ipw2200.c revision 33e2bf6aa16061bae1253514e7c32af27d2b4b31
1/******************************************************************************
2
3  Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved.
4
5  802.11 status code portion of this file from ethereal-0.10.6:
6    Copyright 2000, Axis Communications AB
7    Ethereal - Network traffic analyzer
8    By Gerald Combs <gerald@ethereal.com>
9    Copyright 1998 Gerald Combs
10
11  This program is free software; you can redistribute it and/or modify it
12  under the terms of version 2 of the GNU General Public License as
13  published by the Free Software Foundation.
14
15  This program is distributed in the hope that it will be useful, but WITHOUT
16  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
18  more details.
19
20  You should have received a copy of the GNU General Public License along with
21  this program; if not, write to the Free Software Foundation, Inc., 59
22  Temple Place - Suite 330, Boston, MA  02111-1307, USA.
23
24  The full GNU General Public License is included in this distribution in the
25  file called LICENSE.
26
27  Contact Information:
28  Intel Linux Wireless <ilw@linux.intel.com>
29  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
30
31******************************************************************************/
32
33#include <linux/sched.h>
34#include "ipw2200.h"
35
36
37#ifndef KBUILD_EXTMOD
38#define VK "k"
39#else
40#define VK
41#endif
42
43#ifdef CONFIG_IPW2200_DEBUG
44#define VD "d"
45#else
46#define VD
47#endif
48
49#ifdef CONFIG_IPW2200_MONITOR
50#define VM "m"
51#else
52#define VM
53#endif
54
55#ifdef CONFIG_IPW2200_PROMISCUOUS
56#define VP "p"
57#else
58#define VP
59#endif
60
61#ifdef CONFIG_IPW2200_RADIOTAP
62#define VR "r"
63#else
64#define VR
65#endif
66
67#ifdef CONFIG_IPW2200_QOS
68#define VQ "q"
69#else
70#define VQ
71#endif
72
73#define IPW2200_VERSION "1.2.2" VK VD VM VP VR VQ
74#define DRV_DESCRIPTION	"Intel(R) PRO/Wireless 2200/2915 Network Driver"
75#define DRV_COPYRIGHT	"Copyright(c) 2003-2006 Intel Corporation"
76#define DRV_VERSION     IPW2200_VERSION
77
78#define ETH_P_80211_STATS (ETH_P_80211_RAW + 1)
79
80MODULE_DESCRIPTION(DRV_DESCRIPTION);
81MODULE_VERSION(DRV_VERSION);
82MODULE_AUTHOR(DRV_COPYRIGHT);
83MODULE_LICENSE("GPL");
84MODULE_FIRMWARE("ipw2200-ibss.fw");
85#ifdef CONFIG_IPW2200_MONITOR
86MODULE_FIRMWARE("ipw2200-sniffer.fw");
87#endif
88MODULE_FIRMWARE("ipw2200-bss.fw");
89
90static int cmdlog = 0;
91static int debug = 0;
92static int default_channel = 0;
93static int network_mode = 0;
94
95static u32 ipw_debug_level;
96static int associate;
97static int auto_create = 1;
98static int led_support = 0;
99static int disable = 0;
100static int bt_coexist = 0;
101static int hwcrypto = 0;
102static int roaming = 1;
103static const char ipw_modes[] = {
104	'a', 'b', 'g', '?'
105};
106static int antenna = CFG_SYS_ANTENNA_BOTH;
107
108#ifdef CONFIG_IPW2200_PROMISCUOUS
109static int rtap_iface = 0;     /* def: 0 -- do not create rtap interface */
110#endif
111
112static struct ieee80211_rate ipw2200_rates[] = {
113	{ .bitrate = 10 },
114	{ .bitrate = 20, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
115	{ .bitrate = 55, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
116	{ .bitrate = 110, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
117	{ .bitrate = 60 },
118	{ .bitrate = 90 },
119	{ .bitrate = 120 },
120	{ .bitrate = 180 },
121	{ .bitrate = 240 },
122	{ .bitrate = 360 },
123	{ .bitrate = 480 },
124	{ .bitrate = 540 }
125};
126
127#define ipw2200_a_rates		(ipw2200_rates + 4)
128#define ipw2200_num_a_rates	8
129#define ipw2200_bg_rates	(ipw2200_rates + 0)
130#define ipw2200_num_bg_rates	12
131
132#ifdef CONFIG_IPW2200_QOS
133static int qos_enable = 0;
134static int qos_burst_enable = 0;
135static int qos_no_ack_mask = 0;
136static int burst_duration_CCK = 0;
137static int burst_duration_OFDM = 0;
138
139static struct libipw_qos_parameters def_qos_parameters_OFDM = {
140	{QOS_TX0_CW_MIN_OFDM, QOS_TX1_CW_MIN_OFDM, QOS_TX2_CW_MIN_OFDM,
141	 QOS_TX3_CW_MIN_OFDM},
142	{QOS_TX0_CW_MAX_OFDM, QOS_TX1_CW_MAX_OFDM, QOS_TX2_CW_MAX_OFDM,
143	 QOS_TX3_CW_MAX_OFDM},
144	{QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS},
145	{QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM},
146	{QOS_TX0_TXOP_LIMIT_OFDM, QOS_TX1_TXOP_LIMIT_OFDM,
147	 QOS_TX2_TXOP_LIMIT_OFDM, QOS_TX3_TXOP_LIMIT_OFDM}
148};
149
150static struct libipw_qos_parameters def_qos_parameters_CCK = {
151	{QOS_TX0_CW_MIN_CCK, QOS_TX1_CW_MIN_CCK, QOS_TX2_CW_MIN_CCK,
152	 QOS_TX3_CW_MIN_CCK},
153	{QOS_TX0_CW_MAX_CCK, QOS_TX1_CW_MAX_CCK, QOS_TX2_CW_MAX_CCK,
154	 QOS_TX3_CW_MAX_CCK},
155	{QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS},
156	{QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM},
157	{QOS_TX0_TXOP_LIMIT_CCK, QOS_TX1_TXOP_LIMIT_CCK, QOS_TX2_TXOP_LIMIT_CCK,
158	 QOS_TX3_TXOP_LIMIT_CCK}
159};
160
161static struct libipw_qos_parameters def_parameters_OFDM = {
162	{DEF_TX0_CW_MIN_OFDM, DEF_TX1_CW_MIN_OFDM, DEF_TX2_CW_MIN_OFDM,
163	 DEF_TX3_CW_MIN_OFDM},
164	{DEF_TX0_CW_MAX_OFDM, DEF_TX1_CW_MAX_OFDM, DEF_TX2_CW_MAX_OFDM,
165	 DEF_TX3_CW_MAX_OFDM},
166	{DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS},
167	{DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM},
168	{DEF_TX0_TXOP_LIMIT_OFDM, DEF_TX1_TXOP_LIMIT_OFDM,
169	 DEF_TX2_TXOP_LIMIT_OFDM, DEF_TX3_TXOP_LIMIT_OFDM}
170};
171
172static struct libipw_qos_parameters def_parameters_CCK = {
173	{DEF_TX0_CW_MIN_CCK, DEF_TX1_CW_MIN_CCK, DEF_TX2_CW_MIN_CCK,
174	 DEF_TX3_CW_MIN_CCK},
175	{DEF_TX0_CW_MAX_CCK, DEF_TX1_CW_MAX_CCK, DEF_TX2_CW_MAX_CCK,
176	 DEF_TX3_CW_MAX_CCK},
177	{DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS},
178	{DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM},
179	{DEF_TX0_TXOP_LIMIT_CCK, DEF_TX1_TXOP_LIMIT_CCK, DEF_TX2_TXOP_LIMIT_CCK,
180	 DEF_TX3_TXOP_LIMIT_CCK}
181};
182
183static u8 qos_oui[QOS_OUI_LEN] = { 0x00, 0x50, 0xF2 };
184
185static int from_priority_to_tx_queue[] = {
186	IPW_TX_QUEUE_1, IPW_TX_QUEUE_2, IPW_TX_QUEUE_2, IPW_TX_QUEUE_1,
187	IPW_TX_QUEUE_3, IPW_TX_QUEUE_3, IPW_TX_QUEUE_4, IPW_TX_QUEUE_4
188};
189
190static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv);
191
192static int ipw_send_qos_params_command(struct ipw_priv *priv, struct libipw_qos_parameters
193				       *qos_param);
194static int ipw_send_qos_info_command(struct ipw_priv *priv, struct libipw_qos_information_element
195				     *qos_param);
196#endif				/* CONFIG_IPW2200_QOS */
197
198static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev);
199static void ipw_remove_current_network(struct ipw_priv *priv);
200static void ipw_rx(struct ipw_priv *priv);
201static int ipw_queue_tx_reclaim(struct ipw_priv *priv,
202				struct clx2_tx_queue *txq, int qindex);
203static int ipw_queue_reset(struct ipw_priv *priv);
204
205static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, void *buf,
206			     int len, int sync);
207
208static void ipw_tx_queue_free(struct ipw_priv *);
209
210static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *);
211static void ipw_rx_queue_free(struct ipw_priv *, struct ipw_rx_queue *);
212static void ipw_rx_queue_replenish(void *);
213static int ipw_up(struct ipw_priv *);
214static void ipw_bg_up(struct work_struct *work);
215static void ipw_down(struct ipw_priv *);
216static void ipw_bg_down(struct work_struct *work);
217static int ipw_config(struct ipw_priv *);
218static int init_supported_rates(struct ipw_priv *priv,
219				struct ipw_supported_rates *prates);
220static void ipw_set_hwcrypto_keys(struct ipw_priv *);
221static void ipw_send_wep_keys(struct ipw_priv *, int);
222
223static int snprint_line(char *buf, size_t count,
224			const u8 * data, u32 len, u32 ofs)
225{
226	int out, i, j, l;
227	char c;
228
229	out = snprintf(buf, count, "%08X", ofs);
230
231	for (l = 0, i = 0; i < 2; i++) {
232		out += snprintf(buf + out, count - out, " ");
233		for (j = 0; j < 8 && l < len; j++, l++)
234			out += snprintf(buf + out, count - out, "%02X ",
235					data[(i * 8 + j)]);
236		for (; j < 8; j++)
237			out += snprintf(buf + out, count - out, "   ");
238	}
239
240	out += snprintf(buf + out, count - out, " ");
241	for (l = 0, i = 0; i < 2; i++) {
242		out += snprintf(buf + out, count - out, " ");
243		for (j = 0; j < 8 && l < len; j++, l++) {
244			c = data[(i * 8 + j)];
245			if (!isascii(c) || !isprint(c))
246				c = '.';
247
248			out += snprintf(buf + out, count - out, "%c", c);
249		}
250
251		for (; j < 8; j++)
252			out += snprintf(buf + out, count - out, " ");
253	}
254
255	return out;
256}
257
258static void printk_buf(int level, const u8 * data, u32 len)
259{
260	char line[81];
261	u32 ofs = 0;
262	if (!(ipw_debug_level & level))
263		return;
264
265	while (len) {
266		snprint_line(line, sizeof(line), &data[ofs],
267			     min(len, 16U), ofs);
268		printk(KERN_DEBUG "%s\n", line);
269		ofs += 16;
270		len -= min(len, 16U);
271	}
272}
273
274static int snprintk_buf(u8 * output, size_t size, const u8 * data, size_t len)
275{
276	size_t out = size;
277	u32 ofs = 0;
278	int total = 0;
279
280	while (size && len) {
281		out = snprint_line(output, size, &data[ofs],
282				   min_t(size_t, len, 16U), ofs);
283
284		ofs += 16;
285		output += out;
286		size -= out;
287		len -= min_t(size_t, len, 16U);
288		total += out;
289	}
290	return total;
291}
292
293/* alias for 32-bit indirect read (for SRAM/reg above 4K), with debug wrapper */
294static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg);
295#define ipw_read_reg32(a, b) _ipw_read_reg32(a, b)
296
297/* alias for 8-bit indirect read (for SRAM/reg above 4K), with debug wrapper */
298static u8 _ipw_read_reg8(struct ipw_priv *ipw, u32 reg);
299#define ipw_read_reg8(a, b) _ipw_read_reg8(a, b)
300
301/* 8-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
302static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value);
303static inline void ipw_write_reg8(struct ipw_priv *a, u32 b, u8 c)
304{
305	IPW_DEBUG_IO("%s %d: write_indirect8(0x%08X, 0x%08X)\n", __FILE__,
306		     __LINE__, (u32) (b), (u32) (c));
307	_ipw_write_reg8(a, b, c);
308}
309
310/* 16-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
311static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value);
312static inline void ipw_write_reg16(struct ipw_priv *a, u32 b, u16 c)
313{
314	IPW_DEBUG_IO("%s %d: write_indirect16(0x%08X, 0x%08X)\n", __FILE__,
315		     __LINE__, (u32) (b), (u32) (c));
316	_ipw_write_reg16(a, b, c);
317}
318
319/* 32-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
320static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value);
321static inline void ipw_write_reg32(struct ipw_priv *a, u32 b, u32 c)
322{
323	IPW_DEBUG_IO("%s %d: write_indirect32(0x%08X, 0x%08X)\n", __FILE__,
324		     __LINE__, (u32) (b), (u32) (c));
325	_ipw_write_reg32(a, b, c);
326}
327
328/* 8-bit direct write (low 4K) */
329static inline void _ipw_write8(struct ipw_priv *ipw, unsigned long ofs,
330		u8 val)
331{
332	writeb(val, ipw->hw_base + ofs);
333}
334
335/* 8-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
336#define ipw_write8(ipw, ofs, val) do { \
337	IPW_DEBUG_IO("%s %d: write_direct8(0x%08X, 0x%08X)\n", __FILE__, \
338			__LINE__, (u32)(ofs), (u32)(val)); \
339	_ipw_write8(ipw, ofs, val); \
340} while (0)
341
342/* 16-bit direct write (low 4K) */
343static inline void _ipw_write16(struct ipw_priv *ipw, unsigned long ofs,
344		u16 val)
345{
346	writew(val, ipw->hw_base + ofs);
347}
348
349/* 16-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
350#define ipw_write16(ipw, ofs, val) do { \
351	IPW_DEBUG_IO("%s %d: write_direct16(0x%08X, 0x%08X)\n", __FILE__, \
352			__LINE__, (u32)(ofs), (u32)(val)); \
353	_ipw_write16(ipw, ofs, val); \
354} while (0)
355
356/* 32-bit direct write (low 4K) */
357static inline void _ipw_write32(struct ipw_priv *ipw, unsigned long ofs,
358		u32 val)
359{
360	writel(val, ipw->hw_base + ofs);
361}
362
363/* 32-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
364#define ipw_write32(ipw, ofs, val) do { \
365	IPW_DEBUG_IO("%s %d: write_direct32(0x%08X, 0x%08X)\n", __FILE__, \
366			__LINE__, (u32)(ofs), (u32)(val)); \
367	_ipw_write32(ipw, ofs, val); \
368} while (0)
369
370/* 8-bit direct read (low 4K) */
371static inline u8 _ipw_read8(struct ipw_priv *ipw, unsigned long ofs)
372{
373	return readb(ipw->hw_base + ofs);
374}
375
376/* alias to 8-bit direct read (low 4K of SRAM/regs), with debug wrapper */
377#define ipw_read8(ipw, ofs) ({ \
378	IPW_DEBUG_IO("%s %d: read_direct8(0x%08X)\n", __FILE__, __LINE__, \
379			(u32)(ofs)); \
380	_ipw_read8(ipw, ofs); \
381})
382
383/* 16-bit direct read (low 4K) */
384static inline u16 _ipw_read16(struct ipw_priv *ipw, unsigned long ofs)
385{
386	return readw(ipw->hw_base + ofs);
387}
388
389/* alias to 16-bit direct read (low 4K of SRAM/regs), with debug wrapper */
390#define ipw_read16(ipw, ofs) ({ \
391	IPW_DEBUG_IO("%s %d: read_direct16(0x%08X)\n", __FILE__, __LINE__, \
392			(u32)(ofs)); \
393	_ipw_read16(ipw, ofs); \
394})
395
396/* 32-bit direct read (low 4K) */
397static inline u32 _ipw_read32(struct ipw_priv *ipw, unsigned long ofs)
398{
399	return readl(ipw->hw_base + ofs);
400}
401
402/* alias to 32-bit direct read (low 4K of SRAM/regs), with debug wrapper */
403#define ipw_read32(ipw, ofs) ({ \
404	IPW_DEBUG_IO("%s %d: read_direct32(0x%08X)\n", __FILE__, __LINE__, \
405			(u32)(ofs)); \
406	_ipw_read32(ipw, ofs); \
407})
408
409static void _ipw_read_indirect(struct ipw_priv *, u32, u8 *, int);
410/* alias to multi-byte read (SRAM/regs above 4K), with debug wrapper */
411#define ipw_read_indirect(a, b, c, d) ({ \
412	IPW_DEBUG_IO("%s %d: read_indirect(0x%08X) %u bytes\n", __FILE__, \
413			__LINE__, (u32)(b), (u32)(d)); \
414	_ipw_read_indirect(a, b, c, d); \
415})
416
417/* alias to multi-byte read (SRAM/regs above 4K), with debug wrapper */
418static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * data,
419				int num);
420#define ipw_write_indirect(a, b, c, d) do { \
421	IPW_DEBUG_IO("%s %d: write_indirect(0x%08X) %u bytes\n", __FILE__, \
422			__LINE__, (u32)(b), (u32)(d)); \
423	_ipw_write_indirect(a, b, c, d); \
424} while (0)
425
426/* 32-bit indirect write (above 4K) */
427static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value)
428{
429	IPW_DEBUG_IO(" %p : reg = 0x%8X : value = 0x%8X\n", priv, reg, value);
430	_ipw_write32(priv, IPW_INDIRECT_ADDR, reg);
431	_ipw_write32(priv, IPW_INDIRECT_DATA, value);
432}
433
434/* 8-bit indirect write (above 4K) */
435static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value)
436{
437	u32 aligned_addr = reg & IPW_INDIRECT_ADDR_MASK;	/* dword align */
438	u32 dif_len = reg - aligned_addr;
439
440	IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value);
441	_ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
442	_ipw_write8(priv, IPW_INDIRECT_DATA + dif_len, value);
443}
444
445/* 16-bit indirect write (above 4K) */
446static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value)
447{
448	u32 aligned_addr = reg & IPW_INDIRECT_ADDR_MASK;	/* dword align */
449	u32 dif_len = (reg - aligned_addr) & (~0x1ul);
450
451	IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value);
452	_ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
453	_ipw_write16(priv, IPW_INDIRECT_DATA + dif_len, value);
454}
455
456/* 8-bit indirect read (above 4K) */
457static u8 _ipw_read_reg8(struct ipw_priv *priv, u32 reg)
458{
459	u32 word;
460	_ipw_write32(priv, IPW_INDIRECT_ADDR, reg & IPW_INDIRECT_ADDR_MASK);
461	IPW_DEBUG_IO(" reg = 0x%8X : \n", reg);
462	word = _ipw_read32(priv, IPW_INDIRECT_DATA);
463	return (word >> ((reg & 0x3) * 8)) & 0xff;
464}
465
466/* 32-bit indirect read (above 4K) */
467static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg)
468{
469	u32 value;
470
471	IPW_DEBUG_IO("%p : reg = 0x%08x\n", priv, reg);
472
473	_ipw_write32(priv, IPW_INDIRECT_ADDR, reg);
474	value = _ipw_read32(priv, IPW_INDIRECT_DATA);
475	IPW_DEBUG_IO(" reg = 0x%4X : value = 0x%4x \n", reg, value);
476	return value;
477}
478
479/* General purpose, no alignment requirement, iterative (multi-byte) read, */
480/*    for area above 1st 4K of SRAM/reg space */
481static void _ipw_read_indirect(struct ipw_priv *priv, u32 addr, u8 * buf,
482			       int num)
483{
484	u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK;	/* dword align */
485	u32 dif_len = addr - aligned_addr;
486	u32 i;
487
488	IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num);
489
490	if (num <= 0) {
491		return;
492	}
493
494	/* Read the first dword (or portion) byte by byte */
495	if (unlikely(dif_len)) {
496		_ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
497		/* Start reading at aligned_addr + dif_len */
498		for (i = dif_len; ((i < 4) && (num > 0)); i++, num--)
499			*buf++ = _ipw_read8(priv, IPW_INDIRECT_DATA + i);
500		aligned_addr += 4;
501	}
502
503	/* Read all of the middle dwords as dwords, with auto-increment */
504	_ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr);
505	for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4)
506		*(u32 *) buf = _ipw_read32(priv, IPW_AUTOINC_DATA);
507
508	/* Read the last dword (or portion) byte by byte */
509	if (unlikely(num)) {
510		_ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
511		for (i = 0; num > 0; i++, num--)
512			*buf++ = ipw_read8(priv, IPW_INDIRECT_DATA + i);
513	}
514}
515
516/* General purpose, no alignment requirement, iterative (multi-byte) write, */
517/*    for area above 1st 4K of SRAM/reg space */
518static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * buf,
519				int num)
520{
521	u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK;	/* dword align */
522	u32 dif_len = addr - aligned_addr;
523	u32 i;
524
525	IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num);
526
527	if (num <= 0) {
528		return;
529	}
530
531	/* Write the first dword (or portion) byte by byte */
532	if (unlikely(dif_len)) {
533		_ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
534		/* Start writing at aligned_addr + dif_len */
535		for (i = dif_len; ((i < 4) && (num > 0)); i++, num--, buf++)
536			_ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf);
537		aligned_addr += 4;
538	}
539
540	/* Write all of the middle dwords as dwords, with auto-increment */
541	_ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr);
542	for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4)
543		_ipw_write32(priv, IPW_AUTOINC_DATA, *(u32 *) buf);
544
545	/* Write the last dword (or portion) byte by byte */
