sa1100_ir.c revision e556fdbde38f68d87f689473b112cc65ddacd6a4
1/*
2 *  linux/drivers/net/irda/sa1100_ir.c
3 *
4 *  Copyright (C) 2000-2001 Russell King
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 *
10 *  Infra-red driver for the StrongARM SA1100 embedded microprocessor
11 *
12 *  Note that we don't have to worry about the SA1111's DMA bugs in here,
13 *  so we use the straight forward dma_map_* functions with a null pointer.
14 *
15 *  This driver takes one kernel command line parameter, sa1100ir=, with
16 *  the following options:
17 *	max_rate:baudrate	- set the maximum baud rate
18 *	power_level:level	- set the transmitter power level
19 *	tx_lpm:0|1		- set transmit low power mode
20 */
21#include <linux/module.h>
22#include <linux/moduleparam.h>
23#include <linux/types.h>
24#include <linux/init.h>
25#include <linux/errno.h>
26#include <linux/netdevice.h>
27#include <linux/slab.h>
28#include <linux/rtnetlink.h>
29#include <linux/interrupt.h>
30#include <linux/delay.h>
31#include <linux/platform_device.h>
32#include <linux/dma-mapping.h>
33
34#include <net/irda/irda.h>
35#include <net/irda/wrapper.h>
36#include <net/irda/irda_device.h>
37
38#include <mach/dma.h>
39#include <mach/hardware.h>
40#include <asm/mach/irda.h>
41
42static int power_level = 3;
43static int tx_lpm;
44static int max_rate = 4000000;
45
46struct sa1100_irda {
47	unsigned char		hscr0;
48	unsigned char		utcr4;
49	unsigned char		power;
50	unsigned char		open;
51
52	int			speed;
53	int			newspeed;
54
55	struct sk_buff		*txskb;
56	struct sk_buff		*rxskb;
57	dma_addr_t		txbuf_dma;
58	dma_addr_t		rxbuf_dma;
59	dma_regs_t		*txdma;
60	dma_regs_t		*rxdma;
61
62	struct device		*dev;
63	struct irda_platform_data *pdata;
64	struct irlap_cb		*irlap;
65	struct qos_info		qos;
66
67	iobuff_t		tx_buff;
68	iobuff_t		rx_buff;
69};
70
71#define IS_FIR(si)		((si)->speed >= 4000000)
72
73#define HPSIR_MAX_RXLEN		2047
74
75/*
76 * Allocate and map the receive buffer, unless it is already allocated.
77 */
78static int sa1100_irda_rx_alloc(struct sa1100_irda *si)
79{
80	if (si->rxskb)
81		return 0;
82
83	si->rxskb = alloc_skb(HPSIR_MAX_RXLEN + 1, GFP_ATOMIC);
84	if (!si->rxskb) {
85		printk(KERN_ERR "sa1100_ir: out of memory for RX SKB\n");
86		return -ENOMEM;
87	}
88
89	/*
90	 * Align any IP headers that may be contained
91	 * within the frame.
92	 */
93	skb_reserve(si->rxskb, 1);
94
95	si->rxbuf_dma = dma_map_single(si->dev, si->rxskb->data,
96					HPSIR_MAX_RXLEN,
97					DMA_FROM_DEVICE);
98	if (dma_mapping_error(si->dev, si->rxbuf_dma)) {
99		dev_kfree_skb_any(si->rxskb);
100		return -ENOMEM;
101	}
102
103	return 0;
104}
105
106/*
107 * We want to get here as soon as possible, and get the receiver setup.
108 * We use the existing buffer.
109 */
110static void sa1100_irda_rx_dma_start(struct sa1100_irda *si)
111{
112	if (!si->rxskb) {
113		printk(KERN_ERR "sa1100_ir: rx buffer went missing\n");
114		return;
115	}
116
117	/*
118	 * First empty receive FIFO
119	 */
120	Ser2HSCR0 = si->hscr0 | HSCR0_HSSP;
121
122	/*
123	 * Enable the DMA, receiver and receive interrupt.
124	 */
125	sa1100_clear_dma(si->rxdma);
126	sa1100_start_dma(si->rxdma, si->rxbuf_dma, HPSIR_MAX_RXLEN);
127	Ser2HSCR0 = si->hscr0 | HSCR0_HSSP | HSCR0_RXE;
128}
129
130/*
131 * Set the IrDA communications speed.
