0,
56	TC35815_NWU,
57	TC35815_TX4939,
58};
59
60/* indexed by tc35815_chiptype, above */
61static const struct {
62	const char *name;
63} chip_info[] __devinitdata = {
64	{ "TOSHIBA TC35815CF 10/100BaseTX" },
65	{ "TOSHIBA TC35815 with Wake on LAN" },
66	{ "TOSHIBA TC35815/TX4939" },
67};
68
69static DEFINE_PCI_DEVICE_TABLE(tc35815_pci_tbl) = {
70	{PCI_DEVICE(PCI_VENDOR_ID_TOSHIBA_2, PCI_DEVICE_ID_TOSHIBA_TC35815CF), .driver_data = TC35815CF },
71	{PCI_DEVICE(PCI_VENDOR_ID_TOSHIBA_2, PCI_DEVICE_ID_TOSHIBA_TC35815_NWU), .driver_data = TC35815_NWU },
72	{PCI_DEVICE(PCI_VENDOR_ID_TOSHIBA_2, PCI_DEVICE_ID_TOSHIBA_TC35815_TX4939), .driver_data = TC35815_TX4939 },
73	{0,}
74};
75MODULE_DEVICE_TABLE(pci, tc35815_pci_tbl);
76
77/* see MODULE_PARM_DESC */
78static struct tc35815_options {
79	int speed;
80	int duplex;
81} options;
82
83/*
84 * Registers
85 */
86struct tc35815_regs {
87	__u32 DMA_Ctl;		/* 0x00 */
88	__u32 TxFrmPtr;
89	__u32 TxThrsh;
90	__u32 TxPollCtr;
91	__u32 BLFrmPtr;
92	__u32 RxFragSize;
93	__u32 Int_En;
94	__u32 FDA_Bas;
95	__u32 FDA_Lim;		/* 0x20 */
96	__u32 Int_Src;
97	__u32 unused0[2];
98	__u32 PauseCnt;
99	__u32 RemPauCnt;
100	__u32 TxCtlFrmStat;
101	__u32 unused1;
102	__u32 MAC_Ctl;		/* 0x40 */
103	__u32 CAM_Ctl;
104	__u32 Tx_Ctl;
105	__u32 Tx_Stat;
106	__u32 Rx_Ctl;
107	__u32 Rx_Stat;
108	__u32 MD_Data;
109	__u32 MD_CA;
110	__u32 CAM_Adr;		/* 0x60 */
111	__u32 CAM_Data;
112	__u32 CAM_Ena;
113	__u32 PROM_Ctl;
114	__u32 PROM_Data;
115	__u32 Algn_Cnt;
116	__u32 CRC_Cnt;
117	__u32 Miss_Cnt;
118};
119
120/*
121 * Bit assignments
122 */
123/* DMA_Ctl bit assign ------------------------------------------------------- */
124#define DMA_RxAlign	       0x00c00000 /* 1:Reception Alignment	     */
125#define DMA_RxAlign_1	       0x00400000
126#define DMA_RxAlign_2	       0x00800000
127#define DMA_RxAlign_3	       0x00c00000
128#define DMA_M66EnStat	       0x00080000 /* 1:66MHz Enable State	     */
129#define DMA_IntMask	       0x00040000 /* 1:Interrupt mask		     */
130#define DMA_SWIntReq	       0x00020000 /* 1:Software Interrupt request    */
131#define DMA_TxWakeUp	       0x00010000 /* 1:Transmit Wake Up		     */
132#define DMA_RxBigE	       0x00008000 /* 1:Receive Big Endian	     */
133#define DMA_TxBigE	       0x00004000 /* 1:Transmit Big Endian	     */
134#define DMA_TestMode	       0x00002000 /* 1:Test Mode		     */
135#define DMA_PowrMgmnt	       0x00001000 /* 1:Power Management		     */
136#define DMA_DmBurst_Mask       0x000001fc /* DMA Burst size		     */
137
138/* RxFragSize bit assign ---------------------------------------------------- */
139#define RxFrag_EnPack	       0x00008000 /* 1:Enable Packing		     */
140#define RxFrag_MinFragMask     0x00000ffc /* Minimum Fragment		     */
141
142/* MAC_Ctl bit assign ------------------------------------------------------- */
143#define MAC_Link10	       0x00008000 /* 1:Link Status 10Mbits	     */
144#define MAC_EnMissRoll	       0x00002000 /* 1:Enable Missed Roll	     */
145#define MAC_MissRoll	       0x00000400 /* 1:Missed Roll		     */
146#define MAC_Loop10	       0x00000080 /* 1:Loop 10 Mbps		     */
147#define MAC_Conn_Auto	       0x00000000 /*00:Connection mode (Automatic)   */
148#define MAC_Conn_10M	       0x00000020 /*01:		       (10Mbps endec)*/
149#define MAC_Conn_Mll	       0x00000040 /*10:		       (Mll clock)   */
150#define MAC_MacLoop	       0x00000010 /* 1:MAC Loopback		     */
151#define MAC_FullDup	       0x00000008 /* 1:Full Duplex 0:Half Duplex     */
152#define MAC_Reset	       0x00000004 /* 1:Software Reset		     */
153#define MAC_HaltImm	       0x00000002 /* 1:Halt Immediate		     */
154#define MAC_HaltReq	       0x00000001 /* 1:Halt request		     */
155
156/* PROM_Ctl bit assign ------------------------------------------------------ */
157#define PROM_Busy	       0x00008000 /* 1:Busy (Start Operation)	     */
158#define PROM_Read	       0x00004000 /*10:Read operation		     */
159#define PROM_Write	       0x00002000 /*01:Write operation		     */
160#define PROM_Erase	       0x00006000 /*11:Erase operation		     */
161					  /*00:Enable or Disable Writting,   */
162					  /*	  as specified in PROM_Addr. */
163#define PROM_Addr_Ena	       0x00000030 /*11xxxx:PROM Write enable	     */
164					  /*00xxxx:	      disable	     */
165
166/* CAM_Ctl bit assign ------------------------------------------------------- */
167#define CAM_CompEn	       0x00000010 /* 1:CAM Compare Enable	     */
168#define CAM_NegCAM	       0x00000008 /* 1:Reject packets CAM recognizes,*/
169					  /*			accept other */
170#define CAM_BroadAcc	       0x00000004 /* 1:Broadcast assept		     */
171#define CAM_GroupAcc	       0x00000002 /* 1:Multicast assept		     */
172#define CAM_StationAcc	       0x00000001 /* 1:unicast accept		     */
173
174/* CAM_Ena bit assign ------------------------------------------------------- */
175#define CAM_ENTRY_MAX		       21   /* CAM Data entry max count	     */
176#define CAM_Ena_Mask ((1<<CAM_ENTRY_MAX)-1) /* CAM Enable bits (Max 21bits)  */
177#define CAM_Ena_Bit(index)	(1 << (index))
178#define CAM_ENTRY_DESTINATION	0
179#define CAM_ENTRY_SOURCE	1
180#define CAM_ENTRY_MACCTL	20
181
182/* Tx_Ctl bit assign -------------------------------------------------------- */
183#define Tx_En		       0x00000001 /* 1:Transmit enable		     */
184#define Tx_TxHalt	       0x00000002 /* 1:Transmit Halt Request	     */
185#define Tx_NoPad	       0x00000004 /* 1:Suppress Padding		     */
186#define Tx_NoCRC	       0x00000008 /* 1:Suppress Padding		     */
187#define Tx_FBack	       0x00000010 /* 1:Fast Back-off		     */
188#define Tx_EnUnder	       0x00000100 /* 1:Enable Underrun		     */
189#define Tx_EnExDefer	       0x00000200 /* 1:Enable Excessive Deferral     */
190#define Tx_EnLCarr	       0x00000400 /* 1:Enable Lost Carrier	     */
191#define Tx_EnExColl	       0x00000800 /* 1:Enable Excessive Collision    */
192#define Tx_EnLateColl	       0x00001000 /* 1:Enable Late Collision	     */
193#define Tx_EnTxPar	       0x00002000 /* 1:Enable Transmit Parity	     */
194#define Tx_EnComp	       0x00004000 /* 1:Enable Completion	     */
195
196/* Tx_Stat bit assign ------------------------------------------------------- */
197#define Tx_TxColl_MASK	       0x0000000F /* Tx Collision Count		     */
198#define Tx_ExColl	       0x00000010 /* Excessive Collision	     */
199#define Tx_TXDefer	       0x00000020 /* Transmit Defered		     */
200#define Tx_Paused	       0x00000040 /* Transmit Paused		     */
201#define Tx_IntTx	       0x00000080 /* Interrupt on Tx		     */
202#define Tx_Under	       0x00000100 /* Underrun			     */
203#define Tx_Defer	       0x00000200 /* Deferral			     */
204#define Tx_NCarr	       0x00000400 /* No Carrier			     */
205#define Tx_10Stat	       0x00000800 /* 10Mbps Status		     */
206#define Tx_LateColl	       0x00001000 /* Late Collision		     */
207#define Tx_TxPar	       0x00002000 /* Tx Parity Error		     */
208#define Tx_Comp		       0x00004000 /* Completion			     */
209#define Tx_Halted	       0x00008000 /* Tx Halted			     */
210#define Tx_SQErr	       0x00010000 /* Signal Quality Error(SQE)	     */
211
212/* Rx_Ctl bit assign -------------------------------------------------------- */
213#define Rx_EnGood	       0x00004000 /* 1:Enable Good		     */
214#define Rx_EnRxPar	       0x00002000 /* 1:Enable Receive Parity	     */
215#define Rx_EnLongErr	       0x00000800 /* 1:Enable Long Error	     */
216#define Rx_EnOver	       0x00000400 /* 1:Enable OverFlow		     */
217#define Rx_EnCRCErr	       0x00000200 /* 1:Enable CRC Error		     */
218#define Rx_EnAlign	       0x00000100 /* 1:Enable Alignment		     */
219#define Rx_IgnoreCRC	       0x00000040 /* 1:Ignore CRC Value		     */
220#define Rx_StripCRC	       0x00000010 /* 1:Strip CRC Value		     */
221#define Rx_ShortEn	       0x00000008 /* 1:Short Enable		     */
222#define Rx_LongEn	       0x00000004 /* 1:Long Enable		     */
223#define Rx_RxHalt	       0x00000002 /* 1:Receive Halt Request	     */
224#define Rx_RxEn		       0x00000001 /* 1:Receive Intrrupt Enable	     */
225
226/* Rx_Stat bit assign ------------------------------------------------------- */
227#define Rx_Halted	       0x00008000 /* Rx Halted			     */
228#define Rx_Good		       0x00004000 /* Rx Good			     */
229#define Rx_RxPar	       0x00002000 /* Rx Parity Error		     */
230#define Rx_TypePkt	       0x00001000 /* Rx Type Packet		     */
231#define Rx_LongErr	       0x00000800 /* Rx Long Error		     */
232#define Rx_Over		       0x00000400 /* Rx Overflow		     */
233#define Rx_CRCErr	       0x00000200 /* Rx CRC Error		     */
234#define Rx_Align	       0x00000100 /* Rx Alignment Error		     */
235#define Rx_10Stat	       0x00000080 /* Rx 10Mbps Status		     */
236#define Rx_IntRx	       0x00000040 /* Rx Interrupt		     */
237#define Rx_CtlRecd	       0x00000020 /* Rx Control Receive		     */
238#define Rx_InLenErr	       0x00000010 /* Rx In Range Frame Length Error  */
239
240#define Rx_Stat_Mask	       0x0000FFF0 /* Rx All Status Mask		     */
241
242/* Int_En bit assign -------------------------------------------------------- */
243#define Int_NRAbtEn	       0x00000800 /* 1:Non-recoverable Abort Enable  */
244#define Int_TxCtlCmpEn	       0x00000400 /* 1:Transmit Ctl Complete Enable  */
245#define Int_DmParErrEn	       0x00000200 /* 1:DMA Parity Error Enable	     */
246#define Int_DParDEn	       0x00000100 /* 1:Data Parity Error Enable	     */
247#define Int_EarNotEn	       0x00000080 /* 1:Early Notify Enable	     */
248#define Int_DParErrEn	       0x00000040 /* 1:Detected Parity Error Enable  */
249#define Int_SSysErrEn	       0x00000020 /* 1:Signalled System Error Enable */
250#define Int_RMasAbtEn	       0x00000010 /* 1:Received Master Abort Enable  */
251#define Int_RTargAbtEn	       0x00000008 /* 1:Received Target Abort Enable  */
252#define Int_STargAbtEn	       0x00000004 /* 1:Signalled Target Abort Enable */
253#define Int_BLExEn	       0x00000002 /* 1:Buffer List Exhausted Enable  */
254#define Int_FDAExEn	       0x00000001 /* 1:Free Descriptor Area	     */
255					  /*		   Exhausted Enable  */
256
257/* Int_Src bit assign ------------------------------------------------------- */
258#define Int_NRabt	       0x00004000 /* 1:Non Recoverable error	     */
259#define Int_DmParErrStat       0x00002000 /* 1:DMA Parity Error & Clear	     */
260#define Int_BLEx	       0x00001000 /* 1:Buffer List Empty & Clear     */
261#define Int_FDAEx	       0x00000800 /* 1:FDA Empty & Clear	     */
262#define Int_IntNRAbt	       0x00000400 /* 1:Non Recoverable Abort	     */