546	if (unlikely(num)) {
547		_ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
548		for (i = 0; num > 0; i++, num--, buf++)
549			_ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf);
550	}
551}
552
553/* General purpose, no alignment requirement, iterative (multi-byte) write, */
554/*    for 1st 4K of SRAM/regs space */
555static void ipw_write_direct(struct ipw_priv *priv, u32 addr, void *buf,
556			     int num)
557{
558	memcpy_toio((priv->hw_base + addr), buf, num);
559}
560
561/* Set bit(s) in low 4K of SRAM/regs */
562static inline void ipw_set_bit(struct ipw_priv *priv, u32 reg, u32 mask)
563{
564	ipw_write32(priv, reg, ipw_read32(priv, reg) | mask);
565}
566
567/* Clear bit(s) in low 4K of SRAM/regs */
568static inline void ipw_clear_bit(struct ipw_priv *priv, u32 reg, u32 mask)
569{
570	ipw_write32(priv, reg, ipw_read32(priv, reg) & ~mask);
571}
572
573static inline void __ipw_enable_interrupts(struct ipw_priv *priv)
574{
575	if (priv->status & STATUS_INT_ENABLED)
576		return;
577	priv->status |= STATUS_INT_ENABLED;
578	ipw_write32(priv, IPW_INTA_MASK_R, IPW_INTA_MASK_ALL);
579}
580
581static inline void __ipw_disable_interrupts(struct ipw_priv *priv)
582{
583	if (!(priv->status & STATUS_INT_ENABLED))
584		return;
585	priv->status &= ~STATUS_INT_ENABLED;
586	ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
587}
588
589static inline void ipw_enable_interrupts(struct ipw_priv *priv)
590{
591	unsigned long flags;
592
593	spin_lock_irqsave(&priv->irq_lock, flags);
594	__ipw_enable_interrupts(priv);
595	spin_unlock_irqrestore(&priv->irq_lock, flags);
596}
597
598static inline void ipw_disable_interrupts(struct ipw_priv *priv)
599{
600	unsigned long flags;
601
602	spin_lock_irqsave(&priv->irq_lock, flags);
603	__ipw_disable_interrupts(priv);
604	spin_unlock_irqrestore(&priv->irq_lock, flags);
605}
606
607static char *ipw_error_desc(u32 val)
608{
609	switch (val) {
610	case IPW_FW_ERROR_OK:
611		return "ERROR_OK";
612	case IPW_FW_ERROR_FAIL:
613		return "ERROR_FAIL";
614	case IPW_FW_ERROR_MEMORY_UNDERFLOW:
615		return "MEMORY_UNDERFLOW";
616	case IPW_FW_ERROR_MEMORY_OVERFLOW:
617		return "MEMORY_OVERFLOW";
618	case IPW_FW_ERROR_BAD_PARAM:
619		return "BAD_PARAM";
620	case IPW_FW_ERROR_BAD_CHECKSUM:
621		return "BAD_CHECKSUM";
622	case IPW_FW_ERROR_NMI_INTERRUPT:
623		return "NMI_INTERRUPT";
624	case IPW_FW_ERROR_BAD_DATABASE:
625		return "BAD_DATABASE";
626	case IPW_FW_ERROR_ALLOC_FAIL:
627		return "ALLOC_FAIL";
628	case IPW_FW_ERROR_DMA_UNDERRUN:
629		return "DMA_UNDERRUN";
630	case IPW_FW_ERROR_DMA_STATUS:
631		return "DMA_STATUS";
632	case IPW_FW_ERROR_DINO_ERROR:
633		return "DINO_ERROR";
634	case IPW_FW_ERROR_EEPROM_ERROR:
635		return "EEPROM_ERROR";
636	case IPW_FW_ERROR_SYSASSERT:
637		return "SYSASSERT";
638	case IPW_FW_ERROR_FATAL_ERROR:
639		return "FATAL_ERROR";
640	default:
641		return "UNKNOWN_ERROR";
642	}
643}
644
645static void ipw_dump_error_log(struct ipw_priv *priv,
646			       struct ipw_fw_error *error)
647{
648	u32 i;
649
650	if (!error) {
651		IPW_ERROR("Error allocating and capturing error log.  "
652			  "Nothing to dump.\n");
653		return;
654	}
655
656	IPW_ERROR("Start IPW Error Log Dump:\n");
657	IPW_ERROR("Status: 0x%08X, Config: %08X\n",
658		  error->status, error->config);
659
660	for (i = 0; i < error->elem_len; i++)
661		IPW_ERROR("%s %i 0x%08x  0x%08x  0x%08x  0x%08x  0x%08x\n",
662			  ipw_error_desc(error->elem[i].desc),
663			  error->elem[i].time,
664			  error->elem[i].blink1,
665			  error->elem[i].blink2,
666			  error->elem[i].link1,
667			  error->elem[i].link2, error->elem[i].data);
668	for (i = 0; i < error->log_len; i++)
669		IPW_ERROR("%i\t0x%08x\t%i\n",
670			  error->log[i].time,
671			  error->log[i].data, error->log[i].event);
672}
673
674static inline int ipw_is_init(struct ipw_priv *priv)
675{
676	return (priv->status & STATUS_INIT) ? 1 : 0;
677}
678
679static int ipw_get_ordinal(struct ipw_priv *priv, u32 ord, void *val, u32 * len)
680{
681	u32 addr, field_info, field_len, field_count, total_len;
682
683	IPW_DEBUG_ORD("ordinal = %i\n", ord);
684
685	if (!priv || !val || !len) {
686		IPW_DEBUG_ORD("Invalid argument\n");
687		return -EINVAL;
688	}
689
690	/* verify device ordinal tables have been initialized */
691	if (!priv->table0_addr || !priv->table1_addr || !priv->table2_addr) {
692		IPW_DEBUG_ORD("Access ordinals before initialization\n");
693		return -EINVAL;
694	}
695
696	switch (IPW_ORD_TABLE_ID_MASK & ord) {
697	case IPW_ORD_TABLE_0_MASK:
698		/*
699		 * TABLE 0: Direct access to a table of 32 bit values
700		 *
701		 * This is a very simple table with the data directly
702		 * read from the table
703		 */
704
705		/* remove the table id from the ordinal */
706		ord &= IPW_ORD_TABLE_VALUE_MASK;
707
708		/* boundary check */
709		if (ord > priv->table0_len) {
710			IPW_DEBUG_ORD("ordinal value (%i) longer then "
711				      "max (%i)\n", ord, priv->table0_len);
712			return -EINVAL;
713		}
714
715		/* verify we have enough room to store the value */
716		if (*len < sizeof(u32)) {
717			IPW_DEBUG_ORD("ordinal buffer length too small, "
718				      "need %zd\n", sizeof(u32));
719			return -EINVAL;
720		}
721
722		IPW_DEBUG_ORD("Reading TABLE0[%i] from offset 0x%08x\n",
723			      ord, priv->table0_addr + (ord << 2));
724
725		*len = sizeof(u32);
726		ord <<= 2;
727		*((u32 *) val) = ipw_read32(priv, priv->table0_addr + ord);
728		break;
729
730	case IPW_ORD_TABLE_1_MASK:
731		/*
732		 * TABLE 1: Indirect access to a table of 32 bit values
733		 *
734		 * This is a fairly large table of u32 values each
735		 * representing starting addr for the data (which is
736		 * also a u32)
737		 */
738
739		/* remove the table id from the ordinal */
740		ord &= IPW_ORD_TABLE_VALUE_MASK;
741
742		/* boundary check */
743		if (ord > priv->table1_len) {
744			IPW_DEBUG_ORD("ordinal value too long\n");
745			return -EINVAL;
746		}
747
748		/* verify we have enough room to store the value */
749		if (*len < sizeof(u32)) {
750			IPW_DEBUG_ORD("ordinal buffer length too small, "
751				      "need %zd\n", sizeof(u32));
752			return -EINVAL;
753		}
754
755		*((u32 *) val) =
756		    ipw_read_reg32(priv, (priv->table1_addr + (ord << 2)));
757		*len = sizeof(u32);
758		break;
759
760	case IPW_ORD_TABLE_2_MASK:
761		/*
762		 * TABLE 2: Indirect access to a table of variable sized values
763		 *
764		 * This table consist of six values, each containing
765		 *     - dword containing the starting offset of the data
766		 *     - dword containing the lengh in the first 16bits
767		 *       and the count in the second 16bits
768		 */
769
770		/* remove the table id from the ordinal */
771		ord &= IPW_ORD_TABLE_VALUE_MASK;
772
773		/* boundary check */
774		if (ord > priv->table2_len) {
775			IPW_DEBUG_ORD("ordinal value too long\n");
776			return -EINVAL;
777		}
778
779		/* get the address of statistic */
780		addr = ipw_read_reg32(priv, priv->table2_addr + (ord << 3));
781
782		/* get the second DW of statistics ;
783		 * two 16-bit words - first is length, second is count */
784		field_info =
785		    ipw_read_reg32(priv,
786				   priv->table2_addr + (ord << 3) +
787				   sizeof(u32));
788
789		/* get each entry length */
790		field_len = *((u16 *) & field_info);
791
792		/* get number of entries */
793		field_count = *(((u16 *) & field_info) + 1);
794
795		/* abort if not enough memory */
796		total_len = field_len * field_count;
797		if (total_len > *len) {
798			*len = total_len;
799			return -EINVAL;
800		}
801
802		*len = total_len;
803		if (!total_len)
804			return 0;
805
806		IPW_DEBUG_ORD("addr = 0x%08x, total_len = %i, "
807			      "field_info = 0x%08x\n",
808			      addr, total_len, field_info);
809		ipw_read_indirect(priv, addr, val, total_len);
810		break;
811
812	default:
813		IPW_DEBUG_ORD("Invalid ordinal!\n");
814		return -EINVAL;
815
816	}
817
818	return 0;
819}
820
821static void ipw_init_ordinals(struct ipw_priv *priv)
822{
823	priv->table0_addr = IPW_ORDINALS_TABLE_LOWER;
824	priv->table0_len = ipw_read32(priv, priv->table0_addr);
825
826	IPW_DEBUG_ORD("table 0 offset at 0x%08x, len = %i\n",
827		      priv->table0_addr, priv->table0_len);
828
829	priv->table1_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_1);
830	priv->table1_len = ipw_read_reg32(priv, priv->table1_addr);
831
832	IPW_DEBUG_ORD("table 1 offset at 0x%08x, len = %i\n",
833		      priv->table1_addr, priv->table1_len);
834
835	priv->table2_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_2);
836	priv->table2_len = ipw_read_reg32(priv, priv->table2_addr);
837	priv->table2_len &= 0x0000ffff;	/* use first two bytes */
838
839	IPW_DEBUG_ORD("table 2 offset at 0x%08x, len = %i\n",
840		      priv->table2_addr, priv->table2_len);
841
842}
843
844static u32 ipw_register_toggle(u32 reg)
845{
846	reg &= ~IPW_START_STANDBY;
847	if (reg & IPW_GATE_ODMA)
848		reg &= ~IPW_GATE_ODMA;
849	if (reg & IPW_GATE_IDMA)
850		reg &= ~IPW_GATE_IDMA;
851	if (reg & IPW_GATE_ADMA)
852		reg &= ~IPW_GATE_ADMA;
853	return reg;
854}
855
856/*
857 * LED behavior:
858 * - On radio ON, turn on any LEDs that require to be on during start
859 * - On initialization, start unassociated blink
860 * - On association, disable unassociated blink
861 * - On disassociation, start unassociated blink
862 * - On radio OFF, turn off any LEDs started during radio on
863 *
864 */
865#define LD_TIME_LINK_ON msecs_to_jiffies(300)
866#define LD_TIME_LINK_OFF msecs_to_jiffies(2700)
867#define LD_TIME_ACT_ON msecs_to_jiffies(250)
868
869static void ipw_led_link_on(struct ipw_priv *priv)
870{
871	unsigned long flags;
872	u32 led;
873
874	/* If configured to not use LEDs, or nic_type is 1,
875	 * then we don't toggle a LINK led */
876	if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1)
877		return;
878
879	spin_lock_irqsave(&priv->lock, flags);
880
881	if (!(priv->status & STATUS_RF_KILL_MASK) &&
882	    !(priv->status & STATUS_LED_LINK_ON)) {
883		IPW_DEBUG_LED("Link LED On\n");
884		led = ipw_read_reg32(priv, IPW_EVENT_REG);
885		led |= priv->led_association_on;
886
887		led = ipw_register_toggle(led);
888
889		IPW_DEBUG_LED("Reg: 0x%08X\n", led);
890		ipw_write_reg32(priv, IPW_EVENT_REG, led);
891
892		priv->status |= STATUS_LED_LINK_ON;
893
894		/* If we aren't associated, schedule turning the LED off */
895		if (!(priv->status & STATUS_ASSOCIATED))
896			queue_delayed_work(priv->workqueue,
897					   &priv->led_link_off,
898					   LD_TIME_LINK_ON);
899	}
900
901	spin_unlock_irqrestore(&priv->lock, flags);
902}
903
904static void ipw_bg_led_link_on(struct work_struct *work)
905{
906	struct ipw_priv *priv =
907		container_of(work, struct ipw_priv, led_link_on.work);
908	mutex_lock(&priv->mutex);
909	ipw_led_link_on(priv);
910	mutex_unlock(&priv->mutex);
911}
912
913static void ipw_led_link_off(struct ipw_priv *priv)
914{
915	unsigned long flags;
916	u32 led;
917
918	/* If configured not to use LEDs, or nic type is 1,
919	 * then we don't goggle the LINK led. */
920	if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1)
921		return;
922
923	spin_lock_irqsave(&priv->lock, flags);
924
925	if (priv->status & STATUS_LED_LINK_ON) {
926		led = ipw_read_reg32(priv, IPW_EVENT_REG);
927		led &= priv->led_association_off;
928		led = ipw_register_toggle(led);
929
930		IPW_DEBUG_LED("Reg: 0x%08X\n", led);
931		ipw_write_reg32(priv, IPW_EVENT_REG, led);
932
933		IPW_DEBUG_LED("Link LED Off\n");
934
935		priv->status &= ~STATUS_LED_LINK_ON;
936
937		/* If we aren't associated and the radio is on, schedule
938		 * turning the LED on (blink while unassociated) */
939		if (!(priv->status & STATUS_RF_KILL_MASK) &&
940		    !(priv->status & STATUS_ASSOCIATED))
941			queue_delayed_work(priv->workqueue, &priv->led_link_on,
942					   LD_TIME_LINK_OFF);
943
944	}
945
946	spin_unlock_irqrestore(&priv->lock, flags);
947}
948
949static void ipw_bg_led_link_off(struct work_struct *work)
950{
951	struct ipw_priv *priv =
952		container_of(work, struct ipw_priv, led_link_off.work);
953	mutex_lock(&priv->mutex);
954	ipw_led_link_off(priv);
955	mutex_unlock(&priv->mutex);
956}
957
958static void __ipw_led_activity_on(struct ipw_priv *priv)
959{
960	u32 led;
961
962	if (priv->config & CFG_NO_LED)
963		return;
964
965	if (priv->status & STATUS_RF_KILL_MASK)
966		return;
967
968	if (!(priv->status & STATUS_LED_ACT_ON)) {
969		led = ipw_read_reg32(priv, IPW_EVENT_REG);
970		led |= priv->led_activity_on;
971
972		led = ipw_register_toggle(led);
973
974		IPW_DEBUG_LED("Reg: 0x%08X\n", led);
975		ipw_write_reg32(priv, IPW_EVENT_REG, led);
976
977		IPW_DEBUG_LED("Activity LED On\n");
978
979		priv->status |= STATUS_LED_ACT_ON;
980
981		cancel_delayed_work(&priv->led_act_off);
982		queue_delayed_work(priv->workqueue, &priv->led_act_off,
983				   LD_TIME_ACT_ON);
984	} else {
985		/* Reschedule LED off for full time period */
986		cancel_delayed_work(&priv->led_act_off);
987		queue_delayed_work(priv->workqueue, &priv->led_act_off,
988				   LD_TIME_ACT_ON);
989	}
990}
991
992#if 0
993void ipw_led_activity_on(struct ipw_priv *priv)
994{
995	unsigned long flags;
996	spin_lock_irqsave(&priv->lock, flags);
997	__ipw_led_activity_on(priv);
998	spin_unlock_irqrestore(&priv->lock, flags);
999}
1000#endif  /*  0  */
1001
1002static void ipw_led_activity_off(struct ipw_priv *priv)
1003{
1004	unsigned long flags;
1005	u32 led;
1006
1007	if (priv->config & CFG_NO_LED)
1008		return;
1009
1010	spin_lock_irqsave(&priv->lock, flags);
1011
1012	if (priv->status & STATUS_LED_ACT_ON) {
1013		led = ipw_read_reg32(priv, IPW_EVENT_REG);
1014		led &= priv->led_activity_off;
1015
1016		led = ipw_register_toggle(led);
1017
1018		IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1019		ipw_write_reg32(priv, IPW_EVENT_REG, led);
1020
1021		IPW_DEBUG_LED("Activity LED Off\n");
1022
1023		priv->status &= ~STATUS_LED_ACT_ON;
1024	}
1025
1026	spin_unlock_irqrestore(&priv->lock, flags);
1027}
1028
1029static void ipw_bg_led_activity_off(struct work_struct *work)
1030{
1031	struct ipw_priv *priv =
1032		container_of(work, struct ipw_priv, led_act_off.work);
1033	mutex_lock(&priv->mutex);
1034	ipw_led_activity_off(priv);
1035	mutex_unlock(&priv->mutex);
1036}
1037
1038static void ipw_led_band_on(struct ipw_priv *priv)
1039{
1040	unsigned long flags;
1041	u32 led;
1042
1043	/* Only nic type 1 supports mode LEDs */
1044	if (priv->config & CFG_NO_LED ||
1045	    priv->nic_type != EEPROM_NIC_TYPE_1 || !priv->assoc_network)
1046		return;
1047
1048	spin_lock_irqsave(&priv->lock, flags);
1049
1050	led = ipw_read_reg32(priv, IPW_EVENT_REG);
1051	if (priv->assoc_network->mode == IEEE_A) {
1052		led |= priv->led_ofdm_on;
1053		led &= priv->led_association_off;
1054		IPW_DEBUG_LED("Mode LED On: 802.11a\n");
1055	} else if (priv->assoc_network->mode == IEEE_G) {
1056		led |= priv->led_ofdm_on;
1057		led |= priv->led_association_on;
1058		IPW_DEBUG_LED("Mode LED On: 802.11g\n");
1059	} else {
1060		led &= priv->led_ofdm_off;
1061		led |= priv->led_association_on;
1062		IPW_DEBUG_LED("Mode LED On: 802.11b\n");
1063	}
1064
1065	led = ipw_register_toggle(led);
1066
1067	IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1068	ipw_write_reg32(priv, IPW_EVENT_REG, led);
1069
1070	spin_unlock_irqrestore(&priv->lock, flags);
1071}
1072
1073static void ipw_led_band_off(struct ipw_priv *priv)
1074{
1075	unsigned long flags;
1076	u32 led;
1077
1078	/* Only nic type 1 supports mode LEDs */
1079	if (priv->config & CFG_NO_LED || priv->nic_type != EEPROM_NIC_TYPE_1)
1080		return;
1081
1082	spin_lock_irqsave(&priv->lock, flags);
1083
1084	led = ipw_read_reg32(priv, IPW_EVENT_REG);
1085	led &= priv->led_ofdm_off;
1086	led &= priv->led_association_off;
1087
1088	led = ipw_register_toggle(led);
1089
1090	IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1091	ipw_write_reg32(priv, IPW_EVENT_REG, led);
1092
1093	spin_unlock_irqrestore(&priv->lock, flags);
1094}
1095
1096static void ipw_led_radio_on(struct ipw_priv *priv)
1097{
1098	ipw_led_link_on(priv);
1099}
1100
1101static void ipw_led_radio_off(struct ipw_priv *priv)
1102{
1103	ipw_led_activity_off(priv);
1104	ipw_led_link_off(priv);
1105}
1106
1107static void ipw_led_link_up(struct ipw_priv *priv)
1108{
1109	/* Set the Link Led on for all nic types */
1110	ipw_led_link_on(priv);
1111}
1112
1113static void ipw_led_link_down(struct ipw_priv *priv)
1114{
1115	ipw_led_activity_off(priv);
1116	ipw_led_link_off(priv);
1117
1118	if (priv->status & STATUS_RF_KILL_MASK)
1119		ipw_led_radio_off(priv);
1120}
1121
1122static void ipw_led_init(struct ipw_priv *priv)
1123{
1124	priv->nic_type = priv->eeprom[EEPROM_NIC_TYPE];
1125
1126	/* Set the default PINs for the link and activity leds */
1127	priv->led_activity_on = IPW_ACTIVITY_LED;
1128	priv->led_activity_off = ~(IPW_ACTIVITY_LED);
1129
1130	priv->led_association_on = IPW_ASSOCIATED_LED;
1131	priv->led_association_off = ~(IPW_ASSOCIATED_LED);
1132
1133	/* Set the default PINs for the OFDM leds */
1134	priv->led_ofdm_on = IPW_OFDM_LED;
1135	priv->led_ofdm_off = ~(IPW_OFDM_LED);
1136
1137	switch (priv->nic_type) {
1138	case EEPROM_NIC_TYPE_1:
1139		/* In this NIC type, the LEDs are reversed.... */
1140		priv->led_activity_on = IPW_ASSOCIATED_LED;
1141		priv->led_activity_off = ~(IPW_ASSOCIATED_LED);
1142		priv->led_association_on = IPW_ACTIVITY_LED;
1143		priv->led_association_off = ~(IPW_ACTIVITY_LED);
1144
1145		if (!(priv->config & CFG_NO_LED))
1146			ipw_led_band_on(priv);
1147
1148		/* And we don't blink link LEDs for this nic, so
1149		 * just return here */
1150		return;
1151
1152	case EEPROM_NIC_TYPE_3:
1153	case EEPROM_NIC_TYPE_2:
1154	case EEPROM_NIC_TYPE_4:
1155	case EEPROM_NIC_TYPE_0:
1156		break;
1157
1158	default:
1159		IPW_DEBUG_INFO("Unknown NIC type from EEPROM: %d\n",
1160			       priv->nic_type);
1161		priv->nic_type = EEPROM_NIC_TYPE_0;
1162		break;
1163	}
1164
1165	if (!(priv->config & CFG_NO_LED)) {
1166		if (priv->status & STATUS_ASSOCIATED)
1167			ipw_led_link_on(priv);
1168		else
1169			ipw_led_link_off(priv);
1170	}
1171}
1172
1173static void ipw_led_shutdown(struct ipw_priv *priv)
1174{
1175	ipw_led_activity_off(priv);
1176	ipw_led_link_off(priv);
1177	ipw_led_band_off(priv);
1178	cancel_delayed_work(&priv->led_link_on);
1179	cancel_delayed_work(&priv->led_link_off);
1180	cancel_delayed_work(&priv->led_act_off);
1181}
1182
1183/*
1184 * The following adds a new attribute to the sysfs representation
1185 * of this device driver (i.e. a new file in /sys/bus/pci/drivers/ipw/)
1186 * used for controling the debug level.
