sa1100_ir.c revision 05adc3b7458e97a1d0180828000207a403083389
1/*
2 *  linux/drivers/net/irda/sa1100_ir.c
3 *
4 *  Copyright (C) 2000-2001 Russell King
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 *
10 *  Infra-red driver for the StrongARM SA1100 embedded microprocessor
11 *
12 *  Note that we don't have to worry about the SA1111's DMA bugs in here,
13 *  so we use the straight forward dma_map_* functions with a null pointer.
14 *
15 *  This driver takes one kernel command line parameter, sa1100ir=, with
16 *  the following options:
17 *	max_rate:baudrate	- set the maximum baud rate
18 *	power_leve:level	- set the transmitter power level
19 *	tx_lpm:0|1		- set transmit low power mode
20 */
21#include <linux/config.h>
22#include <linux/module.h>
23#include <linux/moduleparam.h>
24#include <linux/types.h>
25#include <linux/init.h>
26#include <linux/errno.h>
27#include <linux/netdevice.h>
28#include <linux/slab.h>
29#include <linux/rtnetlink.h>
30#include <linux/interrupt.h>
31#include <linux/delay.h>
32#include <linux/device.h>
33#include <linux/dma-mapping.h>
34
35#include <net/irda/irda.h>
36#include <net/irda/wrapper.h>
37#include <net/irda/irda_device.h>
38
39#include <asm/irq.h>
40#include <asm/dma.h>
41#include <asm/hardware.h>
42#include <asm/mach/irda.h>
43
44static int power_level = 3;
45static int tx_lpm;
46static int max_rate = 4000000;
47
48struct sa1100_irda {
49	unsigned char		hscr0;
50	unsigned char		utcr4;
51	unsigned char		power;
52	unsigned char		open;
53
54	int			speed;
55	int			newspeed;
56
57	struct sk_buff		*txskb;
58	struct sk_buff		*rxskb;
59	dma_addr_t		txbuf_dma;
60	dma_addr_t		rxbuf_dma;
61	dma_regs_t		*txdma;
62	dma_regs_t		*rxdma;
63
64	struct net_device_stats	stats;
65	struct device		*dev;
66	struct irda_platform_data *pdata;
67	struct irlap_cb		*irlap;
68	struct qos_info		qos;
69
70	iobuff_t		tx_buff;
71	iobuff_t		rx_buff;
72};
73
74#define IS_FIR(si)		((si)->speed >= 4000000)
75
76#define HPSIR_MAX_RXLEN		2047
77
78/*
79 * Allocate and map the receive buffer, unless it is already allocated.
80 */
81static int sa1100_irda_rx_alloc(struct sa1100_irda *si)
82{
83	if (si->rxskb)
84		return 0;
85
86	si->rxskb = alloc_skb(HPSIR_MAX_RXLEN + 1, GFP_ATOMIC);
87
88	if (!si->rxskb) {
89		printk(KERN_ERR "sa1100_ir: out of memory for RX SKB\n");
90		return -ENOMEM;
91	}
92
93	/*
94	 * Align any IP headers that may be contained
95	 * within the frame.
96	 */
97	skb_reserve(si->rxskb, 1);
98
99	si->rxbuf_dma = dma_map_single(si->dev, si->rxskb->data,
100					HPSIR_MAX_RXLEN,
101					DMA_FROM_DEVICE);
102	return 0;
103}
104
105/*
106 * We want to get here as soon as possible, and get the receiver setup.
107 * We use the existing buffer.
108 */
109static void sa1100_irda_rx_dma_start(struct sa1100_irda *si)
110{
111	if (!si->rxskb) {
112		printk(KERN_ERR "sa1100_ir: rx buffer went missing\n");
113		return;
114	}
115
116	/*
117	 * First empty receive FIFO
118	 */
119	Ser2HSCR0 = si->hscr0 | HSCR0_HSSP;
120
121	/*
122	 * Enable the DMA, receiver and receive interrupt.
123	 */
124	sa1100_clear_dma(si->rxdma);
125	sa1100_start_dma(si->rxdma, si->rxbuf_dma, HPSIR_MAX_RXLEN);
126	Ser2HSCR0 = si->hscr0 | HSCR0_HSSP | HSCR0_RXE;
127}
128
129/*
130 * Set the IrDA communications speed.