132 */
133static int sa1100_irda_set_speed(struct sa1100_irda *si, int speed)
134{
135	unsigned long flags;
136	int brd, ret = -EINVAL;
137
138	switch (speed) {
139	case 9600:	case 19200:	case 38400:
140	case 57600:	case 115200:
141		brd = 3686400 / (16 * speed) - 1;
142
143		/*
144		 * Stop the receive DMA.
145		 */
146		if (IS_FIR(si))
147			sa1100_stop_dma(si->rxdma);
148
149		local_irq_save(flags);
150
151		Ser2UTCR3 = 0;
152		Ser2HSCR0 = HSCR0_UART;
153
154		Ser2UTCR1 = brd >> 8;
155		Ser2UTCR2 = brd;
156
157		/*
158		 * Clear status register
159		 */
160		Ser2UTSR0 = UTSR0_REB | UTSR0_RBB | UTSR0_RID;
161		Ser2UTCR3 = UTCR3_RIE | UTCR3_RXE | UTCR3_TXE;
162
163		if (si->pdata->set_speed)
164			si->pdata->set_speed(si->dev, speed);
165
166		si->speed = speed;
167
168		local_irq_restore(flags);
169		ret = 0;
170		break;
171
172	case 4000000:
173		local_irq_save(flags);
174
175		si->hscr0 = 0;
176
177		Ser2HSSR0 = 0xff;
178		Ser2HSCR0 = si->hscr0 | HSCR0_HSSP;
179		Ser2UTCR3 = 0;
180
181		si->speed = speed;
182
183		if (si->pdata->set_speed)
184			si->pdata->set_speed(si->dev, speed);
185
186		sa1100_irda_rx_alloc(si);
187		sa1100_irda_rx_dma_start(si);
188
189		local_irq_restore(flags);
190
191		break;
192
193	default:
194		break;
195	}
196
197	return ret;
198}
199
200/*
201 * Control the power state of the IrDA transmitter.
202 * State:
203 *  0 - off
204 *  1 - short range, lowest power
205 *  2 - medium range, medium power
206 *  3 - maximum range, high power
207 *
208 * Currently, only assabet is known to support this.
209 */
210static int
211__sa1100_irda_set_power(struct sa1100_irda *si, unsigned int state)
212{
213	int ret = 0;
214	if (si->pdata->set_power)
215		ret = si->pdata->set_power(si->dev, state);
216	return ret;
217}
218
219static inline int
220sa1100_set_power(struct sa1100_irda *si, unsigned int state)
221{
222	int ret;
223
224	ret = __sa1100_irda_set_power(si, state);
225	if (ret == 0)
226		si->power = state;
227
228	return ret;
229}
230
231static int sa1100_irda_startup(struct sa1100_irda *si)
232{
233	int ret;
234
235	/*
236	 * Ensure that the ports for this device are setup correctly.
237	 */
238	if (si->pdata->startup)	{
239		ret = si->pdata->startup(si->dev);
240		if (ret)
241			return ret;
242	}
243
244	/*
245	 * Configure PPC for IRDA - we want to drive TXD2 low.
246	 * We also want to drive this pin low during sleep.
247	 */
248	PPSR &= ~PPC_TXD2;
249	PSDR &= ~PPC_TXD2;
250	PPDR |= PPC_TXD2;
251
252	/*
253	 * Enable HP-SIR modulation, and ensure that the port is disabled.
254	 */
255	Ser2UTCR3 = 0;
256	Ser2HSCR0 = HSCR0_UART;
257	Ser2UTCR4 = si->utcr4;
258	Ser2UTCR0 = UTCR0_8BitData;
259	Ser2HSCR2 = HSCR2_TrDataH | HSCR2_RcDataL;
260
261	/*
262	 * Clear status register
263	 */
264	Ser2UTSR0 = UTSR0_REB | UTSR0_RBB | UTSR0_RID;
265
266	ret = sa1100_irda_set_speed(si, si->speed = 9600);
267	if (ret) {
268		Ser2UTCR3 = 0;
269		Ser2HSCR0 = 0;
270
271		if (si->pdata->shutdown)
272			si->pdata->shutdown(si->dev);
273	}
274
275	return ret;
276}
277
278static void sa1100_irda_shutdown(struct sa1100_irda *si)
279{
280	/*
281	 * Stop all DMA activity.
