tsi108_eth.c revision 20d4369b6892159895d6136946e692eaf29e8413
1/*******************************************************************************
2
3  Copyright(c) 2006 Tundra Semiconductor Corporation.
4
5  This program is free software; you can redistribute it and/or modify it
6  under the terms of the GNU General Public License as published by the Free
7  Software Foundation; either version 2 of the License, or (at your option)
8  any later version.
9
10  This program is distributed in the hope that it will be useful, but WITHOUT
11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  more details.
14
15  You should have received a copy of the GNU General Public License along with
16  this program; if not, write to the Free Software Foundation, Inc., 59
17  Temple Place - Suite 330, Boston, MA  02111-1307, USA.
18
19*******************************************************************************/
20
21/* This driver is based on the driver code originally developed
22 * for the Intel IOC80314 (ForestLake) Gigabit Ethernet by
23 * scott.wood@timesys.com  * Copyright (C) 2003 TimeSys Corporation
24 *
25 * Currently changes from original version are:
26 * - porting to Tsi108-based platform and kernel 2.6 (kong.lai@tundra.com)
27 * - modifications to handle two ports independently and support for
28 *   additional PHY devices (alexandre.bounine@tundra.com)
29 * - Get hardware information from platform device. (tie-fei.zang@freescale.com)
30 *
31 */
32
33#include <linux/module.h>
34#include <linux/types.h>
35#include <linux/init.h>
36#include <linux/interrupt.h>
37#include <linux/net.h>
38#include <linux/netdevice.h>
39#include <linux/etherdevice.h>
40#include <linux/ethtool.h>
41#include <linux/skbuff.h>
42#include <linux/spinlock.h>
43#include <linux/delay.h>
44#include <linux/crc32.h>
45#include <linux/mii.h>
46#include <linux/device.h>
47#include <linux/pci.h>
48#include <linux/rtnetlink.h>
49#include <linux/timer.h>
50#include <linux/platform_device.h>
51#include <linux/gfp.h>
52
53#include <asm/system.h>
54#include <asm/io.h>
55#include <asm/tsi108.h>
56
57#include "tsi108_eth.h"
58
59#define MII_READ_DELAY 10000	/* max link wait time in msec */
60
61#define TSI108_RXRING_LEN     256
62
63/* NOTE: The driver currently does not support receiving packets
64 * larger than the buffer size, so don't decrease this (unless you
65 * want to add such support).
66 */
67#define TSI108_RXBUF_SIZE     1536
68
69#define TSI108_TXRING_LEN     256
70
71#define TSI108_TX_INT_FREQ    64
72
73/* Check the phy status every half a second. */
74#define CHECK_PHY_INTERVAL (HZ/2)
75
76static int tsi108_init_one(struct platform_device *pdev);
77static int tsi108_ether_remove(struct platform_device *pdev);
78
79struct tsi108_prv_data {
80	void  __iomem *regs;	/* Base of normal regs */
81	void  __iomem *phyregs;	/* Base of register bank used for PHY access */
82
83	struct net_device *dev;
84	struct napi_struct napi;
85
86	unsigned int phy;		/* Index of PHY for this interface */
87	unsigned int irq_num;
88	unsigned int id;
89	unsigned int phy_type;
90
91	struct timer_list timer;/* Timer that triggers the check phy function */
92	unsigned int rxtail;	/* Next entry in rxring to read */
93	unsigned int rxhead;	/* Next entry in rxring to give a new buffer */
94	unsigned int rxfree;	/* Number of free, allocated RX buffers */
95
96	unsigned int rxpending;	/* Non-zero if there are still descriptors
97				 * to be processed from a previous descriptor
98				 * interrupt condition that has been cleared */
99
100	unsigned int txtail;	/* Next TX descriptor to check status on */
101	unsigned int txhead;	/* Next TX descriptor to use */
102
103	/* Number of free TX descriptors.  This could be calculated from
104	 * rxhead and rxtail if one descriptor were left unused to disambiguate
105	 * full and empty conditions, but it's simpler to just keep track
106	 * explicitly. */
107
108	unsigned int txfree;
109
110	unsigned int phy_ok;		/* The PHY is currently powered on. */
111
112	/* PHY status (duplex is 1 for half, 2 for full,
113	 * so that the default 0 indicates that neither has
114	 * yet been configured). */
115
116	unsigned int link_up;
117	unsigned int speed;
118	unsigned int duplex;
119
120	tx_desc *txring;
121	rx_desc *rxring;
122	struct sk_buff *txskbs[TSI108_TXRING_LEN];
123	struct sk_buff *rxskbs[TSI108_RXRING_LEN];
124
125	dma_addr_t txdma, rxdma;
126
127	/* txlock nests in misclock and phy_lock */
128
129	spinlock_t txlock, misclock;
130
131	/* stats is used to hold the upper bits of each hardware counter,
132	 * and tmpstats is used to hold the full values for returning
133	 * to the caller of get_stats().  They must be separate in case
134	 * an overflow interrupt occurs before the stats are consumed.
135	 */
136
137	struct net_device_stats stats;
138	struct net_device_stats tmpstats;
139
140	/* These stats are kept separate in hardware, thus require individual
141	 * fields for handling carry.  They are combined in get_stats.
142	 */
143
144	unsigned long rx_fcs;	/* Add to rx_frame_errors */
145	unsigned long rx_short_fcs;	/* Add to rx_frame_errors */
146	unsigned long rx_long_fcs;	/* Add to rx_frame_errors */
147	unsigned long rx_underruns;	/* Add to rx_length_errors */
148	unsigned long rx_overruns;	/* Add to rx_length_errors */
149
150	unsigned long tx_coll_abort;	/* Add to tx_aborted_errors/collisions */
151	unsigned long tx_pause_drop;	/* Add to tx_aborted_errors */
152
153	unsigned long mc_hash[16];
154	u32 msg_enable;			/* debug message level */
155	struct mii_if_info mii_if;
156	unsigned int init_media;
157};
158
159/* Structure for a device driver */
160
161static struct platform_driver tsi_eth_driver = {
162	.probe = tsi108_init_one,
163	.remove = tsi108_ether_remove,
164	.driver	= {
165		.name = "tsi-ethernet",
166		.owner = THIS_MODULE,
167	},
168};
169
170static void tsi108_timed_checker(unsigned long dev_ptr);
171
172static void dump_eth_one(struct net_device *dev)
173{
174	struct tsi108_prv_data *data = netdev_priv(dev);
175
176	printk("Dumping %s...\n", dev->name);
177	printk("intstat %x intmask %x phy_ok %d"
178	       " link %d speed %d duplex %d\n",
179	       TSI_READ(TSI108_EC_INTSTAT),
180	       TSI_READ(TSI108_EC_INTMASK), data->phy_ok,
181	       data->link_up, data->speed, data->duplex);
182
183	printk("TX: head %d, tail %d, free %d, stat %x, estat %x, err %x\n",
184	       data->txhead, data->txtail, data->txfree,
185	       TSI_READ(TSI108_EC_TXSTAT),
186	       TSI_READ(TSI108_EC_TXESTAT),
187	       TSI_READ(TSI108_EC_TXERR));
188
189	printk("RX: head %d, tail %d, free %d, stat %x,"
190	       " estat %x, err %x, pending %d\n\n",
191	       data->rxhead, data->rxtail, data->rxfree,
192	       TSI_READ(TSI108_EC_RXSTAT),
193	       TSI_READ(TSI108_EC_RXESTAT),
194	       TSI_READ(TSI108_EC_RXERR), data->rxpending);
195}
196
197/* Synchronization is needed between the thread and up/down events.
198 * Note that the PHY is accessed through the same registers for both
199 * interfaces, so this can't be made interface-specific.
