phy.c revision 5a0e3ad6af8660be21ca98a971cd00f331318c05
1/*
2 * PHY functions
3 *
4 * Copyright (c) 2004-2007 Reyk Floeter <reyk@openbsd.org>
5 * Copyright (c) 2006-2009 Nick Kossifidis <mickflemm@gmail.com>
6 * Copyright (c) 2007-2008 Jiri Slaby <jirislaby@gmail.com>
7 * Copyright (c) 2008-2009 Felix Fietkau <nbd@openwrt.org>
8 *
9 * Permission to use, copy, modify, and distribute this software for any
10 * purpose with or without fee is hereby granted, provided that the above
11 * copyright notice and this permission notice appear in all copies.
12 *
13 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
14 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
15 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
16 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
17 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20 *
21 */
22
23#define _ATH5K_PHY
24
25#include <linux/delay.h>
26#include <linux/slab.h>
27
28#include "ath5k.h"
29#include "reg.h"
30#include "base.h"
31#include "rfbuffer.h"
32#include "rfgain.h"
33
34/*
35 * Used to modify RF Banks before writing them to AR5K_RF_BUFFER
36 */
37static unsigned int ath5k_hw_rfb_op(struct ath5k_hw *ah,
38					const struct ath5k_rf_reg *rf_regs,
39					u32 val, u8 reg_id, bool set)
40{
41	const struct ath5k_rf_reg *rfreg = NULL;
42	u8 offset, bank, num_bits, col, position;
43	u16 entry;
44	u32 mask, data, last_bit, bits_shifted, first_bit;
45	u32 *rfb;
46	s32 bits_left;
47	int i;
48
49	data = 0;
50	rfb = ah->ah_rf_banks;
51
52	for (i = 0; i < ah->ah_rf_regs_count; i++) {
53		if (rf_regs[i].index == reg_id) {
54			rfreg = &rf_regs[i];
55			break;
56		}
57	}
58
59	if (rfb == NULL || rfreg == NULL) {
60		ATH5K_PRINTF("Rf register not found!\n");
61		/* should not happen */
62		return 0;
63	}
64
65	bank = rfreg->bank;
66	num_bits = rfreg->field.len;
67	first_bit = rfreg->field.pos;
68	col = rfreg->field.col;
69
70	/* first_bit is an offset from bank's
71	 * start. Since we have all banks on
72	 * the same array, we use this offset
73	 * to mark each bank's start */
74	offset = ah->ah_offset[bank];
75
76	/* Boundary check */
77	if (!(col <= 3 && num_bits <= 32 && first_bit + num_bits <= 319)) {
78		ATH5K_PRINTF("invalid values at offset %u\n", offset);
79		return 0;
80	}
81
82	entry = ((first_bit - 1) / 8) + offset;
83	position = (first_bit - 1) % 8;
84
85	if (set)
86		data = ath5k_hw_bitswap(val, num_bits);
87
88	for (bits_shifted = 0, bits_left = num_bits; bits_left > 0;
89	position = 0, entry++) {
90
91		last_bit = (position + bits_left > 8) ? 8 :
92					position + bits_left;
93
94		mask = (((1 << last_bit) - 1) ^ ((1 << position) - 1)) <<
95								(col * 8);
96
97		if (set) {
98			rfb[entry] &= ~mask;
99			rfb[entry] |= ((data << position) << (col * 8)) & mask;
100			data >>= (8 - position);
101		} else {
102			data |= (((rfb[entry] & mask) >> (col * 8)) >> position)
103				<< bits_shifted;
104			bits_shifted += last_bit - position;
105		}
106
107		bits_left -= 8 - position;
108	}
109
110	data = set ? 1 : ath5k_hw_bitswap(data, num_bits);
111
112	return data;
113}
114
115/**********************\
116* RF Gain optimization *
117\**********************/
118
119/*
120 * This code is used to optimize rf gain on different environments
121 * (temperature mostly) based on feedback from a power detector.
122 *
123 * It's only used on RF5111 and RF5112, later RF chips seem to have
124 * auto adjustment on hw -notice they have a much smaller BANK 7 and
125 * no gain optimization ladder-.
126 *
127 * For more infos check out this patent doc
128 * http://www.freepatentsonline.com/7400691.html
129 *
130 * This paper describes power drops as seen on the receiver due to
131 * probe packets
132 * http://www.cnri.dit.ie/publications/ICT08%20-%20Practical%20Issues
133 * %20of%20Power%20Control.pdf
134 *
135 * And this is the MadWiFi bug entry related to the above
136 * http://madwifi-project.org/ticket/1659
137 * with various measurements and diagrams
138 *
139 * TODO: Deal with power drops due to probes by setting an apropriate
140 * tx power on the probe packets ! Make this part of the calibration process.
141 */
142
143/* Initialize ah_gain durring attach */
144int ath5k_hw_rfgain_opt_init(struct ath5k_hw *ah)
145{
146	/* Initialize the gain optimization values */
147	switch (ah->ah_radio) {
148	case AR5K_RF5111:
149		ah->ah_gain.g_step_idx = rfgain_opt_5111.go_default;
150		ah->ah_gain.g_low = 20;
151		ah->ah_gain.g_high = 35;
152		ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
153		break;
154	case AR5K_RF5112:
155		ah->ah_gain.g_step_idx = rfgain_opt_5112.go_default;
156		ah->ah_gain.g_low = 20;
157		ah->ah_gain.g_high = 85;
158		ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
159		break;
160	default:
161		return -EINVAL;
162	}
163
164	return 0;
165}
166
167/* Schedule a gain probe check on the next transmited packet.
168 * That means our next packet is going to be sent with lower
169 * tx power and a Peak to Average Power Detector (PAPD) will try
170 * to measure the gain.
171 *
172 * XXX:  How about forcing a tx packet (bypassing PCU arbitrator etc)
173 * just after we enable the probe so that we don't mess with
174 * standard traffic ? Maybe it's time to use sw interrupts and
175 * a probe tasklet !!!
176 */
177static void ath5k_hw_request_rfgain_probe(struct ath5k_hw *ah)
178{
179
180	/* Skip if gain calibration is inactive or
181	 * we already handle a probe request */
182	if (ah->ah_gain.g_state != AR5K_RFGAIN_ACTIVE)
183		return;
184
185	/* Send the packet with 2dB below max power as
186	 * patent doc suggest */
187	ath5k_hw_reg_write(ah, AR5K_REG_SM(ah->ah_txpower.txp_ofdm - 4,
188			AR5K_PHY_PAPD_PROBE_TXPOWER) |
189			AR5K_PHY_PAPD_PROBE_TX_NEXT, AR5K_PHY_PAPD_PROBE);
190
191	ah->ah_gain.g_state = AR5K_RFGAIN_READ_REQUESTED;
192
193}
194
195/* Calculate gain_F measurement correction
196 * based on the current step for RF5112 rev. 2 */
197static u32 ath5k_hw_rf_gainf_corr(struct ath5k_hw *ah)
198{
199	u32 mix, step;
200	u32 *rf;
201	const struct ath5k_gain_opt *go;
202	const struct ath5k_gain_opt_step *g_step;
203	const struct ath5k_rf_reg *rf_regs;
204
205	/* Only RF5112 Rev. 2 supports it */
206	if ((ah->ah_radio != AR5K_RF5112) ||
207	(ah->ah_radio_5ghz_revision <= AR5K_SREV_RAD_5112A))
208		return 0;
209
210	go = &rfgain_opt_5112;
211	rf_regs = rf_regs_5112a;
212	ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a);
213
214	g_step = &go->go_step[ah->ah_gain.g_step_idx];
215
216	if (ah->ah_rf_banks == NULL)
217		return 0;
218
219	rf = ah->ah_rf_banks;
220	ah->ah_gain.g_f_corr = 0;
221
222	/* No VGA (Variable Gain Amplifier) override, skip */
223	if (ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR, false) != 1)
224		return 0;
225
226	/* Mix gain stepping */
227	step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXGAIN_STEP, false);
228
229	/* Mix gain override */
230	mix = g_step->gos_param[0];
231
232	switch (mix) {
233	case 3:
234		ah->ah_gain.g_f_corr = step * 2;
235		break;
236	case 2:
237		ah->ah_gain.g_f_corr = (step - 5) * 2;
238		break;
239	case 1:
240		ah->ah_gain.g_f_corr = step;
241		break;
242	default:
243		ah->ah_gain.g_f_corr = 0;
244		break;
245	}
246
247	return ah->ah_gain.g_f_corr;
248}
249
250/* Check if current gain_F measurement is in the range of our
251 * power detector windows. If we get a measurement outside range
252 * we know it's not accurate (detectors can't measure anything outside
253 * their detection window) so we must ignore it */
254static bool ath5k_hw_rf_check_gainf_readback(struct ath5k_hw *ah)
255{
256	const struct ath5k_rf_reg *rf_regs;
257	u32 step, mix_ovr, level[4];
258	u32 *rf;
259
260	if (ah->ah_rf_banks == NULL)
261		return false;
262
263	rf = ah->ah_rf_banks;
264
265	if (ah->ah_radio == AR5K_RF5111) {
266
267		rf_regs = rf_regs_5111;
268		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111);
269
270		step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_RFGAIN_STEP,
271			false);
272
273		level[0] = 0;
274		level[1] = (step == 63) ? 50 : step + 4;
275		level[2] = (step != 63) ? 64 : level[0];
276		level[3] = level[2] + 50 ;
277
278		ah->ah_gain.g_high = level[3] -
279			(step == 63 ? AR5K_GAIN_DYN_ADJUST_HI_MARGIN : -5);
280		ah->ah_gain.g_low = level[0] +
281			(step == 63 ? AR5K_GAIN_DYN_ADJUST_LO_MARGIN : 0);
282	} else {
283
284		rf_regs = rf_regs_5112;
285		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112);
286
287		mix_ovr = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR,
288			false);
289
290		level[0] = level[2] = 0;
291
292		if (mix_ovr == 1) {
293			level[1] = level[3] = 83;
294		} else {
295			level[1] = level[3] = 107;
296			ah->ah_gain.g_high = 55;
297		}
298	}
299
300	return (ah->ah_gain.g_current >= level[0] &&
301			ah->ah_gain.g_current <= level[1]) ||
302		(ah->ah_gain.g_current >= level[2] &&
303			ah->ah_gain.g_current <= level[3]);
304}
305
306/* Perform gain_F adjustment by choosing the right set
307 * of parameters from rf gain optimization ladder */
308static s8 ath5k_hw_rf_gainf_adjust(struct ath5k_hw *ah)
309{
310	const struct ath5k_gain_opt *go;
311	const struct ath5k_gain_opt_step *g_step;
312	int ret = 0;
313
314	switch (ah->ah_radio) {
315	case AR5K_RF5111:
316		go = &rfgain_opt_5111;
317		break;
318	case AR5K_RF5112:
319		go = &rfgain_opt_5112;
320		break;
321	default:
322		return 0;
323	}
324
325	g_step = &go->go_step[ah->ah_gain.g_step_idx];
326
327	if (ah->ah_gain.g_current >= ah->ah_gain.g_high) {
328
329		/* Reached maximum */
330		if (ah->ah_gain.g_step_idx == 0)
331			return -1;
332
333		for (ah->ah_gain.g_target = ah->ah_gain.g_current;
334				ah->ah_gain.g_target >=  ah->ah_gain.g_high &&
335				ah->ah_gain.g_step_idx > 0;
336				g_step = &go->go_step[ah->ah_gain.g_step_idx])
337			ah->ah_gain.g_target -= 2 *
338			    (go->go_step[--(ah->ah_gain.g_step_idx)].gos_gain -
339			    g_step->gos_gain);
340
341		ret = 1;
342		goto done;
343	}
344
345	if (ah->ah_gain.g_current <= ah->ah_gain.g_low) {
346
347		/* Reached minimum */
348		if (ah->ah_gain.g_step_idx == (go->go_steps_count - 1))
349			return -2;
350
351		for (ah->ah_gain.g_target = ah->ah_gain.g_current;
352				ah->ah_gain.g_target <= ah->ah_gain.g_low &&
353				ah->ah_gain.g_step_idx < go->go_steps_count-1;
354				g_step = &go->go_step[ah->ah_gain.g_step_idx])
355			ah->ah_gain.g_target -= 2 *
356			    (go->go_step[++ah->ah_gain.g_step_idx].gos_gain -
357			    g_step->gos_gain);
358
359		ret = 2;
360		goto done;
361	}
362
363done:
364	ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
365		"ret %d, gain step %u, current gain %u, target gain %u\n",
366		ret, ah->ah_gain.g_step_idx, ah->ah_gain.g_current,
367		ah->ah_gain.g_target);
368
369	return ret;
370}
371
372/* Main callback for thermal rf gain calibration engine
373 * Check for a new gain reading and schedule an adjustment
374 * if needed.
375 *
376 * TODO: Use sw interrupt to schedule reset if gain_F needs
377 * adjustment */
378enum ath5k_rfgain ath5k_hw_gainf_calibrate(struct ath5k_hw *ah)
379{
380	u32 data, type;
381	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
382
383	ATH5K_TRACE(ah->ah_sc);
384
385	if (ah->ah_rf_banks == NULL ||
386	ah->ah_gain.g_state == AR5K_RFGAIN_INACTIVE)
387		return AR5K_RFGAIN_INACTIVE;
388
389	/* No check requested, either engine is inactive
390	 * or an adjustment is already requested */
391	if (ah->ah_gain.g_state != AR5K_RFGAIN_READ_REQUESTED)
392		goto done;
393
394	/* Read the PAPD (Peak to Average Power Detector)
395	 * register */
396	data = ath5k_hw_reg_read(ah, AR5K_PHY_PAPD_PROBE);
397
398	/* No probe is scheduled, read gain_F measurement */
399	if (!(data & AR5K_PHY_PAPD_PROBE_TX_NEXT)) {
400		ah->ah_gain.g_current = data >> AR5K_PHY_PAPD_PROBE_GAINF_S;
401		type = AR5K_REG_MS(data, AR5K_PHY_PAPD_PROBE_TYPE);
402
403		/* If tx packet is CCK correct the gain_F measurement
404		 * by cck ofdm gain delta */
405		if (type == AR5K_PHY_PAPD_PROBE_TYPE_CCK) {
406			if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A)
407				ah->ah_gain.g_current +=
408					ee->ee_cck_ofdm_gain_delta;
409			else
410				ah->ah_gain.g_current +=
411					AR5K_GAIN_CCK_PROBE_CORR;
412		}
413
414		/* Further correct gain_F measurement for
415		 * RF5112A radios */
416		if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) {
417			ath5k_hw_rf_gainf_corr(ah);
418			ah->ah_gain.g_current =
419				ah->ah_gain.g_current >= ah->ah_gain.g_f_corr ?