282	 */
283	sa1100_stop_dma(si->rxdma);
284	sa1100_stop_dma(si->txdma);
285
286	/* Disable the port. */
287	Ser2UTCR3 = 0;
288	Ser2HSCR0 = 0;
289
290	if (si->pdata->shutdown)
291		si->pdata->shutdown(si->dev);
292}
293
294#ifdef CONFIG_PM
295/*
296 * Suspend the IrDA interface.
297 */
298static int sa1100_irda_suspend(struct platform_device *pdev, pm_message_t state)
299{
300	struct net_device *dev = platform_get_drvdata(pdev);
301	struct sa1100_irda *si;
302
303	if (!dev)
304		return 0;
305
306	si = netdev_priv(dev);
307	if (si->open) {
308		/*
309		 * Stop the transmit queue
310		 */
311		netif_device_detach(dev);
312		disable_irq(dev->irq);
313		sa1100_irda_shutdown(si);
314		__sa1100_irda_set_power(si, 0);
315	}
316
317	return 0;
318}
319
320/*
321 * Resume the IrDA interface.
322 */
323static int sa1100_irda_resume(struct platform_device *pdev)
324{
325	struct net_device *dev = platform_get_drvdata(pdev);
326	struct sa1100_irda *si;
327
328	if (!dev)
329		return 0;
330
331	si = netdev_priv(dev);
332	if (si->open) {
333		/*
334		 * If we missed a speed change, initialise at the new speed
335		 * directly.  It is debatable whether this is actually
336		 * required, but in the interests of continuing from where
337		 * we left off it is desirable.  The converse argument is
338		 * that we should re-negotiate at 9600 baud again.
339		 */
340		if (si->newspeed) {
341			si->speed = si->newspeed;
342			si->newspeed = 0;
343		}
344
345		sa1100_irda_startup(si);
346		__sa1100_irda_set_power(si, si->power);
347		enable_irq(dev->irq);
348
349		/*
350		 * This automatically wakes up the queue
351		 */
352		netif_device_attach(dev);
353	}
354
355	return 0;
356}
357#else
358#define sa1100_irda_suspend	NULL
359#define sa1100_irda_resume	NULL
360#endif
361
362/*
363 * HP-SIR format interrupt service routines.
364 */
365static void sa1100_irda_hpsir_irq(struct net_device *dev)
366{
367	struct sa1100_irda *si = netdev_priv(dev);
368	int status;
369
370	status = Ser2UTSR0;
371
372	/*
373	 * Deal with any receive errors first.  The bytes in error may be
374	 * the only bytes in the receive FIFO, so we do this first.
375	 */
376	while (status & UTSR0_EIF) {
377		int stat, data;
378
379		stat = Ser2UTSR1;
380		data = Ser2UTDR;
381
382		if (stat & (UTSR1_FRE | UTSR1_ROR)) {
383			dev->stats.rx_errors++;
384			if (stat & UTSR1_FRE)
385				dev->stats.rx_frame_errors++;
386			if (stat & UTSR1_ROR)
387				dev->stats.rx_fifo_errors++;
388		} else
389			async_unwrap_char(dev, &dev->stats, &si->rx_buff, data);
390
391		status = Ser2UTSR0;
392	}
393
394	/*
395	 * We must clear certain bits.
396	 */
397	Ser2UTSR0 = status & (UTSR0_RID | UTSR0_RBB | UTSR0_REB);
398
399	if (status & UTSR0_RFS) {
400		/*
401		 * There are at least 4 bytes in the FIFO.  Read 3 bytes
402		 * and leave the rest to the block below.
403		 */
404		async_unwrap_char(dev, &dev->stats, &si->rx_buff, Ser2UTDR);
405		async_unwrap_char(dev, &dev->stats, &si->rx_buff, Ser2UTDR);
406		async_unwrap_char(dev, &dev->stats, &si->rx_buff, Ser2UTDR);
407	}
408
409	if (status & (UTSR0_RFS | UTSR0_RID)) {
410		/*
411		 * Fifo contains more than 1 character.