200 */
201
202static DEFINE_SPINLOCK(phy_lock);
203
204static int tsi108_read_mii(struct tsi108_prv_data *data, int reg)
205{
206	unsigned i;
207
208	TSI_WRITE_PHY(TSI108_MAC_MII_ADDR,
209				(data->phy << TSI108_MAC_MII_ADDR_PHY) |
210				(reg << TSI108_MAC_MII_ADDR_REG));
211	TSI_WRITE_PHY(TSI108_MAC_MII_CMD, 0);
212	TSI_WRITE_PHY(TSI108_MAC_MII_CMD, TSI108_MAC_MII_CMD_READ);
213	for (i = 0; i < 100; i++) {
214		if (!(TSI_READ_PHY(TSI108_MAC_MII_IND) &
215		      (TSI108_MAC_MII_IND_NOTVALID | TSI108_MAC_MII_IND_BUSY)))
216			break;
217		udelay(10);
218	}
219
220	if (i == 100)
221		return 0xffff;
222	else
223		return TSI_READ_PHY(TSI108_MAC_MII_DATAIN);
224}
225
226static void tsi108_write_mii(struct tsi108_prv_data *data,
227				int reg, u16 val)
228{
229	unsigned i = 100;
230	TSI_WRITE_PHY(TSI108_MAC_MII_ADDR,
231				(data->phy << TSI108_MAC_MII_ADDR_PHY) |
232				(reg << TSI108_MAC_MII_ADDR_REG));
233	TSI_WRITE_PHY(TSI108_MAC_MII_DATAOUT, val);
234	while (i--) {
235		if(!(TSI_READ_PHY(TSI108_MAC_MII_IND) &
236			TSI108_MAC_MII_IND_BUSY))
237			break;
238		udelay(10);
239	}
240}
241
242static int tsi108_mdio_read(struct net_device *dev, int addr, int reg)
243{
244	struct tsi108_prv_data *data = netdev_priv(dev);
245	return tsi108_read_mii(data, reg);
246}
247
248static void tsi108_mdio_write(struct net_device *dev, int addr, int reg, int val)
249{
250	struct tsi108_prv_data *data = netdev_priv(dev);
251	tsi108_write_mii(data, reg, val);
252}
253
254static inline void tsi108_write_tbi(struct tsi108_prv_data *data,
255					int reg, u16 val)
256{
257	unsigned i = 1000;
258	TSI_WRITE(TSI108_MAC_MII_ADDR,
259			     (0x1e << TSI108_MAC_MII_ADDR_PHY)
260			     | (reg << TSI108_MAC_MII_ADDR_REG));
261	TSI_WRITE(TSI108_MAC_MII_DATAOUT, val);
262	while(i--) {
263		if(!(TSI_READ(TSI108_MAC_MII_IND) & TSI108_MAC_MII_IND_BUSY))
264			return;
265		udelay(10);
266	}
267	printk(KERN_ERR "%s function time out\n", __func__);
268}
269
270static int mii_speed(struct mii_if_info *mii)
271{
272	int advert, lpa, val, media;
273	int lpa2 = 0;
274	int speed;
275
276	if (!mii_link_ok(mii))
277		return 0;
278
279	val = (*mii->mdio_read) (mii->dev, mii->phy_id, MII_BMSR);
280	if ((val & BMSR_ANEGCOMPLETE) == 0)
281		return 0;
282
283	advert = (*mii->mdio_read) (mii->dev, mii->phy_id, MII_ADVERTISE);
284	lpa = (*mii->mdio_read) (mii->dev, mii->phy_id, MII_LPA);
285	media = mii_nway_result(advert & lpa);
286
287	if (mii->supports_gmii)
288		lpa2 = mii->mdio_read(mii->dev, mii->phy_id, MII_STAT1000);
289
290	speed = lpa2 & (LPA_1000FULL | LPA_1000HALF) ? 1000 :
291			(media & (ADVERTISE_100FULL | ADVERTISE_100HALF) ? 100 : 10);
292	return speed;
293}
294
295static void tsi108_check_phy(struct net_device *dev)
296{
297	struct tsi108_prv_data *data = netdev_priv(dev);
298	u32 mac_cfg2_reg, portctrl_reg;
299	u32 duplex;
300	u32 speed;
301	unsigned long flags;
302
303	spin_lock_irqsave(&phy_lock, flags);
304
305	if (!data->phy_ok)
306		goto out;
307
308	duplex = mii_check_media(&data->mii_if, netif_msg_link(data), data->init_media);
309	data->init_media = 0;
310
311	if (netif_carrier_ok(dev)) {
312
313		speed = mii_speed(&data->mii_if);
314
315		if ((speed != data->speed) || duplex) {
316
317			mac_cfg2_reg = TSI_READ(TSI108_MAC_CFG2);
318			portctrl_reg = TSI_READ(TSI108_EC_PORTCTRL);
319
320			mac_cfg2_reg &= ~TSI108_MAC_CFG2_IFACE_MASK;
321
322			if (speed == 1000) {
323				mac_cfg2_reg |= TSI108_MAC_CFG2_GIG;
324				portctrl_reg &= ~TSI108_EC_PORTCTRL_NOGIG;
325			} else {
326				mac_cfg2_reg |= TSI108_MAC_CFG2_NOGIG;
327				portctrl_reg |= TSI108_EC_PORTCTRL_NOGIG;
328			}
329
330			data->speed = speed;
331
332			if (data->mii_if.full_duplex) {
333				mac_cfg2_reg |= TSI108_MAC_CFG2_FULLDUPLEX;
334				portctrl_reg &= ~TSI108_EC_PORTCTRL_HALFDUPLEX;
335				data->duplex = 2;
336			} else {
337				mac_cfg2_reg &= ~TSI108_MAC_CFG2_FULLDUPLEX;
338				portctrl_reg |= TSI108_EC_PORTCTRL_HALFDUPLEX;
339				data->duplex = 1;
340			}
341
342			TSI_WRITE(TSI108_MAC_CFG2, mac_cfg2_reg);
343			TSI_WRITE(TSI108_EC_PORTCTRL, portctrl_reg);
344		}
345
346		if (data->link_up == 0) {
347			/* The manual says it can take 3-4 usecs for the speed change
348			 * to take effect.
349			 */
350			udelay(5);
351
352			spin_lock(&data->txlock);
353			if (is_valid_ether_addr(dev->dev_addr) && data->txfree)
354				netif_wake_queue(dev);
355
356			data->link_up = 1;
357			spin_unlock(&data->txlock);
358		}
359	} else {
360		if (data->link_up == 1) {
361			netif_stop_queue(dev);
362			data->link_up = 0;
363			printk(KERN_NOTICE "%s : link is down\n", dev->name);
364		}
365
366		goto out;
367	}
368
369
370out:
371	spin_unlock_irqrestore(&phy_lock, flags);
372}
373
374static inline void
375tsi108_stat_carry_one(int carry, int carry_bit, int carry_shift,
376		      unsigned long *upper)
377{
378	if (carry & carry_bit)
379		*upper += carry_shift;
380}
381
382static void tsi108_stat_carry(struct net_device *dev)
383{
384	struct tsi108_prv_data *data = netdev_priv(dev);
385	u32 carry1, carry2;
386
387	spin_lock_irq(&data->misclock);
388
389	carry1 = TSI_READ(TSI108_STAT_CARRY1);
390	carry2 = TSI_READ(TSI108_STAT_CARRY2);
391
392	TSI_WRITE(TSI108_STAT_CARRY1, carry1);
393	TSI_WRITE(TSI108_STAT_CARRY2, carry2);
394
395	tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXBYTES,
396			      TSI108_STAT_RXBYTES_CARRY, &data->stats.rx_bytes);
397
398	tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXPKTS,
399			      TSI108_STAT_RXPKTS_CARRY,
400			      &data->stats.rx_packets);
401
402	tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXFCS,
403			      TSI108_STAT_RXFCS_CARRY, &data->rx_fcs);
404
405	tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXMCAST,
406			      TSI108_STAT_RXMCAST_CARRY,
407			      &data->stats.multicast);
408
409	tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXALIGN,
410			      TSI108_STAT_RXALIGN_CARRY,
411			      &data->stats.rx_frame_errors);
412
413	tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXLENGTH,
414			      TSI108_STAT_RXLENGTH_CARRY,
415			      &data->stats.rx_length_errors);
416
417	tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXRUNT,
418			      TSI108_STAT_RXRUNT_CARRY, &data->rx_underruns);
419
420	tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXJUMBO,
421			      TSI108_STAT_RXJUMBO_CARRY, &data->rx_overruns);
422
423	tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXFRAG,
424			      TSI108_STAT_RXFRAG_CARRY, &data->rx_short_fcs);
425
426	tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXJABBER,
427			      TSI108_STAT_RXJABBER_CARRY, &data->rx_long_fcs);
428
429	tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXDROP,
430			      TSI108_STAT_RXDROP_CARRY,
431			      &data->stats.rx_missed_errors);
432
433	tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXBYTES,
434			      TSI108_STAT_TXBYTES_CARRY, &data->stats.tx_bytes);
435
436	tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXPKTS,
437			      TSI108_STAT_TXPKTS_CARRY,
438			      &data->stats.tx_packets);
439
440	tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXEXDEF,
441			      TSI108_STAT_TXEXDEF_CARRY,
442			      &data->stats.tx_aborted_errors);
443
444	tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXEXCOL,
445			      TSI108_STAT_TXEXCOL_CARRY, &data->tx_coll_abort);
446
447	tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXTCOL,
448			      TSI108_STAT_TXTCOL_CARRY,
449			      &data->stats.collisions);
450
451	tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXPAUSE,
452			      TSI108_STAT_TXPAUSEDROP_CARRY,
453			      &data->tx_pause_drop);
454
455	spin_unlock_irq(&data->misclock);
456}
457
458/* Read a stat counter atomically with respect to carries.
459 * data->misclock must be held.