131 */
132static int sa1100_irda_set_speed(struct sa1100_irda *si, int speed)
133{
134	unsigned long flags;
135	int brd, ret = -EINVAL;
136
137	switch (speed) {
138	case 9600:	case 19200:	case 38400:
139	case 57600:	case 115200:
140		brd = 3686400 / (16 * speed) - 1;
141
142		/*
143		 * Stop the receive DMA.
144		 */
145		if (IS_FIR(si))
146			sa1100_stop_dma(si->rxdma);
147
148		local_irq_save(flags);
149
150		Ser2UTCR3 = 0;
151		Ser2HSCR0 = HSCR0_UART;
152
153		Ser2UTCR1 = brd >> 8;
154		Ser2UTCR2 = brd;
155
156		/*
157		 * Clear status register
158		 */
159		Ser2UTSR0 = UTSR0_REB | UTSR0_RBB | UTSR0_RID;
160		Ser2UTCR3 = UTCR3_RIE | UTCR3_RXE | UTCR3_TXE;
161
162		if (si->pdata->set_speed)
163			si->pdata->set_speed(si->dev, speed);
164
165		si->speed = speed;
166
167		local_irq_restore(flags);
168		ret = 0;
169		break;
170
171	case 4000000:
172		local_irq_save(flags);
173
174		si->hscr0 = 0;
175
176		Ser2HSSR0 = 0xff;
177		Ser2HSCR0 = si->hscr0 | HSCR0_HSSP;
178		Ser2UTCR3 = 0;
179
180		si->speed = speed;
181
182		if (si->pdata->set_speed)
183			si->pdata->set_speed(si->dev, speed);
184
185		sa1100_irda_rx_alloc(si);
186		sa1100_irda_rx_dma_start(si);
187
188		local_irq_restore(flags);
189
190		break;
191
192	default:
193		break;
194	}
195
196	return ret;
197}
198
199/*
200 * Control the power state of the IrDA transmitter.
201 * State:
202 *  0 - off
203 *  1 - short range, lowest power
204 *  2 - medium range, medium power
205 *  3 - maximum range, high power
206 *
207 * Currently, only assabet is known to support this.
208 */
209static int
210__sa1100_irda_set_power(struct sa1100_irda *si, unsigned int state)
211{
212	int ret = 0;
213	if (si->pdata->set_power)
214		ret = si->pdata->set_power(si->dev, state);
215	return ret;
216}
217
218static inline int
219sa1100_set_power(struct sa1100_irda *si, unsigned int state)
220{
221	int ret;
222
223	ret = __sa1100_irda_set_power(si, state);
224	if (ret == 0)
225		si->power = state;
226
227	return ret;
228}
229
230static int sa1100_irda_startup(struct sa1100_irda *si)
231{
232	int ret;
233
234	/*
235	 * Ensure that the ports for this device are setup correctly.
236	 */
237	if (si->pdata->startup)
238		si->pdata->startup(si->dev);
239
240	/*
241	 * Configure PPC for IRDA - we want to drive TXD2 low.
242	 * We also want to drive this pin low during sleep.
243	 */
244	PPSR &= ~PPC_TXD2;
245	PSDR &= ~PPC_TXD2;
246	PPDR |= PPC_TXD2;
247
248	/*
249	 * Enable HP-SIR modulation, and ensure that the port is disabled.
250	 */
251	Ser2UTCR3 = 0;
252	Ser2HSCR0 = HSCR0_UART;
253	Ser2UTCR4 = si->utcr4;
254	Ser2UTCR0 = UTCR0_8BitData;
255	Ser2HSCR2 = HSCR2_TrDataH | HSCR2_RcDataL;
256
257	/*
258	 * Clear status register
259	 */
260	Ser2UTSR0 = UTSR0_REB | UTSR0_RBB | UTSR0_RID;
261
262	ret = sa1100_irda_set_speed(si, si->speed = 9600);
263	if (ret) {
264		Ser2UTCR3 = 0;
265		Ser2HSCR0 = 0;
266
267		if (si->pdata->shutdown)
268			si->pdata->shutdown(si->dev);
269	}
270
271	return ret;
272}
273
274static void sa1100_irda_shutdown(struct sa1100_irda *si)
275{
276	/*
277	 * Stop all DMA activity.