263#define Int_IntCmp	       0x00000200 /* 1:MAC control packet complete   */
264#define Int_IntExBD	       0x00000100 /* 1:Interrupt Extra BD & Clear    */
265#define Int_DmParErr	       0x00000080 /* 1:DMA Parity Error & Clear	     */
266#define Int_IntEarNot	       0x00000040 /* 1:Receive Data write & Clear    */
267#define Int_SWInt	       0x00000020 /* 1:Software request & Clear	     */
268#define Int_IntBLEx	       0x00000010 /* 1:Buffer List Empty & Clear     */
269#define Int_IntFDAEx	       0x00000008 /* 1:FDA Empty & Clear	     */
270#define Int_IntPCI	       0x00000004 /* 1:PCI controller & Clear	     */
271#define Int_IntMacRx	       0x00000002 /* 1:Rx controller & Clear	     */
272#define Int_IntMacTx	       0x00000001 /* 1:Tx controller & Clear	     */
273
274/* MD_CA bit assign --------------------------------------------------------- */
275#define MD_CA_PreSup	       0x00001000 /* 1:Preamble Suppress		     */
276#define MD_CA_Busy	       0x00000800 /* 1:Busy (Start Operation)	     */
277#define MD_CA_Wr	       0x00000400 /* 1:Write 0:Read		     */
278
279
280/*
281 * Descriptors
282 */
283
284/* Frame descripter */
285struct FDesc {
286	volatile __u32 FDNext;
287	volatile __u32 FDSystem;
288	volatile __u32 FDStat;
289	volatile __u32 FDCtl;
290};
291
292/* Buffer descripter */
293struct BDesc {
294	volatile __u32 BuffData;
295	volatile __u32 BDCtl;
296};
297
298#define FD_ALIGN	16
299
300/* Frame Descripter bit assign ---------------------------------------------- */
301#define FD_FDLength_MASK       0x0000FFFF /* Length MASK		     */
302#define FD_BDCnt_MASK	       0x001F0000 /* BD count MASK in FD	     */
303#define FD_FrmOpt_MASK	       0x7C000000 /* Frame option MASK		     */
304#define FD_FrmOpt_BigEndian    0x40000000 /* Tx/Rx */
305#define FD_FrmOpt_IntTx	       0x20000000 /* Tx only */
306#define FD_FrmOpt_NoCRC	       0x10000000 /* Tx only */
307#define FD_FrmOpt_NoPadding    0x08000000 /* Tx only */
308#define FD_FrmOpt_Packing      0x04000000 /* Rx only */
309#define FD_CownsFD	       0x80000000 /* FD Controller owner bit	     */
310#define FD_Next_EOL	       0x00000001 /* FD EOL indicator		     */
311#define FD_BDCnt_SHIFT	       16
312
313/* Buffer Descripter bit assign --------------------------------------------- */
314#define BD_BuffLength_MASK     0x0000FFFF /* Receive Data Size		     */
315#define BD_RxBDID_MASK	       0x00FF0000 /* BD ID Number MASK		     */
316#define BD_RxBDSeqN_MASK       0x7F000000 /* Rx BD Sequence Number	     */
317#define BD_CownsBD	       0x80000000 /* BD Controller owner bit	     */
318#define BD_RxBDID_SHIFT	       16
319#define BD_RxBDSeqN_SHIFT      24
320
321
322/* Some useful constants. */
323
324#define TX_CTL_CMD	(Tx_EnTxPar | Tx_EnLateColl | \
325	Tx_EnExColl | Tx_EnLCarr | Tx_EnExDefer | Tx_EnUnder | \
326	Tx_En)	/* maybe  0x7b01 */
327/* Do not use Rx_StripCRC -- it causes trouble on BLEx/FDAEx condition */
328#define RX_CTL_CMD	(Rx_EnGood | Rx_EnRxPar | Rx_EnLongErr | Rx_EnOver \
329	| Rx_EnCRCErr | Rx_EnAlign | Rx_RxEn) /* maybe 0x6f01 */
330#define INT_EN_CMD  (Int_NRAbtEn | \
331	Int_DmParErrEn | Int_DParDEn | Int_DParErrEn | \
332	Int_SSysErrEn  | Int_RMasAbtEn | Int_RTargAbtEn | \
333	Int_STargAbtEn | \
334	Int_BLExEn  | Int_FDAExEn) /* maybe 0xb7f*/
335#define DMA_CTL_CMD	DMA_BURST_SIZE
336#define HAVE_DMA_RXALIGN(lp)	likely((lp)->chiptype != TC35815CF)
337
338/* Tuning parameters */
339#define DMA_BURST_SIZE	32
340#define TX_THRESHOLD	1024
341/* used threshold with packet max byte for low pci transfer ability.*/
342#define TX_THRESHOLD_MAX 1536
343/* setting threshold max value when overrun error occurred this count. */
344#define TX_THRESHOLD_KEEP_LIMIT 10
345
346/* 16 + RX_BUF_NUM * 8 + RX_FD_NUM * 16 + TX_FD_NUM * 32 <= PAGE_SIZE*FD_PAGE_NUM */
347#define FD_PAGE_NUM 4
348#define RX_BUF_NUM	128	/* < 256 */
349#define RX_FD_NUM	256	/* >= 32 */
350#define TX_FD_NUM	128
351#if RX_CTL_CMD & Rx_LongEn
352#define RX_BUF_SIZE	PAGE_SIZE
353#elif RX_CTL_CMD & Rx_StripCRC
354#define RX_BUF_SIZE	\
355	L1_CACHE_ALIGN(ETH_FRAME_LEN + VLAN_HLEN + NET_IP_ALIGN)
356#else
357#define RX_BUF_SIZE	\
358	L1_CACHE_ALIGN(ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN + NET_IP_ALIGN)
359#endif
360#define RX_FD_RESERVE	(2 / 2)	/* max 2 BD per RxFD */
361#define NAPI_WEIGHT	16
362
363struct TxFD {
364	struct FDesc fd;
365	struct BDesc bd;
366	struct BDesc unused;
367};
368
369struct RxFD {
370	struct FDesc fd;
371	struct BDesc bd[0];	/* variable length */
372};
373
374struct FrFD {
375	struct FDesc fd;
376	struct BDesc bd[RX_BUF_NUM];
377};
378
379
380#define tc_readl(addr)	ioread32(addr)
381#define tc_writel(d, addr)	iowrite32(d, addr)
382
383#define TC35815_TX_TIMEOUT  msecs_to_jiffies(400)
384
385/* Information that need to be kept for each controller. */
386struct tc35815_local {
387	struct pci_dev *pci_dev;
388
389	struct net_device *dev;
390	struct napi_struct napi;
391
392	/* statistics */
393	struct {
394		int max_tx_qlen;
395		int tx_ints;
396		int rx_ints;
397		int tx_underrun;
398	} lstats;
399
400	/* Tx control lock.  This protects the transmit buffer ring
401	 * state along with the "tx full" state of the driver.  This
402	 * means all netif_queue flow control actions are protected
403	 * by this lock as well.
404	 */
405	spinlock_t lock;
406	spinlock_t rx_lock;
407
408	struct mii_bus *mii_bus;
409	struct phy_device *phy_dev;
410	int duplex;
411	int speed;
412	int link;
413	struct work_struct restart_work;
414
415	/*
416	 * Transmitting: Batch Mode.
417	 *	1 BD in 1 TxFD.
418	 * Receiving: Non-Packing Mode.
419	 *	1 circular FD for Free Buffer List.
420	 *	RX_BUF_NUM BD in Free Buffer FD.
421	 *	One Free Buffer BD has ETH_FRAME_LEN data buffer.
422	 */
423	void *fd_buf;	/* for TxFD, RxFD, FrFD */
424	dma_addr_t fd_buf_dma;
425	struct TxFD *tfd_base;
426	unsigned int tfd_start;
427	unsigned int tfd_end;
428	struct RxFD *rfd_base;
429	struct RxFD *rfd_limit;
430	struct RxFD *rfd_cur;
431	struct FrFD *fbl_ptr;
432	unsigned int fbl_count;
433	struct {
434		struct sk_buff *skb;
435		dma_addr_t skb_dma;
436	} tx_skbs[TX_FD_NUM], rx_skbs[RX_BUF_NUM];
437	u32 msg_enable;
438	enum tc35815_chiptype chiptype;
439};
440
441static inline dma_addr_t fd_virt_to_bus(struct tc35815_local *lp, void *virt)
442{
443	return lp->fd_buf_dma + ((u8 *)virt - (u8 *)lp->fd_buf);
444}
445#ifdef DEBUG
446static inline void *fd_bus_to_virt(struct tc35815_local *lp, dma_addr_t bus)
447{
448	return (void *)((u8 *)lp->fd_buf + (bus - lp->fd_buf_dma));
449}
450#endif
451static struct sk_buff *alloc_rxbuf_skb(struct net_device *dev,
452				       struct pci_dev *hwdev,
453				       dma_addr_t *dma_handle)
454{
455	struct sk_buff *skb;
456	skb = netdev_alloc_skb(dev, RX_BUF_SIZE);
457	if (!skb)
458		return NULL;
459	*dma_handle = pci_map_single(hwdev, skb->data, RX_BUF_SIZE,
460				     PCI_DMA_FROMDEVICE);
461	if (pci_dma_mapping_error(hwdev, *dma_handle)) {
462		dev_kfree_skb_any(skb);
463		return NULL;
464	}
465	skb_reserve(skb, 2);	/* make IP header 4byte aligned */
466	return skb;
467}
468
469static void free_rxbuf_skb(struct pci_dev *hwdev, struct sk_buff *skb, dma_addr_t dma_handle)
470{
471	pci_unmap_single(hwdev, dma_handle, RX_BUF_SIZE,
472			 PCI_DMA_FROMDEVICE);
473	dev_kfree_skb_any(skb);
474}
475
476/* Index to functions, as function prototypes. */
477
478static int	tc35815_open(struct net_device *dev);
479static int	tc35815_send_packet(struct sk_buff *skb, struct net_device *dev);
480static irqreturn_t	tc35815_interrupt(int irq, void *dev_id);
481static int	tc35815_rx(struct net_device *dev, int limit);
482static int	tc35815_poll(struct napi_struct *napi, int budget);
483static void	tc35815_txdone(struct net_device *dev);
484static int	tc35815_close(struct net_device *dev);
485static struct	net_device_stats *tc35815_get_stats(struct net_device *dev);
486static void	tc35815_set_multicast_list(struct net_device *dev);
487static void	tc35815_tx_timeout(struct net_device *dev);
488static int	tc35815_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
489#ifdef CONFIG_NET_POLL_CONTROLLER
490static void	tc35815_poll_controller(struct net_device *dev);
491#endif
492static const struct ethtool_ops tc35815_ethtool_ops;
493
494/* Example routines you must write ;->. */
495static void	tc35815_chip_reset(struct net_device *dev);
496static void	tc35815_chip_init(struct net_device *dev);
497
498#ifdef DEBUG
499static void	panic_queues(struct net_device *dev);
500#endif
501
502static void tc35815_restart_work(struct work_struct *work);
503
504static int tc_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
505{
506	struct net_device *dev = bus->priv;
507	struct tc35815_regs __iomem *tr =
508		(struct tc35815_regs __iomem *)dev->base_addr;
509	unsigned long timeout = jiffies + HZ;
510
511	tc_writel(MD_CA_Busy | (mii_id << 5) | (regnum & 0x1f), &tr->MD_CA);
512	udelay(12); /* it takes 32 x 400ns at least */
513	while (tc_readl(&tr->MD_CA) & MD_CA_Busy) {
514		if (time_after(jiffies, timeout))
515			return -EIO;
516		cpu_relax();
517	}
518	return tc_readl(&tr->MD_Data) & 0xffff;
519}
520
521static int tc_mdio_write(struct mii_bus *bus, int mii_id, int regnum, u16 val)
522{
523	struct net_device *dev = bus->priv;
524	struct tc35815_regs __iomem *tr =
525		(struct tc35815_regs __iomem *)dev->base_addr;
526	unsigned long timeout = jiffies + HZ;
527
528	tc_writel(val, &tr->MD_Data);
529	tc_writel(MD_CA_Busy | MD_CA_Wr | (mii_id << 5) | (regnum & 0x1f),
530		  &tr->MD_CA);
531	udelay(12); /* it takes 32 x 400ns at least */
532	while (tc_readl(&tr->MD_CA) & MD_CA_Busy) {
533		if (time_after(jiffies, timeout))
534			return -EIO;
535		cpu_relax();
536	}
537	return 0;
538}
539
540static void tc_handle_link_change(struct net_device *dev)
541{
542	struct tc35815_local *lp = netdev_priv(dev);
543	struct phy_device *phydev = lp->phy_dev;
544	unsigned long flags;
545	int status_change = 0;
546
547	spin_lock_irqsave(&lp->lock, flags);
548	if (phydev->link &&
549	    (lp->speed != phydev->speed || lp->duplex != phydev->duplex)) {
550		struct tc35815_regs __iomem *tr =
551			(struct tc35815_regs __iomem *)dev->base_addr;
552		u32 reg;
553
554		reg = tc_readl(&tr->MAC_Ctl);
555		reg |= MAC_HaltReq;
556		tc_writel(reg, &tr->MAC_Ctl);
557		if (phydev->duplex == DUPLEX_FULL)
558			reg |= MAC_FullDup;
559		else
560			reg &= ~MAC_FullDup;
561		tc_writel(reg, &tr->MAC_Ctl);
562		reg &= ~MAC_HaltReq;
563		tc_writel(reg, &tr->MAC_Ctl);
564
565		/*
566		 * TX4939 PCFG.SPEEDn bit will be changed on
567		 * NETDEV_CHANGE event.