1187 *
1188 * See the level definitions in ipw for details.
1189 */
1190static ssize_t show_debug_level(struct device_driver *d, char *buf)
1191{
1192	return sprintf(buf, "0x%08X\n", ipw_debug_level);
1193}
1194
1195static ssize_t store_debug_level(struct device_driver *d, const char *buf,
1196				 size_t count)
1197{
1198	char *p = (char *)buf;
1199	u32 val;
1200
1201	if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
1202		p++;
1203		if (p[0] == 'x' || p[0] == 'X')
1204			p++;
1205		val = simple_strtoul(p, &p, 16);
1206	} else
1207		val = simple_strtoul(p, &p, 10);
1208	if (p == buf)
1209		printk(KERN_INFO DRV_NAME
1210		       ": %s is not in hex or decimal form.\n", buf);
1211	else
1212		ipw_debug_level = val;
1213
1214	return strnlen(buf, count);
1215}
1216
1217static DRIVER_ATTR(debug_level, S_IWUSR | S_IRUGO,
1218		   show_debug_level, store_debug_level);
1219
1220static inline u32 ipw_get_event_log_len(struct ipw_priv *priv)
1221{
1222	/* length = 1st dword in log */
1223	return ipw_read_reg32(priv, ipw_read32(priv, IPW_EVENT_LOG));
1224}
1225
1226static void ipw_capture_event_log(struct ipw_priv *priv,
1227				  u32 log_len, struct ipw_event *log)
1228{
1229	u32 base;
1230
1231	if (log_len) {
1232		base = ipw_read32(priv, IPW_EVENT_LOG);
1233		ipw_read_indirect(priv, base + sizeof(base) + sizeof(u32),
1234				  (u8 *) log, sizeof(*log) * log_len);
1235	}
1236}
1237
1238static struct ipw_fw_error *ipw_alloc_error_log(struct ipw_priv *priv)
1239{
1240	struct ipw_fw_error *error;
1241	u32 log_len = ipw_get_event_log_len(priv);
1242	u32 base = ipw_read32(priv, IPW_ERROR_LOG);
1243	u32 elem_len = ipw_read_reg32(priv, base);
1244
1245	error = kmalloc(sizeof(*error) +
1246			sizeof(*error->elem) * elem_len +
1247			sizeof(*error->log) * log_len, GFP_ATOMIC);
1248	if (!error) {
1249		IPW_ERROR("Memory allocation for firmware error log "
1250			  "failed.\n");
1251		return NULL;
1252	}
1253	error->jiffies = jiffies;
1254	error->status = priv->status;
1255	error->config = priv->config;
1256	error->elem_len = elem_len;
1257	error->log_len = log_len;
1258	error->elem = (struct ipw_error_elem *)error->payload;
1259	error->log = (struct ipw_event *)(error->elem + elem_len);
1260
1261	ipw_capture_event_log(priv, log_len, error->log);
1262
1263	if (elem_len)
1264		ipw_read_indirect(priv, base + sizeof(base), (u8 *) error->elem,
1265				  sizeof(*error->elem) * elem_len);
1266
1267	return error;
1268}
1269
1270static ssize_t show_event_log(struct device *d,
1271			      struct device_attribute *attr, char *buf)
1272{
1273	struct ipw_priv *priv = dev_get_drvdata(d);
1274	u32 log_len = ipw_get_event_log_len(priv);
1275	u32 log_size;
1276	struct ipw_event *log;
1277	u32 len = 0, i;
1278
1279	/* not using min() because of its strict type checking */
1280	log_size = PAGE_SIZE / sizeof(*log) > log_len ?
1281			sizeof(*log) * log_len : PAGE_SIZE;
1282	log = kzalloc(log_size, GFP_KERNEL);
1283	if (!log) {
1284		IPW_ERROR("Unable to allocate memory for log\n");
1285		return 0;
1286	}
1287	log_len = log_size / sizeof(*log);
1288	ipw_capture_event_log(priv, log_len, log);
1289
1290	len += snprintf(buf + len, PAGE_SIZE - len, "%08X", log_len);
1291	for (i = 0; i < log_len; i++)
1292		len += snprintf(buf + len, PAGE_SIZE - len,
1293				"\n%08X%08X%08X",
1294				log[i].time, log[i].event, log[i].data);
1295	len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1296	kfree(log);
1297	return len;
1298}
1299
1300static DEVICE_ATTR(event_log, S_IRUGO, show_event_log, NULL);
1301
1302static ssize_t show_error(struct device *d,
1303			  struct device_attribute *attr, char *buf)
1304{
1305	struct ipw_priv *priv = dev_get_drvdata(d);
1306	u32 len = 0, i;
1307	if (!priv->error)
1308		return 0;
1309	len += snprintf(buf + len, PAGE_SIZE - len,
1310			"%08lX%08X%08X%08X",
1311			priv->error->jiffies,
1312			priv->error->status,
1313			priv->error->config, priv->error->elem_len);
1314	for (i = 0; i < priv->error->elem_len; i++)
1315		len += snprintf(buf + len, PAGE_SIZE - len,
1316				"\n%08X%08X%08X%08X%08X%08X%08X",
1317				priv->error->elem[i].time,
1318				priv->error->elem[i].desc,
1319				priv->error->elem[i].blink1,
1320				priv->error->elem[i].blink2,
1321				priv->error->elem[i].link1,
1322				priv->error->elem[i].link2,
1323				priv->error->elem[i].data);
1324
1325	len += snprintf(buf + len, PAGE_SIZE - len,
1326			"\n%08X", priv->error->log_len);
1327	for (i = 0; i < priv->error->log_len; i++)
1328		len += snprintf(buf + len, PAGE_SIZE - len,
1329				"\n%08X%08X%08X",
1330				priv->error->log[i].time,
1331				priv->error->log[i].event,
1332				priv->error->log[i].data);
1333	len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1334	return len;
1335}
1336
1337static ssize_t clear_error(struct device *d,
1338			   struct device_attribute *attr,
1339			   const char *buf, size_t count)
1340{
1341	struct ipw_priv *priv = dev_get_drvdata(d);
1342
1343	kfree(priv->error);
1344	priv->error = NULL;
1345	return count;
1346}
1347
1348static DEVICE_ATTR(error, S_IRUGO | S_IWUSR, show_error, clear_error);
1349
1350static ssize_t show_cmd_log(struct device *d,
1351			    struct device_attribute *attr, char *buf)
1352{
1353	struct ipw_priv *priv = dev_get_drvdata(d);
1354	u32 len = 0, i;
1355	if (!priv->cmdlog)
1356		return 0;
1357	for (i = (priv->cmdlog_pos + 1) % priv->cmdlog_len;
1358	     (i != priv->cmdlog_pos) && (PAGE_SIZE - len);
1359	     i = (i + 1) % priv->cmdlog_len) {
1360		len +=
1361		    snprintf(buf + len, PAGE_SIZE - len,
1362			     "\n%08lX%08X%08X%08X\n", priv->cmdlog[i].jiffies,
1363			     priv->cmdlog[i].retcode, priv->cmdlog[i].cmd.cmd,
1364			     priv->cmdlog[i].cmd.len);
1365		len +=
1366		    snprintk_buf(buf + len, PAGE_SIZE - len,
1367				 (u8 *) priv->cmdlog[i].cmd.param,
1368				 priv->cmdlog[i].cmd.len);
1369		len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1370	}
1371	len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1372	return len;
1373}
1374
1375static DEVICE_ATTR(cmd_log, S_IRUGO, show_cmd_log, NULL);
1376
1377#ifdef CONFIG_IPW2200_PROMISCUOUS
1378static void ipw_prom_free(struct ipw_priv *priv);
1379static int ipw_prom_alloc(struct ipw_priv *priv);
1380static ssize_t store_rtap_iface(struct device *d,
1381			 struct device_attribute *attr,
1382			 const char *buf, size_t count)
1383{
1384	struct ipw_priv *priv = dev_get_drvdata(d);
1385	int rc = 0;
1386
1387	if (count < 1)
1388		return -EINVAL;
1389
1390	switch (buf[0]) {
1391	case '0':
1392		if (!rtap_iface)
1393			return count;
1394
1395		if (netif_running(priv->prom_net_dev)) {
1396			IPW_WARNING("Interface is up.  Cannot unregister.\n");
1397			return count;
1398		}
1399
1400		ipw_prom_free(priv);
1401		rtap_iface = 0;
1402		break;
1403
1404	case '1':
1405		if (rtap_iface)
1406			return count;
1407
1408		rc = ipw_prom_alloc(priv);
1409		if (!rc)
1410			rtap_iface = 1;
1411		break;
1412
1413	default:
1414		return -EINVAL;
1415	}
1416
1417	if (rc) {
1418		IPW_ERROR("Failed to register promiscuous network "
1419			  "device (error %d).\n", rc);
1420	}
1421
1422	return count;
1423}
1424
1425static ssize_t show_rtap_iface(struct device *d,
1426			struct device_attribute *attr,
1427			char *buf)
1428{
1429	struct ipw_priv *priv = dev_get_drvdata(d);
1430	if (rtap_iface)
1431		return sprintf(buf, "%s", priv->prom_net_dev->name);
1432	else {
1433		buf[0] = '-';
1434		buf[1] = '1';
1435		buf[2] = '\0';
1436		return 3;
1437	}
1438}
1439
1440static DEVICE_ATTR(rtap_iface, S_IWUSR | S_IRUSR, show_rtap_iface,
1441		   store_rtap_iface);
1442
1443static ssize_t store_rtap_filter(struct device *d,
1444			 struct device_attribute *attr,
1445			 const char *buf, size_t count)
1446{
1447	struct ipw_priv *priv = dev_get_drvdata(d);
1448
1449	if (!priv->prom_priv) {
1450		IPW_ERROR("Attempting to set filter without "
1451			  "rtap_iface enabled.\n");
1452		return -EPERM;
1453	}
1454
1455	priv->prom_priv->filter = simple_strtol(buf, NULL, 0);
1456
1457	IPW_DEBUG_INFO("Setting rtap filter to " BIT_FMT16 "\n",
1458		       BIT_ARG16(priv->prom_priv->filter));
1459
1460	return count;
1461}
1462
1463static ssize_t show_rtap_filter(struct device *d,
1464			struct device_attribute *attr,
1465			char *buf)
1466{
1467	struct ipw_priv *priv = dev_get_drvdata(d);
1468	return sprintf(buf, "0x%04X",
1469		       priv->prom_priv ? priv->prom_priv->filter : 0);
1470}
1471
1472static DEVICE_ATTR(rtap_filter, S_IWUSR | S_IRUSR, show_rtap_filter,
1473		   store_rtap_filter);
1474#endif
1475
1476static ssize_t show_scan_age(struct device *d, struct device_attribute *attr,
1477			     char *buf)
1478{
1479	struct ipw_priv *priv = dev_get_drvdata(d);
1480	return sprintf(buf, "%d\n", priv->ieee->scan_age);
1481}
1482
1483static ssize_t store_scan_age(struct device *d, struct device_attribute *attr,
1484			      const char *buf, size_t count)
1485{
1486	struct ipw_priv *priv = dev_get_drvdata(d);
1487	struct net_device *dev = priv->net_dev;
1488	char buffer[] = "00000000";
1489	unsigned long len =
1490	    (sizeof(buffer) - 1) > count ? count : sizeof(buffer) - 1;
1491	unsigned long val;
1492	char *p = buffer;
1493
1494	IPW_DEBUG_INFO("enter\n");
1495
1496	strncpy(buffer, buf, len);
1497	buffer[len] = 0;
1498
1499	if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
1500		p++;
1501		if (p[0] == 'x' || p[0] == 'X')
1502			p++;
1503		val = simple_strtoul(p, &p, 16);
1504	} else
1505		val = simple_strtoul(p, &p, 10);
1506	if (p == buffer) {
1507		IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name);
1508	} else {
1509		priv->ieee->scan_age = val;
1510		IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age);
1511	}
1512
1513	IPW_DEBUG_INFO("exit\n");
1514	return len;
1515}
1516
1517static DEVICE_ATTR(scan_age, S_IWUSR | S_IRUGO, show_scan_age, store_scan_age);
1518
1519static ssize_t show_led(struct device *d, struct device_attribute *attr,
1520			char *buf)
1521{
1522	struct ipw_priv *priv = dev_get_drvdata(d);
1523	return sprintf(buf, "%d\n", (priv->config & CFG_NO_LED) ? 0 : 1);
1524}
1525
1526static ssize_t store_led(struct device *d, struct device_attribute *attr,
1527			 const char *buf, size_t count)
1528{
1529	struct ipw_priv *priv = dev_get_drvdata(d);
1530
1531	IPW_DEBUG_INFO("enter\n");
1532
1533	if (count == 0)
1534		return 0;
1535
1536	if (*buf == 0) {
1537		IPW_DEBUG_LED("Disabling LED control.\n");
1538		priv->config |= CFG_NO_LED;
1539		ipw_led_shutdown(priv);
1540	} else {
1541		IPW_DEBUG_LED("Enabling LED control.\n");
1542		priv->config &= ~CFG_NO_LED;
1543		ipw_led_init(priv);
1544	}
1545
1546	IPW_DEBUG_INFO("exit\n");
1547	return count;
1548}
1549
1550static DEVICE_ATTR(led, S_IWUSR | S_IRUGO, show_led, store_led);
1551
1552static ssize_t show_status(struct device *d,
1553			   struct device_attribute *attr, char *buf)
1554{
1555	struct ipw_priv *p = dev_get_drvdata(d);
1556	return sprintf(buf, "0x%08x\n", (int)p->status);
1557}
1558
1559static DEVICE_ATTR(status, S_IRUGO, show_status, NULL);
1560
1561static ssize_t show_cfg(struct device *d, struct device_attribute *attr,
1562			char *buf)
1563{
1564	struct ipw_priv *p = dev_get_drvdata(d);
1565	return sprintf(buf, "0x%08x\n", (int)p->config);
1566}
1567
1568static DEVICE_ATTR(cfg, S_IRUGO, show_cfg, NULL);
1569
1570static ssize_t show_nic_type(struct device *d,
1571			     struct device_attribute *attr, char *buf)
1572{
1573	struct ipw_priv *priv = dev_get_drvdata(d);
1574	return sprintf(buf, "TYPE: %d\n", priv->nic_type);
1575}
1576
1577static DEVICE_ATTR(nic_type, S_IRUGO, show_nic_type, NULL);
1578
1579static ssize_t show_ucode_version(struct device *d,
1580				  struct device_attribute *attr, char *buf)
1581{
1582	u32 len = sizeof(u32), tmp = 0;
1583	struct ipw_priv *p = dev_get_drvdata(d);
1584
1585	if (ipw_get_ordinal(p, IPW_ORD_STAT_UCODE_VERSION, &tmp, &len))
1586		return 0;
1587
1588	return sprintf(buf, "0x%08x\n", tmp);
1589}
1590
1591static DEVICE_ATTR(ucode_version, S_IWUSR | S_IRUGO, show_ucode_version, NULL);
1592
1593static ssize_t show_rtc(struct device *d, struct device_attribute *attr,
1594			char *buf)
1595{
1596	u32 len = sizeof(u32), tmp = 0;
1597	struct ipw_priv *p = dev_get_drvdata(d);
1598
1599	if (ipw_get_ordinal(p, IPW_ORD_STAT_RTC, &tmp, &len))
1600		return 0;
1601
1602	return sprintf(buf, "0x%08x\n", tmp);
1603}
1604
1605static DEVICE_ATTR(rtc, S_IWUSR | S_IRUGO, show_rtc, NULL);
1606
1607/*
1608 * Add a device attribute to view/control the delay between eeprom
1609 * operations.
