phy.c revision 3bb17654605965226e5b322dbc22ece5ff354ac5
1/*
2 * PHY functions
3 *
4 * Copyright (c) 2004-2007 Reyk Floeter <reyk@openbsd.org>
5 * Copyright (c) 2006-2009 Nick Kossifidis <mickflemm@gmail.com>
6 * Copyright (c) 2007-2008 Jiri Slaby <jirislaby@gmail.com>
7 * Copyright (c) 2008-2009 Felix Fietkau <nbd@openwrt.org>
8 *
9 * Permission to use, copy, modify, and distribute this software for any
10 * purpose with or without fee is hereby granted, provided that the above
11 * copyright notice and this permission notice appear in all copies.
12 *
13 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
14 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
15 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
16 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
17 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20 *
21 */
22
23#include <linux/delay.h>
24#include <linux/slab.h>
25
26#include "ath5k.h"
27#include "reg.h"
28#include "base.h"
29#include "rfbuffer.h"
30#include "rfgain.h"
31
32
33/******************\
34* Helper functions *
35\******************/
36
37/*
38 * Get the PHY Chip revision
39 */
40u16 ath5k_hw_radio_revision(struct ath5k_hw *ah, unsigned int chan)
41{
42	unsigned int i;
43	u32 srev;
44	u16 ret;
45
46	/*
47	 * Set the radio chip access register
48	 */
49	switch (chan) {
50	case CHANNEL_2GHZ:
51		ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_2GHZ, AR5K_PHY(0));
52		break;
53	case CHANNEL_5GHZ:
54		ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
55		break;
56	default:
57		return 0;
58	}
59
60	mdelay(2);
61
62	/* ...wait until PHY is ready and read the selected radio revision */
63	ath5k_hw_reg_write(ah, 0x00001c16, AR5K_PHY(0x34));
64
65	for (i = 0; i < 8; i++)
66		ath5k_hw_reg_write(ah, 0x00010000, AR5K_PHY(0x20));
67
68	if (ah->ah_version == AR5K_AR5210) {
69		srev = ath5k_hw_reg_read(ah, AR5K_PHY(256) >> 28) & 0xf;
70		ret = (u16)ath5k_hw_bitswap(srev, 4) + 1;
71	} else {
72		srev = (ath5k_hw_reg_read(ah, AR5K_PHY(0x100)) >> 24) & 0xff;
73		ret = (u16)ath5k_hw_bitswap(((srev & 0xf0) >> 4) |
74				((srev & 0x0f) << 4), 8);
75	}
76
77	/* Reset to the 5GHz mode */
78	ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
79
80	return ret;
81}
82
83/*
84 * Check if a channel is supported
85 */
86bool ath5k_channel_ok(struct ath5k_hw *ah, u16 freq, unsigned int flags)
87{
88	/* Check if the channel is in our supported range */
89	if (flags & CHANNEL_2GHZ) {
90		if ((freq >= ah->ah_capabilities.cap_range.range_2ghz_min) &&
91		    (freq <= ah->ah_capabilities.cap_range.range_2ghz_max))
92			return true;
93	} else if (flags & CHANNEL_5GHZ)
94		if ((freq >= ah->ah_capabilities.cap_range.range_5ghz_min) &&
95		    (freq <= ah->ah_capabilities.cap_range.range_5ghz_max))
96			return true;
97
98	return false;
99}
100
101bool ath5k_hw_chan_has_spur_noise(struct ath5k_hw *ah,
102				struct ieee80211_channel *channel)
103{
104	u8 refclk_freq;
105
106	if ((ah->ah_radio == AR5K_RF5112) ||
107	(ah->ah_radio == AR5K_RF5413) ||
108	(ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4)))
109		refclk_freq = 40;
110	else
111		refclk_freq = 32;
112
113	if ((channel->center_freq % refclk_freq != 0) &&
114	((channel->center_freq % refclk_freq < 10) ||
115	(channel->center_freq % refclk_freq > 22)))
116		return true;
117	else
118		return false;
119}
120
121/*
122 * Used to modify RF Banks before writing them to AR5K_RF_BUFFER
123 */
124static unsigned int ath5k_hw_rfb_op(struct ath5k_hw *ah,
125					const struct ath5k_rf_reg *rf_regs,
126					u32 val, u8 reg_id, bool set)
127{
128	const struct ath5k_rf_reg *rfreg = NULL;
129	u8 offset, bank, num_bits, col, position;
130	u16 entry;
131	u32 mask, data, last_bit, bits_shifted, first_bit;
132	u32 *rfb;
133	s32 bits_left;
134	int i;
135
136	data = 0;
137	rfb = ah->ah_rf_banks;
138
139	for (i = 0; i < ah->ah_rf_regs_count; i++) {
140		if (rf_regs[i].index == reg_id) {
141			rfreg = &rf_regs[i];
142			break;
143		}
144	}
145
146	if (rfb == NULL || rfreg == NULL) {
147		ATH5K_PRINTF("Rf register not found!\n");
148		/* should not happen */
149		return 0;
150	}
151
152	bank = rfreg->bank;
153	num_bits = rfreg->field.len;
154	first_bit = rfreg->field.pos;
155	col = rfreg->field.col;
156
157	/* first_bit is an offset from bank's
158	 * start. Since we have all banks on
159	 * the same array, we use this offset
160	 * to mark each bank's start */
161	offset = ah->ah_offset[bank];
162
163	/* Boundary check */
164	if (!(col <= 3 && num_bits <= 32 && first_bit + num_bits <= 319)) {
165		ATH5K_PRINTF("invalid values at offset %u\n", offset);
166		return 0;
167	}
168
169	entry = ((first_bit - 1) / 8) + offset;
170	position = (first_bit - 1) % 8;
171
172	if (set)
173		data = ath5k_hw_bitswap(val, num_bits);
174
175	for (bits_shifted = 0, bits_left = num_bits; bits_left > 0;
176	position = 0, entry++) {
177
178		last_bit = (position + bits_left > 8) ? 8 :
179					position + bits_left;
180
181		mask = (((1 << last_bit) - 1) ^ ((1 << position) - 1)) <<
182								(col * 8);
183
184		if (set) {
185			rfb[entry] &= ~mask;
186			rfb[entry] |= ((data << position) << (col * 8)) & mask;
187			data >>= (8 - position);
188		} else {
189			data |= (((rfb[entry] & mask) >> (col * 8)) >> position)
190				<< bits_shifted;
191			bits_shifted += last_bit - position;
192		}
193
194		bits_left -= 8 - position;
195	}
196
197	data = set ? 1 : ath5k_hw_bitswap(data, num_bits);
198
199	return data;
200}
201
202/**
203 * ath5k_hw_write_ofdm_timings - set OFDM timings on AR5212
204 *
205 * @ah: the &struct ath5k_hw
206 * @channel: the currently set channel upon reset
207 *
208 * Write the delta slope coefficient (used on pilot tracking ?) for OFDM
209 * operation on the AR5212 upon reset. This is a helper for ath5k_hw_phy_init.
210 *
211 * Since delta slope is floating point we split it on its exponent and
212 * mantissa and provide these values on hw.
213 *
214 * For more infos i think this patent is related
215 * http://www.freepatentsonline.com/7184495.html
216 */
217static inline int ath5k_hw_write_ofdm_timings(struct ath5k_hw *ah,
218	struct ieee80211_channel *channel)
219{
220	/* Get exponent and mantissa and set it */
221	u32 coef_scaled, coef_exp, coef_man,
222		ds_coef_exp, ds_coef_man, clock;
223
224	BUG_ON(!(ah->ah_version == AR5K_AR5212) ||
225		!(channel->hw_value & CHANNEL_OFDM));
226
227	/* Get coefficient
228	 * ALGO: coef = (5 * clock / carrier_freq) / 2
229	 * we scale coef by shifting clock value by 24 for
230	 * better precision since we use integers */
231	/* TODO: Half/quarter rate */
232	clock =  (channel->hw_value & CHANNEL_TURBO) ? 80 : 40;
233	coef_scaled = ((5 * (clock << 24)) / 2) / channel->center_freq;
234
235	/* Get exponent
236	 * ALGO: coef_exp = 14 - highest set bit position */
237	coef_exp = ilog2(coef_scaled);
238
239	/* Doesn't make sense if it's zero*/
240	if (!coef_scaled || !coef_exp)
241		return -EINVAL;
242
243	/* Note: we've shifted coef_scaled by 24 */
244	coef_exp = 14 - (coef_exp - 24);
245
246
247	/* Get mantissa (significant digits)
248	 * ALGO: coef_mant = floor(coef_scaled* 2^coef_exp+0.5) */
249	coef_man = coef_scaled +
250		(1 << (24 - coef_exp - 1));
251
252	/* Calculate delta slope coefficient exponent
253	 * and mantissa (remove scaling) and set them on hw */
254	ds_coef_man = coef_man >> (24 - coef_exp);
255	ds_coef_exp = coef_exp - 16;
256
257	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_3,
258		AR5K_PHY_TIMING_3_DSC_MAN, ds_coef_man);
259	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_3,
260		AR5K_PHY_TIMING_3_DSC_EXP, ds_coef_exp);
261
262	return 0;
263}
264
265int ath5k_hw_phy_disable(struct ath5k_hw *ah)
266{
267	/*Just a try M.F.*/
268	ath5k_hw_reg_write(ah, AR5K_PHY_ACT_DISABLE, AR5K_PHY_ACT);
269
270	return 0;
271}
272
273
274/**********************\
275* RF Gain optimization *
276\**********************/
277
278/*
279 * This code is used to optimize RF gain on different environments
280 * (temperature mostly) based on feedback from a power detector.
281 *
282 * It's only used on RF5111 and RF5112, later RF chips seem to have
283 * auto adjustment on hw -notice they have a much smaller BANK 7 and
284 * no gain optimization ladder-.
285 *
286 * For more infos check out this patent doc
287 * http://www.freepatentsonline.com/7400691.html
288 *
289 * This paper describes power drops as seen on the receiver due to
290 * probe packets
291 * http://www.cnri.dit.ie/publications/ICT08%20-%20Practical%20Issues
292 * %20of%20Power%20Control.pdf
293 *
294 * And this is the MadWiFi bug entry related to the above
295 * http://madwifi-project.org/ticket/1659
296 * with various measurements and diagrams
297 *
298 * TODO: Deal with power drops due to probes by setting an apropriate
299 * tx power on the probe packets ! Make this part of the calibration process.
300 */
301
302/* Initialize ah_gain durring attach */
303int ath5k_hw_rfgain_opt_init(struct ath5k_hw *ah)
304{
305	/* Initialize the gain optimization values */
306	switch (ah->ah_radio) {
307	case AR5K_RF5111:
308		ah->ah_gain.g_step_idx = rfgain_opt_5111.go_default;
309		ah->ah_gain.g_low = 20;
310		ah->ah_gain.g_high = 35;
311		ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
312		break;
313	case AR5K_RF5112:
314		ah->ah_gain.g_step_idx = rfgain_opt_5112.go_default;
315		ah->ah_gain.g_low = 20;
316		ah->ah_gain.g_high = 85;
317		ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
318		break;
319	default:
320		return -EINVAL;
321	}
322
323	return 0;
324}
325
326/* Schedule a gain probe check on the next transmited packet.
327 * That means our next packet is going to be sent with lower
328 * tx power and a Peak to Average Power Detector (PAPD) will try
329 * to measure the gain.
330 *
331 * XXX:  How about forcing a tx packet (bypassing PCU arbitrator etc)
332 * just after we enable the probe so that we don't mess with
333 * standard traffic ? Maybe it's time to use sw interrupts and
334 * a probe tasklet !!!
335 */
336static void ath5k_hw_request_rfgain_probe(struct ath5k_hw *ah)
337{
338
339	/* Skip if gain calibration is inactive or
340	 * we already handle a probe request */
341	if (ah->ah_gain.g_state != AR5K_RFGAIN_ACTIVE)
342		return;
343
344	/* Send the packet with 2dB below max power as
345	 * patent doc suggest */
346	ath5k_hw_reg_write(ah, AR5K_REG_SM(ah->ah_txpower.txp_ofdm - 4,
347			AR5K_PHY_PAPD_PROBE_TXPOWER) |
348			AR5K_PHY_PAPD_PROBE_TX_NEXT, AR5K_PHY_PAPD_PROBE);
349
350	ah->ah_gain.g_state = AR5K_RFGAIN_READ_REQUESTED;
351
352}
353
354/* Calculate gain_F measurement correction
355 * based on the current step for RF5112 rev. 2 */
356static u32 ath5k_hw_rf_gainf_corr(struct ath5k_hw *ah)
357{
358	u32 mix, step;
359	u32 *rf;
360	const struct ath5k_gain_opt *go;
361	const struct ath5k_gain_opt_step *g_step;
362	const struct ath5k_rf_reg *rf_regs;
363
364	/* Only RF5112 Rev. 2 supports it */
365	if ((ah->ah_radio != AR5K_RF5112) ||
366	(ah->ah_radio_5ghz_revision <= AR5K_SREV_RAD_5112A))
367		return 0;
368
369	go = &rfgain_opt_5112;
370	rf_regs = rf_regs_5112a;
371	ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a);
372
373	g_step = &go->go_step[ah->ah_gain.g_step_idx];
374
375	if (ah->ah_rf_banks == NULL)
376		return 0;
377
378	rf = ah->ah_rf_banks;
379	ah->ah_gain.g_f_corr = 0;
380
381	/* No VGA (Variable Gain Amplifier) override, skip */
382	if (ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR, false) != 1)
383		return 0;
384
385	/* Mix gain stepping */
386	step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXGAIN_STEP, false);
387
388	/* Mix gain override */
389	mix = g_step->gos_param[0];
390
391	switch (mix) {
392	case 3:
393		ah->ah_gain.g_f_corr = step * 2;
394		break;
395	case 2:
396		ah->ah_gain.g_f_corr = (step - 5) * 2;
397		break;
398	case 1:
399		ah->ah_gain.g_f_corr = step;
400		break;
401	default:
402		ah->ah_gain.g_f_corr = 0;
403		break;
404	}
405
406	return ah->ah_gain.g_f_corr;
407}
408
409/* Check if current gain_F measurement is in the range of our
410 * power detector windows. If we get a measurement outside range
411 * we know it's not accurate (detectors can't measure anything outside
412 * their detection window) so we must ignore it */
413static bool ath5k_hw_rf_check_gainf_readback(struct ath5k_hw *ah)
414{
415	const struct ath5k_rf_reg *rf_regs;
416	u32 step, mix_ovr, level[4];
417	u32 *rf;
418
419	if (ah->ah_rf_banks == NULL)
420		return false;
421
422	rf = ah->ah_rf_banks;
423
424	if (ah->ah_radio == AR5K_RF5111) {
425
426		rf_regs = rf_regs_5111;
427		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111);
428
429		step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_RFGAIN_STEP,
430			false);
431
432		level[0] = 0;
433		level[1] = (step == 63) ? 50 : step + 4;
434		level[2] = (step != 63) ? 64 : level[0];
435		level[3] = level[2] + 50 ;
436
437		ah->ah_gain.g_high = level[3] -
438			(step == 63 ? AR5K_GAIN_DYN_ADJUST_HI_MARGIN : -5);
439		ah->ah_gain.g_low = level[0] +
440			(step == 63 ? AR5K_GAIN_DYN_ADJUST_LO_MARGIN : 0);
441	} else {
442
443		rf_regs = rf_regs_5112;
444		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112);
445
446		mix_ovr = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR,
447			false);
448
449		level[0] = level[2] = 0;
450
451		if (mix_ovr == 1) {
452			level[1] = level[3] = 83;
453		} else {
454			level[1] = level[3] = 107;
455			ah->ah_gain.g_high = 55;
456		}
457	}
458
459	return (ah->ah_gain.g_current >= level[0] &&
460			ah->ah_gain.g_current <= level[1]) ||
461		(ah->ah_gain.g_current >= level[2] &&
462			ah->ah_gain.g_current <= level[3]);
463}
464
465/* Perform gain_F adjustment by choosing the right set
466 * of parameters from RF gain optimization ladder */
467static s8 ath5k_hw_rf_gainf_adjust(struct ath5k_hw *ah)
468{
469	const struct ath5k_gain_opt *go;
470	const struct ath5k_gain_opt_step *g_step;
471	int ret = 0;
472
473	switch (ah->ah_radio) {
474	case AR5K_RF5111:
475		go = &rfgain_opt_5111;
476		break;
477	case AR5K_RF5112:
478		go = &rfgain_opt_5112;
479		break;
480	default:
481		return 0;
482	}
483
484	g_step = &go->go_step[ah->ah_gain.g_step_idx];
485
486	if (ah->ah_gain.g_current >= ah->ah_gain.g_high) {
487
488		/* Reached maximum */
489		if (ah->ah_gain.g_step_idx == 0)
490			return -1;
491
492		for (ah->ah_gain.g_target = ah->ah_gain.g_current;
493				ah->ah_gain.g_target >=  ah->ah_gain.g_high &&
494				ah->ah_gain.g_step_idx > 0;
495				g_step = &go->go_step[ah->ah_gain.g_step_idx])
496			ah->ah_gain.g_target -= 2 *
497			    (go->go_step[--(ah->ah_gain.g_step_idx)].gos_gain -
498			    g_step->gos_gain);
499
500		ret = 1;
501		goto done;
502	}
503
504	if (ah->ah_gain.g_current <= ah->ah_gain.g_low) {
505
506		/* Reached minimum */
507		if (ah->ah_gain.g_step_idx == (go->go_steps_count - 1))
508			return -2;
509
510		for (ah->ah_gain.g_target = ah->ah_gain.g_current;
511				ah->ah_gain.g_target <= ah->ah_gain.g_low &&
512				ah->ah_gain.g_step_idx < go->go_steps_count-1;
513				g_step = &go->go_step[ah->ah_gain.g_step_idx])
514			ah->ah_gain.g_target -= 2 *
515			    (go->go_step[++ah->ah_gain.g_step_idx].gos_gain -
516			    g_step->gos_gain);
517
518		ret = 2;
519		goto done;
520	}
521
522done:
523	ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
524		"ret %d, gain step %u, current gain %u, target gain %u\n",
525		ret, ah->ah_gain.g_step_idx, ah->ah_gain.g_current,
526		ah->ah_gain.g_target);
527
528	return ret;
529}
530
531/* Main callback for thermal RF gain calibration engine
532 * Check for a new gain reading and schedule an adjustment
533 * if needed.