568		 */
569		/*
570		 * WORKAROUND: enable LostCrS only if half duplex
571		 * operation.
572		 * (TX4939 does not have EnLCarr)
573		 */
574		if (phydev->duplex == DUPLEX_HALF &&
575		    lp->chiptype != TC35815_TX4939)
576			tc_writel(tc_readl(&tr->Tx_Ctl) | Tx_EnLCarr,
577				  &tr->Tx_Ctl);
578
579		lp->speed = phydev->speed;
580		lp->duplex = phydev->duplex;
581		status_change = 1;
582	}
583
584	if (phydev->link != lp->link) {
585		if (phydev->link) {
586			/* delayed promiscuous enabling */
587			if (dev->flags & IFF_PROMISC)
588				tc35815_set_multicast_list(dev);
589		} else {
590			lp->speed = 0;
591			lp->duplex = -1;
592		}
593		lp->link = phydev->link;
594
595		status_change = 1;
596	}
597	spin_unlock_irqrestore(&lp->lock, flags);
598
599	if (status_change && netif_msg_link(lp)) {
600		phy_print_status(phydev);
601		pr_debug("%s: MII BMCR %04x BMSR %04x LPA %04x\n",
602			 dev->name,
603			 phy_read(phydev, MII_BMCR),
604			 phy_read(phydev, MII_BMSR),
605			 phy_read(phydev, MII_LPA));
606	}
607}
608
609static int tc_mii_probe(struct net_device *dev)
610{
611	struct tc35815_local *lp = netdev_priv(dev);
612	struct phy_device *phydev = NULL;
613	int phy_addr;
614	u32 dropmask;
615
616	/* find the first phy */
617	for (phy_addr = 0; phy_addr < PHY_MAX_ADDR; phy_addr++) {
618		if (lp->mii_bus->phy_map[phy_addr]) {
619			if (phydev) {
620				printk(KERN_ERR "%s: multiple PHYs found\n",
621				       dev->name);
622				return -EINVAL;
623			}
624			phydev = lp->mii_bus->phy_map[phy_addr];
625			break;
626		}
627	}
628
629	if (!phydev) {
630		printk(KERN_ERR "%s: no PHY found\n", dev->name);
631		return -ENODEV;
632	}
633
634	/* attach the mac to the phy */
635	phydev = phy_connect(dev, dev_name(&phydev->dev),
636			     &tc_handle_link_change, 0,
637			     lp->chiptype == TC35815_TX4939 ?
638			     PHY_INTERFACE_MODE_RMII : PHY_INTERFACE_MODE_MII);
639	if (IS_ERR(phydev)) {
640		printk(KERN_ERR "%s: Could not attach to PHY\n", dev->name);
641		return PTR_ERR(phydev);
642	}
643	printk(KERN_INFO "%s: attached PHY driver [%s] "
644		"(mii_bus:phy_addr=%s, id=%x)\n",
645		dev->name, phydev->drv->name, dev_name(&phydev->dev),
646		phydev->phy_id);
647
648	/* mask with MAC supported features */
649	phydev->supported &= PHY_BASIC_FEATURES;
650	dropmask = 0;
651	if (options.speed == 10)
652		dropmask |= SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full;
653	else if (options.speed == 100)
654		dropmask |= SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full;
655	if (options.duplex == 1)
656		dropmask |= SUPPORTED_10baseT_Full | SUPPORTED_100baseT_Full;
657	else if (options.duplex == 2)
658		dropmask |= SUPPORTED_10baseT_Half | SUPPORTED_100baseT_Half;
659	phydev->supported &= ~dropmask;
660	phydev->advertising = phydev->supported;
661
662	lp->link = 0;
663	lp->speed = 0;
664	lp->duplex = -1;
665	lp->phy_dev = phydev;
666
667	return 0;
668}
669
670static int tc_mii_init(struct net_device *dev)
671{
672	struct tc35815_local *lp = netdev_priv(dev);
673	int err;
674	int i;
675
676	lp->mii_bus = mdiobus_alloc();
677	if (lp->mii_bus == NULL) {
678		err = -ENOMEM;
679		goto err_out;
680	}
681
682	lp->mii_bus->name = "tc35815_mii_bus";
683	lp->mii_bus->read = tc_mdio_read;
684	lp->mii_bus->write = tc_mdio_write;
685	snprintf(lp->mii_bus->id, MII_BUS_ID_SIZE, "%x",
686		 (lp->pci_dev->bus->number << 8) | lp->pci_dev->devfn);
687	lp->mii_bus->priv = dev;
688	lp->mii_bus->parent = &lp->pci_dev->dev;
689	lp->mii_bus->irq = kmalloc(sizeof(int) * PHY_MAX_ADDR, GFP_KERNEL);
690	if (!lp->mii_bus->irq) {
691		err = -ENOMEM;
692		goto err_out_free_mii_bus;
693	}
694
695	for (i = 0; i < PHY_MAX_ADDR; i++)
696		lp->mii_bus->irq[i] = PHY_POLL;
697
698	err = mdiobus_register(lp->mii_bus);
699	if (err)
700		goto err_out_free_mdio_irq;
701	err = tc_mii_probe(dev);
702	if (err)
703		goto err_out_unregister_bus;
704	return 0;
705
706err_out_unregister_bus:
707	mdiobus_unregister(lp->mii_bus);
708err_out_free_mdio_irq:
709	kfree(lp->mii_bus->irq);
710err_out_free_mii_bus:
711	mdiobus_free(lp->mii_bus);
712err_out:
713	return err;
714}
715
716#ifdef CONFIG_CPU_TX49XX
717/*
718 * Find a platform_device providing a MAC address.  The platform code
719 * should provide a "tc35815-mac" device with a MAC address in its
720 * platform_data.
721 */
722static int __devinit tc35815_mac_match(struct device *dev, void *data)
723{
724	struct platform_device *plat_dev = to_platform_device(dev);
725	struct pci_dev *pci_dev = data;
726	unsigned int id = pci_dev->irq;
727	return !strcmp(plat_dev->name, "tc35815-mac") && plat_dev->id == id;
728}
729
730static int __devinit tc35815_read_plat_dev_addr(struct net_device *dev)
731{
732	struct tc35815_local *lp = netdev_priv(dev);
733	struct device *pd = bus_find_device(&platform_bus_type, NULL,
734					    lp->pci_dev, tc35815_mac_match);
735	if (pd) {
736		if (pd->platform_data)
737			memcpy(dev->dev_addr, pd->platform_data, ETH_ALEN);
738		put_device(pd);
739		return is_valid_ether_addr(dev->dev_addr) ? 0 : -ENODEV;
740	}
741	return -ENODEV;
742}
743#else
744static int __devinit tc35815_read_plat_dev_addr(struct net_device *dev)
745{
746	return -ENODEV;
747}
748#endif
749
750static int __devinit tc35815_init_dev_addr(struct net_device *dev)
751{
752	struct tc35815_regs __iomem *tr =
753		(struct tc35815_regs __iomem *)dev->base_addr;
754	int i;
755
756	while (tc_readl(&tr->PROM_Ctl) & PROM_Busy)
757		;
758	for (i = 0; i < 6; i += 2) {
759		unsigned short data;
760		tc_writel(PROM_Busy | PROM_Read | (i / 2 + 2), &tr->PROM_Ctl);
761		while (tc_readl(&tr->PROM_Ctl) & PROM_Busy)
762			;
763		data = tc_readl(&tr->PROM_Data);
764		dev->dev_addr[i] = data & 0xff;
765		dev->dev_addr[i+1] = data >> 8;
766	}
767	if (!is_valid_ether_addr(dev->dev_addr))
768		return tc35815_read_plat_dev_addr(dev);
769	return 0;
770}
771
772static const struct net_device_ops tc35815_netdev_ops = {
773	.ndo_open		= tc35815_open,
774	.ndo_stop		= tc35815_close,
775	.ndo_start_xmit		= tc35815_send_packet,
776	.ndo_get_stats		= tc35815_get_stats,
777	.ndo_set_rx_mode	= tc35815_set_multicast_list,
778	.ndo_tx_timeout		= tc35815_tx_timeout,
779	.ndo_do_ioctl		= tc35815_ioctl,
780	.ndo_validate_addr	= eth_validate_addr,
781	.ndo_change_mtu		= eth_change_mtu,
782	.ndo_set_mac_address	= eth_mac_addr,
783#ifdef CONFIG_NET_POLL_CONTROLLER
784	.ndo_poll_controller	= tc35815_poll_controller,
785#endif
786};
787
788static int __devinit tc35815_init_one(struct pci_dev *pdev,
789				      const struct pci_device_id *ent)
790{
791	void __iomem *ioaddr = NULL;
792	struct net_device *dev;
793	struct tc35815_local *lp;
794	int rc;
795
796	static int printed_version;
797	if (!printed_version++) {
798		printk(version);
799		dev_printk(KERN_DEBUG, &pdev->dev,
800			   "speed:%d duplex:%d\n",
801			   options.speed, options.duplex);
802	}
803
804	if (!pdev->irq) {
805		dev_warn(&pdev->dev, "no IRQ assigned.\n");
806		return -ENODEV;
807	}
808
