phy.c revision 25985edcedea6396277003854657b5f3cb31a628
1/*
2 * PHY functions
3 *
4 * Copyright (c) 2004-2007 Reyk Floeter <reyk@openbsd.org>
5 * Copyright (c) 2006-2009 Nick Kossifidis <mickflemm@gmail.com>
6 * Copyright (c) 2007-2008 Jiri Slaby <jirislaby@gmail.com>
7 * Copyright (c) 2008-2009 Felix Fietkau <nbd@openwrt.org>
8 *
9 * Permission to use, copy, modify, and distribute this software for any
10 * purpose with or without fee is hereby granted, provided that the above
11 * copyright notice and this permission notice appear in all copies.
12 *
13 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
14 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
15 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
16 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
17 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20 *
21 */
22
23#include <linux/delay.h>
24#include <linux/slab.h>
25
26#include "ath5k.h"
27#include "reg.h"
28#include "base.h"
29#include "rfbuffer.h"
30#include "rfgain.h"
31
32
33/******************\
34* Helper functions *
35\******************/
36
37/*
38 * Get the PHY Chip revision
39 */
40u16 ath5k_hw_radio_revision(struct ath5k_hw *ah, unsigned int chan)
41{
42	unsigned int i;
43	u32 srev;
44	u16 ret;
45
46	/*
47	 * Set the radio chip access register
48	 */
49	switch (chan) {
50	case CHANNEL_2GHZ:
51		ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_2GHZ, AR5K_PHY(0));
52		break;
53	case CHANNEL_5GHZ:
54		ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
55		break;
56	default:
57		return 0;
58	}
59
60	mdelay(2);
61
62	/* ...wait until PHY is ready and read the selected radio revision */
63	ath5k_hw_reg_write(ah, 0x00001c16, AR5K_PHY(0x34));
64
65	for (i = 0; i < 8; i++)
66		ath5k_hw_reg_write(ah, 0x00010000, AR5K_PHY(0x20));
67
68	if (ah->ah_version == AR5K_AR5210) {
69		srev = ath5k_hw_reg_read(ah, AR5K_PHY(256) >> 28) & 0xf;
70		ret = (u16)ath5k_hw_bitswap(srev, 4) + 1;
71	} else {
72		srev = (ath5k_hw_reg_read(ah, AR5K_PHY(0x100)) >> 24) & 0xff;
73		ret = (u16)ath5k_hw_bitswap(((srev & 0xf0) >> 4) |
74				((srev & 0x0f) << 4), 8);
75	}
76
77	/* Reset to the 5GHz mode */
78	ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
79
80	return ret;
81}
82
83/*
84 * Check if a channel is supported
85 */
86bool ath5k_channel_ok(struct ath5k_hw *ah, u16 freq, unsigned int flags)
87{
88	/* Check if the channel is in our supported range */
89	if (flags & CHANNEL_2GHZ) {
90		if ((freq >= ah->ah_capabilities.cap_range.range_2ghz_min) &&
91		    (freq <= ah->ah_capabilities.cap_range.range_2ghz_max))
92			return true;
93	} else if (flags & CHANNEL_5GHZ)
94		if ((freq >= ah->ah_capabilities.cap_range.range_5ghz_min) &&
95		    (freq <= ah->ah_capabilities.cap_range.range_5ghz_max))
96			return true;
97
98	return false;
99}
100
101bool ath5k_hw_chan_has_spur_noise(struct ath5k_hw *ah,
102				struct ieee80211_channel *channel)
103{
104	u8 refclk_freq;
105
106	if ((ah->ah_radio == AR5K_RF5112) ||
107	(ah->ah_radio == AR5K_RF5413) ||
108	(ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4)))
109		refclk_freq = 40;
110	else
111		refclk_freq = 32;
112
113	if ((channel->center_freq % refclk_freq != 0) &&
114	((channel->center_freq % refclk_freq < 10) ||
115	(channel->center_freq % refclk_freq > 22)))
116		return true;
117	else
118		return false;
119}
120
121/*
122 * Used to modify RF Banks before writing them to AR5K_RF_BUFFER
123 */
124static unsigned int ath5k_hw_rfb_op(struct ath5k_hw *ah,
125					const struct ath5k_rf_reg *rf_regs,
126					u32 val, u8 reg_id, bool set)
127{
128	const struct ath5k_rf_reg *rfreg = NULL;
129	u8 offset, bank, num_bits, col, position;
130	u16 entry;
131	u32 mask, data, last_bit, bits_shifted, first_bit;
132	u32 *rfb;
133	s32 bits_left;
134	int i;
135
136	data = 0;
137	rfb = ah->ah_rf_banks;
138
139	for (i = 0; i < ah->ah_rf_regs_count; i++) {
140		if (rf_regs[i].index == reg_id) {
141			rfreg = &rf_regs[i];
142			break;
143		}
144	}
145
146	if (rfb == NULL || rfreg == NULL) {
147		ATH5K_PRINTF("Rf register not found!\n");
148		/* should not happen */
149		return 0;
150	}
151
152	bank = rfreg->bank;
153	num_bits = rfreg->field.len;
154	first_bit = rfreg->field.pos;
155	col = rfreg->field.col;
156
157	/* first_bit is an offset from bank's
158	 * start. Since we have all banks on
159	 * the same array, we use this offset
160	 * to mark each bank's start */
161	offset = ah->ah_offset[bank];
162
163	/* Boundary check */
164	if (!(col <= 3 && num_bits <= 32 && first_bit + num_bits <= 319)) {
165		ATH5K_PRINTF("invalid values at offset %u\n", offset);
166		return 0;
167	}
168
169	entry = ((first_bit - 1) / 8) + offset;
170	position = (first_bit - 1) % 8;
171
172	if (set)
173		data = ath5k_hw_bitswap(val, num_bits);
174
175	for (bits_shifted = 0, bits_left = num_bits; bits_left > 0;
176	position = 0, entry++) {
177
178		last_bit = (position + bits_left > 8) ? 8 :
179					position + bits_left;
180
181		mask = (((1 << last_bit) - 1) ^ ((1 << position) - 1)) <<
182								(col * 8);
183
184		if (set) {
185			rfb[entry] &= ~mask;
186			rfb[entry] |= ((data << position) << (col * 8)) & mask;
187			data >>= (8 - position);
188		} else {
189			data |= (((rfb[entry] & mask) >> (col * 8)) >> position)
190				<< bits_shifted;
191			bits_shifted += last_bit - position;
192		}
193
194		bits_left -= 8 - position;
195	}
196
197	data = set ? 1 : ath5k_hw_bitswap(data, num_bits);
198
199	return data;
200}
201
202/**
203 * ath5k_hw_write_ofdm_timings - set OFDM timings on AR5212
204 *
205 * @ah: the &struct ath5k_hw
206 * @channel: the currently set channel upon reset
207 *
208 * Write the delta slope coefficient (used on pilot tracking ?) for OFDM
209 * operation on the AR5212 upon reset. This is a helper for ath5k_hw_phy_init.
210 *
211 * Since delta slope is floating point we split it on its exponent and
212 * mantissa and provide these values on hw.
213 *
214 * For more infos i think this patent is related
215 * http://www.freepatentsonline.com/7184495.html
216 */
217static inline int ath5k_hw_write_ofdm_timings(struct ath5k_hw *ah,
218	struct ieee80211_channel *channel)
219{
220	/* Get exponent and mantissa and set it */
221	u32 coef_scaled, coef_exp, coef_man,
222		ds_coef_exp, ds_coef_man, clock;
223
224	BUG_ON(!(ah->ah_version == AR5K_AR5212) ||
225		!(channel->hw_value & CHANNEL_OFDM));
226
227	/* Get coefficient
228	 * ALGO: coef = (5 * clock / carrier_freq) / 2
229	 * we scale coef by shifting clock value by 24 for
230	 * better precision since we use integers */
231	switch (ah->ah_bwmode) {
232	case AR5K_BWMODE_40MHZ:
233		clock = 40 * 2;
234		break;
235	case AR5K_BWMODE_10MHZ:
236		clock = 40 / 2;
237		break;
238	case AR5K_BWMODE_5MHZ:
239		clock = 40 / 4;
240		break;
241	default:
242		clock = 40;
243		break;
244	}
245	coef_scaled = ((5 * (clock << 24)) / 2) / channel->center_freq;
246
247	/* Get exponent
248	 * ALGO: coef_exp = 14 - highest set bit position */
249	coef_exp = ilog2(coef_scaled);
250
251	/* Doesn't make sense if it's zero*/
252	if (!coef_scaled || !coef_exp)
253		return -EINVAL;
254
255	/* Note: we've shifted coef_scaled by 24 */
256	coef_exp = 14 - (coef_exp - 24);
257
258
259	/* Get mantissa (significant digits)
260	 * ALGO: coef_mant = floor(coef_scaled* 2^coef_exp+0.5) */
261	coef_man = coef_scaled +
262		(1 << (24 - coef_exp - 1));
263
264	/* Calculate delta slope coefficient exponent
265	 * and mantissa (remove scaling) and set them on hw */
266	ds_coef_man = coef_man >> (24 - coef_exp);
267	ds_coef_exp = coef_exp - 16;
268
269	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_3,
270		AR5K_PHY_TIMING_3_DSC_MAN, ds_coef_man);
271	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_3,
272		AR5K_PHY_TIMING_3_DSC_EXP, ds_coef_exp);
273
274	return 0;
275}
276
277int ath5k_hw_phy_disable(struct ath5k_hw *ah)
278{
279	/*Just a try M.F.*/
280	ath5k_hw_reg_write(ah, AR5K_PHY_ACT_DISABLE, AR5K_PHY_ACT);
281
282	return 0;
283}
284
285/*
286 * Wait for synth to settle
287 */
288static void ath5k_hw_wait_for_synth(struct ath5k_hw *ah,
289			struct ieee80211_channel *channel)
290{
291	/*
292	 * On 5211+ read activation -> rx delay
293	 * and use it (100ns steps).
294	 */
295	if (ah->ah_version != AR5K_AR5210) {
296		u32 delay;
297		delay = ath5k_hw_reg_read(ah, AR5K_PHY_RX_DELAY) &
298			AR5K_PHY_RX_DELAY_M;
299		delay = (channel->hw_value & CHANNEL_CCK) ?
300			((delay << 2) / 22) : (delay / 10);
301		if (ah->ah_bwmode == AR5K_BWMODE_10MHZ)
302			delay = delay << 1;
303		if (ah->ah_bwmode == AR5K_BWMODE_5MHZ)
304			delay = delay << 2;
305		/* XXX: /2 on turbo ? Let's be safe
306		 * for now */
307		udelay(100 + delay);
308	} else {
309		mdelay(1);
310	}
311}
312
313
314/**********************\
315* RF Gain optimization *
316\**********************/
317
318/*
319 * This code is used to optimize RF gain on different environments
320 * (temperature mostly) based on feedback from a power detector.
321 *
322 * It's only used on RF5111 and RF5112, later RF chips seem to have
323 * auto adjustment on hw -notice they have a much smaller BANK 7 and
324 * no gain optimization ladder-.
325 *
326 * For more infos check out this patent doc
327 * http://www.freepatentsonline.com/7400691.html
328 *
329 * This paper describes power drops as seen on the receiver due to
330 * probe packets
331 * http://www.cnri.dit.ie/publications/ICT08%20-%20Practical%20Issues
332 * %20of%20Power%20Control.pdf
333 *
334 * And this is the MadWiFi bug entry related to the above
335 * http://madwifi-project.org/ticket/1659
336 * with various measurements and diagrams
337 *
338 * TODO: Deal with power drops due to probes by setting an appropriate
339 * tx power on the probe packets ! Make this part of the calibration process.
340 */
341
342/* Initialize ah_gain during attach */
343int ath5k_hw_rfgain_opt_init(struct ath5k_hw *ah)
344{
345	/* Initialize the gain optimization values */
346	switch (ah->ah_radio) {
347	case AR5K_RF5111:
348		ah->ah_gain.g_step_idx = rfgain_opt_5111.go_default;
349		ah->ah_gain.g_low = 20;
350		ah->ah_gain.g_high = 35;
351		ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
352		break;
353	case AR5K_RF5112:
354		ah->ah_gain.g_step_idx = rfgain_opt_5112.go_default;
355		ah->ah_gain.g_low = 20;
356		ah->ah_gain.g_high = 85;
357		ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
358		break;
359	default:
360		return -EINVAL;
361	}
362
363	return 0;
364}
365
366/* Schedule a gain probe check on the next transmited packet.
367 * That means our next packet is going to be sent with lower
368 * tx power and a Peak to Average Power Detector (PAPD) will try
369 * to measure the gain.
370 *
371 * XXX:  How about forcing a tx packet (bypassing PCU arbitrator etc)
372 * just after we enable the probe so that we don't mess with
373 * standard traffic ? Maybe it's time to use sw interrupts and
374 * a probe tasklet !!!
375 */
376static void ath5k_hw_request_rfgain_probe(struct ath5k_hw *ah)
377{
378
379	/* Skip if gain calibration is inactive or
380	 * we already handle a probe request */
381	if (ah->ah_gain.g_state != AR5K_RFGAIN_ACTIVE)
382		return;
383
384	/* Send the packet with 2dB below max power as
385	 * patent doc suggest */
386	ath5k_hw_reg_write(ah, AR5K_REG_SM(ah->ah_txpower.txp_ofdm - 4,
387			AR5K_PHY_PAPD_PROBE_TXPOWER) |
388			AR5K_PHY_PAPD_PROBE_TX_NEXT, AR5K_PHY_PAPD_PROBE);
389
390	ah->ah_gain.g_state = AR5K_RFGAIN_READ_REQUESTED;
391
392}
393
394/* Calculate gain_F measurement correction
395 * based on the current step for RF5112 rev. 2 */
396static u32 ath5k_hw_rf_gainf_corr(struct ath5k_hw *ah)
397{
398	u32 mix, step;
399	u32 *rf;
400	const struct ath5k_gain_opt *go;
401	const struct ath5k_gain_opt_step *g_step;
402	const struct ath5k_rf_reg *rf_regs;
403
404	/* Only RF5112 Rev. 2 supports it */
405	if ((ah->ah_radio != AR5K_RF5112) ||
406	(ah->ah_radio_5ghz_revision <= AR5K_SREV_RAD_5112A))
407		return 0;
408
409	go = &rfgain_opt_5112;
410	rf_regs = rf_regs_5112a;
411	ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a);
412
413	g_step = &go->go_step[ah->ah_gain.g_step_idx];
414
415	if (ah->ah_rf_banks == NULL)
416		return 0;
417
418	rf = ah->ah_rf_banks;
419	ah->ah_gain.g_f_corr = 0;
420
421	/* No VGA (Variable Gain Amplifier) override, skip */
422	if (ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR, false) != 1)
423		return 0;
424
425	/* Mix gain stepping */
426	step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXGAIN_STEP, false);
427
428	/* Mix gain override */
429	mix = g_step->gos_param[0];
430
431	switch (mix) {
432	case 3:
433		ah->ah_gain.g_f_corr = step * 2;
434		break;
435	case 2:
436		ah->ah_gain.g_f_corr = (step - 5) * 2;
437		break;
438	case 1:
439		ah->ah_gain.g_f_corr = step;
440		break;
441	default:
442		ah->ah_gain.g_f_corr = 0;
443		break;
444	}
445
446	return ah->ah_gain.g_f_corr;
447}
448
449/* Check if current gain_F measurement is in the range of our
450 * power detector windows. If we get a measurement outside range
451 * we know it's not accurate (detectors can't measure anything outside
452 * their detection window) so we must ignore it */
453static bool ath5k_hw_rf_check_gainf_readback(struct ath5k_hw *ah)
454{
455	const struct ath5k_rf_reg *rf_regs;
456	u32 step, mix_ovr, level[4];
457	u32 *rf;
458
459	if (ah->ah_rf_banks == NULL)
460		return false;
461
462	rf = ah->ah_rf_banks;
463
464	if (ah->ah_radio == AR5K_RF5111) {
465
466		rf_regs = rf_regs_5111;
467		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111);
468
469		step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_RFGAIN_STEP,
470			false);
471
472		level[0] = 0;
473		level[1] = (step == 63) ? 50 : step + 4;
474		level[2] = (step != 63) ? 64 : level[0];
475		level[3] = level[2] + 50 ;
476
477		ah->ah_gain.g_high = level[3] -
478			(step == 63 ? AR5K_GAIN_DYN_ADJUST_HI_MARGIN : -5);
479		ah->ah_gain.g_low = level[0] +
480			(step == 63 ? AR5K_GAIN_DYN_ADJUST_LO_MARGIN : 0);
481	} else {
482
483		rf_regs = rf_regs_5112;
484		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112);
485
486		mix_ovr = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR,
487			false);
488
489		level[0] = level[2] = 0;
490
491		if (mix_ovr == 1) {
492			level[1] = level[3] = 83;
493		} else {
494			level[1] = level[3] = 107;
495			ah->ah_gain.g_high = 55;
496		}
497	}
498
499	return (ah->ah_gain.g_current >= level[0] &&
500			ah->ah_gain.g_current <= level[1]) ||
501		(ah->ah_gain.g_current >= level[2] &&
502			ah->ah_gain.g_current <= level[3]);
503}
504
505/* Perform gain_F adjustment by choosing the right set
506 * of parameters from RF gain optimization ladder */
507static s8 ath5k_hw_rf_gainf_adjust(struct ath5k_hw *ah)
508{
509	const struct ath5k_gain_opt *go;
510	const struct ath5k_gain_opt_step *g_step;
511	int ret = 0;
512
513	switch (ah->ah_radio) {
514	case AR5K_RF5111:
515		go = &rfgain_opt_5111;
516		break;
517	case AR5K_RF5112:
518		go = &rfgain_opt_5112;
519		break;
520	default:
521		return 0;
522	}
523
524	g_step = &go->go_step[ah->ah_gain.g_step_idx];
525
526	if (ah->ah_gain.g_current >= ah->ah_gain.g_high) {
527
528		/* Reached maximum */
529		if (ah->ah_gain.g_step_idx == 0)
530			return -1;
531
532		for (ah->ah_gain.g_target = ah->ah_gain.g_current;
533				ah->ah_gain.g_target >=  ah->ah_gain.g_high &&
534				ah->ah_gain.g_step_idx > 0;
535				g_step = &go->go_step[ah->ah_gain.g_step_idx])
536			ah->ah_gain.g_target -= 2 *
537			    (go->go_step[--(ah->ah_gain.g_step_idx)].gos_gain -
538			    g_step->gos_gain);
539
540		ret = 1;
541		goto done;
542	}
543
544	if (ah->ah_gain.g_current <= ah->ah_gain.g_low) {
545
546		/* Reached minimum */
547		if (ah->ah_gain.g_step_idx == (go->go_steps_count - 1))
548			return -2;
549
550		for (ah->ah_gain.g_target = ah->ah_gain.g_current;
551				ah->ah_gain.g_target <= ah->ah_gain.g_low &&
552				ah->ah_gain.g_step_idx < go->go_steps_count-1;
553				g_step = &go->go_step[ah->ah_gain.g_step_idx])
554			ah->ah_gain.g_target -= 2 *
555			    (go->go_step[++ah->ah_gain.g_step_idx].gos_gain -
556			    g_step->gos_gain);
557
558		ret = 2;
559		goto done;
560	}
561
562done:
563	ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
564		"ret %d, gain step %u, current gain %u, target gain %u\n",
565		ret, ah->ah_gain.g_step_idx, ah->ah_gain.g_current,
566		ah->ah_gain.g_target);
567
568	return ret;
569}
570
571/* Main callback for thermal RF gain calibration engine
572 * Check for a new gain reading and schedule an adjustment
573 * if needed.