278	 */
279	sa1100_stop_dma(si->rxdma);
280	sa1100_stop_dma(si->txdma);
281
282	/* Disable the port. */
283	Ser2UTCR3 = 0;
284	Ser2HSCR0 = 0;
285
286	if (si->pdata->shutdown)
287		si->pdata->shutdown(si->dev);
288}
289
290#ifdef CONFIG_PM
291/*
292 * Suspend the IrDA interface.
293 */
294static int sa1100_irda_suspend(struct device *_dev, pm_message_t state, u32 level)
295{
296	struct net_device *dev = dev_get_drvdata(_dev);
297	struct sa1100_irda *si;
298
299	if (!dev || level != SUSPEND_DISABLE)
300		return 0;
301
302	si = dev->priv;
303	if (si->open) {
304		/*
305		 * Stop the transmit queue
306		 */
307		netif_device_detach(dev);
308		disable_irq(dev->irq);
309		sa1100_irda_shutdown(si);
310		__sa1100_irda_set_power(si, 0);
311	}
312
313	return 0;
314}
315
316/*
317 * Resume the IrDA interface.
318 */
319static int sa1100_irda_resume(struct device *_dev, u32 level)
320{
321	struct net_device *dev = dev_get_drvdata(_dev);
322	struct sa1100_irda *si;
323
324	if (!dev || level != RESUME_ENABLE)
325		return 0;
326
327	si = dev->priv;
328	if (si->open) {
329		/*
330		 * If we missed a speed change, initialise at the new speed
331		 * directly.  It is debatable whether this is actually
332		 * required, but in the interests of continuing from where
333		 * we left off it is desireable.  The converse argument is
334		 * that we should re-negotiate at 9600 baud again.
335		 */
336		if (si->newspeed) {
337			si->speed = si->newspeed;
338			si->newspeed = 0;
339		}
340
341		sa1100_irda_startup(si);
342		__sa1100_irda_set_power(si, si->power);
343		enable_irq(dev->irq);
344
345		/*
346		 * This automatically wakes up the queue
347		 */
348		netif_device_attach(dev);
349	}
350
351	return 0;
352}
353#else
354#define sa1100_irda_suspend	NULL
355#define sa1100_irda_resume	NULL
356#endif
357
358/*
359 * HP-SIR format interrupt service routines.
360 */
361static void sa1100_irda_hpsir_irq(struct net_device *dev)
362{
363	struct sa1100_irda *si = dev->priv;
364	int status;
365
366	status = Ser2UTSR0;
367
368	/*
369	 * Deal with any receive errors first.  The bytes in error may be
370	 * the only bytes in the receive FIFO, so we do this first.
371	 */
372	while (status & UTSR0_EIF) {
373		int stat, data;
374
375		stat = Ser2UTSR1;
376		data = Ser2UTDR;
377
378		if (stat & (UTSR1_FRE | UTSR1_ROR)) {
379			si->stats.rx_errors++;
380			if (stat & UTSR1_FRE)
381				si->stats.rx_frame_errors++;
382			if (stat & UTSR1_ROR)
383				si->stats.rx_fifo_errors++;
384		} else
385			async_unwrap_char(dev, &si->stats, &si->rx_buff, data);
386
387		status = Ser2UTSR0;
388	}
389
390	/*
391	 * We must clear certain bits.
392	 */
393	Ser2UTSR0 = status & (UTSR0_RID | UTSR0_RBB | UTSR0_REB);
394
395	if (status & UTSR0_RFS) {
396		/*
397		 * There are at least 4 bytes in the FIFO.  Read 3 bytes
398		 * and leave the rest to the block below.
399		 */
400		async_unwrap_char(dev, &si->stats, &si->rx_buff, Ser2UTDR);
401		async_unwrap_char(dev, &si->stats, &si->rx_buff, Ser2UTDR);
402		async_unwrap_char(dev, &si->stats, &si->rx_buff, Ser2UTDR);
403	}
404
405	if (status & (UTSR0_RFS | UTSR0_RID)) {
406		/*
407		 * Fifo contains more than 1 character.