809	/* dev zeroed in alloc_etherdev */
810	dev = alloc_etherdev(sizeof(*lp));
811	if (dev == NULL)
812		return -ENOMEM;
813
814	SET_NETDEV_DEV(dev, &pdev->dev);
815	lp = netdev_priv(dev);
816	lp->dev = dev;
817
818	/* enable device (incl. PCI PM wakeup), and bus-mastering */
819	rc = pcim_enable_device(pdev);
820	if (rc)
821		goto err_out;
822	rc = pcim_iomap_regions(pdev, 1 << 1, MODNAME);
823	if (rc)
824		goto err_out;
825	pci_set_master(pdev);
826	ioaddr = pcim_iomap_table(pdev)[1];
827
828	/* Initialize the device structure. */
829	dev->netdev_ops = &tc35815_netdev_ops;
830	dev->ethtool_ops = &tc35815_ethtool_ops;
831	dev->watchdog_timeo = TC35815_TX_TIMEOUT;
832	netif_napi_add(dev, &lp->napi, tc35815_poll, NAPI_WEIGHT);
833
834	dev->irq = pdev->irq;
835	dev->base_addr = (unsigned long)ioaddr;
836
837	INIT_WORK(&lp->restart_work, tc35815_restart_work);
838	spin_lock_init(&lp->lock);
839	spin_lock_init(&lp->rx_lock);
840	lp->pci_dev = pdev;
841	lp->chiptype = ent->driver_data;
842
843	lp->msg_enable = NETIF_MSG_TX_ERR | NETIF_MSG_HW | NETIF_MSG_DRV | NETIF_MSG_LINK;
844	pci_set_drvdata(pdev, dev);
845
846	/* Soft reset the chip. */
847	tc35815_chip_reset(dev);
848
849	/* Retrieve the ethernet address. */
850	if (tc35815_init_dev_addr(dev)) {
851		dev_warn(&pdev->dev, "not valid ether addr\n");
852		eth_hw_addr_random(dev);
853	}
854
855	rc = register_netdev(dev);
856	if (rc)
857		goto err_out;
858
859	memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
860	printk(KERN_INFO "%s: %s at 0x%lx, %pM, IRQ %d\n",
861		dev->name,
862		chip_info[ent->driver_data].name,
863		dev->base_addr,
864		dev->dev_addr,
865		dev->irq);
866
867	rc = tc_mii_init(dev);
868	if (rc)
869		goto err_out_unregister;
870
871	return 0;
872
873err_out_unregister:
874	unregister_netdev(dev);
875err_out:
876	free_netdev(dev);
877	return rc;
878}
879
880
881static void __devexit tc35815_remove_one(struct pci_dev *pdev)
882{
883	struct net_device *dev = pci_get_drvdata(pdev);
884	struct tc35815_local *lp = netdev_priv(dev);
885
886	phy_disconnect(lp->phy_dev);
887	mdiobus_unregister(lp->mii_bus);
888	kfree(lp->mii_bus->irq);
889	mdiobus_free(lp->mii_bus);
890	unregister_netdev(dev);
891	free_netdev(dev);
892	pci_set_drvdata(pdev, NULL);
893}
894
895static int
896tc35815_init_queues(struct net_device *dev)
897{
898	struct tc35815_local *lp = netdev_priv(dev);
899	int i;
900	unsigned long fd_addr;
901
902	if (!lp->fd_buf) {
903		BUG_ON(sizeof(struct FDesc) +
904		       sizeof(struct BDesc) * RX_BUF_NUM +
905		       sizeof(struct FDesc) * RX_FD_NUM +
906		       sizeof(struct TxFD) * TX_FD_NUM >
907		       PAGE_SIZE * FD_PAGE_NUM);
908
909		lp->fd_buf = pci_alloc_consistent(lp->pci_dev,
910						  PAGE_SIZE * FD_PAGE_NUM,
911						  &lp->fd_buf_dma);
912		if (!lp->fd_buf)
913			return -ENOMEM;
914		for (i = 0; i < RX_BUF_NUM; i++) {
915			lp->rx_skbs[i].skb =
916				alloc_rxbuf_skb(dev, lp->pci_dev,
917						&lp->rx_skbs[i].skb_dma);
918			if (!lp->rx_skbs[i].skb) {
919				while (--i >= 0) {
920					free_rxbuf_skb(lp->pci_dev,
921						       lp->rx_skbs[i].skb,
922						       lp->rx_skbs[i].skb_dma);
923					lp->rx_skbs[i].skb = NULL;
924				}
925				pci_free_consistent(lp->pci_dev,
926						    PAGE_SIZE * FD_PAGE_NUM,
927						    lp->fd_buf,
928						    lp->fd_buf_dma);
929				lp->fd_buf = NULL;
930				return -ENOMEM;
931			}
932		}
933		printk(KERN_DEBUG "%s: FD buf %p DataBuf",
934		       dev->name, lp->fd_buf);
935		printk("\n");
936	} else {
937		for (i = 0; i < FD_PAGE_NUM; i++)
938			clear_page((void *)((unsigned long)lp->fd_buf +
939					    i * PAGE_SIZE));
940	}
941	fd_addr = (unsigned long)lp->fd_buf;
942
943	/* Free Descriptors (for Receive) */
944	lp->rfd_base = (struct RxFD *)fd_addr;
945	fd_addr += sizeof(struct RxFD) * RX_FD_NUM;
946	for (i = 0; i < RX_FD_NUM; i++)
947		lp->rfd_base[i].fd.FDCtl = cpu_to_le32(FD_CownsFD);
948	lp->rfd_cur = lp->rfd_base;
949	lp->rfd_limit = (struct RxFD *)fd_addr - (RX_FD_RESERVE + 1);
950
951	/* Transmit Descriptors */
952	lp->tfd_base = (struct TxFD *)fd_addr;
953	fd_addr += sizeof(struct TxFD) * TX_FD_NUM;
954	for (i = 0; i < TX_FD_NUM; i++) {
955		lp->tfd_base[i].fd.FDNext = cpu_to_le32(fd_virt_to_bus(lp, &lp->tfd_base[i+1]));
956		lp->tfd_base[i].fd.FDSystem = cpu_to_le32(0xffffffff);
957		lp->tfd_base[i].fd.FDCtl = cpu_to_le32(0);
958	}
959	lp->tfd_base[TX_FD_NUM-1].fd.FDNext = cpu_to_le32(fd_virt_to_bus(lp, &lp->tfd_base[0]));
960	lp->tfd_start = 0;
961	lp->tfd_end = 0;
962
963	/* Buffer List (for Receive) */
964	lp->fbl_ptr = (struct FrFD *)fd_addr;
965	lp->fbl_ptr->fd.FDNext = cpu_to_le32(fd_virt_to_bus(lp, lp->fbl_ptr));
966	lp->fbl_ptr->fd.FDCtl = cpu_to_le32(RX_BUF_NUM | FD_CownsFD);
967	/*
968	 * move all allocated skbs to head of rx_skbs[] array.
969	 * fbl_count mighe not be RX_BUF_NUM if alloc_rxbuf_skb() in
970	 * tc35815_rx() had failed.
971	 */
972	lp->fbl_count = 0;
973	for (i = 0; i < RX_BUF_NUM; i++) {
974		if (lp->rx_skbs[i].skb) {
975			if (i != lp->fbl_count) {
976				lp->rx_skbs[lp->fbl_count].skb =
977					lp->rx_skbs[i].skb;
978				lp->rx_skbs[lp->fbl_count].skb_dma =
979					lp->rx_skbs[i].skb_dma;
980			}
981			lp->fbl_count++;
982		}
983	}
984	for (i = 0; i < RX_BUF_NUM; i++) {
985		if (i >= lp->fbl_count) {
986			lp->fbl_ptr->bd[i].BuffData = 0;
987			lp->fbl_ptr->bd[i].BDCtl = 0;
988			continue;
989		}
990		lp->fbl_ptr->bd[i].BuffData =
991			cpu_to_le32(lp->rx_skbs[i].skb_dma);
992		/* BDID is index of FrFD.bd[] */
993		lp->fbl_ptr->bd[i].BDCtl =
994			cpu_to_le32(BD_CownsBD | (i << BD_RxBDID_SHIFT) |
995				    RX_BUF_SIZE);
996	}
997
998	printk(KERN_DEBUG "%s: TxFD %p RxFD %p FrFD %p\n",
999	       dev->name, lp->tfd_base, lp->rfd_base, lp->fbl_ptr);
1000	return 0;
1001}
1002
1003static void
1004tc35815_clear_queues(struct net_device *dev)
1005{
1006	struct tc35815_local *lp = netdev_priv(dev);
1007	int i;
1008
1009	for (i = 0; i < TX_FD_NUM; i++) {
1010		u32 fdsystem = le32_to_cpu(lp->tfd_base[i].fd.FDSystem);
1011		struct sk_buff *skb =
1012			fdsystem != 0xffffffff ?
1013			lp->tx_skbs[fdsystem].skb : NULL;
1014#ifdef DEBUG
1015		if (lp->tx_skbs[i].skb != skb) {
1016			printk("%s: tx_skbs mismatch(%d).\n", dev->name, i);
1017			panic_queues(dev);
1018		}
1019#else
1020		BUG_ON(lp->tx_skbs[i].skb != skb);
1021#endif
1022		if (skb) {
1023			pci_unmap_single(lp->pci_dev, lp->tx_skbs[i].skb_dma, skb->len, PCI_DMA_TODEVICE);
1024			lp->tx_skbs[i].skb = NULL;
1025			lp->tx_skbs[i].skb_dma = 0;
1026			dev_kfree_skb_any(skb);
1027		}
1028		lp->tfd_base[i].fd.FDSystem = cpu_to_le32(0xffffffff);
1029	}
1030
1031	tc35815_init_queues(dev);
1032}
1033
1034static void
1035tc35815_free_queues(struct net_device *dev)
1036{
1037	struct tc35815_local *lp = netdev_priv(dev);
1038	int i;
1039
1040	if (lp->tfd_base) {
1041		for (i = 0; i < TX_FD_NUM; i++) {
1042			u32 fdsystem = le32_to_cpu(lp->tfd_base[i].fd.FDSystem);
1043			struct sk_buff *skb =
1044				fdsystem != 0xffffffff ?