1610 */
1611static ssize_t show_eeprom_delay(struct device *d,
1612				 struct device_attribute *attr, char *buf)
1613{
1614	struct ipw_priv *p = dev_get_drvdata(d);
1615	int n = p->eeprom_delay;
1616	return sprintf(buf, "%i\n", n);
1617}
1618static ssize_t store_eeprom_delay(struct device *d,
1619				  struct device_attribute *attr,
1620				  const char *buf, size_t count)
1621{
1622	struct ipw_priv *p = dev_get_drvdata(d);
1623	sscanf(buf, "%i", &p->eeprom_delay);
1624	return strnlen(buf, count);
1625}
1626
1627static DEVICE_ATTR(eeprom_delay, S_IWUSR | S_IRUGO,
1628		   show_eeprom_delay, store_eeprom_delay);
1629
1630static ssize_t show_command_event_reg(struct device *d,
1631				      struct device_attribute *attr, char *buf)
1632{
1633	u32 reg = 0;
1634	struct ipw_priv *p = dev_get_drvdata(d);
1635
1636	reg = ipw_read_reg32(p, IPW_INTERNAL_CMD_EVENT);
1637	return sprintf(buf, "0x%08x\n", reg);
1638}
1639static ssize_t store_command_event_reg(struct device *d,
1640				       struct device_attribute *attr,
1641				       const char *buf, size_t count)
1642{
1643	u32 reg;
1644	struct ipw_priv *p = dev_get_drvdata(d);
1645
1646	sscanf(buf, "%x", &reg);
1647	ipw_write_reg32(p, IPW_INTERNAL_CMD_EVENT, reg);
1648	return strnlen(buf, count);
1649}
1650
1651static DEVICE_ATTR(command_event_reg, S_IWUSR | S_IRUGO,
1652		   show_command_event_reg, store_command_event_reg);
1653
1654static ssize_t show_mem_gpio_reg(struct device *d,
1655				 struct device_attribute *attr, char *buf)
1656{
1657	u32 reg = 0;
1658	struct ipw_priv *p = dev_get_drvdata(d);
1659
1660	reg = ipw_read_reg32(p, 0x301100);
1661	return sprintf(buf, "0x%08x\n", reg);
1662}
1663static ssize_t store_mem_gpio_reg(struct device *d,
1664				  struct device_attribute *attr,
1665				  const char *buf, size_t count)
1666{
1667	u32 reg;
1668	struct ipw_priv *p = dev_get_drvdata(d);
1669
1670	sscanf(buf, "%x", &reg);
1671	ipw_write_reg32(p, 0x301100, reg);
1672	return strnlen(buf, count);
1673}
1674
1675static DEVICE_ATTR(mem_gpio_reg, S_IWUSR | S_IRUGO,
1676		   show_mem_gpio_reg, store_mem_gpio_reg);
1677
1678static ssize_t show_indirect_dword(struct device *d,
1679				   struct device_attribute *attr, char *buf)
1680{
1681	u32 reg = 0;
1682	struct ipw_priv *priv = dev_get_drvdata(d);
1683
1684	if (priv->status & STATUS_INDIRECT_DWORD)
1685		reg = ipw_read_reg32(priv, priv->indirect_dword);
1686	else
1687		reg = 0;
1688
1689	return sprintf(buf, "0x%08x\n", reg);
1690}
1691static ssize_t store_indirect_dword(struct device *d,
1692				    struct device_attribute *attr,
1693				    const char *buf, size_t count)
1694{
1695	struct ipw_priv *priv = dev_get_drvdata(d);
1696
1697	sscanf(buf, "%x", &priv->indirect_dword);
1698	priv->status |= STATUS_INDIRECT_DWORD;
1699	return strnlen(buf, count);
1700}
1701
1702static DEVICE_ATTR(indirect_dword, S_IWUSR | S_IRUGO,
1703		   show_indirect_dword, store_indirect_dword);
1704
1705static ssize_t show_indirect_byte(struct device *d,
1706				  struct device_attribute *attr, char *buf)
1707{
1708	u8 reg = 0;
1709	struct ipw_priv *priv = dev_get_drvdata(d);
1710
1711	if (priv->status & STATUS_INDIRECT_BYTE)
1712		reg = ipw_read_reg8(priv, priv->indirect_byte);
1713	else
1714		reg = 0;
1715
1716	return sprintf(buf, "0x%02x\n", reg);
1717}
1718static ssize_t store_indirect_byte(struct device *d,
1719				   struct device_attribute *attr,
1720				   const char *buf, size_t count)
1721{
1722	struct ipw_priv *priv = dev_get_drvdata(d);
1723
1724	sscanf(buf, "%x", &priv->indirect_byte);
1725	priv->status |= STATUS_INDIRECT_BYTE;
1726	return strnlen(buf, count);
1727}
1728
1729static DEVICE_ATTR(indirect_byte, S_IWUSR | S_IRUGO,
1730		   show_indirect_byte, store_indirect_byte);
1731
1732static ssize_t show_direct_dword(struct device *d,
1733				 struct device_attribute *attr, char *buf)
1734{
1735	u32 reg = 0;
1736	struct ipw_priv *priv = dev_get_drvdata(d);
1737
1738	if (priv->status & STATUS_DIRECT_DWORD)
1739		reg = ipw_read32(priv, priv->direct_dword);
1740	else
1741		reg = 0;
1742
1743	return sprintf(buf, "0x%08x\n", reg);
1744}
1745static ssize_t store_direct_dword(struct device *d,
1746				  struct device_attribute *attr,
1747				  const char *buf, size_t count)
1748{
1749	struct ipw_priv *priv = dev_get_drvdata(d);
1750
1751	sscanf(buf, "%x", &priv->direct_dword);
1752	priv->status |= STATUS_DIRECT_DWORD;
1753	return strnlen(buf, count);
1754}
1755
1756static DEVICE_ATTR(direct_dword, S_IWUSR | S_IRUGO,
1757		   show_direct_dword, store_direct_dword);
1758
1759static int rf_kill_active(struct ipw_priv *priv)
1760{
1761	if (0 == (ipw_read32(priv, 0x30) & 0x10000)) {
1762		priv->status |= STATUS_RF_KILL_HW;
1763		wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true);
1764	} else {
1765		priv->status &= ~STATUS_RF_KILL_HW;
1766		wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, false);
1767	}
1768
1769	return (priv->status & STATUS_RF_KILL_HW) ? 1 : 0;
1770}
1771
1772static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr,
1773			    char *buf)
1774{
1775	/* 0 - RF kill not enabled
1776	   1 - SW based RF kill active (sysfs)
1777	   2 - HW based RF kill active
1778	   3 - Both HW and SW baed RF kill active */
1779	struct ipw_priv *priv = dev_get_drvdata(d);
1780	int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
1781	    (rf_kill_active(priv) ? 0x2 : 0x0);
1782	return sprintf(buf, "%i\n", val);
1783}
1784
1785static int ipw_radio_kill_sw(struct ipw_priv *priv, int disable_radio)
1786{
1787	if ((disable_radio ? 1 : 0) ==
1788	    ((priv->status & STATUS_RF_KILL_SW) ? 1 : 0))
1789		return 0;
1790
1791	IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO  %s\n",
1792			  disable_radio ? "OFF" : "ON");
1793
1794	if (disable_radio) {
1795		priv->status |= STATUS_RF_KILL_SW;
1796
1797		if (priv->workqueue) {
1798			cancel_delayed_work(&priv->request_scan);
1799			cancel_delayed_work(&priv->request_direct_scan);
1800			cancel_delayed_work(&priv->request_passive_scan);
1801			cancel_delayed_work(&priv->scan_event);
1802		}
1803		queue_work(priv->workqueue, &priv->down);
1804	} else {
1805		priv->status &= ~STATUS_RF_KILL_SW;
1806		if (rf_kill_active(priv)) {
1807			IPW_DEBUG_RF_KILL("Can not turn radio back on - "
1808					  "disabled by HW switch\n");
1809			/* Make sure the RF_KILL check timer is running */
1810			cancel_delayed_work(&priv->rf_kill);
1811			queue_delayed_work(priv->workqueue, &priv->rf_kill,
1812					   round_jiffies_relative(2 * HZ));
1813		} else
1814			queue_work(priv->workqueue, &priv->up);
1815	}
1816
1817	return 1;
1818}
1819
1820static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr,
1821			     const char *buf, size_t count)
1822{
1823	struct ipw_priv *priv = dev_get_drvdata(d);
1824
1825	ipw_radio_kill_sw(priv, buf[0] == '1');
1826
1827	return count;
1828}
1829
1830static DEVICE_ATTR(rf_kill, S_IWUSR | S_IRUGO, show_rf_kill, store_rf_kill);
1831
1832static ssize_t show_speed_scan(struct device *d, struct device_attribute *attr,
1833			       char *buf)
1834{
1835	struct ipw_priv *priv = dev_get_drvdata(d);
1836	int pos = 0, len = 0;
1837	if (priv->config & CFG_SPEED_SCAN) {
1838		while (priv->speed_scan[pos] != 0)
1839			len += sprintf(&buf[len], "%d ",
1840				       priv->speed_scan[pos++]);
1841		return len + sprintf(&buf[len], "\n");
1842	}
1843
1844	return sprintf(buf, "0\n");
1845}
1846
1847static ssize_t store_speed_scan(struct device *d, struct device_attribute *attr,
1848				const char *buf, size_t count)
1849{
1850	struct ipw_priv *priv = dev_get_drvdata(d);
1851	int channel, pos = 0;
1852	const char *p = buf;
1853
1854	/* list of space separated channels to scan, optionally ending with 0 */
1855	while ((channel = simple_strtol(p, NULL, 0))) {
1856		if (pos == MAX_SPEED_SCAN - 1) {
1857			priv->speed_scan[pos] = 0;
1858			break;
1859		}
1860
1861		if (libipw_is_valid_channel(priv->ieee, channel))
1862			priv->speed_scan[pos++] = channel;
1863		else
1864			IPW_WARNING("Skipping invalid channel request: %d\n",
1865				    channel);
1866		p = strchr(p, ' ');
1867		if (!p)
1868			break;
1869		while (*p == ' ' || *p == '\t')
1870			p++;
1871	}
1872
1873	if (pos == 0)
1874		priv->config &= ~CFG_SPEED_SCAN;
1875	else {
1876		priv->speed_scan_pos = 0;
1877		priv->config |= CFG_SPEED_SCAN;
1878	}
1879
1880	return count;
1881}
1882
1883static DEVICE_ATTR(speed_scan, S_IWUSR | S_IRUGO, show_speed_scan,
1884		   store_speed_scan);
1885
1886static ssize_t show_net_stats(struct device *d, struct device_attribute *attr,
1887			      char *buf)
1888{
1889	struct ipw_priv *priv = dev_get_drvdata(d);
1890	return sprintf(buf, "%c\n", (priv->config & CFG_NET_STATS) ? '1' : '0');
1891}
1892
1893static ssize_t store_net_stats(struct device *d, struct device_attribute *attr,
1894			       const char *buf, size_t count)
1895{
1896	struct ipw_priv *priv = dev_get_drvdata(d);
1897	if (buf[0] == '1')
1898		priv->config |= CFG_NET_STATS;
1899	else
1900		priv->config &= ~CFG_NET_STATS;
1901
1902	return count;
1903}
1904
1905static DEVICE_ATTR(net_stats, S_IWUSR | S_IRUGO,
1906		   show_net_stats, store_net_stats);
1907
1908static ssize_t show_channels(struct device *d,
1909			     struct device_attribute *attr,
1910			     char *buf)
1911{
1912	struct ipw_priv *priv = dev_get_drvdata(d);
1913	const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
1914	int len = 0, i;
1915
1916	len = sprintf(&buf[len],
1917		      "Displaying %d channels in 2.4Ghz band "
1918		      "(802.11bg):\n", geo->bg_channels);
1919
1920	for (i = 0; i < geo->bg_channels; i++) {
1921		len += sprintf(&buf[len], "%d: BSS%s%s, %s, Band %s.\n",
1922			       geo->bg[i].channel,
1923			       geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT ?
1924			       " (radar spectrum)" : "",
1925			       ((geo->bg[i].flags & LIBIPW_CH_NO_IBSS) ||
1926				(geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT))
1927			       ? "" : ", IBSS",
1928			       geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY ?
1929			       "passive only" : "active/passive",
1930			       geo->bg[i].flags & LIBIPW_CH_B_ONLY ?
1931			       "B" : "B/G");
1932	}
1933
1934	len += sprintf(&buf[len],
1935		       "Displaying %d channels in 5.2Ghz band "
1936		       "(802.11a):\n", geo->a_channels);
1937	for (i = 0; i < geo->a_channels; i++) {
1938		len += sprintf(&buf[len], "%d: BSS%s%s, %s.\n",
1939			       geo->a[i].channel,
1940			       geo->a[i].flags & LIBIPW_CH_RADAR_DETECT ?
1941			       " (radar spectrum)" : "",
1942			       ((geo->a[i].flags & LIBIPW_CH_NO_IBSS) ||
1943				(geo->a[i].flags & LIBIPW_CH_RADAR_DETECT))
1944			       ? "" : ", IBSS",
1945			       geo->a[i].flags & LIBIPW_CH_PASSIVE_ONLY ?
1946			       "passive only" : "active/passive");
1947	}
1948
1949	return len;
1950}
1951
1952static DEVICE_ATTR(channels, S_IRUSR, show_channels, NULL);
1953
1954static void notify_wx_assoc_event(struct ipw_priv *priv)
1955{
1956	union iwreq_data wrqu;
1957	wrqu.ap_addr.sa_family = ARPHRD_ETHER;
1958	if (priv->status & STATUS_ASSOCIATED)
1959		memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN);
1960	else
1961		memset(wrqu.ap_addr.sa_data, 0, ETH_ALEN);
1962	wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1963}
1964
1965static void ipw_irq_tasklet(struct ipw_priv *priv)
1966{
1967	u32 inta, inta_mask, handled = 0;
1968	unsigned long flags;
1969	int rc = 0;
1970
1971	spin_lock_irqsave(&priv->irq_lock, flags);
1972
1973	inta = ipw_read32(priv, IPW_INTA_RW);
1974	inta_mask = ipw_read32(priv, IPW_INTA_MASK_R);
1975	inta &= (IPW_INTA_MASK_ALL & inta_mask);
1976
1977	/* Add any cached INTA values that need to be handled */
1978	inta |= priv->isr_inta;
1979
1980	spin_unlock_irqrestore(&priv->irq_lock, flags);
1981
1982	spin_lock_irqsave(&priv->lock, flags);
1983
1984	/* handle all the justifications for the interrupt */
1985	if (inta & IPW_INTA_BIT_RX_TRANSFER) {
1986		ipw_rx(priv);
1987		handled |= IPW_INTA_BIT_RX_TRANSFER;
1988	}
1989
1990	if (inta & IPW_INTA_BIT_TX_CMD_QUEUE) {
1991		IPW_DEBUG_HC("Command completed.\n");
1992		rc = ipw_queue_tx_reclaim(priv, &priv->txq_cmd, -1);
1993		priv->status &= ~STATUS_HCMD_ACTIVE;
1994		wake_up_interruptible(&priv->wait_command_queue);
1995		handled |= IPW_INTA_BIT_TX_CMD_QUEUE;
1996	}
1997
1998	if (inta & IPW_INTA_BIT_TX_QUEUE_1) {
1999		IPW_DEBUG_TX("TX_QUEUE_1\n");
2000		rc = ipw_queue_tx_reclaim(priv, &priv->txq[0], 0);
2001		handled |= IPW_INTA_BIT_TX_QUEUE_1;
2002	}
2003
2004	if (inta & IPW_INTA_BIT_TX_QUEUE_2) {
2005		IPW_DEBUG_TX("TX_QUEUE_2\n");
2006		rc = ipw_queue_tx_reclaim(priv, &priv->txq[1], 1);
2007		handled |= IPW_INTA_BIT_TX_QUEUE_2;
2008	}
2009
2010	if (inta & IPW_INTA_BIT_TX_QUEUE_3) {
2011		IPW_DEBUG_TX("TX_QUEUE_3\n");
2012		rc = ipw_queue_tx_reclaim(priv, &priv->txq[2], 2);
2013		handled |= IPW_INTA_BIT_TX_QUEUE_3;
2014	}
2015
2016	if (inta & IPW_INTA_BIT_TX_QUEUE_4) {
2017		IPW_DEBUG_TX("TX_QUEUE_4\n");
2018		rc = ipw_queue_tx_reclaim(priv, &priv->txq[3], 3);
2019		handled |= IPW_INTA_BIT_TX_QUEUE_4;
2020	}
2021
2022	if (inta & IPW_INTA_BIT_STATUS_CHANGE) {
2023		IPW_WARNING("STATUS_CHANGE\n");
2024		handled |= IPW_INTA_BIT_STATUS_CHANGE;
2025	}
2026
2027	if (inta & IPW_INTA_BIT_BEACON_PERIOD_EXPIRED) {
2028		IPW_WARNING("TX_PERIOD_EXPIRED\n");
2029		handled |= IPW_INTA_BIT_BEACON_PERIOD_EXPIRED;
2030	}
2031
2032	if (inta & IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE) {
2033		IPW_WARNING("HOST_CMD_DONE\n");
2034		handled |= IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE;
2035	}
2036
2037	if (inta & IPW_INTA_BIT_FW_INITIALIZATION_DONE) {
2038		IPW_WARNING("FW_INITIALIZATION_DONE\n");
2039		handled |= IPW_INTA_BIT_FW_INITIALIZATION_DONE;
2040	}
2041
2042	if (inta & IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE) {
2043		IPW_WARNING("PHY_OFF_DONE\n");
2044		handled |= IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE;
2045	}
2046
2047	if (inta & IPW_INTA_BIT_RF_KILL_DONE) {
2048		IPW_DEBUG_RF_KILL("RF_KILL_DONE\n");
2049		priv->status |= STATUS_RF_KILL_HW;
2050		wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true);
2051		wake_up_interruptible(&priv->wait_command_queue);
2052		priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
2053		cancel_delayed_work(&priv->request_scan);
2054		cancel_delayed_work(&priv->request_direct_scan);
2055		cancel_delayed_work(&priv->request_passive_scan);
2056		cancel_delayed_work(&priv->scan_event);
2057		schedule_work(&priv->link_down);
2058		queue_delayed_work(priv->workqueue, &priv->rf_kill, 2 * HZ);
2059		handled |= IPW_INTA_BIT_RF_KILL_DONE;
2060	}
2061
2062	if (inta & IPW_INTA_BIT_FATAL_ERROR) {
2063		IPW_WARNING("Firmware error detected.  Restarting.\n");
2064		if (priv->error) {
2065			IPW_DEBUG_FW("Sysfs 'error' log already exists.\n");
2066			if (ipw_debug_level & IPW_DL_FW_ERRORS) {
2067				struct ipw_fw_error *error =
2068				    ipw_alloc_error_log(priv);
2069				ipw_dump_error_log(priv, error);
2070				kfree(error);
2071			}
2072		} else {
2073			priv->error = ipw_alloc_error_log(priv);
2074			if (priv->error)
2075				IPW_DEBUG_FW("Sysfs 'error' log captured.\n");
2076			else
2077				IPW_DEBUG_FW("Error allocating sysfs 'error' "
2078					     "log.\n");
2079			if (ipw_debug_level & IPW_DL_FW_ERRORS)
2080				ipw_dump_error_log(priv, priv->error);
2081		}
2082
2083		/* XXX: If hardware encryption is for WPA/WPA2,
2084		 * we have to notify the supplicant. */
2085		if (priv->ieee->sec.encrypt) {
2086			priv->status &= ~STATUS_ASSOCIATED;
2087			notify_wx_assoc_event(priv);
2088		}
2089
2090		/* Keep the restart process from trying to send host
2091		 * commands by clearing the INIT status bit */
2092		priv->status &= ~STATUS_INIT;
2093
2094		/* Cancel currently queued command. */
2095		priv->status &= ~STATUS_HCMD_ACTIVE;
2096		wake_up_interruptible(&priv->wait_command_queue);
2097
2098		queue_work(priv->workqueue, &priv->adapter_restart);
2099		handled |= IPW_INTA_BIT_FATAL_ERROR;
2100	}
2101
2102	if (inta & IPW_INTA_BIT_PARITY_ERROR) {
2103		IPW_ERROR("Parity error\n");
2104		handled |= IPW_INTA_BIT_PARITY_ERROR;
2105	}
2106
2107	if (handled != inta) {
2108		IPW_ERROR("Unhandled INTA bits 0x%08x\n", inta & ~handled);
2109	}
2110
2111	spin_unlock_irqrestore(&priv->lock, flags);
2112
2113	/* enable all interrupts */
2114	ipw_enable_interrupts(priv);
2115}
2116
2117#define IPW_CMD(x) case IPW_CMD_ ## x : return #x
2118static char *get_cmd_string(u8 cmd)
2119{
2120	switch (cmd) {
2121		IPW_CMD(HOST_COMPLETE);
2122		IPW_CMD(POWER_DOWN);
2123		IPW_CMD(SYSTEM_CONFIG);
2124		IPW_CMD(MULTICAST_ADDRESS);
2125		IPW_CMD(SSID);
2126		IPW_CMD(ADAPTER_ADDRESS);
2127		IPW_CMD(PORT_TYPE);
2128		IPW_CMD(RTS_THRESHOLD);
2129		IPW_CMD(FRAG_THRESHOLD);