408		 */
409		do {
410			async_unwrap_char(dev, &si->stats, &si->rx_buff,
411					  Ser2UTDR);
412		} while (Ser2UTSR1 & UTSR1_RNE);
413
414		dev->last_rx = jiffies;
415	}
416
417	if (status & UTSR0_TFS && si->tx_buff.len) {
418		/*
419		 * Transmitter FIFO is not full
420		 */
421		do {
422			Ser2UTDR = *si->tx_buff.data++;
423			si->tx_buff.len -= 1;
424		} while (Ser2UTSR1 & UTSR1_TNF && si->tx_buff.len);
425
426		if (si->tx_buff.len == 0) {
427			si->stats.tx_packets++;
428			si->stats.tx_bytes += si->tx_buff.data -
429					      si->tx_buff.head;
430
431			/*
432			 * We need to ensure that the transmitter has
433			 * finished.
434			 */
435			do
436				rmb();
437			while (Ser2UTSR1 & UTSR1_TBY);
438
439			/*
440			 * Ok, we've finished transmitting.  Now enable
441			 * the receiver.  Sometimes we get a receive IRQ
442			 * immediately after a transmit...
443			 */
444			Ser2UTSR0 = UTSR0_REB | UTSR0_RBB | UTSR0_RID;
445			Ser2UTCR3 = UTCR3_RIE | UTCR3_RXE | UTCR3_TXE;
446
447			if (si->newspeed) {
448				sa1100_irda_set_speed(si, si->newspeed);
449				si->newspeed = 0;
450			}
451
452			/* I'm hungry! */
453			netif_wake_queue(dev);
454		}
455	}
456}
457
458static void sa1100_irda_fir_error(struct sa1100_irda *si, struct net_device *dev)
459{
460	struct sk_buff *skb = si->rxskb;
461	dma_addr_t dma_addr;
462	unsigned int len, stat, data;
463
464	if (!skb) {
465		printk(KERN_ERR "sa1100_ir: SKB is NULL!\n");
466		return;
467	}
468
469	/*
470	 * Get the current data position.
471	 */
472	dma_addr = sa1100_get_dma_pos(si->rxdma);
473	len = dma_addr - si->rxbuf_dma;
474	if (len > HPSIR_MAX_RXLEN)
475		len = HPSIR_MAX_RXLEN;
476	dma_unmap_single(si->dev, si->rxbuf_dma, len, DMA_FROM_DEVICE);
477
478	do {
479		/*
480		 * Read Status, and then Data.
481		 */
482		stat = Ser2HSSR1;
483		rmb();
484		data = Ser2HSDR;
485
486		if (stat & (HSSR1_CRE | HSSR1_ROR)) {
487			si->stats.rx_errors++;
488			if (stat & HSSR1_CRE)
489				si->stats.rx_crc_errors++;
490			if (stat & HSSR1_ROR)
491				si->stats.rx_frame_errors++;
492		} else
493			skb->data[len++] = data;
494
495		/*
496		 * If we hit the end of frame, there's
497		 * no point in continuing.
498		 */
499		if (stat & HSSR1_EOF)
500			break;
501	} while (Ser2HSSR0 & HSSR0_EIF);
502
503	if (stat & HSSR1_EOF) {
504		si->rxskb = NULL;
505
506		skb_put(skb, len);
507		skb->dev = dev;
508		skb->mac.raw = skb->data;
509		skb->protocol = htons(ETH_P_IRDA);
510		si->stats.rx_packets++;
511		si->stats.rx_bytes += len;
512
513		/*
514		 * Before we pass the buffer up, allocate a new one.
515		 */
516		sa1100_irda_rx_alloc(si);
517
518		netif_rx(skb);
519		dev->last_rx = jiffies;
520	} else {
521		/*
522		 * Remap the buffer.
523		 */
524		si->rxbuf_dma = dma_map_single(si->dev, si->rxskb->data,
525						HPSIR_MAX_RXLEN,
526						DMA_FROM_DEVICE);
527	}
528}
529
530/*
531 * FIR format interrupt service routine.  We only have to
532 * handle RX events; transmit events go via the TX DMA handler.
533 *
534 * No matter what, we disable RX, process, and the restart RX.