420				(ah->ah_gain.g_current-ah->ah_gain.g_f_corr) :
421				0;
422		}
423
424		/* Check if measurement is ok and if we need
425		 * to adjust gain, schedule a gain adjustment,
426		 * else switch back to the acive state */
427		if (ath5k_hw_rf_check_gainf_readback(ah) &&
428		AR5K_GAIN_CHECK_ADJUST(&ah->ah_gain) &&
429		ath5k_hw_rf_gainf_adjust(ah)) {
430			ah->ah_gain.g_state = AR5K_RFGAIN_NEED_CHANGE;
431		} else {
432			ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
433		}
434	}
435
436done:
437	return ah->ah_gain.g_state;
438}
439
440/* Write initial rf gain table to set the RF sensitivity
441 * this one works on all RF chips and has nothing to do
442 * with gain_F calibration */
443int ath5k_hw_rfgain_init(struct ath5k_hw *ah, unsigned int freq)
444{
445	const struct ath5k_ini_rfgain *ath5k_rfg;
446	unsigned int i, size;
447
448	switch (ah->ah_radio) {
449	case AR5K_RF5111:
450		ath5k_rfg = rfgain_5111;
451		size = ARRAY_SIZE(rfgain_5111);
452		break;
453	case AR5K_RF5112:
454		ath5k_rfg = rfgain_5112;
455		size = ARRAY_SIZE(rfgain_5112);
456		break;
457	case AR5K_RF2413:
458		ath5k_rfg = rfgain_2413;
459		size = ARRAY_SIZE(rfgain_2413);
460		break;
461	case AR5K_RF2316:
462		ath5k_rfg = rfgain_2316;
463		size = ARRAY_SIZE(rfgain_2316);
464		break;
465	case AR5K_RF5413:
466		ath5k_rfg = rfgain_5413;
467		size = ARRAY_SIZE(rfgain_5413);
468		break;
469	case AR5K_RF2317:
470	case AR5K_RF2425:
471		ath5k_rfg = rfgain_2425;
472		size = ARRAY_SIZE(rfgain_2425);
473		break;
474	default:
475		return -EINVAL;
476	}
477
478	switch (freq) {
479	case AR5K_INI_RFGAIN_2GHZ:
480	case AR5K_INI_RFGAIN_5GHZ:
481		break;
482	default:
483		return -EINVAL;
484	}
485
486	for (i = 0; i < size; i++) {
487		AR5K_REG_WAIT(i);
488		ath5k_hw_reg_write(ah, ath5k_rfg[i].rfg_value[freq],
489			(u32)ath5k_rfg[i].rfg_register);
490	}
491
492	return 0;
493}
494
495
496
497/********************\
498* RF Registers setup *
499\********************/
500
501
502/*
503 * Setup RF registers by writing rf buffer on hw
504 */
505int ath5k_hw_rfregs_init(struct ath5k_hw *ah, struct ieee80211_channel *channel,
506		unsigned int mode)
507{
508	const struct ath5k_rf_reg *rf_regs;
509	const struct ath5k_ini_rfbuffer *ini_rfb;
510	const struct ath5k_gain_opt *go = NULL;
511	const struct ath5k_gain_opt_step *g_step;
512	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
513	u8 ee_mode = 0;
514	u32 *rfb;
515	int i, obdb = -1, bank = -1;
516
517	switch (ah->ah_radio) {
518	case AR5K_RF5111:
519		rf_regs = rf_regs_5111;
520		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111);
521		ini_rfb = rfb_5111;
522		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5111);
523		go = &rfgain_opt_5111;
524		break;
525	case AR5K_RF5112:
526		if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) {
527			rf_regs = rf_regs_5112a;
528			ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a);
529			ini_rfb = rfb_5112a;
530			ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112a);
531		} else {
532			rf_regs = rf_regs_5112;
533			ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112);
534			ini_rfb = rfb_5112;
535			ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112);
536		}
537		go = &rfgain_opt_5112;
538		break;
539	case AR5K_RF2413:
540		rf_regs = rf_regs_2413;
541		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2413);
542		ini_rfb = rfb_2413;
543		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2413);
544		break;
545	case AR5K_RF2316:
546		rf_regs = rf_regs_2316;
547		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2316);
548		ini_rfb = rfb_2316;
549		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2316);
550		break;
551	case AR5K_RF5413:
552		rf_regs = rf_regs_5413;
553		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5413);
554		ini_rfb = rfb_5413;
555		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5413);
556		break;
557	case AR5K_RF2317:
558		rf_regs = rf_regs_2425;
559		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425);
560		ini_rfb = rfb_2317;
561		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2317);
562		break;
563	case AR5K_RF2425:
564		rf_regs = rf_regs_2425;
565		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425);
566		if (ah->ah_mac_srev < AR5K_SREV_AR2417) {
567			ini_rfb = rfb_2425;
568			ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2425);
569		} else {
570			ini_rfb = rfb_2417;
571			ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2417);
572		}
573		break;
574	default:
575		return -EINVAL;
576	}
577
578	/* If it's the first time we set rf buffer, allocate
579	 * ah->ah_rf_banks based on ah->ah_rf_banks_size
580	 * we set above */
581	if (ah->ah_rf_banks == NULL) {
582		ah->ah_rf_banks = kmalloc(sizeof(u32) * ah->ah_rf_banks_size,
583								GFP_KERNEL);
584		if (ah->ah_rf_banks == NULL) {
585			ATH5K_ERR(ah->ah_sc, "out of memory\n");
586			return -ENOMEM;
587		}
588	}
589
590	/* Copy values to modify them */
591	rfb = ah->ah_rf_banks;
592
593	for (i = 0; i < ah->ah_rf_banks_size; i++) {
594		if (ini_rfb[i].rfb_bank >= AR5K_MAX_RF_BANKS) {
595			ATH5K_ERR(ah->ah_sc, "invalid bank\n");
596			return -EINVAL;
597		}
598
599		/* Bank changed, write down the offset */
600		if (bank != ini_rfb[i].rfb_bank) {
601			bank = ini_rfb[i].rfb_bank;
602			ah->ah_offset[bank] = i;
603		}
604
605		rfb[i] = ini_rfb[i].rfb_mode_data[mode];
606	}
607
608	/* Set Output and Driver bias current (OB/DB) */
609	if (channel->hw_value & CHANNEL_2GHZ) {
610
611		if (channel->hw_value & CHANNEL_CCK)
612			ee_mode = AR5K_EEPROM_MODE_11B;
613		else
614			ee_mode = AR5K_EEPROM_MODE_11G;
615
616		/* For RF511X/RF211X combination we
617		 * use b_OB and b_DB parameters stored
618		 * in eeprom on ee->ee_ob[ee_mode][0]
619		 *
620		 * For all other chips we use OB/DB for 2Ghz
621		 * stored in the b/g modal section just like
622		 * 802.11a on ee->ee_ob[ee_mode][1] */
623		if ((ah->ah_radio == AR5K_RF5111) ||
624		(ah->ah_radio == AR5K_RF5112))
625			obdb = 0;
626		else
627			obdb = 1;
628
629		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb],
630						AR5K_RF_OB_2GHZ, true);
631
632		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb],
633						AR5K_RF_DB_2GHZ, true);
634
635	/* RF5111 always needs OB/DB for 5GHz, even if we use 2GHz */
636	} else if ((channel->hw_value & CHANNEL_5GHZ) ||
637			(ah->ah_radio == AR5K_RF5111)) {
638
639		/* For 11a, Turbo and XR we need to choose
640		 * OB/DB based on frequency range */
641		ee_mode = AR5K_EEPROM_MODE_11A;
642		obdb =	 channel->center_freq >= 5725 ? 3 :
643			(channel->center_freq >= 5500 ? 2 :
644			(channel->center_freq >= 5260 ? 1 :
645			 (channel->center_freq > 4000 ? 0 : -1)));
646
647		if (obdb < 0)
648			return -EINVAL;
649
650		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb],
651						AR5K_RF_OB_5GHZ, true);
652
653		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb],
654						AR5K_RF_DB_5GHZ, true);
655	}
656
657	g_step = &go->go_step[ah->ah_gain.g_step_idx];
658
659	/* Bank Modifications (chip-specific) */
660	if (ah->ah_radio == AR5K_RF5111) {
661
662		/* Set gain_F settings according to current step */
663		if (channel->hw_value & CHANNEL_OFDM) {
664
665			AR5K_REG_WRITE_BITS(ah, AR5K_PHY_FRAME_CTL,
666					AR5K_PHY_FRAME_CTL_TX_CLIP,
667					g_step->gos_param[0]);
668
669			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1],
670							AR5K_RF_PWD_90, true);
671
672			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2],
673							AR5K_RF_PWD_84, true);
674
675			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3],
676						AR5K_RF_RFGAIN_SEL, true);
677
678			/* We programmed gain_F parameters, switch back
679			 * to active state */
680			ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
681
682		}
683
684		/* Bank 6/7 setup */
685
686		ath5k_hw_rfb_op(ah, rf_regs, !ee->ee_xpd[ee_mode],
687						AR5K_RF_PWD_XPD, true);
688
689		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_x_gain[ee_mode],
690						AR5K_RF_XPD_GAIN, true);
691
692		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode],
693						AR5K_RF_GAIN_I, true);
694
695		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode],
696						AR5K_RF_PLO_SEL, true);
697
698		/* TODO: Half/quarter channel support */
699	}
700
701	if (ah->ah_radio == AR5K_RF5112) {
702
703		/* Set gain_F settings according to current step */
704		if (channel->hw_value & CHANNEL_OFDM) {
705
706			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[0],
707						AR5K_RF_MIXGAIN_OVR, true);
708
709			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1],
710						AR5K_RF_PWD_138, true);
711
712			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2],
713						AR5K_RF_PWD_137, true);
714
715			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3],
716						AR5K_RF_PWD_136, true);
717
718			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[4],
719						AR5K_RF_PWD_132, true);
720
721			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[5],
722						AR5K_RF_PWD_131, true);
723
724			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[6],
725						AR5K_RF_PWD_130, true);
726
727			/* We programmed gain_F parameters, switch back
728			 * to active state */
729			ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
730		}
731
732		/* Bank 6/7 setup */
733
734		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode],
735						AR5K_RF_XPD_SEL, true);
736
737		if (ah->ah_radio_5ghz_revision < AR5K_SREV_RAD_5112A) {
738			/* Rev. 1 supports only one xpd */
739			ath5k_hw_rfb_op(ah, rf_regs,
740						ee->ee_x_gain[ee_mode],
741						AR5K_RF_XPD_GAIN, true);
742
743		} else {
744			u8 *pdg_curve_to_idx = ee->ee_pdc_to_idx[ee_mode];
745			if (ee->ee_pd_gains[ee_mode] > 1) {
746				ath5k_hw_rfb_op(ah, rf_regs,
747						pdg_curve_to_idx[0],
748						AR5K_RF_PD_GAIN_LO, true);
749				ath5k_hw_rfb_op(ah, rf_regs,
750						pdg_curve_to_idx[1],
751						AR5K_RF_PD_GAIN_HI, true);
752			} else {
753				ath5k_hw_rfb_op(ah, rf_regs,
754						pdg_curve_to_idx[0],
755						AR5K_RF_PD_GAIN_LO, true);
756				ath5k_hw_rfb_op(ah, rf_regs,
757						pdg_curve_to_idx[0],
758						AR5K_RF_PD_GAIN_HI, true);
759			}
760
761			/* Lower synth voltage on Rev 2 */
762			ath5k_hw_rfb_op(ah, rf_regs, 2,
763					AR5K_RF_HIGH_VC_CP, true);
764
765			ath5k_hw_rfb_op(ah, rf_regs, 2,
766					AR5K_RF_MID_VC_CP, true);
767
768			ath5k_hw_rfb_op(ah, rf_regs, 2,
769					AR5K_RF_LOW_VC_CP, true);
770
771			ath5k_hw_rfb_op(ah, rf_regs, 2,
772					AR5K_RF_PUSH_UP, true);
773
774			/* Decrease power consumption on 5213+ BaseBand */
775			if (ah->ah_phy_revision >= AR5K_SREV_PHY_5212A) {
776				ath5k_hw_rfb_op(ah, rf_regs, 1,
777						AR5K_RF_PAD2GND, true);
778
779				ath5k_hw_rfb_op(ah, rf_regs, 1,
780						AR5K_RF_XB2_LVL, true);
781
782				ath5k_hw_rfb_op(ah, rf_regs, 1,
783						AR5K_RF_XB5_LVL, true);
784
785				ath5k_hw_rfb_op(ah, rf_regs, 1,
786						AR5K_RF_PWD_167, true);
787
788				ath5k_hw_rfb_op(ah, rf_regs, 1,
789						AR5K_RF_PWD_166, true);
790			}
791		}
792
793		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode],
794						AR5K_RF_GAIN_I, true);
795
796		/* TODO: Half/quarter channel support */
797
798	}
799
800	if (ah->ah_radio == AR5K_RF5413 &&
801	channel->hw_value & CHANNEL_2GHZ) {
802
803		ath5k_hw_rfb_op(ah, rf_regs, 1, AR5K_RF_DERBY_CHAN_SEL_MODE,
804									true);
805
806		/* Set optimum value for early revisions (on pci-e chips) */
807		if (ah->ah_mac_srev >= AR5K_SREV_AR5424 &&
808		ah->ah_mac_srev < AR5K_SREV_AR5413)
809			ath5k_hw_rfb_op(ah, rf_regs, ath5k_hw_bitswap(6, 3),
810						AR5K_RF_PWD_ICLOBUF_2G, true);
811
812	}
813
814	/* Write RF banks on hw */
815	for (i = 0; i < ah->ah_rf_banks_size; i++) {
816		AR5K_REG_WAIT(i);
817		ath5k_hw_reg_write(ah, rfb[i], ini_rfb[i].rfb_ctrl_register);
818	}
819
820	return 0;
821}
822
823
824/**************************\
825  PHY/RF channel functions
826\**************************/
827
828/*
829 * Check if a channel is supported
830 */
831bool ath5k_channel_ok(struct ath5k_hw *ah, u16 freq, unsigned int flags)
832{
833	/* Check if the channel is in our supported range */
834	if (flags & CHANNEL_2GHZ) {
835		if ((freq >= ah->ah_capabilities.cap_range.range_2ghz_min) &&
836		    (freq <= ah->ah_capabilities.cap_range.range_2ghz_max))
837			return true;
838	} else if (flags & CHANNEL_5GHZ)
839		if ((freq >= ah->ah_capabilities.cap_range.range_5ghz_min) &&
840		    (freq <= ah->ah_capabilities.cap_range.range_5ghz_max))
841			return true;
842
843	return false;
844}
845
846/*
847 * Convertion needed for RF5110
848 */
849static u32 ath5k_hw_rf5110_chan2athchan(struct ieee80211_channel *channel)
850{
851	u32 athchan;
852
853	/*
854	 * Convert IEEE channel/MHz to an internal channel value used
855	 * by the AR5210 chipset. This has not been verified with
856	 * newer chipsets like the AR5212A who have a completely
857	 * different RF/PHY part.