412		 */
413		do {
414			async_unwrap_char(dev, &dev->stats, &si->rx_buff,
415					  Ser2UTDR);
416		} while (Ser2UTSR1 & UTSR1_RNE);
417
418	}
419
420	if (status & UTSR0_TFS && si->tx_buff.len) {
421		/*
422		 * Transmitter FIFO is not full
423		 */
424		do {
425			Ser2UTDR = *si->tx_buff.data++;
426			si->tx_buff.len -= 1;
427		} while (Ser2UTSR1 & UTSR1_TNF && si->tx_buff.len);
428
429		if (si->tx_buff.len == 0) {
430			dev->stats.tx_packets++;
431			dev->stats.tx_bytes += si->tx_buff.data -
432					      si->tx_buff.head;
433
434			/*
435			 * We need to ensure that the transmitter has
436			 * finished.
437			 */
438			do
439				rmb();
440			while (Ser2UTSR1 & UTSR1_TBY);
441
442			/*
443			 * Ok, we've finished transmitting.  Now enable
444			 * the receiver.  Sometimes we get a receive IRQ
445			 * immediately after a transmit...
446			 */
447			Ser2UTSR0 = UTSR0_REB | UTSR0_RBB | UTSR0_RID;
448			Ser2UTCR3 = UTCR3_RIE | UTCR3_RXE | UTCR3_TXE;
449
450			if (si->newspeed) {
451				sa1100_irda_set_speed(si, si->newspeed);
452				si->newspeed = 0;
453			}
454
455			/* I'm hungry! */
456			netif_wake_queue(dev);
457		}
458	}
459}
460
461static void sa1100_irda_fir_error(struct sa1100_irda *si, struct net_device *dev)
462{
463	struct sk_buff *skb = si->rxskb;
464	dma_addr_t dma_addr;
465	unsigned int len, stat, data;
466
467	if (!skb) {
468		printk(KERN_ERR "sa1100_ir: SKB is NULL!\n");
469		return;
470	}
471
472	/*
473	 * Get the current data position.
474	 */
475	dma_addr = sa1100_get_dma_pos(si->rxdma);
476	len = dma_addr - si->rxbuf_dma;
477	if (len > HPSIR_MAX_RXLEN)
478		len = HPSIR_MAX_RXLEN;
479	dma_unmap_single(si->dev, si->rxbuf_dma, len, DMA_FROM_DEVICE);
480
481	do {
482		/*
483		 * Read Status, and then Data.
484		 */
485		stat = Ser2HSSR1;
486		rmb();
487		data = Ser2HSDR;
488
489		if (stat & (HSSR1_CRE | HSSR1_ROR)) {
490			dev->stats.rx_errors++;
491			if (stat & HSSR1_CRE)
492				dev->stats.rx_crc_errors++;
493			if (stat & HSSR1_ROR)
494				dev->stats.rx_frame_errors++;
495		} else
496			skb->data[len++] = data;
497
498		/*
499		 * If we hit the end of frame, there's
500		 * no point in continuing.
501		 */
502		if (stat & HSSR1_EOF)
503			break;
504	} while (Ser2HSSR0 & HSSR0_EIF);
505
506	if (stat & HSSR1_EOF) {
507		si->rxskb = NULL;
508
509		skb_put(skb, len);
510		skb->dev = dev;
511		skb_reset_mac_header(skb);
512		skb->protocol = htons(ETH_P_IRDA);
513		dev->stats.rx_packets++;
514		dev->stats.rx_bytes += len;
515
516		/*
517		 * Before we pass the buffer up, allocate a new one.
518		 */
519		sa1100_irda_rx_alloc(si);
520
521		netif_rx(skb);
522	} else {
523		/*
524		 * Remap the buffer - it was previously mapped, and we
525		 * hope that this succeeds.
526		 */
527		si->rxbuf_dma = dma_map_single(si->dev, si->rxskb->data,
528						HPSIR_MAX_RXLEN,
529						DMA_FROM_DEVICE);
530	}
531}
532
533/*
534 * FIR format interrupt service routine.  We only have to
535 * handle RX events; transmit events go via the TX DMA handler.
536 *
537 * No matter what, we disable RX, process, and the restart RX.
538 */
539static void sa1100_irda_fir_irq(struct net_device *dev)
540{
541	struct sa1100_irda *si = netdev_priv(dev);
542
543	/*
544	 * Stop RX DMA
545	 */
546	sa1100_stop_dma(si->rxdma);
547
548	/*
549	 * Framing error - we throw away the packet completely.