2130		IPW_CMD(POWER_MODE);
2131		IPW_CMD(WEP_KEY);
2132		IPW_CMD(TGI_TX_KEY);
2133		IPW_CMD(SCAN_REQUEST);
2134		IPW_CMD(SCAN_REQUEST_EXT);
2135		IPW_CMD(ASSOCIATE);
2136		IPW_CMD(SUPPORTED_RATES);
2137		IPW_CMD(SCAN_ABORT);
2138		IPW_CMD(TX_FLUSH);
2139		IPW_CMD(QOS_PARAMETERS);
2140		IPW_CMD(DINO_CONFIG);
2141		IPW_CMD(RSN_CAPABILITIES);
2142		IPW_CMD(RX_KEY);
2143		IPW_CMD(CARD_DISABLE);
2144		IPW_CMD(SEED_NUMBER);
2145		IPW_CMD(TX_POWER);
2146		IPW_CMD(COUNTRY_INFO);
2147		IPW_CMD(AIRONET_INFO);
2148		IPW_CMD(AP_TX_POWER);
2149		IPW_CMD(CCKM_INFO);
2150		IPW_CMD(CCX_VER_INFO);
2151		IPW_CMD(SET_CALIBRATION);
2152		IPW_CMD(SENSITIVITY_CALIB);
2153		IPW_CMD(RETRY_LIMIT);
2154		IPW_CMD(IPW_PRE_POWER_DOWN);
2155		IPW_CMD(VAP_BEACON_TEMPLATE);
2156		IPW_CMD(VAP_DTIM_PERIOD);
2157		IPW_CMD(EXT_SUPPORTED_RATES);
2158		IPW_CMD(VAP_LOCAL_TX_PWR_CONSTRAINT);
2159		IPW_CMD(VAP_QUIET_INTERVALS);
2160		IPW_CMD(VAP_CHANNEL_SWITCH);
2161		IPW_CMD(VAP_MANDATORY_CHANNELS);
2162		IPW_CMD(VAP_CELL_PWR_LIMIT);
2163		IPW_CMD(VAP_CF_PARAM_SET);
2164		IPW_CMD(VAP_SET_BEACONING_STATE);
2165		IPW_CMD(MEASUREMENT);
2166		IPW_CMD(POWER_CAPABILITY);
2167		IPW_CMD(SUPPORTED_CHANNELS);
2168		IPW_CMD(TPC_REPORT);
2169		IPW_CMD(WME_INFO);
2170		IPW_CMD(PRODUCTION_COMMAND);
2171	default:
2172		return "UNKNOWN";
2173	}
2174}
2175
2176#define HOST_COMPLETE_TIMEOUT HZ
2177
2178static int __ipw_send_cmd(struct ipw_priv *priv, struct host_cmd *cmd)
2179{
2180	int rc = 0;
2181	unsigned long flags;
2182
2183	spin_lock_irqsave(&priv->lock, flags);
2184	if (priv->status & STATUS_HCMD_ACTIVE) {
2185		IPW_ERROR("Failed to send %s: Already sending a command.\n",
2186			  get_cmd_string(cmd->cmd));
2187		spin_unlock_irqrestore(&priv->lock, flags);
2188		return -EAGAIN;
2189	}
2190
2191	priv->status |= STATUS_HCMD_ACTIVE;
2192
2193	if (priv->cmdlog) {
2194		priv->cmdlog[priv->cmdlog_pos].jiffies = jiffies;
2195		priv->cmdlog[priv->cmdlog_pos].cmd.cmd = cmd->cmd;
2196		priv->cmdlog[priv->cmdlog_pos].cmd.len = cmd->len;
2197		memcpy(priv->cmdlog[priv->cmdlog_pos].cmd.param, cmd->param,
2198		       cmd->len);
2199		priv->cmdlog[priv->cmdlog_pos].retcode = -1;
2200	}
2201
2202	IPW_DEBUG_HC("%s command (#%d) %d bytes: 0x%08X\n",
2203		     get_cmd_string(cmd->cmd), cmd->cmd, cmd->len,
2204		     priv->status);
2205
2206#ifndef DEBUG_CMD_WEP_KEY
2207	if (cmd->cmd == IPW_CMD_WEP_KEY)
2208		IPW_DEBUG_HC("WEP_KEY command masked out for secure.\n");
2209	else
2210#endif
2211		printk_buf(IPW_DL_HOST_COMMAND, (u8 *) cmd->param, cmd->len);
2212
2213	rc = ipw_queue_tx_hcmd(priv, cmd->cmd, cmd->param, cmd->len, 0);
2214	if (rc) {
2215		priv->status &= ~STATUS_HCMD_ACTIVE;
2216		IPW_ERROR("Failed to send %s: Reason %d\n",
2217			  get_cmd_string(cmd->cmd), rc);
2218		spin_unlock_irqrestore(&priv->lock, flags);
2219		goto exit;
2220	}
2221	spin_unlock_irqrestore(&priv->lock, flags);
2222
2223	rc = wait_event_interruptible_timeout(priv->wait_command_queue,
2224					      !(priv->
2225						status & STATUS_HCMD_ACTIVE),
2226					      HOST_COMPLETE_TIMEOUT);
2227	if (rc == 0) {
2228		spin_lock_irqsave(&priv->lock, flags);
2229		if (priv->status & STATUS_HCMD_ACTIVE) {
2230			IPW_ERROR("Failed to send %s: Command timed out.\n",
2231				  get_cmd_string(cmd->cmd));
2232			priv->status &= ~STATUS_HCMD_ACTIVE;
2233			spin_unlock_irqrestore(&priv->lock, flags);
2234			rc = -EIO;
2235			goto exit;
2236		}
2237		spin_unlock_irqrestore(&priv->lock, flags);
2238	} else
2239		rc = 0;
2240
2241	if (priv->status & STATUS_RF_KILL_HW) {
2242		IPW_ERROR("Failed to send %s: Aborted due to RF kill switch.\n",
2243			  get_cmd_string(cmd->cmd));
2244		rc = -EIO;
2245		goto exit;
2246	}
2247
2248      exit:
2249	if (priv->cmdlog) {
2250		priv->cmdlog[priv->cmdlog_pos++].retcode = rc;
2251		priv->cmdlog_pos %= priv->cmdlog_len;
2252	}
2253	return rc;
2254}
2255
2256static int ipw_send_cmd_simple(struct ipw_priv *priv, u8 command)
2257{
2258	struct host_cmd cmd = {
2259		.cmd = command,
2260	};
2261
2262	return __ipw_send_cmd(priv, &cmd);
2263}
2264
2265static int ipw_send_cmd_pdu(struct ipw_priv *priv, u8 command, u8 len,
2266			    void *data)
2267{
2268	struct host_cmd cmd = {
2269		.cmd = command,
2270		.len = len,
2271		.param = data,
2272	};
2273
2274	return __ipw_send_cmd(priv, &cmd);
2275}
2276
2277static int ipw_send_host_complete(struct ipw_priv *priv)
2278{
2279	if (!priv) {
2280		IPW_ERROR("Invalid args\n");
2281		return -1;
2282	}
2283
2284	return ipw_send_cmd_simple(priv, IPW_CMD_HOST_COMPLETE);
2285}
2286
2287static int ipw_send_system_config(struct ipw_priv *priv)
2288{
2289	return ipw_send_cmd_pdu(priv, IPW_CMD_SYSTEM_CONFIG,
2290				sizeof(priv->sys_config),
2291				&priv->sys_config);
2292}
2293
2294static int ipw_send_ssid(struct ipw_priv *priv, u8 * ssid, int len)
2295{
2296	if (!priv || !ssid) {
2297		IPW_ERROR("Invalid args\n");
2298		return -1;
2299	}
2300
2301	return ipw_send_cmd_pdu(priv, IPW_CMD_SSID, min(len, IW_ESSID_MAX_SIZE),
2302				ssid);
2303}
2304
2305static int ipw_send_adapter_address(struct ipw_priv *priv, u8 * mac)
2306{
2307	if (!priv || !mac) {
2308		IPW_ERROR("Invalid args\n");
2309		return -1;
2310	}
2311
2312	IPW_DEBUG_INFO("%s: Setting MAC to %pM\n",
2313		       priv->net_dev->name, mac);
2314
2315	return ipw_send_cmd_pdu(priv, IPW_CMD_ADAPTER_ADDRESS, ETH_ALEN, mac);
2316}
2317
2318/*
2319 * NOTE: This must be executed from our workqueue as it results in udelay
2320 * being called which may corrupt the keyboard if executed on default
2321 * workqueue
2322 */
2323static void ipw_adapter_restart(void *adapter)
2324{
2325	struct ipw_priv *priv = adapter;
2326
2327	if (priv->status & STATUS_RF_KILL_MASK)
2328		return;
2329
2330	ipw_down(priv);
2331
2332	if (priv->assoc_network &&
2333	    (priv->assoc_network->capability & WLAN_CAPABILITY_IBSS))
2334		ipw_remove_current_network(priv);
2335
2336	if (ipw_up(priv)) {
2337		IPW_ERROR("Failed to up device\n");
2338		return;
2339	}
2340}
2341
2342static void ipw_bg_adapter_restart(struct work_struct *work)
2343{
2344	struct ipw_priv *priv =
2345		container_of(work, struct ipw_priv, adapter_restart);
2346	mutex_lock(&priv->mutex);
2347	ipw_adapter_restart(priv);
2348	mutex_unlock(&priv->mutex);
2349}
2350
2351#define IPW_SCAN_CHECK_WATCHDOG (5 * HZ)
2352
2353static void ipw_scan_check(void *data)
2354{
2355	struct ipw_priv *priv = data;
2356	if (priv->status & (STATUS_SCANNING | STATUS_SCAN_ABORTING)) {
2357		IPW_DEBUG_SCAN("Scan completion watchdog resetting "
2358			       "adapter after (%dms).\n",
2359			       jiffies_to_msecs(IPW_SCAN_CHECK_WATCHDOG));
2360		queue_work(priv->workqueue, &priv->adapter_restart);
2361	}
2362}
2363
2364static void ipw_bg_scan_check(struct work_struct *work)
2365{
2366	struct ipw_priv *priv =
2367		container_of(work, struct ipw_priv, scan_check.work);
2368	mutex_lock(&priv->mutex);
2369	ipw_scan_check(priv);
2370	mutex_unlock(&priv->mutex);
2371}
2372
2373static int ipw_send_scan_request_ext(struct ipw_priv *priv,
2374				     struct ipw_scan_request_ext *request)
2375{
2376	return ipw_send_cmd_pdu(priv, IPW_CMD_SCAN_REQUEST_EXT,
2377				sizeof(*request), request);
2378}
2379
2380static int ipw_send_scan_abort(struct ipw_priv *priv)
2381{
2382	if (!priv) {
2383		IPW_ERROR("Invalid args\n");
2384		return -1;
2385	}
2386
2387	return ipw_send_cmd_simple(priv, IPW_CMD_SCAN_ABORT);
2388}
2389
2390static int ipw_set_sensitivity(struct ipw_priv *priv, u16 sens)
2391{
2392	struct ipw_sensitivity_calib calib = {
2393		.beacon_rssi_raw = cpu_to_le16(sens),
2394	};
2395
2396	return ipw_send_cmd_pdu(priv, IPW_CMD_SENSITIVITY_CALIB, sizeof(calib),
2397				&calib);
2398}
2399
2400static int ipw_send_associate(struct ipw_priv *priv,
2401			      struct ipw_associate *associate)
2402{
2403	if (!priv || !associate) {
2404		IPW_ERROR("Invalid args\n");
2405		return -1;
2406	}
2407
2408	return ipw_send_cmd_pdu(priv, IPW_CMD_ASSOCIATE, sizeof(*associate),
2409				associate);
2410}
2411
2412static int ipw_send_supported_rates(struct ipw_priv *priv,
2413				    struct ipw_supported_rates *rates)
2414{
2415	if (!priv || !rates) {
2416		IPW_ERROR("Invalid args\n");
2417		return -1;
2418	}
2419
2420	return ipw_send_cmd_pdu(priv, IPW_CMD_SUPPORTED_RATES, sizeof(*rates),
2421				rates);
2422}
2423
2424static int ipw_set_random_seed(struct ipw_priv *priv)
2425{
2426	u32 val;
2427
2428	if (!priv) {
2429		IPW_ERROR("Invalid args\n");
2430		return -1;
2431	}
2432
2433	get_random_bytes(&val, sizeof(val));
2434
2435	return ipw_send_cmd_pdu(priv, IPW_CMD_SEED_NUMBER, sizeof(val), &val);
2436}
2437
2438static int ipw_send_card_disable(struct ipw_priv *priv, u32 phy_off)
2439{
2440	__le32 v = cpu_to_le32(phy_off);
2441	if (!priv) {
2442		IPW_ERROR("Invalid args\n");
2443		return -1;
2444	}
2445
2446	return ipw_send_cmd_pdu(priv, IPW_CMD_CARD_DISABLE, sizeof(v), &v);
2447}
2448
2449static int ipw_send_tx_power(struct ipw_priv *priv, struct ipw_tx_power *power)
2450{
2451	if (!priv || !power) {
2452		IPW_ERROR("Invalid args\n");
2453		return -1;
2454	}
2455
2456	return ipw_send_cmd_pdu(priv, IPW_CMD_TX_POWER, sizeof(*power), power);
2457}
2458
2459static int ipw_set_tx_power(struct ipw_priv *priv)
2460{
2461	const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
2462	struct ipw_tx_power tx_power;
2463	s8 max_power;
2464	int i;
2465
2466	memset(&tx_power, 0, sizeof(tx_power));
2467
2468	/* configure device for 'G' band */
2469	tx_power.ieee_mode = IPW_G_MODE;
2470	tx_power.num_channels = geo->bg_channels;
2471	for (i = 0; i < geo->bg_channels; i++) {
2472		max_power = geo->bg[i].max_power;
2473		tx_power.channels_tx_power[i].channel_number =
2474		    geo->bg[i].channel;
2475		tx_power.channels_tx_power[i].tx_power = max_power ?
2476		    min(max_power, priv->tx_power) : priv->tx_power;
2477	}
2478	if (ipw_send_tx_power(priv, &tx_power))
2479		return -EIO;
2480
2481	/* configure device to also handle 'B' band */
2482	tx_power.ieee_mode = IPW_B_MODE;
2483	if (ipw_send_tx_power(priv, &tx_power))
2484		return -EIO;
2485
2486	/* configure device to also handle 'A' band */
2487	if (priv->ieee->abg_true) {
2488		tx_power.ieee_mode = IPW_A_MODE;
2489		tx_power.num_channels = geo->a_channels;
2490		for (i = 0; i < tx_power.num_channels; i++) {
2491			max_power = geo->a[i].max_power;
2492			tx_power.channels_tx_power[i].channel_number =
2493			    geo->a[i].channel;
2494			tx_power.channels_tx_power[i].tx_power = max_power ?
2495			    min(max_power, priv->tx_power) : priv->tx_power;
2496		}
2497		if (ipw_send_tx_power(priv, &tx_power))
2498			return -EIO;
2499	}
2500	return 0;
2501}
2502
2503static int ipw_send_rts_threshold(struct ipw_priv *priv, u16 rts)
2504{
2505	struct ipw_rts_threshold rts_threshold = {
2506		.rts_threshold = cpu_to_le16(rts),
2507	};
2508
2509	if (!priv) {
2510		IPW_ERROR("Invalid args\n");
2511		return -1;
2512	}
2513
2514	return ipw_send_cmd_pdu(priv, IPW_CMD_RTS_THRESHOLD,
2515				sizeof(rts_threshold), &rts_threshold);
2516}
2517
2518static int ipw_send_frag_threshold(struct ipw_priv *priv, u16 frag)
2519{
2520	struct ipw_frag_threshold frag_threshold = {
2521		.frag_threshold = cpu_to_le16(frag),
2522	};
2523
2524	if (!priv) {
2525		IPW_ERROR("Invalid args\n");
2526		return -1;
2527	}
2528
2529	return ipw_send_cmd_pdu(priv, IPW_CMD_FRAG_THRESHOLD,
2530				sizeof(frag_threshold), &frag_threshold);
2531}
2532
2533static int ipw_send_power_mode(struct ipw_priv *priv, u32 mode)
2534{
2535	__le32 param;
2536
2537	if (!priv) {
2538		IPW_ERROR("Invalid args\n");
2539		return -1;
2540	}
2541
2542	/* If on battery, set to 3, if AC set to CAM, else user
2543	 * level */
2544	switch (mode) {
2545	case IPW_POWER_BATTERY:
2546		param = cpu_to_le32(IPW_POWER_INDEX_3);
2547		break;
2548	case IPW_POWER_AC:
2549		param = cpu_to_le32(IPW_POWER_MODE_CAM);
2550		break;
2551	default:
2552		param = cpu_to_le32(mode);
2553		break;
2554	}
2555
2556	return ipw_send_cmd_pdu(priv, IPW_CMD_POWER_MODE, sizeof(param),
2557				&param);
2558}
2559
2560static int ipw_send_retry_limit(struct ipw_priv *priv, u8 slimit, u8 llimit)
2561{
2562	struct ipw_retry_limit retry_limit = {
2563		.short_retry_limit = slimit,
2564		.long_retry_limit = llimit
2565	};
2566
2567	if (!priv) {
2568		IPW_ERROR("Invalid args\n");
2569		return -1;
2570	}
2571
2572	return ipw_send_cmd_pdu(priv, IPW_CMD_RETRY_LIMIT, sizeof(retry_limit),
2573				&retry_limit);
2574}
2575
2576/*
2577 * The IPW device contains a Microwire compatible EEPROM that stores
2578 * various data like the MAC address.  Usually the firmware has exclusive
2579 * access to the eeprom, but during device initialization (before the
2580 * device driver has sent the HostComplete command to the firmware) the
2581 * device driver has read access to the EEPROM by way of indirect addressing
2582 * through a couple of memory mapped registers.
2583 *
2584 * The following is a simplified implementation for pulling data out of the
2585 * the eeprom, along with some helper functions to find information in
2586 * the per device private data's copy of the eeprom.
2587 *
2588 * NOTE: To better understand how these functions work (i.e what is a chip
2589 *       select and why do have to keep driving the eeprom clock?), read
2590 *       just about any data sheet for a Microwire compatible EEPROM.
2591 */
2592
2593/* write a 32 bit value into the indirect accessor register */
2594static inline void eeprom_write_reg(struct ipw_priv *p, u32 data)
2595{
2596	ipw_write_reg32(p, FW_MEM_REG_EEPROM_ACCESS, data);
2597
2598	/* the eeprom requires some time to complete the operation */
2599	udelay(p->eeprom_delay);
2600
2601	return;
2602}
2603
2604/* perform a chip select operation */
2605static void eeprom_cs(struct ipw_priv *priv)
2606{
2607	eeprom_write_reg(priv, 0);
2608	eeprom_write_reg(priv, EEPROM_BIT_CS);
2609	eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK);
2610	eeprom_write_reg(priv, EEPROM_BIT_CS);
2611}
2612
2613/* perform a chip select operation */
2614static void eeprom_disable_cs(struct ipw_priv *priv)
2615{
2616	eeprom_write_reg(priv, EEPROM_BIT_CS);
2617	eeprom_write_reg(priv, 0);
2618	eeprom_write_reg(priv, EEPROM_BIT_SK);
2619}
2620
2621/* push a single bit down to the eeprom */
2622static inline void eeprom_write_bit(struct ipw_priv *p, u8 bit)
2623{
2624	int d = (bit ? EEPROM_BIT_DI : 0);
2625	eeprom_write_reg(p, EEPROM_BIT_CS | d);
2626	eeprom_write_reg(p, EEPROM_BIT_CS | d | EEPROM_BIT_SK);
2627}
2628
2629/* push an opcode followed by an address down to the eeprom */
2630static void eeprom_op(struct ipw_priv *priv, u8 op, u8 addr)
2631{
2632	int i;
2633
2634	eeprom_cs(priv);
2635	eeprom_write_bit(priv, 1);
2636	eeprom_write_bit(priv, op & 2);
2637	eeprom_write_bit(priv, op & 1);
2638	for (i = 7; i >= 0; i--) {
2639		eeprom_write_bit(priv, addr & (1 << i));
2640	}
2641}
2642
2643/* pull 16 bits off the eeprom, one bit at a time */
2644static u16 eeprom_read_u16(struct ipw_priv *priv, u8 addr)
2645{
2646	int i;
2647	u16 r = 0;
2648
2649	/* Send READ Opcode */
2650	eeprom_op(priv, EEPROM_CMD_READ, addr);
2651
2652	/* Send dummy bit */
2653	eeprom_write_reg(priv, EEPROM_BIT_CS);
2654
2655	/* Read the byte off the eeprom one bit at a time */
2656	for (i = 0; i < 16; i++) {
2657		u32 data = 0;
2658		eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK);
2659		eeprom_write_reg(priv, EEPROM_BIT_CS);
2660		data = ipw_read_reg32(priv, FW_MEM_REG_EEPROM_ACCESS);
2661		r = (r << 1) | ((data & EEPROM_BIT_DO) ? 1 : 0);
2662	}
2663
2664	/* Send another dummy bit */
2665	eeprom_write_reg(priv, 0);
2666	eeprom_disable_cs(priv);
2667
2668	return r;
2669}
2670
2671/* helper function for pulling the mac address out of the private */
2672/* data's copy of the eeprom data                                 */
2673static void eeprom_parse_mac(struct ipw_priv *priv, u8 * mac)
2674{
2675	memcpy(mac, &priv->eeprom[EEPROM_MAC_ADDRESS], 6);
2676}
2677
2678/*
2679 * Either the device driver (i.e. the host) or the firmware can
2680 * load eeprom data into the designated region in SRAM.  If neither
2681 * happens then the FW will shutdown with a fatal error.
2682 *
2683 * In order to signal the FW to load the EEPROM, the EEPROM_LOAD_DISABLE
2684 * bit needs region of shared SRAM needs to be non-zero.
2685 */
2686static void ipw_eeprom_init_sram(struct ipw_priv *priv)
2687{
2688	int i;
2689	__le16 *eeprom = (__le16 *) priv->eeprom;
2690
2691	IPW_DEBUG_TRACE(">>\n");
2692
2693	/* read entire contents of eeprom into private buffer */
2694	for (i = 0; i < 128; i++)
2695		eeprom[i] = cpu_to_le16(eeprom_read_u16(priv, (u8) i));
2696
2697	/*
2698	   If the data looks correct, then copy it to our private
2699	   copy.  Otherwise let the firmware know to perform the operation
2700	   on its own.