858	 */
859	athchan = (ath5k_hw_bitswap(
860			(ieee80211_frequency_to_channel(
861				channel->center_freq) - 24) / 2, 5)
862				<< 1) | (1 << 6) | 0x1;
863	return athchan;
864}
865
866/*
867 * Set channel on RF5110
868 */
869static int ath5k_hw_rf5110_channel(struct ath5k_hw *ah,
870		struct ieee80211_channel *channel)
871{
872	u32 data;
873
874	/*
875	 * Set the channel and wait
876	 */
877	data = ath5k_hw_rf5110_chan2athchan(channel);
878	ath5k_hw_reg_write(ah, data, AR5K_RF_BUFFER);
879	ath5k_hw_reg_write(ah, 0, AR5K_RF_BUFFER_CONTROL_0);
880	mdelay(1);
881
882	return 0;
883}
884
885/*
886 * Convertion needed for 5111
887 */
888static int ath5k_hw_rf5111_chan2athchan(unsigned int ieee,
889		struct ath5k_athchan_2ghz *athchan)
890{
891	int channel;
892
893	/* Cast this value to catch negative channel numbers (>= -19) */
894	channel = (int)ieee;
895
896	/*
897	 * Map 2GHz IEEE channel to 5GHz Atheros channel
898	 */
899	if (channel <= 13) {
900		athchan->a2_athchan = 115 + channel;
901		athchan->a2_flags = 0x46;
902	} else if (channel == 14) {
903		athchan->a2_athchan = 124;
904		athchan->a2_flags = 0x44;
905	} else if (channel >= 15 && channel <= 26) {
906		athchan->a2_athchan = ((channel - 14) * 4) + 132;
907		athchan->a2_flags = 0x46;
908	} else
909		return -EINVAL;
910
911	return 0;
912}
913
914/*
915 * Set channel on 5111
916 */
917static int ath5k_hw_rf5111_channel(struct ath5k_hw *ah,
918		struct ieee80211_channel *channel)
919{
920	struct ath5k_athchan_2ghz ath5k_channel_2ghz;
921	unsigned int ath5k_channel =
922		ieee80211_frequency_to_channel(channel->center_freq);
923	u32 data0, data1, clock;
924	int ret;
925
926	/*
927	 * Set the channel on the RF5111 radio
928	 */
929	data0 = data1 = 0;
930
931	if (channel->hw_value & CHANNEL_2GHZ) {
932		/* Map 2GHz channel to 5GHz Atheros channel ID */
933		ret = ath5k_hw_rf5111_chan2athchan(
934			ieee80211_frequency_to_channel(channel->center_freq),
935			&ath5k_channel_2ghz);
936		if (ret)
937			return ret;
938
939		ath5k_channel = ath5k_channel_2ghz.a2_athchan;
940		data0 = ((ath5k_hw_bitswap(ath5k_channel_2ghz.a2_flags, 8) & 0xff)
941		    << 5) | (1 << 4);
942	}
943
944	if (ath5k_channel < 145 || !(ath5k_channel & 1)) {
945		clock = 1;
946		data1 = ((ath5k_hw_bitswap(ath5k_channel - 24, 8) & 0xff) << 2) |
947			(clock << 1) | (1 << 10) | 1;
948	} else {
949		clock = 0;
950		data1 = ((ath5k_hw_bitswap((ath5k_channel - 24) / 2, 8) & 0xff)
951			<< 2) | (clock << 1) | (1 << 10) | 1;
952	}
953
954	ath5k_hw_reg_write(ah, (data1 & 0xff) | ((data0 & 0xff) << 8),
955			AR5K_RF_BUFFER);
956	ath5k_hw_reg_write(ah, ((data1 >> 8) & 0xff) | (data0 & 0xff00),
957			AR5K_RF_BUFFER_CONTROL_3);
958
959	return 0;
960}
961
962/*
963 * Set channel on 5112 and newer
964 */
965static int ath5k_hw_rf5112_channel(struct ath5k_hw *ah,
966		struct ieee80211_channel *channel)
967{
968	u32 data, data0, data1, data2;
969	u16 c;
970
971	data = data0 = data1 = data2 = 0;
972	c = channel->center_freq;
973
974	if (c < 4800) {
975		if (!((c - 2224) % 5)) {
976			data0 = ((2 * (c - 704)) - 3040) / 10;
977			data1 = 1;
978		} else if (!((c - 2192) % 5)) {
979			data0 = ((2 * (c - 672)) - 3040) / 10;
980			data1 = 0;
981		} else
982			return -EINVAL;
983
984		data0 = ath5k_hw_bitswap((data0 << 2) & 0xff, 8);
985	} else if ((c - (c % 5)) != 2 || c > 5435) {
986		if (!(c % 20) && c >= 5120) {
987			data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8);
988			data2 = ath5k_hw_bitswap(3, 2);
989		} else if (!(c % 10)) {
990			data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8);
991			data2 = ath5k_hw_bitswap(2, 2);
992		} else if (!(c % 5)) {
993			data0 = ath5k_hw_bitswap((c - 4800) / 5, 8);
994			data2 = ath5k_hw_bitswap(1, 2);
995		} else
996			return -EINVAL;
997	} else {
998		data0 = ath5k_hw_bitswap((10 * (c - 2) - 4800) / 25 + 1, 8);
999		data2 = ath5k_hw_bitswap(0, 2);
1000	}
1001
1002	data = (data0 << 4) | (data1 << 1) | (data2 << 2) | 0x1001;
1003
1004	ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER);
1005	ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5);
1006
1007	return 0;
1008}
1009
1010/*
1011 * Set the channel on the RF2425
1012 */
1013static int ath5k_hw_rf2425_channel(struct ath5k_hw *ah,
1014		struct ieee80211_channel *channel)
1015{
1016	u32 data, data0, data2;
1017	u16 c;
1018
1019	data = data0 = data2 = 0;
1020	c = channel->center_freq;
1021
1022	if (c < 4800) {
1023		data0 = ath5k_hw_bitswap((c - 2272), 8);
1024		data2 = 0;
1025	/* ? 5GHz ? */
1026	} else if ((c - (c % 5)) != 2 || c > 5435) {
1027		if (!(c % 20) && c < 5120)
1028			data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8);
1029		else if (!(c % 10))
1030			data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8);
1031		else if (!(c % 5))
1032			data0 = ath5k_hw_bitswap((c - 4800) / 5, 8);
1033		else
1034			return -EINVAL;
1035		data2 = ath5k_hw_bitswap(1, 2);
1036	} else {
1037		data0 = ath5k_hw_bitswap((10 * (c - 2) - 4800) / 25 + 1, 8);
1038		data2 = ath5k_hw_bitswap(0, 2);
1039	}
1040
1041	data = (data0 << 4) | data2 << 2 | 0x1001;
1042
1043	ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER);
1044	ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5);
1045
1046	return 0;
1047}
1048
1049/*
1050 * Set a channel on the radio chip
1051 */
1052int ath5k_hw_channel(struct ath5k_hw *ah, struct ieee80211_channel *channel)
1053{
1054	int ret;
1055	/*
1056	 * Check bounds supported by the PHY (we don't care about regultory
1057	 * restrictions at this point). Note: hw_value already has the band
1058	 * (CHANNEL_2GHZ, or CHANNEL_5GHZ) so we inform ath5k_channel_ok()
1059	 * of the band by that */
1060	if (!ath5k_channel_ok(ah, channel->center_freq, channel->hw_value)) {
1061		ATH5K_ERR(ah->ah_sc,
1062			"channel frequency (%u MHz) out of supported "
1063			"band range\n",
1064			channel->center_freq);
1065			return -EINVAL;
1066	}
1067
1068	/*
1069	 * Set the channel and wait
1070	 */
1071	switch (ah->ah_radio) {
1072	case AR5K_RF5110:
1073		ret = ath5k_hw_rf5110_channel(ah, channel);
1074		break;
1075	case AR5K_RF5111:
1076		ret = ath5k_hw_rf5111_channel(ah, channel);
1077		break;
1078	case AR5K_RF2425:
1079		ret = ath5k_hw_rf2425_channel(ah, channel);
1080		break;
1081	default:
1082		ret = ath5k_hw_rf5112_channel(ah, channel);
1083		break;
1084	}
1085
1086	if (ret)
1087		return ret;
1088
1089	/* Set JAPAN setting for channel 14 */
1090	if (channel->center_freq == 2484) {
1091		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL,
1092				AR5K_PHY_CCKTXCTL_JAPAN);
1093	} else {
1094		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL,
1095				AR5K_PHY_CCKTXCTL_WORLD);
1096	}
1097
1098	ah->ah_current_channel = channel;
1099	ah->ah_turbo = channel->hw_value == CHANNEL_T ? true : false;
1100
1101	return 0;
1102}
1103
1104/*****************\
1105  PHY calibration
1106\*****************/
1107
1108void
1109ath5k_hw_calibration_poll(struct ath5k_hw *ah)
1110{
1111	/* Calibration interval in jiffies */
1112	unsigned long cal_intval;
1113
1114	cal_intval = msecs_to_jiffies(ah->ah_cal_intval * 1000);
1115
1116	/* Initialize timestamp if needed */
1117	if (!ah->ah_cal_tstamp)
1118		ah->ah_cal_tstamp = jiffies;
1119
1120	/* For now we always do full calibration
1121	 * Mark software interrupt mask and fire software
1122	 * interrupt (bit gets auto-cleared) */
1123	if (time_is_before_eq_jiffies(ah->ah_cal_tstamp + cal_intval)) {
1124		ah->ah_cal_tstamp = jiffies;
1125		ah->ah_swi_mask = AR5K_SWI_FULL_CALIBRATION;
1126		AR5K_REG_ENABLE_BITS(ah, AR5K_CR, AR5K_CR_SWI);
1127	}
1128}
1129
1130static int sign_extend(int val, const int nbits)
1131{
1132	int order = BIT(nbits-1);
1133	return (val ^ order) - order;
1134}
1135
1136static s32 ath5k_hw_read_measured_noise_floor(struct ath5k_hw *ah)
1137{
1138	s32 val;
1139
1140	val = ath5k_hw_reg_read(ah, AR5K_PHY_NF);
1141	return sign_extend(AR5K_REG_MS(val, AR5K_PHY_NF_MINCCA_PWR), 9);
1142}
1143
1144void ath5k_hw_init_nfcal_hist(struct ath5k_hw *ah)
1145{
1146	int i;
1147
1148	ah->ah_nfcal_hist.index = 0;
1149	for (i = 0; i < ATH5K_NF_CAL_HIST_MAX; i++)
1150		ah->ah_nfcal_hist.nfval[i] = AR5K_TUNE_CCA_MAX_GOOD_VALUE;
1151}
1152
1153static void ath5k_hw_update_nfcal_hist(struct ath5k_hw *ah, s16 noise_floor)
1154{
1155	struct ath5k_nfcal_hist *hist = &ah->ah_nfcal_hist;
1156	hist->index = (hist->index + 1) & (ATH5K_NF_CAL_HIST_MAX-1);
1157	hist->nfval[hist->index] = noise_floor;
1158}
1159
1160static s16 ath5k_hw_get_median_noise_floor(struct ath5k_hw *ah)
1161{
1162	s16 sort[ATH5K_NF_CAL_HIST_MAX];
1163	s16 tmp;
1164	int i, j;
1165
1166	memcpy(sort, ah->ah_nfcal_hist.nfval, sizeof(sort));
1167	for (i = 0; i < ATH5K_NF_CAL_HIST_MAX - 1; i++) {
1168		for (j = 1; j < ATH5K_NF_CAL_HIST_MAX - i; j++) {
1169			if (sort[j] > sort[j-1]) {
1170				tmp = sort[j];
1171				sort[j] = sort[j-1];
1172				sort[j-1] = tmp;
1173			}
1174		}
1175	}
1176	for (i = 0; i < ATH5K_NF_CAL_HIST_MAX; i++) {
1177		ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1178			"cal %d:%d\n", i, sort[i]);
1179	}
1180	return sort[(ATH5K_NF_CAL_HIST_MAX-1) / 2];
1181}
1182
1183/*
1184 * When we tell the hardware to perform a noise floor calibration
1185 * by setting the AR5K_PHY_AGCCTL_NF bit, it will periodically
1186 * sample-and-hold the minimum noise level seen at the antennas.
1187 * This value is then stored in a ring buffer of recently measured
1188 * noise floor values so we have a moving window of the last few
1189 * samples.
1190 *
1191 * The median of the values in the history is then loaded into the
1192 * hardware for its own use for RSSI and CCA measurements.
1193 */
1194void ath5k_hw_update_noise_floor(struct ath5k_hw *ah)
1195{
1196	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1197	u32 val;
1198	s16 nf, threshold;
1199	u8 ee_mode;
1200
1201	/* keep last value if calibration hasn't completed */
1202	if (ath5k_hw_reg_read(ah, AR5K_PHY_AGCCTL) & AR5K_PHY_AGCCTL_NF) {
1203		ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1204			"NF did not complete in calibration window\n");
1205
1206		return;
1207	}
1208
1209	switch (ah->ah_current_channel->hw_value & CHANNEL_MODES) {
1210	case CHANNEL_A:
1211	case CHANNEL_T:
1212	case CHANNEL_XR:
1213		ee_mode = AR5K_EEPROM_MODE_11A;
1214		break;
1215	case CHANNEL_G:
1216	case CHANNEL_TG:
1217		ee_mode = AR5K_EEPROM_MODE_11G;
1218		break;
1219	default:
1220	case CHANNEL_B:
1221		ee_mode = AR5K_EEPROM_MODE_11B;
1222		break;
1223	}
1224
1225
1226	/* completed NF calibration, test threshold */
1227	nf = ath5k_hw_read_measured_noise_floor(ah);
1228	threshold = ee->ee_noise_floor_thr[ee_mode];
1229
1230	if (nf > threshold) {
1231		ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1232			"noise floor failure detected; "
1233			"read %d, threshold %d\n",
1234			nf, threshold);
1235
1236		nf = AR5K_TUNE_CCA_MAX_GOOD_VALUE;
1237	}
1238
1239	ath5k_hw_update_nfcal_hist(ah, nf);
1240	nf = ath5k_hw_get_median_noise_floor(ah);
1241
1242	/* load noise floor (in .5 dBm) so the hardware will use it */
1243	val = ath5k_hw_reg_read(ah, AR5K_PHY_NF) & ~AR5K_PHY_NF_M;
1244	val |= (nf * 2) & AR5K_PHY_NF_M;
1245	ath5k_hw_reg_write(ah, val, AR5K_PHY_NF);
1246
1247	AR5K_REG_MASKED_BITS(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_NF,
1248		~(AR5K_PHY_AGCCTL_NF_EN | AR5K_PHY_AGCCTL_NF_NOUPDATE));
1249
1250	ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_NF,
1251		0, false);
1252
1253	/*
1254	 * Load a high max CCA Power value (-50 dBm in .5 dBm units)
1255	 * so that we're not capped by the median we just loaded.
1256	 * This will be used as the initial value for the next noise
1257	 * floor calibration.