534 *
535 * TODO: Use sw interrupt to schedule reset if gain_F needs
536 * adjustment */
537enum ath5k_rfgain ath5k_hw_gainf_calibrate(struct ath5k_hw *ah)
538{
539	u32 data, type;
540	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
541
542	if (ah->ah_rf_banks == NULL ||
543	ah->ah_gain.g_state == AR5K_RFGAIN_INACTIVE)
544		return AR5K_RFGAIN_INACTIVE;
545
546	/* No check requested, either engine is inactive
547	 * or an adjustment is already requested */
548	if (ah->ah_gain.g_state != AR5K_RFGAIN_READ_REQUESTED)
549		goto done;
550
551	/* Read the PAPD (Peak to Average Power Detector)
552	 * register */
553	data = ath5k_hw_reg_read(ah, AR5K_PHY_PAPD_PROBE);
554
555	/* No probe is scheduled, read gain_F measurement */
556	if (!(data & AR5K_PHY_PAPD_PROBE_TX_NEXT)) {
557		ah->ah_gain.g_current = data >> AR5K_PHY_PAPD_PROBE_GAINF_S;
558		type = AR5K_REG_MS(data, AR5K_PHY_PAPD_PROBE_TYPE);
559
560		/* If tx packet is CCK correct the gain_F measurement
561		 * by cck ofdm gain delta */
562		if (type == AR5K_PHY_PAPD_PROBE_TYPE_CCK) {
563			if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A)
564				ah->ah_gain.g_current +=
565					ee->ee_cck_ofdm_gain_delta;
566			else
567				ah->ah_gain.g_current +=
568					AR5K_GAIN_CCK_PROBE_CORR;
569		}
570
571		/* Further correct gain_F measurement for
572		 * RF5112A radios */
573		if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) {
574			ath5k_hw_rf_gainf_corr(ah);
575			ah->ah_gain.g_current =
576				ah->ah_gain.g_current >= ah->ah_gain.g_f_corr ?
577				(ah->ah_gain.g_current-ah->ah_gain.g_f_corr) :
578				0;
579		}
580
581		/* Check if measurement is ok and if we need
582		 * to adjust gain, schedule a gain adjustment,
583		 * else switch back to the acive state */
584		if (ath5k_hw_rf_check_gainf_readback(ah) &&
585		AR5K_GAIN_CHECK_ADJUST(&ah->ah_gain) &&
586		ath5k_hw_rf_gainf_adjust(ah)) {
587			ah->ah_gain.g_state = AR5K_RFGAIN_NEED_CHANGE;
588		} else {
589			ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
590		}
591	}
592
593done:
594	return ah->ah_gain.g_state;
595}
596
597/* Write initial RF gain table to set the RF sensitivity
598 * this one works on all RF chips and has nothing to do
599 * with gain_F calibration */
600static int ath5k_hw_rfgain_init(struct ath5k_hw *ah, unsigned int freq)
601{
602	const struct ath5k_ini_rfgain *ath5k_rfg;
603	unsigned int i, size;
604
605	switch (ah->ah_radio) {
606	case AR5K_RF5111:
607		ath5k_rfg = rfgain_5111;
608		size = ARRAY_SIZE(rfgain_5111);
609		break;
610	case AR5K_RF5112:
611		ath5k_rfg = rfgain_5112;
612		size = ARRAY_SIZE(rfgain_5112);
613		break;
614	case AR5K_RF2413:
615		ath5k_rfg = rfgain_2413;
616		size = ARRAY_SIZE(rfgain_2413);
617		break;
618	case AR5K_RF2316:
619		ath5k_rfg = rfgain_2316;
620		size = ARRAY_SIZE(rfgain_2316);
621		break;
622	case AR5K_RF5413:
623		ath5k_rfg = rfgain_5413;
624		size = ARRAY_SIZE(rfgain_5413);
625		break;
626	case AR5K_RF2317:
627	case AR5K_RF2425:
628		ath5k_rfg = rfgain_2425;
629		size = ARRAY_SIZE(rfgain_2425);
630		break;
631	default:
632		return -EINVAL;
633	}
634
635	switch (freq) {
636	case AR5K_INI_RFGAIN_2GHZ:
637	case AR5K_INI_RFGAIN_5GHZ:
638		break;
639	default:
640		return -EINVAL;
641	}
642
643	for (i = 0; i < size; i++) {
644		AR5K_REG_WAIT(i);
645		ath5k_hw_reg_write(ah, ath5k_rfg[i].rfg_value[freq],
646			(u32)ath5k_rfg[i].rfg_register);
647	}
648
649	return 0;
650}
651
652
653
654/********************\
655* RF Registers setup *
656\********************/
657
658/*
659 * Setup RF registers by writing RF buffer on hw
660 */
661static int ath5k_hw_rfregs_init(struct ath5k_hw *ah,
662	struct ieee80211_channel *channel, unsigned int mode)
663{
664	const struct ath5k_rf_reg *rf_regs;
665	const struct ath5k_ini_rfbuffer *ini_rfb;
666	const struct ath5k_gain_opt *go = NULL;
667	const struct ath5k_gain_opt_step *g_step;
668	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
669	u8 ee_mode = 0;
670	u32 *rfb;
671	int i, obdb = -1, bank = -1;
672
673	switch (ah->ah_radio) {
674	case AR5K_RF5111:
675		rf_regs = rf_regs_5111;
676		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111);
677		ini_rfb = rfb_5111;
678		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5111);
679		go = &rfgain_opt_5111;
680		break;
681	case AR5K_RF5112:
682		if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) {
683			rf_regs = rf_regs_5112a;
684			ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a);
685			ini_rfb = rfb_5112a;
686			ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112a);
687		} else {
688			rf_regs = rf_regs_5112;
689			ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112);
690			ini_rfb = rfb_5112;
691			ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112);
692		}
693		go = &rfgain_opt_5112;
694		break;
695	case AR5K_RF2413:
696		rf_regs = rf_regs_2413;
697		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2413);
698		ini_rfb = rfb_2413;
699		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2413);
700		break;
701	case AR5K_RF2316:
702		rf_regs = rf_regs_2316;
703		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2316);
704		ini_rfb = rfb_2316;
705		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2316);
706		break;
707	case AR5K_RF5413:
708		rf_regs = rf_regs_5413;
709		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5413);
710		ini_rfb = rfb_5413;
711		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5413);
712		break;
713	case AR5K_RF2317:
714		rf_regs = rf_regs_2425;
715		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425);
716		ini_rfb = rfb_2317;
717		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2317);
718		break;
719	case AR5K_RF2425:
720		rf_regs = rf_regs_2425;
721		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425);
722		if (ah->ah_mac_srev < AR5K_SREV_AR2417) {
723			ini_rfb = rfb_2425;
724			ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2425);
725		} else {
726			ini_rfb = rfb_2417;
727			ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2417);
728		}
729		break;
730	default:
731		return -EINVAL;
732	}
733
734	/* If it's the first time we set RF buffer, allocate
735	 * ah->ah_rf_banks based on ah->ah_rf_banks_size
736	 * we set above */
737	if (ah->ah_rf_banks == NULL) {
738		ah->ah_rf_banks = kmalloc(sizeof(u32) * ah->ah_rf_banks_size,
739								GFP_KERNEL);
740		if (ah->ah_rf_banks == NULL) {
741			ATH5K_ERR(ah->ah_sc, "out of memory\n");
742			return -ENOMEM;
743		}
744	}
745
746	/* Copy values to modify them */
747	rfb = ah->ah_rf_banks;
748
749	for (i = 0; i < ah->ah_rf_banks_size; i++) {
750		if (ini_rfb[i].rfb_bank >= AR5K_MAX_RF_BANKS) {
751			ATH5K_ERR(ah->ah_sc, "invalid bank\n");
752			return -EINVAL;
753		}
754
755		/* Bank changed, write down the offset */
756		if (bank != ini_rfb[i].rfb_bank) {
757			bank = ini_rfb[i].rfb_bank;
758			ah->ah_offset[bank] = i;
759		}
760
761		rfb[i] = ini_rfb[i].rfb_mode_data[mode];
762	}
763
764	/* Set Output and Driver bias current (OB/DB) */
765	if (channel->hw_value & CHANNEL_2GHZ) {
766
767		if (channel->hw_value & CHANNEL_CCK)
768			ee_mode = AR5K_EEPROM_MODE_11B;
769		else
770			ee_mode = AR5K_EEPROM_MODE_11G;
771
772		/* For RF511X/RF211X combination we
773		 * use b_OB and b_DB parameters stored
774		 * in eeprom on ee->ee_ob[ee_mode][0]
775		 *
776		 * For all other chips we use OB/DB for 2Ghz
777		 * stored in the b/g modal section just like
778		 * 802.11a on ee->ee_ob[ee_mode][1] */
779		if ((ah->ah_radio == AR5K_RF5111) ||
780		(ah->ah_radio == AR5K_RF5112))
781			obdb = 0;
782		else
783			obdb = 1;
784
785		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb],
786						AR5K_RF_OB_2GHZ, true);
787
788		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb],
789						AR5K_RF_DB_2GHZ, true);
790
791	/* RF5111 always needs OB/DB for 5GHz, even if we use 2GHz */
792	} else if ((channel->hw_value & CHANNEL_5GHZ) ||
793			(ah->ah_radio == AR5K_RF5111)) {
794
795		/* For 11a, Turbo and XR we need to choose
796		 * OB/DB based on frequency range */
797		ee_mode = AR5K_EEPROM_MODE_11A;
798		obdb =	 channel->center_freq >= 5725 ? 3 :
799			(channel->center_freq >= 5500 ? 2 :
800			(channel->center_freq >= 5260 ? 1 :
801			 (channel->center_freq > 4000 ? 0 : -1)));
802
803		if (obdb < 0)
804			return -EINVAL;
805
806		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb],
807						AR5K_RF_OB_5GHZ, true);
808
809		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb],
810						AR5K_RF_DB_5GHZ, true);
811	}
812
813	g_step = &go->go_step[ah->ah_gain.g_step_idx];
814
815	/* Bank Modifications (chip-specific) */
816	if (ah->ah_radio == AR5K_RF5111) {
817
818		/* Set gain_F settings according to current step */
819		if (channel->hw_value & CHANNEL_OFDM) {
820
821			AR5K_REG_WRITE_BITS(ah, AR5K_PHY_FRAME_CTL,
822					AR5K_PHY_FRAME_CTL_TX_CLIP,
823					g_step->gos_param[0]);
824
825			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1],
826							AR5K_RF_PWD_90, true);
827
828			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2],
829							AR5K_RF_PWD_84, true);
830
831			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3],
832						AR5K_RF_RFGAIN_SEL, true);
833
834			/* We programmed gain_F parameters, switch back
835			 * to active state */
836			ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
837
838		}
839
840		/* Bank 6/7 setup */
841
842		ath5k_hw_rfb_op(ah, rf_regs, !ee->ee_xpd[ee_mode],
843						AR5K_RF_PWD_XPD, true);
844
845		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_x_gain[ee_mode],
846						AR5K_RF_XPD_GAIN, true);
847
848		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode],
849						AR5K_RF_GAIN_I, true);
850
851		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode],
852						AR5K_RF_PLO_SEL, true);
853
854		/* Tweak power detectors for half/quarter rate support */
855		if (ah->ah_bwmode == AR5K_BWMODE_5MHZ ||
856		ah->ah_bwmode == AR5K_BWMODE_10MHZ) {
857			u8 wait_i;
858
859			ath5k_hw_rfb_op(ah, rf_regs, 0x1f,
860						AR5K_RF_WAIT_S, true);
861
862			wait_i = (ah->ah_bwmode == AR5K_BWMODE_5MHZ) ?
863							0x1f : 0x10;
864
865			ath5k_hw_rfb_op(ah, rf_regs, wait_i,
866						AR5K_RF_WAIT_I, true);
867			ath5k_hw_rfb_op(ah, rf_regs, 3,
868						AR5K_RF_MAX_TIME, true);
869
870		}
871	}
872
873	if (ah->ah_radio == AR5K_RF5112) {
874
875		/* Set gain_F settings according to current step */
876		if (channel->hw_value & CHANNEL_OFDM) {
877
878			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[0],
879						AR5K_RF_MIXGAIN_OVR, true);
880
881			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1],
882						AR5K_RF_PWD_138, true);
883
884			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2],
885						AR5K_RF_PWD_137, true);
886
887			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3],
888						AR5K_RF_PWD_136, true);
889
890			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[4],
891						AR5K_RF_PWD_132, true);
892
893			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[5],
894						AR5K_RF_PWD_131, true);
895
896			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[6],
897						AR5K_RF_PWD_130, true);
898
899			/* We programmed gain_F parameters, switch back
900			 * to active state */
901			ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
902		}
903
904		/* Bank 6/7 setup */
905
906		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode],
907						AR5K_RF_XPD_SEL, true);
908
909		if (ah->ah_radio_5ghz_revision < AR5K_SREV_RAD_5112A) {
910			/* Rev. 1 supports only one xpd */
911			ath5k_hw_rfb_op(ah, rf_regs,
912						ee->ee_x_gain[ee_mode],
913						AR5K_RF_XPD_GAIN, true);
914
915		} else {
916			u8 *pdg_curve_to_idx = ee->ee_pdc_to_idx[ee_mode];
917			if (ee->ee_pd_gains[ee_mode] > 1) {
918				ath5k_hw_rfb_op(ah, rf_regs,
919						pdg_curve_to_idx[0],
920						AR5K_RF_PD_GAIN_LO, true);
921				ath5k_hw_rfb_op(ah, rf_regs,
922						pdg_curve_to_idx[1],
923						AR5K_RF_PD_GAIN_HI, true);
924			} else {
925				ath5k_hw_rfb_op(ah, rf_regs,
926						pdg_curve_to_idx[0],
927						AR5K_RF_PD_GAIN_LO, true);
928				ath5k_hw_rfb_op(ah, rf_regs,
929						pdg_curve_to_idx[0],
930						AR5K_RF_PD_GAIN_HI, true);
931			}
932
933			/* Lower synth voltage on Rev 2 */
934			ath5k_hw_rfb_op(ah, rf_regs, 2,
935					AR5K_RF_HIGH_VC_CP, true);
936
937			ath5k_hw_rfb_op(ah, rf_regs, 2,
938					AR5K_RF_MID_VC_CP, true);
939
940			ath5k_hw_rfb_op(ah, rf_regs, 2,
941					AR5K_RF_LOW_VC_CP, true);
942
943			ath5k_hw_rfb_op(ah, rf_regs, 2,
944					AR5K_RF_PUSH_UP, true);
945
946			/* Decrease power consumption on 5213+ BaseBand */
947			if (ah->ah_phy_revision >= AR5K_SREV_PHY_5212A) {
948				ath5k_hw_rfb_op(ah, rf_regs, 1,
949						AR5K_RF_PAD2GND, true);
950
951				ath5k_hw_rfb_op(ah, rf_regs, 1,
952						AR5K_RF_XB2_LVL, true);
953
954				ath5k_hw_rfb_op(ah, rf_regs, 1,
955						AR5K_RF_XB5_LVL, true);
956
957				ath5k_hw_rfb_op(ah, rf_regs, 1,
958						AR5K_RF_PWD_167, true);
959
960				ath5k_hw_rfb_op(ah, rf_regs, 1,
961						AR5K_RF_PWD_166, true);
962			}
963		}
964
965		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode],
966						AR5K_RF_GAIN_I, true);
967
968		/* Tweak power detector for half/quarter rates */
969		if (ah->ah_bwmode == AR5K_BWMODE_5MHZ ||
970		ah->ah_bwmode == AR5K_BWMODE_10MHZ) {
971			u8 pd_delay;
972
973			pd_delay = (ah->ah_bwmode == AR5K_BWMODE_5MHZ) ?