1045				lp->tx_skbs[fdsystem].skb : NULL;
1046#ifdef DEBUG
1047			if (lp->tx_skbs[i].skb != skb) {
1048				printk("%s: tx_skbs mismatch(%d).\n", dev->name, i);
1049				panic_queues(dev);
1050			}
1051#else
1052			BUG_ON(lp->tx_skbs[i].skb != skb);
1053#endif
1054			if (skb) {
1055				dev_kfree_skb(skb);
1056				pci_unmap_single(lp->pci_dev, lp->tx_skbs[i].skb_dma, skb->len, PCI_DMA_TODEVICE);
1057				lp->tx_skbs[i].skb = NULL;
1058				lp->tx_skbs[i].skb_dma = 0;
1059			}
1060			lp->tfd_base[i].fd.FDSystem = cpu_to_le32(0xffffffff);
1061		}
1062	}
1063
1064	lp->rfd_base = NULL;
1065	lp->rfd_limit = NULL;
1066	lp->rfd_cur = NULL;
1067	lp->fbl_ptr = NULL;
1068
1069	for (i = 0; i < RX_BUF_NUM; i++) {
1070		if (lp->rx_skbs[i].skb) {
1071			free_rxbuf_skb(lp->pci_dev, lp->rx_skbs[i].skb,
1072				       lp->rx_skbs[i].skb_dma);
1073			lp->rx_skbs[i].skb = NULL;
1074		}
1075	}
1076	if (lp->fd_buf) {
1077		pci_free_consistent(lp->pci_dev, PAGE_SIZE * FD_PAGE_NUM,
1078				    lp->fd_buf, lp->fd_buf_dma);
1079		lp->fd_buf = NULL;
1080	}
1081}
1082
1083static void
1084dump_txfd(struct TxFD *fd)
1085{
1086	printk("TxFD(%p): %08x %08x %08x %08x\n", fd,
1087	       le32_to_cpu(fd->fd.FDNext),
1088	       le32_to_cpu(fd->fd.FDSystem),
1089	       le32_to_cpu(fd->fd.FDStat),
1090	       le32_to_cpu(fd->fd.FDCtl));
1091	printk("BD: ");
1092	printk(" %08x %08x",
1093	       le32_to_cpu(fd->bd.BuffData),
1094	       le32_to_cpu(fd->bd.BDCtl));
1095	printk("\n");
1096}
1097
1098static int
1099dump_rxfd(struct RxFD *fd)
1100{
1101	int i, bd_count = (le32_to_cpu(fd->fd.FDCtl) & FD_BDCnt_MASK) >> FD_BDCnt_SHIFT;
1102	if (bd_count > 8)
1103		bd_count = 8;
1104	printk("RxFD(%p): %08x %08x %08x %08x\n", fd,
1105	       le32_to_cpu(fd->fd.FDNext),
1106	       le32_to_cpu(fd->fd.FDSystem),
1107	       le32_to_cpu(fd->fd.FDStat),
1108	       le32_to_cpu(fd->fd.FDCtl));
1109	if (le32_to_cpu(fd->fd.FDCtl) & FD_CownsFD)
1110		return 0;
1111	printk("BD: ");
1112	for (i = 0; i < bd_count; i++)
1113		printk(" %08x %08x",
1114		       le32_to_cpu(fd->bd[i].BuffData),
1115		       le32_to_cpu(fd->bd[i].BDCtl));
1116	printk("\n");
1117	return bd_count;
1118}
1119
1120#ifdef DEBUG
1121static void
1122dump_frfd(struct FrFD *fd)
1123{
1124	int i;
1125	printk("FrFD(%p): %08x %08x %08x %08x\n", fd,
1126	       le32_to_cpu(fd->fd.FDNext),
1127	       le32_to_cpu(fd->fd.FDSystem),
1128	       le32_to_cpu(fd->fd.FDStat),
1129	       le32_to_cpu(fd->fd.FDCtl));
1130	printk("BD: ");
1131	for (i = 0; i < RX_BUF_NUM; i++)
1132		printk(" %08x %08x",
1133		       le32_to_cpu(fd->bd[i].BuffData),
1134		       le32_to_cpu(fd->bd[i].BDCtl));
1135	printk("\n");
1136}
1137
1138static void
1139panic_queues(struct net_device *dev)
1140{
1141	struct tc35815_local *lp = netdev_priv(dev);
1142	int i;
1143
1144	printk("TxFD base %p, start %u, end %u\n",
1145	       lp->tfd_base, lp->tfd_start, lp->tfd_end);
1146	printk("RxFD base %p limit %p cur %p\n",
1147	       lp->rfd_base, lp->rfd_limit, lp->rfd_cur);
1148	printk("FrFD %p\n", lp->fbl_ptr);
1149	for (i = 0; i < TX_FD_NUM; i++)
1150		dump_txfd(&lp->tfd_base[i]);
1151	for (i = 0; i < RX_FD_NUM; i++) {
1152		int bd_count = dump_rxfd(&lp->rfd_base[i]);
1153		i += (bd_count + 1) / 2;	/* skip BDs */
1154	}
1155	dump_frfd(lp->fbl_ptr);
1156	panic("%s: Illegal queue state.", dev->name);
1157}
1158#endif
1159
1160static void print_eth(const u8 *add)
1161{
1162	printk(KERN_DEBUG "print_eth(%p)\n", add);
1163	printk(KERN_DEBUG " %pM => %pM : %02x%02x\n",
1164		add + 6, add, add[12], add[13]);
1165}
1166
1167static int tc35815_tx_full(struct net_device *dev)
1168{
1169	struct tc35815_local *lp = netdev_priv(dev);
1170	return (lp->tfd_start + 1) % TX_FD_NUM == lp->tfd_end;
1171}
1172
1173static void tc35815_restart(struct net_device *dev)
1174{
1175	struct tc35815_local *lp = netdev_priv(dev);
1176
1177	if (lp->phy_dev) {
1178		int timeout;
1179
1180		phy_write(lp->phy_dev, MII_BMCR, BMCR_RESET);
1181		timeout = 100;
1182		while (--timeout) {
1183			if (!(phy_read(lp->phy_dev, MII_BMCR) & BMCR_RESET))
1184				break;
1185			udelay(1);
1186		}
1187		if (!timeout)
1188			printk(KERN_ERR "%s: BMCR reset failed.\n", dev->name);
1189	}
1190
1191	spin_lock_bh(&lp->rx_lock);
1192	spin_lock_irq(&lp->lock);
1193	tc35815_chip_reset(dev);
1194	tc35815_clear_queues(dev);
1195	tc35815_chip_init(dev);
1196	/* Reconfigure CAM again since tc35815_chip_init() initialize it. */
1197	tc35815_set_multicast_list(dev);
1198	spin_unlock_irq(&lp->lock);
1199	spin_unlock_bh(&lp->rx_lock);
1200
1201	netif_wake_queue(dev);
1202}
1203
1204static void tc35815_restart_work(struct work_struct *work)
1205{
1206	struct tc35815_local *lp =
1207		container_of(work, struct tc35815_local, restart_work);
1208	struct net_device *dev = lp->dev;
1209
1210	tc35815_restart(dev);
1211}
1212
1213static void tc35815_schedule_restart(struct net_device *dev)
1214{
1215	struct tc35815_local *lp = netdev_priv(dev);
1216	struct tc35815_regs __iomem *tr =
1217		(struct tc35815_regs __iomem *)dev->base_addr;
1218	unsigned long flags;
1219
1220	/* disable interrupts */
1221	spin_lock_irqsave(&lp->lock, flags);
1222	tc_writel(0, &tr->Int_En);
1223	tc_writel(tc_readl(&tr->DMA_Ctl) | DMA_IntMask, &tr->DMA_Ctl);
1224	schedule_work(&lp->restart_work);
1225	spin_unlock_irqrestore(&lp->lock, flags);
1226}
1227
1228static void tc35815_tx_timeout(struct net_device *dev)
1229{
1230	struct tc35815_regs __iomem *tr =
1231		(struct tc35815_regs __iomem *)dev->base_addr;
1232
1233	printk(KERN_WARNING "%s: transmit timed out, status %#x\n",
1234	       dev->name, tc_readl(&tr->Tx_Stat));
1235
1236	/* Try to restart the adaptor. */
1237	tc35815_schedule_restart(dev);
1238	dev->stats.tx_errors++;
1239}
1240
1241/*
1242 * Open/initialize the controller. This is called (in the current kernel)
1243 * sometime after booting when the 'ifconfig' program is run.
1244 *
1245 * This routine should set everything up anew at each open, even
1246 * registers that "should" only need to be set once at boot, so that
1247 * there is non-reboot way to recover if something goes wrong.
1248 */
1249static int
1250tc35815_open(struct net_device *dev)
1251{
1252	struct tc35815_local *lp = netdev_priv(dev);
1253
1254	/*
1255	 * This is used if the interrupt line can turned off (shared).
1256	 * See 3c503.c for an example of selecting the IRQ at config-time.
1257	 */
1258	if (request_irq(dev->irq, tc35815_interrupt, IRQF_SHARED,
1259			dev->name, dev))
1260		return -EAGAIN;
1261
1262	tc35815_chip_reset(dev);
1263
1264	if (tc35815_init_queues(dev) != 0) {
1265		free_irq(dev->irq, dev);
1266		return -EAGAIN;
1267	}
1268
1269	napi_enable(&lp->napi);
1270
1271	/* Reset the hardware here. Don't forget to set the station address. */
1272	spin_lock_irq(&lp->lock);
1273	tc35815_chip_init(dev);
1274	spin_unlock_irq(&lp->lock);
1275
1276	netif_carrier_off(dev);
1277	/* schedule a link state check */
1278	phy_start(lp->phy_dev);
1279
1280	/* We are now ready to accept transmit requeusts from
1281	 * the queueing layer of the networking.
1282	 */
1283	netif_start_queue(dev);
1284
1285	return 0;
1286}
1287
1288/* This will only be invoked if your driver is _not_ in XOFF state.
1289 * What this means is that you need not check it, and that this
1290 * invariant will hold if you make sure that the netif_*_queue()
1291 * calls are done at the proper times.
1292 */
1293static int tc35815_send_packet(struct sk_buff *skb, struct net_device *dev)
1294{
1295	struct tc35815_local *lp = netdev_priv(dev);
1296	struct TxFD *txfd;
1297	unsigned long flags;
1298
1299	/* If some error occurs while trying to transmit this
1300	 * packet, you should return '1' from this function.
1301	 * In such a case you _may not_ do anything to the
1302	 * SKB, it is still owned by the network queueing
1303	 * layer when an error is returned.  This means you
1304	 * may not modify any SKB fields, you may not free
1305	 * the SKB, etc.
1306	 */
1307
1308	/* This is the most common case for modern hardware.
1309	 * The spinlock protects this code from the TX complete
1310	 * hardware interrupt handler.  Queue flow control is
1311	 * thus managed under this lock as well.
1312	 */
1313	spin_lock_irqsave(&lp->lock, flags);
1314
1315	/* failsafe... (handle txdone now if half of FDs are used) */
1316	if ((lp->tfd_start + TX_FD_NUM - lp->tfd_end) % TX_FD_NUM >
1317	    TX_FD_NUM / 2)
1318		tc35815_txdone(dev);
1319
1320	if (netif_msg_pktdata(lp))
1321		print_eth(skb->data);
1322#ifdef DEBUG
1323	if (lp->tx_skbs[lp->tfd_start].skb) {
1324		printk("%s: tx_skbs conflict.\n", dev->name);
1325		panic_queues(dev);
1326	}
1327#else
1328	BUG_ON(lp->tx_skbs[lp->tfd_start].skb);
1329#endif
1330	lp->tx_skbs[lp->tfd_start].skb = skb;
1331	lp->tx_skbs[lp->tfd_start].skb_dma = pci_map_single(lp->pci_dev, skb->data, skb->len, PCI_DMA_TODEVICE);
1332
1333	/*add to ring */
1334	txfd = &lp->tfd_base[lp->tfd_start];
1335	txfd->bd.BuffData = cpu_to_le32(lp->tx_skbs[lp->tfd_start].skb_dma);
1336	txfd->bd.BDCtl = cpu_to_le32(skb->len);
1337	txfd->fd.FDSystem = cpu_to_le32(lp->tfd_start);
1338	txfd->fd.FDCtl = cpu_to_le32(FD_CownsFD | (1 << FD_BDCnt_SHIFT));
1339
1340	if (lp->tfd_start == lp->tfd_end) {
1341		struct tc35815_regs __iomem *tr =
1342			(struct tc35815_regs __iomem *)dev->base_addr;
1343		/* Start DMA Transmitter. */
1344		txfd->fd.FDNext |= cpu_to_le32(FD_Next_EOL);
1345		txfd->fd.FDCtl |= cpu_to_le32(FD_FrmOpt_IntTx);
1346		if (netif_msg_tx_queued(lp)) {
1347			printk("%s: starting TxFD.\n", dev->name);
1348			dump_txfd(txfd);
1349		}
1350		tc_writel(fd_virt_to_bus(lp, txfd), &tr->TxFrmPtr);
1351	} else {
1352		txfd->fd.FDNext &= cpu_to_le32(~FD_Next_EOL);
1353		if (netif_msg_tx_queued(lp)) {
1354			printk("%s: queueing TxFD.\n", dev->name);
1355			dump_txfd(txfd);
1356		}
1357	}
1358	lp->tfd_start = (lp->tfd_start + 1) % TX_FD_NUM;
1359
1360	/* If we just used up the very last entry in the
1361	 * TX ring on this device, tell the queueing
1362	 * layer to send no more.
1363	 */
1364	if (tc35815_tx_full(dev)) {
1365		if (netif_msg_tx_queued(lp))
1366			printk(KERN_WARNING "%s: TxFD Exhausted.\n", dev->name);
1367		netif_stop_queue(dev);
1368	}
1369
1370	/* When the TX completion hw interrupt arrives, this
1371	 * is when the transmit statistics are updated.