1258	 */
1259	val = (val & ~AR5K_PHY_NF_M) | ((-50 * 2) & AR5K_PHY_NF_M);
1260	ath5k_hw_reg_write(ah, val, AR5K_PHY_NF);
1261	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
1262		AR5K_PHY_AGCCTL_NF_EN |
1263		AR5K_PHY_AGCCTL_NF_NOUPDATE |
1264		AR5K_PHY_AGCCTL_NF);
1265
1266	ah->ah_noise_floor = nf;
1267
1268	ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1269		"noise floor calibrated: %d\n", nf);
1270}
1271
1272/*
1273 * Perform a PHY calibration on RF5110
1274 * -Fix BPSK/QAM Constellation (I/Q correction)
1275 * -Calculate Noise Floor
1276 */
1277static int ath5k_hw_rf5110_calibrate(struct ath5k_hw *ah,
1278		struct ieee80211_channel *channel)
1279{
1280	u32 phy_sig, phy_agc, phy_sat, beacon;
1281	int ret;
1282
1283	/*
1284	 * Disable beacons and RX/TX queues, wait
1285	 */
1286	AR5K_REG_ENABLE_BITS(ah, AR5K_DIAG_SW_5210,
1287		AR5K_DIAG_SW_DIS_TX | AR5K_DIAG_SW_DIS_RX_5210);
1288	beacon = ath5k_hw_reg_read(ah, AR5K_BEACON_5210);
1289	ath5k_hw_reg_write(ah, beacon & ~AR5K_BEACON_ENABLE, AR5K_BEACON_5210);
1290
1291	mdelay(2);
1292
1293	/*
1294	 * Set the channel (with AGC turned off)
1295	 */
1296	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1297	udelay(10);
1298	ret = ath5k_hw_channel(ah, channel);
1299
1300	/*
1301	 * Activate PHY and wait
1302	 */
1303	ath5k_hw_reg_write(ah, AR5K_PHY_ACT_ENABLE, AR5K_PHY_ACT);
1304	mdelay(1);
1305
1306	AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1307
1308	if (ret)
1309		return ret;
1310
1311	/*
1312	 * Calibrate the radio chip
1313	 */
1314
1315	/* Remember normal state */
1316	phy_sig = ath5k_hw_reg_read(ah, AR5K_PHY_SIG);
1317	phy_agc = ath5k_hw_reg_read(ah, AR5K_PHY_AGCCOARSE);
1318	phy_sat = ath5k_hw_reg_read(ah, AR5K_PHY_ADCSAT);
1319
1320	/* Update radio registers */
1321	ath5k_hw_reg_write(ah, (phy_sig & ~(AR5K_PHY_SIG_FIRPWR)) |
1322		AR5K_REG_SM(-1, AR5K_PHY_SIG_FIRPWR), AR5K_PHY_SIG);
1323
1324	ath5k_hw_reg_write(ah, (phy_agc & ~(AR5K_PHY_AGCCOARSE_HI |
1325			AR5K_PHY_AGCCOARSE_LO)) |
1326		AR5K_REG_SM(-1, AR5K_PHY_AGCCOARSE_HI) |
1327		AR5K_REG_SM(-127, AR5K_PHY_AGCCOARSE_LO), AR5K_PHY_AGCCOARSE);
1328
1329	ath5k_hw_reg_write(ah, (phy_sat & ~(AR5K_PHY_ADCSAT_ICNT |
1330			AR5K_PHY_ADCSAT_THR)) |
1331		AR5K_REG_SM(2, AR5K_PHY_ADCSAT_ICNT) |
1332		AR5K_REG_SM(12, AR5K_PHY_ADCSAT_THR), AR5K_PHY_ADCSAT);
1333
1334	udelay(20);
1335
1336	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1337	udelay(10);
1338	ath5k_hw_reg_write(ah, AR5K_PHY_RFSTG_DISABLE, AR5K_PHY_RFSTG);
1339	AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1340
1341	mdelay(1);
1342
1343	/*
1344	 * Enable calibration and wait until completion
1345	 */
1346	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_CAL);
1347
1348	ret = ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL,
1349			AR5K_PHY_AGCCTL_CAL, 0, false);
1350
1351	/* Reset to normal state */
1352	ath5k_hw_reg_write(ah, phy_sig, AR5K_PHY_SIG);
1353	ath5k_hw_reg_write(ah, phy_agc, AR5K_PHY_AGCCOARSE);
1354	ath5k_hw_reg_write(ah, phy_sat, AR5K_PHY_ADCSAT);
1355
1356	if (ret) {
1357		ATH5K_ERR(ah->ah_sc, "calibration timeout (%uMHz)\n",
1358				channel->center_freq);
1359		return ret;
1360	}
1361
1362	ath5k_hw_update_noise_floor(ah);
1363
1364	/*
1365	 * Re-enable RX/TX and beacons
1366	 */
1367	AR5K_REG_DISABLE_BITS(ah, AR5K_DIAG_SW_5210,
1368		AR5K_DIAG_SW_DIS_TX | AR5K_DIAG_SW_DIS_RX_5210);
1369	ath5k_hw_reg_write(ah, beacon, AR5K_BEACON_5210);
1370
1371	return 0;
1372}
1373
1374/*
1375 * Perform a PHY calibration on RF5111/5112 and newer chips
1376 */
1377static int ath5k_hw_rf511x_calibrate(struct ath5k_hw *ah,
1378		struct ieee80211_channel *channel)
1379{
1380	u32 i_pwr, q_pwr;
1381	s32 iq_corr, i_coff, i_coffd, q_coff, q_coffd;
1382	int i;
1383	ATH5K_TRACE(ah->ah_sc);
1384
1385	if (!ah->ah_calibration ||
1386		ath5k_hw_reg_read(ah, AR5K_PHY_IQ) & AR5K_PHY_IQ_RUN)
1387		goto done;
1388
1389	/* Calibration has finished, get the results and re-run */
1390
1391	/* work around empty results which can apparently happen on 5212 */
1392	for (i = 0; i <= 10; i++) {
1393		iq_corr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_CORR);
1394		i_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_I);
1395		q_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_Q);
1396		ATH5K_DBG_UNLIMIT(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1397			"iq_corr:%x i_pwr:%x q_pwr:%x", iq_corr, i_pwr, q_pwr);
1398		if (i_pwr && q_pwr)
1399			break;
1400	}
1401
1402	i_coffd = ((i_pwr >> 1) + (q_pwr >> 1)) >> 7;
1403	q_coffd = q_pwr >> 7;
1404
1405	/* protect against divide by 0 and loss of sign bits */
1406	if (i_coffd == 0 || q_coffd < 2)
1407		goto done;
1408
1409	i_coff = (-iq_corr) / i_coffd;
1410	i_coff = clamp(i_coff, -32, 31); /* signed 6 bit */
1411
1412	q_coff = (i_pwr / q_coffd) - 128;
1413	q_coff = clamp(q_coff, -16, 15); /* signed 5 bit */
1414
1415	ATH5K_DBG_UNLIMIT(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1416			"new I:%d Q:%d (i_coffd:%x q_coffd:%x)",
1417			i_coff, q_coff, i_coffd, q_coffd);
1418
1419	/* Commit new I/Q values (set enable bit last to match HAL sources) */
1420	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_Q_I_COFF, i_coff);
1421	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_Q_Q_COFF, q_coff);
1422	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_ENABLE);
1423
1424	/* Re-enable calibration -if we don't we'll commit
1425	 * the same values again and again */
1426	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ,
1427			AR5K_PHY_IQ_CAL_NUM_LOG_MAX, 15);
1428	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_RUN);
1429
1430done:
1431
1432	/* TODO: Separate noise floor calibration from I/Q calibration
1433	 * since noise floor calibration interrupts rx path while I/Q
1434	 * calibration doesn't. We don't need to run noise floor calibration
1435	 * as often as I/Q calibration.*/
1436	ath5k_hw_update_noise_floor(ah);
1437
1438	/* Initiate a gain_F calibration */
1439	ath5k_hw_request_rfgain_probe(ah);
1440
1441	return 0;
1442}
1443
1444/*
1445 * Perform a PHY calibration
1446 */
1447int ath5k_hw_phy_calibrate(struct ath5k_hw *ah,
1448		struct ieee80211_channel *channel)
1449{
1450	int ret;
1451
1452	if (ah->ah_radio == AR5K_RF5110)
1453		ret = ath5k_hw_rf5110_calibrate(ah, channel);
1454	else
1455		ret = ath5k_hw_rf511x_calibrate(ah, channel);
1456
1457	return ret;
1458}
1459
1460/***************************\
1461* Spur mitigation functions *
1462\***************************/
1463
1464bool ath5k_hw_chan_has_spur_noise(struct ath5k_hw *ah,
1465				struct ieee80211_channel *channel)
1466{
1467	u8 refclk_freq;
1468
1469	if ((ah->ah_radio == AR5K_RF5112) ||
1470	(ah->ah_radio == AR5K_RF5413) ||
1471	(ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4)))
1472		refclk_freq = 40;
1473	else
1474		refclk_freq = 32;
1475
1476	if ((channel->center_freq % refclk_freq != 0) &&
1477	((channel->center_freq % refclk_freq < 10) ||
1478	(channel->center_freq % refclk_freq > 22)))
1479		return true;
1480	else
1481		return false;
1482}
1483
1484void
1485ath5k_hw_set_spur_mitigation_filter(struct ath5k_hw *ah,
1486				struct ieee80211_channel *channel)
1487{
1488	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1489	u32 mag_mask[4] = {0, 0, 0, 0};
1490	u32 pilot_mask[2] = {0, 0};
1491	/* Note: fbin values are scaled up by 2 */
1492	u16 spur_chan_fbin, chan_fbin, symbol_width, spur_detection_window;
1493	s32 spur_delta_phase, spur_freq_sigma_delta;
1494	s32 spur_offset, num_symbols_x16;
1495	u8 num_symbol_offsets, i, freq_band;
1496
1497	/* Convert current frequency to fbin value (the same way channels
1498	 * are stored on EEPROM, check out ath5k_eeprom_bin2freq) and scale
1499	 * up by 2 so we can compare it later */
1500	if (channel->hw_value & CHANNEL_2GHZ) {
1501		chan_fbin = (channel->center_freq - 2300) * 10;
1502		freq_band = AR5K_EEPROM_BAND_2GHZ;
1503	} else {
1504		chan_fbin = (channel->center_freq - 4900) * 10;
1505		freq_band = AR5K_EEPROM_BAND_5GHZ;
1506	}
1507
1508	/* Check if any spur_chan_fbin from EEPROM is
1509	 * within our current channel's spur detection range */
1510	spur_chan_fbin = AR5K_EEPROM_NO_SPUR;
1511	spur_detection_window = AR5K_SPUR_CHAN_WIDTH;
1512	/* XXX: Half/Quarter channels ?*/
1513	if (channel->hw_value & CHANNEL_TURBO)
1514		spur_detection_window *= 2;
1515
1516	for (i = 0; i < AR5K_EEPROM_N_SPUR_CHANS; i++) {
1517		spur_chan_fbin = ee->ee_spur_chans[i][freq_band];
1518
1519		/* Note: mask cleans AR5K_EEPROM_NO_SPUR flag
1520		 * so it's zero if we got nothing from EEPROM */
1521		if (spur_chan_fbin == AR5K_EEPROM_NO_SPUR) {
1522			spur_chan_fbin &= AR5K_EEPROM_SPUR_CHAN_MASK;
1523			break;
1524		}
1525
1526		if ((chan_fbin - spur_detection_window <=
1527		(spur_chan_fbin & AR5K_EEPROM_SPUR_CHAN_MASK)) &&
1528		(chan_fbin + spur_detection_window >=
1529		(spur_chan_fbin & AR5K_EEPROM_SPUR_CHAN_MASK))) {
1530			spur_chan_fbin &= AR5K_EEPROM_SPUR_CHAN_MASK;
1531			break;
1532		}
1533	}
1534
1535	/* We need to enable spur filter for this channel */
1536	if (spur_chan_fbin) {
1537		spur_offset = spur_chan_fbin - chan_fbin;
1538		/*
1539		 * Calculate deltas:
1540		 * spur_freq_sigma_delta -> spur_offset / sample_freq << 21
1541		 * spur_delta_phase -> spur_offset / chip_freq << 11
1542		 * Note: Both values have 100KHz resolution
1543		 */
1544		/* XXX: Half/Quarter rate channels ? */
1545		switch (channel->hw_value) {
1546		case CHANNEL_A:
1547			/* Both sample_freq and chip_freq are 40MHz */
1548			spur_delta_phase = (spur_offset << 17) / 25;
1549			spur_freq_sigma_delta = (spur_delta_phase >> 10);
1550			symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz;
1551			break;
1552		case CHANNEL_G:
1553			/* sample_freq -> 40MHz chip_freq -> 44MHz
1554			 * (for b compatibility) */
1555			spur_freq_sigma_delta = (spur_offset << 8) / 55;
1556			spur_delta_phase = (spur_offset << 17) / 25;
1557			symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz;
1558			break;
1559		case CHANNEL_T:
1560		case CHANNEL_TG:
1561			/* Both sample_freq and chip_freq are 80MHz */
1562			spur_delta_phase = (spur_offset << 16) / 25;
1563			spur_freq_sigma_delta = (spur_delta_phase >> 10);
1564			symbol_width = AR5K_SPUR_SYMBOL_WIDTH_TURBO_100Hz;
1565			break;
1566		default:
1567			return;
1568		}
1569
1570		/* Calculate pilot and magnitude masks */
1571
1572		/* Scale up spur_offset by 1000 to switch to 100HZ resolution
1573		 * and divide by symbol_width to find how many symbols we have
1574		 * Note: number of symbols is scaled up by 16 */
1575		num_symbols_x16 = ((spur_offset * 1000) << 4) / symbol_width;
1576
1577		/* Spur is on a symbol if num_symbols_x16 % 16 is zero */
1578		if (!(num_symbols_x16 & 0xF))
1579			/* _X_ */
1580			num_symbol_offsets = 3;
1581		else
1582			/* _xx_ */
1583			num_symbol_offsets = 4;
1584
1585		for (i = 0; i < num_symbol_offsets; i++) {
1586
1587			/* Calculate pilot mask */
1588			s32 curr_sym_off =
1589				(num_symbols_x16 / 16) + i + 25;
1590
1591			/* Pilot magnitude mask seems to be a way to
1592			 * declare the boundaries for our detection
1593			 * window or something, it's 2 for the middle
1594			 * value(s) where the symbol is expected to be
1595			 * and 1 on the boundary values */
1596			u8 plt_mag_map =
1597				(i == 0 || i == (num_symbol_offsets - 1))
1598								? 1 : 2;
1599
1600			if (curr_sym_off >= 0 && curr_sym_off <= 32) {
1601				if (curr_sym_off <= 25)
1602					pilot_mask[0] |= 1 << curr_sym_off;
1603				else if (curr_sym_off >= 27)
1604					pilot_mask[0] |= 1 << (curr_sym_off - 1);
1605			} else if (curr_sym_off >= 33 && curr_sym_off <= 52)
1606				pilot_mask[1] |= 1 << (curr_sym_off - 33);
1607
1608			/* Calculate magnitude mask (for viterbi decoder) */
1609			if (curr_sym_off >= -1 && curr_sym_off <= 14)
1610				mag_mask[0] |=
1611					plt_mag_map << (curr_sym_off + 1) * 2;