574 *
575 * TODO: Use sw interrupt to schedule reset if gain_F needs
576 * adjustment */
577enum ath5k_rfgain ath5k_hw_gainf_calibrate(struct ath5k_hw *ah)
578{
579	u32 data, type;
580	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
581
582	if (ah->ah_rf_banks == NULL ||
583	ah->ah_gain.g_state == AR5K_RFGAIN_INACTIVE)
584		return AR5K_RFGAIN_INACTIVE;
585
586	/* No check requested, either engine is inactive
587	 * or an adjustment is already requested */
588	if (ah->ah_gain.g_state != AR5K_RFGAIN_READ_REQUESTED)
589		goto done;
590
591	/* Read the PAPD (Peak to Average Power Detector)
592	 * register */
593	data = ath5k_hw_reg_read(ah, AR5K_PHY_PAPD_PROBE);
594
595	/* No probe is scheduled, read gain_F measurement */
596	if (!(data & AR5K_PHY_PAPD_PROBE_TX_NEXT)) {
597		ah->ah_gain.g_current = data >> AR5K_PHY_PAPD_PROBE_GAINF_S;
598		type = AR5K_REG_MS(data, AR5K_PHY_PAPD_PROBE_TYPE);
599
600		/* If tx packet is CCK correct the gain_F measurement
601		 * by cck ofdm gain delta */
602		if (type == AR5K_PHY_PAPD_PROBE_TYPE_CCK) {
603			if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A)
604				ah->ah_gain.g_current +=
605					ee->ee_cck_ofdm_gain_delta;
606			else
607				ah->ah_gain.g_current +=
608					AR5K_GAIN_CCK_PROBE_CORR;
609		}
610
611		/* Further correct gain_F measurement for
612		 * RF5112A radios */
613		if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) {
614			ath5k_hw_rf_gainf_corr(ah);
615			ah->ah_gain.g_current =
616				ah->ah_gain.g_current >= ah->ah_gain.g_f_corr ?
617				(ah->ah_gain.g_current-ah->ah_gain.g_f_corr) :
618				0;
619		}
620
621		/* Check if measurement is ok and if we need
622		 * to adjust gain, schedule a gain adjustment,
623		 * else switch back to the acive state */
624		if (ath5k_hw_rf_check_gainf_readback(ah) &&
625		AR5K_GAIN_CHECK_ADJUST(&ah->ah_gain) &&
626		ath5k_hw_rf_gainf_adjust(ah)) {
627			ah->ah_gain.g_state = AR5K_RFGAIN_NEED_CHANGE;
628		} else {
629			ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
630		}
631	}
632
633done:
634	return ah->ah_gain.g_state;
635}
636
637/* Write initial RF gain table to set the RF sensitivity
638 * this one works on all RF chips and has nothing to do
639 * with gain_F calibration */
640static int ath5k_hw_rfgain_init(struct ath5k_hw *ah, enum ieee80211_band band)
641{
642	const struct ath5k_ini_rfgain *ath5k_rfg;
643	unsigned int i, size, index;
644
645	switch (ah->ah_radio) {
646	case AR5K_RF5111:
647		ath5k_rfg = rfgain_5111;
648		size = ARRAY_SIZE(rfgain_5111);
649		break;
650	case AR5K_RF5112:
651		ath5k_rfg = rfgain_5112;
652		size = ARRAY_SIZE(rfgain_5112);
653		break;
654	case AR5K_RF2413:
655		ath5k_rfg = rfgain_2413;
656		size = ARRAY_SIZE(rfgain_2413);
657		break;
658	case AR5K_RF2316:
659		ath5k_rfg = rfgain_2316;
660		size = ARRAY_SIZE(rfgain_2316);
661		break;
662	case AR5K_RF5413:
663		ath5k_rfg = rfgain_5413;
664		size = ARRAY_SIZE(rfgain_5413);
665		break;
666	case AR5K_RF2317:
667	case AR5K_RF2425:
668		ath5k_rfg = rfgain_2425;
669		size = ARRAY_SIZE(rfgain_2425);
670		break;
671	default:
672		return -EINVAL;
673	}
674
675	index = (band == IEEE80211_BAND_2GHZ) ? 1 : 0;
676
677	for (i = 0; i < size; i++) {
678		AR5K_REG_WAIT(i);
679		ath5k_hw_reg_write(ah, ath5k_rfg[i].rfg_value[index],
680			(u32)ath5k_rfg[i].rfg_register);
681	}
682
683	return 0;
684}
685
686
687
688/********************\
689* RF Registers setup *
690\********************/
691
692/*
693 * Setup RF registers by writing RF buffer on hw
694 */
695static int ath5k_hw_rfregs_init(struct ath5k_hw *ah,
696	struct ieee80211_channel *channel, unsigned int mode)
697{
698	const struct ath5k_rf_reg *rf_regs;
699	const struct ath5k_ini_rfbuffer *ini_rfb;
700	const struct ath5k_gain_opt *go = NULL;
701	const struct ath5k_gain_opt_step *g_step;
702	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
703	u8 ee_mode = 0;
704	u32 *rfb;
705	int i, obdb = -1, bank = -1;
706
707	switch (ah->ah_radio) {
708	case AR5K_RF5111:
709		rf_regs = rf_regs_5111;
710		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111);
711		ini_rfb = rfb_5111;
712		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5111);
713		go = &rfgain_opt_5111;
714		break;
715	case AR5K_RF5112:
716		if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) {
717			rf_regs = rf_regs_5112a;
718			ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a);
719			ini_rfb = rfb_5112a;
720			ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112a);
721		} else {
722			rf_regs = rf_regs_5112;
723			ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112);
724			ini_rfb = rfb_5112;
725			ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112);
726		}
727		go = &rfgain_opt_5112;
728		break;
729	case AR5K_RF2413:
730		rf_regs = rf_regs_2413;
731		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2413);
732		ini_rfb = rfb_2413;
733		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2413);
734		break;
735	case AR5K_RF2316:
736		rf_regs = rf_regs_2316;
737		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2316);
738		ini_rfb = rfb_2316;
739		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2316);
740		break;
741	case AR5K_RF5413:
742		rf_regs = rf_regs_5413;
743		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5413);
744		ini_rfb = rfb_5413;
745		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5413);
746		break;
747	case AR5K_RF2317:
748		rf_regs = rf_regs_2425;
749		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425);
750		ini_rfb = rfb_2317;
751		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2317);
752		break;
753	case AR5K_RF2425:
754		rf_regs = rf_regs_2425;
755		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425);
756		if (ah->ah_mac_srev < AR5K_SREV_AR2417) {
757			ini_rfb = rfb_2425;
758			ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2425);
759		} else {
760			ini_rfb = rfb_2417;
761			ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2417);
762		}
763		break;
764	default:
765		return -EINVAL;
766	}
767
768	/* If it's the first time we set RF buffer, allocate
769	 * ah->ah_rf_banks based on ah->ah_rf_banks_size
770	 * we set above */
771	if (ah->ah_rf_banks == NULL) {
772		ah->ah_rf_banks = kmalloc(sizeof(u32) * ah->ah_rf_banks_size,
773								GFP_KERNEL);
774		if (ah->ah_rf_banks == NULL) {
775			ATH5K_ERR(ah->ah_sc, "out of memory\n");
776			return -ENOMEM;
777		}
778	}
779
780	/* Copy values to modify them */
781	rfb = ah->ah_rf_banks;
782
783	for (i = 0; i < ah->ah_rf_banks_size; i++) {
784		if (ini_rfb[i].rfb_bank >= AR5K_MAX_RF_BANKS) {
785			ATH5K_ERR(ah->ah_sc, "invalid bank\n");
786			return -EINVAL;
787		}
788
789		/* Bank changed, write down the offset */
790		if (bank != ini_rfb[i].rfb_bank) {
791			bank = ini_rfb[i].rfb_bank;
792			ah->ah_offset[bank] = i;
793		}
794
795		rfb[i] = ini_rfb[i].rfb_mode_data[mode];
796	}
797
798	/* Set Output and Driver bias current (OB/DB) */
799	if (channel->hw_value & CHANNEL_2GHZ) {
800
801		if (channel->hw_value & CHANNEL_CCK)
802			ee_mode = AR5K_EEPROM_MODE_11B;
803		else
804			ee_mode = AR5K_EEPROM_MODE_11G;
805
806		/* For RF511X/RF211X combination we
807		 * use b_OB and b_DB parameters stored
808		 * in eeprom on ee->ee_ob[ee_mode][0]
809		 *
810		 * For all other chips we use OB/DB for 2Ghz
811		 * stored in the b/g modal section just like
812		 * 802.11a on ee->ee_ob[ee_mode][1] */
813		if ((ah->ah_radio == AR5K_RF5111) ||
814		(ah->ah_radio == AR5K_RF5112))
815			obdb = 0;
816		else
817			obdb = 1;
818
819		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb],
820						AR5K_RF_OB_2GHZ, true);
821
822		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb],
823						AR5K_RF_DB_2GHZ, true);
824
825	/* RF5111 always needs OB/DB for 5GHz, even if we use 2GHz */
826	} else if ((channel->hw_value & CHANNEL_5GHZ) ||
827			(ah->ah_radio == AR5K_RF5111)) {
828
829		/* For 11a, Turbo and XR we need to choose
830		 * OB/DB based on frequency range */
831		ee_mode = AR5K_EEPROM_MODE_11A;
832		obdb =	 channel->center_freq >= 5725 ? 3 :
833			(channel->center_freq >= 5500 ? 2 :
834			(channel->center_freq >= 5260 ? 1 :
835			 (channel->center_freq > 4000 ? 0 : -1)));
836
837		if (obdb < 0)
838			return -EINVAL;
839
840		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb],
841						AR5K_RF_OB_5GHZ, true);
842
843		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb],
844						AR5K_RF_DB_5GHZ, true);
845	}
846
847	g_step = &go->go_step[ah->ah_gain.g_step_idx];
848
849	/* Set turbo mode (N/A on RF5413) */
850	if ((ah->ah_bwmode == AR5K_BWMODE_40MHZ) &&
851	(ah->ah_radio != AR5K_RF5413))
852		ath5k_hw_rfb_op(ah, rf_regs, 1, AR5K_RF_TURBO, false);
853
854	/* Bank Modifications (chip-specific) */
855	if (ah->ah_radio == AR5K_RF5111) {
856
857		/* Set gain_F settings according to current step */
858		if (channel->hw_value & CHANNEL_OFDM) {
859
860			AR5K_REG_WRITE_BITS(ah, AR5K_PHY_FRAME_CTL,
861					AR5K_PHY_FRAME_CTL_TX_CLIP,
862					g_step->gos_param[0]);
863
864			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1],
865							AR5K_RF_PWD_90, true);
866
867			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2],
868							AR5K_RF_PWD_84, true);
869
870			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3],
871						AR5K_RF_RFGAIN_SEL, true);
872
873			/* We programmed gain_F parameters, switch back
874			 * to active state */
875			ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
876
877		}
878
879		/* Bank 6/7 setup */
880
881		ath5k_hw_rfb_op(ah, rf_regs, !ee->ee_xpd[ee_mode],
882						AR5K_RF_PWD_XPD, true);
883
884		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_x_gain[ee_mode],
885						AR5K_RF_XPD_GAIN, true);
886
887		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode],
888						AR5K_RF_GAIN_I, true);
889
890		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode],
891						AR5K_RF_PLO_SEL, true);
892
893		/* Tweak power detectors for half/quarter rate support */
894		if (ah->ah_bwmode == AR5K_BWMODE_5MHZ ||
895		ah->ah_bwmode == AR5K_BWMODE_10MHZ) {
896			u8 wait_i;
897
898			ath5k_hw_rfb_op(ah, rf_regs, 0x1f,
899						AR5K_RF_WAIT_S, true);
900
901			wait_i = (ah->ah_bwmode == AR5K_BWMODE_5MHZ) ?