974							0xf : 0x8;
975
976			ath5k_hw_rfb_op(ah, rf_regs, pd_delay,
977						AR5K_RF_PD_PERIOD_A, true);
978			ath5k_hw_rfb_op(ah, rf_regs, 0xf,
979						AR5K_RF_PD_DELAY_A, true);
980
981		}
982	}
983
984	if (ah->ah_radio == AR5K_RF5413 &&
985	channel->hw_value & CHANNEL_2GHZ) {
986
987		ath5k_hw_rfb_op(ah, rf_regs, 1, AR5K_RF_DERBY_CHAN_SEL_MODE,
988									true);
989
990		/* Set optimum value for early revisions (on pci-e chips) */
991		if (ah->ah_mac_srev >= AR5K_SREV_AR5424 &&
992		ah->ah_mac_srev < AR5K_SREV_AR5413)
993			ath5k_hw_rfb_op(ah, rf_regs, ath5k_hw_bitswap(6, 3),
994						AR5K_RF_PWD_ICLOBUF_2G, true);
995
996	}
997
998	/* Write RF banks on hw */
999	for (i = 0; i < ah->ah_rf_banks_size; i++) {
1000		AR5K_REG_WAIT(i);
1001		ath5k_hw_reg_write(ah, rfb[i], ini_rfb[i].rfb_ctrl_register);
1002	}
1003
1004	return 0;
1005}
1006
1007
1008/**************************\
1009  PHY/RF channel functions
1010\**************************/
1011
1012/*
1013 * Convertion needed for RF5110
1014 */
1015static u32 ath5k_hw_rf5110_chan2athchan(struct ieee80211_channel *channel)
1016{
1017	u32 athchan;
1018
1019	/*
1020	 * Convert IEEE channel/MHz to an internal channel value used
1021	 * by the AR5210 chipset. This has not been verified with
1022	 * newer chipsets like the AR5212A who have a completely
1023	 * different RF/PHY part.
1024	 */
1025	athchan = (ath5k_hw_bitswap(
1026			(ieee80211_frequency_to_channel(
1027				channel->center_freq) - 24) / 2, 5)
1028				<< 1) | (1 << 6) | 0x1;
1029	return athchan;
1030}
1031
1032/*
1033 * Set channel on RF5110
1034 */
1035static int ath5k_hw_rf5110_channel(struct ath5k_hw *ah,
1036		struct ieee80211_channel *channel)
1037{
1038	u32 data;
1039
1040	/*
1041	 * Set the channel and wait
1042	 */
1043	data = ath5k_hw_rf5110_chan2athchan(channel);
1044	ath5k_hw_reg_write(ah, data, AR5K_RF_BUFFER);
1045	ath5k_hw_reg_write(ah, 0, AR5K_RF_BUFFER_CONTROL_0);
1046	mdelay(1);
1047
1048	return 0;
1049}
1050
1051/*
1052 * Convertion needed for 5111
1053 */
1054static int ath5k_hw_rf5111_chan2athchan(unsigned int ieee,
1055		struct ath5k_athchan_2ghz *athchan)
1056{
1057	int channel;
1058
1059	/* Cast this value to catch negative channel numbers (>= -19) */
1060	channel = (int)ieee;
1061
1062	/*
1063	 * Map 2GHz IEEE channel to 5GHz Atheros channel
1064	 */
1065	if (channel <= 13) {
1066		athchan->a2_athchan = 115 + channel;
1067		athchan->a2_flags = 0x46;
1068	} else if (channel == 14) {
1069		athchan->a2_athchan = 124;
1070		athchan->a2_flags = 0x44;
1071	} else if (channel >= 15 && channel <= 26) {
1072		athchan->a2_athchan = ((channel - 14) * 4) + 132;
1073		athchan->a2_flags = 0x46;
1074	} else
1075		return -EINVAL;
1076
1077	return 0;
1078}
1079
1080/*
1081 * Set channel on 5111
1082 */
1083static int ath5k_hw_rf5111_channel(struct ath5k_hw *ah,
1084		struct ieee80211_channel *channel)
1085{
1086	struct ath5k_athchan_2ghz ath5k_channel_2ghz;
1087	unsigned int ath5k_channel =
1088		ieee80211_frequency_to_channel(channel->center_freq);
1089	u32 data0, data1, clock;
1090	int ret;
1091
1092	/*
1093	 * Set the channel on the RF5111 radio
1094	 */
1095	data0 = data1 = 0;
1096
1097	if (channel->hw_value & CHANNEL_2GHZ) {
1098		/* Map 2GHz channel to 5GHz Atheros channel ID */
1099		ret = ath5k_hw_rf5111_chan2athchan(
1100			ieee80211_frequency_to_channel(channel->center_freq),
1101			&ath5k_channel_2ghz);
1102		if (ret)
1103			return ret;
1104
1105		ath5k_channel = ath5k_channel_2ghz.a2_athchan;
1106		data0 = ((ath5k_hw_bitswap(ath5k_channel_2ghz.a2_flags, 8) & 0xff)
1107		    << 5) | (1 << 4);
1108	}
1109
1110	if (ath5k_channel < 145 || !(ath5k_channel & 1)) {
1111		clock = 1;
1112		data1 = ((ath5k_hw_bitswap(ath5k_channel - 24, 8) & 0xff) << 2) |
1113			(clock << 1) | (1 << 10) | 1;
1114	} else {
1115		clock = 0;
1116		data1 = ((ath5k_hw_bitswap((ath5k_channel - 24) / 2, 8) & 0xff)
1117			<< 2) | (clock << 1) | (1 << 10) | 1;
1118	}
1119
1120	ath5k_hw_reg_write(ah, (data1 & 0xff) | ((data0 & 0xff) << 8),
1121			AR5K_RF_BUFFER);
1122	ath5k_hw_reg_write(ah, ((data1 >> 8) & 0xff) | (data0 & 0xff00),
1123			AR5K_RF_BUFFER_CONTROL_3);
1124
1125	return 0;
1126}
1127
1128/*
1129 * Set channel on 5112 and newer
1130 */
1131static int ath5k_hw_rf5112_channel(struct ath5k_hw *ah,
1132		struct ieee80211_channel *channel)
1133{
1134	u32 data, data0, data1, data2;
1135	u16 c;
1136
1137	data = data0 = data1 = data2 = 0;
1138	c = channel->center_freq;
1139
1140	if (c < 4800) {
1141		if (!((c - 2224) % 5)) {
1142			data0 = ((2 * (c - 704)) - 3040) / 10;
1143			data1 = 1;
1144		} else if (!((c - 2192) % 5)) {
1145			data0 = ((2 * (c - 672)) - 3040) / 10;
1146			data1 = 0;
1147		} else
1148			return -EINVAL;
1149
1150		data0 = ath5k_hw_bitswap((data0 << 2) & 0xff, 8);
1151	} else if ((c % 5) != 2 || c > 5435) {
1152		if (!(c % 20) && c >= 5120) {
1153			data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8);
1154			data2 = ath5k_hw_bitswap(3, 2);
1155		} else if (!(c % 10)) {
1156			data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8);
1157			data2 = ath5k_hw_bitswap(2, 2);
1158		} else if (!(c % 5)) {
1159			data0 = ath5k_hw_bitswap((c - 4800) / 5, 8);
1160			data2 = ath5k_hw_bitswap(1, 2);
1161		} else
1162			return -EINVAL;
1163	} else {
1164		data0 = ath5k_hw_bitswap((10 * (c - 2 - 4800)) / 25 + 1, 8);
1165		data2 = ath5k_hw_bitswap(0, 2);
1166	}
1167
1168	data = (data0 << 4) | (data1 << 1) | (data2 << 2) | 0x1001;
1169
1170	ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER);
1171	ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5);
1172
1173	return 0;
1174}
1175
1176/*
1177 * Set the channel on the RF2425
1178 */
1179static int ath5k_hw_rf2425_channel(struct ath5k_hw *ah,
1180		struct ieee80211_channel *channel)
1181{
1182	u32 data, data0, data2;
1183	u16 c;
1184
1185	data = data0 = data2 = 0;
1186	c = channel->center_freq;
1187
1188	if (c < 4800) {
1189		data0 = ath5k_hw_bitswap((c - 2272), 8);
1190		data2 = 0;
1191	/* ? 5GHz ? */
1192	} else if ((c % 5) != 2 || c > 5435) {
1193		if (!(c % 20) && c < 5120)
1194			data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8);
1195		else if (!(c % 10))
1196			data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8);
1197		else if (!(c % 5))
1198			data0 = ath5k_hw_bitswap((c - 4800) / 5, 8);
1199		else
1200			return -EINVAL;
1201		data2 = ath5k_hw_bitswap(1, 2);
1202	} else {
1203		data0 = ath5k_hw_bitswap((10 * (c - 2 - 4800)) / 25 + 1, 8);
1204		data2 = ath5k_hw_bitswap(0, 2);
1205	}
1206
1207	data = (data0 << 4) | data2 << 2 | 0x1001;
1208
1209	ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER);
1210	ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5);
1211
1212	return 0;
1213}
1214
1215/*
1216 * Set a channel on the radio chip
1217 */
1218static int ath5k_hw_channel(struct ath5k_hw *ah,
1219		struct ieee80211_channel *channel)
1220{
1221	int ret;
1222	/*
1223	 * Check bounds supported by the PHY (we don't care about regultory
1224	 * restrictions at this point). Note: hw_value already has the band
1225	 * (CHANNEL_2GHZ, or CHANNEL_5GHZ) so we inform ath5k_channel_ok()
1226	 * of the band by that */
1227	if (!ath5k_channel_ok(ah, channel->center_freq, channel->hw_value)) {
1228		ATH5K_ERR(ah->ah_sc,
1229			"channel frequency (%u MHz) out of supported "
1230			"band range\n",
1231			channel->center_freq);
1232			return -EINVAL;
1233	}
1234
1235	/*
1236	 * Set the channel and wait
1237	 */
1238	switch (ah->ah_radio) {
1239	case AR5K_RF5110:
1240		ret = ath5k_hw_rf5110_channel(ah, channel);
1241		break;
1242	case AR5K_RF5111:
1243		ret = ath5k_hw_rf5111_channel(ah, channel);
1244		break;
1245	case AR5K_RF2425:
1246		ret = ath5k_hw_rf2425_channel(ah, channel);
1247		break;
1248	default:
1249		ret = ath5k_hw_rf5112_channel(ah, channel);
1250		break;
1251	}
1252
1253	if (ret)
1254		return ret;
1255
1256	/* Set JAPAN setting for channel 14 */
1257	if (channel->center_freq == 2484) {
1258		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL,
1259				AR5K_PHY_CCKTXCTL_JAPAN);
1260	} else {
1261		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL,
1262				AR5K_PHY_CCKTXCTL_WORLD);
1263	}
1264
1265	ah->ah_current_channel = channel;
1266
1267	return 0;
1268}
1269
1270/*****************\
1271  PHY calibration
1272\*****************/
1273
1274static s32 ath5k_hw_read_measured_noise_floor(struct ath5k_hw *ah)
1275{
1276	s32 val;
1277
1278	val = ath5k_hw_reg_read(ah, AR5K_PHY_NF);
1279	return sign_extend32(AR5K_REG_MS(val, AR5K_PHY_NF_MINCCA_PWR), 8);
1280}
1281
1282void ath5k_hw_init_nfcal_hist(struct ath5k_hw *ah)
1283{
1284	int i;
1285
1286	ah->ah_nfcal_hist.index = 0;
1287	for (i = 0; i < ATH5K_NF_CAL_HIST_MAX; i++)
1288		ah->ah_nfcal_hist.nfval[i] = AR5K_TUNE_CCA_MAX_GOOD_VALUE;
1289}
1290
1291static void ath5k_hw_update_nfcal_hist(struct ath5k_hw *ah, s16 noise_floor)
1292{
1293	struct ath5k_nfcal_hist *hist = &ah->ah_nfcal_hist;
1294	hist->index = (hist->index + 1) & (ATH5K_NF_CAL_HIST_MAX-1);
1295	hist->nfval[hist->index] = noise_floor;
1296}
1297
1298static s16 ath5k_hw_get_median_noise_floor(struct ath5k_hw *ah)
1299{
1300	s16 sort[ATH5K_NF_CAL_HIST_MAX];
1301	s16 tmp;
1302	int i, j;
1303
1304	memcpy(sort, ah->ah_nfcal_hist.nfval, sizeof(sort));
1305	for (i = 0; i < ATH5K_NF_CAL_HIST_MAX - 1; i++) {
1306		for (j = 1; j < ATH5K_NF_CAL_HIST_MAX - i; j++) {
1307			if (sort[j] > sort[j-1]) {
1308				tmp = sort[j];
1309				sort[j] = sort[j-1];
1310				sort[j-1] = tmp;
1311			}
1312		}
1313	}
1314	for (i = 0; i < ATH5K_NF_CAL_HIST_MAX; i++) {
1315		ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1316			"cal %d:%d\n", i, sort[i]);
1317	}
1318	return sort[(ATH5K_NF_CAL_HIST_MAX-1) / 2];
1319}
1320
1321/*
1322 * When we tell the hardware to perform a noise floor calibration
1323 * by setting the AR5K_PHY_AGCCTL_NF bit, it will periodically
1324 * sample-and-hold the minimum noise level seen at the antennas.
1325 * This value is then stored in a ring buffer of recently measured
1326 * noise floor values so we have a moving window of the last few
1327 * samples.
1328 *
1329 * The median of the values in the history is then loaded into the
1330 * hardware for its own use for RSSI and CCA measurements.
1331 */
1332void ath5k_hw_update_noise_floor(struct ath5k_hw *ah)
1333{
1334	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1335	u32 val;
1336	s16 nf, threshold;
1337	u8 ee_mode;
1338
1339	/* keep last value if calibration hasn't completed */
1340	if (ath5k_hw_reg_read(ah, AR5K_PHY_AGCCTL) & AR5K_PHY_AGCCTL_NF) {
1341		ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1342			"NF did not complete in calibration window\n");
1343
1344		return;
1345	}
1346
1347	switch (ah->ah_current_channel->hw_value & CHANNEL_MODES) {
1348	case CHANNEL_A:
1349	case CHANNEL_T:
1350	case CHANNEL_XR:
1351		ee_mode = AR5K_EEPROM_MODE_11A;
1352		break;
1353	case CHANNEL_G:
1354	case CHANNEL_TG:
1355		ee_mode = AR5K_EEPROM_MODE_11G;
1356		break;
1357	default:
1358	case CHANNEL_B:
1359		ee_mode = AR5K_EEPROM_MODE_11B;
1360		break;
1361	}
1362
1363
1364	/* completed NF calibration, test threshold */
1365	nf = ath5k_hw_read_measured_noise_floor(ah);
1366	threshold = ee->ee_noise_floor_thr[ee_mode];
1367
1368	if (nf > threshold) {
1369		ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1370			"noise floor failure detected; "
1371			"read %d, threshold %d\n",
1372			nf, threshold);
1373
1374		nf = AR5K_TUNE_CCA_MAX_GOOD_VALUE;
1375	}
1376
1377	ath5k_hw_update_nfcal_hist(ah, nf);
1378	nf = ath5k_hw_get_median_noise_floor(ah);
1379
1380	/* load noise floor (in .5 dBm) so the hardware will use it */
1381	val = ath5k_hw_reg_read(ah, AR5K_PHY_NF) & ~AR5K_PHY_NF_M;
1382	val |= (nf * 2) & AR5K_PHY_NF_M;
1383	ath5k_hw_reg_write(ah, val, AR5K_PHY_NF);
1384
1385	AR5K_REG_MASKED_BITS(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_NF,
1386		~(AR5K_PHY_AGCCTL_NF_EN | AR5K_PHY_AGCCTL_NF_NOUPDATE));
1387
1388	ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_NF,
1389		0, false);
1390
1391	/*
1392	 * Load a high max CCA Power value (-50 dBm in .5 dBm units)
1393	 * so that we're not capped by the median we just loaded.