2701	 */
2702	if (priv->eeprom[EEPROM_VERSION] != 0) {
2703		IPW_DEBUG_INFO("Writing EEPROM data into SRAM\n");
2704
2705		/* write the eeprom data to sram */
2706		for (i = 0; i < IPW_EEPROM_IMAGE_SIZE; i++)
2707			ipw_write8(priv, IPW_EEPROM_DATA + i, priv->eeprom[i]);
2708
2709		/* Do not load eeprom data on fatal error or suspend */
2710		ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0);
2711	} else {
2712		IPW_DEBUG_INFO("Enabling FW initializationg of SRAM\n");
2713
2714		/* Load eeprom data on fatal error or suspend */
2715		ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 1);
2716	}
2717
2718	IPW_DEBUG_TRACE("<<\n");
2719}
2720
2721static void ipw_zero_memory(struct ipw_priv *priv, u32 start, u32 count)
2722{
2723	count >>= 2;
2724	if (!count)
2725		return;
2726	_ipw_write32(priv, IPW_AUTOINC_ADDR, start);
2727	while (count--)
2728		_ipw_write32(priv, IPW_AUTOINC_DATA, 0);
2729}
2730
2731static inline void ipw_fw_dma_reset_command_blocks(struct ipw_priv *priv)
2732{
2733	ipw_zero_memory(priv, IPW_SHARED_SRAM_DMA_CONTROL,
2734			CB_NUMBER_OF_ELEMENTS_SMALL *
2735			sizeof(struct command_block));
2736}
2737
2738static int ipw_fw_dma_enable(struct ipw_priv *priv)
2739{				/* start dma engine but no transfers yet */
2740
2741	IPW_DEBUG_FW(">> : \n");
2742
2743	/* Start the dma */
2744	ipw_fw_dma_reset_command_blocks(priv);
2745
2746	/* Write CB base address */
2747	ipw_write_reg32(priv, IPW_DMA_I_CB_BASE, IPW_SHARED_SRAM_DMA_CONTROL);
2748
2749	IPW_DEBUG_FW("<< : \n");
2750	return 0;
2751}
2752
2753static void ipw_fw_dma_abort(struct ipw_priv *priv)
2754{
2755	u32 control = 0;
2756
2757	IPW_DEBUG_FW(">> :\n");
2758
2759	/* set the Stop and Abort bit */
2760	control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_STOP_AND_ABORT;
2761	ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control);
2762	priv->sram_desc.last_cb_index = 0;
2763
2764	IPW_DEBUG_FW("<< \n");
2765}
2766
2767static int ipw_fw_dma_write_command_block(struct ipw_priv *priv, int index,
2768					  struct command_block *cb)
2769{
2770	u32 address =
2771	    IPW_SHARED_SRAM_DMA_CONTROL +
2772	    (sizeof(struct command_block) * index);
2773	IPW_DEBUG_FW(">> :\n");
2774
2775	ipw_write_indirect(priv, address, (u8 *) cb,
2776			   (int)sizeof(struct command_block));
2777
2778	IPW_DEBUG_FW("<< :\n");
2779	return 0;
2780
2781}
2782
2783static int ipw_fw_dma_kick(struct ipw_priv *priv)
2784{
2785	u32 control = 0;
2786	u32 index = 0;
2787
2788	IPW_DEBUG_FW(">> :\n");
2789
2790	for (index = 0; index < priv->sram_desc.last_cb_index; index++)
2791		ipw_fw_dma_write_command_block(priv, index,
2792					       &priv->sram_desc.cb_list[index]);
2793
2794	/* Enable the DMA in the CSR register */
2795	ipw_clear_bit(priv, IPW_RESET_REG,
2796		      IPW_RESET_REG_MASTER_DISABLED |
2797		      IPW_RESET_REG_STOP_MASTER);
2798
2799	/* Set the Start bit. */
2800	control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_START;
2801	ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control);
2802
2803	IPW_DEBUG_FW("<< :\n");
2804	return 0;
2805}
2806
2807static void ipw_fw_dma_dump_command_block(struct ipw_priv *priv)
2808{
2809	u32 address;
2810	u32 register_value = 0;
2811	u32 cb_fields_address = 0;
2812
2813	IPW_DEBUG_FW(">> :\n");
2814	address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB);
2815	IPW_DEBUG_FW_INFO("Current CB is 0x%x \n", address);
2816
2817	/* Read the DMA Controlor register */
2818	register_value = ipw_read_reg32(priv, IPW_DMA_I_DMA_CONTROL);
2819	IPW_DEBUG_FW_INFO("IPW_DMA_I_DMA_CONTROL is 0x%x \n", register_value);
2820
2821	/* Print the CB values */
2822	cb_fields_address = address;
2823	register_value = ipw_read_reg32(priv, cb_fields_address);
2824	IPW_DEBUG_FW_INFO("Current CB ControlField is 0x%x \n", register_value);
2825
2826	cb_fields_address += sizeof(u32);
2827	register_value = ipw_read_reg32(priv, cb_fields_address);
2828	IPW_DEBUG_FW_INFO("Current CB Source Field is 0x%x \n", register_value);
2829
2830	cb_fields_address += sizeof(u32);
2831	register_value = ipw_read_reg32(priv, cb_fields_address);
2832	IPW_DEBUG_FW_INFO("Current CB Destination Field is 0x%x \n",
2833			  register_value);
2834
2835	cb_fields_address += sizeof(u32);
2836	register_value = ipw_read_reg32(priv, cb_fields_address);
2837	IPW_DEBUG_FW_INFO("Current CB Status Field is 0x%x \n", register_value);
2838
2839	IPW_DEBUG_FW(">> :\n");
2840}
2841
2842static int ipw_fw_dma_command_block_index(struct ipw_priv *priv)
2843{
2844	u32 current_cb_address = 0;
2845	u32 current_cb_index = 0;
2846
2847	IPW_DEBUG_FW("<< :\n");
2848	current_cb_address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB);
2849
2850	current_cb_index = (current_cb_address - IPW_SHARED_SRAM_DMA_CONTROL) /
2851	    sizeof(struct command_block);
2852
2853	IPW_DEBUG_FW_INFO("Current CB index 0x%x address = 0x%X \n",
2854			  current_cb_index, current_cb_address);
2855
2856	IPW_DEBUG_FW(">> :\n");
2857	return current_cb_index;
2858
2859}
2860
2861static int ipw_fw_dma_add_command_block(struct ipw_priv *priv,
2862					u32 src_address,
2863					u32 dest_address,
2864					u32 length,
2865					int interrupt_enabled, int is_last)
2866{
2867
2868	u32 control = CB_VALID | CB_SRC_LE | CB_DEST_LE | CB_SRC_AUTOINC |
2869	    CB_SRC_IO_GATED | CB_DEST_AUTOINC | CB_SRC_SIZE_LONG |
2870	    CB_DEST_SIZE_LONG;
2871	struct command_block *cb;
2872	u32 last_cb_element = 0;
2873
2874	IPW_DEBUG_FW_INFO("src_address=0x%x dest_address=0x%x length=0x%x\n",
2875			  src_address, dest_address, length);
2876
2877	if (priv->sram_desc.last_cb_index >= CB_NUMBER_OF_ELEMENTS_SMALL)
2878		return -1;
2879
2880	last_cb_element = priv->sram_desc.last_cb_index;
2881	cb = &priv->sram_desc.cb_list[last_cb_element];
2882	priv->sram_desc.last_cb_index++;
2883
2884	/* Calculate the new CB control word */
2885	if (interrupt_enabled)
2886		control |= CB_INT_ENABLED;
2887
2888	if (is_last)
2889		control |= CB_LAST_VALID;
2890
2891	control |= length;
2892
2893	/* Calculate the CB Element's checksum value */
2894	cb->status = control ^ src_address ^ dest_address;
2895
2896	/* Copy the Source and Destination addresses */
2897	cb->dest_addr = dest_address;
2898	cb->source_addr = src_address;
2899
2900	/* Copy the Control Word last */
2901	cb->control = control;
2902
2903	return 0;
2904}
2905
2906static int ipw_fw_dma_add_buffer(struct ipw_priv *priv, dma_addr_t *src_address,
2907				 int nr, u32 dest_address, u32 len)
2908{
2909	int ret, i;
2910	u32 size;
2911
2912	IPW_DEBUG_FW(">> \n");
2913	IPW_DEBUG_FW_INFO("nr=%d dest_address=0x%x len=0x%x\n",
2914			  nr, dest_address, len);
2915
2916	for (i = 0; i < nr; i++) {
2917		size = min_t(u32, len - i * CB_MAX_LENGTH, CB_MAX_LENGTH);
2918		ret = ipw_fw_dma_add_command_block(priv, src_address[i],
2919						   dest_address +
2920						   i * CB_MAX_LENGTH, size,
2921						   0, 0);
2922		if (ret) {
2923			IPW_DEBUG_FW_INFO(": Failed\n");
2924			return -1;
2925		} else
2926			IPW_DEBUG_FW_INFO(": Added new cb\n");
2927	}
2928
2929	IPW_DEBUG_FW("<< \n");
2930	return 0;
2931}
2932
2933static int ipw_fw_dma_wait(struct ipw_priv *priv)
2934{
2935	u32 current_index = 0, previous_index;
2936	u32 watchdog = 0;
2937
2938	IPW_DEBUG_FW(">> : \n");
2939
2940	current_index = ipw_fw_dma_command_block_index(priv);
2941	IPW_DEBUG_FW_INFO("sram_desc.last_cb_index:0x%08X\n",
2942			  (int)priv->sram_desc.last_cb_index);
2943
2944	while (current_index < priv->sram_desc.last_cb_index) {
2945		udelay(50);
2946		previous_index = current_index;
2947		current_index = ipw_fw_dma_command_block_index(priv);
2948
2949		if (previous_index < current_index) {
2950			watchdog = 0;
2951			continue;
2952		}
2953		if (++watchdog > 400) {
2954			IPW_DEBUG_FW_INFO("Timeout\n");
2955			ipw_fw_dma_dump_command_block(priv);
2956			ipw_fw_dma_abort(priv);
2957			return -1;
2958		}
2959	}
2960
2961	ipw_fw_dma_abort(priv);
2962
2963	/*Disable the DMA in the CSR register */
2964	ipw_set_bit(priv, IPW_RESET_REG,
2965		    IPW_RESET_REG_MASTER_DISABLED | IPW_RESET_REG_STOP_MASTER);
2966
2967	IPW_DEBUG_FW("<< dmaWaitSync \n");
2968	return 0;
2969}
2970
2971static void ipw_remove_current_network(struct ipw_priv *priv)
2972{
2973	struct list_head *element, *safe;
2974	struct libipw_network *network = NULL;
2975	unsigned long flags;
2976
2977	spin_lock_irqsave(&priv->ieee->lock, flags);
2978	list_for_each_safe(element, safe, &priv->ieee->network_list) {
2979		network = list_entry(element, struct libipw_network, list);
2980		if (!memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
2981			list_del(element);
2982			list_add_tail(&network->list,
2983				      &priv->ieee->network_free_list);
2984		}
2985	}
2986	spin_unlock_irqrestore(&priv->ieee->lock, flags);
2987}
2988
2989/**
2990 * Check that card is still alive.
2991 * Reads debug register from domain0.
2992 * If card is present, pre-defined value should
2993 * be found there.
2994 *
2995 * @param priv
2996 * @return 1 if card is present, 0 otherwise
2997 */
2998static inline int ipw_alive(struct ipw_priv *priv)
2999{
3000	return ipw_read32(priv, 0x90) == 0xd55555d5;
3001}
3002
3003/* timeout in msec, attempted in 10-msec quanta */
3004static int ipw_poll_bit(struct ipw_priv *priv, u32 addr, u32 mask,
3005			       int timeout)
3006{
3007	int i = 0;
3008
3009	do {
3010		if ((ipw_read32(priv, addr) & mask) == mask)
3011			return i;
3012		mdelay(10);
3013		i += 10;
3014	} while (i < timeout);
3015
3016	return -ETIME;
3017}
3018
3019/* These functions load the firmware and micro code for the operation of
3020 * the ipw hardware.  It assumes the buffer has all the bits for the
3021 * image and the caller is handling the memory allocation and clean up.
3022 */
3023
3024static int ipw_stop_master(struct ipw_priv *priv)
3025{
3026	int rc;
3027
3028	IPW_DEBUG_TRACE(">> \n");
3029	/* stop master. typical delay - 0 */
3030	ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER);
3031
3032	/* timeout is in msec, polled in 10-msec quanta */
3033	rc = ipw_poll_bit(priv, IPW_RESET_REG,
3034			  IPW_RESET_REG_MASTER_DISABLED, 100);
3035	if (rc < 0) {
3036		IPW_ERROR("wait for stop master failed after 100ms\n");
3037		return -1;
3038	}
3039
3040	IPW_DEBUG_INFO("stop master %dms\n", rc);
3041
3042	return rc;
3043}
3044
3045static void ipw_arc_release(struct ipw_priv *priv)
3046{
3047	IPW_DEBUG_TRACE(">> \n");
3048	mdelay(5);
3049
3050	ipw_clear_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET);
3051
3052	/* no one knows timing, for safety add some delay */
3053	mdelay(5);
3054}
3055
3056struct fw_chunk {
3057	__le32 address;
3058	__le32 length;
3059};
3060
3061static int ipw_load_ucode(struct ipw_priv *priv, u8 * data, size_t len)
3062{
3063	int rc = 0, i, addr;
3064	u8 cr = 0;
3065	__le16 *image;
3066
3067	image = (__le16 *) data;
3068
3069	IPW_DEBUG_TRACE(">> \n");
3070
3071	rc = ipw_stop_master(priv);
3072
3073	if (rc < 0)
3074		return rc;
3075
3076	for (addr = IPW_SHARED_LOWER_BOUND;
3077	     addr < IPW_REGISTER_DOMAIN1_END; addr += 4) {
3078		ipw_write32(priv, addr, 0);
3079	}
3080
3081	/* no ucode (yet) */
3082	memset(&priv->dino_alive, 0, sizeof(priv->dino_alive));
3083	/* destroy DMA queues */
3084	/* reset sequence */
3085
3086	ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_ON);
3087	ipw_arc_release(priv);
3088	ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_OFF);
3089	mdelay(1);
3090
3091	/* reset PHY */
3092	ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, IPW_BASEBAND_POWER_DOWN);
3093	mdelay(1);
3094
3095	ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, 0);
3096	mdelay(1);
3097
3098	/* enable ucode store */
3099	ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0x0);
3100	ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, DINO_ENABLE_CS);
3101	mdelay(1);
3102
3103	/* write ucode */
3104	/**
3105	 * @bug
3106	 * Do NOT set indirect address register once and then
3107	 * store data to indirect data register in the loop.
3108	 * It seems very reasonable, but in this case DINO do not
3109	 * accept ucode. It is essential to set address each time.
3110	 */
3111	/* load new ipw uCode */
3112	for (i = 0; i < len / 2; i++)
3113		ipw_write_reg16(priv, IPW_BASEBAND_CONTROL_STORE,
3114				le16_to_cpu(image[i]));
3115
3116	/* enable DINO */
3117	ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0);
3118	ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, DINO_ENABLE_SYSTEM);
3119
3120	/* this is where the igx / win driver deveates from the VAP driver. */
3121
3122	/* wait for alive response */
3123	for (i = 0; i < 100; i++) {
3124		/* poll for incoming data */
3125		cr = ipw_read_reg8(priv, IPW_BASEBAND_CONTROL_STATUS);
3126		if (cr & DINO_RXFIFO_DATA)
3127			break;
3128		mdelay(1);
3129	}
3130
3131	if (cr & DINO_RXFIFO_DATA) {
3132		/* alive_command_responce size is NOT multiple of 4 */
3133		__le32 response_buffer[(sizeof(priv->dino_alive) + 3) / 4];
3134
3135		for (i = 0; i < ARRAY_SIZE(response_buffer); i++)
3136			response_buffer[i] =
3137			    cpu_to_le32(ipw_read_reg32(priv,
3138						       IPW_BASEBAND_RX_FIFO_READ));
3139		memcpy(&priv->dino_alive, response_buffer,
3140		       sizeof(priv->dino_alive));
3141		if (priv->dino_alive.alive_command == 1
3142		    && priv->dino_alive.ucode_valid == 1) {
3143			rc = 0;
3144			IPW_DEBUG_INFO
3145			    ("Microcode OK, rev. %d (0x%x) dev. %d (0x%x) "
3146			     "of %02d/%02d/%02d %02d:%02d\n",
3147			     priv->dino_alive.software_revision,
3148			     priv->dino_alive.software_revision,
3149			     priv->dino_alive.device_identifier,
3150			     priv->dino_alive.device_identifier,
3151			     priv->dino_alive.time_stamp[0],
3152			     priv->dino_alive.time_stamp[1],
3153			     priv->dino_alive.time_stamp[2],
3154			     priv->dino_alive.time_stamp[3],
3155			     priv->dino_alive.time_stamp[4]);
3156		} else {
3157			IPW_DEBUG_INFO("Microcode is not alive\n");
3158			rc = -EINVAL;
3159		}
3160	} else {
3161		IPW_DEBUG_INFO("No alive response from DINO\n");
3162		rc = -ETIME;
3163	}
3164
3165	/* disable DINO, otherwise for some reason
3166	   firmware have problem getting alive resp. */
3167	ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0);
3168
3169	return rc;
3170}
3171
3172static int ipw_load_firmware(struct ipw_priv *priv, u8 * data, size_t len)
3173{
3174	int ret = -1;
3175	int offset = 0;
3176	struct fw_chunk *chunk;
3177	int total_nr = 0;
3178	int i;
3179	struct pci_pool *pool;
3180	void **virts;
3181	dma_addr_t *phys;
3182
3183	IPW_DEBUG_TRACE("<< : \n");
3184
3185	virts = kmalloc(sizeof(void *) * CB_NUMBER_OF_ELEMENTS_SMALL,
3186			GFP_KERNEL);
3187	if (!virts)
3188		return -ENOMEM;
3189
3190	phys = kmalloc(sizeof(dma_addr_t) * CB_NUMBER_OF_ELEMENTS_SMALL,
3191			GFP_KERNEL);
3192	if (!phys) {
3193		kfree(virts);
3194		return -ENOMEM;
3195	}
3196	pool = pci_pool_create("ipw2200", priv->pci_dev, CB_MAX_LENGTH, 0, 0);
3197	if (!pool) {
3198		IPW_ERROR("pci_pool_create failed\n");
3199		kfree(phys);
3200		kfree(virts);
3201		return -ENOMEM;
3202	}
3203
3204	/* Start the Dma */
3205	ret = ipw_fw_dma_enable(priv);
3206
3207	/* the DMA is already ready this would be a bug. */
3208	BUG_ON(priv->sram_desc.last_cb_index > 0);
3209
3210	do {
3211		u32 chunk_len;
3212		u8 *start;
3213		int size;
3214		int nr = 0;
3215
3216		chunk = (struct fw_chunk *)(data + offset);
3217		offset += sizeof(struct fw_chunk);
3218		chunk_len = le32_to_cpu(chunk->length);
3219		start = data + offset;
3220
3221		nr = (chunk_len + CB_MAX_LENGTH - 1) / CB_MAX_LENGTH;
3222		for (i = 0; i < nr; i++) {
3223			virts[total_nr] = pci_pool_alloc(pool, GFP_KERNEL,
3224							 &phys[total_nr]);
3225			if (!virts[total_nr]) {
3226				ret = -ENOMEM;
3227				goto out;
3228			}
3229			size = min_t(u32, chunk_len - i * CB_MAX_LENGTH,
3230				     CB_MAX_LENGTH);
3231			memcpy(virts[total_nr], start, size);
3232			start += size;
3233			total_nr++;
3234			/* We don't support fw chunk larger than 64*8K */
3235			BUG_ON(total_nr > CB_NUMBER_OF_ELEMENTS_SMALL);
3236		}
3237
3238		/* build DMA packet and queue up for sending */
3239		/* dma to chunk->address, the chunk->length bytes from data +
3240		 * offeset*/
3241		/* Dma loading */
3242		ret = ipw_fw_dma_add_buffer(priv, &phys[total_nr - nr],
3243					    nr, le32_to_cpu(chunk->address),
3244					    chunk_len);
3245		if (ret) {
3246			IPW_DEBUG_INFO("dmaAddBuffer Failed\n");
3247			goto out;
3248		}
3249
3250		offset += chunk_len;
3251	} while (offset < len);
3252
3253	/* Run the DMA and wait for the answer */
3254	ret = ipw_fw_dma_kick(priv);
3255	if (ret) {
3256		IPW_ERROR("dmaKick Failed\n");
3257		goto out;
3258	}
3259
3260	ret = ipw_fw_dma_wait(priv);
3261	if (ret) {
3262		IPW_ERROR("dmaWaitSync Failed\n");
3263		goto out;
3264	}
3265 out:
3266	for (i = 0; i < total_nr; i++)
3267		pci_pool_free(pool, virts[i], phys[i]);
3268
3269	pci_pool_destroy(pool);
3270	kfree(phys);
3271	kfree(virts);
3272
3273	return ret;
3274}
3275
3276/* stop nic */
3277static int ipw_stop_nic(struct ipw_priv *priv)
3278{
3279	int rc = 0;
3280
3281	/* stop */
3282	ipw_write32(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER);
3283
3284	rc = ipw_poll_bit(priv, IPW_RESET_REG,
3285			  IPW_RESET_REG_MASTER_DISABLED, 500);
3286	if (rc < 0) {
3287		IPW_ERROR("wait for reg master disabled failed after 500ms\n");
3288		return rc;
3289	}
3290
3291	ipw_set_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET);
3292
3293	return rc;
3294}
3295
3296static void ipw_start_nic(struct ipw_priv *priv)
3297{
3298	IPW_DEBUG_TRACE(">>\n");
3299
3300	/* prvHwStartNic  release ARC */
3301	ipw_clear_bit(priv, IPW_RESET_REG,
3302		      IPW_RESET_REG_MASTER_DISABLED |
3303		      IPW_RESET_REG_STOP_MASTER |
3304		      CBD_RESET_REG_PRINCETON_RESET);
3305
3306	/* enable power management */
3307	ipw_set_bit(priv, IPW_GP_CNTRL_RW,
3308		    IPW_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
3309
3310	IPW_DEBUG_TRACE("<<\n");
3311}
3312
3313static int ipw_init_nic(struct ipw_priv *priv)
3314{
3315	int rc;
3316
3317	IPW_DEBUG_TRACE(">>\n");
3318	/* reset */
3319	/*prvHwInitNic */
3320	/* set "initialization complete" bit to move adapter to D0 state */
3321	ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE);
3322
3323	/* low-level PLL activation */
3324	ipw_write32(priv, IPW_READ_INT_REGISTER,
3325		    IPW_BIT_INT_HOST_SRAM_READ_INT_REGISTER);
3326
3327	/* wait for clock stabilization */
3328	rc = ipw_poll_bit(priv, IPW_GP_CNTRL_RW,
3329			  IPW_GP_CNTRL_BIT_CLOCK_READY, 250);
3330	if (rc < 0)
3331		IPW_DEBUG_INFO("FAILED wait for clock stablization\n");
3332
3333	/* assert SW reset */
3334	ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_SW_RESET);
3335
3336	udelay(10);
3337
3338	/* set "initialization complete" bit to move adapter to D0 state */
3339	ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE);
3340
3341	IPW_DEBUG_TRACE(">>\n");
3342	return 0;
3343}
3344
3345/* Call this function from process context, it will sleep in request_firmware.
3346 * Probe is an ok place to call this from.