902							0x1f : 0x10;
903
904			ath5k_hw_rfb_op(ah, rf_regs, wait_i,
905						AR5K_RF_WAIT_I, true);
906			ath5k_hw_rfb_op(ah, rf_regs, 3,
907						AR5K_RF_MAX_TIME, true);
908
909		}
910	}
911
912	if (ah->ah_radio == AR5K_RF5112) {
913
914		/* Set gain_F settings according to current step */
915		if (channel->hw_value & CHANNEL_OFDM) {
916
917			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[0],
918						AR5K_RF_MIXGAIN_OVR, true);
919
920			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1],
921						AR5K_RF_PWD_138, true);
922
923			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2],
924						AR5K_RF_PWD_137, true);
925
926			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3],
927						AR5K_RF_PWD_136, true);
928
929			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[4],
930						AR5K_RF_PWD_132, true);
931
932			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[5],
933						AR5K_RF_PWD_131, true);
934
935			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[6],
936						AR5K_RF_PWD_130, true);
937
938			/* We programmed gain_F parameters, switch back
939			 * to active state */
940			ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
941		}
942
943		/* Bank 6/7 setup */
944
945		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode],
946						AR5K_RF_XPD_SEL, true);
947
948		if (ah->ah_radio_5ghz_revision < AR5K_SREV_RAD_5112A) {
949			/* Rev. 1 supports only one xpd */
950			ath5k_hw_rfb_op(ah, rf_regs,
951						ee->ee_x_gain[ee_mode],
952						AR5K_RF_XPD_GAIN, true);
953
954		} else {
955			u8 *pdg_curve_to_idx = ee->ee_pdc_to_idx[ee_mode];
956			if (ee->ee_pd_gains[ee_mode] > 1) {
957				ath5k_hw_rfb_op(ah, rf_regs,
958						pdg_curve_to_idx[0],
959						AR5K_RF_PD_GAIN_LO, true);
960				ath5k_hw_rfb_op(ah, rf_regs,
961						pdg_curve_to_idx[1],
962						AR5K_RF_PD_GAIN_HI, true);
963			} else {
964				ath5k_hw_rfb_op(ah, rf_regs,
965						pdg_curve_to_idx[0],
966						AR5K_RF_PD_GAIN_LO, true);
967				ath5k_hw_rfb_op(ah, rf_regs,
968						pdg_curve_to_idx[0],
969						AR5K_RF_PD_GAIN_HI, true);
970			}
971
972			/* Lower synth voltage on Rev 2 */
973			ath5k_hw_rfb_op(ah, rf_regs, 2,
974					AR5K_RF_HIGH_VC_CP, true);
975
976			ath5k_hw_rfb_op(ah, rf_regs, 2,
977					AR5K_RF_MID_VC_CP, true);
978
979			ath5k_hw_rfb_op(ah, rf_regs, 2,
980					AR5K_RF_LOW_VC_CP, true);
981
982			ath5k_hw_rfb_op(ah, rf_regs, 2,
983					AR5K_RF_PUSH_UP, true);
984
985			/* Decrease power consumption on 5213+ BaseBand */
986			if (ah->ah_phy_revision >= AR5K_SREV_PHY_5212A) {
987				ath5k_hw_rfb_op(ah, rf_regs, 1,
988						AR5K_RF_PAD2GND, true);
989
990				ath5k_hw_rfb_op(ah, rf_regs, 1,
991						AR5K_RF_XB2_LVL, true);
992
993				ath5k_hw_rfb_op(ah, rf_regs, 1,
994						AR5K_RF_XB5_LVL, true);
995
996				ath5k_hw_rfb_op(ah, rf_regs, 1,
997						AR5K_RF_PWD_167, true);
998
999				ath5k_hw_rfb_op(ah, rf_regs, 1,
1000						AR5K_RF_PWD_166, true);
1001			}
1002		}
1003
1004		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode],
1005						AR5K_RF_GAIN_I, true);
1006
1007		/* Tweak power detector for half/quarter rates */
1008		if (ah->ah_bwmode == AR5K_BWMODE_5MHZ ||
1009		ah->ah_bwmode == AR5K_BWMODE_10MHZ) {
1010			u8 pd_delay;
1011
1012			pd_delay = (ah->ah_bwmode == AR5K_BWMODE_5MHZ) ?
1013							0xf : 0x8;
1014
1015			ath5k_hw_rfb_op(ah, rf_regs, pd_delay,
1016						AR5K_RF_PD_PERIOD_A, true);
1017			ath5k_hw_rfb_op(ah, rf_regs, 0xf,
1018						AR5K_RF_PD_DELAY_A, true);
1019
1020		}
1021	}
1022
1023	if (ah->ah_radio == AR5K_RF5413 &&
1024	channel->hw_value & CHANNEL_2GHZ) {
1025
1026		ath5k_hw_rfb_op(ah, rf_regs, 1, AR5K_RF_DERBY_CHAN_SEL_MODE,
1027									true);
1028
1029		/* Set optimum value for early revisions (on pci-e chips) */
1030		if (ah->ah_mac_srev >= AR5K_SREV_AR5424 &&
1031		ah->ah_mac_srev < AR5K_SREV_AR5413)
1032			ath5k_hw_rfb_op(ah, rf_regs, ath5k_hw_bitswap(6, 3),
1033						AR5K_RF_PWD_ICLOBUF_2G, true);
1034
1035	}
1036
1037	/* Write RF banks on hw */
1038	for (i = 0; i < ah->ah_rf_banks_size; i++) {
1039		AR5K_REG_WAIT(i);
1040		ath5k_hw_reg_write(ah, rfb[i], ini_rfb[i].rfb_ctrl_register);
1041	}
1042
1043	return 0;
1044}
1045
1046
1047/**************************\
1048  PHY/RF channel functions
1049\**************************/
1050
1051/*
1052 * Conversion needed for RF5110
1053 */
1054static u32 ath5k_hw_rf5110_chan2athchan(struct ieee80211_channel *channel)
1055{
1056	u32 athchan;
1057
1058	/*
1059	 * Convert IEEE channel/MHz to an internal channel value used
1060	 * by the AR5210 chipset. This has not been verified with
1061	 * newer chipsets like the AR5212A who have a completely
1062	 * different RF/PHY part.
1063	 */
1064	athchan = (ath5k_hw_bitswap(
1065			(ieee80211_frequency_to_channel(
1066				channel->center_freq) - 24) / 2, 5)
1067				<< 1) | (1 << 6) | 0x1;
1068	return athchan;
1069}
1070
1071/*
1072 * Set channel on RF5110
1073 */
1074static int ath5k_hw_rf5110_channel(struct ath5k_hw *ah,
1075		struct ieee80211_channel *channel)
1076{
1077	u32 data;
1078
1079	/*
1080	 * Set the channel and wait
1081	 */
1082	data = ath5k_hw_rf5110_chan2athchan(channel);
1083	ath5k_hw_reg_write(ah, data, AR5K_RF_BUFFER);
1084	ath5k_hw_reg_write(ah, 0, AR5K_RF_BUFFER_CONTROL_0);
1085	mdelay(1);
1086
1087	return 0;
1088}
1089
1090/*
1091 * Conversion needed for 5111
1092 */
1093static int ath5k_hw_rf5111_chan2athchan(unsigned int ieee,
1094		struct ath5k_athchan_2ghz *athchan)
1095{
1096	int channel;
1097
1098	/* Cast this value to catch negative channel numbers (>= -19) */
1099	channel = (int)ieee;
1100
1101	/*
1102	 * Map 2GHz IEEE channel to 5GHz Atheros channel
1103	 */
1104	if (channel <= 13) {
1105		athchan->a2_athchan = 115 + channel;
1106		athchan->a2_flags = 0x46;
1107	} else if (channel == 14) {
1108		athchan->a2_athchan = 124;
1109		athchan->a2_flags = 0x44;
1110	} else if (channel >= 15 && channel <= 26) {
1111		athchan->a2_athchan = ((channel - 14) * 4) + 132;
1112		athchan->a2_flags = 0x46;
1113	} else
1114		return -EINVAL;
1115
1116	return 0;
1117}
1118
1119/*
1120 * Set channel on 5111
1121 */
1122static int ath5k_hw_rf5111_channel(struct ath5k_hw *ah,
1123		struct ieee80211_channel *channel)
1124{
1125	struct ath5k_athchan_2ghz ath5k_channel_2ghz;
1126	unsigned int ath5k_channel =
1127		ieee80211_frequency_to_channel(channel->center_freq);
1128	u32 data0, data1, clock;
1129	int ret;
1130
1131	/*
1132	 * Set the channel on the RF5111 radio
1133	 */
1134	data0 = data1 = 0;
1135
1136	if (channel->hw_value & CHANNEL_2GHZ) {
1137		/* Map 2GHz channel to 5GHz Atheros channel ID */
1138		ret = ath5k_hw_rf5111_chan2athchan(
1139			ieee80211_frequency_to_channel(channel->center_freq),
1140			&ath5k_channel_2ghz);
1141		if (ret)
1142			return ret;
1143
1144		ath5k_channel = ath5k_channel_2ghz.a2_athchan;
1145		data0 = ((ath5k_hw_bitswap(ath5k_channel_2ghz.a2_flags, 8) & 0xff)
1146		    << 5) | (1 << 4);
1147	}
1148
1149	if (ath5k_channel < 145 || !(ath5k_channel & 1)) {
1150		clock = 1;
1151		data1 = ((ath5k_hw_bitswap(ath5k_channel - 24, 8) & 0xff) << 2) |
1152			(clock << 1) | (1 << 10) | 1;
1153	} else {
1154		clock = 0;
1155		data1 = ((ath5k_hw_bitswap((ath5k_channel - 24) / 2, 8) & 0xff)
1156			<< 2) | (clock << 1) | (1 << 10) | 1;
1157	}
1158
1159	ath5k_hw_reg_write(ah, (data1 & 0xff) | ((data0 & 0xff) << 8),
1160			AR5K_RF_BUFFER);
1161	ath5k_hw_reg_write(ah, ((data1 >> 8) & 0xff) | (data0 & 0xff00),
1162			AR5K_RF_BUFFER_CONTROL_3);
1163
1164	return 0;
1165}
1166
1167/*
1168 * Set channel on 5112 and newer
1169 */
1170static int ath5k_hw_rf5112_channel(struct ath5k_hw *ah,
1171		struct ieee80211_channel *channel)
1172{
1173	u32 data, data0, data1, data2;
1174	u16 c;
1175
1176	data = data0 = data1 = data2 = 0;
1177	c = channel->center_freq;
1178
1179	if (c < 4800) {
1180		if (!((c - 2224) % 5)) {
1181			data0 = ((2 * (c - 704)) - 3040) / 10;
1182			data1 = 1;
1183		} else if (!((c - 2192) % 5)) {
1184			data0 = ((2 * (c - 672)) - 3040) / 10;
1185			data1 = 0;
1186		} else
1187			return -EINVAL;
1188
1189		data0 = ath5k_hw_bitswap((data0 << 2) & 0xff, 8);
1190	} else if ((c % 5) != 2 || c > 5435) {
1191		if (!(c % 20) && c >= 5120) {
1192			data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8);
1193			data2 = ath5k_hw_bitswap(3, 2);
1194		} else if (!(c % 10)) {
1195			data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8);
1196			data2 = ath5k_hw_bitswap(2, 2);
1197		} else if (!(c % 5)) {
1198			data0 = ath5k_hw_bitswap((c - 4800) / 5, 8);
1199			data2 = ath5k_hw_bitswap(1, 2);
1200		} else
1201			return -EINVAL;
1202	} else {
1203		data0 = ath5k_hw_bitswap((10 * (c - 2 - 4800)) / 25 + 1, 8);
1204		data2 = ath5k_hw_bitswap(0, 2);
1205	}
1206
1207	data = (data0 << 4) | (data1 << 1) | (data2 << 2) | 0x1001;
1208
1209	ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER);
1210	ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5);
1211
1212	return 0;
1213}
1214
1215/*
1216 * Set the channel on the RF2425
1217 */
1218static int ath5k_hw_rf2425_channel(struct ath5k_hw *ah,
1219		struct ieee80211_channel *channel)
1220{
1221	u32 data, data0, data2;
1222	u16 c;
1223
1224	data = data0 = data2 = 0;
1225	c = channel->center_freq;
1226
1227	if (c < 4800) {
1228		data0 = ath5k_hw_bitswap((c - 2272), 8);
1229		data2 = 0;
1230	/* ? 5GHz ? */
1231	} else if ((c % 5) != 2 || c > 5435) {
1232		if (!(c % 20) && c < 5120)
1233			data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8);
1234		else if (!(c % 10))
1235			data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8);
1236		else if (!(c % 5))
1237			data0 = ath5k_hw_bitswap((c - 4800) / 5, 8);
1238		else
1239			return -EINVAL;
1240		data2 = ath5k_hw_bitswap(1, 2);
1241	} else {
1242		data0 = ath5k_hw_bitswap((10 * (c - 2 - 4800)) / 25 + 1, 8);
1243		data2 = ath5k_hw_bitswap(0, 2);
1244	}
1245
1246	data = (data0 << 4) | data2 << 2 | 0x1001;
1247
1248	ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER);
1249	ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5);
1250
1251	return 0;
1252}
1253
1254/*
1255 * Set a channel on the radio chip
1256 */
1257static int ath5k_hw_channel(struct ath5k_hw *ah,
1258		struct ieee80211_channel *channel)
1259{
1260	int ret;
1261	/*
1262	 * Check bounds supported by the PHY (we don't care about regultory
1263	 * restrictions at this point). Note: hw_value already has the band
1264	 * (CHANNEL_2GHZ, or CHANNEL_5GHZ) so we inform ath5k_channel_ok()
1265	 * of the band by that */
1266	if (!ath5k_channel_ok(ah, channel->center_freq, channel->hw_value)) {
1267		ATH5K_ERR(ah->ah_sc,
1268			"channel frequency (%u MHz) out of supported "
1269			"band range\n",
1270			channel->center_freq);
1271			return -EINVAL;
1272	}
1273
1274	/*
1275	 * Set the channel and wait
1276	 */
1277	switch (ah->ah_radio) {
1278	case AR5K_RF5110:
1279		ret = ath5k_hw_rf5110_channel(ah, channel);
1280		break;
1281	case AR5K_RF5111:
1282		ret = ath5k_hw_rf5111_channel(ah, channel);
1283		break;
1284	case AR5K_RF2317:
1285	case AR5K_RF2425:
1286		ret = ath5k_hw_rf2425_channel(ah, channel);
1287		break;
1288	default:
1289		ret = ath5k_hw_rf5112_channel(ah, channel);
1290		break;
1291	}
1292
1293	if (ret)
1294		return ret;
1295
1296	/* Set JAPAN setting for channel 14 */
1297	if (channel->center_freq == 2484) {
1298		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL,
1299				AR5K_PHY_CCKTXCTL_JAPAN);
1300	} else {
1301		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL,
1302				AR5K_PHY_CCKTXCTL_WORLD);
1303	}
1304
1305	ah->ah_current_channel = channel;
1306
1307	return 0;
1308}
1309
1310/*****************\
1311  PHY calibration
1312\*****************/
1313
1314static s32 ath5k_hw_read_measured_noise_floor(struct ath5k_hw *ah)
1315{
1316	s32 val;
1317
1318	val = ath5k_hw_reg_read(ah, AR5K_PHY_NF);
1319	return sign_extend32(AR5K_REG_MS(val, AR5K_PHY_NF_MINCCA_PWR), 8);
1320}
1321
1322void ath5k_hw_init_nfcal_hist(struct ath5k_hw *ah)
1323{
1324	int i;
1325
1326	ah->ah_nfcal_hist.index = 0;
1327	for (i = 0; i < ATH5K_NF_CAL_HIST_MAX; i++)
1328		ah->ah_nfcal_hist.nfval[i] = AR5K_TUNE_CCA_MAX_GOOD_VALUE;
1329}
1330
1331static void ath5k_hw_update_nfcal_hist(struct ath5k_hw *ah, s16 noise_floor)
1332{
1333	struct ath5k_nfcal_hist *hist = &ah->ah_nfcal_hist;
1334	hist->index = (hist->index + 1) & (ATH5K_NF_CAL_HIST_MAX-1);
1335	hist->nfval[hist->index] = noise_floor;
1336}
1337
1338static s16 ath5k_hw_get_median_noise_floor(struct ath5k_hw *ah)
1339{
1340	s16 sort[ATH5K_NF_CAL_HIST_MAX];
1341	s16 tmp;
1342	int i, j;
1343
1344	memcpy(sort, ah->ah_nfcal_hist.nfval, sizeof(sort));
1345	for (i = 0; i < ATH5K_NF_CAL_HIST_MAX - 1; i++) {
1346		for (j = 1; j < ATH5K_NF_CAL_HIST_MAX - i; j++) {
1347			if (sort[j] > sort[j-1]) {
1348				tmp = sort[j];
1349				sort[j] = sort[j-1];
1350				sort[j-1] = tmp;
1351			}
1352		}
1353	}
1354	for (i = 0; i < ATH5K_NF_CAL_HIST_MAX; i++) {
1355		ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1356			"cal %d:%d\n", i, sort[i]);
1357	}
1358	return sort[(ATH5K_NF_CAL_HIST_MAX-1) / 2];
1359}
1360
1361/*
1362 * When we tell the hardware to perform a noise floor calibration
1363 * by setting the AR5K_PHY_AGCCTL_NF bit, it will periodically
1364 * sample-and-hold the minimum noise level seen at the antennas.
1365 * This value is then stored in a ring buffer of recently measured
1366 * noise floor values so we have a moving window of the last few
1367 * samples.
1368 *
1369 * The median of the values in the history is then loaded into the
1370 * hardware for its own use for RSSI and CCA measurements.