1394	 * This will be used as the initial value for the next noise
1395	 * floor calibration.
1396	 */
1397	val = (val & ~AR5K_PHY_NF_M) | ((-50 * 2) & AR5K_PHY_NF_M);
1398	ath5k_hw_reg_write(ah, val, AR5K_PHY_NF);
1399	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
1400		AR5K_PHY_AGCCTL_NF_EN |
1401		AR5K_PHY_AGCCTL_NF_NOUPDATE |
1402		AR5K_PHY_AGCCTL_NF);
1403
1404	ah->ah_noise_floor = nf;
1405
1406	ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1407		"noise floor calibrated: %d\n", nf);
1408}
1409
1410/*
1411 * Perform a PHY calibration on RF5110
1412 * -Fix BPSK/QAM Constellation (I/Q correction)
1413 */
1414static int ath5k_hw_rf5110_calibrate(struct ath5k_hw *ah,
1415		struct ieee80211_channel *channel)
1416{
1417	u32 phy_sig, phy_agc, phy_sat, beacon;
1418	int ret;
1419
1420	/*
1421	 * Disable beacons and RX/TX queues, wait
1422	 */
1423	AR5K_REG_ENABLE_BITS(ah, AR5K_DIAG_SW_5210,
1424		AR5K_DIAG_SW_DIS_TX_5210 | AR5K_DIAG_SW_DIS_RX_5210);
1425	beacon = ath5k_hw_reg_read(ah, AR5K_BEACON_5210);
1426	ath5k_hw_reg_write(ah, beacon & ~AR5K_BEACON_ENABLE, AR5K_BEACON_5210);
1427
1428	mdelay(2);
1429
1430	/*
1431	 * Set the channel (with AGC turned off)
1432	 */
1433	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1434	udelay(10);
1435	ret = ath5k_hw_channel(ah, channel);
1436
1437	/*
1438	 * Activate PHY and wait
1439	 */
1440	ath5k_hw_reg_write(ah, AR5K_PHY_ACT_ENABLE, AR5K_PHY_ACT);
1441	mdelay(1);
1442
1443	AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1444
1445	if (ret)
1446		return ret;
1447
1448	/*
1449	 * Calibrate the radio chip
1450	 */
1451
1452	/* Remember normal state */
1453	phy_sig = ath5k_hw_reg_read(ah, AR5K_PHY_SIG);
1454	phy_agc = ath5k_hw_reg_read(ah, AR5K_PHY_AGCCOARSE);
1455	phy_sat = ath5k_hw_reg_read(ah, AR5K_PHY_ADCSAT);
1456
1457	/* Update radio registers */
1458	ath5k_hw_reg_write(ah, (phy_sig & ~(AR5K_PHY_SIG_FIRPWR)) |
1459		AR5K_REG_SM(-1, AR5K_PHY_SIG_FIRPWR), AR5K_PHY_SIG);
1460
1461	ath5k_hw_reg_write(ah, (phy_agc & ~(AR5K_PHY_AGCCOARSE_HI |
1462			AR5K_PHY_AGCCOARSE_LO)) |
1463		AR5K_REG_SM(-1, AR5K_PHY_AGCCOARSE_HI) |
1464		AR5K_REG_SM(-127, AR5K_PHY_AGCCOARSE_LO), AR5K_PHY_AGCCOARSE);
1465
1466	ath5k_hw_reg_write(ah, (phy_sat & ~(AR5K_PHY_ADCSAT_ICNT |
1467			AR5K_PHY_ADCSAT_THR)) |
1468		AR5K_REG_SM(2, AR5K_PHY_ADCSAT_ICNT) |
1469		AR5K_REG_SM(12, AR5K_PHY_ADCSAT_THR), AR5K_PHY_ADCSAT);
1470
1471	udelay(20);
1472
1473	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1474	udelay(10);
1475	ath5k_hw_reg_write(ah, AR5K_PHY_RFSTG_DISABLE, AR5K_PHY_RFSTG);
1476	AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1477
1478	mdelay(1);
1479
1480	/*
1481	 * Enable calibration and wait until completion
1482	 */
1483	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_CAL);
1484
1485	ret = ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL,
1486			AR5K_PHY_AGCCTL_CAL, 0, false);
1487
1488	/* Reset to normal state */
1489	ath5k_hw_reg_write(ah, phy_sig, AR5K_PHY_SIG);
1490	ath5k_hw_reg_write(ah, phy_agc, AR5K_PHY_AGCCOARSE);
1491	ath5k_hw_reg_write(ah, phy_sat, AR5K_PHY_ADCSAT);
1492
1493	if (ret) {
1494		ATH5K_ERR(ah->ah_sc, "calibration timeout (%uMHz)\n",
1495				channel->center_freq);
1496		return ret;
1497	}
1498
1499	/*
1500	 * Re-enable RX/TX and beacons
1501	 */
1502	AR5K_REG_DISABLE_BITS(ah, AR5K_DIAG_SW_5210,
1503		AR5K_DIAG_SW_DIS_TX_5210 | AR5K_DIAG_SW_DIS_RX_5210);
1504	ath5k_hw_reg_write(ah, beacon, AR5K_BEACON_5210);
1505
1506	return 0;
1507}
1508
1509/*
1510 * Perform I/Q calibration on RF5111/5112 and newer chips
1511 */
1512static int
1513ath5k_hw_rf511x_iq_calibrate(struct ath5k_hw *ah)
1514{
1515	u32 i_pwr, q_pwr;
1516	s32 iq_corr, i_coff, i_coffd, q_coff, q_coffd;
1517	int i;
1518
1519	if (!ah->ah_calibration ||
1520		ath5k_hw_reg_read(ah, AR5K_PHY_IQ) & AR5K_PHY_IQ_RUN)
1521		return 0;
1522
1523	/* Calibration has finished, get the results and re-run */
1524	/* work around empty results which can apparently happen on 5212 */
1525	for (i = 0; i <= 10; i++) {
1526		iq_corr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_CORR);
1527		i_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_I);
1528		q_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_Q);
1529		ATH5K_DBG_UNLIMIT(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1530			"iq_corr:%x i_pwr:%x q_pwr:%x", iq_corr, i_pwr, q_pwr);
1531		if (i_pwr && q_pwr)
1532			break;
1533	}
1534
1535	i_coffd = ((i_pwr >> 1) + (q_pwr >> 1)) >> 7;
1536
1537	if (ah->ah_version == AR5K_AR5211)
1538		q_coffd = q_pwr >> 6;
1539	else
1540		q_coffd = q_pwr >> 7;
1541
1542	/* protect against divide by 0 and loss of sign bits */
1543	if (i_coffd == 0 || q_coffd < 2)
1544		return 0;
1545
1546	i_coff = (-iq_corr) / i_coffd;
1547	i_coff = clamp(i_coff, -32, 31); /* signed 6 bit */
1548
1549	if (ah->ah_version == AR5K_AR5211)
1550		q_coff = (i_pwr / q_coffd) - 64;
1551	else
1552		q_coff = (i_pwr / q_coffd) - 128;
1553	q_coff = clamp(q_coff, -16, 15); /* signed 5 bit */
1554
1555	ATH5K_DBG_UNLIMIT(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1556			"new I:%d Q:%d (i_coffd:%x q_coffd:%x)",
1557			i_coff, q_coff, i_coffd, q_coffd);
1558
1559	/* Commit new I/Q values (set enable bit last to match HAL sources) */
1560	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_Q_I_COFF, i_coff);
1561	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_Q_Q_COFF, q_coff);
1562	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_ENABLE);
1563
1564	/* Re-enable calibration -if we don't we'll commit
1565	 * the same values again and again */
1566	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ,
1567			AR5K_PHY_IQ_CAL_NUM_LOG_MAX, 15);
1568	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_RUN);
1569
1570	return 0;
1571}
1572
1573/*
1574 * Perform a PHY calibration
1575 */
1576int ath5k_hw_phy_calibrate(struct ath5k_hw *ah,
1577		struct ieee80211_channel *channel)
1578{
1579	int ret;
1580
1581	if (ah->ah_radio == AR5K_RF5110)
1582		ret = ath5k_hw_rf5110_calibrate(ah, channel);
1583	else {
1584		ret = ath5k_hw_rf511x_iq_calibrate(ah);
1585		ath5k_hw_request_rfgain_probe(ah);
1586	}
1587
1588	return ret;
1589}
1590
1591
1592/***************************\
1593* Spur mitigation functions *
1594\***************************/
1595
1596static void
1597ath5k_hw_set_spur_mitigation_filter(struct ath5k_hw *ah,
1598				struct ieee80211_channel *channel)
1599{
1600	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1601	u32 mag_mask[4] = {0, 0, 0, 0};
1602	u32 pilot_mask[2] = {0, 0};
1603	/* Note: fbin values are scaled up by 2 */
1604	u16 spur_chan_fbin, chan_fbin, symbol_width, spur_detection_window;
1605	s32 spur_delta_phase, spur_freq_sigma_delta;
1606	s32 spur_offset, num_symbols_x16;
1607	u8 num_symbol_offsets, i, freq_band;
1608
1609	/* Convert current frequency to fbin value (the same way channels
1610	 * are stored on EEPROM, check out ath5k_eeprom_bin2freq) and scale
1611	 * up by 2 so we can compare it later */
1612	if (channel->hw_value & CHANNEL_2GHZ) {
1613		chan_fbin = (channel->center_freq - 2300) * 10;
1614		freq_band = AR5K_EEPROM_BAND_2GHZ;
1615	} else {
1616		chan_fbin = (channel->center_freq - 4900) * 10;
1617		freq_band = AR5K_EEPROM_BAND_5GHZ;
1618	}
1619
1620	/* Check if any spur_chan_fbin from EEPROM is
1621	 * within our current channel's spur detection range */
1622	spur_chan_fbin = AR5K_EEPROM_NO_SPUR;
1623	spur_detection_window = AR5K_SPUR_CHAN_WIDTH;
1624	/* XXX: Half/Quarter channels ?*/
1625	if (ah->ah_bwmode == AR5K_BWMODE_40MHZ)
1626		spur_detection_window *= 2;
1627
1628	for (i = 0; i < AR5K_EEPROM_N_SPUR_CHANS; i++) {
1629		spur_chan_fbin = ee->ee_spur_chans[i][freq_band];
1630
1631		/* Note: mask cleans AR5K_EEPROM_NO_SPUR flag
1632		 * so it's zero if we got nothing from EEPROM */
1633		if (spur_chan_fbin == AR5K_EEPROM_NO_SPUR) {
1634			spur_chan_fbin &= AR5K_EEPROM_SPUR_CHAN_MASK;
1635			break;
1636		}
1637
1638		if ((chan_fbin - spur_detection_window <=
1639		(spur_chan_fbin & AR5K_EEPROM_SPUR_CHAN_MASK)) &&
1640		(chan_fbin + spur_detection_window >=
1641		(spur_chan_fbin & AR5K_EEPROM_SPUR_CHAN_MASK))) {
1642			spur_chan_fbin &= AR5K_EEPROM_SPUR_CHAN_MASK;
1643			break;
1644		}
1645	}
1646
1647	/* We need to enable spur filter for this channel */
1648	if (spur_chan_fbin) {
1649		spur_offset = spur_chan_fbin - chan_fbin;
1650		/*
1651		 * Calculate deltas:
1652		 * spur_freq_sigma_delta -> spur_offset / sample_freq << 21
1653		 * spur_delta_phase -> spur_offset / chip_freq << 11
1654		 * Note: Both values have 100Hz resolution
1655		 */
1656		switch (ah->ah_bwmode) {
1657		case AR5K_BWMODE_40MHZ:
1658			/* Both sample_freq and chip_freq are 80MHz */
1659			spur_delta_phase = (spur_offset << 16) / 25;
1660			spur_freq_sigma_delta = (spur_delta_phase >> 10);
1661			symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz * 2;
1662			break;
1663		case AR5K_BWMODE_10MHZ:
1664			/* Both sample_freq and chip_freq are 20MHz (?) */
1665			spur_delta_phase = (spur_offset << 18) / 25;
1666			spur_freq_sigma_delta = (spur_delta_phase >> 10);
1667			symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz / 2;
1668		case AR5K_BWMODE_5MHZ:
1669			/* Both sample_freq and chip_freq are 10MHz (?) */
1670			spur_delta_phase = (spur_offset << 19) / 25;
1671			spur_freq_sigma_delta = (spur_delta_phase >> 10);
1672			symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz / 4;
1673		default:
1674			if (channel->hw_value == CHANNEL_A) {
1675				/* Both sample_freq and chip_freq are 40MHz */
1676				spur_delta_phase = (spur_offset << 17) / 25;
1677				spur_freq_sigma_delta =
1678						(spur_delta_phase >> 10);
1679				symbol_width =
1680					AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz;
1681			} else {
1682				/* sample_freq -> 40MHz chip_freq -> 44MHz
1683				 * (for b compatibility) */
1684				spur_delta_phase = (spur_offset << 17) / 25;
1685				spur_freq_sigma_delta =
1686						(spur_offset << 8) / 55;
1687				symbol_width =
1688					AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz;
1689			}
1690			break;
1691		}
1692
1693		/* Calculate pilot and magnitude masks */
1694
1695		/* Scale up spur_offset by 1000 to switch to 100HZ resolution
1696		 * and divide by symbol_width to find how many symbols we have
1697		 * Note: number of symbols is scaled up by 16 */
1698		num_symbols_x16 = ((spur_offset * 1000) << 4) / symbol_width;
1699
1700		/* Spur is on a symbol if num_symbols_x16 % 16 is zero */
1701		if (!(num_symbols_x16 & 0xF))
1702			/* _X_ */
1703			num_symbol_offsets = 3;
1704		else
1705			/* _xx_ */
1706			num_symbol_offsets = 4;
1707
1708		for (i = 0; i < num_symbol_offsets; i++) {
1709
1710			/* Calculate pilot mask */
1711			s32 curr_sym_off =
1712				(num_symbols_x16 / 16) + i + 25;
1713
1714			/* Pilot magnitude mask seems to be a way to
1715			 * declare the boundaries for our detection
1716			 * window or something, it's 2 for the middle
1717			 * value(s) where the symbol is expected to be
1718			 * and 1 on the boundary values */
1719			u8 plt_mag_map =
1720				(i == 0 || i == (num_symbol_offsets - 1))
1721								? 1 : 2;
1722
1723			if (curr_sym_off >= 0 && curr_sym_off <= 32) {
1724				if (curr_sym_off <= 25)
1725					pilot_mask[0] |= 1 << curr_sym_off;
1726				else if (curr_sym_off >= 27)
1727					pilot_mask[0] |= 1 << (curr_sym_off - 1);
1728			} else if (curr_sym_off >= 33 && curr_sym_off <= 52)
1729				pilot_mask[1] |= 1 << (curr_sym_off - 33);
1730
1731			/* Calculate magnitude mask (for viterbi decoder) */
1732			if (curr_sym_off >= -1 && curr_sym_off <= 14)
1733				mag_mask[0] |=
1734					plt_mag_map << (curr_sym_off + 1) * 2;
1735			else if (curr_sym_off >= 15 && curr_sym_off <= 30)
1736				mag_mask[1] |=
1737					plt_mag_map << (curr_sym_off - 15) * 2;
1738			else if (curr_sym_off >= 31 && curr_sym_off <= 46)
1739				mag_mask[2] |=
1740					plt_mag_map << (curr_sym_off - 31) * 2;
1741			else if (curr_sym_off >= 47 && curr_sym_off <= 53)
1742				mag_mask[3] |=
1743					plt_mag_map << (curr_sym_off - 47) * 2;
1744
1745		}
1746
1747		/* Write settings on hw to enable spur filter */
1748		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
1749					AR5K_PHY_BIN_MASK_CTL_RATE, 0xff);
1750		/* XXX: Self correlator also ? */
1751		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ,
1752					AR5K_PHY_IQ_PILOT_MASK_EN |
1753					AR5K_PHY_IQ_CHAN_MASK_EN |
1754					AR5K_PHY_IQ_SPUR_FILT_EN);
1755
1756		/* Set delta phase and freq sigma delta */
1757		ath5k_hw_reg_write(ah,
1758				AR5K_REG_SM(spur_delta_phase,
1759					AR5K_PHY_TIMING_11_SPUR_DELTA_PHASE) |
1760				AR5K_REG_SM(spur_freq_sigma_delta,
1761				AR5K_PHY_TIMING_11_SPUR_FREQ_SD) |
1762				AR5K_PHY_TIMING_11_USE_SPUR_IN_AGC,
1763				AR5K_PHY_TIMING_11);
1764
1765		/* Write pilot masks */
1766		ath5k_hw_reg_write(ah, pilot_mask[0], AR5K_PHY_TIMING_7);
1767		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_8,
1768					AR5K_PHY_TIMING_8_PILOT_MASK_2,
1769					pilot_mask[1]);