535 */
536static void sa1100_irda_fir_irq(struct net_device *dev)
537{
538	struct sa1100_irda *si = dev->priv;
539
540	/*
541	 * Stop RX DMA
542	 */
543	sa1100_stop_dma(si->rxdma);
544
545	/*
546	 * Framing error - we throw away the packet completely.
547	 * Clearing RXE flushes the error conditions and data
548	 * from the fifo.
549	 */
550	if (Ser2HSSR0 & (HSSR0_FRE | HSSR0_RAB)) {
551		si->stats.rx_errors++;
552
553		if (Ser2HSSR0 & HSSR0_FRE)
554			si->stats.rx_frame_errors++;
555
556		/*
557		 * Clear out the DMA...
558		 */
559		Ser2HSCR0 = si->hscr0 | HSCR0_HSSP;
560
561		/*
562		 * Clear selected status bits now, so we
563		 * don't miss them next time around.
564		 */
565		Ser2HSSR0 = HSSR0_FRE | HSSR0_RAB;
566	}
567
568	/*
569	 * Deal with any receive errors.  The any of the lowest
570	 * 8 bytes in the FIFO may contain an error.  We must read
571	 * them one by one.  The "error" could even be the end of
572	 * packet!
573	 */
574	if (Ser2HSSR0 & HSSR0_EIF)
575		sa1100_irda_fir_error(si, dev);
576
577	/*
578	 * No matter what happens, we must restart reception.
579	 */
580	sa1100_irda_rx_dma_start(si);
581}
582
583static irqreturn_t sa1100_irda_irq(int irq, void *dev_id, struct pt_regs *regs)
584{
585	struct net_device *dev = dev_id;
586	if (IS_FIR(((struct sa1100_irda *)dev->priv)))
587		sa1100_irda_fir_irq(dev);
588	else
589		sa1100_irda_hpsir_irq(dev);
590	return IRQ_HANDLED;
591}
592
593/*
594 * TX DMA completion handler.
595 */
596static void sa1100_irda_txdma_irq(void *id)
597{
598	struct net_device *dev = id;
599	struct sa1100_irda *si = dev->priv;
600	struct sk_buff *skb = si->txskb;
601
602	si->txskb = NULL;
603
604	/*
605	 * Wait for the transmission to complete.  Unfortunately,
606	 * the hardware doesn't give us an interrupt to indicate
607	 * "end of frame".
608	 */
609	do
610		rmb();
611	while (!(Ser2HSSR0 & HSSR0_TUR) || Ser2HSSR1 & HSSR1_TBY);
612
613	/*
614	 * Clear the transmit underrun bit.
615	 */
616	Ser2HSSR0 = HSSR0_TUR;
617
618	/*
619	 * Do we need to change speed?  Note that we're lazy
620	 * here - we don't free the old rxskb.  We don't need
621	 * to allocate a buffer either.
622	 */
623	if (si->newspeed) {
624		sa1100_irda_set_speed(si, si->newspeed);
625		si->newspeed = 0;
626	}
627
628	/*
629	 * Start reception.  This disables the transmitter for
630	 * us.  This will be using the existing RX buffer.
631	 */
632	sa1100_irda_rx_dma_start(si);
633
634	/*
635	 * Account and free the packet.
636	 */
637	if (skb) {
638		dma_unmap_single(si->dev, si->txbuf_dma, skb->len, DMA_TO_DEVICE);
639		si->stats.tx_packets ++;
640		si->stats.tx_bytes += skb->len;
641		dev_kfree_skb_irq(skb);
642	}
643
644	/*
645	 * Make sure that the TX queue is available for sending
646	 * (for retries).  TX has priority over RX at all times.
647	 */
648	netif_wake_queue(dev);
649}
650
651static int sa1100_irda_hard_xmit(struct sk_buff *skb, struct net_device *dev)
652{
653	struct sa1100_irda *si = dev->priv;
654	int speed = irda_get_next_speed(skb);
655
656	/*
657	 * Does this packet contain a request to change the interface
658	 * speed?  If so, remember it until we complete the transmission
659	 * of this frame.
660	 */
661	if (speed != si->speed && speed != -1)
662		si->newspeed = speed;
663
664	/*
665	 * If this is an empty frame, we can bypass a lot.