3347 */
3348static int ipw_reset_nic(struct ipw_priv *priv)
3349{
3350	int rc = 0;
3351	unsigned long flags;
3352
3353	IPW_DEBUG_TRACE(">>\n");
3354
3355	rc = ipw_init_nic(priv);
3356
3357	spin_lock_irqsave(&priv->lock, flags);
3358	/* Clear the 'host command active' bit... */
3359	priv->status &= ~STATUS_HCMD_ACTIVE;
3360	wake_up_interruptible(&priv->wait_command_queue);
3361	priv->status &= ~(STATUS_SCANNING | STATUS_SCAN_ABORTING);
3362	wake_up_interruptible(&priv->wait_state);
3363	spin_unlock_irqrestore(&priv->lock, flags);
3364
3365	IPW_DEBUG_TRACE("<<\n");
3366	return rc;
3367}
3368
3369
3370struct ipw_fw {
3371	__le32 ver;
3372	__le32 boot_size;
3373	__le32 ucode_size;
3374	__le32 fw_size;
3375	u8 data[0];
3376};
3377
3378static int ipw_get_fw(struct ipw_priv *priv,
3379		      const struct firmware **raw, const char *name)
3380{
3381	struct ipw_fw *fw;
3382	int rc;
3383
3384	/* ask firmware_class module to get the boot firmware off disk */
3385	rc = request_firmware(raw, name, &priv->pci_dev->dev);
3386	if (rc < 0) {
3387		IPW_ERROR("%s request_firmware failed: Reason %d\n", name, rc);
3388		return rc;
3389	}
3390
3391	if ((*raw)->size < sizeof(*fw)) {
3392		IPW_ERROR("%s is too small (%zd)\n", name, (*raw)->size);
3393		return -EINVAL;
3394	}
3395
3396	fw = (void *)(*raw)->data;
3397
3398	if ((*raw)->size < sizeof(*fw) + le32_to_cpu(fw->boot_size) +
3399	    le32_to_cpu(fw->ucode_size) + le32_to_cpu(fw->fw_size)) {
3400		IPW_ERROR("%s is too small or corrupt (%zd)\n",
3401			  name, (*raw)->size);
3402		return -EINVAL;
3403	}
3404
3405	IPW_DEBUG_INFO("Read firmware '%s' image v%d.%d (%zd bytes)\n",
3406		       name,
3407		       le32_to_cpu(fw->ver) >> 16,
3408		       le32_to_cpu(fw->ver) & 0xff,
3409		       (*raw)->size - sizeof(*fw));
3410	return 0;
3411}
3412
3413#define IPW_RX_BUF_SIZE (3000)
3414
3415static void ipw_rx_queue_reset(struct ipw_priv *priv,
3416				      struct ipw_rx_queue *rxq)
3417{
3418	unsigned long flags;
3419	int i;
3420
3421	spin_lock_irqsave(&rxq->lock, flags);
3422
3423	INIT_LIST_HEAD(&rxq->rx_free);
3424	INIT_LIST_HEAD(&rxq->rx_used);
3425
3426	/* Fill the rx_used queue with _all_ of the Rx buffers */
3427	for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++) {
3428		/* In the reset function, these buffers may have been allocated
3429		 * to an SKB, so we need to unmap and free potential storage */
3430		if (rxq->pool[i].skb != NULL) {
3431			pci_unmap_single(priv->pci_dev, rxq->pool[i].dma_addr,
3432					 IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
3433			dev_kfree_skb(rxq->pool[i].skb);
3434			rxq->pool[i].skb = NULL;
3435		}
3436		list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
3437	}
3438
3439	/* Set us so that we have processed and used all buffers, but have
3440	 * not restocked the Rx queue with fresh buffers */
3441	rxq->read = rxq->write = 0;
3442	rxq->free_count = 0;
3443	spin_unlock_irqrestore(&rxq->lock, flags);
3444}
3445
3446#ifdef CONFIG_PM
3447static int fw_loaded = 0;
3448static const struct firmware *raw = NULL;
3449
3450static void free_firmware(void)
3451{
3452	if (fw_loaded) {
3453		release_firmware(raw);
3454		raw = NULL;
3455		fw_loaded = 0;
3456	}
3457}
3458#else
3459#define free_firmware() do {} while (0)
3460#endif
3461
3462static int ipw_load(struct ipw_priv *priv)
3463{
3464#ifndef CONFIG_PM
3465	const struct firmware *raw = NULL;
3466#endif
3467	struct ipw_fw *fw;
3468	u8 *boot_img, *ucode_img, *fw_img;
3469	u8 *name = NULL;
3470	int rc = 0, retries = 3;
3471
3472	switch (priv->ieee->iw_mode) {
3473	case IW_MODE_ADHOC:
3474		name = "ipw2200-ibss.fw";
3475		break;
3476#ifdef CONFIG_IPW2200_MONITOR
3477	case IW_MODE_MONITOR:
3478		name = "ipw2200-sniffer.fw";
3479		break;
3480#endif
3481	case IW_MODE_INFRA:
3482		name = "ipw2200-bss.fw";
3483		break;
3484	}
3485
3486	if (!name) {
3487		rc = -EINVAL;
3488		goto error;
3489	}
3490
3491#ifdef CONFIG_PM
3492	if (!fw_loaded) {
3493#endif
3494		rc = ipw_get_fw(priv, &raw, name);
3495		if (rc < 0)
3496			goto error;
3497#ifdef CONFIG_PM
3498	}
3499#endif
3500
3501	fw = (void *)raw->data;
3502	boot_img = &fw->data[0];
3503	ucode_img = &fw->data[le32_to_cpu(fw->boot_size)];
3504	fw_img = &fw->data[le32_to_cpu(fw->boot_size) +
3505			   le32_to_cpu(fw->ucode_size)];
3506
3507	if (rc < 0)
3508		goto error;
3509
3510	if (!priv->rxq)
3511		priv->rxq = ipw_rx_queue_alloc(priv);
3512	else
3513		ipw_rx_queue_reset(priv, priv->rxq);
3514	if (!priv->rxq) {
3515		IPW_ERROR("Unable to initialize Rx queue\n");
3516		goto error;
3517	}
3518
3519      retry:
3520	/* Ensure interrupts are disabled */
3521	ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
3522	priv->status &= ~STATUS_INT_ENABLED;
3523
3524	/* ack pending interrupts */
3525	ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3526
3527	ipw_stop_nic(priv);
3528
3529	rc = ipw_reset_nic(priv);
3530	if (rc < 0) {
3531		IPW_ERROR("Unable to reset NIC\n");
3532		goto error;
3533	}
3534
3535	ipw_zero_memory(priv, IPW_NIC_SRAM_LOWER_BOUND,
3536			IPW_NIC_SRAM_UPPER_BOUND - IPW_NIC_SRAM_LOWER_BOUND);
3537
3538	/* DMA the initial boot firmware into the device */
3539	rc = ipw_load_firmware(priv, boot_img, le32_to_cpu(fw->boot_size));
3540	if (rc < 0) {
3541		IPW_ERROR("Unable to load boot firmware: %d\n", rc);
3542		goto error;
3543	}
3544
3545	/* kick start the device */
3546	ipw_start_nic(priv);
3547
3548	/* wait for the device to finish its initial startup sequence */
3549	rc = ipw_poll_bit(priv, IPW_INTA_RW,
3550			  IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500);
3551	if (rc < 0) {
3552		IPW_ERROR("device failed to boot initial fw image\n");
3553		goto error;
3554	}
3555	IPW_DEBUG_INFO("initial device response after %dms\n", rc);
3556
3557	/* ack fw init done interrupt */
3558	ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE);
3559
3560	/* DMA the ucode into the device */
3561	rc = ipw_load_ucode(priv, ucode_img, le32_to_cpu(fw->ucode_size));
3562	if (rc < 0) {
3563		IPW_ERROR("Unable to load ucode: %d\n", rc);
3564		goto error;
3565	}
3566
3567	/* stop nic */
3568	ipw_stop_nic(priv);
3569
3570	/* DMA bss firmware into the device */
3571	rc = ipw_load_firmware(priv, fw_img, le32_to_cpu(fw->fw_size));
3572	if (rc < 0) {
3573		IPW_ERROR("Unable to load firmware: %d\n", rc);
3574		goto error;
3575	}
3576#ifdef CONFIG_PM
3577	fw_loaded = 1;
3578#endif
3579
3580	ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0);
3581
3582	rc = ipw_queue_reset(priv);
3583	if (rc < 0) {
3584		IPW_ERROR("Unable to initialize queues\n");
3585		goto error;
3586	}
3587
3588	/* Ensure interrupts are disabled */
3589	ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
3590	/* ack pending interrupts */
3591	ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3592
3593	/* kick start the device */
3594	ipw_start_nic(priv);
3595
3596	if (ipw_read32(priv, IPW_INTA_RW) & IPW_INTA_BIT_PARITY_ERROR) {
3597		if (retries > 0) {
3598			IPW_WARNING("Parity error.  Retrying init.\n");
3599			retries--;
3600			goto retry;
3601		}
3602
3603		IPW_ERROR("TODO: Handle parity error -- schedule restart?\n");
3604		rc = -EIO;
3605		goto error;
3606	}
3607
3608	/* wait for the device */
3609	rc = ipw_poll_bit(priv, IPW_INTA_RW,
3610			  IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500);
3611	if (rc < 0) {
3612		IPW_ERROR("device failed to start within 500ms\n");
3613		goto error;
3614	}
3615	IPW_DEBUG_INFO("device response after %dms\n", rc);
3616
3617	/* ack fw init done interrupt */
3618	ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE);
3619
3620	/* read eeprom data and initialize the eeprom region of sram */
3621	priv->eeprom_delay = 1;
3622	ipw_eeprom_init_sram(priv);
3623
3624	/* enable interrupts */
3625	ipw_enable_interrupts(priv);
3626
3627	/* Ensure our queue has valid packets */
3628	ipw_rx_queue_replenish(priv);
3629
3630	ipw_write32(priv, IPW_RX_READ_INDEX, priv->rxq->read);
3631
3632	/* ack pending interrupts */
3633	ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3634
3635#ifndef CONFIG_PM
3636	release_firmware(raw);
3637#endif
3638	return 0;
3639
3640      error:
3641	if (priv->rxq) {
3642		ipw_rx_queue_free(priv, priv->rxq);
3643		priv->rxq = NULL;
3644	}
3645	ipw_tx_queue_free(priv);
3646	if (raw)
3647		release_firmware(raw);
3648#ifdef CONFIG_PM
3649	fw_loaded = 0;
3650	raw = NULL;
3651#endif
3652
3653	return rc;
3654}
3655
3656/**
3657 * DMA services
3658 *
3659 * Theory of operation
3660 *
3661 * A queue is a circular buffers with 'Read' and 'Write' pointers.
3662 * 2 empty entries always kept in the buffer to protect from overflow.
3663 *
3664 * For Tx queue, there are low mark and high mark limits. If, after queuing
3665 * the packet for Tx, free space become < low mark, Tx queue stopped. When
3666 * reclaiming packets (on 'tx done IRQ), if free space become > high mark,
3667 * Tx queue resumed.
3668 *
3669 * The IPW operates with six queues, one receive queue in the device's
3670 * sram, one transmit queue for sending commands to the device firmware,
3671 * and four transmit queues for data.
3672 *
3673 * The four transmit queues allow for performing quality of service (qos)
3674 * transmissions as per the 802.11 protocol.  Currently Linux does not
3675 * provide a mechanism to the user for utilizing prioritized queues, so
3676 * we only utilize the first data transmit queue (queue1).
3677 */
3678
3679/**
3680 * Driver allocates buffers of this size for Rx
3681 */
3682
3683/**
3684 * ipw_rx_queue_space - Return number of free slots available in queue.
3685 */
3686static int ipw_rx_queue_space(const struct ipw_rx_queue *q)
3687{
3688	int s = q->read - q->write;
3689	if (s <= 0)
3690		s += RX_QUEUE_SIZE;
3691	/* keep some buffer to not confuse full and empty queue */
3692	s -= 2;
3693	if (s < 0)
3694		s = 0;
3695	return s;
3696}
3697
3698static inline int ipw_tx_queue_space(const struct clx2_queue *q)
3699{
3700	int s = q->last_used - q->first_empty;
3701	if (s <= 0)
3702		s += q->n_bd;
3703	s -= 2;			/* keep some reserve to not confuse empty and full situations */
3704	if (s < 0)
3705		s = 0;
3706	return s;
3707}
3708
3709static inline int ipw_queue_inc_wrap(int index, int n_bd)
3710{
3711	return (++index == n_bd) ? 0 : index;
3712}
3713
3714/**
3715 * Initialize common DMA queue structure
3716 *
3717 * @param q                queue to init
3718 * @param count            Number of BD's to allocate. Should be power of 2
3719 * @param read_register    Address for 'read' register
3720 *                         (not offset within BAR, full address)
3721 * @param write_register   Address for 'write' register
3722 *                         (not offset within BAR, full address)
3723 * @param base_register    Address for 'base' register
3724 *                         (not offset within BAR, full address)
3725 * @param size             Address for 'size' register
3726 *                         (not offset within BAR, full address)
3727 */
3728static void ipw_queue_init(struct ipw_priv *priv, struct clx2_queue *q,
3729			   int count, u32 read, u32 write, u32 base, u32 size)
3730{
3731	q->n_bd = count;
3732
3733	q->low_mark = q->n_bd / 4;
3734	if (q->low_mark < 4)
3735		q->low_mark = 4;
3736
3737	q->high_mark = q->n_bd / 8;
3738	if (q->high_mark < 2)
3739		q->high_mark = 2;
3740
3741	q->first_empty = q->last_used = 0;
3742	q->reg_r = read;
3743	q->reg_w = write;
3744
3745	ipw_write32(priv, base, q->dma_addr);
3746	ipw_write32(priv, size, count);
3747	ipw_write32(priv, read, 0);
3748	ipw_write32(priv, write, 0);
3749
3750	_ipw_read32(priv, 0x90);
3751}
3752
3753static int ipw_queue_tx_init(struct ipw_priv *priv,
3754			     struct clx2_tx_queue *q,
3755			     int count, u32 read, u32 write, u32 base, u32 size)
3756{
3757	struct pci_dev *dev = priv->pci_dev;
3758
3759	q->txb = kmalloc(sizeof(q->txb[0]) * count, GFP_KERNEL);
3760	if (!q->txb) {
3761		IPW_ERROR("vmalloc for auxilary BD structures failed\n");
3762		return -ENOMEM;
3763	}
3764
3765	q->bd =
3766	    pci_alloc_consistent(dev, sizeof(q->bd[0]) * count, &q->q.dma_addr);
3767	if (!q->bd) {
3768		IPW_ERROR("pci_alloc_consistent(%zd) failed\n",
3769			  sizeof(q->bd[0]) * count);
3770		kfree(q->txb);
3771		q->txb = NULL;
3772		return -ENOMEM;
3773	}
3774
3775	ipw_queue_init(priv, &q->q, count, read, write, base, size);
3776	return 0;
3777}
3778
3779/**
3780 * Free one TFD, those at index [txq->q.last_used].
3781 * Do NOT advance any indexes
3782 *
3783 * @param dev
3784 * @param txq
3785 */
3786static void ipw_queue_tx_free_tfd(struct ipw_priv *priv,
3787				  struct clx2_tx_queue *txq)
3788{
3789	struct tfd_frame *bd = &txq->bd[txq->q.last_used];
3790	struct pci_dev *dev = priv->pci_dev;
3791	int i;
3792
3793	/* classify bd */
3794	if (bd->control_flags.message_type == TX_HOST_COMMAND_TYPE)
3795		/* nothing to cleanup after for host commands */
3796		return;
3797
3798	/* sanity check */
3799	if (le32_to_cpu(bd->u.data.num_chunks) > NUM_TFD_CHUNKS) {
3800		IPW_ERROR("Too many chunks: %i\n",
3801			  le32_to_cpu(bd->u.data.num_chunks));
3802		/** @todo issue fatal error, it is quite serious situation */
3803		return;
3804	}
3805
3806	/* unmap chunks if any */
3807	for (i = 0; i < le32_to_cpu(bd->u.data.num_chunks); i++) {
3808		pci_unmap_single(dev, le32_to_cpu(bd->u.data.chunk_ptr[i]),
3809				 le16_to_cpu(bd->u.data.chunk_len[i]),
3810				 PCI_DMA_TODEVICE);
3811		if (txq->txb[txq->q.last_used]) {
3812			libipw_txb_free(txq->txb[txq->q.last_used]);
3813			txq->txb[txq->q.last_used] = NULL;
3814		}
3815	}
3816}
3817
3818/**
3819 * Deallocate DMA queue.
3820 *
3821 * Empty queue by removing and destroying all BD's.
3822 * Free all buffers.
3823 *
3824 * @param dev
3825 * @param q
3826 */
3827static void ipw_queue_tx_free(struct ipw_priv *priv, struct clx2_tx_queue *txq)
3828{
3829	struct clx2_queue *q = &txq->q;
3830	struct pci_dev *dev = priv->pci_dev;
3831
3832	if (q->n_bd == 0)
3833		return;
3834
3835	/* first, empty all BD's */
3836	for (; q->first_empty != q->last_used;
3837	     q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) {
3838		ipw_queue_tx_free_tfd(priv, txq);
3839	}
3840
3841	/* free buffers belonging to queue itself */
3842	pci_free_consistent(dev, sizeof(txq->bd[0]) * q->n_bd, txq->bd,
3843			    q->dma_addr);
3844	kfree(txq->txb);
3845
3846	/* 0 fill whole structure */
3847	memset(txq, 0, sizeof(*txq));
3848}
3849
3850/**
3851 * Destroy all DMA queues and structures
3852 *
3853 * @param priv
3854 */
3855static void ipw_tx_queue_free(struct ipw_priv *priv)
3856{
3857	/* Tx CMD queue */
3858	ipw_queue_tx_free(priv, &priv->txq_cmd);
3859
3860	/* Tx queues */
3861	ipw_queue_tx_free(priv, &priv->txq[0]);
3862	ipw_queue_tx_free(priv, &priv->txq[1]);
3863	ipw_queue_tx_free(priv, &priv->txq[2]);
3864	ipw_queue_tx_free(priv, &priv->txq[3]);
3865}
3866
3867static void ipw_create_bssid(struct ipw_priv *priv, u8 * bssid)
3868{
3869	/* First 3 bytes are manufacturer */
3870	bssid[0] = priv->mac_addr[0];
3871	bssid[1] = priv->mac_addr[1];
3872	bssid[2] = priv->mac_addr[2];
3873
3874	/* Last bytes are random */
3875	get_random_bytes(&bssid[3], ETH_ALEN - 3);
3876
3877	bssid[0] &= 0xfe;	/* clear multicast bit */
3878	bssid[0] |= 0x02;	/* set local assignment bit (IEEE802) */
3879}
3880
3881static u8 ipw_add_station(struct ipw_priv *priv, u8 * bssid)
3882{
3883	struct ipw_station_entry entry;
3884	int i;
3885
3886	for (i = 0; i < priv->num_stations; i++) {
3887		if (!memcmp(priv->stations[i], bssid, ETH_ALEN)) {
3888			/* Another node is active in network */
3889			priv->missed_adhoc_beacons = 0;
3890			if (!(priv->config & CFG_STATIC_CHANNEL))
3891				/* when other nodes drop out, we drop out */
3892				priv->config &= ~CFG_ADHOC_PERSIST;
3893
3894			return i;
3895		}
3896	}
3897
3898	if (i == MAX_STATIONS)
3899		return IPW_INVALID_STATION;
3900
3901	IPW_DEBUG_SCAN("Adding AdHoc station: %pM\n", bssid);
3902
3903	entry.reserved = 0;
3904	entry.support_mode = 0;
3905	memcpy(entry.mac_addr, bssid, ETH_ALEN);
3906	memcpy(priv->stations[i], bssid, ETH_ALEN);
3907	ipw_write_direct(priv, IPW_STATION_TABLE_LOWER + i * sizeof(entry),
3908			 &entry, sizeof(entry));
3909	priv->num_stations++;
3910
3911	return i;
3912}
3913
3914static u8 ipw_find_station(struct ipw_priv *priv, u8 * bssid)
3915{
3916	int i;
3917
3918	for (i = 0; i < priv->num_stations; i++)
3919		if (!memcmp(priv->stations[i], bssid, ETH_ALEN))
3920			return i;
3921
3922	return IPW_INVALID_STATION;
3923}
3924
3925static void ipw_send_disassociate(struct ipw_priv *priv, int quiet)
3926{
3927	int err;
3928
3929	if (priv->status & STATUS_ASSOCIATING) {
3930		IPW_DEBUG_ASSOC("Disassociating while associating.\n");
3931		queue_work(priv->workqueue, &priv->disassociate);
3932		return;
3933	}
3934
3935	if (!(priv->status & STATUS_ASSOCIATED)) {
3936		IPW_DEBUG_ASSOC("Disassociating while not associated.\n");
3937		return;
3938	}
3939
3940	IPW_DEBUG_ASSOC("Disassocation attempt from %pM "
3941			"on channel %d.\n",
3942			priv->assoc_request.bssid,
3943			priv->assoc_request.channel);
3944
3945	priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
3946	priv->status |= STATUS_DISASSOCIATING;
3947
3948	if (quiet)
3949		priv->assoc_request.assoc_type = HC_DISASSOC_QUIET;
3950	else
3951		priv->assoc_request.assoc_type = HC_DISASSOCIATE;
3952
3953	err = ipw_send_associate(priv, &priv->assoc_request);
3954	if (err) {
3955		IPW_DEBUG_HC("Attempt to send [dis]associate command "
3956			     "failed.\n");
3957		return;
3958	}
3959
3960}
3961
3962static int ipw_disassociate(void *data)
3963{
3964	struct ipw_priv *priv = data;
3965	if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)))
3966		return 0;
3967	ipw_send_disassociate(data, 0);
3968	netif_carrier_off(priv->net_dev);
3969	return 1;
3970}
3971
3972static void ipw_bg_disassociate(struct work_struct *work)
3973{
3974	struct ipw_priv *priv =
3975		container_of(work, struct ipw_priv, disassociate);
3976	mutex_lock(&priv->mutex);
3977	ipw_disassociate(priv);
3978	mutex_unlock(&priv->mutex);
3979}
3980
3981static void ipw_system_config(struct work_struct *work)
3982{
3983	struct ipw_priv *priv =
3984		container_of(work, struct ipw_priv, system_config);
3985
3986#ifdef CONFIG_IPW2200_PROMISCUOUS
3987	if (priv->prom_net_dev && netif_running(priv->prom_net_dev)) {
3988		priv->sys_config.accept_all_data_frames = 1;
3989		priv->sys_config.accept_non_directed_frames = 1;
3990		priv->sys_config.accept_all_mgmt_bcpr = 1;
3991		priv->sys_config.accept_all_mgmt_frames = 1;
3992	}
3993#endif
3994
3995	ipw_send_system_config(priv);
3996}
3997
3998struct ipw_status_code {
3999	u16 status;
4000	const char *reason;
4001};
4002
4003static const struct ipw_status_code ipw_status_codes[] = {
4004	{0x00, "Successful"},
4005	{0x01, "Unspecified failure"},
4006	{0x0A, "Cannot support all requested capabilities in the "
4007	 "Capability information field"},
4008	{0x0B, "Reassociation denied due to inability to confirm that "
4009	 "association exists"},
4010	{0x0C, "Association denied due to reason outside the scope of this "
4011	 "standard"},
4012	{0x0D,
4013	 "Responding station does not support the specified authentication "
4014	 "algorithm"},
4015	{0x0E,
4016	 "Received an Authentication frame with authentication sequence "
4017	 "transaction sequence number out of expected sequence"},
4018	{0x0F, "Authentication rejected because of challenge failure"},
4019	{0x10, "Authentication rejected due to timeout waiting for next "