1770
1771		ath5k_hw_reg_write(ah, pilot_mask[0], AR5K_PHY_TIMING_9);
1772		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_10,
1773					AR5K_PHY_TIMING_10_PILOT_MASK_2,
1774					pilot_mask[1]);
1775
1776		/* Write magnitude masks */
1777		ath5k_hw_reg_write(ah, mag_mask[0], AR5K_PHY_BIN_MASK_1);
1778		ath5k_hw_reg_write(ah, mag_mask[1], AR5K_PHY_BIN_MASK_2);
1779		ath5k_hw_reg_write(ah, mag_mask[2], AR5K_PHY_BIN_MASK_3);
1780		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
1781					AR5K_PHY_BIN_MASK_CTL_MASK_4,
1782					mag_mask[3]);
1783
1784		ath5k_hw_reg_write(ah, mag_mask[0], AR5K_PHY_BIN_MASK2_1);
1785		ath5k_hw_reg_write(ah, mag_mask[1], AR5K_PHY_BIN_MASK2_2);
1786		ath5k_hw_reg_write(ah, mag_mask[2], AR5K_PHY_BIN_MASK2_3);
1787		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK2_4,
1788					AR5K_PHY_BIN_MASK2_4_MASK_4,
1789					mag_mask[3]);
1790
1791	} else if (ath5k_hw_reg_read(ah, AR5K_PHY_IQ) &
1792	AR5K_PHY_IQ_SPUR_FILT_EN) {
1793		/* Clean up spur mitigation settings and disable fliter */
1794		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
1795					AR5K_PHY_BIN_MASK_CTL_RATE, 0);
1796		AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_IQ,
1797					AR5K_PHY_IQ_PILOT_MASK_EN |
1798					AR5K_PHY_IQ_CHAN_MASK_EN |
1799					AR5K_PHY_IQ_SPUR_FILT_EN);
1800		ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_11);
1801
1802		/* Clear pilot masks */
1803		ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_7);
1804		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_8,
1805					AR5K_PHY_TIMING_8_PILOT_MASK_2,
1806					0);
1807
1808		ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_9);
1809		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_10,
1810					AR5K_PHY_TIMING_10_PILOT_MASK_2,
1811					0);
1812
1813		/* Clear magnitude masks */
1814		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_1);
1815		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_2);
1816		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_3);
1817		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
1818					AR5K_PHY_BIN_MASK_CTL_MASK_4,
1819					0);
1820
1821		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_1);
1822		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_2);
1823		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_3);
1824		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK2_4,
1825					AR5K_PHY_BIN_MASK2_4_MASK_4,
1826					0);
1827	}
1828}
1829
1830
1831/*****************\
1832* Antenna control *
1833\*****************/
1834
1835static void /*TODO:Boundary check*/
1836ath5k_hw_set_def_antenna(struct ath5k_hw *ah, u8 ant)
1837{
1838	if (ah->ah_version != AR5K_AR5210)
1839		ath5k_hw_reg_write(ah, ant & 0x7, AR5K_DEFAULT_ANTENNA);
1840}
1841
1842/*
1843 * Enable/disable fast rx antenna diversity
1844 */
1845static void
1846ath5k_hw_set_fast_div(struct ath5k_hw *ah, u8 ee_mode, bool enable)
1847{
1848	switch (ee_mode) {
1849	case AR5K_EEPROM_MODE_11G:
1850		/* XXX: This is set to
1851		 * disabled on initvals !!! */
1852	case AR5K_EEPROM_MODE_11A:
1853		if (enable)
1854			AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGCCTL,
1855					AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
1856		else
1857			AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
1858					AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
1859		break;
1860	case AR5K_EEPROM_MODE_11B:
1861		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
1862					AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
1863		break;
1864	default:
1865		return;
1866	}
1867
1868	if (enable) {
1869		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RESTART,
1870				AR5K_PHY_RESTART_DIV_GC, 4);
1871
1872		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_FAST_ANT_DIV,
1873					AR5K_PHY_FAST_ANT_DIV_EN);
1874	} else {
1875		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RESTART,
1876				AR5K_PHY_RESTART_DIV_GC, 0);
1877
1878		AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_FAST_ANT_DIV,
1879					AR5K_PHY_FAST_ANT_DIV_EN);
1880	}
1881}
1882
1883void
1884ath5k_hw_set_antenna_switch(struct ath5k_hw *ah, u8 ee_mode)
1885{
1886	u8 ant0, ant1;
1887
1888	/*
1889	 * In case a fixed antenna was set as default
1890	 * use the same switch table twice.
1891	 */
1892	if (ah->ah_ant_mode == AR5K_ANTMODE_FIXED_A)
1893		ant0 = ant1 = AR5K_ANT_SWTABLE_A;
1894	else if (ah->ah_ant_mode == AR5K_ANTMODE_FIXED_B)
1895		ant0 = ant1 = AR5K_ANT_SWTABLE_B;
1896	else {
1897		ant0 = AR5K_ANT_SWTABLE_A;
1898		ant1 = AR5K_ANT_SWTABLE_B;
1899	}
1900
1901	/* Set antenna idle switch table */
1902	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_ANT_CTL,
1903			AR5K_PHY_ANT_CTL_SWTABLE_IDLE,
1904			(ah->ah_ant_ctl[ee_mode][AR5K_ANT_CTL] |
1905			AR5K_PHY_ANT_CTL_TXRX_EN));
1906
1907	/* Set antenna switch tables */
1908	ath5k_hw_reg_write(ah, ah->ah_ant_ctl[ee_mode][ant0],
1909		AR5K_PHY_ANT_SWITCH_TABLE_0);
1910	ath5k_hw_reg_write(ah, ah->ah_ant_ctl[ee_mode][ant1],
1911		AR5K_PHY_ANT_SWITCH_TABLE_1);
1912}
1913
1914/*
1915 * Set antenna operating mode
1916 */
1917void
1918ath5k_hw_set_antenna_mode(struct ath5k_hw *ah, u8 ant_mode)
1919{
1920	struct ieee80211_channel *channel = ah->ah_current_channel;
1921	bool use_def_for_tx, update_def_on_tx, use_def_for_rts, fast_div;
1922	bool use_def_for_sg;
1923	u8 def_ant, tx_ant, ee_mode;
1924	u32 sta_id1 = 0;
1925
1926	/* if channel is not initialized yet we can't set the antennas
1927	 * so just store the mode. it will be set on the next reset */
1928	if (channel == NULL) {
1929		ah->ah_ant_mode = ant_mode;
1930		return;
1931	}
1932
1933	def_ant = ah->ah_def_ant;
1934
1935	switch (channel->hw_value & CHANNEL_MODES) {
1936	case CHANNEL_A:
1937	case CHANNEL_T:
1938	case CHANNEL_XR:
1939		ee_mode = AR5K_EEPROM_MODE_11A;
1940		break;
1941	case CHANNEL_G:
1942	case CHANNEL_TG:
1943		ee_mode = AR5K_EEPROM_MODE_11G;
1944		break;
1945	case CHANNEL_B:
1946		ee_mode = AR5K_EEPROM_MODE_11B;
1947		break;
1948	default:
1949		ATH5K_ERR(ah->ah_sc,
1950			"invalid channel: %d\n", channel->center_freq);
1951		return;
1952	}
1953
1954	switch (ant_mode) {
1955	case AR5K_ANTMODE_DEFAULT:
1956		tx_ant = 0;
1957		use_def_for_tx = false;
1958		update_def_on_tx = false;
1959		use_def_for_rts = false;
1960		use_def_for_sg = false;
1961		fast_div = true;
1962		break;
1963	case AR5K_ANTMODE_FIXED_A:
1964		def_ant = 1;
1965		tx_ant = 1;
1966		use_def_for_tx = true;
1967		update_def_on_tx = false;
1968		use_def_for_rts = true;
1969		use_def_for_sg = true;
1970		fast_div = false;
1971		break;
1972	case AR5K_ANTMODE_FIXED_B:
1973		def_ant = 2;
1974		tx_ant = 2;
1975		use_def_for_tx = true;
1976		update_def_on_tx = false;
1977		use_def_for_rts = true;
1978		use_def_for_sg = true;
1979		fast_div = false;
1980		break;
1981	case AR5K_ANTMODE_SINGLE_AP:
1982		def_ant = 1;	/* updated on tx */
1983		tx_ant = 0;
1984		use_def_for_tx = true;
1985		update_def_on_tx = true;
1986		use_def_for_rts = true;
1987		use_def_for_sg = true;
1988		fast_div = true;
1989		break;
1990	case AR5K_ANTMODE_SECTOR_AP:
1991		tx_ant = 1;	/* variable */
1992		use_def_for_tx = false;
1993		update_def_on_tx = false;
1994		use_def_for_rts = true;
1995		use_def_for_sg = false;
1996		fast_div = false;
1997		break;
1998	case AR5K_ANTMODE_SECTOR_STA:
1999		tx_ant = 1;	/* variable */
2000		use_def_for_tx = true;
2001		update_def_on_tx = false;
2002		use_def_for_rts = true;
2003		use_def_for_sg = false;
2004		fast_div = true;
2005		break;
2006	case AR5K_ANTMODE_DEBUG:
2007		def_ant = 1;
2008		tx_ant = 2;
2009		use_def_for_tx = false;
2010		update_def_on_tx = false;
2011		use_def_for_rts = false;
2012		use_def_for_sg = false;
2013		fast_div = false;
2014		break;
2015	default:
2016		return;
2017	}
2018
2019	ah->ah_tx_ant = tx_ant;
2020	ah->ah_ant_mode = ant_mode;
2021	ah->ah_def_ant = def_ant;
2022
2023	sta_id1 |= use_def_for_tx ? AR5K_STA_ID1_DEFAULT_ANTENNA : 0;
2024	sta_id1 |= update_def_on_tx ? AR5K_STA_ID1_DESC_ANTENNA : 0;
2025	sta_id1 |= use_def_for_rts ? AR5K_STA_ID1_RTS_DEF_ANTENNA : 0;
2026	sta_id1 |= use_def_for_sg ? AR5K_STA_ID1_SELFGEN_DEF_ANT : 0;
2027
2028	AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1, AR5K_STA_ID1_ANTENNA_SETTINGS);
2029
2030	if (sta_id1)
2031		AR5K_REG_ENABLE_BITS(ah, AR5K_STA_ID1, sta_id1);
2032
2033	ath5k_hw_set_antenna_switch(ah, ee_mode);
2034	/* Note: set diversity before default antenna
2035	 * because it won't work correctly */
2036	ath5k_hw_set_fast_div(ah, ee_mode, fast_div);
2037	ath5k_hw_set_def_antenna(ah, def_ant);
2038}
2039
2040
2041/****************\
2042* TX power setup *
2043\****************/
2044
2045/*
2046 * Helper functions
2047 */
2048
2049/*
2050 * Do linear interpolation between two given (x, y) points
2051 */
2052static s16
2053ath5k_get_interpolated_value(s16 target, s16 x_left, s16 x_right,
2054					s16 y_left, s16 y_right)
2055{
2056	s16 ratio, result;
2057
2058	/* Avoid divide by zero and skip interpolation
2059	 * if we have the same point */
2060	if ((x_left == x_right) || (y_left == y_right))
2061		return y_left;
2062
2063	/*
2064	 * Since we use ints and not fps, we need to scale up in
2065	 * order to get a sane ratio value (or else we 'll eg. get
2066	 * always 1 instead of 1.25, 1.75 etc). We scale up by 100
2067	 * to have some accuracy both for 0.5 and 0.25 steps.
2068	 */
2069	ratio = ((100 * y_right - 100 * y_left)/(x_right - x_left));
2070
2071	/* Now scale down to be in range */
2072	result = y_left + (ratio * (target - x_left) / 100);
2073
2074	return result;
2075}
2076
2077/*
2078 * Find vertical boundary (min pwr) for the linear PCDAC curve.
2079 *
2080 * Since we have the top of the curve and we draw the line below
2081 * until we reach 1 (1 pcdac step) we need to know which point
2082 * (x value) that is so that we don't go below y axis and have negative
2083 * pcdac values when creating the curve, or fill the table with zeroes.
2084 */
2085static s16
2086ath5k_get_linear_pcdac_min(const u8 *stepL, const u8 *stepR,
2087				const s16 *pwrL, const s16 *pwrR)
2088{
2089	s8 tmp;
2090	s16 min_pwrL, min_pwrR;
2091	s16 pwr_i;
2092
2093	/* Some vendors write the same pcdac value twice !!! */
2094	if (stepL[0] == stepL[1] || stepR[0] == stepR[1])
2095		return max(pwrL[0], pwrR[0]);
2096
2097	if (pwrL[0] == pwrL[1])
2098		min_pwrL = pwrL[0];
2099	else {
2100		pwr_i = pwrL[0];
2101		do {
2102			pwr_i--;
2103			tmp = (s8) ath5k_get_interpolated_value(pwr_i,
2104							pwrL[0], pwrL[1],
2105							stepL[0], stepL[1]);
2106		} while (tmp > 1);
2107
2108		min_pwrL = pwr_i;
2109	}
2110
2111	if (pwrR[0] == pwrR[1])
2112		min_pwrR = pwrR[0];
2113	else {
2114		pwr_i = pwrR[0];
2115		do {
2116			pwr_i--;
2117			tmp = (s8) ath5k_get_interpolated_value(pwr_i,
2118							pwrR[0], pwrR[1],
2119							stepR[0], stepR[1]);
2120		} while (tmp > 1);
2121
2122		min_pwrR = pwr_i;
2123	}
2124
2125	/* Keep the right boundary so that it works for both curves */
2126	return max(min_pwrL, min_pwrR);
2127}
2128
2129/*
2130 * Interpolate (pwr,vpd) points to create a Power to PDADC or a
2131 * Power to PCDAC curve.
2132 *
2133 * Each curve has power on x axis (in 0.5dB units) and PCDAC/PDADC
2134 * steps (offsets) on y axis. Power can go up to 31.5dB and max
2135 * PCDAC/PDADC step for each curve is 64 but we can write more than
2136 * one curves on hw so we can go up to 128 (which is the max step we
2137 * can write on the final table).
2138 *
2139 * We write y values (PCDAC/PDADC steps) on hw.
2140 */
2141static void
2142ath5k_create_power_curve(s16 pmin, s16 pmax,
2143			const s16 *pwr, const u8 *vpd,
2144			u8 num_points,
2145			u8 *vpd_table, u8 type)
2146{
2147	u8 idx[2] = { 0, 1 };
2148	s16 pwr_i = 2*pmin;
2149	int i;
2150
2151	if (num_points < 2)
2152		return;
2153
2154	/* We want the whole line, so adjust boundaries
2155	 * to cover the entire power range. Note that
2156	 * power values are already 0.25dB so no need
2157	 * to multiply pwr_i by 2 */
2158	if (type == AR5K_PWRTABLE_LINEAR_PCDAC) {
2159		pwr_i = pmin;
2160		pmin = 0;
2161		pmax = 63;
2162	}
2163
2164	/* Find surrounding turning points (TPs)
2165	 * and interpolate between them */
2166	for (i = 0; (i <= (u16) (pmax - pmin)) &&
2167	(i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) {
2168
2169		/* We passed the right TP, move to the next set of TPs
2170		 * if we pass the last TP, extrapolate above using the last
2171		 * two TPs for ratio */
2172		if ((pwr_i > pwr[idx[1]]) && (idx[1] < num_points - 1)) {
2173			idx[0]++;
2174			idx[1]++;
2175		}
2176
2177		vpd_table[i] = (u8) ath5k_get_interpolated_value(pwr_i,
2178						pwr[idx[0]], pwr[idx[1]],
2179						vpd[idx[0]], vpd[idx[1]]);
2180
2181		/* Increase by 0.5dB
2182		 * (0.25 dB units) */
2183		pwr_i += 2;
2184	}
2185}
2186
2187/*
2188 * Get the surrounding per-channel power calibration piers
2189 * for a given frequency so that we can interpolate between
2190 * them and come up with an apropriate dataset for our current
2191 * channel.