1371 */
1372void ath5k_hw_update_noise_floor(struct ath5k_hw *ah)
1373{
1374	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1375	u32 val;
1376	s16 nf, threshold;
1377	u8 ee_mode;
1378
1379	/* keep last value if calibration hasn't completed */
1380	if (ath5k_hw_reg_read(ah, AR5K_PHY_AGCCTL) & AR5K_PHY_AGCCTL_NF) {
1381		ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1382			"NF did not complete in calibration window\n");
1383
1384		return;
1385	}
1386
1387	ee_mode = ath5k_eeprom_mode_from_channel(ah->ah_current_channel);
1388
1389	/* completed NF calibration, test threshold */
1390	nf = ath5k_hw_read_measured_noise_floor(ah);
1391	threshold = ee->ee_noise_floor_thr[ee_mode];
1392
1393	if (nf > threshold) {
1394		ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1395			"noise floor failure detected; "
1396			"read %d, threshold %d\n",
1397			nf, threshold);
1398
1399		nf = AR5K_TUNE_CCA_MAX_GOOD_VALUE;
1400	}
1401
1402	ath5k_hw_update_nfcal_hist(ah, nf);
1403	nf = ath5k_hw_get_median_noise_floor(ah);
1404
1405	/* load noise floor (in .5 dBm) so the hardware will use it */
1406	val = ath5k_hw_reg_read(ah, AR5K_PHY_NF) & ~AR5K_PHY_NF_M;
1407	val |= (nf * 2) & AR5K_PHY_NF_M;
1408	ath5k_hw_reg_write(ah, val, AR5K_PHY_NF);
1409
1410	AR5K_REG_MASKED_BITS(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_NF,
1411		~(AR5K_PHY_AGCCTL_NF_EN | AR5K_PHY_AGCCTL_NF_NOUPDATE));
1412
1413	ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_NF,
1414		0, false);
1415
1416	/*
1417	 * Load a high max CCA Power value (-50 dBm in .5 dBm units)
1418	 * so that we're not capped by the median we just loaded.
1419	 * This will be used as the initial value for the next noise
1420	 * floor calibration.
1421	 */
1422	val = (val & ~AR5K_PHY_NF_M) | ((-50 * 2) & AR5K_PHY_NF_M);
1423	ath5k_hw_reg_write(ah, val, AR5K_PHY_NF);
1424	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
1425		AR5K_PHY_AGCCTL_NF_EN |
1426		AR5K_PHY_AGCCTL_NF_NOUPDATE |
1427		AR5K_PHY_AGCCTL_NF);
1428
1429	ah->ah_noise_floor = nf;
1430
1431	ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1432		"noise floor calibrated: %d\n", nf);
1433}
1434
1435/*
1436 * Perform a PHY calibration on RF5110
1437 * -Fix BPSK/QAM Constellation (I/Q correction)
1438 */
1439static int ath5k_hw_rf5110_calibrate(struct ath5k_hw *ah,
1440		struct ieee80211_channel *channel)
1441{
1442	u32 phy_sig, phy_agc, phy_sat, beacon;
1443	int ret;
1444
1445	/*
1446	 * Disable beacons and RX/TX queues, wait
1447	 */
1448	AR5K_REG_ENABLE_BITS(ah, AR5K_DIAG_SW_5210,
1449		AR5K_DIAG_SW_DIS_TX_5210 | AR5K_DIAG_SW_DIS_RX_5210);
1450	beacon = ath5k_hw_reg_read(ah, AR5K_BEACON_5210);
1451	ath5k_hw_reg_write(ah, beacon & ~AR5K_BEACON_ENABLE, AR5K_BEACON_5210);
1452
1453	mdelay(2);
1454
1455	/*
1456	 * Set the channel (with AGC turned off)
1457	 */
1458	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1459	udelay(10);
1460	ret = ath5k_hw_channel(ah, channel);
1461
1462	/*
1463	 * Activate PHY and wait
1464	 */
1465	ath5k_hw_reg_write(ah, AR5K_PHY_ACT_ENABLE, AR5K_PHY_ACT);
1466	mdelay(1);
1467
1468	AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1469
1470	if (ret)
1471		return ret;
1472
1473	/*
1474	 * Calibrate the radio chip
1475	 */
1476
1477	/* Remember normal state */
1478	phy_sig = ath5k_hw_reg_read(ah, AR5K_PHY_SIG);
1479	phy_agc = ath5k_hw_reg_read(ah, AR5K_PHY_AGCCOARSE);
1480	phy_sat = ath5k_hw_reg_read(ah, AR5K_PHY_ADCSAT);
1481
1482	/* Update radio registers */
1483	ath5k_hw_reg_write(ah, (phy_sig & ~(AR5K_PHY_SIG_FIRPWR)) |
1484		AR5K_REG_SM(-1, AR5K_PHY_SIG_FIRPWR), AR5K_PHY_SIG);
1485
1486	ath5k_hw_reg_write(ah, (phy_agc & ~(AR5K_PHY_AGCCOARSE_HI |
1487			AR5K_PHY_AGCCOARSE_LO)) |
1488		AR5K_REG_SM(-1, AR5K_PHY_AGCCOARSE_HI) |
1489		AR5K_REG_SM(-127, AR5K_PHY_AGCCOARSE_LO), AR5K_PHY_AGCCOARSE);
1490
1491	ath5k_hw_reg_write(ah, (phy_sat & ~(AR5K_PHY_ADCSAT_ICNT |
1492			AR5K_PHY_ADCSAT_THR)) |
1493		AR5K_REG_SM(2, AR5K_PHY_ADCSAT_ICNT) |
1494		AR5K_REG_SM(12, AR5K_PHY_ADCSAT_THR), AR5K_PHY_ADCSAT);
1495
1496	udelay(20);
1497
1498	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1499	udelay(10);
1500	ath5k_hw_reg_write(ah, AR5K_PHY_RFSTG_DISABLE, AR5K_PHY_RFSTG);
1501	AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1502
1503	mdelay(1);
1504
1505	/*
1506	 * Enable calibration and wait until completion
1507	 */
1508	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_CAL);
1509
1510	ret = ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL,
1511			AR5K_PHY_AGCCTL_CAL, 0, false);
1512
1513	/* Reset to normal state */
1514	ath5k_hw_reg_write(ah, phy_sig, AR5K_PHY_SIG);
1515	ath5k_hw_reg_write(ah, phy_agc, AR5K_PHY_AGCCOARSE);
1516	ath5k_hw_reg_write(ah, phy_sat, AR5K_PHY_ADCSAT);
1517
1518	if (ret) {
1519		ATH5K_ERR(ah->ah_sc, "calibration timeout (%uMHz)\n",
1520				channel->center_freq);
1521		return ret;
1522	}
1523
1524	/*
1525	 * Re-enable RX/TX and beacons
1526	 */
1527	AR5K_REG_DISABLE_BITS(ah, AR5K_DIAG_SW_5210,
1528		AR5K_DIAG_SW_DIS_TX_5210 | AR5K_DIAG_SW_DIS_RX_5210);
1529	ath5k_hw_reg_write(ah, beacon, AR5K_BEACON_5210);
1530
1531	return 0;
1532}
1533
1534/*
1535 * Perform I/Q calibration on RF5111/5112 and newer chips
1536 */
1537static int
1538ath5k_hw_rf511x_iq_calibrate(struct ath5k_hw *ah)
1539{
1540	u32 i_pwr, q_pwr;
1541	s32 iq_corr, i_coff, i_coffd, q_coff, q_coffd;
1542	int i;
1543
1544	if (!ah->ah_calibration ||
1545		ath5k_hw_reg_read(ah, AR5K_PHY_IQ) & AR5K_PHY_IQ_RUN)
1546		return 0;
1547
1548	/* Calibration has finished, get the results and re-run */
1549	/* work around empty results which can apparently happen on 5212 */
1550	for (i = 0; i <= 10; i++) {
1551		iq_corr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_CORR);
1552		i_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_I);
1553		q_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_Q);
1554		ATH5K_DBG_UNLIMIT(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1555			"iq_corr:%x i_pwr:%x q_pwr:%x", iq_corr, i_pwr, q_pwr);
1556		if (i_pwr && q_pwr)
1557			break;
1558	}
1559
1560	i_coffd = ((i_pwr >> 1) + (q_pwr >> 1)) >> 7;
1561
1562	if (ah->ah_version == AR5K_AR5211)
1563		q_coffd = q_pwr >> 6;
1564	else
1565		q_coffd = q_pwr >> 7;
1566
1567	/* protect against divide by 0 and loss of sign bits */
1568	if (i_coffd == 0 || q_coffd < 2)
1569		return 0;
1570
1571	i_coff = (-iq_corr) / i_coffd;
1572	i_coff = clamp(i_coff, -32, 31); /* signed 6 bit */
1573
1574	if (ah->ah_version == AR5K_AR5211)
1575		q_coff = (i_pwr / q_coffd) - 64;
1576	else
1577		q_coff = (i_pwr / q_coffd) - 128;
1578	q_coff = clamp(q_coff, -16, 15); /* signed 5 bit */
1579
1580	ATH5K_DBG_UNLIMIT(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1581			"new I:%d Q:%d (i_coffd:%x q_coffd:%x)",
1582			i_coff, q_coff, i_coffd, q_coffd);
1583
1584	/* Commit new I/Q values (set enable bit last to match HAL sources) */
1585	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_Q_I_COFF, i_coff);
1586	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_Q_Q_COFF, q_coff);
1587	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_ENABLE);
1588
1589	/* Re-enable calibration -if we don't we'll commit
1590	 * the same values again and again */
1591	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ,
1592			AR5K_PHY_IQ_CAL_NUM_LOG_MAX, 15);
1593	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_RUN);
1594
1595	return 0;
1596}
1597
1598/*
1599 * Perform a PHY calibration
1600 */
1601int ath5k_hw_phy_calibrate(struct ath5k_hw *ah,
1602		struct ieee80211_channel *channel)
1603{
1604	int ret;
1605
1606	if (ah->ah_radio == AR5K_RF5110)
1607		ret = ath5k_hw_rf5110_calibrate(ah, channel);
1608	else {
1609		ret = ath5k_hw_rf511x_iq_calibrate(ah);
1610		ath5k_hw_request_rfgain_probe(ah);
1611	}
1612
1613	return ret;
1614}
1615
1616
1617/***************************\
1618* Spur mitigation functions *
1619\***************************/
1620
1621static void
1622ath5k_hw_set_spur_mitigation_filter(struct ath5k_hw *ah,
1623				struct ieee80211_channel *channel)
1624{
1625	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1626	u32 mag_mask[4] = {0, 0, 0, 0};
1627	u32 pilot_mask[2] = {0, 0};
1628	/* Note: fbin values are scaled up by 2 */
1629	u16 spur_chan_fbin, chan_fbin, symbol_width, spur_detection_window;
1630	s32 spur_delta_phase, spur_freq_sigma_delta;
1631	s32 spur_offset, num_symbols_x16;
1632	u8 num_symbol_offsets, i, freq_band;
1633
1634	/* Convert current frequency to fbin value (the same way channels
1635	 * are stored on EEPROM, check out ath5k_eeprom_bin2freq) and scale
1636	 * up by 2 so we can compare it later */
1637	if (channel->hw_value & CHANNEL_2GHZ) {
1638		chan_fbin = (channel->center_freq - 2300) * 10;
1639		freq_band = AR5K_EEPROM_BAND_2GHZ;
1640	} else {
1641		chan_fbin = (channel->center_freq - 4900) * 10;
1642		freq_band = AR5K_EEPROM_BAND_5GHZ;
1643	}
1644
1645	/* Check if any spur_chan_fbin from EEPROM is
1646	 * within our current channel's spur detection range */
1647	spur_chan_fbin = AR5K_EEPROM_NO_SPUR;
1648	spur_detection_window = AR5K_SPUR_CHAN_WIDTH;
1649	/* XXX: Half/Quarter channels ?*/
1650	if (ah->ah_bwmode == AR5K_BWMODE_40MHZ)
1651		spur_detection_window *= 2;
1652
1653	for (i = 0; i < AR5K_EEPROM_N_SPUR_CHANS; i++) {
1654		spur_chan_fbin = ee->ee_spur_chans[i][freq_band];
1655
1656		/* Note: mask cleans AR5K_EEPROM_NO_SPUR flag
1657		 * so it's zero if we got nothing from EEPROM */
1658		if (spur_chan_fbin == AR5K_EEPROM_NO_SPUR) {
1659			spur_chan_fbin &= AR5K_EEPROM_SPUR_CHAN_MASK;
1660			break;
1661		}
1662
1663		if ((chan_fbin - spur_detection_window <=
1664		(spur_chan_fbin & AR5K_EEPROM_SPUR_CHAN_MASK)) &&
1665		(chan_fbin + spur_detection_window >=
1666		(spur_chan_fbin & AR5K_EEPROM_SPUR_CHAN_MASK))) {
1667			spur_chan_fbin &= AR5K_EEPROM_SPUR_CHAN_MASK;
1668			break;
1669		}
1670	}
1671
1672	/* We need to enable spur filter for this channel */
1673	if (spur_chan_fbin) {
1674		spur_offset = spur_chan_fbin - chan_fbin;
1675		/*
1676		 * Calculate deltas:
1677		 * spur_freq_sigma_delta -> spur_offset / sample_freq << 21
1678		 * spur_delta_phase -> spur_offset / chip_freq << 11
1679		 * Note: Both values have 100Hz resolution
1680		 */
1681		switch (ah->ah_bwmode) {
1682		case AR5K_BWMODE_40MHZ:
1683			/* Both sample_freq and chip_freq are 80MHz */
1684			spur_delta_phase = (spur_offset << 16) / 25;
1685			spur_freq_sigma_delta = (spur_delta_phase >> 10);
1686			symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz * 2;
1687			break;
1688		case AR5K_BWMODE_10MHZ:
1689			/* Both sample_freq and chip_freq are 20MHz (?) */
1690			spur_delta_phase = (spur_offset << 18) / 25;
1691			spur_freq_sigma_delta = (spur_delta_phase >> 10);
1692			symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz / 2;
1693		case AR5K_BWMODE_5MHZ:
1694			/* Both sample_freq and chip_freq are 10MHz (?) */
1695			spur_delta_phase = (spur_offset << 19) / 25;
1696			spur_freq_sigma_delta = (spur_delta_phase >> 10);
1697			symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz / 4;
1698		default:
1699			if (channel->hw_value == CHANNEL_A) {
1700				/* Both sample_freq and chip_freq are 40MHz */
1701				spur_delta_phase = (spur_offset << 17) / 25;
1702				spur_freq_sigma_delta =
1703						(spur_delta_phase >> 10);
1704				symbol_width =
1705					AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz;
1706			} else {
1707				/* sample_freq -> 40MHz chip_freq -> 44MHz
1708				 * (for b compatibility) */
1709				spur_delta_phase = (spur_offset << 17) / 25;
1710				spur_freq_sigma_delta =
1711						(spur_offset << 8) / 55;
1712				symbol_width =
1713					AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz;
1714			}
1715			break;
1716		}
1717
1718		/* Calculate pilot and magnitude masks */
1719
1720		/* Scale up spur_offset by 1000 to switch to 100HZ resolution
1721		 * and divide by symbol_width to find how many symbols we have
1722		 * Note: number of symbols is scaled up by 16 */
1723		num_symbols_x16 = ((spur_offset * 1000) << 4) / symbol_width;
1724
1725		/* Spur is on a symbol if num_symbols_x16 % 16 is zero */
1726		if (!(num_symbols_x16 & 0xF))
1727			/* _X_ */
1728			num_symbol_offsets = 3;
1729		else
1730			/* _xx_ */
1731			num_symbol_offsets = 4;
1732
1733		for (i = 0; i < num_symbol_offsets; i++) {
1734
1735			/* Calculate pilot mask */
1736			s32 curr_sym_off =
1737				(num_symbols_x16 / 16) + i + 25;
1738
1739			/* Pilot magnitude mask seems to be a way to
1740			 * declare the boundaries for our detection
1741			 * window or something, it's 2 for the middle
1742			 * value(s) where the symbol is expected to be
1743			 * and 1 on the boundary values */
1744			u8 plt_mag_map =
1745				(i == 0 || i == (num_symbol_offsets - 1))
1746								? 1 : 2;
1747
1748			if (curr_sym_off >= 0 && curr_sym_off <= 32) {
1749				if (curr_sym_off <= 25)
1750					pilot_mask[0] |= 1 << curr_sym_off;
1751				else if (curr_sym_off >= 27)
1752					pilot_mask[0] |= 1 << (curr_sym_off - 1);
1753			} else if (curr_sym_off >= 33 && curr_sym_off <= 52)
1754				pilot_mask[1] |= 1 << (curr_sym_off - 33);
1755
1756			/* Calculate magnitude mask (for viterbi decoder) */
1757			if (curr_sym_off >= -1 && curr_sym_off <= 14)
1758				mag_mask[0] |=
1759					plt_mag_map << (curr_sym_off + 1) * 2;
1760			else if (curr_sym_off >= 15 && curr_sym_off <= 30)
1761				mag_mask[1] |=
1762					plt_mag_map << (curr_sym_off - 15) * 2;
1763			else if (curr_sym_off >= 31 && curr_sym_off <= 46)
1764				mag_mask[2] |=
1765					plt_mag_map << (curr_sym_off - 31) * 2;
1766			else if (curr_sym_off >= 47 && curr_sym_off <= 53)
1767				mag_mask[3] |=
1768					plt_mag_map << (curr_sym_off - 47) * 2;