1612			else if (curr_sym_off >= 15 && curr_sym_off <= 30)
1613				mag_mask[1] |=
1614					plt_mag_map << (curr_sym_off - 15) * 2;
1615			else if (curr_sym_off >= 31 && curr_sym_off <= 46)
1616				mag_mask[2] |=
1617					plt_mag_map << (curr_sym_off - 31) * 2;
1618			else if (curr_sym_off >= 46 && curr_sym_off <= 53)
1619				mag_mask[3] |=
1620					plt_mag_map << (curr_sym_off - 47) * 2;
1621
1622		}
1623
1624		/* Write settings on hw to enable spur filter */
1625		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
1626					AR5K_PHY_BIN_MASK_CTL_RATE, 0xff);
1627		/* XXX: Self correlator also ? */
1628		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ,
1629					AR5K_PHY_IQ_PILOT_MASK_EN |
1630					AR5K_PHY_IQ_CHAN_MASK_EN |
1631					AR5K_PHY_IQ_SPUR_FILT_EN);
1632
1633		/* Set delta phase and freq sigma delta */
1634		ath5k_hw_reg_write(ah,
1635				AR5K_REG_SM(spur_delta_phase,
1636					AR5K_PHY_TIMING_11_SPUR_DELTA_PHASE) |
1637				AR5K_REG_SM(spur_freq_sigma_delta,
1638				AR5K_PHY_TIMING_11_SPUR_FREQ_SD) |
1639				AR5K_PHY_TIMING_11_USE_SPUR_IN_AGC,
1640				AR5K_PHY_TIMING_11);
1641
1642		/* Write pilot masks */
1643		ath5k_hw_reg_write(ah, pilot_mask[0], AR5K_PHY_TIMING_7);
1644		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_8,
1645					AR5K_PHY_TIMING_8_PILOT_MASK_2,
1646					pilot_mask[1]);
1647
1648		ath5k_hw_reg_write(ah, pilot_mask[0], AR5K_PHY_TIMING_9);
1649		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_10,
1650					AR5K_PHY_TIMING_10_PILOT_MASK_2,
1651					pilot_mask[1]);
1652
1653		/* Write magnitude masks */
1654		ath5k_hw_reg_write(ah, mag_mask[0], AR5K_PHY_BIN_MASK_1);
1655		ath5k_hw_reg_write(ah, mag_mask[1], AR5K_PHY_BIN_MASK_2);
1656		ath5k_hw_reg_write(ah, mag_mask[2], AR5K_PHY_BIN_MASK_3);
1657		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
1658					AR5K_PHY_BIN_MASK_CTL_MASK_4,
1659					mag_mask[3]);
1660
1661		ath5k_hw_reg_write(ah, mag_mask[0], AR5K_PHY_BIN_MASK2_1);
1662		ath5k_hw_reg_write(ah, mag_mask[1], AR5K_PHY_BIN_MASK2_2);
1663		ath5k_hw_reg_write(ah, mag_mask[2], AR5K_PHY_BIN_MASK2_3);
1664		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK2_4,
1665					AR5K_PHY_BIN_MASK2_4_MASK_4,
1666					mag_mask[3]);
1667
1668	} else if (ath5k_hw_reg_read(ah, AR5K_PHY_IQ) &
1669	AR5K_PHY_IQ_SPUR_FILT_EN) {
1670		/* Clean up spur mitigation settings and disable fliter */
1671		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
1672					AR5K_PHY_BIN_MASK_CTL_RATE, 0);
1673		AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_IQ,
1674					AR5K_PHY_IQ_PILOT_MASK_EN |
1675					AR5K_PHY_IQ_CHAN_MASK_EN |
1676					AR5K_PHY_IQ_SPUR_FILT_EN);
1677		ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_11);
1678
1679		/* Clear pilot masks */
1680		ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_7);
1681		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_8,
1682					AR5K_PHY_TIMING_8_PILOT_MASK_2,
1683					0);
1684
1685		ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_9);
1686		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_10,
1687					AR5K_PHY_TIMING_10_PILOT_MASK_2,
1688					0);
1689
1690		/* Clear magnitude masks */
1691		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_1);
1692		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_2);
1693		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_3);
1694		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
1695					AR5K_PHY_BIN_MASK_CTL_MASK_4,
1696					0);
1697
1698		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_1);
1699		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_2);
1700		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_3);
1701		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK2_4,
1702					AR5K_PHY_BIN_MASK2_4_MASK_4,
1703					0);
1704	}
1705}
1706
1707/********************\
1708  Misc PHY functions
1709\********************/
1710
1711int ath5k_hw_phy_disable(struct ath5k_hw *ah)
1712{
1713	ATH5K_TRACE(ah->ah_sc);
1714	/*Just a try M.F.*/
1715	ath5k_hw_reg_write(ah, AR5K_PHY_ACT_DISABLE, AR5K_PHY_ACT);
1716
1717	return 0;
1718}
1719
1720/*
1721 * Get the PHY Chip revision
1722 */
1723u16 ath5k_hw_radio_revision(struct ath5k_hw *ah, unsigned int chan)
1724{
1725	unsigned int i;
1726	u32 srev;
1727	u16 ret;
1728
1729	ATH5K_TRACE(ah->ah_sc);
1730
1731	/*
1732	 * Set the radio chip access register
1733	 */
1734	switch (chan) {
1735	case CHANNEL_2GHZ:
1736		ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_2GHZ, AR5K_PHY(0));
1737		break;
1738	case CHANNEL_5GHZ:
1739		ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
1740		break;
1741	default:
1742		return 0;
1743	}
1744
1745	mdelay(2);
1746
1747	/* ...wait until PHY is ready and read the selected radio revision */
1748	ath5k_hw_reg_write(ah, 0x00001c16, AR5K_PHY(0x34));
1749
1750	for (i = 0; i < 8; i++)
1751		ath5k_hw_reg_write(ah, 0x00010000, AR5K_PHY(0x20));
1752
1753	if (ah->ah_version == AR5K_AR5210) {
1754		srev = ath5k_hw_reg_read(ah, AR5K_PHY(256) >> 28) & 0xf;
1755		ret = (u16)ath5k_hw_bitswap(srev, 4) + 1;
1756	} else {
1757		srev = (ath5k_hw_reg_read(ah, AR5K_PHY(0x100)) >> 24) & 0xff;
1758		ret = (u16)ath5k_hw_bitswap(((srev & 0xf0) >> 4) |
1759				((srev & 0x0f) << 4), 8);
1760	}
1761
1762	/* Reset to the 5GHz mode */
1763	ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
1764
1765	return ret;
1766}
1767
1768/*****************\
1769* Antenna control *
1770\*****************/
1771
1772void /*TODO:Boundary check*/
1773ath5k_hw_set_def_antenna(struct ath5k_hw *ah, u8 ant)
1774{
1775	ATH5K_TRACE(ah->ah_sc);
1776
1777	if (ah->ah_version != AR5K_AR5210)
1778		ath5k_hw_reg_write(ah, ant & 0x7, AR5K_DEFAULT_ANTENNA);
1779}
1780
1781unsigned int ath5k_hw_get_def_antenna(struct ath5k_hw *ah)
1782{
1783	ATH5K_TRACE(ah->ah_sc);
1784
1785	if (ah->ah_version != AR5K_AR5210)
1786		return ath5k_hw_reg_read(ah, AR5K_DEFAULT_ANTENNA) & 0x7;
1787
1788	return false; /*XXX: What do we return for 5210 ?*/
1789}
1790
1791/*
1792 * Enable/disable fast rx antenna diversity
1793 */
1794static void
1795ath5k_hw_set_fast_div(struct ath5k_hw *ah, u8 ee_mode, bool enable)
1796{
1797	switch (ee_mode) {
1798	case AR5K_EEPROM_MODE_11G:
1799		/* XXX: This is set to
1800		 * disabled on initvals !!! */
1801	case AR5K_EEPROM_MODE_11A:
1802		if (enable)
1803			AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGCCTL,
1804					AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
1805		else
1806			AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
1807					AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
1808		break;
1809	case AR5K_EEPROM_MODE_11B:
1810		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
1811					AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
1812		break;
1813	default:
1814		return;
1815	}
1816
1817	if (enable) {
1818		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RESTART,
1819				AR5K_PHY_RESTART_DIV_GC, 0xc);
1820
1821		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_FAST_ANT_DIV,
1822					AR5K_PHY_FAST_ANT_DIV_EN);
1823	} else {
1824		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RESTART,
1825				AR5K_PHY_RESTART_DIV_GC, 0x8);
1826
1827		AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_FAST_ANT_DIV,
1828					AR5K_PHY_FAST_ANT_DIV_EN);
1829	}
1830}
1831
1832/*
1833 * Set antenna operating mode
1834 */
1835void
1836ath5k_hw_set_antenna_mode(struct ath5k_hw *ah, u8 ant_mode)
1837{
1838	struct ieee80211_channel *channel = ah->ah_current_channel;
1839	bool use_def_for_tx, update_def_on_tx, use_def_for_rts, fast_div;
1840	bool use_def_for_sg;
1841	u8 def_ant, tx_ant, ee_mode;
1842	u32 sta_id1 = 0;
1843
1844	def_ant = ah->ah_def_ant;
1845
1846	ATH5K_TRACE(ah->ah_sc);
1847
1848	switch (channel->hw_value & CHANNEL_MODES) {
1849	case CHANNEL_A:
1850	case CHANNEL_T:
1851	case CHANNEL_XR:
1852		ee_mode = AR5K_EEPROM_MODE_11A;
1853		break;
1854	case CHANNEL_G:
1855	case CHANNEL_TG:
1856		ee_mode = AR5K_EEPROM_MODE_11G;
1857		break;
1858	case CHANNEL_B:
1859		ee_mode = AR5K_EEPROM_MODE_11B;
1860		break;
1861	default:
1862		ATH5K_ERR(ah->ah_sc,
1863			"invalid channel: %d\n", channel->center_freq);
1864		return;
1865	}
1866
1867	switch (ant_mode) {
1868	case AR5K_ANTMODE_DEFAULT:
1869		tx_ant = 0;
1870		use_def_for_tx = false;
1871		update_def_on_tx = false;
1872		use_def_for_rts = false;
1873		use_def_for_sg = false;
1874		fast_div = true;
1875		break;
1876	case AR5K_ANTMODE_FIXED_A:
1877		def_ant = 1;
1878		tx_ant = 1;
1879		use_def_for_tx = true;
1880		update_def_on_tx = false;
1881		use_def_for_rts = true;
1882		use_def_for_sg = true;
1883		fast_div = false;
1884		break;
1885	case AR5K_ANTMODE_FIXED_B:
1886		def_ant = 2;
1887		tx_ant = 2;
1888		use_def_for_tx = true;
1889		update_def_on_tx = false;
1890		use_def_for_rts = true;
1891		use_def_for_sg = true;
1892		fast_div = false;
1893		break;
1894	case AR5K_ANTMODE_SINGLE_AP:
1895		def_ant = 1;	/* updated on tx */
1896		tx_ant = 0;
1897		use_def_for_tx = true;
1898		update_def_on_tx = true;
1899		use_def_for_rts = true;
1900		use_def_for_sg = true;
1901		fast_div = true;
1902		break;
1903	case AR5K_ANTMODE_SECTOR_AP:
1904		tx_ant = 1;	/* variable */
1905		use_def_for_tx = false;
1906		update_def_on_tx = false;
1907		use_def_for_rts = true;
1908		use_def_for_sg = false;
1909		fast_div = false;
1910		break;
1911	case AR5K_ANTMODE_SECTOR_STA:
1912		tx_ant = 1;	/* variable */
1913		use_def_for_tx = true;
1914		update_def_on_tx = false;
1915		use_def_for_rts = true;
1916		use_def_for_sg = false;
1917		fast_div = true;
1918		break;
1919	case AR5K_ANTMODE_DEBUG:
1920		def_ant = 1;
1921		tx_ant = 2;
1922		use_def_for_tx = false;
1923		update_def_on_tx = false;
1924		use_def_for_rts = false;
1925		use_def_for_sg = false;
1926		fast_div = false;
1927		break;
1928	default:
1929		return;
1930	}
1931
1932	ah->ah_tx_ant = tx_ant;
1933	ah->ah_ant_mode = ant_mode;
1934
1935	sta_id1 |= use_def_for_tx ? AR5K_STA_ID1_DEFAULT_ANTENNA : 0;
1936	sta_id1 |= update_def_on_tx ? AR5K_STA_ID1_DESC_ANTENNA : 0;
1937	sta_id1 |= use_def_for_rts ? AR5K_STA_ID1_RTS_DEF_ANTENNA : 0;
1938	sta_id1 |= use_def_for_sg ? AR5K_STA_ID1_SELFGEN_DEF_ANT : 0;
1939
1940	AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1, AR5K_STA_ID1_ANTENNA_SETTINGS);
1941
1942	if (sta_id1)
1943		AR5K_REG_ENABLE_BITS(ah, AR5K_STA_ID1, sta_id1);
1944
1945	/* Note: set diversity before default antenna
1946	 * because it won't work correctly */
1947	ath5k_hw_set_fast_div(ah, ee_mode, fast_div);
1948	ath5k_hw_set_def_antenna(ah, def_ant);
1949}
1950
1951
1952/****************\
1953* TX power setup *
1954\****************/
1955
1956/*
1957 * Helper functions
1958 */
1959
1960/*
1961 * Do linear interpolation between two given (x, y) points
1962 */
1963static s16
1964ath5k_get_interpolated_value(s16 target, s16 x_left, s16 x_right,
1965					s16 y_left, s16 y_right)
1966{
1967	s16 ratio, result;
1968
1969	/* Avoid divide by zero and skip interpolation
1970	 * if we have the same point */
1971	if ((x_left == x_right) || (y_left == y_right))
1972		return y_left;
1973
1974	/*
1975	 * Since we use ints and not fps, we need to scale up in
1976	 * order to get a sane ratio value (or else we 'll eg. get
1977	 * always 1 instead of 1.25, 1.75 etc). We scale up by 100
1978	 * to have some accuracy both for 0.5 and 0.25 steps.
1979	 */
1980	ratio = ((100 * y_right - 100 * y_left)/(x_right - x_left));
1981
1982	/* Now scale down to be in range */
1983	result = y_left + (ratio * (target - x_left) / 100);
1984
1985	return result;
1986}
1987
1988/*
1989 * Find vertical boundary (min pwr) for the linear PCDAC curve.
1990 *
1991 * Since we have the top of the curve and we draw the line below
1992 * until we reach 1 (1 pcdac step) we need to know which point
1993 * (x value) that is so that we don't go below y axis and have negative
1994 * pcdac values when creating the curve, or fill the table with zeroes.