2192 */
2193static void
2194ath5k_get_chan_pcal_surrounding_piers(struct ath5k_hw *ah,
2195			struct ieee80211_channel *channel,
2196			struct ath5k_chan_pcal_info **pcinfo_l,
2197			struct ath5k_chan_pcal_info **pcinfo_r)
2198{
2199	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2200	struct ath5k_chan_pcal_info *pcinfo;
2201	u8 idx_l, idx_r;
2202	u8 mode, max, i;
2203	u32 target = channel->center_freq;
2204
2205	idx_l = 0;
2206	idx_r = 0;
2207
2208	if (!(channel->hw_value & CHANNEL_OFDM)) {
2209		pcinfo = ee->ee_pwr_cal_b;
2210		mode = AR5K_EEPROM_MODE_11B;
2211	} else if (channel->hw_value & CHANNEL_2GHZ) {
2212		pcinfo = ee->ee_pwr_cal_g;
2213		mode = AR5K_EEPROM_MODE_11G;
2214	} else {
2215		pcinfo = ee->ee_pwr_cal_a;
2216		mode = AR5K_EEPROM_MODE_11A;
2217	}
2218	max = ee->ee_n_piers[mode] - 1;
2219
2220	/* Frequency is below our calibrated
2221	 * range. Use the lowest power curve
2222	 * we have */
2223	if (target < pcinfo[0].freq) {
2224		idx_l = idx_r = 0;
2225		goto done;
2226	}
2227
2228	/* Frequency is above our calibrated
2229	 * range. Use the highest power curve
2230	 * we have */
2231	if (target > pcinfo[max].freq) {
2232		idx_l = idx_r = max;
2233		goto done;
2234	}
2235
2236	/* Frequency is inside our calibrated
2237	 * channel range. Pick the surrounding
2238	 * calibration piers so that we can
2239	 * interpolate */
2240	for (i = 0; i <= max; i++) {
2241
2242		/* Frequency matches one of our calibration
2243		 * piers, no need to interpolate, just use
2244		 * that calibration pier */
2245		if (pcinfo[i].freq == target) {
2246			idx_l = idx_r = i;
2247			goto done;
2248		}
2249
2250		/* We found a calibration pier that's above
2251		 * frequency, use this pier and the previous
2252		 * one to interpolate */
2253		if (target < pcinfo[i].freq) {
2254			idx_r = i;
2255			idx_l = idx_r - 1;
2256			goto done;
2257		}
2258	}
2259
2260done:
2261	*pcinfo_l = &pcinfo[idx_l];
2262	*pcinfo_r = &pcinfo[idx_r];
2263}
2264
2265/*
2266 * Get the surrounding per-rate power calibration data
2267 * for a given frequency and interpolate between power
2268 * values to set max target power supported by hw for
2269 * each rate.
2270 */
2271static void
2272ath5k_get_rate_pcal_data(struct ath5k_hw *ah,
2273			struct ieee80211_channel *channel,
2274			struct ath5k_rate_pcal_info *rates)
2275{
2276	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2277	struct ath5k_rate_pcal_info *rpinfo;
2278	u8 idx_l, idx_r;
2279	u8 mode, max, i;
2280	u32 target = channel->center_freq;
2281
2282	idx_l = 0;
2283	idx_r = 0;
2284
2285	if (!(channel->hw_value & CHANNEL_OFDM)) {
2286		rpinfo = ee->ee_rate_tpwr_b;
2287		mode = AR5K_EEPROM_MODE_11B;
2288	} else if (channel->hw_value & CHANNEL_2GHZ) {
2289		rpinfo = ee->ee_rate_tpwr_g;
2290		mode = AR5K_EEPROM_MODE_11G;
2291	} else {
2292		rpinfo = ee->ee_rate_tpwr_a;
2293		mode = AR5K_EEPROM_MODE_11A;
2294	}
2295	max = ee->ee_rate_target_pwr_num[mode] - 1;
2296
2297	/* Get the surrounding calibration
2298	 * piers - same as above */
2299	if (target < rpinfo[0].freq) {
2300		idx_l = idx_r = 0;
2301		goto done;
2302	}
2303
2304	if (target > rpinfo[max].freq) {
2305		idx_l = idx_r = max;
2306		goto done;
2307	}
2308
2309	for (i = 0; i <= max; i++) {
2310
2311		if (rpinfo[i].freq == target) {
2312			idx_l = idx_r = i;
2313			goto done;
2314		}
2315
2316		if (target < rpinfo[i].freq) {
2317			idx_r = i;
2318			idx_l = idx_r - 1;
2319			goto done;
2320		}
2321	}
2322
2323done:
2324	/* Now interpolate power value, based on the frequency */
2325	rates->freq = target;
2326
2327	rates->target_power_6to24 =
2328		ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2329					rpinfo[idx_r].freq,
2330					rpinfo[idx_l].target_power_6to24,
2331					rpinfo[idx_r].target_power_6to24);
2332
2333	rates->target_power_36 =
2334		ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2335					rpinfo[idx_r].freq,
2336					rpinfo[idx_l].target_power_36,
2337					rpinfo[idx_r].target_power_36);
2338
2339	rates->target_power_48 =
2340		ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2341					rpinfo[idx_r].freq,
2342					rpinfo[idx_l].target_power_48,
2343					rpinfo[idx_r].target_power_48);
2344
2345	rates->target_power_54 =
2346		ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2347					rpinfo[idx_r].freq,
2348					rpinfo[idx_l].target_power_54,
2349					rpinfo[idx_r].target_power_54);
2350}
2351
2352/*
2353 * Get the max edge power for this channel if
2354 * we have such data from EEPROM's Conformance Test
2355 * Limits (CTL), and limit max power if needed.
2356 */
2357static void
2358ath5k_get_max_ctl_power(struct ath5k_hw *ah,
2359			struct ieee80211_channel *channel)
2360{
2361	struct ath_regulatory *regulatory = ath5k_hw_regulatory(ah);
2362	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2363	struct ath5k_edge_power *rep = ee->ee_ctl_pwr;
2364	u8 *ctl_val = ee->ee_ctl;
2365	s16 max_chan_pwr = ah->ah_txpower.txp_max_pwr / 4;
2366	s16 edge_pwr = 0;
2367	u8 rep_idx;
2368	u8 i, ctl_mode;
2369	u8 ctl_idx = 0xFF;
2370	u32 target = channel->center_freq;
2371
2372	ctl_mode = ath_regd_get_band_ctl(regulatory, channel->band);
2373
2374	switch (channel->hw_value & CHANNEL_MODES) {
2375	case CHANNEL_A:
2376		ctl_mode |= AR5K_CTL_11A;
2377		break;
2378	case CHANNEL_G:
2379		ctl_mode |= AR5K_CTL_11G;
2380		break;
2381	case CHANNEL_B:
2382		ctl_mode |= AR5K_CTL_11B;
2383		break;
2384	case CHANNEL_T:
2385		ctl_mode |= AR5K_CTL_TURBO;
2386		break;
2387	case CHANNEL_TG:
2388		ctl_mode |= AR5K_CTL_TURBOG;
2389		break;
2390	case CHANNEL_XR:
2391		/* Fall through */
2392	default:
2393		return;
2394	}
2395
2396	for (i = 0; i < ee->ee_ctls; i++) {
2397		if (ctl_val[i] == ctl_mode) {
2398			ctl_idx = i;
2399			break;
2400		}
2401	}
2402
2403	/* If we have a CTL dataset available grab it and find the
2404	 * edge power for our frequency */
2405	if (ctl_idx == 0xFF)
2406		return;
2407
2408	/* Edge powers are sorted by frequency from lower
2409	 * to higher. Each CTL corresponds to 8 edge power
2410	 * measurements. */
2411	rep_idx = ctl_idx * AR5K_EEPROM_N_EDGES;
2412
2413	/* Don't do boundaries check because we
2414	 * might have more that one bands defined
2415	 * for this mode */
2416
2417	/* Get the edge power that's closer to our
2418	 * frequency */
2419	for (i = 0; i < AR5K_EEPROM_N_EDGES; i++) {
2420		rep_idx += i;
2421		if (target <= rep[rep_idx].freq)
2422			edge_pwr = (s16) rep[rep_idx].edge;
2423	}
2424
2425	if (edge_pwr)
2426		ah->ah_txpower.txp_max_pwr = 4*min(edge_pwr, max_chan_pwr);
2427}
2428
2429
2430/*
2431 * Power to PCDAC table functions
2432 */
2433
2434/*
2435 * Fill Power to PCDAC table on RF5111
2436 *
2437 * No further processing is needed for RF5111, the only thing we have to
2438 * do is fill the values below and above calibration range since eeprom data
2439 * may not cover the entire PCDAC table.
2440 */
2441static void
2442ath5k_fill_pwr_to_pcdac_table(struct ath5k_hw *ah, s16* table_min,
2443							s16 *table_max)
2444{
2445	u8 	*pcdac_out = ah->ah_txpower.txp_pd_table;
2446	u8	*pcdac_tmp = ah->ah_txpower.tmpL[0];
2447	u8	pcdac_0, pcdac_n, pcdac_i, pwr_idx, i;
2448	s16	min_pwr, max_pwr;
2449
2450	/* Get table boundaries */
2451	min_pwr = table_min[0];
2452	pcdac_0 = pcdac_tmp[0];
2453
2454	max_pwr = table_max[0];
2455	pcdac_n = pcdac_tmp[table_max[0] - table_min[0]];
2456
2457	/* Extrapolate below minimum using pcdac_0 */
2458	pcdac_i = 0;
2459	for (i = 0; i < min_pwr; i++)
2460		pcdac_out[pcdac_i++] = pcdac_0;
2461
2462	/* Copy values from pcdac_tmp */
2463	pwr_idx = min_pwr;
2464	for (i = 0 ; pwr_idx <= max_pwr &&
2465	pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE; i++) {
2466		pcdac_out[pcdac_i++] = pcdac_tmp[i];
2467		pwr_idx++;
2468	}
2469
2470	/* Extrapolate above maximum */
2471	while (pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE)
2472		pcdac_out[pcdac_i++] = pcdac_n;
2473
2474}
2475
2476/*
2477 * Combine available XPD Curves and fill Linear Power to PCDAC table
2478 * on RF5112
2479 *
2480 * RFX112 can have up to 2 curves (one for low txpower range and one for
2481 * higher txpower range). We need to put them both on pcdac_out and place
2482 * them in the correct location. In case we only have one curve available
2483 * just fit it on pcdac_out (it's supposed to cover the entire range of
2484 * available pwr levels since it's always the higher power curve). Extrapolate
2485 * below and above final table if needed.
2486 */
2487static void
2488ath5k_combine_linear_pcdac_curves(struct ath5k_hw *ah, s16* table_min,
2489						s16 *table_max, u8 pdcurves)
2490{
2491	u8 	*pcdac_out = ah->ah_txpower.txp_pd_table;
2492	u8	*pcdac_low_pwr;
2493	u8	*pcdac_high_pwr;
2494	u8	*pcdac_tmp;
2495	u8	pwr;
2496	s16	max_pwr_idx;
2497	s16	min_pwr_idx;
2498	s16	mid_pwr_idx = 0;
2499	/* Edge flag turs on the 7nth bit on the PCDAC
2500	 * to delcare the higher power curve (force values
2501	 * to be greater than 64). If we only have one curve
2502	 * we don't need to set this, if we have 2 curves and
2503	 * fill the table backwards this can also be used to
2504	 * switch from higher power curve to lower power curve */
2505	u8	edge_flag;
2506	int	i;
2507
2508	/* When we have only one curve available
2509	 * that's the higher power curve. If we have
2510	 * two curves the first is the high power curve
2511	 * and the next is the low power curve. */
2512	if (pdcurves > 1) {
2513		pcdac_low_pwr = ah->ah_txpower.tmpL[1];
2514		pcdac_high_pwr = ah->ah_txpower.tmpL[0];
2515		mid_pwr_idx = table_max[1] - table_min[1] - 1;
2516		max_pwr_idx = (table_max[0] - table_min[0]) / 2;
2517
2518		/* If table size goes beyond 31.5dB, keep the
2519		 * upper 31.5dB range when setting tx power.
2520		 * Note: 126 = 31.5 dB in quarter dB steps */
2521		if (table_max[0] - table_min[1] > 126)
2522			min_pwr_idx = table_max[0] - 126;
2523		else
2524			min_pwr_idx = table_min[1];
2525
2526		/* Since we fill table backwards
2527		 * start from high power curve */
2528		pcdac_tmp = pcdac_high_pwr;
2529
2530		edge_flag = 0x40;
2531	} else {
2532		pcdac_low_pwr = ah->ah_txpower.tmpL[1]; /* Zeroed */
2533		pcdac_high_pwr = ah->ah_txpower.tmpL[0];
2534		min_pwr_idx = table_min[0];
2535		max_pwr_idx = (table_max[0] - table_min[0]) / 2;
2536		pcdac_tmp = pcdac_high_pwr;
2537		edge_flag = 0;
2538	}
2539
2540	/* This is used when setting tx power*/
2541	ah->ah_txpower.txp_min_idx = min_pwr_idx/2;
2542
2543	/* Fill Power to PCDAC table backwards */
2544	pwr = max_pwr_idx;
2545	for (i = 63; i >= 0; i--) {
2546		/* Entering lower power range, reset
2547		 * edge flag and set pcdac_tmp to lower
2548		 * power curve.*/
2549		if (edge_flag == 0x40 &&
2550		(2*pwr <= (table_max[1] - table_min[0]) || pwr == 0)) {
2551			edge_flag = 0x00;
2552			pcdac_tmp = pcdac_low_pwr;
2553			pwr = mid_pwr_idx/2;
2554		}
2555
2556		/* Don't go below 1, extrapolate below if we have
2557		 * already swithced to the lower power curve -or
2558		 * we only have one curve and edge_flag is zero
2559		 * anyway */
2560		if (pcdac_tmp[pwr] < 1 && (edge_flag == 0x00)) {
2561			while (i >= 0) {
2562				pcdac_out[i] = pcdac_out[i + 1];
2563				i--;
2564			}
2565			break;
2566		}
2567
2568		pcdac_out[i] = pcdac_tmp[pwr] | edge_flag;
2569
2570		/* Extrapolate above if pcdac is greater than
2571		 * 126 -this can happen because we OR pcdac_out
2572		 * value with edge_flag on high power curve */
2573		if (pcdac_out[i] > 126)
2574			pcdac_out[i] = 126;
2575
2576		/* Decrease by a 0.5dB step */
2577		pwr--;
2578	}
2579}
2580
2581/* Write PCDAC values on hw */
2582static void
2583ath5k_setup_pcdac_table(struct ath5k_hw *ah)
2584{
2585	u8 	*pcdac_out = ah->ah_txpower.txp_pd_table;
2586	int	i;
2587
2588	/*
2589	 * Write TX power values
2590	 */
2591	for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) {
2592		ath5k_hw_reg_write(ah,
2593			(((pcdac_out[2*i + 0] << 8 | 0xff) & 0xffff) << 0) |
2594			(((pcdac_out[2*i + 1] << 8 | 0xff) & 0xffff) << 16),
2595			AR5K_PHY_PCDAC_TXPOWER(i));
2596	}
2597}
2598
2599
2600/*
2601 * Power to PDADC table functions
2602 */
2603
2604/*
2605 * Set the gain boundaries and create final Power to PDADC table
2606 *
2607 * We can have up to 4 pd curves, we need to do a simmilar process
2608 * as we do for RF5112. This time we don't have an edge_flag but we
2609 * set the gain boundaries on a separate register.
2610 */
2611static void
2612ath5k_combine_pwr_to_pdadc_curves(struct ath5k_hw *ah,
2613			s16 *pwr_min, s16 *pwr_max, u8 pdcurves)
2614{
2615	u8 gain_boundaries[AR5K_EEPROM_N_PD_GAINS];
2616	u8 *pdadc_out = ah->ah_txpower.txp_pd_table;
2617	u8 *pdadc_tmp;
2618	s16 pdadc_0;
2619	u8 pdadc_i, pdadc_n, pwr_step, pdg, max_idx, table_size;
2620	u8 pd_gain_overlap;
2621
2622	/* Note: Register value is initialized on initvals
2623	 * there is no feedback from hw.