1769
1770		}
1771
1772		/* Write settings on hw to enable spur filter */
1773		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
1774					AR5K_PHY_BIN_MASK_CTL_RATE, 0xff);
1775		/* XXX: Self correlator also ? */
1776		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ,
1777					AR5K_PHY_IQ_PILOT_MASK_EN |
1778					AR5K_PHY_IQ_CHAN_MASK_EN |
1779					AR5K_PHY_IQ_SPUR_FILT_EN);
1780
1781		/* Set delta phase and freq sigma delta */
1782		ath5k_hw_reg_write(ah,
1783				AR5K_REG_SM(spur_delta_phase,
1784					AR5K_PHY_TIMING_11_SPUR_DELTA_PHASE) |
1785				AR5K_REG_SM(spur_freq_sigma_delta,
1786				AR5K_PHY_TIMING_11_SPUR_FREQ_SD) |
1787				AR5K_PHY_TIMING_11_USE_SPUR_IN_AGC,
1788				AR5K_PHY_TIMING_11);
1789
1790		/* Write pilot masks */
1791		ath5k_hw_reg_write(ah, pilot_mask[0], AR5K_PHY_TIMING_7);
1792		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_8,
1793					AR5K_PHY_TIMING_8_PILOT_MASK_2,
1794					pilot_mask[1]);
1795
1796		ath5k_hw_reg_write(ah, pilot_mask[0], AR5K_PHY_TIMING_9);
1797		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_10,
1798					AR5K_PHY_TIMING_10_PILOT_MASK_2,
1799					pilot_mask[1]);
1800
1801		/* Write magnitude masks */
1802		ath5k_hw_reg_write(ah, mag_mask[0], AR5K_PHY_BIN_MASK_1);
1803		ath5k_hw_reg_write(ah, mag_mask[1], AR5K_PHY_BIN_MASK_2);
1804		ath5k_hw_reg_write(ah, mag_mask[2], AR5K_PHY_BIN_MASK_3);
1805		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
1806					AR5K_PHY_BIN_MASK_CTL_MASK_4,
1807					mag_mask[3]);
1808
1809		ath5k_hw_reg_write(ah, mag_mask[0], AR5K_PHY_BIN_MASK2_1);
1810		ath5k_hw_reg_write(ah, mag_mask[1], AR5K_PHY_BIN_MASK2_2);
1811		ath5k_hw_reg_write(ah, mag_mask[2], AR5K_PHY_BIN_MASK2_3);
1812		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK2_4,
1813					AR5K_PHY_BIN_MASK2_4_MASK_4,
1814					mag_mask[3]);
1815
1816	} else if (ath5k_hw_reg_read(ah, AR5K_PHY_IQ) &
1817	AR5K_PHY_IQ_SPUR_FILT_EN) {
1818		/* Clean up spur mitigation settings and disable fliter */
1819		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
1820					AR5K_PHY_BIN_MASK_CTL_RATE, 0);
1821		AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_IQ,
1822					AR5K_PHY_IQ_PILOT_MASK_EN |
1823					AR5K_PHY_IQ_CHAN_MASK_EN |
1824					AR5K_PHY_IQ_SPUR_FILT_EN);
1825		ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_11);
1826
1827		/* Clear pilot masks */
1828		ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_7);
1829		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_8,
1830					AR5K_PHY_TIMING_8_PILOT_MASK_2,
1831					0);
1832
1833		ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_9);
1834		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_10,
1835					AR5K_PHY_TIMING_10_PILOT_MASK_2,
1836					0);
1837
1838		/* Clear magnitude masks */
1839		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_1);
1840		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_2);
1841		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_3);
1842		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
1843					AR5K_PHY_BIN_MASK_CTL_MASK_4,
1844					0);
1845
1846		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_1);
1847		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_2);
1848		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_3);
1849		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK2_4,
1850					AR5K_PHY_BIN_MASK2_4_MASK_4,
1851					0);
1852	}
1853}
1854
1855
1856/*****************\
1857* Antenna control *
1858\*****************/
1859
1860static void /*TODO:Boundary check*/
1861ath5k_hw_set_def_antenna(struct ath5k_hw *ah, u8 ant)
1862{
1863	if (ah->ah_version != AR5K_AR5210)
1864		ath5k_hw_reg_write(ah, ant & 0x7, AR5K_DEFAULT_ANTENNA);
1865}
1866
1867/*
1868 * Enable/disable fast rx antenna diversity
1869 */
1870static void
1871ath5k_hw_set_fast_div(struct ath5k_hw *ah, u8 ee_mode, bool enable)
1872{
1873	switch (ee_mode) {
1874	case AR5K_EEPROM_MODE_11G:
1875		/* XXX: This is set to
1876		 * disabled on initvals !!! */
1877	case AR5K_EEPROM_MODE_11A:
1878		if (enable)
1879			AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGCCTL,
1880					AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
1881		else
1882			AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
1883					AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
1884		break;
1885	case AR5K_EEPROM_MODE_11B:
1886		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
1887					AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
1888		break;
1889	default:
1890		return;
1891	}
1892
1893	if (enable) {
1894		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RESTART,
1895				AR5K_PHY_RESTART_DIV_GC, 4);
1896
1897		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_FAST_ANT_DIV,
1898					AR5K_PHY_FAST_ANT_DIV_EN);
1899	} else {
1900		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RESTART,
1901				AR5K_PHY_RESTART_DIV_GC, 0);
1902
1903		AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_FAST_ANT_DIV,
1904					AR5K_PHY_FAST_ANT_DIV_EN);
1905	}
1906}
1907
1908void
1909ath5k_hw_set_antenna_switch(struct ath5k_hw *ah, u8 ee_mode)
1910{
1911	u8 ant0, ant1;
1912
1913	/*
1914	 * In case a fixed antenna was set as default
1915	 * use the same switch table twice.
1916	 */
1917	if (ah->ah_ant_mode == AR5K_ANTMODE_FIXED_A)
1918		ant0 = ant1 = AR5K_ANT_SWTABLE_A;
1919	else if (ah->ah_ant_mode == AR5K_ANTMODE_FIXED_B)
1920		ant0 = ant1 = AR5K_ANT_SWTABLE_B;
1921	else {
1922		ant0 = AR5K_ANT_SWTABLE_A;
1923		ant1 = AR5K_ANT_SWTABLE_B;
1924	}
1925
1926	/* Set antenna idle switch table */
1927	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_ANT_CTL,
1928			AR5K_PHY_ANT_CTL_SWTABLE_IDLE,
1929			(ah->ah_ant_ctl[ee_mode][AR5K_ANT_CTL] |
1930			AR5K_PHY_ANT_CTL_TXRX_EN));
1931
1932	/* Set antenna switch tables */
1933	ath5k_hw_reg_write(ah, ah->ah_ant_ctl[ee_mode][ant0],
1934		AR5K_PHY_ANT_SWITCH_TABLE_0);
1935	ath5k_hw_reg_write(ah, ah->ah_ant_ctl[ee_mode][ant1],
1936		AR5K_PHY_ANT_SWITCH_TABLE_1);
1937}
1938
1939/*
1940 * Set antenna operating mode
1941 */
1942void
1943ath5k_hw_set_antenna_mode(struct ath5k_hw *ah, u8 ant_mode)
1944{
1945	struct ieee80211_channel *channel = ah->ah_current_channel;
1946	bool use_def_for_tx, update_def_on_tx, use_def_for_rts, fast_div;
1947	bool use_def_for_sg;
1948	int ee_mode;
1949	u8 def_ant, tx_ant;
1950	u32 sta_id1 = 0;
1951
1952	/* if channel is not initialized yet we can't set the antennas
1953	 * so just store the mode. it will be set on the next reset */
1954	if (channel == NULL) {
1955		ah->ah_ant_mode = ant_mode;
1956		return;
1957	}
1958
1959	def_ant = ah->ah_def_ant;
1960
1961	ee_mode = ath5k_eeprom_mode_from_channel(channel);
1962	if (ee_mode < 0) {
1963		ATH5K_ERR(ah->ah_sc,
1964			"invalid channel: %d\n", channel->center_freq);
1965		return;
1966	}
1967
1968	switch (ant_mode) {
1969	case AR5K_ANTMODE_DEFAULT:
1970		tx_ant = 0;
1971		use_def_for_tx = false;
1972		update_def_on_tx = false;
1973		use_def_for_rts = false;
1974		use_def_for_sg = false;
1975		fast_div = true;
1976		break;
1977	case AR5K_ANTMODE_FIXED_A:
1978		def_ant = 1;
1979		tx_ant = 1;
1980		use_def_for_tx = true;
1981		update_def_on_tx = false;
1982		use_def_for_rts = true;
1983		use_def_for_sg = true;
1984		fast_div = false;
1985		break;
1986	case AR5K_ANTMODE_FIXED_B:
1987		def_ant = 2;
1988		tx_ant = 2;
1989		use_def_for_tx = true;
1990		update_def_on_tx = false;
1991		use_def_for_rts = true;
1992		use_def_for_sg = true;
1993		fast_div = false;
1994		break;
1995	case AR5K_ANTMODE_SINGLE_AP:
1996		def_ant = 1;	/* updated on tx */
1997		tx_ant = 0;
1998		use_def_for_tx = true;
1999		update_def_on_tx = true;
2000		use_def_for_rts = true;
2001		use_def_for_sg = true;
2002		fast_div = true;
2003		break;
2004	case AR5K_ANTMODE_SECTOR_AP:
2005		tx_ant = 1;	/* variable */
2006		use_def_for_tx = false;
2007		update_def_on_tx = false;
2008		use_def_for_rts = true;
2009		use_def_for_sg = false;
2010		fast_div = false;
2011		break;
2012	case AR5K_ANTMODE_SECTOR_STA:
2013		tx_ant = 1;	/* variable */
2014		use_def_for_tx = true;
2015		update_def_on_tx = false;
2016		use_def_for_rts = true;
2017		use_def_for_sg = false;
2018		fast_div = true;
2019		break;
2020	case AR5K_ANTMODE_DEBUG:
2021		def_ant = 1;
2022		tx_ant = 2;
2023		use_def_for_tx = false;
2024		update_def_on_tx = false;
2025		use_def_for_rts = false;
2026		use_def_for_sg = false;
2027		fast_div = false;
2028		break;
2029	default:
2030		return;
2031	}
2032
2033	ah->ah_tx_ant = tx_ant;
2034	ah->ah_ant_mode = ant_mode;
2035	ah->ah_def_ant = def_ant;
2036
2037	sta_id1 |= use_def_for_tx ? AR5K_STA_ID1_DEFAULT_ANTENNA : 0;
2038	sta_id1 |= update_def_on_tx ? AR5K_STA_ID1_DESC_ANTENNA : 0;
2039	sta_id1 |= use_def_for_rts ? AR5K_STA_ID1_RTS_DEF_ANTENNA : 0;
2040	sta_id1 |= use_def_for_sg ? AR5K_STA_ID1_SELFGEN_DEF_ANT : 0;
2041
2042	AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1, AR5K_STA_ID1_ANTENNA_SETTINGS);
2043
2044	if (sta_id1)
2045		AR5K_REG_ENABLE_BITS(ah, AR5K_STA_ID1, sta_id1);
2046
2047	ath5k_hw_set_antenna_switch(ah, ee_mode);
2048	/* Note: set diversity before default antenna
2049	 * because it won't work correctly */
2050	ath5k_hw_set_fast_div(ah, ee_mode, fast_div);
2051	ath5k_hw_set_def_antenna(ah, def_ant);
2052}
2053
2054
2055/****************\
2056* TX power setup *
2057\****************/
2058
2059/*
2060 * Helper functions
2061 */
2062
2063/*
2064 * Do linear interpolation between two given (x, y) points
2065 */
2066static s16
2067ath5k_get_interpolated_value(s16 target, s16 x_left, s16 x_right,
2068					s16 y_left, s16 y_right)
2069{
2070	s16 ratio, result;
2071
2072	/* Avoid divide by zero and skip interpolation
2073	 * if we have the same point */
2074	if ((x_left == x_right) || (y_left == y_right))
2075		return y_left;
2076
2077	/*
2078	 * Since we use ints and not fps, we need to scale up in
2079	 * order to get a sane ratio value (or else we 'll eg. get
2080	 * always 1 instead of 1.25, 1.75 etc). We scale up by 100
2081	 * to have some accuracy both for 0.5 and 0.25 steps.
2082	 */
2083	ratio = ((100 * y_right - 100 * y_left)/(x_right - x_left));
2084
2085	/* Now scale down to be in range */
2086	result = y_left + (ratio * (target - x_left) / 100);
2087
2088	return result;
2089}
2090
2091/*
2092 * Find vertical boundary (min pwr) for the linear PCDAC curve.
2093 *
2094 * Since we have the top of the curve and we draw the line below
2095 * until we reach 1 (1 pcdac step) we need to know which point
2096 * (x value) that is so that we don't go below y axis and have negative
2097 * pcdac values when creating the curve, or fill the table with zeroes.
2098 */
2099static s16
2100ath5k_get_linear_pcdac_min(const u8 *stepL, const u8 *stepR,
2101				const s16 *pwrL, const s16 *pwrR)
2102{
2103	s8 tmp;
2104	s16 min_pwrL, min_pwrR;
2105	s16 pwr_i;
2106
2107	/* Some vendors write the same pcdac value twice !!! */
2108	if (stepL[0] == stepL[1] || stepR[0] == stepR[1])
2109		return max(pwrL[0], pwrR[0]);
2110
2111	if (pwrL[0] == pwrL[1])
2112		min_pwrL = pwrL[0];
2113	else {
2114		pwr_i = pwrL[0];
2115		do {
2116			pwr_i--;
2117			tmp = (s8) ath5k_get_interpolated_value(pwr_i,
2118							pwrL[0], pwrL[1],
2119							stepL[0], stepL[1]);
2120		} while (tmp > 1);
2121
2122		min_pwrL = pwr_i;
2123	}
2124
2125	if (pwrR[0] == pwrR[1])
2126		min_pwrR = pwrR[0];
2127	else {
2128		pwr_i = pwrR[0];
2129		do {
2130			pwr_i--;
2131			tmp = (s8) ath5k_get_interpolated_value(pwr_i,
2132							pwrR[0], pwrR[1],
2133							stepR[0], stepR[1]);
2134		} while (tmp > 1);
2135
2136		min_pwrR = pwr_i;
2137	}
2138
2139	/* Keep the right boundary so that it works for both curves */
2140	return max(min_pwrL, min_pwrR);
2141}
2142
2143/*
2144 * Interpolate (pwr,vpd) points to create a Power to PDADC or a
2145 * Power to PCDAC curve.
2146 *
2147 * Each curve has power on x axis (in 0.5dB units) and PCDAC/PDADC
2148 * steps (offsets) on y axis. Power can go up to 31.5dB and max
2149 * PCDAC/PDADC step for each curve is 64 but we can write more than
2150 * one curves on hw so we can go up to 128 (which is the max step we
2151 * can write on the final table).
2152 *
2153 * We write y values (PCDAC/PDADC steps) on hw.
2154 */
2155static void
2156ath5k_create_power_curve(s16 pmin, s16 pmax,
2157			const s16 *pwr, const u8 *vpd,
2158			u8 num_points,
2159			u8 *vpd_table, u8 type)
2160{
2161	u8 idx[2] = { 0, 1 };
2162	s16 pwr_i = 2*pmin;
2163	int i;
2164
2165	if (num_points < 2)
2166		return;
2167
2168	/* We want the whole line, so adjust boundaries
2169	 * to cover the entire power range. Note that
2170	 * power values are already 0.25dB so no need
2171	 * to multiply pwr_i by 2 */
2172	if (type == AR5K_PWRTABLE_LINEAR_PCDAC) {
2173		pwr_i = pmin;
2174		pmin = 0;
2175		pmax = 63;
2176	}
2177
2178	/* Find surrounding turning points (TPs)
2179	 * and interpolate between them */
2180	for (i = 0; (i <= (u16) (pmax - pmin)) &&
2181	(i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) {
2182
2183		/* We passed the right TP, move to the next set of TPs
2184		 * if we pass the last TP, extrapolate above using the last
2185		 * two TPs for ratio */
2186		if ((pwr_i > pwr[idx[1]]) && (idx[1] < num_points - 1)) {
2187			idx[0]++;
2188			idx[1]++;
2189		}
2190
2191		vpd_table[i] = (u8) ath5k_get_interpolated_value(pwr_i,
2192						pwr[idx[0]], pwr[idx[1]],
2193						vpd[idx[0]], vpd[idx[1]]);
2194
2195		/* Increase by 0.5dB
2196		 * (0.25 dB units) */
2197		pwr_i += 2;
2198	}
2199}
2200
2201/*
2202 * Get the surrounding per-channel power calibration piers
2203 * for a given frequency so that we can interpolate between
2204 * them and come up with an appropriate dataset for our current
2205 * channel.