460 */
461static inline unsigned long
462tsi108_read_stat(struct tsi108_prv_data * data, int reg, int carry_bit,
463		 int carry_shift, unsigned long *upper)
464{
465	int carryreg;
466	unsigned long val;
467
468	if (reg < 0xb0)
469		carryreg = TSI108_STAT_CARRY1;
470	else
471		carryreg = TSI108_STAT_CARRY2;
472
473      again:
474	val = TSI_READ(reg) | *upper;
475
476	/* Check to see if it overflowed, but the interrupt hasn't
477	 * been serviced yet.  If so, handle the carry here, and
478	 * try again.
479	 */
480
481	if (unlikely(TSI_READ(carryreg) & carry_bit)) {
482		*upper += carry_shift;
483		TSI_WRITE(carryreg, carry_bit);
484		goto again;
485	}
486
487	return val;
488}
489
490static struct net_device_stats *tsi108_get_stats(struct net_device *dev)
491{
492	unsigned long excol;
493
494	struct tsi108_prv_data *data = netdev_priv(dev);
495	spin_lock_irq(&data->misclock);
496
497	data->tmpstats.rx_packets =
498	    tsi108_read_stat(data, TSI108_STAT_RXPKTS,
499			     TSI108_STAT_CARRY1_RXPKTS,
500			     TSI108_STAT_RXPKTS_CARRY, &data->stats.rx_packets);
501
502	data->tmpstats.tx_packets =
503	    tsi108_read_stat(data, TSI108_STAT_TXPKTS,
504			     TSI108_STAT_CARRY2_TXPKTS,
505			     TSI108_STAT_TXPKTS_CARRY, &data->stats.tx_packets);
506
507	data->tmpstats.rx_bytes =
508	    tsi108_read_stat(data, TSI108_STAT_RXBYTES,
509			     TSI108_STAT_CARRY1_RXBYTES,
510			     TSI108_STAT_RXBYTES_CARRY, &data->stats.rx_bytes);
511
512	data->tmpstats.tx_bytes =
513	    tsi108_read_stat(data, TSI108_STAT_TXBYTES,
514			     TSI108_STAT_CARRY2_TXBYTES,
515			     TSI108_STAT_TXBYTES_CARRY, &data->stats.tx_bytes);
516
517	data->tmpstats.multicast =
518	    tsi108_read_stat(data, TSI108_STAT_RXMCAST,
519			     TSI108_STAT_CARRY1_RXMCAST,
520			     TSI108_STAT_RXMCAST_CARRY, &data->stats.multicast);
521
522	excol = tsi108_read_stat(data, TSI108_STAT_TXEXCOL,
523				 TSI108_STAT_CARRY2_TXEXCOL,
524				 TSI108_STAT_TXEXCOL_CARRY,
525				 &data->tx_coll_abort);
526
527	data->tmpstats.collisions =
528	    tsi108_read_stat(data, TSI108_STAT_TXTCOL,
529			     TSI108_STAT_CARRY2_TXTCOL,
530			     TSI108_STAT_TXTCOL_CARRY, &data->stats.collisions);
531
532	data->tmpstats.collisions += excol;
533
534	data->tmpstats.rx_length_errors =
535	    tsi108_read_stat(data, TSI108_STAT_RXLENGTH,
536			     TSI108_STAT_CARRY1_RXLENGTH,
537			     TSI108_STAT_RXLENGTH_CARRY,
538			     &data->stats.rx_length_errors);
539
540	data->tmpstats.rx_length_errors +=
541	    tsi108_read_stat(data, TSI108_STAT_RXRUNT,
542			     TSI108_STAT_CARRY1_RXRUNT,
543			     TSI108_STAT_RXRUNT_CARRY, &data->rx_underruns);
544
545	data->tmpstats.rx_length_errors +=
546	    tsi108_read_stat(data, TSI108_STAT_RXJUMBO,
547			     TSI108_STAT_CARRY1_RXJUMBO,
548			     TSI108_STAT_RXJUMBO_CARRY, &data->rx_overruns);
549
550	data->tmpstats.rx_frame_errors =
551	    tsi108_read_stat(data, TSI108_STAT_RXALIGN,
552			     TSI108_STAT_CARRY1_RXALIGN,
553			     TSI108_STAT_RXALIGN_CARRY,
554			     &data->stats.rx_frame_errors);
555
556	data->tmpstats.rx_frame_errors +=
557	    tsi108_read_stat(data, TSI108_STAT_RXFCS,
558			     TSI108_STAT_CARRY1_RXFCS, TSI108_STAT_RXFCS_CARRY,
559			     &data->rx_fcs);
560
561	data->tmpstats.rx_frame_errors +=
562	    tsi108_read_stat(data, TSI108_STAT_RXFRAG,
563			     TSI108_STAT_CARRY1_RXFRAG,
564			     TSI108_STAT_RXFRAG_CARRY, &data->rx_short_fcs);
565
566	data->tmpstats.rx_missed_errors =
567	    tsi108_read_stat(data, TSI108_STAT_RXDROP,
568			     TSI108_STAT_CARRY1_RXDROP,
569			     TSI108_STAT_RXDROP_CARRY,
570			     &data->stats.rx_missed_errors);
571
572	/* These three are maintained by software. */
573	data->tmpstats.rx_fifo_errors = data->stats.rx_fifo_errors;
574	data->tmpstats.rx_crc_errors = data->stats.rx_crc_errors;
575
576	data->tmpstats.tx_aborted_errors =
577	    tsi108_read_stat(data, TSI108_STAT_TXEXDEF,
578			     TSI108_STAT_CARRY2_TXEXDEF,
579			     TSI108_STAT_TXEXDEF_CARRY,
580			     &data->stats.tx_aborted_errors);
581
582	data->tmpstats.tx_aborted_errors +=
583	    tsi108_read_stat(data, TSI108_STAT_TXPAUSEDROP,
584			     TSI108_STAT_CARRY2_TXPAUSE,
585			     TSI108_STAT_TXPAUSEDROP_CARRY,
586			     &data->tx_pause_drop);
587
588	data->tmpstats.tx_aborted_errors += excol;
589
590	data->tmpstats.tx_errors = data->tmpstats.tx_aborted_errors;
591	data->tmpstats.rx_errors = data->tmpstats.rx_length_errors +
592	    data->tmpstats.rx_crc_errors +
593	    data->tmpstats.rx_frame_errors +
594	    data->tmpstats.rx_fifo_errors + data->tmpstats.rx_missed_errors;
595
596	spin_unlock_irq(&data->misclock);
597	return &data->tmpstats;
598}
599
600static void tsi108_restart_rx(struct tsi108_prv_data * data, struct net_device *dev)
601{
602	TSI_WRITE(TSI108_EC_RXQ_PTRHIGH,
603			     TSI108_EC_RXQ_PTRHIGH_VALID);
604
605	TSI_WRITE(TSI108_EC_RXCTRL, TSI108_EC_RXCTRL_GO
606			     | TSI108_EC_RXCTRL_QUEUE0);
607}
608
609static void tsi108_restart_tx(struct tsi108_prv_data * data)
610{
611	TSI_WRITE(TSI108_EC_TXQ_PTRHIGH,
612			     TSI108_EC_TXQ_PTRHIGH_VALID);
613
614	TSI_WRITE(TSI108_EC_TXCTRL, TSI108_EC_TXCTRL_IDLEINT |
615			     TSI108_EC_TXCTRL_GO | TSI108_EC_TXCTRL_QUEUE0);
616}
617
618/* txlock must be held by caller, with IRQs disabled, and
619 * with permission to re-enable them when the lock is dropped.
620 */
621static void tsi108_complete_tx(struct net_device *dev)
622{
623	struct tsi108_prv_data *data = netdev_priv(dev);
624	int tx;
625	struct sk_buff *skb;
626	int release = 0;
627
628	while (!data->txfree || data->txhead != data->txtail) {
629		tx = data->txtail;
630
631		if (data->txring[tx].misc & TSI108_TX_OWN)
632			break;
633
634		skb = data->txskbs[tx];
635
636		if (!(data->txring[tx].misc & TSI108_TX_OK))
637			printk("%s: bad tx packet, misc %x\n",
638			       dev->name, data->txring[tx].misc);
639
640		data->txtail = (data->txtail + 1) % TSI108_TXRING_LEN;
641		data->txfree++;
642
643		if (data->txring[tx].misc & TSI108_TX_EOF) {
644			dev_kfree_skb_any(skb);
645			release++;
646		}
647	}
648
649	if (release) {
650		if (is_valid_ether_addr(dev->dev_addr) && data->link_up)
651			netif_wake_queue(dev);
652	}
653}
654
655static int tsi108_send_packet(struct sk_buff * skb, struct net_device *dev)
656{
657	struct tsi108_prv_data *data = netdev_priv(dev);
658	int frags = skb_shinfo(skb)->nr_frags + 1;
659	int i;
660
661	if (!data->phy_ok && net_ratelimit())
662		printk(KERN_ERR "%s: Transmit while PHY is down!\n", dev->name);
663
664	if (!data->link_up) {
665		printk(KERN_ERR "%s: Transmit while link is down!\n",
666		       dev->name);
667		netif_stop_queue(dev);
668		return NETDEV_TX_BUSY;
669	}
670
671	if (data->txfree < MAX_SKB_FRAGS + 1) {
672		netif_stop_queue(dev);
673
674		if (net_ratelimit())
675			printk(KERN_ERR "%s: Transmit with full tx ring!\n",
676			       dev->name);
677		return NETDEV_TX_BUSY;
678	}
679
680	if (data->txfree - frags < MAX_SKB_FRAGS + 1) {
681		netif_stop_queue(dev);
682	}
683
684	spin_lock_irq(&data->txlock);
685
686	for (i = 0; i < frags; i++) {
687		int misc = 0;
688		int tx = data->txhead;
689
690		/* This is done to mark every TSI108_TX_INT_FREQ tx buffers with
691		 * the interrupt bit.  TX descriptor-complete interrupts are
692		 * enabled when the queue fills up, and masked when there is
693		 * still free space.  This way, when saturating the outbound
694		 * link, the tx interrupts are kept to a reasonable level.