2624	 * XXX: What about pd_gain_overlap from EEPROM ? */
2625	pd_gain_overlap = (u8) ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG5) &
2626		AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP;
2627
2628	/* Create final PDADC table */
2629	for (pdg = 0, pdadc_i = 0; pdg < pdcurves; pdg++) {
2630		pdadc_tmp = ah->ah_txpower.tmpL[pdg];
2631
2632		if (pdg == pdcurves - 1)
2633			/* 2 dB boundary stretch for last
2634			 * (higher power) curve */
2635			gain_boundaries[pdg] = pwr_max[pdg] + 4;
2636		else
2637			/* Set gain boundary in the middle
2638			 * between this curve and the next one */
2639			gain_boundaries[pdg] =
2640				(pwr_max[pdg] + pwr_min[pdg + 1]) / 2;
2641
2642		/* Sanity check in case our 2 db stretch got out of
2643		 * range. */
2644		if (gain_boundaries[pdg] > AR5K_TUNE_MAX_TXPOWER)
2645			gain_boundaries[pdg] = AR5K_TUNE_MAX_TXPOWER;
2646
2647		/* For the first curve (lower power)
2648		 * start from 0 dB */
2649		if (pdg == 0)
2650			pdadc_0 = 0;
2651		else
2652			/* For the other curves use the gain overlap */
2653			pdadc_0 = (gain_boundaries[pdg - 1] - pwr_min[pdg]) -
2654							pd_gain_overlap;
2655
2656		/* Force each power step to be at least 0.5 dB */
2657		if ((pdadc_tmp[1] - pdadc_tmp[0]) > 1)
2658			pwr_step = pdadc_tmp[1] - pdadc_tmp[0];
2659		else
2660			pwr_step = 1;
2661
2662		/* If pdadc_0 is negative, we need to extrapolate
2663		 * below this pdgain by a number of pwr_steps */
2664		while ((pdadc_0 < 0) && (pdadc_i < 128)) {
2665			s16 tmp = pdadc_tmp[0] + pdadc_0 * pwr_step;
2666			pdadc_out[pdadc_i++] = (tmp < 0) ? 0 : (u8) tmp;
2667			pdadc_0++;
2668		}
2669
2670		/* Set last pwr level, using gain boundaries */
2671		pdadc_n = gain_boundaries[pdg] + pd_gain_overlap - pwr_min[pdg];
2672		/* Limit it to be inside pwr range */
2673		table_size = pwr_max[pdg] - pwr_min[pdg];
2674		max_idx = (pdadc_n < table_size) ? pdadc_n : table_size;
2675
2676		/* Fill pdadc_out table */
2677		while (pdadc_0 < max_idx && pdadc_i < 128)
2678			pdadc_out[pdadc_i++] = pdadc_tmp[pdadc_0++];
2679
2680		/* Need to extrapolate above this pdgain? */
2681		if (pdadc_n <= max_idx)
2682			continue;
2683
2684		/* Force each power step to be at least 0.5 dB */
2685		if ((pdadc_tmp[table_size - 1] - pdadc_tmp[table_size - 2]) > 1)
2686			pwr_step = pdadc_tmp[table_size - 1] -
2687						pdadc_tmp[table_size - 2];
2688		else
2689			pwr_step = 1;
2690
2691		/* Extrapolate above */
2692		while ((pdadc_0 < (s16) pdadc_n) &&
2693		(pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2)) {
2694			s16 tmp = pdadc_tmp[table_size - 1] +
2695					(pdadc_0 - max_idx) * pwr_step;
2696			pdadc_out[pdadc_i++] = (tmp > 127) ? 127 : (u8) tmp;
2697			pdadc_0++;
2698		}
2699	}
2700
2701	while (pdg < AR5K_EEPROM_N_PD_GAINS) {
2702		gain_boundaries[pdg] = gain_boundaries[pdg - 1];
2703		pdg++;
2704	}
2705
2706	while (pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2) {
2707		pdadc_out[pdadc_i] = pdadc_out[pdadc_i - 1];
2708		pdadc_i++;
2709	}
2710
2711	/* Set gain boundaries */
2712	ath5k_hw_reg_write(ah,
2713		AR5K_REG_SM(pd_gain_overlap,
2714			AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP) |
2715		AR5K_REG_SM(gain_boundaries[0],
2716			AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_1) |
2717		AR5K_REG_SM(gain_boundaries[1],
2718			AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_2) |
2719		AR5K_REG_SM(gain_boundaries[2],
2720			AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_3) |
2721		AR5K_REG_SM(gain_boundaries[3],
2722			AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_4),
2723		AR5K_PHY_TPC_RG5);
2724
2725	/* Used for setting rate power table */
2726	ah->ah_txpower.txp_min_idx = pwr_min[0];
2727
2728}
2729
2730/* Write PDADC values on hw */
2731static void
2732ath5k_setup_pwr_to_pdadc_table(struct ath5k_hw *ah,
2733			u8 pdcurves, u8 *pdg_to_idx)
2734{
2735	u8 *pdadc_out = ah->ah_txpower.txp_pd_table;
2736	u32 reg;
2737	u8 i;
2738
2739	/* Select the right pdgain curves */
2740
2741	/* Clear current settings */
2742	reg = ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG1);
2743	reg &= ~(AR5K_PHY_TPC_RG1_PDGAIN_1 |
2744		AR5K_PHY_TPC_RG1_PDGAIN_2 |
2745		AR5K_PHY_TPC_RG1_PDGAIN_3 |
2746		AR5K_PHY_TPC_RG1_NUM_PD_GAIN);
2747
2748	/*
2749	 * Use pd_gains curve from eeprom
2750	 *
2751	 * This overrides the default setting from initvals
2752	 * in case some vendors (e.g. Zcomax) don't use the default
2753	 * curves. If we don't honor their settings we 'll get a
2754	 * 5dB (1 * gain overlap ?) drop.
2755	 */
2756	reg |= AR5K_REG_SM(pdcurves, AR5K_PHY_TPC_RG1_NUM_PD_GAIN);
2757
2758	switch (pdcurves) {
2759	case 3:
2760		reg |= AR5K_REG_SM(pdg_to_idx[2], AR5K_PHY_TPC_RG1_PDGAIN_3);
2761		/* Fall through */
2762	case 2:
2763		reg |= AR5K_REG_SM(pdg_to_idx[1], AR5K_PHY_TPC_RG1_PDGAIN_2);
2764		/* Fall through */
2765	case 1:
2766		reg |= AR5K_REG_SM(pdg_to_idx[0], AR5K_PHY_TPC_RG1_PDGAIN_1);
2767		break;
2768	}
2769	ath5k_hw_reg_write(ah, reg, AR5K_PHY_TPC_RG1);
2770
2771	/*
2772	 * Write TX power values
2773	 */
2774	for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) {
2775		ath5k_hw_reg_write(ah,
2776			((pdadc_out[4*i + 0] & 0xff) << 0) |
2777			((pdadc_out[4*i + 1] & 0xff) << 8) |
2778			((pdadc_out[4*i + 2] & 0xff) << 16) |
2779			((pdadc_out[4*i + 3] & 0xff) << 24),
2780			AR5K_PHY_PDADC_TXPOWER(i));
2781	}
2782}
2783
2784
2785/*
2786 * Common code for PCDAC/PDADC tables
2787 */
2788
2789/*
2790 * This is the main function that uses all of the above
2791 * to set PCDAC/PDADC table on hw for the current channel.
2792 * This table is used for tx power calibration on the basband,
2793 * without it we get weird tx power levels and in some cases
2794 * distorted spectral mask
2795 */
2796static int
2797ath5k_setup_channel_powertable(struct ath5k_hw *ah,
2798			struct ieee80211_channel *channel,
2799			u8 ee_mode, u8 type)
2800{
2801	struct ath5k_pdgain_info *pdg_L, *pdg_R;
2802	struct ath5k_chan_pcal_info *pcinfo_L;
2803	struct ath5k_chan_pcal_info *pcinfo_R;
2804	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2805	u8 *pdg_curve_to_idx = ee->ee_pdc_to_idx[ee_mode];
2806	s16 table_min[AR5K_EEPROM_N_PD_GAINS];
2807	s16 table_max[AR5K_EEPROM_N_PD_GAINS];
2808	u8 *tmpL;
2809	u8 *tmpR;
2810	u32 target = channel->center_freq;
2811	int pdg, i;
2812
2813	/* Get surounding freq piers for this channel */
2814	ath5k_get_chan_pcal_surrounding_piers(ah, channel,
2815						&pcinfo_L,
2816						&pcinfo_R);
2817
2818	/* Loop over pd gain curves on
2819	 * surounding freq piers by index */
2820	for (pdg = 0; pdg < ee->ee_pd_gains[ee_mode]; pdg++) {
2821
2822		/* Fill curves in reverse order
2823		 * from lower power (max gain)
2824		 * to higher power. Use curve -> idx
2825		 * backmapping we did on eeprom init */
2826		u8 idx = pdg_curve_to_idx[pdg];
2827
2828		/* Grab the needed curves by index */
2829		pdg_L = &pcinfo_L->pd_curves[idx];
2830		pdg_R = &pcinfo_R->pd_curves[idx];
2831
2832		/* Initialize the temp tables */
2833		tmpL = ah->ah_txpower.tmpL[pdg];
2834		tmpR = ah->ah_txpower.tmpR[pdg];
2835
2836		/* Set curve's x boundaries and create
2837		 * curves so that they cover the same
2838		 * range (if we don't do that one table
2839		 * will have values on some range and the
2840		 * other one won't have any so interpolation
2841		 * will fail) */
2842		table_min[pdg] = min(pdg_L->pd_pwr[0],
2843					pdg_R->pd_pwr[0]) / 2;
2844
2845		table_max[pdg] = max(pdg_L->pd_pwr[pdg_L->pd_points - 1],
2846				pdg_R->pd_pwr[pdg_R->pd_points - 1]) / 2;
2847
2848		/* Now create the curves on surrounding channels
2849		 * and interpolate if needed to get the final
2850		 * curve for this gain on this channel */
2851		switch (type) {
2852		case AR5K_PWRTABLE_LINEAR_PCDAC:
2853			/* Override min/max so that we don't loose
2854			 * accuracy (don't divide by 2) */
2855			table_min[pdg] = min(pdg_L->pd_pwr[0],
2856						pdg_R->pd_pwr[0]);
2857
2858			table_max[pdg] =
2859				max(pdg_L->pd_pwr[pdg_L->pd_points - 1],
2860					pdg_R->pd_pwr[pdg_R->pd_points - 1]);
2861
2862			/* Override minimum so that we don't get
2863			 * out of bounds while extrapolating
2864			 * below. Don't do this when we have 2
2865			 * curves and we are on the high power curve
2866			 * because table_min is ok in this case */
2867			if (!(ee->ee_pd_gains[ee_mode] > 1 && pdg == 0)) {
2868
2869				table_min[pdg] =
2870					ath5k_get_linear_pcdac_min(pdg_L->pd_step,
2871								pdg_R->pd_step,
2872								pdg_L->pd_pwr,
2873								pdg_R->pd_pwr);
2874
2875				/* Don't go too low because we will
2876				 * miss the upper part of the curve.
2877				 * Note: 126 = 31.5dB (max power supported)
2878				 * in 0.25dB units */
2879				if (table_max[pdg] - table_min[pdg] > 126)
2880					table_min[pdg] = table_max[pdg] - 126;
2881			}
2882
2883			/* Fall through */
2884		case AR5K_PWRTABLE_PWR_TO_PCDAC:
2885		case AR5K_PWRTABLE_PWR_TO_PDADC:
2886
2887			ath5k_create_power_curve(table_min[pdg],
2888						table_max[pdg],
2889						pdg_L->pd_pwr,
2890						pdg_L->pd_step,
2891						pdg_L->pd_points, tmpL, type);
2892
2893			/* We are in a calibration
2894			 * pier, no need to interpolate
2895			 * between freq piers */
2896			if (pcinfo_L == pcinfo_R)
2897				continue;
2898
2899			ath5k_create_power_curve(table_min[pdg],
2900						table_max[pdg],
2901						pdg_R->pd_pwr,
2902						pdg_R->pd_step,
2903						pdg_R->pd_points, tmpR, type);
2904			break;
2905		default:
2906			return -EINVAL;
2907		}
2908
2909		/* Interpolate between curves
2910		 * of surounding freq piers to
2911		 * get the final curve for this
2912		 * pd gain. Re-use tmpL for interpolation
2913		 * output */
2914		for (i = 0; (i < (u16) (table_max[pdg] - table_min[pdg])) &&
2915		(i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) {
2916			tmpL[i] = (u8) ath5k_get_interpolated_value(target,
2917							(s16) pcinfo_L->freq,
2918							(s16) pcinfo_R->freq,
2919							(s16) tmpL[i],
2920							(s16) tmpR[i]);
2921		}
2922	}
2923
2924	/* Now we have a set of curves for this
2925	 * channel on tmpL (x range is table_max - table_min
2926	 * and y values are tmpL[pdg][]) sorted in the same
2927	 * order as EEPROM (because we've used the backmapping).
2928	 * So for RF5112 it's from higher power to lower power
2929	 * and for RF2413 it's from lower power to higher power.
2930	 * For RF5111 we only have one curve. */
2931
2932	/* Fill min and max power levels for this
2933	 * channel by interpolating the values on
2934	 * surounding channels to complete the dataset */
2935	ah->ah_txpower.txp_min_pwr = ath5k_get_interpolated_value(target,
2936					(s16) pcinfo_L->freq,
2937					(s16) pcinfo_R->freq,
2938					pcinfo_L->min_pwr, pcinfo_R->min_pwr);
2939
2940	ah->ah_txpower.txp_max_pwr = ath5k_get_interpolated_value(target,
2941					(s16) pcinfo_L->freq,
2942					(s16) pcinfo_R->freq,
2943					pcinfo_L->max_pwr, pcinfo_R->max_pwr);
2944
2945	/* We are ready to go, fill PCDAC/PDADC
2946	 * table and write settings on hardware */
2947	switch (type) {
2948	case AR5K_PWRTABLE_LINEAR_PCDAC:
2949		/* For RF5112 we can have one or two curves
2950		 * and each curve covers a certain power lvl
2951		 * range so we need to do some more processing */
2952		ath5k_combine_linear_pcdac_curves(ah, table_min, table_max,
2953						ee->ee_pd_gains[ee_mode]);
2954
2955		/* Set txp.offset so that we can
2956		 * match max power value with max
2957		 * table index */
2958		ah->ah_txpower.txp_offset = 64 - (table_max[0] / 2);
2959
2960		/* Write settings on hw */
2961		ath5k_setup_pcdac_table(ah);
2962		break;
2963	case AR5K_PWRTABLE_PWR_TO_PCDAC:
2964		/* We are done for RF5111 since it has only
2965		 * one curve, just fit the curve on the table */
2966		ath5k_fill_pwr_to_pcdac_table(ah, table_min, table_max);
2967
2968		/* No rate powertable adjustment for RF5111 */
2969		ah->ah_txpower.txp_min_idx = 0;
2970		ah->ah_txpower.txp_offset = 0;
2971
2972		/* Write settings on hw */
2973		ath5k_setup_pcdac_table(ah);
2974		break;
2975	case AR5K_PWRTABLE_PWR_TO_PDADC:
2976		/* Set PDADC boundaries and fill
2977		 * final PDADC table */
2978		ath5k_combine_pwr_to_pdadc_curves(ah, table_min, table_max,
2979						ee->ee_pd_gains[ee_mode]);
2980
2981		/* Write settings on hw */
2982		ath5k_setup_pwr_to_pdadc_table(ah, pdg, pdg_curve_to_idx);
2983
2984		/* Set txp.offset, note that table_min
2985		 * can be negative */
2986		ah->ah_txpower.txp_offset = table_min[0];
2987		break;
2988	default:
2989		return -EINVAL;
2990	}
2991
2992	return 0;
2993}
2994
2995
2996/*
2997 * Per-rate tx power setting
2998 *
2999 * This is the code that sets the desired tx power (below
3000 * maximum) on hw for each rate (we also have TPC that sets
3001 * power per packet). We do that by providing an index on the
3002 * PCDAC/PDADC table we set up.
3003 */
3004
3005/*
3006 * Set rate power table
3007 *
3008 * For now we only limit txpower based on maximum tx power
3009 * supported by hw (what's inside rate_info). We need to limit
3010 * this even more, based on regulatory domain etc.