2206 */
2207static void
2208ath5k_get_chan_pcal_surrounding_piers(struct ath5k_hw *ah,
2209			struct ieee80211_channel *channel,
2210			struct ath5k_chan_pcal_info **pcinfo_l,
2211			struct ath5k_chan_pcal_info **pcinfo_r)
2212{
2213	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2214	struct ath5k_chan_pcal_info *pcinfo;
2215	u8 idx_l, idx_r;
2216	u8 mode, max, i;
2217	u32 target = channel->center_freq;
2218
2219	idx_l = 0;
2220	idx_r = 0;
2221
2222	if (!(channel->hw_value & CHANNEL_OFDM)) {
2223		pcinfo = ee->ee_pwr_cal_b;
2224		mode = AR5K_EEPROM_MODE_11B;
2225	} else if (channel->hw_value & CHANNEL_2GHZ) {
2226		pcinfo = ee->ee_pwr_cal_g;
2227		mode = AR5K_EEPROM_MODE_11G;
2228	} else {
2229		pcinfo = ee->ee_pwr_cal_a;
2230		mode = AR5K_EEPROM_MODE_11A;
2231	}
2232	max = ee->ee_n_piers[mode] - 1;
2233
2234	/* Frequency is below our calibrated
2235	 * range. Use the lowest power curve
2236	 * we have */
2237	if (target < pcinfo[0].freq) {
2238		idx_l = idx_r = 0;
2239		goto done;
2240	}
2241
2242	/* Frequency is above our calibrated
2243	 * range. Use the highest power curve
2244	 * we have */
2245	if (target > pcinfo[max].freq) {
2246		idx_l = idx_r = max;
2247		goto done;
2248	}
2249
2250	/* Frequency is inside our calibrated
2251	 * channel range. Pick the surrounding
2252	 * calibration piers so that we can
2253	 * interpolate */
2254	for (i = 0; i <= max; i++) {
2255
2256		/* Frequency matches one of our calibration
2257		 * piers, no need to interpolate, just use
2258		 * that calibration pier */
2259		if (pcinfo[i].freq == target) {
2260			idx_l = idx_r = i;
2261			goto done;
2262		}
2263
2264		/* We found a calibration pier that's above
2265		 * frequency, use this pier and the previous
2266		 * one to interpolate */
2267		if (target < pcinfo[i].freq) {
2268			idx_r = i;
2269			idx_l = idx_r - 1;
2270			goto done;
2271		}
2272	}
2273
2274done:
2275	*pcinfo_l = &pcinfo[idx_l];
2276	*pcinfo_r = &pcinfo[idx_r];
2277}
2278
2279/*
2280 * Get the surrounding per-rate power calibration data
2281 * for a given frequency and interpolate between power
2282 * values to set max target power supported by hw for
2283 * each rate.
2284 */
2285static void
2286ath5k_get_rate_pcal_data(struct ath5k_hw *ah,
2287			struct ieee80211_channel *channel,
2288			struct ath5k_rate_pcal_info *rates)
2289{
2290	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2291	struct ath5k_rate_pcal_info *rpinfo;
2292	u8 idx_l, idx_r;
2293	u8 mode, max, i;
2294	u32 target = channel->center_freq;
2295
2296	idx_l = 0;
2297	idx_r = 0;
2298
2299	if (!(channel->hw_value & CHANNEL_OFDM)) {
2300		rpinfo = ee->ee_rate_tpwr_b;
2301		mode = AR5K_EEPROM_MODE_11B;
2302	} else if (channel->hw_value & CHANNEL_2GHZ) {
2303		rpinfo = ee->ee_rate_tpwr_g;
2304		mode = AR5K_EEPROM_MODE_11G;
2305	} else {
2306		rpinfo = ee->ee_rate_tpwr_a;
2307		mode = AR5K_EEPROM_MODE_11A;
2308	}
2309	max = ee->ee_rate_target_pwr_num[mode] - 1;
2310
2311	/* Get the surrounding calibration
2312	 * piers - same as above */
2313	if (target < rpinfo[0].freq) {
2314		idx_l = idx_r = 0;
2315		goto done;
2316	}
2317
2318	if (target > rpinfo[max].freq) {
2319		idx_l = idx_r = max;
2320		goto done;
2321	}
2322
2323	for (i = 0; i <= max; i++) {
2324
2325		if (rpinfo[i].freq == target) {
2326			idx_l = idx_r = i;
2327			goto done;
2328		}
2329
2330		if (target < rpinfo[i].freq) {
2331			idx_r = i;
2332			idx_l = idx_r - 1;
2333			goto done;
2334		}
2335	}
2336
2337done:
2338	/* Now interpolate power value, based on the frequency */
2339	rates->freq = target;
2340
2341	rates->target_power_6to24 =
2342		ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2343					rpinfo[idx_r].freq,
2344					rpinfo[idx_l].target_power_6to24,
2345					rpinfo[idx_r].target_power_6to24);
2346
2347	rates->target_power_36 =
2348		ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2349					rpinfo[idx_r].freq,
2350					rpinfo[idx_l].target_power_36,
2351					rpinfo[idx_r].target_power_36);
2352
2353	rates->target_power_48 =
2354		ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2355					rpinfo[idx_r].freq,
2356					rpinfo[idx_l].target_power_48,
2357					rpinfo[idx_r].target_power_48);
2358
2359	rates->target_power_54 =
2360		ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2361					rpinfo[idx_r].freq,
2362					rpinfo[idx_l].target_power_54,
2363					rpinfo[idx_r].target_power_54);
2364}
2365
2366/*
2367 * Get the max edge power for this channel if
2368 * we have such data from EEPROM's Conformance Test
2369 * Limits (CTL), and limit max power if needed.
2370 */
2371static void
2372ath5k_get_max_ctl_power(struct ath5k_hw *ah,
2373			struct ieee80211_channel *channel)
2374{
2375	struct ath_regulatory *regulatory = ath5k_hw_regulatory(ah);
2376	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2377	struct ath5k_edge_power *rep = ee->ee_ctl_pwr;
2378	u8 *ctl_val = ee->ee_ctl;
2379	s16 max_chan_pwr = ah->ah_txpower.txp_max_pwr / 4;
2380	s16 edge_pwr = 0;
2381	u8 rep_idx;
2382	u8 i, ctl_mode;
2383	u8 ctl_idx = 0xFF;
2384	u32 target = channel->center_freq;
2385
2386	ctl_mode = ath_regd_get_band_ctl(regulatory, channel->band);
2387
2388	switch (channel->hw_value & CHANNEL_MODES) {
2389	case CHANNEL_A:
2390		if (ah->ah_bwmode == AR5K_BWMODE_40MHZ)
2391			ctl_mode |= AR5K_CTL_TURBO;
2392		else
2393			ctl_mode |= AR5K_CTL_11A;
2394		break;
2395	case CHANNEL_G:
2396		if (ah->ah_bwmode == AR5K_BWMODE_40MHZ)
2397			ctl_mode |= AR5K_CTL_TURBOG;
2398		else
2399			ctl_mode |= AR5K_CTL_11G;
2400		break;
2401	case CHANNEL_B:
2402		ctl_mode |= AR5K_CTL_11B;
2403		break;
2404	case CHANNEL_XR:
2405		/* Fall through */
2406	default:
2407		return;
2408	}
2409
2410	for (i = 0; i < ee->ee_ctls; i++) {
2411		if (ctl_val[i] == ctl_mode) {
2412			ctl_idx = i;
2413			break;
2414		}
2415	}
2416
2417	/* If we have a CTL dataset available grab it and find the
2418	 * edge power for our frequency */
2419	if (ctl_idx == 0xFF)
2420		return;
2421
2422	/* Edge powers are sorted by frequency from lower
2423	 * to higher. Each CTL corresponds to 8 edge power
2424	 * measurements. */
2425	rep_idx = ctl_idx * AR5K_EEPROM_N_EDGES;
2426
2427	/* Don't do boundaries check because we
2428	 * might have more that one bands defined
2429	 * for this mode */
2430
2431	/* Get the edge power that's closer to our
2432	 * frequency */
2433	for (i = 0; i < AR5K_EEPROM_N_EDGES; i++) {
2434		rep_idx += i;
2435		if (target <= rep[rep_idx].freq)
2436			edge_pwr = (s16) rep[rep_idx].edge;
2437	}
2438
2439	if (edge_pwr)
2440		ah->ah_txpower.txp_max_pwr = 4*min(edge_pwr, max_chan_pwr);
2441}
2442
2443
2444/*
2445 * Power to PCDAC table functions
2446 */
2447
2448/*
2449 * Fill Power to PCDAC table on RF5111
2450 *
2451 * No further processing is needed for RF5111, the only thing we have to
2452 * do is fill the values below and above calibration range since eeprom data
2453 * may not cover the entire PCDAC table.
2454 */
2455static void
2456ath5k_fill_pwr_to_pcdac_table(struct ath5k_hw *ah, s16* table_min,
2457							s16 *table_max)
2458{
2459	u8 	*pcdac_out = ah->ah_txpower.txp_pd_table;
2460	u8	*pcdac_tmp = ah->ah_txpower.tmpL[0];
2461	u8	pcdac_0, pcdac_n, pcdac_i, pwr_idx, i;
2462	s16	min_pwr, max_pwr;
2463
2464	/* Get table boundaries */
2465	min_pwr = table_min[0];
2466	pcdac_0 = pcdac_tmp[0];
2467
2468	max_pwr = table_max[0];
2469	pcdac_n = pcdac_tmp[table_max[0] - table_min[0]];
2470
2471	/* Extrapolate below minimum using pcdac_0 */
2472	pcdac_i = 0;
2473	for (i = 0; i < min_pwr; i++)
2474		pcdac_out[pcdac_i++] = pcdac_0;
2475
2476	/* Copy values from pcdac_tmp */
2477	pwr_idx = min_pwr;
2478	for (i = 0 ; pwr_idx <= max_pwr &&
2479	pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE; i++) {
2480		pcdac_out[pcdac_i++] = pcdac_tmp[i];
2481		pwr_idx++;
2482	}
2483
2484	/* Extrapolate above maximum */
2485	while (pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE)
2486		pcdac_out[pcdac_i++] = pcdac_n;
2487
2488}
2489
2490/*
2491 * Combine available XPD Curves and fill Linear Power to PCDAC table
2492 * on RF5112
2493 *
2494 * RFX112 can have up to 2 curves (one for low txpower range and one for
2495 * higher txpower range). We need to put them both on pcdac_out and place
2496 * them in the correct location. In case we only have one curve available
2497 * just fit it on pcdac_out (it's supposed to cover the entire range of
2498 * available pwr levels since it's always the higher power curve). Extrapolate
2499 * below and above final table if needed.
2500 */
2501static void
2502ath5k_combine_linear_pcdac_curves(struct ath5k_hw *ah, s16* table_min,
2503						s16 *table_max, u8 pdcurves)
2504{
2505	u8 	*pcdac_out = ah->ah_txpower.txp_pd_table;
2506	u8	*pcdac_low_pwr;
2507	u8	*pcdac_high_pwr;
2508	u8	*pcdac_tmp;
2509	u8	pwr;
2510	s16	max_pwr_idx;
2511	s16	min_pwr_idx;
2512	s16	mid_pwr_idx = 0;
2513	/* Edge flag turs on the 7nth bit on the PCDAC
2514	 * to delcare the higher power curve (force values
2515	 * to be greater than 64). If we only have one curve
2516	 * we don't need to set this, if we have 2 curves and
2517	 * fill the table backwards this can also be used to
2518	 * switch from higher power curve to lower power curve */
2519	u8	edge_flag;
2520	int	i;
2521
2522	/* When we have only one curve available
2523	 * that's the higher power curve. If we have
2524	 * two curves the first is the high power curve
2525	 * and the next is the low power curve. */
2526	if (pdcurves > 1) {
2527		pcdac_low_pwr = ah->ah_txpower.tmpL[1];
2528		pcdac_high_pwr = ah->ah_txpower.tmpL[0];
2529		mid_pwr_idx = table_max[1] - table_min[1] - 1;
2530		max_pwr_idx = (table_max[0] - table_min[0]) / 2;
2531
2532		/* If table size goes beyond 31.5dB, keep the
2533		 * upper 31.5dB range when setting tx power.
2534		 * Note: 126 = 31.5 dB in quarter dB steps */
2535		if (table_max[0] - table_min[1] > 126)
2536			min_pwr_idx = table_max[0] - 126;
2537		else
2538			min_pwr_idx = table_min[1];
2539
2540		/* Since we fill table backwards
2541		 * start from high power curve */
2542		pcdac_tmp = pcdac_high_pwr;
2543
2544		edge_flag = 0x40;
2545	} else {
2546		pcdac_low_pwr = ah->ah_txpower.tmpL[1]; /* Zeroed */
2547		pcdac_high_pwr = ah->ah_txpower.tmpL[0];
2548		min_pwr_idx = table_min[0];
2549		max_pwr_idx = (table_max[0] - table_min[0]) / 2;
2550		pcdac_tmp = pcdac_high_pwr;
2551		edge_flag = 0;
2552	}
2553
2554	/* This is used when setting tx power*/
2555	ah->ah_txpower.txp_min_idx = min_pwr_idx/2;
2556
2557	/* Fill Power to PCDAC table backwards */
2558	pwr = max_pwr_idx;
2559	for (i = 63; i >= 0; i--) {
2560		/* Entering lower power range, reset
2561		 * edge flag and set pcdac_tmp to lower
2562		 * power curve.*/
2563		if (edge_flag == 0x40 &&
2564		(2*pwr <= (table_max[1] - table_min[0]) || pwr == 0)) {
2565			edge_flag = 0x00;
2566			pcdac_tmp = pcdac_low_pwr;
2567			pwr = mid_pwr_idx/2;
2568		}
2569
2570		/* Don't go below 1, extrapolate below if we have
2571		 * already swithced to the lower power curve -or
2572		 * we only have one curve and edge_flag is zero
2573		 * anyway */
2574		if (pcdac_tmp[pwr] < 1 && (edge_flag == 0x00)) {
2575			while (i >= 0) {
2576				pcdac_out[i] = pcdac_out[i + 1];
2577				i--;
2578			}
2579			break;
2580		}
2581
2582		pcdac_out[i] = pcdac_tmp[pwr] | edge_flag;
2583
2584		/* Extrapolate above if pcdac is greater than
2585		 * 126 -this can happen because we OR pcdac_out
2586		 * value with edge_flag on high power curve */
2587		if (pcdac_out[i] > 126)
2588			pcdac_out[i] = 126;
2589
2590		/* Decrease by a 0.5dB step */
2591		pwr--;
2592	}
2593}
2594
2595/* Write PCDAC values on hw */
2596static void
2597ath5k_write_pcdac_table(struct ath5k_hw *ah)
2598{
2599	u8 	*pcdac_out = ah->ah_txpower.txp_pd_table;
2600	int	i;
2601
2602	/*
2603	 * Write TX power values
2604	 */
2605	for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) {
2606		ath5k_hw_reg_write(ah,
2607			(((pcdac_out[2*i + 0] << 8 | 0xff) & 0xffff) << 0) |
2608			(((pcdac_out[2*i + 1] << 8 | 0xff) & 0xffff) << 16),
2609			AR5K_PHY_PCDAC_TXPOWER(i));
2610	}
2611}
2612
2613
2614/*
2615 * Power to PDADC table functions
2616 */
2617
2618/*
2619 * Set the gain boundaries and create final Power to PDADC table
2620 *
2621 * We can have up to 4 pd curves, we need to do a similar process
2622 * as we do for RF5112. This time we don't have an edge_flag but we
2623 * set the gain boundaries on a separate register.
2624 */
2625static void
2626ath5k_combine_pwr_to_pdadc_curves(struct ath5k_hw *ah,
2627			s16 *pwr_min, s16 *pwr_max, u8 pdcurves)
2628{
2629	u8 gain_boundaries[AR5K_EEPROM_N_PD_GAINS];
2630	u8 *pdadc_out = ah->ah_txpower.txp_pd_table;
2631	u8 *pdadc_tmp;
2632	s16 pdadc_0;
2633	u8 pdadc_i, pdadc_n, pwr_step, pdg, max_idx, table_size;
2634	u8 pd_gain_overlap;
2635
2636	/* Note: Register value is initialized on initvals
2637	 * there is no feedback from hw.