695		 * When the queue is not full, reclamation of skbs still occurs
696		 * as new packets are transmitted, or on a queue-empty
697		 * interrupt.
698		 */
699
700		if ((tx % TSI108_TX_INT_FREQ == 0) &&
701		    ((TSI108_TXRING_LEN - data->txfree) >= TSI108_TX_INT_FREQ))
702			misc = TSI108_TX_INT;
703
704		data->txskbs[tx] = skb;
705
706		if (i == 0) {
707			data->txring[tx].buf0 = dma_map_single(NULL, skb->data,
708					skb_headlen(skb), DMA_TO_DEVICE);
709			data->txring[tx].len = skb_headlen(skb);
710			misc |= TSI108_TX_SOF;
711		} else {
712			const skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1];
713
714			data->txring[tx].buf0 = skb_frag_dma_map(NULL, frag,
715								 0,
716								 skb_frag_size(frag),
717								 DMA_TO_DEVICE);
718			data->txring[tx].len = skb_frag_size(frag);
719		}
720
721		if (i == frags - 1)
722			misc |= TSI108_TX_EOF;
723
724		if (netif_msg_pktdata(data)) {
725			int i;
726			printk("%s: Tx Frame contents (%d)\n", dev->name,
727			       skb->len);
728			for (i = 0; i < skb->len; i++)
729				printk(" %2.2x", skb->data[i]);
730			printk(".\n");
731		}
732		data->txring[tx].misc = misc | TSI108_TX_OWN;
733
734		data->txhead = (data->txhead + 1) % TSI108_TXRING_LEN;
735		data->txfree--;
736	}
737
738	tsi108_complete_tx(dev);
739
740	/* This must be done after the check for completed tx descriptors,
741	 * so that the tail pointer is correct.
742	 */
743
744	if (!(TSI_READ(TSI108_EC_TXSTAT) & TSI108_EC_TXSTAT_QUEUE0))
745		tsi108_restart_tx(data);
746
747	spin_unlock_irq(&data->txlock);
748	return NETDEV_TX_OK;
749}
750
751static int tsi108_complete_rx(struct net_device *dev, int budget)
752{
753	struct tsi108_prv_data *data = netdev_priv(dev);
754	int done = 0;
755
756	while (data->rxfree && done != budget) {
757		int rx = data->rxtail;
758		struct sk_buff *skb;
759
760		if (data->rxring[rx].misc & TSI108_RX_OWN)
761			break;
762
763		skb = data->rxskbs[rx];
764		data->rxtail = (data->rxtail + 1) % TSI108_RXRING_LEN;
765		data->rxfree--;
766		done++;
767
768		if (data->rxring[rx].misc & TSI108_RX_BAD) {
769			spin_lock_irq(&data->misclock);
770
771			if (data->rxring[rx].misc & TSI108_RX_CRC)
772				data->stats.rx_crc_errors++;
773			if (data->rxring[rx].misc & TSI108_RX_OVER)
774				data->stats.rx_fifo_errors++;
775
776			spin_unlock_irq(&data->misclock);
777
778			dev_kfree_skb_any(skb);
779			continue;
780		}
781		if (netif_msg_pktdata(data)) {
782			int i;
783			printk("%s: Rx Frame contents (%d)\n",
784			       dev->name, data->rxring[rx].len);
785			for (i = 0; i < data->rxring[rx].len; i++)
786				printk(" %2.2x", skb->data[i]);
787			printk(".\n");
788		}
789
790		skb_put(skb, data->rxring[rx].len);
791		skb->protocol = eth_type_trans(skb, dev);
792		netif_receive_skb(skb);
793	}
794
795	return done;
796}
797
798static int tsi108_refill_rx(struct net_device *dev, int budget)
799{
800	struct tsi108_prv_data *data = netdev_priv(dev);
801	int done = 0;
802
803	while (data->rxfree != TSI108_RXRING_LEN && done != budget) {
804		int rx = data->rxhead;
805		struct sk_buff *skb;
806
807		skb = netdev_alloc_skb_ip_align(dev, TSI108_RXBUF_SIZE);
808		data->rxskbs[rx] = skb;
809		if (!skb)
810			break;
811
812		data->rxring[rx].buf0 = dma_map_single(NULL, skb->data,
813							TSI108_RX_SKB_SIZE,
814							DMA_FROM_DEVICE);
815
816		/* Sometimes the hardware sets blen to zero after packet
817		 * reception, even though the manual says that it's only ever
818		 * modified by the driver.
819		 */
820
821		data->rxring[rx].blen = TSI108_RX_SKB_SIZE;
822		data->rxring[rx].misc = TSI108_RX_OWN | TSI108_RX_INT;
823
824		data->rxhead = (data->rxhead + 1) % TSI108_RXRING_LEN;
825		data->rxfree++;
826		done++;
827	}
828
829	if (done != 0 && !(TSI_READ(TSI108_EC_RXSTAT) &
830			   TSI108_EC_RXSTAT_QUEUE0))
831		tsi108_restart_rx(data, dev);
832
833	return done;
834}
835
836static int tsi108_poll(struct napi_struct *napi, int budget)
837{
838	struct tsi108_prv_data *data = container_of(napi, struct tsi108_prv_data, napi);
839	struct net_device *dev = data->dev;
840	u32 estat = TSI_READ(TSI108_EC_RXESTAT);
841	u32 intstat = TSI_READ(TSI108_EC_INTSTAT);
842	int num_received = 0, num_filled = 0;
843
844	intstat &= TSI108_INT_RXQUEUE0 | TSI108_INT_RXTHRESH |
845	    TSI108_INT_RXOVERRUN | TSI108_INT_RXERROR | TSI108_INT_RXWAIT;
846
847	TSI_WRITE(TSI108_EC_RXESTAT, estat);
848	TSI_WRITE(TSI108_EC_INTSTAT, intstat);
849
850	if (data->rxpending || (estat & TSI108_EC_RXESTAT_Q0_DESCINT))
851		num_received = tsi108_complete_rx(dev, budget);
852
853	/* This should normally fill no more slots than the number of
854	 * packets received in tsi108_complete_rx().  The exception
855	 * is when we previously ran out of memory for RX SKBs.  In that
856	 * case, it's helpful to obey the budget, not only so that the
857	 * CPU isn't hogged, but so that memory (which may still be low)
858	 * is not hogged by one device.
859	 *
860	 * A work unit is considered to be two SKBs to allow us to catch
861	 * up when the ring has shrunk due to out-of-memory but we're
862	 * still removing the full budget's worth of packets each time.
863	 */
864
865	if (data->rxfree < TSI108_RXRING_LEN)
866		num_filled = tsi108_refill_rx(dev, budget * 2);
867
868	if (intstat & TSI108_INT_RXERROR) {
869		u32 err = TSI_READ(TSI108_EC_RXERR);
870		TSI_WRITE(TSI108_EC_RXERR, err);
871
872		if (err) {
873			if (net_ratelimit())
874				printk(KERN_DEBUG "%s: RX error %x\n",
875				       dev->name, err);
876
877			if (!(TSI_READ(TSI108_EC_RXSTAT) &
878			      TSI108_EC_RXSTAT_QUEUE0))
879				tsi108_restart_rx(data, dev);
880		}
881	}
882
883	if (intstat & TSI108_INT_RXOVERRUN) {
884		spin_lock_irq(&data->misclock);
885		data->stats.rx_fifo_errors++;
886		spin_unlock_irq(&data->misclock);
887	}
888
889	if (num_received < budget) {
890		data->rxpending = 0;
891		napi_complete(napi);
892
893		TSI_WRITE(TSI108_EC_INTMASK,
894				     TSI_READ(TSI108_EC_INTMASK)
895				     & ~(TSI108_INT_RXQUEUE0
896					 | TSI108_INT_RXTHRESH |
897					 TSI108_INT_RXOVERRUN |
898					 TSI108_INT_RXERROR |
899					 TSI108_INT_RXWAIT));
900	} else {
901		data->rxpending = 1;
902	}
903
904	return num_received;
905}
906
907static void tsi108_rx_int(struct net_device *dev)
908{
909	struct tsi108_prv_data *data = netdev_priv(dev);
910
911	/* A race could cause dev to already be scheduled, so it's not an
912	 * error if that happens (and interrupts shouldn't be re-masked,
913	 * because that can cause harmful races, if poll has already
914	 * unmasked them but not cleared LINK_STATE_SCHED).