666	 */
667	if (skb->len == 0) {
668		if (si->newspeed) {
669			si->newspeed = 0;
670			sa1100_irda_set_speed(si, speed);
671		}
672		dev_kfree_skb(skb);
673		return 0;
674	}
675
676	if (!IS_FIR(si)) {
677		netif_stop_queue(dev);
678
679		si->tx_buff.data = si->tx_buff.head;
680		si->tx_buff.len  = async_wrap_skb(skb, si->tx_buff.data,
681						  si->tx_buff.truesize);
682
683		/*
684		 * Set the transmit interrupt enable.  This will fire
685		 * off an interrupt immediately.  Note that we disable
686		 * the receiver so we won't get spurious characteres
687		 * received.
688		 */
689		Ser2UTCR3 = UTCR3_TIE | UTCR3_TXE;
690
691		dev_kfree_skb(skb);
692	} else {
693		int mtt = irda_get_mtt(skb);
694
695		/*
696		 * We must not be transmitting...
697		 */
698		if (si->txskb)
699			BUG();
700
701		netif_stop_queue(dev);
702
703		si->txskb = skb;
704		si->txbuf_dma = dma_map_single(si->dev, skb->data,
705					 skb->len, DMA_TO_DEVICE);
706
707		sa1100_start_dma(si->txdma, si->txbuf_dma, skb->len);
708
709		/*
710		 * If we have a mean turn-around time, impose the specified
711		 * specified delay.  We could shorten this by timing from
712		 * the point we received the packet.
713		 */
714		if (mtt)
715			udelay(mtt);
716
717		Ser2HSCR0 = si->hscr0 | HSCR0_HSSP | HSCR0_TXE;
718	}
719
720	dev->trans_start = jiffies;
721
722	return 0;
723}
724
725static int
726sa1100_irda_ioctl(struct net_device *dev, struct ifreq *ifreq, int cmd)
727{
728	struct if_irda_req *rq = (struct if_irda_req *)ifreq;
729	struct sa1100_irda *si = dev->priv;
730	int ret = -EOPNOTSUPP;
731
732	switch (cmd) {
733	case SIOCSBANDWIDTH:
734		if (capable(CAP_NET_ADMIN)) {
735			/*
736			 * We are unable to set the speed if the
737			 * device is not running.
738			 */
739			if (si->open) {
740				ret = sa1100_irda_set_speed(si,
741						rq->ifr_baudrate);
742			} else {
743				printk("sa1100_irda_ioctl: SIOCSBANDWIDTH: !netif_running\n");
744				ret = 0;
745			}
746		}
747		break;
748
749	case SIOCSMEDIABUSY:
750		ret = -EPERM;
751		if (capable(CAP_NET_ADMIN)) {
752			irda_device_set_media_busy(dev, TRUE);
753			ret = 0;
754		}
755		break;
756
757	case SIOCGRECEIVING:
758		rq->ifr_receiving = IS_FIR(si) ? 0
759					: si->rx_buff.state != OUTSIDE_FRAME;
760		break;
761
762	default:
763		break;
764	}
765
766	return ret;
767}
768
769static struct net_device_stats *sa1100_irda_stats(struct net_device *dev)
770{
771	struct sa1100_irda *si = dev->priv;
772	return &si->stats;
773}
774
775static int sa1100_irda_start(struct net_device *dev)
776{
777	struct sa1100_irda *si = dev->priv;
778	int err;
779
780	si->speed = 9600;
781
782	err = request_irq(dev->irq, sa1100_irda_irq, 0, dev->name, dev);
783	if (err)
784		goto err_irq;
785
786	err = sa1100_request_dma(DMA_Ser2HSSPRd, "IrDA receive",
787				 NULL, NULL, &si->rxdma);
788	if (err)
789		goto err_rx_dma;
790
791	err = sa1100_request_dma(DMA_Ser2HSSPWr, "IrDA transmit",
792				 sa1100_irda_txdma_irq, dev, &si->txdma);
793	if (err)
794		goto err_tx_dma;
795
796	/*
797	 * The interrupt must remain disabled for now.
798	 */
799	disable_irq(dev->irq);
800
801	/*
802	 * Setup the serial port for the specified speed.
803	 */
804	err = sa1100_irda_startup(si);
805	if (err)
806		goto err_startup;
807
808	/*
809	 * Open a new IrLAP layer instance.