2638	 * XXX: What about pd_gain_overlap from EEPROM ? */
2639	pd_gain_overlap = (u8) ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG5) &
2640		AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP;
2641
2642	/* Create final PDADC table */
2643	for (pdg = 0, pdadc_i = 0; pdg < pdcurves; pdg++) {
2644		pdadc_tmp = ah->ah_txpower.tmpL[pdg];
2645
2646		if (pdg == pdcurves - 1)
2647			/* 2 dB boundary stretch for last
2648			 * (higher power) curve */
2649			gain_boundaries[pdg] = pwr_max[pdg] + 4;
2650		else
2651			/* Set gain boundary in the middle
2652			 * between this curve and the next one */
2653			gain_boundaries[pdg] =
2654				(pwr_max[pdg] + pwr_min[pdg + 1]) / 2;
2655
2656		/* Sanity check in case our 2 db stretch got out of
2657		 * range. */
2658		if (gain_boundaries[pdg] > AR5K_TUNE_MAX_TXPOWER)
2659			gain_boundaries[pdg] = AR5K_TUNE_MAX_TXPOWER;
2660
2661		/* For the first curve (lower power)
2662		 * start from 0 dB */
2663		if (pdg == 0)
2664			pdadc_0 = 0;
2665		else
2666			/* For the other curves use the gain overlap */
2667			pdadc_0 = (gain_boundaries[pdg - 1] - pwr_min[pdg]) -
2668							pd_gain_overlap;
2669
2670		/* Force each power step to be at least 0.5 dB */
2671		if ((pdadc_tmp[1] - pdadc_tmp[0]) > 1)
2672			pwr_step = pdadc_tmp[1] - pdadc_tmp[0];
2673		else
2674			pwr_step = 1;
2675
2676		/* If pdadc_0 is negative, we need to extrapolate
2677		 * below this pdgain by a number of pwr_steps */
2678		while ((pdadc_0 < 0) && (pdadc_i < 128)) {
2679			s16 tmp = pdadc_tmp[0] + pdadc_0 * pwr_step;
2680			pdadc_out[pdadc_i++] = (tmp < 0) ? 0 : (u8) tmp;
2681			pdadc_0++;
2682		}
2683
2684		/* Set last pwr level, using gain boundaries */
2685		pdadc_n = gain_boundaries[pdg] + pd_gain_overlap - pwr_min[pdg];
2686		/* Limit it to be inside pwr range */
2687		table_size = pwr_max[pdg] - pwr_min[pdg];
2688		max_idx = (pdadc_n < table_size) ? pdadc_n : table_size;
2689
2690		/* Fill pdadc_out table */
2691		while (pdadc_0 < max_idx && pdadc_i < 128)
2692			pdadc_out[pdadc_i++] = pdadc_tmp[pdadc_0++];
2693
2694		/* Need to extrapolate above this pdgain? */
2695		if (pdadc_n <= max_idx)
2696			continue;
2697
2698		/* Force each power step to be at least 0.5 dB */
2699		if ((pdadc_tmp[table_size - 1] - pdadc_tmp[table_size - 2]) > 1)
2700			pwr_step = pdadc_tmp[table_size - 1] -
2701						pdadc_tmp[table_size - 2];
2702		else
2703			pwr_step = 1;
2704
2705		/* Extrapolate above */
2706		while ((pdadc_0 < (s16) pdadc_n) &&
2707		(pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2)) {
2708			s16 tmp = pdadc_tmp[table_size - 1] +
2709					(pdadc_0 - max_idx) * pwr_step;
2710			pdadc_out[pdadc_i++] = (tmp > 127) ? 127 : (u8) tmp;
2711			pdadc_0++;
2712		}
2713	}
2714
2715	while (pdg < AR5K_EEPROM_N_PD_GAINS) {
2716		gain_boundaries[pdg] = gain_boundaries[pdg - 1];
2717		pdg++;
2718	}
2719
2720	while (pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2) {
2721		pdadc_out[pdadc_i] = pdadc_out[pdadc_i - 1];
2722		pdadc_i++;
2723	}
2724
2725	/* Set gain boundaries */
2726	ath5k_hw_reg_write(ah,
2727		AR5K_REG_SM(pd_gain_overlap,
2728			AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP) |
2729		AR5K_REG_SM(gain_boundaries[0],
2730			AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_1) |
2731		AR5K_REG_SM(gain_boundaries[1],
2732			AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_2) |
2733		AR5K_REG_SM(gain_boundaries[2],
2734			AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_3) |
2735		AR5K_REG_SM(gain_boundaries[3],
2736			AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_4),
2737		AR5K_PHY_TPC_RG5);
2738
2739	/* Used for setting rate power table */
2740	ah->ah_txpower.txp_min_idx = pwr_min[0];
2741
2742}
2743
2744/* Write PDADC values on hw */
2745static void
2746ath5k_write_pwr_to_pdadc_table(struct ath5k_hw *ah, u8 ee_mode)
2747{
2748	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2749	u8 *pdadc_out = ah->ah_txpower.txp_pd_table;
2750	u8 *pdg_to_idx = ee->ee_pdc_to_idx[ee_mode];
2751	u8 pdcurves = ee->ee_pd_gains[ee_mode];
2752	u32 reg;
2753	u8 i;
2754
2755	/* Select the right pdgain curves */
2756
2757	/* Clear current settings */
2758	reg = ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG1);
2759	reg &= ~(AR5K_PHY_TPC_RG1_PDGAIN_1 |
2760		AR5K_PHY_TPC_RG1_PDGAIN_2 |
2761		AR5K_PHY_TPC_RG1_PDGAIN_3 |
2762		AR5K_PHY_TPC_RG1_NUM_PD_GAIN);
2763
2764	/*
2765	 * Use pd_gains curve from eeprom
2766	 *
2767	 * This overrides the default setting from initvals
2768	 * in case some vendors (e.g. Zcomax) don't use the default
2769	 * curves. If we don't honor their settings we 'll get a
2770	 * 5dB (1 * gain overlap ?) drop.
2771	 */
2772	reg |= AR5K_REG_SM(pdcurves, AR5K_PHY_TPC_RG1_NUM_PD_GAIN);
2773
2774	switch (pdcurves) {
2775	case 3:
2776		reg |= AR5K_REG_SM(pdg_to_idx[2], AR5K_PHY_TPC_RG1_PDGAIN_3);
2777		/* Fall through */
2778	case 2:
2779		reg |= AR5K_REG_SM(pdg_to_idx[1], AR5K_PHY_TPC_RG1_PDGAIN_2);
2780		/* Fall through */
2781	case 1:
2782		reg |= AR5K_REG_SM(pdg_to_idx[0], AR5K_PHY_TPC_RG1_PDGAIN_1);
2783		break;
2784	}
2785	ath5k_hw_reg_write(ah, reg, AR5K_PHY_TPC_RG1);
2786
2787	/*
2788	 * Write TX power values
2789	 */
2790	for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) {
2791		ath5k_hw_reg_write(ah,
2792			((pdadc_out[4*i + 0] & 0xff) << 0) |
2793			((pdadc_out[4*i + 1] & 0xff) << 8) |
2794			((pdadc_out[4*i + 2] & 0xff) << 16) |
2795			((pdadc_out[4*i + 3] & 0xff) << 24),
2796			AR5K_PHY_PDADC_TXPOWER(i));
2797	}
2798}
2799
2800
2801/*
2802 * Common code for PCDAC/PDADC tables
2803 */
2804
2805/*
2806 * This is the main function that uses all of the above
2807 * to set PCDAC/PDADC table on hw for the current channel.
2808 * This table is used for tx power calibration on the basband,
2809 * without it we get weird tx power levels and in some cases
2810 * distorted spectral mask
2811 */
2812static int
2813ath5k_setup_channel_powertable(struct ath5k_hw *ah,
2814			struct ieee80211_channel *channel,
2815			u8 ee_mode, u8 type)
2816{
2817	struct ath5k_pdgain_info *pdg_L, *pdg_R;
2818	struct ath5k_chan_pcal_info *pcinfo_L;
2819	struct ath5k_chan_pcal_info *pcinfo_R;
2820	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2821	u8 *pdg_curve_to_idx = ee->ee_pdc_to_idx[ee_mode];
2822	s16 table_min[AR5K_EEPROM_N_PD_GAINS];
2823	s16 table_max[AR5K_EEPROM_N_PD_GAINS];
2824	u8 *tmpL;
2825	u8 *tmpR;
2826	u32 target = channel->center_freq;
2827	int pdg, i;
2828
2829	/* Get surrounding freq piers for this channel */
2830	ath5k_get_chan_pcal_surrounding_piers(ah, channel,
2831						&pcinfo_L,
2832						&pcinfo_R);
2833
2834	/* Loop over pd gain curves on
2835	 * surrounding freq piers by index */
2836	for (pdg = 0; pdg < ee->ee_pd_gains[ee_mode]; pdg++) {
2837
2838		/* Fill curves in reverse order
2839		 * from lower power (max gain)
2840		 * to higher power. Use curve -> idx
2841		 * backmapping we did on eeprom init */
2842		u8 idx = pdg_curve_to_idx[pdg];
2843
2844		/* Grab the needed curves by index */
2845		pdg_L = &pcinfo_L->pd_curves[idx];
2846		pdg_R = &pcinfo_R->pd_curves[idx];
2847
2848		/* Initialize the temp tables */
2849		tmpL = ah->ah_txpower.tmpL[pdg];
2850		tmpR = ah->ah_txpower.tmpR[pdg];
2851
2852		/* Set curve's x boundaries and create
2853		 * curves so that they cover the same
2854		 * range (if we don't do that one table
2855		 * will have values on some range and the
2856		 * other one won't have any so interpolation
2857		 * will fail) */
2858		table_min[pdg] = min(pdg_L->pd_pwr[0],
2859					pdg_R->pd_pwr[0]) / 2;
2860
2861		table_max[pdg] = max(pdg_L->pd_pwr[pdg_L->pd_points - 1],
2862				pdg_R->pd_pwr[pdg_R->pd_points - 1]) / 2;
2863
2864		/* Now create the curves on surrounding channels
2865		 * and interpolate if needed to get the final
2866		 * curve for this gain on this channel */
2867		switch (type) {
2868		case AR5K_PWRTABLE_LINEAR_PCDAC:
2869			/* Override min/max so that we don't loose
2870			 * accuracy (don't divide by 2) */
2871			table_min[pdg] = min(pdg_L->pd_pwr[0],
2872						pdg_R->pd_pwr[0]);
2873
2874			table_max[pdg] =
2875				max(pdg_L->pd_pwr[pdg_L->pd_points - 1],
2876					pdg_R->pd_pwr[pdg_R->pd_points - 1]);
2877
2878			/* Override minimum so that we don't get
2879			 * out of bounds while extrapolating
2880			 * below. Don't do this when we have 2
2881			 * curves and we are on the high power curve
2882			 * because table_min is ok in this case */
2883			if (!(ee->ee_pd_gains[ee_mode] > 1 && pdg == 0)) {
2884
2885				table_min[pdg] =
2886					ath5k_get_linear_pcdac_min(pdg_L->pd_step,
2887								pdg_R->pd_step,
2888								pdg_L->pd_pwr,
2889								pdg_R->pd_pwr);
2890
2891				/* Don't go too low because we will
2892				 * miss the upper part of the curve.
2893				 * Note: 126 = 31.5dB (max power supported)
2894				 * in 0.25dB units */
2895				if (table_max[pdg] - table_min[pdg] > 126)
2896					table_min[pdg] = table_max[pdg] - 126;
2897			}
2898
2899			/* Fall through */
2900		case AR5K_PWRTABLE_PWR_TO_PCDAC:
2901		case AR5K_PWRTABLE_PWR_TO_PDADC:
2902
2903			ath5k_create_power_curve(table_min[pdg],
2904						table_max[pdg],
2905						pdg_L->pd_pwr,
2906						pdg_L->pd_step,
2907						pdg_L->pd_points, tmpL, type);
2908
2909			/* We are in a calibration
2910			 * pier, no need to interpolate
2911			 * between freq piers */
2912			if (pcinfo_L == pcinfo_R)
2913				continue;
2914
2915			ath5k_create_power_curve(table_min[pdg],
2916						table_max[pdg],
2917						pdg_R->pd_pwr,
2918						pdg_R->pd_step,
2919						pdg_R->pd_points, tmpR, type);
2920			break;
2921		default:
2922			return -EINVAL;
2923		}
2924
2925		/* Interpolate between curves
2926		 * of surrounding freq piers to
2927		 * get the final curve for this
2928		 * pd gain. Re-use tmpL for interpolation
2929		 * output */
2930		for (i = 0; (i < (u16) (table_max[pdg] - table_min[pdg])) &&
2931		(i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) {
2932			tmpL[i] = (u8) ath5k_get_interpolated_value(target,
2933							(s16) pcinfo_L->freq,
2934							(s16) pcinfo_R->freq,
2935							(s16) tmpL[i],
2936							(s16) tmpR[i]);
2937		}
2938	}
2939
2940	/* Now we have a set of curves for this
2941	 * channel on tmpL (x range is table_max - table_min
2942	 * and y values are tmpL[pdg][]) sorted in the same
2943	 * order as EEPROM (because we've used the backmapping).
2944	 * So for RF5112 it's from higher power to lower power
2945	 * and for RF2413 it's from lower power to higher power.
2946	 * For RF5111 we only have one curve. */
2947
2948	/* Fill min and max power levels for this
2949	 * channel by interpolating the values on
2950	 * surrounding channels to complete the dataset */
2951	ah->ah_txpower.txp_min_pwr = ath5k_get_interpolated_value(target,
2952					(s16) pcinfo_L->freq,
2953					(s16) pcinfo_R->freq,
2954					pcinfo_L->min_pwr, pcinfo_R->min_pwr);
2955
2956	ah->ah_txpower.txp_max_pwr = ath5k_get_interpolated_value(target,
2957					(s16) pcinfo_L->freq,
2958					(s16) pcinfo_R->freq,
2959					pcinfo_L->max_pwr, pcinfo_R->max_pwr);
2960
2961	/* Fill PCDAC/PDADC table */
2962	switch (type) {
2963	case AR5K_PWRTABLE_LINEAR_PCDAC:
2964		/* For RF5112 we can have one or two curves
2965		 * and each curve covers a certain power lvl
2966		 * range so we need to do some more processing */
2967		ath5k_combine_linear_pcdac_curves(ah, table_min, table_max,
2968						ee->ee_pd_gains[ee_mode]);
2969
2970		/* Set txp.offset so that we can
2971		 * match max power value with max
2972		 * table index */
2973		ah->ah_txpower.txp_offset = 64 - (table_max[0] / 2);
2974		break;
2975	case AR5K_PWRTABLE_PWR_TO_PCDAC:
2976		/* We are done for RF5111 since it has only
2977		 * one curve, just fit the curve on the table */
2978		ath5k_fill_pwr_to_pcdac_table(ah, table_min, table_max);
2979
2980		/* No rate powertable adjustment for RF5111 */
2981		ah->ah_txpower.txp_min_idx = 0;
2982		ah->ah_txpower.txp_offset = 0;
2983		break;
2984	case AR5K_PWRTABLE_PWR_TO_PDADC:
2985		/* Set PDADC boundaries and fill
2986		 * final PDADC table */
2987		ath5k_combine_pwr_to_pdadc_curves(ah, table_min, table_max,
2988						ee->ee_pd_gains[ee_mode]);
2989
2990		/* Set txp.offset, note that table_min
2991		 * can be negative */
2992		ah->ah_txpower.txp_offset = table_min[0];
2993		break;
2994	default:
2995		return -EINVAL;
2996	}
2997
2998	ah->ah_txpower.txp_setup = true;
2999
3000	return 0;
3001}
3002
3003/* Write power table for current channel to hw */
3004static void
3005ath5k_write_channel_powertable(struct ath5k_hw *ah, u8 ee_mode, u8 type)
3006{
3007	if (type == AR5K_PWRTABLE_PWR_TO_PDADC)
3008		ath5k_write_pwr_to_pdadc_table(ah, ee_mode);
3009	else
3010		ath5k_write_pcdac_table(ah);
3011}
3012
3013/*
3014 * Per-rate tx power setting
3015 *
3016 * This is the code that sets the desired tx power (below
3017 * maximum) on hw for each rate (we also have TPC that sets
3018 * power per packet). We do that by providing an index on the
3019 * PCDAC/PDADC table we set up.