915	 *
916	 * This can happen if this code races with tsi108_poll(), which masks
917	 * the interrupts after tsi108_irq_one() read the mask, but before
918	 * napi_schedule is called.  It could also happen due to calls
919	 * from tsi108_check_rxring().
920	 */
921
922	if (napi_schedule_prep(&data->napi)) {
923		/* Mask, rather than ack, the receive interrupts.  The ack
924		 * will happen in tsi108_poll().
925		 */
926
927		TSI_WRITE(TSI108_EC_INTMASK,
928				     TSI_READ(TSI108_EC_INTMASK) |
929				     TSI108_INT_RXQUEUE0
930				     | TSI108_INT_RXTHRESH |
931				     TSI108_INT_RXOVERRUN | TSI108_INT_RXERROR |
932				     TSI108_INT_RXWAIT);
933		__napi_schedule(&data->napi);
934	} else {
935		if (!netif_running(dev)) {
936			/* This can happen if an interrupt occurs while the
937			 * interface is being brought down, as the START
938			 * bit is cleared before the stop function is called.
939			 *
940			 * In this case, the interrupts must be masked, or
941			 * they will continue indefinitely.
942			 *
943			 * There's a race here if the interface is brought down
944			 * and then up in rapid succession, as the device could
945			 * be made running after the above check and before
946			 * the masking below.  This will only happen if the IRQ
947			 * thread has a lower priority than the task brining
948			 * up the interface.  Fixing this race would likely
949			 * require changes in generic code.
950			 */
951
952			TSI_WRITE(TSI108_EC_INTMASK,
953					     TSI_READ
954					     (TSI108_EC_INTMASK) |
955					     TSI108_INT_RXQUEUE0 |
956					     TSI108_INT_RXTHRESH |
957					     TSI108_INT_RXOVERRUN |
958					     TSI108_INT_RXERROR |
959					     TSI108_INT_RXWAIT);
960		}
961	}
962}
963
964/* If the RX ring has run out of memory, try periodically
965 * to allocate some more, as otherwise poll would never
966 * get called (apart from the initial end-of-queue condition).
967 *
968 * This is called once per second (by default) from the thread.
969 */
970
971static void tsi108_check_rxring(struct net_device *dev)
972{
973	struct tsi108_prv_data *data = netdev_priv(dev);
974
975	/* A poll is scheduled, as opposed to caling tsi108_refill_rx
976	 * directly, so as to keep the receive path single-threaded
977	 * (and thus not needing a lock).
978	 */
979
980	if (netif_running(dev) && data->rxfree < TSI108_RXRING_LEN / 4)
981		tsi108_rx_int(dev);
982}
983
984static void tsi108_tx_int(struct net_device *dev)
985{
986	struct tsi108_prv_data *data = netdev_priv(dev);
987	u32 estat = TSI_READ(TSI108_EC_TXESTAT);
988
989	TSI_WRITE(TSI108_EC_TXESTAT, estat);
990	TSI_WRITE(TSI108_EC_INTSTAT, TSI108_INT_TXQUEUE0 |
991			     TSI108_INT_TXIDLE | TSI108_INT_TXERROR);
992	if (estat & TSI108_EC_TXESTAT_Q0_ERR) {
993		u32 err = TSI_READ(TSI108_EC_TXERR);
994		TSI_WRITE(TSI108_EC_TXERR, err);
995
996		if (err && net_ratelimit())
997			printk(KERN_ERR "%s: TX error %x\n", dev->name, err);
998	}
999
1000	if (estat & (TSI108_EC_TXESTAT_Q0_DESCINT | TSI108_EC_TXESTAT_Q0_EOQ)) {
1001		spin_lock(&data->txlock);
1002		tsi108_complete_tx(dev);
1003		spin_unlock(&data->txlock);
1004	}
1005}
1006
1007
1008static irqreturn_t tsi108_irq(int irq, void *dev_id)
1009{
1010	struct net_device *dev = dev_id;
1011	struct tsi108_prv_data *data = netdev_priv(dev);
1012	u32 stat = TSI_READ(TSI108_EC_INTSTAT);
1013
1014	if (!(stat & TSI108_INT_ANY))
1015		return IRQ_NONE;	/* Not our interrupt */
1016
1017	stat &= ~TSI_READ(TSI108_EC_INTMASK);
1018
1019	if (stat & (TSI108_INT_TXQUEUE0 | TSI108_INT_TXIDLE |
1020		    TSI108_INT_TXERROR))
1021		tsi108_tx_int(dev);
1022	if (stat & (TSI108_INT_RXQUEUE0 | TSI108_INT_RXTHRESH |
1023		    TSI108_INT_RXWAIT | TSI108_INT_RXOVERRUN |
1024		    TSI108_INT_RXERROR))
1025		tsi108_rx_int(dev);
1026
1027	if (stat & TSI108_INT_SFN) {
1028		if (net_ratelimit())
1029			printk(KERN_DEBUG "%s: SFN error\n", dev->name);
1030		TSI_WRITE(TSI108_EC_INTSTAT, TSI108_INT_SFN);
1031	}
1032
1033	if (stat & TSI108_INT_STATCARRY) {
1034		tsi108_stat_carry(dev);
1035		TSI_WRITE(TSI108_EC_INTSTAT, TSI108_INT_STATCARRY);
1036	}
1037
1038	return IRQ_HANDLED;
1039}
1040
1041static void tsi108_stop_ethernet(struct net_device *dev)
1042{
1043	struct tsi108_prv_data *data = netdev_priv(dev);
1044	int i = 1000;
1045	/* Disable all TX and RX queues ... */
1046	TSI_WRITE(TSI108_EC_TXCTRL, 0);
1047	TSI_WRITE(TSI108_EC_RXCTRL, 0);
1048
1049	/* ...and wait for them to become idle */
1050	while(i--) {
1051		if(!(TSI_READ(TSI108_EC_TXSTAT) & TSI108_EC_TXSTAT_ACTIVE))
1052			break;
1053		udelay(10);
1054	}
1055	i = 1000;
1056	while(i--){
1057		if(!(TSI_READ(TSI108_EC_RXSTAT) & TSI108_EC_RXSTAT_ACTIVE))
1058			return;
1059		udelay(10);
1060	}
1061	printk(KERN_ERR "%s function time out\n", __func__);
1062}
1063
1064static void tsi108_reset_ether(struct tsi108_prv_data * data)
1065{
1066	TSI_WRITE(TSI108_MAC_CFG1, TSI108_MAC_CFG1_SOFTRST);
1067	udelay(100);
1068	TSI_WRITE(TSI108_MAC_CFG1, 0);
1069
1070	TSI_WRITE(TSI108_EC_PORTCTRL, TSI108_EC_PORTCTRL_STATRST);
1071	udelay(100);
1072	TSI_WRITE(TSI108_EC_PORTCTRL,
1073			     TSI_READ(TSI108_EC_PORTCTRL) &
1074			     ~TSI108_EC_PORTCTRL_STATRST);
1075
1076	TSI_WRITE(TSI108_EC_TXCFG, TSI108_EC_TXCFG_RST);
1077	udelay(100);
1078	TSI_WRITE(TSI108_EC_TXCFG,
1079			     TSI_READ(TSI108_EC_TXCFG) &
1080			     ~TSI108_EC_TXCFG_RST);
1081
1082	TSI_WRITE(TSI108_EC_RXCFG, TSI108_EC_RXCFG_RST);
1083	udelay(100);
1084	TSI_WRITE(TSI108_EC_RXCFG,
1085			     TSI_READ(TSI108_EC_RXCFG) &
1086			     ~TSI108_EC_RXCFG_RST);
1087
1088	TSI_WRITE(TSI108_MAC_MII_MGMT_CFG,
1089			     TSI_READ(TSI108_MAC_MII_MGMT_CFG) |
1090			     TSI108_MAC_MII_MGMT_RST);
1091	udelay(100);
1092	TSI_WRITE(TSI108_MAC_MII_MGMT_CFG,
1093			     (TSI_READ(TSI108_MAC_MII_MGMT_CFG) &
1094			     ~(TSI108_MAC_MII_MGMT_RST |
1095			       TSI108_MAC_MII_MGMT_CLK)) | 0x07);
1096}
1097
1098static int tsi108_get_mac(struct net_device *dev)
1099{
1100	struct tsi108_prv_data *data = netdev_priv(dev);
1101	u32 word1 = TSI_READ(TSI108_MAC_ADDR1);
1102	u32 word2 = TSI_READ(TSI108_MAC_ADDR2);
1103
1104	/* Note that the octets are reversed from what the manual says,
1105	 * producing an even weirder ordering...