550	 * Clearing RXE flushes the error conditions and data
551	 * from the fifo.
552	 */
553	if (Ser2HSSR0 & (HSSR0_FRE | HSSR0_RAB)) {
554		dev->stats.rx_errors++;
555
556		if (Ser2HSSR0 & HSSR0_FRE)
557			dev->stats.rx_frame_errors++;
558
559		/*
560		 * Clear out the DMA...
561		 */
562		Ser2HSCR0 = si->hscr0 | HSCR0_HSSP;
563
564		/*
565		 * Clear selected status bits now, so we
566		 * don't miss them next time around.
567		 */
568		Ser2HSSR0 = HSSR0_FRE | HSSR0_RAB;
569	}
570
571	/*
572	 * Deal with any receive errors.  The any of the lowest
573	 * 8 bytes in the FIFO may contain an error.  We must read
574	 * them one by one.  The "error" could even be the end of
575	 * packet!
576	 */
577	if (Ser2HSSR0 & HSSR0_EIF)
578		sa1100_irda_fir_error(si, dev);
579
580	/*
581	 * No matter what happens, we must restart reception.
582	 */
583	sa1100_irda_rx_dma_start(si);
584}
585
586static irqreturn_t sa1100_irda_irq(int irq, void *dev_id)
587{
588	struct net_device *dev = dev_id;
589	if (IS_FIR(((struct sa1100_irda *)netdev_priv(dev))))
590		sa1100_irda_fir_irq(dev);
591	else
592		sa1100_irda_hpsir_irq(dev);
593	return IRQ_HANDLED;
594}
595
596/*
597 * TX DMA completion handler.
598 */
599static void sa1100_irda_txdma_irq(void *id)
600{
601	struct net_device *dev = id;
602	struct sa1100_irda *si = netdev_priv(dev);
603	struct sk_buff *skb = si->txskb;
604
605	si->txskb = NULL;
606
607	/*
608	 * Wait for the transmission to complete.  Unfortunately,
609	 * the hardware doesn't give us an interrupt to indicate
610	 * "end of frame".
611	 */
612	do
613		rmb();
614	while (!(Ser2HSSR0 & HSSR0_TUR) || Ser2HSSR1 & HSSR1_TBY);
615
616	/*
617	 * Clear the transmit underrun bit.
618	 */
619	Ser2HSSR0 = HSSR0_TUR;
620
621	/*
622	 * Do we need to change speed?  Note that we're lazy
623	 * here - we don't free the old rxskb.  We don't need
624	 * to allocate a buffer either.
625	 */
626	if (si->newspeed) {
627		sa1100_irda_set_speed(si, si->newspeed);
628		si->newspeed = 0;
629	}
630
631	/*
632	 * Start reception.  This disables the transmitter for
633	 * us.  This will be using the existing RX buffer.
634	 */
635	sa1100_irda_rx_dma_start(si);
636
637	/*
638	 * Account and free the packet.
639	 */
640	if (skb) {
641		dma_unmap_single(si->dev, si->txbuf_dma, skb->len, DMA_TO_DEVICE);
642		dev->stats.tx_packets ++;
643		dev->stats.tx_bytes += skb->len;
644		dev_kfree_skb_irq(skb);
645	}
646
647	/*
648	 * Make sure that the TX queue is available for sending
649	 * (for retries).  TX has priority over RX at all times.
650	 */
651	netif_wake_queue(dev);
652}
653
654static int sa1100_irda_hard_xmit(struct sk_buff *skb, struct net_device *dev)
655{
656	struct sa1100_irda *si = netdev_priv(dev);
657	int speed = irda_get_next_speed(skb);
658
659	/*
660	 * Does this packet contain a request to change the interface
661	 * speed?  If so, remember it until we complete the transmission
662	 * of this frame.
663	 */
664	if (speed != si->speed && speed != -1)
665		si->newspeed = speed;
666
667	/*
668	 * If this is an empty frame, we can bypass a lot.