3011 *
3012 * Rate power table contains indices to PCDAC/PDADC table (0.5dB steps)
3013 * and is indexed as follows:
3014 * rates[0] - rates[7] -> OFDM rates
3015 * rates[8] - rates[14] -> CCK rates
3016 * rates[15] -> XR rates (they all have the same power)
3017 */
3018static void
3019ath5k_setup_rate_powertable(struct ath5k_hw *ah, u16 max_pwr,
3020			struct ath5k_rate_pcal_info *rate_info,
3021			u8 ee_mode)
3022{
3023	unsigned int i;
3024	u16 *rates;
3025
3026	/* max_pwr is power level we got from driver/user in 0.5dB
3027	 * units, switch to 0.25dB units so we can compare */
3028	max_pwr *= 2;
3029	max_pwr = min(max_pwr, (u16) ah->ah_txpower.txp_max_pwr) / 2;
3030
3031	/* apply rate limits */
3032	rates = ah->ah_txpower.txp_rates_power_table;
3033
3034	/* OFDM rates 6 to 24Mb/s */
3035	for (i = 0; i < 5; i++)
3036		rates[i] = min(max_pwr, rate_info->target_power_6to24);
3037
3038	/* Rest OFDM rates */
3039	rates[5] = min(rates[0], rate_info->target_power_36);
3040	rates[6] = min(rates[0], rate_info->target_power_48);
3041	rates[7] = min(rates[0], rate_info->target_power_54);
3042
3043	/* CCK rates */
3044	/* 1L */
3045	rates[8] = min(rates[0], rate_info->target_power_6to24);
3046	/* 2L */
3047	rates[9] = min(rates[0], rate_info->target_power_36);
3048	/* 2S */
3049	rates[10] = min(rates[0], rate_info->target_power_36);
3050	/* 5L */
3051	rates[11] = min(rates[0], rate_info->target_power_48);
3052	/* 5S */
3053	rates[12] = min(rates[0], rate_info->target_power_48);
3054	/* 11L */
3055	rates[13] = min(rates[0], rate_info->target_power_54);
3056	/* 11S */
3057	rates[14] = min(rates[0], rate_info->target_power_54);
3058
3059	/* XR rates */
3060	rates[15] = min(rates[0], rate_info->target_power_6to24);
3061
3062	/* CCK rates have different peak to average ratio
3063	 * so we have to tweak their power so that gainf
3064	 * correction works ok. For this we use OFDM to
3065	 * CCK delta from eeprom */
3066	if ((ee_mode == AR5K_EEPROM_MODE_11G) &&
3067	(ah->ah_phy_revision < AR5K_SREV_PHY_5212A))
3068		for (i = 8; i <= 15; i++)
3069			rates[i] -= ah->ah_txpower.txp_cck_ofdm_gainf_delta;
3070
3071	/* Now that we have all rates setup use table offset to
3072	 * match the power range set by user with the power indices
3073	 * on PCDAC/PDADC table */
3074	for (i = 0; i < 16; i++) {
3075		rates[i] += ah->ah_txpower.txp_offset;
3076		/* Don't get out of bounds */
3077		if (rates[i] > 63)
3078			rates[i] = 63;
3079	}
3080
3081	/* Min/max in 0.25dB units */
3082	ah->ah_txpower.txp_min_pwr = 2 * rates[7];
3083	ah->ah_txpower.txp_max_pwr = 2 * rates[0];
3084	ah->ah_txpower.txp_ofdm = rates[7];
3085}
3086
3087
3088/*
3089 * Set transmission power
3090 */
3091static int
3092ath5k_hw_txpower(struct ath5k_hw *ah, struct ieee80211_channel *channel,
3093		u8 ee_mode, u8 txpower, bool fast)
3094{
3095	struct ath5k_rate_pcal_info rate_info;
3096	u8 type;
3097	int ret;
3098
3099	if (txpower > AR5K_TUNE_MAX_TXPOWER) {
3100		ATH5K_ERR(ah->ah_sc, "invalid tx power: %u\n", txpower);
3101		return -EINVAL;
3102	}
3103
3104	/* Reset TX power values */
3105	memset(&ah->ah_txpower, 0, sizeof(ah->ah_txpower));
3106	ah->ah_txpower.txp_tpc = AR5K_TUNE_TPC_TXPOWER;
3107	ah->ah_txpower.txp_min_pwr = 0;
3108	ah->ah_txpower.txp_max_pwr = AR5K_TUNE_MAX_TXPOWER;
3109
3110	/* Initialize TX power table */
3111	switch (ah->ah_radio) {
3112	case AR5K_RF5110:
3113		/* TODO */
3114		return 0;
3115	case AR5K_RF5111:
3116		type = AR5K_PWRTABLE_PWR_TO_PCDAC;
3117		break;
3118	case AR5K_RF5112:
3119		type = AR5K_PWRTABLE_LINEAR_PCDAC;
3120		break;
3121	case AR5K_RF2413:
3122	case AR5K_RF5413:
3123	case AR5K_RF2316:
3124	case AR5K_RF2317:
3125	case AR5K_RF2425:
3126		type = AR5K_PWRTABLE_PWR_TO_PDADC;
3127		break;
3128	default:
3129		return -EINVAL;
3130	}
3131
3132	/* If fast is set it means we are on the same channel/mode
3133	 * so there is no need to recalculate the powertable, we 'll
3134	 * just use the cached one */
3135	if (!fast) {
3136		ret = ath5k_setup_channel_powertable(ah, channel,
3137							ee_mode, type);
3138			if (ret)
3139				return ret;
3140	}
3141
3142	/* Limit max power if we have a CTL available */
3143	ath5k_get_max_ctl_power(ah, channel);
3144
3145	/* FIXME: Antenna reduction stuff */
3146
3147	/* FIXME: Limit power on turbo modes */
3148
3149	/* FIXME: TPC scale reduction */
3150
3151	/* Get surounding channels for per-rate power table
3152	 * calibration */
3153	ath5k_get_rate_pcal_data(ah, channel, &rate_info);
3154
3155	/* Setup rate power table */
3156	ath5k_setup_rate_powertable(ah, txpower, &rate_info, ee_mode);
3157
3158	/* Write rate power table on hw */
3159	ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(3, 24) |
3160		AR5K_TXPOWER_OFDM(2, 16) | AR5K_TXPOWER_OFDM(1, 8) |
3161		AR5K_TXPOWER_OFDM(0, 0), AR5K_PHY_TXPOWER_RATE1);
3162
3163	ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(7, 24) |
3164		AR5K_TXPOWER_OFDM(6, 16) | AR5K_TXPOWER_OFDM(5, 8) |
3165		AR5K_TXPOWER_OFDM(4, 0), AR5K_PHY_TXPOWER_RATE2);
3166
3167	ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(10, 24) |
3168		AR5K_TXPOWER_CCK(9, 16) | AR5K_TXPOWER_CCK(15, 8) |
3169		AR5K_TXPOWER_CCK(8, 0), AR5K_PHY_TXPOWER_RATE3);
3170
3171	ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(14, 24) |
3172		AR5K_TXPOWER_CCK(13, 16) | AR5K_TXPOWER_CCK(12, 8) |
3173		AR5K_TXPOWER_CCK(11, 0), AR5K_PHY_TXPOWER_RATE4);
3174
3175	/* FIXME: TPC support */
3176	if (ah->ah_txpower.txp_tpc) {
3177		ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX_TPC_ENABLE |
3178			AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX);
3179
3180		ath5k_hw_reg_write(ah,
3181			AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_ACK) |
3182			AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CTS) |
3183			AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CHIRP),
3184			AR5K_TPC);
3185	} else {
3186		ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX |
3187			AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX);
3188	}
3189
3190	return 0;
3191}
3192
3193int ath5k_hw_set_txpower_limit(struct ath5k_hw *ah, u8 txpower)
3194{
3195	/*Just a try M.F.*/
3196	struct ieee80211_channel *channel = ah->ah_current_channel;
3197	u8 ee_mode;
3198
3199	switch (channel->hw_value & CHANNEL_MODES) {
3200	case CHANNEL_A:
3201	case CHANNEL_T:
3202	case CHANNEL_XR:
3203		ee_mode = AR5K_EEPROM_MODE_11A;
3204		break;
3205	case CHANNEL_G:
3206	case CHANNEL_TG:
3207		ee_mode = AR5K_EEPROM_MODE_11G;
3208		break;
3209	case CHANNEL_B:
3210		ee_mode = AR5K_EEPROM_MODE_11B;
3211		break;
3212	default:
3213		ATH5K_ERR(ah->ah_sc,
3214			"invalid channel: %d\n", channel->center_freq);
3215		return -EINVAL;
3216	}
3217
3218	ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_TXPOWER,
3219		"changing txpower to %d\n", txpower);
3220
3221	return ath5k_hw_txpower(ah, channel, ee_mode, txpower, true);
3222}
3223
3224/*************\
3225 Init function
3226\*************/
3227
3228int ath5k_hw_phy_init(struct ath5k_hw *ah, struct ieee80211_channel *channel,
3229				u8 mode, u8 ee_mode, u8 freq, bool fast)
3230{
3231	struct ieee80211_channel *curr_channel;
3232	int ret, i;
3233	u32 phy_tst1;
3234	bool fast_txp;
3235	ret = 0;
3236
3237	/*
3238	 * Sanity check for fast flag
3239	 * Don't try fast channel change when changing modulation
3240	 * mode/band. We check for chip compatibility on
3241	 * ath5k_hw_reset.
3242	 */
3243	curr_channel = ah->ah_current_channel;
3244	if (fast && (channel->hw_value != curr_channel->hw_value))
3245		return -EINVAL;
3246
3247	/*
3248	 * On fast channel change we only set the synth parameters
3249	 * while PHY is running, enable calibration and skip the rest.
3250	 */
3251	if (fast) {
3252		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_RFBUS_REQ,
3253				    AR5K_PHY_RFBUS_REQ_REQUEST);
3254		for (i = 0; i < 100; i++) {
3255			if (ath5k_hw_reg_read(ah, AR5K_PHY_RFBUS_GRANT))
3256				break;
3257			udelay(5);
3258		}
3259		/* Failed */
3260		if (i >= 100)
3261			return -EIO;
3262	}
3263
3264	/*
3265	 * If we don't change channel/mode skip
3266	 * tx powertable calculation and use the
3267	 * cached one.
3268	 */
3269	if ((channel->hw_value == curr_channel->hw_value) &&
3270	(channel->center_freq == curr_channel->center_freq))
3271		fast_txp = true;
3272	else
3273		fast_txp = false;
3274
3275	/*
3276	 * Set TX power
3277	 *
3278	 * Note: We need to do that before we set
3279	 * RF buffer settings on 5211/5212+ so that we
3280	 * properly set curve indices.
3281	 */
3282	ret = ath5k_hw_txpower(ah, channel, ee_mode,
3283				ah->ah_txpower.txp_max_pwr / 2,
3284				fast_txp);
3285	if (ret)
3286		return ret;
3287
3288	/*
3289	 * For 5210 we do all initialization using
3290	 * initvals, so we don't have to modify
3291	 * any settings (5210 also only supports
3292	 * a/aturbo modes)
3293	 */
3294	if ((ah->ah_version != AR5K_AR5210) && !fast) {
3295
3296		/*
3297		 * Write initial RF gain settings
3298		 * This should work for both 5111/5112
3299		 */
3300		ret = ath5k_hw_rfgain_init(ah, freq);
3301		if (ret)
3302			return ret;
3303
3304		mdelay(1);
3305
3306		/*
3307		 * Write RF buffer
3308		 */
3309		ret = ath5k_hw_rfregs_init(ah, channel, mode);
3310		if (ret)
3311			return ret;
3312
3313		/* Write OFDM timings on 5212*/
3314		if (ah->ah_version == AR5K_AR5212 &&
3315			channel->hw_value & CHANNEL_OFDM) {
3316
3317			ret = ath5k_hw_write_ofdm_timings(ah, channel);
3318			if (ret)
3319				return ret;
3320
3321			/* Spur info is available only from EEPROM versions
3322			 * greater than 5.3, but the EEPROM routines will use
3323			 * static values for older versions */
3324			if (ah->ah_mac_srev >= AR5K_SREV_AR5424)
3325				ath5k_hw_set_spur_mitigation_filter(ah,
3326								    channel);
3327		}
3328
3329		/*Enable/disable 802.11b mode on 5111
3330		(enable 2111 frequency converter + CCK)*/
3331		if (ah->ah_radio == AR5K_RF5111) {
3332			if (mode == AR5K_MODE_11B)
3333				AR5K_REG_ENABLE_BITS(ah, AR5K_TXCFG,
3334				    AR5K_TXCFG_B_MODE);
3335			else
3336				AR5K_REG_DISABLE_BITS(ah, AR5K_TXCFG,
3337				    AR5K_TXCFG_B_MODE);
3338		}
3339
3340	} else if (ah->ah_version == AR5K_AR5210) {
3341		mdelay(1);
3342		/* Disable phy and wait */
3343		ath5k_hw_reg_write(ah, AR5K_PHY_ACT_DISABLE, AR5K_PHY_ACT);
3344		mdelay(1);
3345	}
3346
3347	/* Set channel on PHY */
3348	ret = ath5k_hw_channel(ah, channel);
3349	if (ret)
3350		return ret;
3351
3352	/*
3353	 * Enable the PHY and wait until completion
3354	 * This includes BaseBand and Synthesizer
3355	 * activation.
3356	 */
3357	ath5k_hw_reg_write(ah, AR5K_PHY_ACT_ENABLE, AR5K_PHY_ACT);
3358
3359	/*
3360	 * On 5211+ read activation -> rx delay
3361	 * and use it.
3362	 */
3363	if (ah->ah_version != AR5K_AR5210) {
3364		u32 delay;
3365		delay = ath5k_hw_reg_read(ah, AR5K_PHY_RX_DELAY) &
3366			AR5K_PHY_RX_DELAY_M;
3367		delay = (channel->hw_value & CHANNEL_CCK) ?
3368			((delay << 2) / 22) : (delay / 10);
3369		if (ah->ah_bwmode == AR5K_BWMODE_10MHZ)
3370			delay = delay << 1;
3371		if (ah->ah_bwmode == AR5K_BWMODE_5MHZ)
3372			delay = delay << 2;
3373		/* XXX: /2 on turbo ? Let's be safe
3374		 * for now */
3375		udelay(100 + delay);
3376	} else {
3377		mdelay(1);
3378	}
3379
3380	if (fast)
3381		/*
3382		 * Release RF Bus grant
3383		 */
3384		AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_RFBUS_REQ,
3385				    AR5K_PHY_RFBUS_REQ_REQUEST);
3386	else {
3387		/*
3388		 * Perform ADC test to see if baseband is ready
3389		 * Set tx hold and check adc test register
3390		 */
3391		phy_tst1 = ath5k_hw_reg_read(ah, AR5K_PHY_TST1);
3392		ath5k_hw_reg_write(ah, AR5K_PHY_TST1_TXHOLD, AR5K_PHY_TST1);
3393		for (i = 0; i <= 20; i++) {
3394			if (!(ath5k_hw_reg_read(ah, AR5K_PHY_ADC_TEST) & 0x10))
3395				break;
3396			udelay(200);
3397		}
3398		ath5k_hw_reg_write(ah, phy_tst1, AR5K_PHY_TST1);
3399	}
3400
3401	/*
3402	 * Start automatic gain control calibration
3403	 *
3404	 * During AGC calibration RX path is re-routed to
3405	 * a power detector so we don't receive anything.
3406	 *
3407	 * This method is used to calibrate some static offsets
3408	 * used together with on-the fly I/Q calibration (the
3409	 * one performed via ath5k_hw_phy_calibrate), which doesn't
3410	 * interrupt rx path.
3411	 *
3412	 * While rx path is re-routed to the power detector we also
3413	 * start a noise floor calibration to measure the
3414	 * card's noise floor (the noise we measure when we are not
3415	 * transmitting or receiving anything).
3416	 *
3417	 * If we are in a noisy environment, AGC calibration may time
3418	 * out and/or noise floor calibration might timeout.
3419	 */
3420	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
3421				AR5K_PHY_AGCCTL_CAL | AR5K_PHY_AGCCTL_NF);
3422
3423	/* At the same time start I/Q calibration for QAM constellation
3424	 * -no need for CCK- */
3425	ah->ah_calibration = false;
3426	if (!(mode == AR5K_MODE_11B)) {
3427		ah->ah_calibration = true;
3428		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ,
3429				AR5K_PHY_IQ_CAL_NUM_LOG_MAX, 15);
3430		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ,
3431				AR5K_PHY_IQ_RUN);
3432	}
3433
3434	/* Wait for gain calibration to finish (we check for I/Q calibration
3435	 * during ath5k_phy_calibrate) */
3436	if (ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL,
3437			AR5K_PHY_AGCCTL_CAL, 0, false)) {
3438		ATH5K_ERR(ah->ah_sc, "gain calibration timeout (%uMHz)\n",
3439			channel->center_freq);
3440	}
3441
3442	/* Restore antenna mode */
3443	ath5k_hw_set_antenna_mode(ah, ah->ah_ant_mode);
3444
3445	return ret;
3446}
3447