1106	 */
1107	if (word2 == 0 && word1 == 0) {
1108		dev->dev_addr[0] = 0x00;
1109		dev->dev_addr[1] = 0x06;
1110		dev->dev_addr[2] = 0xd2;
1111		dev->dev_addr[3] = 0x00;
1112		dev->dev_addr[4] = 0x00;
1113		if (0x8 == data->phy)
1114			dev->dev_addr[5] = 0x01;
1115		else
1116			dev->dev_addr[5] = 0x02;
1117
1118		word2 = (dev->dev_addr[0] << 16) | (dev->dev_addr[1] << 24);
1119
1120		word1 = (dev->dev_addr[2] << 0) | (dev->dev_addr[3] << 8) |
1121		    (dev->dev_addr[4] << 16) | (dev->dev_addr[5] << 24);
1122
1123		TSI_WRITE(TSI108_MAC_ADDR1, word1);
1124		TSI_WRITE(TSI108_MAC_ADDR2, word2);
1125	} else {
1126		dev->dev_addr[0] = (word2 >> 16) & 0xff;
1127		dev->dev_addr[1] = (word2 >> 24) & 0xff;
1128		dev->dev_addr[2] = (word1 >> 0) & 0xff;
1129		dev->dev_addr[3] = (word1 >> 8) & 0xff;
1130		dev->dev_addr[4] = (word1 >> 16) & 0xff;
1131		dev->dev_addr[5] = (word1 >> 24) & 0xff;
1132	}
1133
1134	if (!is_valid_ether_addr(dev->dev_addr)) {
1135		printk(KERN_ERR
1136		       "%s: Invalid MAC address. word1: %08x, word2: %08x\n",
1137		       dev->name, word1, word2);
1138		return -EINVAL;
1139	}
1140
1141	return 0;
1142}
1143
1144static int tsi108_set_mac(struct net_device *dev, void *addr)
1145{
1146	struct tsi108_prv_data *data = netdev_priv(dev);
1147	u32 word1, word2;
1148	int i;
1149
1150	if (!is_valid_ether_addr(addr))
1151		return -EINVAL;
1152
1153	for (i = 0; i < 6; i++)
1154		/* +2 is for the offset of the HW addr type */
1155		dev->dev_addr[i] = ((unsigned char *)addr)[i + 2];
1156
1157	word2 = (dev->dev_addr[0] << 16) | (dev->dev_addr[1] << 24);
1158
1159	word1 = (dev->dev_addr[2] << 0) | (dev->dev_addr[3] << 8) |
1160	    (dev->dev_addr[4] << 16) | (dev->dev_addr[5] << 24);
1161
1162	spin_lock_irq(&data->misclock);
1163	TSI_WRITE(TSI108_MAC_ADDR1, word1);
1164	TSI_WRITE(TSI108_MAC_ADDR2, word2);
1165	spin_lock(&data->txlock);
1166
1167	if (data->txfree && data->link_up)
1168		netif_wake_queue(dev);
1169
1170	spin_unlock(&data->txlock);
1171	spin_unlock_irq(&data->misclock);
1172	return 0;
1173}
1174
1175/* Protected by dev->xmit_lock. */
1176static void tsi108_set_rx_mode(struct net_device *dev)
1177{
1178	struct tsi108_prv_data *data = netdev_priv(dev);
1179	u32 rxcfg = TSI_READ(TSI108_EC_RXCFG);
1180
1181	if (dev->flags & IFF_PROMISC) {
1182		rxcfg &= ~(TSI108_EC_RXCFG_UC_HASH | TSI108_EC_RXCFG_MC_HASH);
1183		rxcfg |= TSI108_EC_RXCFG_UFE | TSI108_EC_RXCFG_MFE;
1184		goto out;
1185	}
1186
1187	rxcfg &= ~(TSI108_EC_RXCFG_UFE | TSI108_EC_RXCFG_MFE);
1188
1189	if (dev->flags & IFF_ALLMULTI || !netdev_mc_empty(dev)) {
1190		int i;
1191		struct netdev_hw_addr *ha;
1192		rxcfg |= TSI108_EC_RXCFG_MFE | TSI108_EC_RXCFG_MC_HASH;
1193
1194		memset(data->mc_hash, 0, sizeof(data->mc_hash));
1195
1196		netdev_for_each_mc_addr(ha, dev) {
1197			u32 hash, crc;
1198
1199			crc = ether_crc(6, ha->addr);
1200			hash = crc >> 23;
1201			__set_bit(hash, &data->mc_hash[0]);
1202		}
1203
1204		TSI_WRITE(TSI108_EC_HASHADDR,
1205				     TSI108_EC_HASHADDR_AUTOINC |
1206				     TSI108_EC_HASHADDR_MCAST);
1207
1208		for (i = 0; i < 16; i++) {
1209			/* The manual says that the hardware may drop
1210			 * back-to-back writes to the data register.
1211			 */
1212			udelay(1);
1213			TSI_WRITE(TSI108_EC_HASHDATA,
1214					     data->mc_hash[i]);
1215		}
1216	}
1217
1218      out:
1219	TSI_WRITE(TSI108_EC_RXCFG, rxcfg);
1220}
1221
1222static void tsi108_init_phy(struct net_device *dev)
1223{
1224	struct tsi108_prv_data *data = netdev_priv(dev);
1225	u32 i = 0;
1226	u16 phyval = 0;
1227	unsigned long flags;
1228
1229	spin_lock_irqsave(&phy_lock, flags);
1230
1231	tsi108_write_mii(data, MII_BMCR, BMCR_RESET);
1232	while (--i) {
1233		if(!(tsi108_read_mii(data, MII_BMCR) & BMCR_RESET))
1234			break;
1235		udelay(10);
1236	}
1237	if (i == 0)
1238		printk(KERN_ERR "%s function time out\n", __func__);
1239
1240	if (data->phy_type == TSI108_PHY_BCM54XX) {
1241		tsi108_write_mii(data, 0x09, 0x0300);
1242		tsi108_write_mii(data, 0x10, 0x1020);
1243		tsi108_write_mii(data, 0x1c, 0x8c00);
1244	}
1245
1246	tsi108_write_mii(data,
1247			 MII_BMCR,
1248			 BMCR_ANENABLE | BMCR_ANRESTART);
1249	while (tsi108_read_mii(data, MII_BMCR) & BMCR_ANRESTART)
1250		cpu_relax();
1251
1252	/* Set G/MII mode and receive clock select in TBI control #2.  The
1253	 * second port won't work if this isn't done, even though we don't
1254	 * use TBI mode.
1255	 */
1256
1257	tsi108_write_tbi(data, 0x11, 0x30);
1258
1259	/* FIXME: It seems to take more than 2 back-to-back reads to the
1260	 * PHY_STAT register before the link up status bit is set.