1995 */
1996static s16
1997ath5k_get_linear_pcdac_min(const u8 *stepL, const u8 *stepR,
1998				const s16 *pwrL, const s16 *pwrR)
1999{
2000	s8 tmp;
2001	s16 min_pwrL, min_pwrR;
2002	s16 pwr_i;
2003
2004	/* Some vendors write the same pcdac value twice !!! */
2005	if (stepL[0] == stepL[1] || stepR[0] == stepR[1])
2006		return max(pwrL[0], pwrR[0]);
2007
2008	if (pwrL[0] == pwrL[1])
2009		min_pwrL = pwrL[0];
2010	else {
2011		pwr_i = pwrL[0];
2012		do {
2013			pwr_i--;
2014			tmp = (s8) ath5k_get_interpolated_value(pwr_i,
2015							pwrL[0], pwrL[1],
2016							stepL[0], stepL[1]);
2017		} while (tmp > 1);
2018
2019		min_pwrL = pwr_i;
2020	}
2021
2022	if (pwrR[0] == pwrR[1])
2023		min_pwrR = pwrR[0];
2024	else {
2025		pwr_i = pwrR[0];
2026		do {
2027			pwr_i--;
2028			tmp = (s8) ath5k_get_interpolated_value(pwr_i,
2029							pwrR[0], pwrR[1],
2030							stepR[0], stepR[1]);
2031		} while (tmp > 1);
2032
2033		min_pwrR = pwr_i;
2034	}
2035
2036	/* Keep the right boundary so that it works for both curves */
2037	return max(min_pwrL, min_pwrR);
2038}
2039
2040/*
2041 * Interpolate (pwr,vpd) points to create a Power to PDADC or a
2042 * Power to PCDAC curve.
2043 *
2044 * Each curve has power on x axis (in 0.5dB units) and PCDAC/PDADC
2045 * steps (offsets) on y axis. Power can go up to 31.5dB and max
2046 * PCDAC/PDADC step for each curve is 64 but we can write more than
2047 * one curves on hw so we can go up to 128 (which is the max step we
2048 * can write on the final table).
2049 *
2050 * We write y values (PCDAC/PDADC steps) on hw.
2051 */
2052static void
2053ath5k_create_power_curve(s16 pmin, s16 pmax,
2054			const s16 *pwr, const u8 *vpd,
2055			u8 num_points,
2056			u8 *vpd_table, u8 type)
2057{
2058	u8 idx[2] = { 0, 1 };
2059	s16 pwr_i = 2*pmin;
2060	int i;
2061
2062	if (num_points < 2)
2063		return;
2064
2065	/* We want the whole line, so adjust boundaries
2066	 * to cover the entire power range. Note that
2067	 * power values are already 0.25dB so no need
2068	 * to multiply pwr_i by 2 */
2069	if (type == AR5K_PWRTABLE_LINEAR_PCDAC) {
2070		pwr_i = pmin;
2071		pmin = 0;
2072		pmax = 63;
2073	}
2074
2075	/* Find surrounding turning points (TPs)
2076	 * and interpolate between them */
2077	for (i = 0; (i <= (u16) (pmax - pmin)) &&
2078	(i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) {
2079
2080		/* We passed the right TP, move to the next set of TPs
2081		 * if we pass the last TP, extrapolate above using the last
2082		 * two TPs for ratio */
2083		if ((pwr_i > pwr[idx[1]]) && (idx[1] < num_points - 1)) {
2084			idx[0]++;
2085			idx[1]++;
2086		}
2087
2088		vpd_table[i] = (u8) ath5k_get_interpolated_value(pwr_i,
2089						pwr[idx[0]], pwr[idx[1]],
2090						vpd[idx[0]], vpd[idx[1]]);
2091
2092		/* Increase by 0.5dB
2093		 * (0.25 dB units) */
2094		pwr_i += 2;
2095	}
2096}
2097
2098/*
2099 * Get the surrounding per-channel power calibration piers
2100 * for a given frequency so that we can interpolate between
2101 * them and come up with an apropriate dataset for our current
2102 * channel.
2103 */
2104static void
2105ath5k_get_chan_pcal_surrounding_piers(struct ath5k_hw *ah,
2106			struct ieee80211_channel *channel,
2107			struct ath5k_chan_pcal_info **pcinfo_l,
2108			struct ath5k_chan_pcal_info **pcinfo_r)
2109{
2110	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2111	struct ath5k_chan_pcal_info *pcinfo;
2112	u8 idx_l, idx_r;
2113	u8 mode, max, i;
2114	u32 target = channel->center_freq;
2115
2116	idx_l = 0;
2117	idx_r = 0;
2118
2119	if (!(channel->hw_value & CHANNEL_OFDM)) {
2120		pcinfo = ee->ee_pwr_cal_b;
2121		mode = AR5K_EEPROM_MODE_11B;
2122	} else if (channel->hw_value & CHANNEL_2GHZ) {
2123		pcinfo = ee->ee_pwr_cal_g;
2124		mode = AR5K_EEPROM_MODE_11G;
2125	} else {
2126		pcinfo = ee->ee_pwr_cal_a;
2127		mode = AR5K_EEPROM_MODE_11A;
2128	}
2129	max = ee->ee_n_piers[mode] - 1;
2130
2131	/* Frequency is below our calibrated
2132	 * range. Use the lowest power curve
2133	 * we have */
2134	if (target < pcinfo[0].freq) {
2135		idx_l = idx_r = 0;
2136		goto done;
2137	}
2138
2139	/* Frequency is above our calibrated
2140	 * range. Use the highest power curve
2141	 * we have */
2142	if (target > pcinfo[max].freq) {
2143		idx_l = idx_r = max;
2144		goto done;
2145	}
2146
2147	/* Frequency is inside our calibrated
2148	 * channel range. Pick the surrounding
2149	 * calibration piers so that we can
2150	 * interpolate */
2151	for (i = 0; i <= max; i++) {
2152
2153		/* Frequency matches one of our calibration
2154		 * piers, no need to interpolate, just use
2155		 * that calibration pier */
2156		if (pcinfo[i].freq == target) {
2157			idx_l = idx_r = i;
2158			goto done;
2159		}
2160
2161		/* We found a calibration pier that's above
2162		 * frequency, use this pier and the previous
2163		 * one to interpolate */
2164		if (target < pcinfo[i].freq) {
2165			idx_r = i;
2166			idx_l = idx_r - 1;
2167			goto done;
2168		}
2169	}
2170
2171done:
2172	*pcinfo_l = &pcinfo[idx_l];
2173	*pcinfo_r = &pcinfo[idx_r];
2174
2175	return;
2176}
2177
2178/*
2179 * Get the surrounding per-rate power calibration data
2180 * for a given frequency and interpolate between power
2181 * values to set max target power supported by hw for
2182 * each rate.
2183 */
2184static void
2185ath5k_get_rate_pcal_data(struct ath5k_hw *ah,
2186			struct ieee80211_channel *channel,
2187			struct ath5k_rate_pcal_info *rates)
2188{
2189	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2190	struct ath5k_rate_pcal_info *rpinfo;
2191	u8 idx_l, idx_r;
2192	u8 mode, max, i;
2193	u32 target = channel->center_freq;
2194
2195	idx_l = 0;
2196	idx_r = 0;
2197
2198	if (!(channel->hw_value & CHANNEL_OFDM)) {
2199		rpinfo = ee->ee_rate_tpwr_b;
2200		mode = AR5K_EEPROM_MODE_11B;
2201	} else if (channel->hw_value & CHANNEL_2GHZ) {
2202		rpinfo = ee->ee_rate_tpwr_g;
2203		mode = AR5K_EEPROM_MODE_11G;
2204	} else {
2205		rpinfo = ee->ee_rate_tpwr_a;
2206		mode = AR5K_EEPROM_MODE_11A;
2207	}
2208	max = ee->ee_rate_target_pwr_num[mode] - 1;
2209
2210	/* Get the surrounding calibration
2211	 * piers - same as above */
2212	if (target < rpinfo[0].freq) {
2213		idx_l = idx_r = 0;
2214		goto done;
2215	}
2216
2217	if (target > rpinfo[max].freq) {
2218		idx_l = idx_r = max;
2219		goto done;
2220	}
2221
2222	for (i = 0; i <= max; i++) {
2223
2224		if (rpinfo[i].freq == target) {
2225			idx_l = idx_r = i;
2226			goto done;
2227		}
2228
2229		if (target < rpinfo[i].freq) {
2230			idx_r = i;
2231			idx_l = idx_r - 1;
2232			goto done;
2233		}
2234	}
2235
2236done:
2237	/* Now interpolate power value, based on the frequency */
2238	rates->freq = target;
2239
2240	rates->target_power_6to24 =
2241		ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2242					rpinfo[idx_r].freq,
2243					rpinfo[idx_l].target_power_6to24,
2244					rpinfo[idx_r].target_power_6to24);
2245
2246	rates->target_power_36 =
2247		ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2248					rpinfo[idx_r].freq,
2249					rpinfo[idx_l].target_power_36,
2250					rpinfo[idx_r].target_power_36);
2251
2252	rates->target_power_48 =
2253		ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2254					rpinfo[idx_r].freq,
2255					rpinfo[idx_l].target_power_48,
2256					rpinfo[idx_r].target_power_48);
2257
2258	rates->target_power_54 =
2259		ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2260					rpinfo[idx_r].freq,
2261					rpinfo[idx_l].target_power_54,
2262					rpinfo[idx_r].target_power_54);
2263}
2264
2265/*
2266 * Get the max edge power for this channel if
2267 * we have such data from EEPROM's Conformance Test
2268 * Limits (CTL), and limit max power if needed.
2269 */
2270static void
2271ath5k_get_max_ctl_power(struct ath5k_hw *ah,
2272			struct ieee80211_channel *channel)
2273{
2274	struct ath_regulatory *regulatory = ath5k_hw_regulatory(ah);
2275	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2276	struct ath5k_edge_power *rep = ee->ee_ctl_pwr;
2277	u8 *ctl_val = ee->ee_ctl;
2278	s16 max_chan_pwr = ah->ah_txpower.txp_max_pwr / 4;
2279	s16 edge_pwr = 0;
2280	u8 rep_idx;
2281	u8 i, ctl_mode;
2282	u8 ctl_idx = 0xFF;
2283	u32 target = channel->center_freq;
2284
2285	ctl_mode = ath_regd_get_band_ctl(regulatory, channel->band);
2286
2287	switch (channel->hw_value & CHANNEL_MODES) {
2288	case CHANNEL_A:
2289		ctl_mode |= AR5K_CTL_11A;
2290		break;
2291	case CHANNEL_G:
2292		ctl_mode |= AR5K_CTL_11G;
2293		break;
2294	case CHANNEL_B:
2295		ctl_mode |= AR5K_CTL_11B;
2296		break;
2297	case CHANNEL_T:
2298		ctl_mode |= AR5K_CTL_TURBO;
2299		break;
2300	case CHANNEL_TG:
2301		ctl_mode |= AR5K_CTL_TURBOG;
2302		break;
2303	case CHANNEL_XR:
2304		/* Fall through */
2305	default:
2306		return;
2307	}
2308
2309	for (i = 0; i < ee->ee_ctls; i++) {
2310		if (ctl_val[i] == ctl_mode) {
2311			ctl_idx = i;
2312			break;
2313		}
2314	}
2315
2316	/* If we have a CTL dataset available grab it and find the
2317	 * edge power for our frequency */
2318	if (ctl_idx == 0xFF)
2319		return;
2320
2321	/* Edge powers are sorted by frequency from lower
2322	 * to higher. Each CTL corresponds to 8 edge power
2323	 * measurements. */
2324	rep_idx = ctl_idx * AR5K_EEPROM_N_EDGES;
2325
2326	/* Don't do boundaries check because we
2327	 * might have more that one bands defined
2328	 * for this mode */
2329
2330	/* Get the edge power that's closer to our
2331	 * frequency */
2332	for (i = 0; i < AR5K_EEPROM_N_EDGES; i++) {
2333		rep_idx += i;
2334		if (target <= rep[rep_idx].freq)
2335			edge_pwr = (s16) rep[rep_idx].edge;
2336	}
2337
2338	if (edge_pwr)
2339		ah->ah_txpower.txp_max_pwr = 4*min(edge_pwr, max_chan_pwr);
2340}
2341
2342
2343/*
2344 * Power to PCDAC table functions
2345 */
2346
2347/*
2348 * Fill Power to PCDAC table on RF5111
2349 *
2350 * No further processing is needed for RF5111, the only thing we have to
2351 * do is fill the values below and above calibration range since eeprom data
2352 * may not cover the entire PCDAC table.
2353 */
2354static void
2355ath5k_fill_pwr_to_pcdac_table(struct ath5k_hw *ah, s16* table_min,
2356							s16 *table_max)
2357{
2358	u8 	*pcdac_out = ah->ah_txpower.txp_pd_table;
2359	u8	*pcdac_tmp = ah->ah_txpower.tmpL[0];
2360	u8	pcdac_0, pcdac_n, pcdac_i, pwr_idx, i;
2361	s16	min_pwr, max_pwr;
2362
2363	/* Get table boundaries */
2364	min_pwr = table_min[0];
2365	pcdac_0 = pcdac_tmp[0];
2366
2367	max_pwr = table_max[0];
2368	pcdac_n = pcdac_tmp[table_max[0] - table_min[0]];
2369
2370	/* Extrapolate below minimum using pcdac_0 */
2371	pcdac_i = 0;
2372	for (i = 0; i < min_pwr; i++)
2373		pcdac_out[pcdac_i++] = pcdac_0;
2374
2375	/* Copy values from pcdac_tmp */
2376	pwr_idx = min_pwr;
2377	for (i = 0 ; pwr_idx <= max_pwr &&
2378	pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE; i++) {
2379		pcdac_out[pcdac_i++] = pcdac_tmp[i];
2380		pwr_idx++;
2381	}
2382
2383	/* Extrapolate above maximum */
2384	while (pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE)
2385		pcdac_out[pcdac_i++] = pcdac_n;
2386
2387}
2388
2389/*
2390 * Combine available XPD Curves and fill Linear Power to PCDAC table
2391 * on RF5112
2392 *
2393 * RFX112 can have up to 2 curves (one for low txpower range and one for
2394 * higher txpower range). We need to put them both on pcdac_out and place
2395 * them in the correct location. In case we only have one curve available
2396 * just fit it on pcdac_out (it's supposed to cover the entire range of
2397 * available pwr levels since it's always the higher power curve). Extrapolate
2398 * below and above final table if needed.
2399 */
2400static void
2401ath5k_combine_linear_pcdac_curves(struct ath5k_hw *ah, s16* table_min,
2402						s16 *table_max, u8 pdcurves)
2403{
2404	u8 	*pcdac_out = ah->ah_txpower.txp_pd_table;
2405	u8	*pcdac_low_pwr;
2406	u8	*pcdac_high_pwr;
2407	u8	*pcdac_tmp;
2408	u8	pwr;
2409	s16	max_pwr_idx;
2410	s16	min_pwr_idx;
2411	s16	mid_pwr_idx = 0;
2412	/* Edge flag turs on the 7nth bit on the PCDAC
2413	 * to delcare the higher power curve (force values
2414	 * to be greater than 64). If we only have one curve
2415	 * we don't need to set this, if we have 2 curves and
2416	 * fill the table backwards this can also be used to
2417	 * switch from higher power curve to lower power curve */
2418	u8	edge_flag;
2419	int	i;
2420
2421	/* When we have only one curve available
2422	 * that's the higher power curve. If we have
2423	 * two curves the first is the high power curve
2424	 * and the next is the low power curve. */
2425	if (pdcurves > 1) {
2426		pcdac_low_pwr = ah->ah_txpower.tmpL[1];
2427		pcdac_high_pwr = ah->ah_txpower.tmpL[0];
2428		mid_pwr_idx = table_max[1] - table_min[1] - 1;
2429		max_pwr_idx = (table_max[0] - table_min[0]) / 2;
2430
2431		/* If table size goes beyond 31.5dB, keep the
2432		 * upper 31.5dB range when setting tx power.