669	 */
670	if (skb->len == 0) {
671		if (si->newspeed) {
672			si->newspeed = 0;
673			sa1100_irda_set_speed(si, speed);
674		}
675		dev_kfree_skb(skb);
676		return NETDEV_TX_OK;
677	}
678
679	if (!IS_FIR(si)) {
680		netif_stop_queue(dev);
681
682		si->tx_buff.data = si->tx_buff.head;
683		si->tx_buff.len  = async_wrap_skb(skb, si->tx_buff.data,
684						  si->tx_buff.truesize);
685
686		/*
687		 * Set the transmit interrupt enable.  This will fire
688		 * off an interrupt immediately.  Note that we disable
689		 * the receiver so we won't get spurious characteres
690		 * received.
691		 */
692		Ser2UTCR3 = UTCR3_TIE | UTCR3_TXE;
693
694		dev_kfree_skb(skb);
695	} else {
696		int mtt = irda_get_mtt(skb);
697
698		/*
699		 * We must not be transmitting...
700		 */
701		BUG_ON(si->txskb);
702
703		netif_stop_queue(dev);
704
705		si->txskb = skb;
706		si->txbuf_dma = dma_map_single(si->dev, skb->data,
707					 skb->len, DMA_TO_DEVICE);
708		if (dma_mapping_error(si->dev, si->txbuf_dma)) {
709			si->txskb = NULL;
710			netif_wake_queue(dev);
711			dev->stats.tx_dropped++;
712			dev_kfree_skb(skb);
713			return NETDEV_TX_OK;
714		}
715
716		sa1100_start_dma(si->txdma, si->txbuf_dma, skb->len);
717
718		/*
719		 * If we have a mean turn-around time, impose the specified
720		 * specified delay.  We could shorten this by timing from
721		 * the point we received the packet.
722		 */
723		if (mtt)
724			udelay(mtt);
725
726		Ser2HSCR0 = si->hscr0 | HSCR0_HSSP | HSCR0_TXE;
727	}
728
729	return NETDEV_TX_OK;
730}
731
732static int
733sa1100_irda_ioctl(struct net_device *dev, struct ifreq *ifreq, int cmd)
734{
735	struct if_irda_req *rq = (struct if_irda_req *)ifreq;
736	struct sa1100_irda *si = netdev_priv(dev);
737	int ret = -EOPNOTSUPP;
738
739	switch (cmd) {
740	case SIOCSBANDWIDTH:
741		if (capable(CAP_NET_ADMIN)) {
742			/*
743			 * We are unable to set the speed if the
744			 * device is not running.
745			 */
746			if (si->open) {
747				ret = sa1100_irda_set_speed(si,
748						rq->ifr_baudrate);
749			} else {
750				printk("sa1100_irda_ioctl: SIOCSBANDWIDTH: !netif_running\n");
751				ret = 0;
752			}
753		}
754		break;
755
756	case SIOCSMEDIABUSY:
757		ret = -EPERM;
758		if (capable(CAP_NET_ADMIN)) {
759			irda_device_set_media_busy(dev, TRUE);
760			ret = 0;
761		}
762		break;
763
764	case SIOCGRECEIVING:
765		rq->ifr_receiving = IS_FIR(si) ? 0
766					: si->rx_buff.state != OUTSIDE_FRAME;
767		break;
768
769	default:
770		break;
771	}
772
773	return ret;
774}
775
776static int sa1100_irda_start(struct net_device *dev)
777{
778	struct sa1100_irda *si = netdev_priv(dev);
779	int err;
780
781	si->speed = 9600;
782
783	err = request_irq(dev->irq, sa1100_irda_irq, 0, dev->name, dev);
784	if (err)
785		goto err_irq;
786
787	err = sa1100_request_dma(DMA_Ser2HSSPRd, "IrDA receive",
788				 NULL, NULL, &si->rxdma);
789	if (err)
790		goto err_rx_dma;
791
792	err = sa1100_request_dma(DMA_Ser2HSSPWr, "IrDA transmit",
793				 sa1100_irda_txdma_irq, dev, &si->txdma);
794	if (err)
795		goto err_tx_dma;
796
797	/*
798	 * The interrupt must remain disabled for now.
799	 */
800	disable_irq(dev->irq);
801
802	/*
803	 * Setup the serial port for the specified speed.
804	 */
805	err = sa1100_irda_startup(si);
806	if (err)
807		goto err_startup;
808
809	/*
810	 * Open a new IrLAP layer instance.