1261	 */
1262
1263	data->link_up = 0;
1264
1265	while (!((phyval = tsi108_read_mii(data, MII_BMSR)) &
1266		 BMSR_LSTATUS)) {
1267		if (i++ > (MII_READ_DELAY / 10)) {
1268			break;
1269		}
1270		spin_unlock_irqrestore(&phy_lock, flags);
1271		msleep(10);
1272		spin_lock_irqsave(&phy_lock, flags);
1273	}
1274
1275	data->mii_if.supports_gmii = mii_check_gmii_support(&data->mii_if);
1276	printk(KERN_DEBUG "PHY_STAT reg contains %08x\n", phyval);
1277	data->phy_ok = 1;
1278	data->init_media = 1;
1279	spin_unlock_irqrestore(&phy_lock, flags);
1280}
1281
1282static void tsi108_kill_phy(struct net_device *dev)
1283{
1284	struct tsi108_prv_data *data = netdev_priv(dev);
1285	unsigned long flags;
1286
1287	spin_lock_irqsave(&phy_lock, flags);
1288	tsi108_write_mii(data, MII_BMCR, BMCR_PDOWN);
1289	data->phy_ok = 0;
1290	spin_unlock_irqrestore(&phy_lock, flags);
1291}
1292
1293static int tsi108_open(struct net_device *dev)
1294{
1295	int i;
1296	struct tsi108_prv_data *data = netdev_priv(dev);
1297	unsigned int rxring_size = TSI108_RXRING_LEN * sizeof(rx_desc);
1298	unsigned int txring_size = TSI108_TXRING_LEN * sizeof(tx_desc);
1299
1300	i = request_irq(data->irq_num, tsi108_irq, 0, dev->name, dev);
1301	if (i != 0) {
1302		printk(KERN_ERR "tsi108_eth%d: Could not allocate IRQ%d.\n",
1303		       data->id, data->irq_num);
1304		return i;
1305	} else {
1306		dev->irq = data->irq_num;
1307		printk(KERN_NOTICE
1308		       "tsi108_open : Port %d Assigned IRQ %d to %s\n",
1309		       data->id, dev->irq, dev->name);
1310	}
1311
1312	data->rxring = dma_alloc_coherent(NULL, rxring_size,
1313			&data->rxdma, GFP_KERNEL);
1314
1315	if (!data->rxring) {
1316		printk(KERN_DEBUG
1317		       "TSI108_ETH: failed to allocate memory for rxring!\n");
1318		return -ENOMEM;
1319	} else {
1320		memset(data->rxring, 0, rxring_size);
1321	}
1322
1323	data->txring = dma_alloc_coherent(NULL, txring_size,
1324			&data->txdma, GFP_KERNEL);
1325
1326	if (!data->txring) {
1327		printk(KERN_DEBUG
1328		       "TSI108_ETH: failed to allocate memory for txring!\n");
1329		pci_free_consistent(0, rxring_size, data->rxring, data->rxdma);
1330		return -ENOMEM;
1331	} else {
1332		memset(data->txring, 0, txring_size);
1333	}
1334
1335	for (i = 0; i < TSI108_RXRING_LEN; i++) {
1336		data->rxring[i].next0 = data->rxdma + (i + 1) * sizeof(rx_desc);
1337		data->rxring[i].blen = TSI108_RXBUF_SIZE;
1338		data->rxring[i].vlan = 0;
1339	}
1340
1341	data->rxring[TSI108_RXRING_LEN - 1].next0 = data->rxdma;
1342
1343	data->rxtail = 0;
1344	data->rxhead = 0;
1345
1346	for (i = 0; i < TSI108_RXRING_LEN; i++) {
1347		struct sk_buff *skb;
1348
1349		skb = netdev_alloc_skb_ip_align(dev, TSI108_RXBUF_SIZE);
1350		if (!skb) {
1351			/* Bah.  No memory for now, but maybe we'll get
1352			 * some more later.
1353			 * For now, we'll live with the smaller ring.
1354			 */
1355			printk(KERN_WARNING
1356			       "%s: Could only allocate %d receive skb(s).\n",
1357			       dev->name, i);
1358			data->rxhead = i;
1359			break;
1360		}
1361
1362		data->rxskbs[i] = skb;
1363		data->rxskbs[i] = skb;
1364		data->rxring[i].buf0 = virt_to_phys(data->rxskbs[i]->data);
1365		data->rxring[i].misc = TSI108_RX_OWN | TSI108_RX_INT;
1366	}
1367
1368	data->rxfree = i;
1369	TSI_WRITE(TSI108_EC_RXQ_PTRLOW, data->rxdma);
1370
1371	for (i = 0; i < TSI108_TXRING_LEN; i++) {
1372		data->txring[i].next0 = data->txdma + (i + 1) * sizeof(tx_desc);
1373		data->txring[i].misc = 0;
1374	}
1375
1376	data->txring[TSI108_TXRING_LEN - 1].next0 = data->txdma;
1377	data->txtail = 0;
1378	data->txhead = 0;
1379	data->txfree = TSI108_TXRING_LEN;
1380	TSI_WRITE(TSI108_EC_TXQ_PTRLOW, data->txdma);
1381	tsi108_init_phy(dev);
1382
1383	napi_enable(&data->napi);
1384
1385	setup_timer(&data->timer, tsi108_timed_checker, (unsigned long)dev);
1386	mod_timer(&data->timer, jiffies + 1);
1387
1388	tsi108_restart_rx(data, dev);
1389
1390	TSI_WRITE(TSI108_EC_INTSTAT, ~0);
1391
1392	TSI_WRITE(TSI108_EC_INTMASK,
1393			     ~(TSI108_INT_TXQUEUE0 | TSI108_INT_RXERROR |
1394			       TSI108_INT_RXTHRESH | TSI108_INT_RXQUEUE0 |
1395			       TSI108_INT_RXOVERRUN | TSI108_INT_RXWAIT |
1396			       TSI108_INT_SFN | TSI108_INT_STATCARRY));
1397
1398	TSI_WRITE(TSI108_MAC_CFG1,
1399			     TSI108_MAC_CFG1_RXEN | TSI108_MAC_CFG1_TXEN);
1400	netif_start_queue(dev);
1401	return 0;
1402}
1403
1404static int tsi108_close(struct net_device *dev)
1405{
1406	struct tsi108_prv_data *data = netdev_priv(dev);
1407
1408	netif_stop_queue(dev);
1409	napi_disable(&data->napi);
1410
1411	del_timer_sync(&data->timer);
1412
1413	tsi108_stop_ethernet(dev);
1414	tsi108_kill_phy(dev);
1415	TSI_WRITE(TSI108_EC_INTMASK, ~0);
1416	TSI_WRITE(TSI108_MAC_CFG1, 0);
1417
1418	/* Check for any pending TX packets, and drop them. */
1419
1420	while (!data->txfree || data->txhead != data->txtail) {
1421		int tx = data->txtail;
1422		struct sk_buff *skb;
1423		skb = data->txskbs[tx];
1424		data->txtail = (data->txtail + 1) % TSI108_TXRING_LEN;
1425		data->txfree++;
1426		dev_kfree_skb(skb);
1427	}
1428
1429	free_irq(data->irq_num, dev);
1430
1431	/* Discard the RX ring. */
1432
1433	while (data->rxfree) {
1434		int rx = data->rxtail;
1435		struct sk_buff *skb;
1436
1437		skb = data->rxskbs[rx];
1438		data->rxtail = (data->rxtail + 1) % TSI108_RXRING_LEN;
1439		data->rxfree--;
1440		dev_kfree_skb(skb);
1441	}
1442
1443	dma_free_coherent(0,
1444			    TSI108_RXRING_LEN * sizeof(rx_desc),
1445			    data->rxring, data->rxdma);
1446	dma_free_coherent(0,
1447			    TSI108_TXRING_LEN * sizeof(tx_desc),
1448			    data->txring, data->txdma);
1449
1450	return 0;
1451}
1452
1453static void tsi108_init_mac(struct net_device *dev)
1454{
1455	struct tsi108_prv_data *data = netdev_priv(dev);
1456
1457	TSI_WRITE(TSI108_MAC_CFG2, TSI108_MAC_CFG2_DFLT_PREAMBLE |
1458			     TSI108_MAC_CFG2_PADCRC);
1459
1460	TSI_WRITE(TSI108_EC_TXTHRESH,
1461			     (192 << TSI108_EC_TXTHRESH_STARTFILL) |
1462			     (192 << TSI108_EC_TXTHRESH_STOPFILL));
1463
1464	TSI_WRITE(TSI108_STAT_CARRYMASK1,
1465			     ~(TSI108_STAT_CARRY1_RXBYTES |
1466			       TSI108_STAT_CARRY1_RXPKTS |
1467			       TSI108_STAT_CARRY1_RXFCS |
1468			       TSI108_STAT_CARRY1_RXMCAST |
1469			       TSI108_STAT_CARRY1_RXALIGN |
1470			       TSI108_STAT_CARRY1_RXLENGTH |
1471			       TSI108_STAT_CARRY1_RXRUNT |
1472			       TSI108_STAT_CARRY1_RXJUMBO |
1473			       TSI108_STAT_CARRY1_RXFRAG |
1474			       TSI108_STAT_CARRY1_RXJABBER |
1475			       TSI108_STAT_CARRY1_RXDROP));
1476
1477	TSI_WRITE(TSI108_STAT_CARRYMASK2,
1478			     ~(TSI108_STAT_CARRY2_TXBYTES |
1479			       TSI108_STAT_CARRY2_TXPKTS |
1480			       TSI108_STAT_CARRY2_TXEXDEF |
1481			       TSI108_STAT_CARRY2_TXEXCOL |
1482			       TSI108_STAT_CARRY2_TXTCOL |
1483			       TSI108_STAT_CARRY2_TXPAUSE));
1484
1485	TSI_WRITE(TSI108_EC_PORTCTRL, TSI108_EC_PORTCTRL_STATEN);