810	 */
811	si->irlap = irlap_open(dev, &si->qos, "sa1100");
812	err = -ENOMEM;
813	if (!si->irlap)
814		goto err_irlap;
815
816	/*
817	 * Now enable the interrupt and start the queue
818	 */
819	si->open = 1;
820	sa1100_set_power(si, power_level); /* low power mode */
821	enable_irq(dev->irq);
822	netif_start_queue(dev);
823	return 0;
824
825err_irlap:
826	si->open = 0;
827	sa1100_irda_shutdown(si);
828err_startup:
829	sa1100_free_dma(si->txdma);
830err_tx_dma:
831	sa1100_free_dma(si->rxdma);
832err_rx_dma:
833	free_irq(dev->irq, dev);
834err_irq:
835	return err;
836}
837
838static int sa1100_irda_stop(struct net_device *dev)
839{
840	struct sa1100_irda *si = dev->priv;
841
842	disable_irq(dev->irq);
843	sa1100_irda_shutdown(si);
844
845	/*
846	 * If we have been doing DMA receive, make sure we
847	 * tidy that up cleanly.
848	 */
849	if (si->rxskb) {
850		dma_unmap_single(si->dev, si->rxbuf_dma, HPSIR_MAX_RXLEN,
851				 DMA_FROM_DEVICE);
852		dev_kfree_skb(si->rxskb);
853		si->rxskb = NULL;
854	}
855
856	/* Stop IrLAP */
857	if (si->irlap) {
858		irlap_close(si->irlap);
859		si->irlap = NULL;
860	}
861
862	netif_stop_queue(dev);
863	si->open = 0;
864
865	/*
866	 * Free resources
867	 */
868	sa1100_free_dma(si->txdma);
869	sa1100_free_dma(si->rxdma);
870	free_irq(dev->irq, dev);
871
872	sa1100_set_power(si, 0);
873
874	return 0;
875}
876
877static int sa1100_irda_init_iobuf(iobuff_t *io, int size)
878{
879	io->head = kmalloc(size, GFP_KERNEL | GFP_DMA);
880	if (io->head != NULL) {
881		io->truesize = size;
882		io->in_frame = FALSE;
883		io->state    = OUTSIDE_FRAME;
884		io->data     = io->head;
885	}
886	return io->head ? 0 : -ENOMEM;
887}
888
889static int sa1100_irda_probe(struct device *_dev)
890{
891	struct platform_device *pdev = to_platform_device(_dev);
892	struct net_device *dev;
893	struct sa1100_irda *si;
894	unsigned int baudrate_mask;
895	int err;
896
897	if (!pdev->dev.platform_data)
898		return -EINVAL;
899
900	err = request_mem_region(__PREG(Ser2UTCR0), 0x24, "IrDA") ? 0 : -EBUSY;
901	if (err)
902		goto err_mem_1;
903	err = request_mem_region(__PREG(Ser2HSCR0), 0x1c, "IrDA") ? 0 : -EBUSY;
904	if (err)
905		goto err_mem_2;
906	err = request_mem_region(__PREG(Ser2HSCR2), 0x04, "IrDA") ? 0 : -EBUSY;
907	if (err)
908		goto err_mem_3;
909
910	dev = alloc_irdadev(sizeof(struct sa1100_irda));
911	if (!dev)
912		goto err_mem_4;
913
914	si = dev->priv;
915	si->dev = &pdev->dev;
916	si->pdata = pdev->dev.platform_data;
917
918	/*
919	 * Initialise the HP-SIR buffers
920	 */
921	err = sa1100_irda_init_iobuf(&si->rx_buff, 14384);
922	if (err)
923		goto err_mem_5;
924	err = sa1100_irda_init_iobuf(&si->tx_buff, 4000);
925	if (err)
926		goto err_mem_5;
927
928	dev->hard_start_xmit	= sa1100_irda_hard_xmit;
929	dev->open		= sa1100_irda_start;
930	dev->stop		= sa1100_irda_stop;
931	dev->do_ioctl		= sa1100_irda_ioctl;
932	dev->get_stats		= sa1100_irda_stats;
933	dev->irq		= IRQ_Ser2ICP;
934
935	irda_init_max_qos_capabilies(&si->qos);
936
937	/*
938	 * We support original IRDA up to 115k2. (we don't currently
939	 * support 4Mbps).  Min Turn Time set to 1ms or greater.