811	 */
812	si->irlap = irlap_open(dev, &si->qos, "sa1100");
813	err = -ENOMEM;
814	if (!si->irlap)
815		goto err_irlap;
816
817	/*
818	 * Now enable the interrupt and start the queue
819	 */
820	si->open = 1;
821	sa1100_set_power(si, power_level); /* low power mode */
822	enable_irq(dev->irq);
823	netif_start_queue(dev);
824	return 0;
825
826err_irlap:
827	si->open = 0;
828	sa1100_irda_shutdown(si);
829err_startup:
830	sa1100_free_dma(si->txdma);
831err_tx_dma:
832	sa1100_free_dma(si->rxdma);
833err_rx_dma:
834	free_irq(dev->irq, dev);
835err_irq:
836	return err;
837}
838
839static int sa1100_irda_stop(struct net_device *dev)
840{
841	struct sa1100_irda *si = netdev_priv(dev);
842
843	disable_irq(dev->irq);
844	sa1100_irda_shutdown(si);
845
846	/*
847	 * If we have been doing DMA receive, make sure we
848	 * tidy that up cleanly.
849	 */
850	if (si->rxskb) {
851		dma_unmap_single(si->dev, si->rxbuf_dma, HPSIR_MAX_RXLEN,
852				 DMA_FROM_DEVICE);
853		dev_kfree_skb(si->rxskb);
854		si->rxskb = NULL;
855	}
856
857	/* Stop IrLAP */
858	if (si->irlap) {
859		irlap_close(si->irlap);
860		si->irlap = NULL;
861	}
862
863	netif_stop_queue(dev);
864	si->open = 0;
865
866	/*
867	 * Free resources
868	 */
869	sa1100_free_dma(si->txdma);
870	sa1100_free_dma(si->rxdma);
871	free_irq(dev->irq, dev);
872
873	sa1100_set_power(si, 0);
874
875	return 0;
876}
877
878static int sa1100_irda_init_iobuf(iobuff_t *io, int size)
879{
880	io->head = kmalloc(size, GFP_KERNEL | GFP_DMA);
881	if (io->head != NULL) {
882		io->truesize = size;
883		io->in_frame = FALSE;
884		io->state    = OUTSIDE_FRAME;
885		io->data     = io->head;
886	}
887	return io->head ? 0 : -ENOMEM;
888}
889
890static const struct net_device_ops sa1100_irda_netdev_ops = {
891	.ndo_open		= sa1100_irda_start,
892	.ndo_stop		= sa1100_irda_stop,
893	.ndo_start_xmit		= sa1100_irda_hard_xmit,
894	.ndo_do_ioctl		= sa1100_irda_ioctl,
895};
896
897static int sa1100_irda_probe(struct platform_device *pdev)
898{
899	struct net_device *dev;
900	struct sa1100_irda *si;
901	unsigned int baudrate_mask;
902	int err, irq;
903
904	if (!pdev->dev.platform_data)
905		return -EINVAL;
906
907	irq = platform_get_irq(pdev, 0);
908	if (irq <= 0)
909		return irq < 0 ? irq : -ENXIO;
910
911	err = request_mem_region(__PREG(Ser2UTCR0), 0x24, "IrDA") ? 0 : -EBUSY;
912	if (err)
913		goto err_mem_1;
914	err = request_mem_region(__PREG(Ser2HSCR0), 0x1c, "IrDA") ? 0 : -EBUSY;
915	if (err)
916		goto err_mem_2;
917	err = request_mem_region(__PREG(Ser2HSCR2), 0x04, "IrDA") ? 0 : -EBUSY;
918	if (err)
919		goto err_mem_3;
920
921	dev = alloc_irdadev(sizeof(struct sa1100_irda));
922	if (!dev)
923		goto err_mem_4;
924
925	SET_NETDEV_DEV(dev, &pdev->dev);
926
927	si = netdev_priv(dev);
928	si->dev = &pdev->dev;
929	si->pdata = pdev->dev.platform_data;
930
931	/*
932	 * Initialise the HP-SIR buffers
933	 */
934	err = sa1100_irda_init_iobuf(&si->rx_buff, 14384);
935	if (err)
936		goto err_mem_5;
937	err = sa1100_irda_init_iobuf(&si->tx_buff, 4000);
938	if (err)
939		goto err_mem_5;
940
941	dev->netdev_ops	= &sa1100_irda_netdev_ops;
942	dev->irq	= irq;
943
944	irda_init_max_qos_capabilies(&si->qos);
945
946	/*
947	 * We support original IRDA up to 115k2. (we don't currently
948	 * support 4Mbps).  Min Turn Time set to 1ms or greater.