3020 */
3021
3022/*
3023 * Set rate power table
3024 *
3025 * For now we only limit txpower based on maximum tx power
3026 * supported by hw (what's inside rate_info). We need to limit
3027 * this even more, based on regulatory domain etc.
3028 *
3029 * Rate power table contains indices to PCDAC/PDADC table (0.5dB steps)
3030 * and is indexed as follows:
3031 * rates[0] - rates[7] -> OFDM rates
3032 * rates[8] - rates[14] -> CCK rates
3033 * rates[15] -> XR rates (they all have the same power)
3034 */
3035static void
3036ath5k_setup_rate_powertable(struct ath5k_hw *ah, u16 max_pwr,
3037			struct ath5k_rate_pcal_info *rate_info,
3038			u8 ee_mode)
3039{
3040	unsigned int i;
3041	u16 *rates;
3042
3043	/* max_pwr is power level we got from driver/user in 0.5dB
3044	 * units, switch to 0.25dB units so we can compare */
3045	max_pwr *= 2;
3046	max_pwr = min(max_pwr, (u16) ah->ah_txpower.txp_max_pwr) / 2;
3047
3048	/* apply rate limits */
3049	rates = ah->ah_txpower.txp_rates_power_table;
3050
3051	/* OFDM rates 6 to 24Mb/s */
3052	for (i = 0; i < 5; i++)
3053		rates[i] = min(max_pwr, rate_info->target_power_6to24);
3054
3055	/* Rest OFDM rates */
3056	rates[5] = min(rates[0], rate_info->target_power_36);
3057	rates[6] = min(rates[0], rate_info->target_power_48);
3058	rates[7] = min(rates[0], rate_info->target_power_54);
3059
3060	/* CCK rates */
3061	/* 1L */
3062	rates[8] = min(rates[0], rate_info->target_power_6to24);
3063	/* 2L */
3064	rates[9] = min(rates[0], rate_info->target_power_36);
3065	/* 2S */
3066	rates[10] = min(rates[0], rate_info->target_power_36);
3067	/* 5L */
3068	rates[11] = min(rates[0], rate_info->target_power_48);
3069	/* 5S */
3070	rates[12] = min(rates[0], rate_info->target_power_48);
3071	/* 11L */
3072	rates[13] = min(rates[0], rate_info->target_power_54);
3073	/* 11S */
3074	rates[14] = min(rates[0], rate_info->target_power_54);
3075
3076	/* XR rates */
3077	rates[15] = min(rates[0], rate_info->target_power_6to24);
3078
3079	/* CCK rates have different peak to average ratio
3080	 * so we have to tweak their power so that gainf
3081	 * correction works ok. For this we use OFDM to
3082	 * CCK delta from eeprom */
3083	if ((ee_mode == AR5K_EEPROM_MODE_11G) &&
3084	(ah->ah_phy_revision < AR5K_SREV_PHY_5212A))
3085		for (i = 8; i <= 15; i++)
3086			rates[i] -= ah->ah_txpower.txp_cck_ofdm_gainf_delta;
3087
3088	/* Now that we have all rates setup use table offset to
3089	 * match the power range set by user with the power indices
3090	 * on PCDAC/PDADC table */
3091	for (i = 0; i < 16; i++) {
3092		rates[i] += ah->ah_txpower.txp_offset;
3093		/* Don't get out of bounds */
3094		if (rates[i] > 63)
3095			rates[i] = 63;
3096	}
3097
3098	/* Min/max in 0.25dB units */
3099	ah->ah_txpower.txp_min_pwr = 2 * rates[7];
3100	ah->ah_txpower.txp_cur_pwr = 2 * rates[0];
3101	ah->ah_txpower.txp_ofdm = rates[7];
3102}
3103
3104
3105/*
3106 * Set transmission power
3107 */
3108static int
3109ath5k_hw_txpower(struct ath5k_hw *ah, struct ieee80211_channel *channel,
3110		 u8 txpower)
3111{
3112	struct ath5k_rate_pcal_info rate_info;
3113	struct ieee80211_channel *curr_channel = ah->ah_current_channel;
3114	int ee_mode;
3115	u8 type;
3116	int ret;
3117
3118	if (txpower > AR5K_TUNE_MAX_TXPOWER) {
3119		ATH5K_ERR(ah->ah_sc, "invalid tx power: %u\n", txpower);
3120		return -EINVAL;
3121	}
3122
3123	ee_mode = ath5k_eeprom_mode_from_channel(channel);
3124	if (ee_mode < 0) {
3125		ATH5K_ERR(ah->ah_sc,
3126			"invalid channel: %d\n", channel->center_freq);
3127		return -EINVAL;
3128	}
3129
3130	/* Initialize TX power table */
3131	switch (ah->ah_radio) {
3132	case AR5K_RF5110:
3133		/* TODO */
3134		return 0;
3135	case AR5K_RF5111:
3136		type = AR5K_PWRTABLE_PWR_TO_PCDAC;
3137		break;
3138	case AR5K_RF5112:
3139		type = AR5K_PWRTABLE_LINEAR_PCDAC;
3140		break;
3141	case AR5K_RF2413:
3142	case AR5K_RF5413:
3143	case AR5K_RF2316:
3144	case AR5K_RF2317:
3145	case AR5K_RF2425:
3146		type = AR5K_PWRTABLE_PWR_TO_PDADC;
3147		break;
3148	default:
3149		return -EINVAL;
3150	}
3151
3152	/*
3153	 * If we don't change channel/mode skip tx powertable calculation
3154	 * and use the cached one.
3155	 */
3156	if (!ah->ah_txpower.txp_setup ||
3157	    (channel->hw_value != curr_channel->hw_value) ||
3158	    (channel->center_freq != curr_channel->center_freq)) {
3159		/* Reset TX power values */
3160		memset(&ah->ah_txpower, 0, sizeof(ah->ah_txpower));
3161		ah->ah_txpower.txp_tpc = AR5K_TUNE_TPC_TXPOWER;
3162
3163		/* Calculate the powertable */
3164		ret = ath5k_setup_channel_powertable(ah, channel,
3165							ee_mode, type);
3166		if (ret)
3167			return ret;
3168	}
3169
3170	/* Write table on hw */
3171	ath5k_write_channel_powertable(ah, ee_mode, type);
3172
3173	/* Limit max power if we have a CTL available */
3174	ath5k_get_max_ctl_power(ah, channel);
3175
3176	/* FIXME: Antenna reduction stuff */
3177
3178	/* FIXME: Limit power on turbo modes */
3179
3180	/* FIXME: TPC scale reduction */
3181
3182	/* Get surrounding channels for per-rate power table
3183	 * calibration */
3184	ath5k_get_rate_pcal_data(ah, channel, &rate_info);
3185
3186	/* Setup rate power table */
3187	ath5k_setup_rate_powertable(ah, txpower, &rate_info, ee_mode);
3188
3189	/* Write rate power table on hw */
3190	ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(3, 24) |
3191		AR5K_TXPOWER_OFDM(2, 16) | AR5K_TXPOWER_OFDM(1, 8) |
3192		AR5K_TXPOWER_OFDM(0, 0), AR5K_PHY_TXPOWER_RATE1);
3193
3194	ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(7, 24) |
3195		AR5K_TXPOWER_OFDM(6, 16) | AR5K_TXPOWER_OFDM(5, 8) |
3196		AR5K_TXPOWER_OFDM(4, 0), AR5K_PHY_TXPOWER_RATE2);
3197
3198	ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(10, 24) |
3199		AR5K_TXPOWER_CCK(9, 16) | AR5K_TXPOWER_CCK(15, 8) |
3200		AR5K_TXPOWER_CCK(8, 0), AR5K_PHY_TXPOWER_RATE3);
3201
3202	ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(14, 24) |
3203		AR5K_TXPOWER_CCK(13, 16) | AR5K_TXPOWER_CCK(12, 8) |
3204		AR5K_TXPOWER_CCK(11, 0), AR5K_PHY_TXPOWER_RATE4);
3205
3206	/* FIXME: TPC support */
3207	if (ah->ah_txpower.txp_tpc) {
3208		ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX_TPC_ENABLE |
3209			AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX);
3210
3211		ath5k_hw_reg_write(ah,
3212			AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_ACK) |
3213			AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CTS) |
3214			AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CHIRP),
3215			AR5K_TPC);
3216	} else {
3217		ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX |
3218			AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX);
3219	}
3220
3221	return 0;
3222}
3223
3224int ath5k_hw_set_txpower_limit(struct ath5k_hw *ah, u8 txpower)
3225{
3226	ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_TXPOWER,
3227		"changing txpower to %d\n", txpower);
3228
3229	return ath5k_hw_txpower(ah, ah->ah_current_channel, txpower);
3230}
3231
3232/*************\
3233 Init function
3234\*************/
3235
3236int ath5k_hw_phy_init(struct ath5k_hw *ah, struct ieee80211_channel *channel,
3237		      u8 mode, bool fast)
3238{
3239	struct ieee80211_channel *curr_channel;
3240	int ret, i;
3241	u32 phy_tst1;
3242	ret = 0;
3243
3244	/*
3245	 * Sanity check for fast flag
3246	 * Don't try fast channel change when changing modulation
3247	 * mode/band. We check for chip compatibility on
3248	 * ath5k_hw_reset.
3249	 */
3250	curr_channel = ah->ah_current_channel;
3251	if (fast && (channel->hw_value != curr_channel->hw_value))
3252		return -EINVAL;
3253
3254	/*
3255	 * On fast channel change we only set the synth parameters
3256	 * while PHY is running, enable calibration and skip the rest.
3257	 */
3258	if (fast) {
3259		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_RFBUS_REQ,
3260				    AR5K_PHY_RFBUS_REQ_REQUEST);
3261		for (i = 0; i < 100; i++) {
3262			if (ath5k_hw_reg_read(ah, AR5K_PHY_RFBUS_GRANT))
3263				break;
3264			udelay(5);
3265		}
3266		/* Failed */
3267		if (i >= 100)
3268			return -EIO;
3269
3270		/* Set channel and wait for synth */
3271		ret = ath5k_hw_channel(ah, channel);
3272		if (ret)
3273			return ret;
3274
3275		ath5k_hw_wait_for_synth(ah, channel);
3276	}
3277
3278	/*
3279	 * Set TX power
3280	 *
3281	 * Note: We need to do that before we set
3282	 * RF buffer settings on 5211/5212+ so that we
3283	 * properly set curve indices.
3284	 */
3285	ret = ath5k_hw_txpower(ah, channel, ah->ah_txpower.txp_cur_pwr ?
3286			ah->ah_txpower.txp_cur_pwr / 2 : AR5K_TUNE_MAX_TXPOWER);
3287	if (ret)
3288		return ret;
3289
3290	/* Write OFDM timings on 5212*/
3291	if (ah->ah_version == AR5K_AR5212 &&
3292		channel->hw_value & CHANNEL_OFDM) {
3293
3294		ret = ath5k_hw_write_ofdm_timings(ah, channel);
3295		if (ret)
3296			return ret;
3297
3298		/* Spur info is available only from EEPROM versions
3299		 * greater than 5.3, but the EEPROM routines will use
3300		 * static values for older versions */
3301		if (ah->ah_mac_srev >= AR5K_SREV_AR5424)
3302			ath5k_hw_set_spur_mitigation_filter(ah,
3303							    channel);
3304	}
3305
3306	/* If we used fast channel switching
3307	 * we are done, release RF bus and
3308	 * fire up NF calibration.
3309	 *
3310	 * Note: Only NF calibration due to
3311	 * channel change, not AGC calibration
3312	 * since AGC is still running !
3313	 */
3314	if (fast) {
3315		/*
3316		 * Release RF Bus grant
3317		 */
3318		AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_RFBUS_REQ,
3319				    AR5K_PHY_RFBUS_REQ_REQUEST);
3320
3321		/*
3322		 * Start NF calibration
3323		 */
3324		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
3325					AR5K_PHY_AGCCTL_NF);
3326
3327		return ret;
3328	}
3329
3330	/*
3331	 * For 5210 we do all initialization using
3332	 * initvals, so we don't have to modify
3333	 * any settings (5210 also only supports
3334	 * a/aturbo modes)
3335	 */
3336	if (ah->ah_version != AR5K_AR5210) {
3337
3338		/*
3339		 * Write initial RF gain settings
3340		 * This should work for both 5111/5112
3341		 */
3342		ret = ath5k_hw_rfgain_init(ah, channel->band);
3343		if (ret)
3344			return ret;
3345
3346		mdelay(1);
3347
3348		/*
3349		 * Write RF buffer
3350		 */
3351		ret = ath5k_hw_rfregs_init(ah, channel, mode);
3352		if (ret)
3353			return ret;
3354
3355		/*Enable/disable 802.11b mode on 5111
3356		(enable 2111 frequency converter + CCK)*/
3357		if (ah->ah_radio == AR5K_RF5111) {
3358			if (mode == AR5K_MODE_11B)
3359				AR5K_REG_ENABLE_BITS(ah, AR5K_TXCFG,
3360				    AR5K_TXCFG_B_MODE);
3361			else
3362				AR5K_REG_DISABLE_BITS(ah, AR5K_TXCFG,
3363				    AR5K_TXCFG_B_MODE);
3364		}
3365
3366	} else if (ah->ah_version == AR5K_AR5210) {
3367		mdelay(1);
3368		/* Disable phy and wait */
3369		ath5k_hw_reg_write(ah, AR5K_PHY_ACT_DISABLE, AR5K_PHY_ACT);
3370		mdelay(1);
3371	}
3372
3373	/* Set channel on PHY */
3374	ret = ath5k_hw_channel(ah, channel);
3375	if (ret)
3376		return ret;
3377
3378	/*
3379	 * Enable the PHY and wait until completion
3380	 * This includes BaseBand and Synthesizer
3381	 * activation.
3382	 */
3383	ath5k_hw_reg_write(ah, AR5K_PHY_ACT_ENABLE, AR5K_PHY_ACT);
3384
3385	ath5k_hw_wait_for_synth(ah, channel);
3386
3387	/*
3388	 * Perform ADC test to see if baseband is ready
3389	 * Set tx hold and check adc test register
3390	 */
3391	phy_tst1 = ath5k_hw_reg_read(ah, AR5K_PHY_TST1);
3392	ath5k_hw_reg_write(ah, AR5K_PHY_TST1_TXHOLD, AR5K_PHY_TST1);
3393	for (i = 0; i <= 20; i++) {
3394		if (!(ath5k_hw_reg_read(ah, AR5K_PHY_ADC_TEST) & 0x10))
3395			break;
3396		udelay(200);
3397	}
3398	ath5k_hw_reg_write(ah, phy_tst1, AR5K_PHY_TST1);
3399
3400	/*
3401	 * Start automatic gain control calibration
3402	 *
3403	 * During AGC calibration RX path is re-routed to
3404	 * a power detector so we don't receive anything.
3405	 *
3406	 * This method is used to calibrate some static offsets
3407	 * used together with on-the fly I/Q calibration (the
3408	 * one performed via ath5k_hw_phy_calibrate), which doesn't
3409	 * interrupt rx path.
3410	 *
3411	 * While rx path is re-routed to the power detector we also
3412	 * start a noise floor calibration to measure the
3413	 * card's noise floor (the noise we measure when we are not
3414	 * transmitting or receiving anything).
3415	 *
3416	 * If we are in a noisy environment, AGC calibration may time
3417	 * out and/or noise floor calibration might timeout.
3418	 */
3419	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
3420				AR5K_PHY_AGCCTL_CAL | AR5K_PHY_AGCCTL_NF);
3421
3422	/* At the same time start I/Q calibration for QAM constellation
3423	 * -no need for CCK- */
3424	ah->ah_calibration = false;
3425	if (!(mode == AR5K_MODE_11B)) {
3426		ah->ah_calibration = true;
3427		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ,
3428				AR5K_PHY_IQ_CAL_NUM_LOG_MAX, 15);
3429		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ,
3430				AR5K_PHY_IQ_RUN);
3431	}
3432
3433	/* Wait for gain calibration to finish (we check for I/Q calibration
3434	 * during ath5k_phy_calibrate) */
3435	if (ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL,
3436			AR5K_PHY_AGCCTL_CAL, 0, false)) {
3437		ATH5K_ERR(ah->ah_sc, "gain calibration timeout (%uMHz)\n",
3438			channel->center_freq);
3439	}
3440
3441	/* Restore antenna mode */
3442	ath5k_hw_set_antenna_mode(ah, ah->ah_ant_mode);
3443
3444	return ret;
3445}
3446