940	 */
941	baudrate_mask = IR_9600;
942
943	switch (max_rate) {
944	case 4000000:		baudrate_mask |= IR_4000000 << 8;
945	case 115200:		baudrate_mask |= IR_115200;
946	case 57600:		baudrate_mask |= IR_57600;
947	case 38400:		baudrate_mask |= IR_38400;
948	case 19200:		baudrate_mask |= IR_19200;
949	}
950
951	si->qos.baud_rate.bits &= baudrate_mask;
952	si->qos.min_turn_time.bits = 7;
953
954	irda_qos_bits_to_value(&si->qos);
955
956	si->utcr4 = UTCR4_HPSIR;
957	if (tx_lpm)
958		si->utcr4 |= UTCR4_Z1_6us;
959
960	/*
961	 * Initially enable HP-SIR modulation, and ensure that the port
962	 * is disabled.
963	 */
964	Ser2UTCR3 = 0;
965	Ser2UTCR4 = si->utcr4;
966	Ser2HSCR0 = HSCR0_UART;
967
968	err = register_netdev(dev);
969	if (err == 0)
970		dev_set_drvdata(&pdev->dev, dev);
971
972	if (err) {
973 err_mem_5:
974		kfree(si->tx_buff.head);
975		kfree(si->rx_buff.head);
976		free_netdev(dev);
977 err_mem_4:
978		release_mem_region(__PREG(Ser2HSCR2), 0x04);
979 err_mem_3:
980		release_mem_region(__PREG(Ser2HSCR0), 0x1c);
981 err_mem_2:
982		release_mem_region(__PREG(Ser2UTCR0), 0x24);
983	}
984 err_mem_1:
985	return err;
986}
987
988static int sa1100_irda_remove(struct device *_dev)
989{
990	struct net_device *dev = dev_get_drvdata(_dev);
991
992	if (dev) {
993		struct sa1100_irda *si = dev->priv;
994		unregister_netdev(dev);
995		kfree(si->tx_buff.head);
996		kfree(si->rx_buff.head);
997		free_netdev(dev);
998	}
999
1000	release_mem_region(__PREG(Ser2HSCR2), 0x04);
1001	release_mem_region(__PREG(Ser2HSCR0), 0x1c);
1002	release_mem_region(__PREG(Ser2UTCR0), 0x24);
1003
1004	return 0;
1005}
1006
1007static struct device_driver sa1100ir_driver = {
1008	.name		= "sa11x0-ir",
1009	.bus		= &platform_bus_type,
1010	.probe		= sa1100_irda_probe,
1011	.remove		= sa1100_irda_remove,
1012	.suspend	= sa1100_irda_suspend,
1013	.resume		= sa1100_irda_resume,
1014};
1015
1016static int __init sa1100_irda_init(void)
1017{
1018	/*
1019	 * Limit power level a sensible range.
1020	 */
1021	if (power_level < 1)
1022		power_level = 1;
1023	if (power_level > 3)
1024		power_level = 3;
1025
1026	return driver_register(&sa1100ir_driver);
1027}
1028
1029static void __exit sa1100_irda_exit(void)
1030{
1031	driver_unregister(&sa1100ir_driver);
1032}
1033
1034module_init(sa1100_irda_init);
1035module_exit(sa1100_irda_exit);
1036module_param(power_level, int, 0);
1037module_param(tx_lpm, int, 0);
1038module_param(max_rate, int, 0);
1039
1040MODULE_AUTHOR("Russell King <rmk@arm.linux.org.uk>");
1041MODULE_DESCRIPTION("StrongARM SA1100 IrDA driver");
1042MODULE_LICENSE("GPL");
1043MODULE_PARM_DESC(power_level, "IrDA power level, 1 (low) to 3 (high)");
1044MODULE_PARM_DESC(tx_lpm, "Enable transmitter low power (1.6us) mode");
1045MODULE_PARM_DESC(max_rate, "Maximum baud rate (4000000, 115200, 57600, 38400, 19200, 9600)");
1046