1372	 */
1373
1374	spin_unlock_irqrestore(&lp->lock, flags);
1375	return NETDEV_TX_OK;
1376}
1377
1378#define FATAL_ERROR_INT \
1379	(Int_IntPCI | Int_DmParErr | Int_IntNRAbt)
1380static void tc35815_fatal_error_interrupt(struct net_device *dev, u32 status)
1381{
1382	static int count;
1383	printk(KERN_WARNING "%s: Fatal Error Intterrupt (%#x):",
1384	       dev->name, status);
1385	if (status & Int_IntPCI)
1386		printk(" IntPCI");
1387	if (status & Int_DmParErr)
1388		printk(" DmParErr");
1389	if (status & Int_IntNRAbt)
1390		printk(" IntNRAbt");
1391	printk("\n");
1392	if (count++ > 100)
1393		panic("%s: Too many fatal errors.", dev->name);
1394	printk(KERN_WARNING "%s: Resetting ...\n", dev->name);
1395	/* Try to restart the adaptor. */
1396	tc35815_schedule_restart(dev);
1397}
1398
1399static int tc35815_do_interrupt(struct net_device *dev, u32 status, int limit)
1400{
1401	struct tc35815_local *lp = netdev_priv(dev);
1402	int ret = -1;
1403
1404	/* Fatal errors... */
1405	if (status & FATAL_ERROR_INT) {
1406		tc35815_fatal_error_interrupt(dev, status);
1407		return 0;
1408	}
1409	/* recoverable errors */
1410	if (status & Int_IntFDAEx) {
1411		if (netif_msg_rx_err(lp))
1412			dev_warn(&dev->dev,
1413				 "Free Descriptor Area Exhausted (%#x).\n",
1414				 status);
1415		dev->stats.rx_dropped++;
1416		ret = 0;
1417	}
1418	if (status & Int_IntBLEx) {
1419		if (netif_msg_rx_err(lp))
1420			dev_warn(&dev->dev,
1421				 "Buffer List Exhausted (%#x).\n",
1422				 status);
1423		dev->stats.rx_dropped++;
1424		ret = 0;
1425	}
1426	if (status & Int_IntExBD) {
1427		if (netif_msg_rx_err(lp))
1428			dev_warn(&dev->dev,
1429				 "Excessive Buffer Descriptiors (%#x).\n",
1430				 status);
1431		dev->stats.rx_length_errors++;
1432		ret = 0;
1433	}
1434
1435	/* normal notification */
1436	if (status & Int_IntMacRx) {
1437		/* Got a packet(s). */
1438		ret = tc35815_rx(dev, limit);
1439		lp->lstats.rx_ints++;
1440	}
1441	if (status & Int_IntMacTx) {
1442		/* Transmit complete. */
1443		lp->lstats.tx_ints++;
1444		spin_lock_irq(&lp->lock);
1445		tc35815_txdone(dev);
1446		spin_unlock_irq(&lp->lock);
1447		if (ret < 0)
1448			ret = 0;
1449	}
1450	return ret;
1451}
1452
1453/*
1454 * The typical workload of the driver:
1455 * Handle the network interface interrupts.
1456 */
1457static irqreturn_t tc35815_interrupt(int irq, void *dev_id)
1458{
1459	struct net_device *dev = dev_id;
1460	struct tc35815_local *lp = netdev_priv(dev);
1461	struct tc35815_regs __iomem *tr =
1462		(struct tc35815_regs __iomem *)dev->base_addr;
1463	u32 dmactl = tc_readl(&tr->DMA_Ctl);
1464
1465	if (!(dmactl & DMA_IntMask)) {
1466		/* disable interrupts */
1467		tc_writel(dmactl | DMA_IntMask, &tr->DMA_Ctl);
1468		if (napi_schedule_prep(&lp->napi))
1469			__napi_schedule(&lp->napi);
1470		else {
1471			printk(KERN_ERR "%s: interrupt taken in poll\n",
1472			       dev->name);
1473			BUG();
1474		}
1475		(void)tc_readl(&tr->Int_Src);	/* flush */
1476		return IRQ_HANDLED;
1477	}
1478	return IRQ_NONE;
1479}
1480
1481#ifdef CONFIG_NET_POLL_CONTROLLER
1482static void tc35815_poll_controller(struct net_device *dev)
1483{
1484	disable_irq(dev->irq);
1485	tc35815_interrupt(dev->irq, dev);
1486	enable_irq(dev->irq);
1487}
1488#endif
1489
1490/* We have a good packet(s), get it/them out of the buffers. */
1491static int
1492tc35815_rx(struct net_device *dev, int limit)
1493{
1494	struct tc35815_local *lp = netdev_priv(dev);
1495	unsigned int fdctl;
1496	int i;
1497	int received = 0;
1498
1499	while (!((fdctl = le32_to_cpu(lp->rfd_cur->fd.FDCtl)) & FD_CownsFD)) {
1500		int status = le32_to_cpu(lp->rfd_cur->fd.FDStat);
1501		int pkt_len = fdctl & FD_FDLength_MASK;
1502		int bd_count = (fdctl & FD_BDCnt_MASK) >> FD_BDCnt_SHIFT;
1503#ifdef DEBUG
1504		struct RxFD *next_rfd;
1505#endif
1506#if (RX_CTL_CMD & Rx_StripCRC) == 0
1507		pkt_len -= ETH_FCS_LEN;
1508#endif
1509
1510		if (netif_msg_rx_status(lp))
1511			dump_rxfd(lp->rfd_cur);
1512		if (status & Rx_Good) {
1513			struct sk_buff *skb;
1514			unsigned char *data;
1515			int cur_bd;
1516
1517			if (--limit < 0)
1518				break;
1519			BUG_ON(bd_count > 1);
1520			cur_bd = (le32_to_cpu(lp->rfd_cur->bd[0].BDCtl)
1521				  & BD_RxBDID_MASK) >> BD_RxBDID_SHIFT;
1522#ifdef DEBUG
1523			if (cur_bd >= RX_BUF_NUM) {
1524				printk("%s: invalid BDID.\n", dev->name);
1525				panic_queues(dev);
1526			}
1527			BUG_ON(lp->rx_skbs[cur_bd].skb_dma !=
1528			       (le32_to_cpu(lp->rfd_cur->bd[0].BuffData) & ~3));
1529			if (!lp->rx_skbs[cur_bd].skb) {
1530				printk("%s: NULL skb.\n", dev->name);
1531				panic_queues(dev);
1532			}
1533#else
1534			BUG_ON(cur_bd >= RX_BUF_NUM);
1535#endif
1536			skb = lp->rx_skbs[cur_bd].skb;
1537			prefetch(skb->data);
1538			lp->rx_skbs[cur_bd].skb = NULL;
1539			pci_unmap_single(lp->pci_dev,
1540					 lp->rx_skbs[cur_bd].skb_dma,
1541					 RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
1542			if (!HAVE_DMA_RXALIGN(lp) && NET_IP_ALIGN)
1543				memmove(skb->data, skb->data - NET_IP_ALIGN,
1544					pkt_len);
1545			data = skb_put(skb, pkt_len);
1546			if (netif_msg_pktdata(lp))
1547				print_eth(data);
1548			skb->protocol = eth_type_trans(skb, dev);
1549			netif_receive_skb(skb);
1550			received++;
1551			dev->stats.rx_packets++;
1552			dev->stats.rx_bytes += pkt_len;
1553		} else {
1554			dev->stats.rx_errors++;
1555			if (netif_msg_rx_err(lp))
1556				dev_info(&dev->dev, "Rx error (status %x)\n",
1557					 status & Rx_Stat_Mask);
1558			/* WORKAROUND: LongErr and CRCErr means Overflow. */
1559			if ((status & Rx_LongErr) && (status & Rx_CRCErr)) {
1560				status &= ~(Rx_LongErr|Rx_CRCErr);
1561				status |= Rx_Over;
1562			}
1563			if (status & Rx_LongErr)
1564				dev->stats.rx_length_errors++;
1565			if (status & Rx_Over)
1566				dev->stats.rx_fifo_errors++;
1567			if (status & Rx_CRCErr)
1568				dev->stats.rx_crc_errors++;
1569			if (status & Rx_Align)
1570				dev->stats.rx_frame_errors++;
1571		}
1572
1573		if (bd_count > 0) {
1574			/* put Free Buffer back to controller */
1575			int bdctl = le32_to_cpu(lp->rfd_cur->bd[bd_count - 1].BDCtl);
1576			unsigned char id =
1577				(bdctl & BD_RxBDID_MASK) >> BD_RxBDID_SHIFT;
1578#ifdef DEBUG
1579			if (id >= RX_BUF_NUM) {
1580				printk("%s: invalid BDID.\n", dev->name);
1581				panic_queues(dev);
1582			}
1583#else
1584			BUG_ON(id >= RX_BUF_NUM);
1585#endif
1586			/* free old buffers */
1587			lp->fbl_count--;
1588			while (lp->fbl_count < RX_BUF_NUM)
1589			{
1590				unsigned char curid =
1591					(id + 1 + lp->fbl_count) % RX_BUF_NUM;
1592				struct BDesc *bd = &lp->fbl_ptr->bd[curid];
1593#ifdef DEBUG
1594				bdctl = le32_to_cpu(bd->BDCtl);
1595				if (bdctl & BD_CownsBD) {
1596					printk("%s: Freeing invalid BD.\n",
1597					       dev->name);
1598					panic_queues(dev);
1599				}
1600#endif
1601				/* pass BD to controller */
1602				if (!lp->rx_skbs[curid].skb) {
1603					lp->rx_skbs[curid].skb =
1604						alloc_rxbuf_skb(dev,
1605								lp->pci_dev,
1606								&lp->rx_skbs[curid].skb_dma);
1607					if (!lp->rx_skbs[curid].skb)
1608						break; /* try on next reception */
1609					bd->BuffData = cpu_to_le32(lp->rx_skbs[curid].skb_dma);
1610				}
1611				/* Note: BDLength was modified by chip. */
1612				bd->BDCtl = cpu_to_le32(BD_CownsBD |
1613							(curid << BD_RxBDID_SHIFT) |
1614							RX_BUF_SIZE);
1615				lp->fbl_count++;
1616			}
1617		}
1618
1619		/* put RxFD back to controller */
1620#ifdef DEBUG
1621		next_rfd = fd_bus_to_virt(lp,
1622					  le32_to_cpu(lp->rfd_cur->fd.FDNext));
1623		if (next_rfd < lp->rfd_base || next_rfd > lp->rfd_limit) {
1624			printk("%s: RxFD FDNext invalid.\n", dev->name);
1625			panic_queues(dev);
1626		}
1627#endif
1628		for (i = 0; i < (bd_count + 1) / 2 + 1; i++) {
1629			/* pass FD to controller */
1630#ifdef DEBUG
1631			lp->rfd_cur->fd.FDNext = cpu_to_le32(0xdeaddead);
1632#else
1633			lp->rfd_cur->fd.FDNext = cpu_to_le32(FD_Next_EOL);
1634#endif
1635			lp->rfd_cur->fd.FDCtl = cpu_to_le32(FD_CownsFD);
1636			lp->rfd_cur++;
1637		}
1638		if (lp->rfd_cur > lp->rfd_limit)
1639			lp->rfd_cur = lp->rfd_base;
1640#ifdef DEBUG
1641		if (lp->rfd_cur != next_rfd)
1642			printk("rfd_cur = %p, next_rfd %p\n",
1643			       lp->rfd_cur, next_rfd);
1644#endif
1645	}
1646
1647	return received;
1648}
1649
1650static int tc35815_poll(struct napi_struct *napi, int budget)
1651{
1652	struct tc35815_local *lp = container_of(napi, struct tc35815_local, napi);
1653	struct net_device *dev = lp->dev;
1654	struct tc35815_regs __iomem *tr =
1655		(struct tc35815_regs __iomem *)dev->base_addr;
1656	int received = 0, handled;
1657	u32 status;
1658
1659	spin_lock(&lp->rx_lock);
1660	status = tc_readl(&tr->Int_Src);
1661	do {
1662		/* BLEx, FDAEx will be cleared later */
1663		tc_writel(status & ~(Int_BLEx | Int_FDAEx),
1664			  &tr->Int_Src);	/* write to clear */
1665
1666		handled = tc35815_do_interrupt(dev, status, budget - received);
1667		if (status & (Int_BLEx | Int_FDAEx))
1668			tc_writel(status & (Int_BLEx | Int_FDAEx),
1669				  &tr->Int_Src);
1670		if (handled >= 0) {
1671			received += handled;
1672			if (received >= budget)
1673				break;
1674		}
1675		status = tc_readl(&tr->Int_Src);
1676	} while (status);
1677	spin_unlock(&lp->rx_lock);
1678
1679	if (received < budget) {
1680		napi_complete(napi);
1681		/* enable interrupts */
1682		tc_writel(tc_readl(&tr->DMA_Ctl) & ~DMA_IntMask, &tr->DMA_Ctl);
1683	}
1684	return received;
1685}
1686
1687#define TX_STA_ERR	(Tx_ExColl|Tx_Under|Tx_Defer|Tx_NCarr|Tx_LateColl|Tx_TxPar|Tx_SQErr)
1688
1689static void
1690tc35815_check_tx_stat(struct net_device *dev, int status)
1691{
1692	struct tc35815_local *lp = netdev_priv(dev);
1693	const char *msg = NULL;
1694
1695	/* count collisions */
1696	if (status & Tx_ExColl)
1697		dev->stats.collisions += 16;
1698	if (status & Tx_TxColl_MASK)
1699		dev->stats.collisions += status & Tx_TxColl_MASK;
1700
1701	/* TX4939 does not have NCarr */
1702	if (lp->chiptype == TC35815_TX4939)
1703		status &= ~Tx_NCarr;
1704	/* WORKAROUND: ignore LostCrS in full duplex operation */
1705	if (!lp->link || lp->duplex == DUPLEX_FULL)
1706		status &= ~Tx_NCarr;
1707
1708	if (!(status & TX_STA_ERR)) {
1709		/* no error. */
1710		dev->stats.tx_packets++;
1711		return;
1712	}
1713
1714	dev->stats.tx_errors++;
1715	if (status & Tx_ExColl) {
1716		dev->stats.tx_aborted_errors++;
1717		msg = "Excessive Collision.";
1718	}
1719	if (status & Tx_Under) {
1720		dev->stats.tx_fifo_errors++;
1721		msg = "Tx FIFO Underrun.";
1722		if (lp->lstats.tx_underrun < TX_THRESHOLD_KEEP_LIMIT) {
1723			lp->lstats.tx_underrun++;
1724			if (lp->lstats.tx_underrun >= TX_THRESHOLD_KEEP_LIMIT) {
1725				struct tc35815_regs __iomem *tr =
1726					(struct tc35815_regs __iomem *)dev->base_addr;
1727				tc_writel(TX_THRESHOLD_MAX, &tr->TxThrsh);
1728				msg = "Tx FIFO Underrun.Change Tx threshold to max.";
1729			}
1730		}
1731	}
1732	if (status & Tx_Defer) {
1733		dev->stats.tx_fifo_errors++;
1734		msg = "Excessive Deferral.";
1735	}
1736	if (status & Tx_NCarr) {
1737		dev->stats.tx_carrier_errors++;
1738		msg = "Lost Carrier Sense.";
1739	}
1740	if (status & Tx_LateColl) {
1741		dev->stats.tx_aborted_errors++;
1742		msg = "Late Collision.";
1743	}
1744	if (status & Tx_TxPar) {
1745		dev->stats.tx_fifo_errors++;
1746		msg = "Transmit Parity Error.";
1747	}
1748	if (status & Tx_SQErr) {
1749		dev->stats.tx_heartbeat_errors++;
1750		msg = "Signal Quality Error.";
1751	}
1752	if (msg && netif_msg_tx_err(lp))
1753		printk(KERN_WARNING "%s: %s (%#x)\n", dev->name, msg, status);
1754}
1755
1756/* This handles TX complete events posted by the device
1757 * via interrupts.