2433		 * Note: 126 = 31.5 dB in quarter dB steps */
2434		if (table_max[0] - table_min[1] > 126)
2435			min_pwr_idx = table_max[0] - 126;
2436		else
2437			min_pwr_idx = table_min[1];
2438
2439		/* Since we fill table backwards
2440		 * start from high power curve */
2441		pcdac_tmp = pcdac_high_pwr;
2442
2443		edge_flag = 0x40;
2444#if 0
2445		/* If both min and max power limits are in lower
2446		 * power curve's range, only use the low power curve.
2447		 * TODO: min/max levels are related to target
2448		 * power values requested from driver/user
2449		 * XXX: Is this really needed ? */
2450		if (min_pwr < table_max[1] &&
2451		max_pwr < table_max[1]) {
2452			edge_flag = 0;
2453			pcdac_tmp = pcdac_low_pwr;
2454			max_pwr_idx = (table_max[1] - table_min[1])/2;
2455		}
2456#endif
2457	} else {
2458		pcdac_low_pwr = ah->ah_txpower.tmpL[1]; /* Zeroed */
2459		pcdac_high_pwr = ah->ah_txpower.tmpL[0];
2460		min_pwr_idx = table_min[0];
2461		max_pwr_idx = (table_max[0] - table_min[0]) / 2;
2462		pcdac_tmp = pcdac_high_pwr;
2463		edge_flag = 0;
2464	}
2465
2466	/* This is used when setting tx power*/
2467	ah->ah_txpower.txp_min_idx = min_pwr_idx/2;
2468
2469	/* Fill Power to PCDAC table backwards */
2470	pwr = max_pwr_idx;
2471	for (i = 63; i >= 0; i--) {
2472		/* Entering lower power range, reset
2473		 * edge flag and set pcdac_tmp to lower
2474		 * power curve.*/
2475		if (edge_flag == 0x40 &&
2476		(2*pwr <= (table_max[1] - table_min[0]) || pwr == 0)) {
2477			edge_flag = 0x00;
2478			pcdac_tmp = pcdac_low_pwr;
2479			pwr = mid_pwr_idx/2;
2480		}
2481
2482		/* Don't go below 1, extrapolate below if we have
2483		 * already swithced to the lower power curve -or
2484		 * we only have one curve and edge_flag is zero
2485		 * anyway */
2486		if (pcdac_tmp[pwr] < 1 && (edge_flag == 0x00)) {
2487			while (i >= 0) {
2488				pcdac_out[i] = pcdac_out[i + 1];
2489				i--;
2490			}
2491			break;
2492		}
2493
2494		pcdac_out[i] = pcdac_tmp[pwr] | edge_flag;
2495
2496		/* Extrapolate above if pcdac is greater than
2497		 * 126 -this can happen because we OR pcdac_out
2498		 * value with edge_flag on high power curve */
2499		if (pcdac_out[i] > 126)
2500			pcdac_out[i] = 126;
2501
2502		/* Decrease by a 0.5dB step */
2503		pwr--;
2504	}
2505}
2506
2507/* Write PCDAC values on hw */
2508static void
2509ath5k_setup_pcdac_table(struct ath5k_hw *ah)
2510{
2511	u8 	*pcdac_out = ah->ah_txpower.txp_pd_table;
2512	int	i;
2513
2514	/*
2515	 * Write TX power values
2516	 */
2517	for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) {
2518		ath5k_hw_reg_write(ah,
2519			(((pcdac_out[2*i + 0] << 8 | 0xff) & 0xffff) << 0) |
2520			(((pcdac_out[2*i + 1] << 8 | 0xff) & 0xffff) << 16),
2521			AR5K_PHY_PCDAC_TXPOWER(i));
2522	}
2523}
2524
2525
2526/*
2527 * Power to PDADC table functions
2528 */
2529
2530/*
2531 * Set the gain boundaries and create final Power to PDADC table
2532 *
2533 * We can have up to 4 pd curves, we need to do a simmilar process
2534 * as we do for RF5112. This time we don't have an edge_flag but we
2535 * set the gain boundaries on a separate register.
2536 */
2537static void
2538ath5k_combine_pwr_to_pdadc_curves(struct ath5k_hw *ah,
2539			s16 *pwr_min, s16 *pwr_max, u8 pdcurves)
2540{
2541	u8 gain_boundaries[AR5K_EEPROM_N_PD_GAINS];
2542	u8 *pdadc_out = ah->ah_txpower.txp_pd_table;
2543	u8 *pdadc_tmp;
2544	s16 pdadc_0;
2545	u8 pdadc_i, pdadc_n, pwr_step, pdg, max_idx, table_size;
2546	u8 pd_gain_overlap;
2547
2548	/* Note: Register value is initialized on initvals
2549	 * there is no feedback from hw.
2550	 * XXX: What about pd_gain_overlap from EEPROM ? */
2551	pd_gain_overlap = (u8) ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG5) &
2552		AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP;
2553
2554	/* Create final PDADC table */
2555	for (pdg = 0, pdadc_i = 0; pdg < pdcurves; pdg++) {
2556		pdadc_tmp = ah->ah_txpower.tmpL[pdg];
2557
2558		if (pdg == pdcurves - 1)
2559			/* 2 dB boundary stretch for last
2560			 * (higher power) curve */
2561			gain_boundaries[pdg] = pwr_max[pdg] + 4;
2562		else
2563			/* Set gain boundary in the middle
2564			 * between this curve and the next one */
2565			gain_boundaries[pdg] =
2566				(pwr_max[pdg] + pwr_min[pdg + 1]) / 2;
2567
2568		/* Sanity check in case our 2 db stretch got out of
2569		 * range. */
2570		if (gain_boundaries[pdg] > AR5K_TUNE_MAX_TXPOWER)
2571			gain_boundaries[pdg] = AR5K_TUNE_MAX_TXPOWER;
2572
2573		/* For the first curve (lower power)
2574		 * start from 0 dB */
2575		if (pdg == 0)
2576			pdadc_0 = 0;
2577		else
2578			/* For the other curves use the gain overlap */
2579			pdadc_0 = (gain_boundaries[pdg - 1] - pwr_min[pdg]) -
2580							pd_gain_overlap;
2581
2582		/* Force each power step to be at least 0.5 dB */
2583		if ((pdadc_tmp[1] - pdadc_tmp[0]) > 1)
2584			pwr_step = pdadc_tmp[1] - pdadc_tmp[0];
2585		else
2586			pwr_step = 1;
2587
2588		/* If pdadc_0 is negative, we need to extrapolate
2589		 * below this pdgain by a number of pwr_steps */
2590		while ((pdadc_0 < 0) && (pdadc_i < 128)) {
2591			s16 tmp = pdadc_tmp[0] + pdadc_0 * pwr_step;
2592			pdadc_out[pdadc_i++] = (tmp < 0) ? 0 : (u8) tmp;
2593			pdadc_0++;
2594		}
2595
2596		/* Set last pwr level, using gain boundaries */
2597		pdadc_n = gain_boundaries[pdg] + pd_gain_overlap - pwr_min[pdg];
2598		/* Limit it to be inside pwr range */
2599		table_size = pwr_max[pdg] - pwr_min[pdg];
2600		max_idx = (pdadc_n < table_size) ? pdadc_n : table_size;
2601
2602		/* Fill pdadc_out table */
2603		while (pdadc_0 < max_idx)
2604			pdadc_out[pdadc_i++] = pdadc_tmp[pdadc_0++];
2605
2606		/* Need to extrapolate above this pdgain? */
2607		if (pdadc_n <= max_idx)
2608			continue;
2609
2610		/* Force each power step to be at least 0.5 dB */
2611		if ((pdadc_tmp[table_size - 1] - pdadc_tmp[table_size - 2]) > 1)
2612			pwr_step = pdadc_tmp[table_size - 1] -
2613						pdadc_tmp[table_size - 2];
2614		else
2615			pwr_step = 1;
2616
2617		/* Extrapolate above */
2618		while ((pdadc_0 < (s16) pdadc_n) &&
2619		(pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2)) {
2620			s16 tmp = pdadc_tmp[table_size - 1] +
2621					(pdadc_0 - max_idx) * pwr_step;
2622			pdadc_out[pdadc_i++] = (tmp > 127) ? 127 : (u8) tmp;
2623			pdadc_0++;
2624		}
2625	}
2626
2627	while (pdg < AR5K_EEPROM_N_PD_GAINS) {
2628		gain_boundaries[pdg] = gain_boundaries[pdg - 1];
2629		pdg++;
2630	}
2631
2632	while (pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2) {
2633		pdadc_out[pdadc_i] = pdadc_out[pdadc_i - 1];
2634		pdadc_i++;
2635	}
2636
2637	/* Set gain boundaries */
2638	ath5k_hw_reg_write(ah,
2639		AR5K_REG_SM(pd_gain_overlap,
2640			AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP) |
2641		AR5K_REG_SM(gain_boundaries[0],
2642			AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_1) |
2643		AR5K_REG_SM(gain_boundaries[1],
2644			AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_2) |
2645		AR5K_REG_SM(gain_boundaries[2],
2646			AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_3) |
2647		AR5K_REG_SM(gain_boundaries[3],
2648			AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_4),
2649		AR5K_PHY_TPC_RG5);
2650
2651	/* Used for setting rate power table */
2652	ah->ah_txpower.txp_min_idx = pwr_min[0];
2653
2654}
2655
2656/* Write PDADC values on hw */
2657static void
2658ath5k_setup_pwr_to_pdadc_table(struct ath5k_hw *ah,
2659			u8 pdcurves, u8 *pdg_to_idx)
2660{
2661	u8 *pdadc_out = ah->ah_txpower.txp_pd_table;
2662	u32 reg;
2663	u8 i;
2664
2665	/* Select the right pdgain curves */
2666
2667	/* Clear current settings */
2668	reg = ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG1);
2669	reg &= ~(AR5K_PHY_TPC_RG1_PDGAIN_1 |
2670		AR5K_PHY_TPC_RG1_PDGAIN_2 |
2671		AR5K_PHY_TPC_RG1_PDGAIN_3 |
2672		AR5K_PHY_TPC_RG1_NUM_PD_GAIN);
2673
2674	/*
2675	 * Use pd_gains curve from eeprom
2676	 *
2677	 * This overrides the default setting from initvals
2678	 * in case some vendors (e.g. Zcomax) don't use the default
2679	 * curves. If we don't honor their settings we 'll get a
2680	 * 5dB (1 * gain overlap ?) drop.
2681	 */
2682	reg |= AR5K_REG_SM(pdcurves, AR5K_PHY_TPC_RG1_NUM_PD_GAIN);
2683
2684	switch (pdcurves) {
2685	case 3:
2686		reg |= AR5K_REG_SM(pdg_to_idx[2], AR5K_PHY_TPC_RG1_PDGAIN_3);
2687		/* Fall through */
2688	case 2:
2689		reg |= AR5K_REG_SM(pdg_to_idx[1], AR5K_PHY_TPC_RG1_PDGAIN_2);
2690		/* Fall through */
2691	case 1:
2692		reg |= AR5K_REG_SM(pdg_to_idx[0], AR5K_PHY_TPC_RG1_PDGAIN_1);
2693		break;
2694	}
2695	ath5k_hw_reg_write(ah, reg, AR5K_PHY_TPC_RG1);
2696
2697	/*
2698	 * Write TX power values
2699	 */
2700	for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) {
2701		ath5k_hw_reg_write(ah,
2702			((pdadc_out[4*i + 0] & 0xff) << 0) |
2703			((pdadc_out[4*i + 1] & 0xff) << 8) |
2704			((pdadc_out[4*i + 2] & 0xff) << 16) |
2705			((pdadc_out[4*i + 3] & 0xff) << 24),
2706			AR5K_PHY_PDADC_TXPOWER(i));
2707	}
2708}
2709
2710
2711/*
2712 * Common code for PCDAC/PDADC tables
2713 */
2714
2715/*
2716 * This is the main function that uses all of the above
2717 * to set PCDAC/PDADC table on hw for the current channel.
2718 * This table is used for tx power calibration on the basband,
2719 * without it we get weird tx power levels and in some cases
2720 * distorted spectral mask
2721 */
2722static int
2723ath5k_setup_channel_powertable(struct ath5k_hw *ah,
2724			struct ieee80211_channel *channel,
2725			u8 ee_mode, u8 type)
2726{
2727	struct ath5k_pdgain_info *pdg_L, *pdg_R;
2728	struct ath5k_chan_pcal_info *pcinfo_L;
2729	struct ath5k_chan_pcal_info *pcinfo_R;
2730	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2731	u8 *pdg_curve_to_idx = ee->ee_pdc_to_idx[ee_mode];
2732	s16 table_min[AR5K_EEPROM_N_PD_GAINS];
2733	s16 table_max[AR5K_EEPROM_N_PD_GAINS];
2734	u8 *tmpL;
2735	u8 *tmpR;
2736	u32 target = channel->center_freq;
2737	int pdg, i;
2738
2739	/* Get surounding freq piers for this channel */
2740	ath5k_get_chan_pcal_surrounding_piers(ah, channel,
2741						&pcinfo_L,
2742						&pcinfo_R);
2743
2744	/* Loop over pd gain curves on
2745	 * surounding freq piers by index */
2746	for (pdg = 0; pdg < ee->ee_pd_gains[ee_mode]; pdg++) {
2747
2748		/* Fill curves in reverse order
2749		 * from lower power (max gain)
2750		 * to higher power. Use curve -> idx
2751		 * backmapping we did on eeprom init */
2752		u8 idx = pdg_curve_to_idx[pdg];
2753
2754		/* Grab the needed curves by index */
2755		pdg_L = &pcinfo_L->pd_curves[idx];
2756		pdg_R = &pcinfo_R->pd_curves[idx];
2757
2758		/* Initialize the temp tables */
2759		tmpL = ah->ah_txpower.tmpL[pdg];
2760		tmpR = ah->ah_txpower.tmpR[pdg];
2761
2762		/* Set curve's x boundaries and create
2763		 * curves so that they cover the same
2764		 * range (if we don't do that one table
2765		 * will have values on some range and the
2766		 * other one won't have any so interpolation
2767		 * will fail) */
2768		table_min[pdg] = min(pdg_L->pd_pwr[0],
2769					pdg_R->pd_pwr[0]) / 2;
2770
2771		table_max[pdg] = max(pdg_L->pd_pwr[pdg_L->pd_points - 1],
2772				pdg_R->pd_pwr[pdg_R->pd_points - 1]) / 2;
2773
2774		/* Now create the curves on surrounding channels
2775		 * and interpolate if needed to get the final
2776		 * curve for this gain on this channel */
2777		switch (type) {
2778		case AR5K_PWRTABLE_LINEAR_PCDAC:
2779			/* Override min/max so that we don't loose
2780			 * accuracy (don't divide by 2) */
2781			table_min[pdg] = min(pdg_L->pd_pwr[0],
2782						pdg_R->pd_pwr[0]);
2783
2784			table_max[pdg] =
2785				max(pdg_L->pd_pwr[pdg_L->pd_points - 1],
2786					pdg_R->pd_pwr[pdg_R->pd_points - 1]);
2787
2788			/* Override minimum so that we don't get
2789			 * out of bounds while extrapolating
2790			 * below. Don't do this when we have 2
2791			 * curves and we are on the high power curve
2792			 * because table_min is ok in this case */
2793			if (!(ee->ee_pd_gains[ee_mode] > 1 && pdg == 0)) {
2794
2795				table_min[pdg] =
2796					ath5k_get_linear_pcdac_min(pdg_L->pd_step,
2797								pdg_R->pd_step,
2798								pdg_L->pd_pwr,
2799								pdg_R->pd_pwr);
2800
2801				/* Don't go too low because we will
2802				 * miss the upper part of the curve.