949	 */
950	baudrate_mask = IR_9600;
951
952	switch (max_rate) {
953	case 4000000:		baudrate_mask |= IR_4000000 << 8;
954	case 115200:		baudrate_mask |= IR_115200;
955	case 57600:		baudrate_mask |= IR_57600;
956	case 38400:		baudrate_mask |= IR_38400;
957	case 19200:		baudrate_mask |= IR_19200;
958	}
959
960	si->qos.baud_rate.bits &= baudrate_mask;
961	si->qos.min_turn_time.bits = 7;
962
963	irda_qos_bits_to_value(&si->qos);
964
965	si->utcr4 = UTCR4_HPSIR;
966	if (tx_lpm)
967		si->utcr4 |= UTCR4_Z1_6us;
968
969	/*
970	 * Initially enable HP-SIR modulation, and ensure that the port
971	 * is disabled.
972	 */
973	Ser2UTCR3 = 0;
974	Ser2UTCR4 = si->utcr4;
975	Ser2HSCR0 = HSCR0_UART;
976
977	err = register_netdev(dev);
978	if (err == 0)
979		platform_set_drvdata(pdev, dev);
980
981	if (err) {
982 err_mem_5:
983		kfree(si->tx_buff.head);
984		kfree(si->rx_buff.head);
985		free_netdev(dev);
986 err_mem_4:
987		release_mem_region(__PREG(Ser2HSCR2), 0x04);
988 err_mem_3:
989		release_mem_region(__PREG(Ser2HSCR0), 0x1c);
990 err_mem_2:
991		release_mem_region(__PREG(Ser2UTCR0), 0x24);
992	}
993 err_mem_1:
994	return err;
995}
996
997static int sa1100_irda_remove(struct platform_device *pdev)
998{
999	struct net_device *dev = platform_get_drvdata(pdev);
1000
1001	if (dev) {
1002		struct sa1100_irda *si = netdev_priv(dev);
1003		unregister_netdev(dev);
1004		kfree(si->tx_buff.head);
1005		kfree(si->rx_buff.head);
1006		free_netdev(dev);
1007	}
1008
1009	release_mem_region(__PREG(Ser2HSCR2), 0x04);
1010	release_mem_region(__PREG(Ser2HSCR0), 0x1c);
1011	release_mem_region(__PREG(Ser2UTCR0), 0x24);
1012
1013	return 0;
1014}
1015
1016static struct platform_driver sa1100ir_driver = {
1017	.probe		= sa1100_irda_probe,
1018	.remove		= sa1100_irda_remove,
1019	.suspend	= sa1100_irda_suspend,
1020	.resume		= sa1100_irda_resume,
1021	.driver		= {
1022		.name	= "sa11x0-ir",
1023		.owner	= THIS_MODULE,
1024	},
1025};
1026
1027static int __init sa1100_irda_init(void)
1028{
1029	/*
1030	 * Limit power level a sensible range.
1031	 */
1032	if (power_level < 1)
1033		power_level = 1;
1034	if (power_level > 3)
1035		power_level = 3;
1036
1037	return platform_driver_register(&sa1100ir_driver);
1038}
1039
1040static void __exit sa1100_irda_exit(void)
1041{
1042	platform_driver_unregister(&sa1100ir_driver);
1043}
1044
1045module_init(sa1100_irda_init);
1046module_exit(sa1100_irda_exit);
1047module_param(power_level, int, 0);
1048module_param(tx_lpm, int, 0);
1049module_param(max_rate, int, 0);
1050
1051MODULE_AUTHOR("Russell King <rmk@arm.linux.org.uk>");
1052MODULE_DESCRIPTION("StrongARM SA1100 IrDA driver");
1053MODULE_LICENSE("GPL");
1054MODULE_PARM_DESC(power_level, "IrDA power level, 1 (low) to 3 (high)");
1055MODULE_PARM_DESC(tx_lpm, "Enable transmitter low power (1.6us) mode");
1056MODULE_PARM_DESC(max_rate, "Maximum baud rate (4000000, 115200, 57600, 38400, 19200, 9600)");
1057MODULE_ALIAS("platform:sa11x0-ir");
1058