1486	TSI_WRITE(TSI108_MAC_CFG1, 0);
1487
1488	TSI_WRITE(TSI108_EC_RXCFG,
1489			     TSI108_EC_RXCFG_SE | TSI108_EC_RXCFG_BFE);
1490
1491	TSI_WRITE(TSI108_EC_TXQ_CFG, TSI108_EC_TXQ_CFG_DESC_INT |
1492			     TSI108_EC_TXQ_CFG_EOQ_OWN_INT |
1493			     TSI108_EC_TXQ_CFG_WSWP | (TSI108_PBM_PORT <<
1494						TSI108_EC_TXQ_CFG_SFNPORT));
1495
1496	TSI_WRITE(TSI108_EC_RXQ_CFG, TSI108_EC_RXQ_CFG_DESC_INT |
1497			     TSI108_EC_RXQ_CFG_EOQ_OWN_INT |
1498			     TSI108_EC_RXQ_CFG_WSWP | (TSI108_PBM_PORT <<
1499						TSI108_EC_RXQ_CFG_SFNPORT));
1500
1501	TSI_WRITE(TSI108_EC_TXQ_BUFCFG,
1502			     TSI108_EC_TXQ_BUFCFG_BURST256 |
1503			     TSI108_EC_TXQ_BUFCFG_BSWP | (TSI108_PBM_PORT <<
1504						TSI108_EC_TXQ_BUFCFG_SFNPORT));
1505
1506	TSI_WRITE(TSI108_EC_RXQ_BUFCFG,
1507			     TSI108_EC_RXQ_BUFCFG_BURST256 |
1508			     TSI108_EC_RXQ_BUFCFG_BSWP | (TSI108_PBM_PORT <<
1509						TSI108_EC_RXQ_BUFCFG_SFNPORT));
1510
1511	TSI_WRITE(TSI108_EC_INTMASK, ~0);
1512}
1513
1514static int tsi108_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1515{
1516	struct tsi108_prv_data *data = netdev_priv(dev);
1517	unsigned long flags;
1518	int rc;
1519
1520	spin_lock_irqsave(&data->txlock, flags);
1521	rc = mii_ethtool_gset(&data->mii_if, cmd);
1522	spin_unlock_irqrestore(&data->txlock, flags);
1523
1524	return rc;
1525}
1526
1527static int tsi108_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1528{
1529	struct tsi108_prv_data *data = netdev_priv(dev);
1530	unsigned long flags;
1531	int rc;
1532
1533	spin_lock_irqsave(&data->txlock, flags);
1534	rc = mii_ethtool_sset(&data->mii_if, cmd);
1535	spin_unlock_irqrestore(&data->txlock, flags);
1536
1537	return rc;
1538}
1539
1540static int tsi108_do_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1541{
1542	struct tsi108_prv_data *data = netdev_priv(dev);
1543	if (!netif_running(dev))
1544		return -EINVAL;
1545	return generic_mii_ioctl(&data->mii_if, if_mii(rq), cmd, NULL);
1546}
1547
1548static const struct ethtool_ops tsi108_ethtool_ops = {
1549	.get_link 	= ethtool_op_get_link,
1550	.get_settings	= tsi108_get_settings,
1551	.set_settings	= tsi108_set_settings,
1552};
1553
1554static const struct net_device_ops tsi108_netdev_ops = {
1555	.ndo_open		= tsi108_open,
1556	.ndo_stop		= tsi108_close,
1557	.ndo_start_xmit		= tsi108_send_packet,
1558	.ndo_set_rx_mode	= tsi108_set_rx_mode,
1559	.ndo_get_stats		= tsi108_get_stats,
1560	.ndo_do_ioctl		= tsi108_do_ioctl,
1561	.ndo_set_mac_address	= tsi108_set_mac,
1562	.ndo_validate_addr	= eth_validate_addr,
1563	.ndo_change_mtu		= eth_change_mtu,
1564};
1565
1566static int
1567tsi108_init_one(struct platform_device *pdev)
1568{
1569	struct net_device *dev = NULL;
1570	struct tsi108_prv_data *data = NULL;
1571	hw_info *einfo;
1572	int err = 0;
1573
1574	einfo = pdev->dev.platform_data;
1575
1576	if (NULL == einfo) {
1577		printk(KERN_ERR "tsi-eth %d: Missing additional data!\n",
1578		       pdev->id);
1579		return -ENODEV;
1580	}
1581
1582	/* Create an ethernet device instance */
1583
1584	dev = alloc_etherdev(sizeof(struct tsi108_prv_data));
1585	if (!dev) {
1586		printk("tsi108_eth: Could not allocate a device structure\n");
1587		return -ENOMEM;
1588	}
1589
1590	printk("tsi108_eth%d: probe...\n", pdev->id);
1591	data = netdev_priv(dev);
1592	data->dev = dev;
1593
1594	pr_debug("tsi108_eth%d:regs:phyresgs:phy:irq_num=0x%x:0x%x:0x%x:0x%x\n",
1595			pdev->id, einfo->regs, einfo->phyregs,
1596			einfo->phy, einfo->irq_num);
1597
1598	data->regs = ioremap(einfo->regs, 0x400);
1599	if (NULL == data->regs) {
1600		err = -ENOMEM;
1601		goto regs_fail;
1602	}
1603
1604	data->phyregs = ioremap(einfo->phyregs, 0x400);
1605	if (NULL == data->phyregs) {
1606		err = -ENOMEM;
1607		goto phyregs_fail;
1608	}
1609/* MII setup */
1610	data->mii_if.dev = dev;
1611	data->mii_if.mdio_read = tsi108_mdio_read;
1612	data->mii_if.mdio_write = tsi108_mdio_write;
1613	data->mii_if.phy_id = einfo->phy;
1614	data->mii_if.phy_id_mask = 0x1f;
1615	data->mii_if.reg_num_mask = 0x1f;
1616
1617	data->phy = einfo->phy;
1618	data->phy_type = einfo->phy_type;
1619	data->irq_num = einfo->irq_num;
1620	data->id = pdev->id;
1621	netif_napi_add(dev, &data->napi, tsi108_poll, 64);
1622	dev->netdev_ops = &tsi108_netdev_ops;
1623	dev->ethtool_ops = &tsi108_ethtool_ops;
1624
1625	/* Apparently, the Linux networking code won't use scatter-gather
1626	 * if the hardware doesn't do checksums.  However, it's faster
1627	 * to checksum in place and use SG, as (among other reasons)
1628	 * the cache won't be dirtied (which then has to be flushed
1629	 * before DMA).  The checksumming is done by the driver (via
1630	 * a new function skb_csum_dev() in net/core/skbuff.c).
1631	 */
1632
1633	dev->features = NETIF_F_HIGHDMA;
1634
1635	spin_lock_init(&data->txlock);
1636	spin_lock_init(&data->misclock);
1637
1638	tsi108_reset_ether(data);
1639	tsi108_kill_phy(dev);
1640
1641	if ((err = tsi108_get_mac(dev)) != 0) {
1642		printk(KERN_ERR "%s: Invalid MAC address.  Please correct.\n",
1643		       dev->name);
1644		goto register_fail;
1645	}
1646
1647	tsi108_init_mac(dev);
1648	err = register_netdev(dev);
1649	if (err) {
1650		printk(KERN_ERR "%s: Cannot register net device, aborting.\n",
1651				dev->name);
1652		goto register_fail;
1653	}
1654
1655	platform_set_drvdata(pdev, dev);
1656	printk(KERN_INFO "%s: Tsi108 Gigabit Ethernet, MAC: %pM\n",
1657	       dev->name, dev->dev_addr);
1658#ifdef DEBUG
1659	data->msg_enable = DEBUG;
1660	dump_eth_one(dev);
1661#endif
1662
1663	return 0;
1664
1665register_fail:
1666	iounmap(data->phyregs);
1667
1668phyregs_fail:
1669	iounmap(data->regs);
1670
1671regs_fail:
1672	free_netdev(dev);
1673	return err;
1674}
1675
1676/* There's no way to either get interrupts from the PHY when
1677 * something changes, or to have the Tsi108 automatically communicate
1678 * with the PHY to reconfigure itself.
1679 *
1680 * Thus, we have to do it using a timer.
1681 */
1682
1683static void tsi108_timed_checker(unsigned long dev_ptr)
1684{
1685	struct net_device *dev = (struct net_device *)dev_ptr;
1686	struct tsi108_prv_data *data = netdev_priv(dev);
1687
1688	tsi108_check_phy(dev);
1689	tsi108_check_rxring(dev);
1690	mod_timer(&data->timer, jiffies + CHECK_PHY_INTERVAL);
1691}
1692
1693static int tsi108_ether_remove(struct platform_device *pdev)
1694{
1695	struct net_device *dev = platform_get_drvdata(pdev);
1696	struct tsi108_prv_data *priv = netdev_priv(dev);
1697
1698	unregister_netdev(dev);
1699	tsi108_stop_ethernet(dev);
1700	platform_set_drvdata(pdev, NULL);
1701	iounmap(priv->regs);
1702	iounmap(priv->phyregs);
1703	free_netdev(dev);
1704
1705	return 0;
1706}
1707module_platform_driver(tsi_eth_driver);
1708
1709MODULE_AUTHOR("Tundra Semiconductor Corporation");
1710MODULE_DESCRIPTION("Tsi108 Gigabit Ethernet driver");
1711MODULE_LICENSE("GPL");
1712MODULE_ALIAS("platform:tsi-ethernet");
1713