1758 */
1759static void
1760tc35815_txdone(struct net_device *dev)
1761{
1762	struct tc35815_local *lp = netdev_priv(dev);
1763	struct TxFD *txfd;
1764	unsigned int fdctl;
1765
1766	txfd = &lp->tfd_base[lp->tfd_end];
1767	while (lp->tfd_start != lp->tfd_end &&
1768	       !((fdctl = le32_to_cpu(txfd->fd.FDCtl)) & FD_CownsFD)) {
1769		int status = le32_to_cpu(txfd->fd.FDStat);
1770		struct sk_buff *skb;
1771		unsigned long fdnext = le32_to_cpu(txfd->fd.FDNext);
1772		u32 fdsystem = le32_to_cpu(txfd->fd.FDSystem);
1773
1774		if (netif_msg_tx_done(lp)) {
1775			printk("%s: complete TxFD.\n", dev->name);
1776			dump_txfd(txfd);
1777		}
1778		tc35815_check_tx_stat(dev, status);
1779
1780		skb = fdsystem != 0xffffffff ?
1781			lp->tx_skbs[fdsystem].skb : NULL;
1782#ifdef DEBUG
1783		if (lp->tx_skbs[lp->tfd_end].skb != skb) {
1784			printk("%s: tx_skbs mismatch.\n", dev->name);
1785			panic_queues(dev);
1786		}
1787#else
1788		BUG_ON(lp->tx_skbs[lp->tfd_end].skb != skb);
1789#endif
1790		if (skb) {
1791			dev->stats.tx_bytes += skb->len;
1792			pci_unmap_single(lp->pci_dev, lp->tx_skbs[lp->tfd_end].skb_dma, skb->len, PCI_DMA_TODEVICE);
1793			lp->tx_skbs[lp->tfd_end].skb = NULL;
1794			lp->tx_skbs[lp->tfd_end].skb_dma = 0;
1795			dev_kfree_skb_any(skb);
1796		}
1797		txfd->fd.FDSystem = cpu_to_le32(0xffffffff);
1798
1799		lp->tfd_end = (lp->tfd_end + 1) % TX_FD_NUM;
1800		txfd = &lp->tfd_base[lp->tfd_end];
1801#ifdef DEBUG
1802		if ((fdnext & ~FD_Next_EOL) != fd_virt_to_bus(lp, txfd)) {
1803			printk("%s: TxFD FDNext invalid.\n", dev->name);
1804			panic_queues(dev);
1805		}
1806#endif
1807		if (fdnext & FD_Next_EOL) {
1808			/* DMA Transmitter has been stopping... */
1809			if (lp->tfd_end != lp->tfd_start) {
1810				struct tc35815_regs __iomem *tr =
1811					(struct tc35815_regs __iomem *)dev->base_addr;
1812				int head = (lp->tfd_start + TX_FD_NUM - 1) % TX_FD_NUM;
1813				struct TxFD *txhead = &lp->tfd_base[head];
1814				int qlen = (lp->tfd_start + TX_FD_NUM
1815					    - lp->tfd_end) % TX_FD_NUM;
1816
1817#ifdef DEBUG
1818				if (!(le32_to_cpu(txfd->fd.FDCtl) & FD_CownsFD)) {
1819					printk("%s: TxFD FDCtl invalid.\n", dev->name);
1820					panic_queues(dev);
1821				}
1822#endif
1823				/* log max queue length */
1824				if (lp->lstats.max_tx_qlen < qlen)
1825					lp->lstats.max_tx_qlen = qlen;
1826
1827
1828				/* start DMA Transmitter again */
1829				txhead->fd.FDNext |= cpu_to_le32(FD_Next_EOL);
1830				txhead->fd.FDCtl |= cpu_to_le32(FD_FrmOpt_IntTx);
1831				if (netif_msg_tx_queued(lp)) {
1832					printk("%s: start TxFD on queue.\n",
1833					       dev->name);
1834					dump_txfd(txfd);
1835				}
1836				tc_writel(fd_virt_to_bus(lp, txfd), &tr->TxFrmPtr);
1837			}
1838			break;
1839		}
1840	}
1841
1842	/* If we had stopped the queue due to a "tx full"
1843	 * condition, and space has now been made available,
1844	 * wake up the queue.
1845	 */
1846	if (netif_queue_stopped(dev) && !tc35815_tx_full(dev))
1847		netif_wake_queue(dev);
1848}
1849
1850/* The inverse routine to tc35815_open(). */
1851static int
1852tc35815_close(struct net_device *dev)
1853{
1854	struct tc35815_local *lp = netdev_priv(dev);
1855
1856	netif_stop_queue(dev);
1857	napi_disable(&lp->napi);
1858	if (lp->phy_dev)
1859		phy_stop(lp->phy_dev);
1860	cancel_work_sync(&lp->restart_work);
1861
1862	/* Flush the Tx and disable Rx here. */
1863	tc35815_chip_reset(dev);
1864	free_irq(dev->irq, dev);
1865
1866	tc35815_free_queues(dev);
1867
1868	return 0;
1869
1870}
1871
1872/*
1873 * Get the current statistics.
1874 * This may be called with the card open or closed.
1875 */
1876static struct net_device_stats *tc35815_get_stats(struct net_device *dev)
1877{
1878	struct tc35815_regs __iomem *tr =
1879		(struct tc35815_regs __iomem *)dev->base_addr;
1880	if (netif_running(dev))
1881		/* Update the statistics from the device registers. */
1882		dev->stats.rx_missed_errors += tc_readl(&tr->Miss_Cnt);
1883
1884	return &dev->stats;
1885}
1886
1887static void tc35815_set_cam_entry(struct net_device *dev, int index, unsigned char *addr)
1888{
1889	struct tc35815_local *lp = netdev_priv(dev);
1890	struct tc35815_regs __iomem *tr =
1891		(struct tc35815_regs __iomem *)dev->base_addr;
1892	int cam_index = index * 6;
1893	u32 cam_data;
1894	u32 saved_addr;
1895
1896	saved_addr = tc_readl(&tr->CAM_Adr);
1897
1898	if (netif_msg_hw(lp))
1899		printk(KERN_DEBUG "%s: CAM %d: %pM\n",
1900			dev->name, index, addr);
1901	if (index & 1) {
1902		/* read modify write */
1903		tc_writel(cam_index - 2, &tr->CAM_Adr);
1904		cam_data = tc_readl(&tr->CAM_Data) & 0xffff0000;
1905		cam_data |= addr[0] << 8 | addr[1];
1906		tc_writel(cam_data, &tr->CAM_Data);
1907		/* write whole word */
1908		tc_writel(cam_index + 2, &tr->CAM_Adr);
1909		cam_data = (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) | addr[5];
1910		tc_writel(cam_data, &tr->CAM_Data);
1911	} else {
1912		/* write whole word */
1913		tc_writel(cam_index, &tr->CAM_Adr);
1914		cam_data = (addr[0] << 24) | (addr[1] << 16) | (addr[2] << 8) | addr[3];
1915		tc_writel(cam_data, &tr->CAM_Data);
1916		/* read modify write */
1917		tc_writel(cam_index + 4, &tr->CAM_Adr);
1918		cam_data = tc_readl(&tr->CAM_Data) & 0x0000ffff;
1919		cam_data |= addr[4] << 24 | (addr[5] << 16);
1920		tc_writel(cam_data, &tr->CAM_Data);
1921	}
1922
1923	tc_writel(saved_addr, &tr->CAM_Adr);
1924}
1925
1926
1927/*
1928 * Set or clear the multicast filter for this adaptor.
1929 * num_addrs == -1	Promiscuous mode, receive all packets
1930 * num_addrs == 0	Normal mode, clear multicast list
1931 * num_addrs > 0	Multicast mode, receive normal and MC packets,
1932 *			and do best-effort filtering.