2803				 * Note: 126 = 31.5dB (max power supported)
2804				 * in 0.25dB units */
2805				if (table_max[pdg] - table_min[pdg] > 126)
2806					table_min[pdg] = table_max[pdg] - 126;
2807			}
2808
2809			/* Fall through */
2810		case AR5K_PWRTABLE_PWR_TO_PCDAC:
2811		case AR5K_PWRTABLE_PWR_TO_PDADC:
2812
2813			ath5k_create_power_curve(table_min[pdg],
2814						table_max[pdg],
2815						pdg_L->pd_pwr,
2816						pdg_L->pd_step,
2817						pdg_L->pd_points, tmpL, type);
2818
2819			/* We are in a calibration
2820			 * pier, no need to interpolate
2821			 * between freq piers */
2822			if (pcinfo_L == pcinfo_R)
2823				continue;
2824
2825			ath5k_create_power_curve(table_min[pdg],
2826						table_max[pdg],
2827						pdg_R->pd_pwr,
2828						pdg_R->pd_step,
2829						pdg_R->pd_points, tmpR, type);
2830			break;
2831		default:
2832			return -EINVAL;
2833		}
2834
2835		/* Interpolate between curves
2836		 * of surounding freq piers to
2837		 * get the final curve for this
2838		 * pd gain. Re-use tmpL for interpolation
2839		 * output */
2840		for (i = 0; (i < (u16) (table_max[pdg] - table_min[pdg])) &&
2841		(i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) {
2842			tmpL[i] = (u8) ath5k_get_interpolated_value(target,
2843							(s16) pcinfo_L->freq,
2844							(s16) pcinfo_R->freq,
2845							(s16) tmpL[i],
2846							(s16) tmpR[i]);
2847		}
2848	}
2849
2850	/* Now we have a set of curves for this
2851	 * channel on tmpL (x range is table_max - table_min
2852	 * and y values are tmpL[pdg][]) sorted in the same
2853	 * order as EEPROM (because we've used the backmapping).
2854	 * So for RF5112 it's from higher power to lower power
2855	 * and for RF2413 it's from lower power to higher power.
2856	 * For RF5111 we only have one curve. */
2857
2858	/* Fill min and max power levels for this
2859	 * channel by interpolating the values on
2860	 * surounding channels to complete the dataset */
2861	ah->ah_txpower.txp_min_pwr = ath5k_get_interpolated_value(target,
2862					(s16) pcinfo_L->freq,
2863					(s16) pcinfo_R->freq,
2864					pcinfo_L->min_pwr, pcinfo_R->min_pwr);
2865
2866	ah->ah_txpower.txp_max_pwr = ath5k_get_interpolated_value(target,
2867					(s16) pcinfo_L->freq,
2868					(s16) pcinfo_R->freq,
2869					pcinfo_L->max_pwr, pcinfo_R->max_pwr);
2870
2871	/* We are ready to go, fill PCDAC/PDADC
2872	 * table and write settings on hardware */
2873	switch (type) {
2874	case AR5K_PWRTABLE_LINEAR_PCDAC:
2875		/* For RF5112 we can have one or two curves
2876		 * and each curve covers a certain power lvl
2877		 * range so we need to do some more processing */
2878		ath5k_combine_linear_pcdac_curves(ah, table_min, table_max,
2879						ee->ee_pd_gains[ee_mode]);
2880
2881		/* Set txp.offset so that we can
2882		 * match max power value with max
2883		 * table index */
2884		ah->ah_txpower.txp_offset = 64 - (table_max[0] / 2);
2885
2886		/* Write settings on hw */
2887		ath5k_setup_pcdac_table(ah);
2888		break;
2889	case AR5K_PWRTABLE_PWR_TO_PCDAC:
2890		/* We are done for RF5111 since it has only
2891		 * one curve, just fit the curve on the table */
2892		ath5k_fill_pwr_to_pcdac_table(ah, table_min, table_max);
2893
2894		/* No rate powertable adjustment for RF5111 */
2895		ah->ah_txpower.txp_min_idx = 0;
2896		ah->ah_txpower.txp_offset = 0;
2897
2898		/* Write settings on hw */
2899		ath5k_setup_pcdac_table(ah);
2900		break;
2901	case AR5K_PWRTABLE_PWR_TO_PDADC:
2902		/* Set PDADC boundaries and fill
2903		 * final PDADC table */
2904		ath5k_combine_pwr_to_pdadc_curves(ah, table_min, table_max,
2905						ee->ee_pd_gains[ee_mode]);
2906
2907		/* Write settings on hw */
2908		ath5k_setup_pwr_to_pdadc_table(ah, pdg, pdg_curve_to_idx);
2909
2910		/* Set txp.offset, note that table_min
2911		 * can be negative */
2912		ah->ah_txpower.txp_offset = table_min[0];
2913		break;
2914	default:
2915		return -EINVAL;
2916	}
2917
2918	return 0;
2919}
2920
2921
2922/*
2923 * Per-rate tx power setting
2924 *
2925 * This is the code that sets the desired tx power (below
2926 * maximum) on hw for each rate (we also have TPC that sets
2927 * power per packet). We do that by providing an index on the
2928 * PCDAC/PDADC table we set up.
2929 */
2930
2931/*
2932 * Set rate power table
2933 *
2934 * For now we only limit txpower based on maximum tx power
2935 * supported by hw (what's inside rate_info). We need to limit
2936 * this even more, based on regulatory domain etc.
2937 *
2938 * Rate power table contains indices to PCDAC/PDADC table (0.5dB steps)
2939 * and is indexed as follows:
2940 * rates[0] - rates[7] -> OFDM rates
2941 * rates[8] - rates[14] -> CCK rates
2942 * rates[15] -> XR rates (they all have the same power)
2943 */
2944static void
2945ath5k_setup_rate_powertable(struct ath5k_hw *ah, u16 max_pwr,
2946			struct ath5k_rate_pcal_info *rate_info,
2947			u8 ee_mode)
2948{
2949	unsigned int i;
2950	u16 *rates;
2951
2952	/* max_pwr is power level we got from driver/user in 0.5dB
2953	 * units, switch to 0.25dB units so we can compare */
2954	max_pwr *= 2;
2955	max_pwr = min(max_pwr, (u16) ah->ah_txpower.txp_max_pwr) / 2;
2956
2957	/* apply rate limits */
2958	rates = ah->ah_txpower.txp_rates_power_table;
2959
2960	/* OFDM rates 6 to 24Mb/s */
2961	for (i = 0; i < 5; i++)
2962		rates[i] = min(max_pwr, rate_info->target_power_6to24);
2963
2964	/* Rest OFDM rates */
2965	rates[5] = min(rates[0], rate_info->target_power_36);
2966	rates[6] = min(rates[0], rate_info->target_power_48);
2967	rates[7] = min(rates[0], rate_info->target_power_54);
2968
2969	/* CCK rates */
2970	/* 1L */
2971	rates[8] = min(rates[0], rate_info->target_power_6to24);
2972	/* 2L */
2973	rates[9] = min(rates[0], rate_info->target_power_36);
2974	/* 2S */
2975	rates[10] = min(rates[0], rate_info->target_power_36);
2976	/* 5L */
2977	rates[11] = min(rates[0], rate_info->target_power_48);
2978	/* 5S */
2979	rates[12] = min(rates[0], rate_info->target_power_48);
2980	/* 11L */
2981	rates[13] = min(rates[0], rate_info->target_power_54);
2982	/* 11S */
2983	rates[14] = min(rates[0], rate_info->target_power_54);
2984
2985	/* XR rates */
2986	rates[15] = min(rates[0], rate_info->target_power_6to24);
2987
2988	/* CCK rates have different peak to average ratio
2989	 * so we have to tweak their power so that gainf
2990	 * correction works ok. For this we use OFDM to
2991	 * CCK delta from eeprom */
2992	if ((ee_mode == AR5K_EEPROM_MODE_11G) &&
2993	(ah->ah_phy_revision < AR5K_SREV_PHY_5212A))
2994		for (i = 8; i <= 15; i++)
2995			rates[i] -= ah->ah_txpower.txp_cck_ofdm_gainf_delta;
2996
2997	/* Now that we have all rates setup use table offset to
2998	 * match the power range set by user with the power indices
2999	 * on PCDAC/PDADC table */
3000	for (i = 0; i < 16; i++) {
3001		rates[i] += ah->ah_txpower.txp_offset;
3002		/* Don't get out of bounds */
3003		if (rates[i] > 63)
3004			rates[i] = 63;
3005	}
3006
3007	/* Min/max in 0.25dB units */
3008	ah->ah_txpower.txp_min_pwr = 2 * rates[7];
3009	ah->ah_txpower.txp_max_pwr = 2 * rates[0];
3010	ah->ah_txpower.txp_ofdm = rates[7];
3011}
3012
3013
3014/*
3015 * Set transmition power
3016 */
3017int
3018ath5k_hw_txpower(struct ath5k_hw *ah, struct ieee80211_channel *channel,
3019		u8 ee_mode, u8 txpower)
3020{
3021	struct ath5k_rate_pcal_info rate_info;
3022	u8 type;
3023	int ret;
3024
3025	ATH5K_TRACE(ah->ah_sc);
3026	if (txpower > AR5K_TUNE_MAX_TXPOWER) {
3027		ATH5K_ERR(ah->ah_sc, "invalid tx power: %u\n", txpower);
3028		return -EINVAL;
3029	}
3030
3031	/* Reset TX power values */
3032	memset(&ah->ah_txpower, 0, sizeof(ah->ah_txpower));
3033	ah->ah_txpower.txp_tpc = AR5K_TUNE_TPC_TXPOWER;
3034	ah->ah_txpower.txp_min_pwr = 0;
3035	ah->ah_txpower.txp_max_pwr = AR5K_TUNE_MAX_TXPOWER;
3036
3037	/* Initialize TX power table */
3038	switch (ah->ah_radio) {
3039	case AR5K_RF5111:
3040		type = AR5K_PWRTABLE_PWR_TO_PCDAC;
3041		break;
3042	case AR5K_RF5112:
3043		type = AR5K_PWRTABLE_LINEAR_PCDAC;
3044		break;
3045	case AR5K_RF2413:
3046	case AR5K_RF5413:
3047	case AR5K_RF2316:
3048	case AR5K_RF2317:
3049	case AR5K_RF2425:
3050		type = AR5K_PWRTABLE_PWR_TO_PDADC;
3051		break;
3052	default:
3053		return -EINVAL;
3054	}
3055
3056	/* FIXME: Only on channel/mode change */
3057	ret = ath5k_setup_channel_powertable(ah, channel, ee_mode, type);
3058	if (ret)
3059		return ret;
3060
3061	/* Limit max power if we have a CTL available */
3062	ath5k_get_max_ctl_power(ah, channel);
3063
3064	/* FIXME: Tx power limit for this regdomain
3065	 * XXX: Mac80211/CRDA will do that anyway ? */
3066
3067	/* FIXME: Antenna reduction stuff */
3068
3069	/* FIXME: Limit power on turbo modes */
3070
3071	/* FIXME: TPC scale reduction */
3072
3073	/* Get surounding channels for per-rate power table
3074	 * calibration */
3075	ath5k_get_rate_pcal_data(ah, channel, &rate_info);
3076
3077	/* Setup rate power table */
3078	ath5k_setup_rate_powertable(ah, txpower, &rate_info, ee_mode);
3079
3080	/* Write rate power table on hw */
3081	ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(3, 24) |
3082		AR5K_TXPOWER_OFDM(2, 16) | AR5K_TXPOWER_OFDM(1, 8) |
3083		AR5K_TXPOWER_OFDM(0, 0), AR5K_PHY_TXPOWER_RATE1);
3084
3085	ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(7, 24) |
3086		AR5K_TXPOWER_OFDM(6, 16) | AR5K_TXPOWER_OFDM(5, 8) |
3087		AR5K_TXPOWER_OFDM(4, 0), AR5K_PHY_TXPOWER_RATE2);
3088
3089	ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(10, 24) |
3090		AR5K_TXPOWER_CCK(9, 16) | AR5K_TXPOWER_CCK(15, 8) |
3091		AR5K_TXPOWER_CCK(8, 0), AR5K_PHY_TXPOWER_RATE3);
3092
3093	ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(14, 24) |
3094		AR5K_TXPOWER_CCK(13, 16) | AR5K_TXPOWER_CCK(12, 8) |
3095		AR5K_TXPOWER_CCK(11, 0), AR5K_PHY_TXPOWER_RATE4);
3096
3097	/* FIXME: TPC support */
3098	if (ah->ah_txpower.txp_tpc) {
3099		ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX_TPC_ENABLE |
3100			AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX);
3101
3102		ath5k_hw_reg_write(ah,
3103			AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_ACK) |
3104			AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CTS) |
3105			AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CHIRP),
3106			AR5K_TPC);
3107	} else {
3108		ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX |
3109			AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX);
3110	}
3111
3112	return 0;
3113}
3114
3115int ath5k_hw_set_txpower_limit(struct ath5k_hw *ah, u8 txpower)
3116{
3117	/*Just a try M.F.*/
3118	struct ieee80211_channel *channel = ah->ah_current_channel;
3119	u8 ee_mode;
3120
3121	ATH5K_TRACE(ah->ah_sc);
3122
3123	switch (channel->hw_value & CHANNEL_MODES) {
3124	case CHANNEL_A:
3125	case CHANNEL_T:
3126	case CHANNEL_XR:
3127		ee_mode = AR5K_EEPROM_MODE_11A;
3128		break;
3129	case CHANNEL_G:
3130	case CHANNEL_TG:
3131		ee_mode = AR5K_EEPROM_MODE_11G;
3132		break;
3133	case CHANNEL_B:
3134		ee_mode = AR5K_EEPROM_MODE_11B;
3135		break;
3136	default:
3137		ATH5K_ERR(ah->ah_sc,
3138			"invalid channel: %d\n", channel->center_freq);
3139		return -EINVAL;
3140	}
3141
3142	ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_TXPOWER,
3143		"changing txpower to %d\n", txpower);
3144
3145	return ath5k_hw_txpower(ah, channel, ee_mode, txpower);
3146}
3147
3148#undef _ATH5K_PHY
3149