1933 */
1934static void
1935tc35815_set_multicast_list(struct net_device *dev)
1936{
1937	struct tc35815_regs __iomem *tr =
1938		(struct tc35815_regs __iomem *)dev->base_addr;
1939
1940	if (dev->flags & IFF_PROMISC) {
1941		/* With some (all?) 100MHalf HUB, controller will hang
1942		 * if we enabled promiscuous mode before linkup... */
1943		struct tc35815_local *lp = netdev_priv(dev);
1944
1945		if (!lp->link)
1946			return;
1947		/* Enable promiscuous mode */
1948		tc_writel(CAM_CompEn | CAM_BroadAcc | CAM_GroupAcc | CAM_StationAcc, &tr->CAM_Ctl);
1949	} else if ((dev->flags & IFF_ALLMULTI) ||
1950		  netdev_mc_count(dev) > CAM_ENTRY_MAX - 3) {
1951		/* CAM 0, 1, 20 are reserved. */
1952		/* Disable promiscuous mode, use normal mode. */
1953		tc_writel(CAM_CompEn | CAM_BroadAcc | CAM_GroupAcc, &tr->CAM_Ctl);
1954	} else if (!netdev_mc_empty(dev)) {
1955		struct netdev_hw_addr *ha;
1956		int i;
1957		int ena_bits = CAM_Ena_Bit(CAM_ENTRY_SOURCE);
1958
1959		tc_writel(0, &tr->CAM_Ctl);
1960		/* Walk the address list, and load the filter */
1961		i = 0;
1962		netdev_for_each_mc_addr(ha, dev) {
1963			/* entry 0,1 is reserved. */
1964			tc35815_set_cam_entry(dev, i + 2, ha->addr);
1965			ena_bits |= CAM_Ena_Bit(i + 2);
1966			i++;
1967		}
1968		tc_writel(ena_bits, &tr->CAM_Ena);
1969		tc_writel(CAM_CompEn | CAM_BroadAcc, &tr->CAM_Ctl);
1970	} else {
1971		tc_writel(CAM_Ena_Bit(CAM_ENTRY_SOURCE), &tr->CAM_Ena);
1972		tc_writel(CAM_CompEn | CAM_BroadAcc, &tr->CAM_Ctl);
1973	}
1974}
1975
1976static void tc35815_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1977{
1978	struct tc35815_local *lp = netdev_priv(dev);
1979	strcpy(info->driver, MODNAME);
1980	strcpy(info->version, DRV_VERSION);
1981	strcpy(info->bus_info, pci_name(lp->pci_dev));
1982}
1983
1984static int tc35815_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1985{
1986	struct tc35815_local *lp = netdev_priv(dev);
1987
1988	if (!lp->phy_dev)
1989		return -ENODEV;
1990	return phy_ethtool_gset(lp->phy_dev, cmd);
1991}
1992
1993static int tc35815_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1994{
1995	struct tc35815_local *lp = netdev_priv(dev);
1996
1997	if (!lp->phy_dev)
1998		return -ENODEV;
1999	return phy_ethtool_sset(lp->phy_dev, cmd);
2000}
2001
2002static u32 tc35815_get_msglevel(struct net_device *dev)
2003{
2004	struct tc35815_local *lp = netdev_priv(dev);
2005	return lp->msg_enable;
2006}
2007
2008static void tc35815_set_msglevel(struct net_device *dev, u32 datum)
2009{
2010	struct tc35815_local *lp = netdev_priv(dev);
2011	lp->msg_enable = datum;
2012}
2013
2014static int tc35815_get_sset_count(struct net_device *dev, int sset)
2015{
2016	struct tc35815_local *lp = netdev_priv(dev);
2017
2018	switch (sset) {
2019	case ETH_SS_STATS:
2020		return sizeof(lp->lstats) / sizeof(int);
2021	default:
2022		return -EOPNOTSUPP;
2023	}
2024}
2025
2026static void tc35815_get_ethtool_stats(struct net_device *dev, struct ethtool_stats *stats, u64 *data)
2027{
2028	struct tc35815_local *lp = netdev_priv(dev);
2029	data[0] = lp->lstats.max_tx_qlen;
2030	data[1] = lp->lstats.tx_ints;
2031	data[2] = lp->lstats.rx_ints;
2032	data[3] = lp->lstats.tx_underrun;
2033}
2034
2035static struct {
2036	const char str[ETH_GSTRING_LEN];
2037} ethtool_stats_keys[] = {
2038	{ "max_tx_qlen" },
2039	{ "tx_ints" },
2040	{ "rx_ints" },
2041	{ "tx_underrun" },
2042};
2043
2044static void tc35815_get_strings(struct net_device *dev, u32 stringset, u8 *data)
2045{
2046	memcpy(data, ethtool_stats_keys, sizeof(ethtool_stats_keys));
2047}
2048
2049static const struct ethtool_ops tc35815_ethtool_ops = {
2050	.get_drvinfo		= tc35815_get_drvinfo,
2051	.get_settings		= tc35815_get_settings,
2052	.set_settings		= tc35815_set_settings,
2053	.get_link		= ethtool_op_get_link,
2054	.get_msglevel		= tc35815_get_msglevel,
2055	.set_msglevel		= tc35815_set_msglevel,
2056	.get_strings		= tc35815_get_strings,
2057	.get_sset_count		= tc35815_get_sset_count,
2058	.get_ethtool_stats	= tc35815_get_ethtool_stats,
2059};
2060
2061static int tc35815_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2062{
2063	struct tc35815_local *lp = netdev_priv(dev);
2064
2065	if (!netif_running(dev))
2066		return -EINVAL;
2067	if (!lp->phy_dev)
2068		return -ENODEV;
2069	return phy_mii_ioctl(lp->phy_dev, rq, cmd);
2070}
2071
2072static void tc35815_chip_reset(struct net_device *dev)
2073{
2074	struct tc35815_regs __iomem *tr =
2075		(struct tc35815_regs __iomem *)dev->base_addr;
2076	int i;
2077	/* reset the controller */
2078	tc_writel(MAC_Reset, &tr->MAC_Ctl);
2079	udelay(4); /* 3200ns */
2080	i = 0;
2081	while (tc_readl(&tr->MAC_Ctl) & MAC_Reset) {
2082		if (i++ > 100) {
2083			printk(KERN_ERR "%s: MAC reset failed.\n", dev->name);
2084			break;
2085		}
2086		mdelay(1);
2087	}
2088	tc_writel(0, &tr->MAC_Ctl);
2089
2090	/* initialize registers to default value */
2091	tc_writel(0, &tr->DMA_Ctl);
2092	tc_writel(0, &tr->TxThrsh);
2093	tc_writel(0, &tr->TxPollCtr);
2094	tc_writel(0, &tr->RxFragSize);
2095	tc_writel(0, &tr->Int_En);
2096	tc_writel(0, &tr->FDA_Bas);
2097	tc_writel(0, &tr->FDA_Lim);
2098	tc_writel(0xffffffff, &tr->Int_Src);	/* Write 1 to clear */
2099	tc_writel(0, &tr->CAM_Ctl);
2100	tc_writel(0, &tr->Tx_Ctl);
2101	tc_writel(0, &tr->Rx_Ctl);
2102	tc_writel(0, &tr->CAM_Ena);
2103	(void)tc_readl(&tr->Miss_Cnt);	/* Read to clear */
2104
2105	/* initialize internal SRAM */
2106	tc_writel(DMA_TestMode, &tr->DMA_Ctl);
2107	for (i = 0; i < 0x1000; i += 4) {
2108		tc_writel(i, &tr->CAM_Adr);
2109		tc_writel(0, &tr->CAM_Data);
2110	}
2111	tc_writel(0, &tr->DMA_Ctl);
2112}
2113
2114static void tc35815_chip_init(struct net_device *dev)
2115{
2116	struct tc35815_local *lp = netdev_priv(dev);
2117	struct tc35815_regs __iomem *tr =
2118		(struct tc35815_regs __iomem *)dev->base_addr;
2119	unsigned long txctl = TX_CTL_CMD;
2120
2121	/* load station address to CAM */
2122	tc35815_set_cam_entry(dev, CAM_ENTRY_SOURCE, dev->dev_addr);
2123
2124	/* Enable CAM (broadcast and unicast) */
2125	tc_writel(CAM_Ena_Bit(CAM_ENTRY_SOURCE), &tr->CAM_Ena);
2126	tc_writel(CAM_CompEn | CAM_BroadAcc, &tr->CAM_Ctl);
2127
2128	/* Use DMA_RxAlign_2 to make IP header 4-byte aligned. */
2129	if (HAVE_DMA_RXALIGN(lp))
2130		tc_writel(DMA_BURST_SIZE | DMA_RxAlign_2, &tr->DMA_Ctl);
2131	else
2132		tc_writel(DMA_BURST_SIZE, &tr->DMA_Ctl);
2133	tc_writel(0, &tr->TxPollCtr);	/* Batch mode */
2134	tc_writel(TX_THRESHOLD, &tr->TxThrsh);
2135	tc_writel(INT_EN_CMD, &tr->Int_En);
2136
2137	/* set queues */
2138	tc_writel(fd_virt_to_bus(lp, lp->rfd_base), &tr->FDA_Bas);
2139	tc_writel((unsigned long)lp->rfd_limit - (unsigned long)lp->rfd_base,
2140		  &tr->FDA_Lim);
2141	/*
2142	 * Activation method:
2143	 * First, enable the MAC Transmitter and the DMA Receive circuits.
2144	 * Then enable the DMA Transmitter and the MAC Receive circuits.
2145	 */
2146	tc_writel(fd_virt_to_bus(lp, lp->fbl_ptr), &tr->BLFrmPtr);	/* start DMA receiver */
2147	tc_writel(RX_CTL_CMD, &tr->Rx_Ctl);	/* start MAC receiver */
2148
2149	/* start MAC transmitter */
2150	/* TX4939 does not have EnLCarr */
2151	if (lp->chiptype == TC35815_TX4939)
2152		txctl &= ~Tx_EnLCarr;
2153	/* WORKAROUND: ignore LostCrS in full duplex operation */
2154	if (!lp->phy_dev || !lp->link || lp->duplex == DUPLEX_FULL)
2155		txctl &= ~Tx_EnLCarr;
2156	tc_writel(txctl, &tr->Tx_Ctl);
2157}
2158
2159#ifdef CONFIG_PM
2160static int tc35815_suspend(struct pci_dev *pdev, pm_message_t state)
2161{
2162	struct net_device *dev = pci_get_drvdata(pdev);
2163	struct tc35815_local *lp = netdev_priv(dev);
2164	unsigned long flags;
2165
2166	pci_save_state(pdev);
2167	if (!netif_running(dev))
2168		return 0;
2169	netif_device_detach(dev);
2170	if (lp->phy_dev)
2171		phy_stop(lp->phy_dev);
2172	spin_lock_irqsave(&lp->lock, flags);
2173	tc35815_chip_reset(dev);
2174	spin_unlock_irqrestore(&lp->lock, flags);
2175	pci_set_power_state(pdev, PCI_D3hot);
2176	return 0;
2177}
2178
2179static int tc35815_resume(struct pci_dev *pdev)
2180{
2181	struct net_device *dev = pci_get_drvdata(pdev);
2182	struct tc35815_local *lp = netdev_priv(dev);
2183
2184	pci_restore_state(pdev);
2185	if (!netif_running(dev))
2186		return 0;
2187	pci_set_power_state(pdev, PCI_D0);
2188	tc35815_restart(dev);
2189	netif_carrier_off(dev);
2190	if (lp->phy_dev)
2191		phy_start(lp->phy_dev);
2192	netif_device_attach(dev);
2193	return 0;
2194}
2195#endif /* CONFIG_PM */
2196
2197static struct pci_driver tc35815_pci_driver = {
2198	.name		= MODNAME,
2199	.id_table	= tc35815_pci_tbl,
2200	.probe		= tc35815_init_one,
2201	.remove		= __devexit_p(tc35815_remove_one),
2202#ifdef CONFIG_PM
2203	.suspend	= tc35815_suspend,
2204	.resume		= tc35815_resume,
2205#endif
2206};
2207
2208module_param_named(speed, options.speed, int, 0);
2209MODULE_PARM_DESC(speed, "0:auto, 10:10Mbps, 100:100Mbps");
2210module_param_named(duplex, options.duplex, int, 0);
2211MODULE_PARM_DESC(duplex, "0:auto, 1:half, 2:full");
2212
2213static int __init tc35815_init_module(void)
2214{
2215	return pci_register_driver(&tc35815_pci_driver);
2216}
2217
2218static void __exit tc35815_cleanup_module(void)
2219{
2220	pci_unregister_driver(&tc35815_pci_driver);
2221}
2222
2223module_init(tc35815_init_module);
2224module_exit(tc35815_cleanup_module);
2225
2226MODULE_DESCRIPTION("TOSHIBA TC35815 PCI 10M/100M Ethernet driver");
2227MODULE_LICENSE("GPL");
2228