4020	 "frame in sequence"},
4021	{0x11, "Association denied because AP is unable to handle additional "
4022	 "associated stations"},
4023	{0x12,
4024	 "Association denied due to requesting station not supporting all "
4025	 "of the datarates in the BSSBasicServiceSet Parameter"},
4026	{0x13,
4027	 "Association denied due to requesting station not supporting "
4028	 "short preamble operation"},
4029	{0x14,
4030	 "Association denied due to requesting station not supporting "
4031	 "PBCC encoding"},
4032	{0x15,
4033	 "Association denied due to requesting station not supporting "
4034	 "channel agility"},
4035	{0x19,
4036	 "Association denied due to requesting station not supporting "
4037	 "short slot operation"},
4038	{0x1A,
4039	 "Association denied due to requesting station not supporting "
4040	 "DSSS-OFDM operation"},
4041	{0x28, "Invalid Information Element"},
4042	{0x29, "Group Cipher is not valid"},
4043	{0x2A, "Pairwise Cipher is not valid"},
4044	{0x2B, "AKMP is not valid"},
4045	{0x2C, "Unsupported RSN IE version"},
4046	{0x2D, "Invalid RSN IE Capabilities"},
4047	{0x2E, "Cipher suite is rejected per security policy"},
4048};
4049
4050static const char *ipw_get_status_code(u16 status)
4051{
4052	int i;
4053	for (i = 0; i < ARRAY_SIZE(ipw_status_codes); i++)
4054		if (ipw_status_codes[i].status == (status & 0xff))
4055			return ipw_status_codes[i].reason;
4056	return "Unknown status value.";
4057}
4058
4059static void inline average_init(struct average *avg)
4060{
4061	memset(avg, 0, sizeof(*avg));
4062}
4063
4064#define DEPTH_RSSI 8
4065#define DEPTH_NOISE 16
4066static s16 exponential_average(s16 prev_avg, s16 val, u8 depth)
4067{
4068	return ((depth-1)*prev_avg +  val)/depth;
4069}
4070
4071static void average_add(struct average *avg, s16 val)
4072{
4073	avg->sum -= avg->entries[avg->pos];
4074	avg->sum += val;
4075	avg->entries[avg->pos++] = val;
4076	if (unlikely(avg->pos == AVG_ENTRIES)) {
4077		avg->init = 1;
4078		avg->pos = 0;
4079	}
4080}
4081
4082static s16 average_value(struct average *avg)
4083{
4084	if (!unlikely(avg->init)) {
4085		if (avg->pos)
4086			return avg->sum / avg->pos;
4087		return 0;
4088	}
4089
4090	return avg->sum / AVG_ENTRIES;
4091}
4092
4093static void ipw_reset_stats(struct ipw_priv *priv)
4094{
4095	u32 len = sizeof(u32);
4096
4097	priv->quality = 0;
4098
4099	average_init(&priv->average_missed_beacons);
4100	priv->exp_avg_rssi = -60;
4101	priv->exp_avg_noise = -85 + 0x100;
4102
4103	priv->last_rate = 0;
4104	priv->last_missed_beacons = 0;
4105	priv->last_rx_packets = 0;
4106	priv->last_tx_packets = 0;
4107	priv->last_tx_failures = 0;
4108
4109	/* Firmware managed, reset only when NIC is restarted, so we have to
4110	 * normalize on the current value */
4111	ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC,
4112			&priv->last_rx_err, &len);
4113	ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE,
4114			&priv->last_tx_failures, &len);
4115
4116	/* Driver managed, reset with each association */
4117	priv->missed_adhoc_beacons = 0;
4118	priv->missed_beacons = 0;
4119	priv->tx_packets = 0;
4120	priv->rx_packets = 0;
4121
4122}
4123
4124static u32 ipw_get_max_rate(struct ipw_priv *priv)
4125{
4126	u32 i = 0x80000000;
4127	u32 mask = priv->rates_mask;
4128	/* If currently associated in B mode, restrict the maximum
4129	 * rate match to B rates */
4130	if (priv->assoc_request.ieee_mode == IPW_B_MODE)
4131		mask &= LIBIPW_CCK_RATES_MASK;
4132
4133	/* TODO: Verify that the rate is supported by the current rates
4134	 * list. */
4135
4136	while (i && !(mask & i))
4137		i >>= 1;
4138	switch (i) {
4139	case LIBIPW_CCK_RATE_1MB_MASK:
4140		return 1000000;
4141	case LIBIPW_CCK_RATE_2MB_MASK:
4142		return 2000000;
4143	case LIBIPW_CCK_RATE_5MB_MASK:
4144		return 5500000;
4145	case LIBIPW_OFDM_RATE_6MB_MASK:
4146		return 6000000;
4147	case LIBIPW_OFDM_RATE_9MB_MASK:
4148		return 9000000;
4149	case LIBIPW_CCK_RATE_11MB_MASK:
4150		return 11000000;
4151	case LIBIPW_OFDM_RATE_12MB_MASK:
4152		return 12000000;
4153	case LIBIPW_OFDM_RATE_18MB_MASK:
4154		return 18000000;
4155	case LIBIPW_OFDM_RATE_24MB_MASK:
4156		return 24000000;
4157	case LIBIPW_OFDM_RATE_36MB_MASK:
4158		return 36000000;
4159	case LIBIPW_OFDM_RATE_48MB_MASK:
4160		return 48000000;
4161	case LIBIPW_OFDM_RATE_54MB_MASK:
4162		return 54000000;
4163	}
4164
4165	if (priv->ieee->mode == IEEE_B)
4166		return 11000000;
4167	else
4168		return 54000000;
4169}
4170
4171static u32 ipw_get_current_rate(struct ipw_priv *priv)
4172{
4173	u32 rate, len = sizeof(rate);
4174	int err;
4175
4176	if (!(priv->status & STATUS_ASSOCIATED))
4177		return 0;
4178
4179	if (priv->tx_packets > IPW_REAL_RATE_RX_PACKET_THRESHOLD) {
4180		err = ipw_get_ordinal(priv, IPW_ORD_STAT_TX_CURR_RATE, &rate,
4181				      &len);
4182		if (err) {
4183			IPW_DEBUG_INFO("failed querying ordinals.\n");
4184			return 0;
4185		}
4186	} else
4187		return ipw_get_max_rate(priv);
4188
4189	switch (rate) {
4190	case IPW_TX_RATE_1MB:
4191		return 1000000;
4192	case IPW_TX_RATE_2MB:
4193		return 2000000;
4194	case IPW_TX_RATE_5MB:
4195		return 5500000;
4196	case IPW_TX_RATE_6MB:
4197		return 6000000;
4198	case IPW_TX_RATE_9MB:
4199		return 9000000;
4200	case IPW_TX_RATE_11MB:
4201		return 11000000;
4202	case IPW_TX_RATE_12MB:
4203		return 12000000;
4204	case IPW_TX_RATE_18MB:
4205		return 18000000;
4206	case IPW_TX_RATE_24MB:
4207		return 24000000;
4208	case IPW_TX_RATE_36MB:
4209		return 36000000;
4210	case IPW_TX_RATE_48MB:
4211		return 48000000;
4212	case IPW_TX_RATE_54MB:
4213		return 54000000;
4214	}
4215
4216	return 0;
4217}
4218
4219#define IPW_STATS_INTERVAL (2 * HZ)
4220static void ipw_gather_stats(struct ipw_priv *priv)
4221{
4222	u32 rx_err, rx_err_delta, rx_packets_delta;
4223	u32 tx_failures, tx_failures_delta, tx_packets_delta;
4224	u32 missed_beacons_percent, missed_beacons_delta;
4225	u32 quality = 0;
4226	u32 len = sizeof(u32);
4227	s16 rssi;
4228	u32 beacon_quality, signal_quality, tx_quality, rx_quality,
4229	    rate_quality;
4230	u32 max_rate;
4231
4232	if (!(priv->status & STATUS_ASSOCIATED)) {
4233		priv->quality = 0;
4234		return;
4235	}
4236
4237	/* Update the statistics */
4238	ipw_get_ordinal(priv, IPW_ORD_STAT_MISSED_BEACONS,
4239			&priv->missed_beacons, &len);
4240	missed_beacons_delta = priv->missed_beacons - priv->last_missed_beacons;
4241	priv->last_missed_beacons = priv->missed_beacons;
4242	if (priv->assoc_request.beacon_interval) {
4243		missed_beacons_percent = missed_beacons_delta *
4244		    (HZ * le16_to_cpu(priv->assoc_request.beacon_interval)) /
4245		    (IPW_STATS_INTERVAL * 10);
4246	} else {
4247		missed_beacons_percent = 0;
4248	}
4249	average_add(&priv->average_missed_beacons, missed_beacons_percent);
4250
4251	ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC, &rx_err, &len);
4252	rx_err_delta = rx_err - priv->last_rx_err;
4253	priv->last_rx_err = rx_err;
4254
4255	ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE, &tx_failures, &len);
4256	tx_failures_delta = tx_failures - priv->last_tx_failures;
4257	priv->last_tx_failures = tx_failures;
4258
4259	rx_packets_delta = priv->rx_packets - priv->last_rx_packets;
4260	priv->last_rx_packets = priv->rx_packets;
4261
4262	tx_packets_delta = priv->tx_packets - priv->last_tx_packets;
4263	priv->last_tx_packets = priv->tx_packets;
4264
4265	/* Calculate quality based on the following:
4266	 *
4267	 * Missed beacon: 100% = 0, 0% = 70% missed
4268	 * Rate: 60% = 1Mbs, 100% = Max
4269	 * Rx and Tx errors represent a straight % of total Rx/Tx
4270	 * RSSI: 100% = > -50,  0% = < -80
4271	 * Rx errors: 100% = 0, 0% = 50% missed
4272	 *
4273	 * The lowest computed quality is used.
4274	 *
4275	 */
4276#define BEACON_THRESHOLD 5
4277	beacon_quality = 100 - missed_beacons_percent;
4278	if (beacon_quality < BEACON_THRESHOLD)
4279		beacon_quality = 0;
4280	else
4281		beacon_quality = (beacon_quality - BEACON_THRESHOLD) * 100 /
4282		    (100 - BEACON_THRESHOLD);
4283	IPW_DEBUG_STATS("Missed beacon: %3d%% (%d%%)\n",
4284			beacon_quality, missed_beacons_percent);
4285
4286	priv->last_rate = ipw_get_current_rate(priv);
4287	max_rate = ipw_get_max_rate(priv);
4288	rate_quality = priv->last_rate * 40 / max_rate + 60;
4289	IPW_DEBUG_STATS("Rate quality : %3d%% (%dMbs)\n",
4290			rate_quality, priv->last_rate / 1000000);
4291
4292	if (rx_packets_delta > 100 && rx_packets_delta + rx_err_delta)
4293		rx_quality = 100 - (rx_err_delta * 100) /
4294		    (rx_packets_delta + rx_err_delta);
4295	else
4296		rx_quality = 100;
4297	IPW_DEBUG_STATS("Rx quality   : %3d%% (%u errors, %u packets)\n",
4298			rx_quality, rx_err_delta, rx_packets_delta);
4299
4300	if (tx_packets_delta > 100 && tx_packets_delta + tx_failures_delta)
4301		tx_quality = 100 - (tx_failures_delta * 100) /
4302		    (tx_packets_delta + tx_failures_delta);
4303	else
4304		tx_quality = 100;
4305	IPW_DEBUG_STATS("Tx quality   : %3d%% (%u errors, %u packets)\n",
4306			tx_quality, tx_failures_delta, tx_packets_delta);
4307
4308	rssi = priv->exp_avg_rssi;
4309	signal_quality =
4310	    (100 *
4311	     (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) *
4312	     (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) -
4313	     (priv->ieee->perfect_rssi - rssi) *
4314	     (15 * (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) +
4315	      62 * (priv->ieee->perfect_rssi - rssi))) /
4316	    ((priv->ieee->perfect_rssi - priv->ieee->worst_rssi) *
4317	     (priv->ieee->perfect_rssi - priv->ieee->worst_rssi));
4318	if (signal_quality > 100)
4319		signal_quality = 100;
4320	else if (signal_quality < 1)
4321		signal_quality = 0;
4322
4323	IPW_DEBUG_STATS("Signal level : %3d%% (%d dBm)\n",
4324			signal_quality, rssi);
4325
4326	quality = min(rx_quality, signal_quality);
4327	quality = min(tx_quality, quality);
4328	quality = min(rate_quality, quality);
4329	quality = min(beacon_quality, quality);
4330	if (quality == beacon_quality)
4331		IPW_DEBUG_STATS("Quality (%d%%): Clamped to missed beacons.\n",
4332				quality);
4333	if (quality == rate_quality)
4334		IPW_DEBUG_STATS("Quality (%d%%): Clamped to rate quality.\n",
4335				quality);
4336	if (quality == tx_quality)
4337		IPW_DEBUG_STATS("Quality (%d%%): Clamped to Tx quality.\n",
4338				quality);
4339	if (quality == rx_quality)
4340		IPW_DEBUG_STATS("Quality (%d%%): Clamped to Rx quality.\n",
4341				quality);
4342	if (quality == signal_quality)
4343		IPW_DEBUG_STATS("Quality (%d%%): Clamped to signal quality.\n",
4344				quality);
4345
4346	priv->quality = quality;
4347
4348	queue_delayed_work(priv->workqueue, &priv->gather_stats,
4349			   IPW_STATS_INTERVAL);
4350}
4351
4352static void ipw_bg_gather_stats(struct work_struct *work)
4353{
4354	struct ipw_priv *priv =
4355		container_of(work, struct ipw_priv, gather_stats.work);
4356	mutex_lock(&priv->mutex);
4357	ipw_gather_stats(priv);
4358	mutex_unlock(&priv->mutex);
4359}
4360
4361/* Missed beacon behavior:
4362 * 1st missed -> roaming_threshold, just wait, don't do any scan/roam.
4363 * roaming_threshold -> disassociate_threshold, scan and roam for better signal.
4364 * Above disassociate threshold, give up and stop scanning.
4365 * Roaming is disabled if disassociate_threshold <= roaming_threshold  */
4366static void ipw_handle_missed_beacon(struct ipw_priv *priv,
4367					    int missed_count)
4368{
4369	priv->notif_missed_beacons = missed_count;
4370
4371	if (missed_count > priv->disassociate_threshold &&
4372	    priv->status & STATUS_ASSOCIATED) {
4373		/* If associated and we've hit the missed
4374		 * beacon threshold, disassociate, turn
4375		 * off roaming, and abort any active scans */
4376		IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
4377			  IPW_DL_STATE | IPW_DL_ASSOC,
4378			  "Missed beacon: %d - disassociate\n", missed_count);
4379		priv->status &= ~STATUS_ROAMING;
4380		if (priv->status & STATUS_SCANNING) {
4381			IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
4382				  IPW_DL_STATE,
4383				  "Aborting scan with missed beacon.\n");
4384			queue_work(priv->workqueue, &priv->abort_scan);
4385		}
4386
4387		queue_work(priv->workqueue, &priv->disassociate);
4388		return;
4389	}
4390
4391	if (priv->status & STATUS_ROAMING) {
4392		/* If we are currently roaming, then just
4393		 * print a debug statement... */
4394		IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4395			  "Missed beacon: %d - roam in progress\n",
4396			  missed_count);
4397		return;
4398	}
4399
4400	if (roaming &&
4401	    (missed_count > priv->roaming_threshold &&
4402	     missed_count <= priv->disassociate_threshold)) {
4403		/* If we are not already roaming, set the ROAM
4404		 * bit in the status and kick off a scan.
4405		 * This can happen several times before we reach
4406		 * disassociate_threshold. */
4407		IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4408			  "Missed beacon: %d - initiate "
4409			  "roaming\n", missed_count);
4410		if (!(priv->status & STATUS_ROAMING)) {
4411			priv->status |= STATUS_ROAMING;
4412			if (!(priv->status & STATUS_SCANNING))
4413				queue_delayed_work(priv->workqueue,
4414						   &priv->request_scan, 0);
4415		}
4416		return;
4417	}
4418
4419	if (priv->status & STATUS_SCANNING &&
4420	    missed_count > IPW_MB_SCAN_CANCEL_THRESHOLD) {
4421		/* Stop scan to keep fw from getting
4422		 * stuck (only if we aren't roaming --
4423		 * otherwise we'll never scan more than 2 or 3
4424		 * channels..) */
4425		IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF | IPW_DL_STATE,
4426			  "Aborting scan with missed beacon.\n");
4427		queue_work(priv->workqueue, &priv->abort_scan);
4428	}
4429
4430	IPW_DEBUG_NOTIF("Missed beacon: %d\n", missed_count);
4431}
4432
4433static void ipw_scan_event(struct work_struct *work)
4434{
4435	union iwreq_data wrqu;
4436
4437	struct ipw_priv *priv =
4438		container_of(work, struct ipw_priv, scan_event.work);
4439
4440	wrqu.data.length = 0;
4441	wrqu.data.flags = 0;
4442	wireless_send_event(priv->net_dev, SIOCGIWSCAN, &wrqu, NULL);
4443}
4444
4445static void handle_scan_event(struct ipw_priv *priv)
4446{
4447	/* Only userspace-requested scan completion events go out immediately */
4448	if (!priv->user_requested_scan) {
4449		if (!delayed_work_pending(&priv->scan_event))
4450			queue_delayed_work(priv->workqueue, &priv->scan_event,
4451					 round_jiffies_relative(msecs_to_jiffies(4000)));
4452	} else {
4453		union iwreq_data wrqu;
4454
4455		priv->user_requested_scan = 0;
4456		cancel_delayed_work(&priv->scan_event);
4457
4458		wrqu.data.length = 0;
4459		wrqu.data.flags = 0;
4460		wireless_send_event(priv->net_dev, SIOCGIWSCAN, &wrqu, NULL);
4461	}
4462}
4463
4464/**
4465 * Handle host notification packet.
4466 * Called from interrupt routine
4467 */
4468static void ipw_rx_notification(struct ipw_priv *priv,
4469				       struct ipw_rx_notification *notif)
4470{
4471	DECLARE_SSID_BUF(ssid);
4472	u16 size = le16_to_cpu(notif->size);
4473
4474	IPW_DEBUG_NOTIF("type = %i (%d bytes)\n", notif->subtype, size);
4475
4476	switch (notif->subtype) {
4477	case HOST_NOTIFICATION_STATUS_ASSOCIATED:{
4478			struct notif_association *assoc = &notif->u.assoc;
4479
4480			switch (assoc->state) {
4481			case CMAS_ASSOCIATED:{
4482					IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4483						  IPW_DL_ASSOC,
4484						  "associated: '%s' %pM \n",
4485						  print_ssid(ssid, priv->essid,
4486							     priv->essid_len),
4487						  priv->bssid);
4488
4489					switch (priv->ieee->iw_mode) {
4490					case IW_MODE_INFRA:
4491						memcpy(priv->ieee->bssid,
4492						       priv->bssid, ETH_ALEN);
4493						break;
4494
4495					case IW_MODE_ADHOC:
4496						memcpy(priv->ieee->bssid,
4497						       priv->bssid, ETH_ALEN);
4498
4499						/* clear out the station table */
4500						priv->num_stations = 0;
4501
4502						IPW_DEBUG_ASSOC
4503						    ("queueing adhoc check\n");
4504						queue_delayed_work(priv->
4505								   workqueue,
4506								   &priv->
4507								   adhoc_check,
4508								   le16_to_cpu(priv->
4509								   assoc_request.
4510								   beacon_interval));
4511						break;
4512					}
4513
4514					priv->status &= ~STATUS_ASSOCIATING;
4515					priv->status |= STATUS_ASSOCIATED;
4516					queue_work(priv->workqueue,
4517						   &priv->system_config);
4518
4519#ifdef CONFIG_IPW2200_QOS
4520#define IPW_GET_PACKET_STYPE(x) WLAN_FC_GET_STYPE( \
4521			 le16_to_cpu(((struct ieee80211_hdr *)(x))->frame_control))
4522					if ((priv->status & STATUS_AUTH) &&
4523					    (IPW_GET_PACKET_STYPE(&notif->u.raw)
4524					     == IEEE80211_STYPE_ASSOC_RESP)) {
4525						if ((sizeof
4526						     (struct
4527						      libipw_assoc_response)
4528						     <= size)
4529						    && (size <= 2314)) {
4530							struct
4531							libipw_rx_stats
4532							    stats = {
4533								.len = size - 1,
4534							};
4535
4536							IPW_DEBUG_QOS
4537							    ("QoS Associate "
4538							     "size %d\n", size);
4539							libipw_rx_mgt(priv->
4540									 ieee,
4541									 (struct
4542									  libipw_hdr_4addr
4543									  *)
4544									 &notif->u.raw, &stats);
4545						}
4546					}
4547#endif
4548
4549					schedule_work(&priv->link_up);
4550
4551					break;
4552				}
4553
4554			case CMAS_AUTHENTICATED:{
4555					if (priv->
4556					    status & (STATUS_ASSOCIATED |
4557						      STATUS_AUTH)) {
4558						struct notif_authenticate *auth
4559						    = &notif->u.auth;
4560						IPW_DEBUG(IPW_DL_NOTIF |
4561							  IPW_DL_STATE |
4562							  IPW_DL_ASSOC,
4563							  "deauthenticated: '%s' "
4564							  "%pM"
4565							  ": (0x%04X) - %s \n",
4566							  print_ssid(ssid,
4567								     priv->
4568								     essid,
4569								     priv->
4570								     essid_len),
4571							  priv->bssid,
4572							  le16_to_cpu(auth->status),
4573							  ipw_get_status_code
4574							  (le16_to_cpu
4575							   (auth->status)));
4576
4577						priv->status &=
4578						    ~(STATUS_ASSOCIATING |
4579						      STATUS_AUTH |
4580						      STATUS_ASSOCIATED);
4581
4582						schedule_work(&priv->link_down);
4583						break;
4584					}
4585
4586					IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4587						  IPW_DL_ASSOC,
4588						  "authenticated: '%s' %pM\n",
4589						  print_ssid(ssid, priv->essid,
4590							     priv->essid_len),
4591						  priv->bssid);
4592					break;
4593				}
4594
4595			case CMAS_INIT:{
4596					if (priv->status & STATUS_AUTH) {
4597						struct
4598						    libipw_assoc_response
4599						*resp;
4600						resp =
4601						    (struct
4602						     libipw_assoc_response
4603						     *)&notif->u.raw;
4604						IPW_DEBUG(IPW_DL_NOTIF |
4605							  IPW_DL_STATE |
4606							  IPW_DL_ASSOC,
4607							  "association failed (0x%04X): %s\n",
4608							  le16_to_cpu(resp->status),
4609							  ipw_get_status_code
4610							  (le16_to_cpu
4611							   (resp->status)));
4612					}
4613
4614					IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4615						  IPW_DL_ASSOC,
4616						  "disassociated: '%s' %pM \n",
4617						  print_ssid(ssid, priv->essid,
4618							     priv->essid_len),
4619						  priv->bssid);
4620
4621					priv->status &=
4622					    ~(STATUS_DISASSOCIATING |
4623					      STATUS_ASSOCIATING |
4624					      STATUS_ASSOCIATED | STATUS_AUTH);
4625					if (priv->assoc_network
4626					    && (priv->assoc_network->
4627						capability &
4628						WLAN_CAPABILITY_IBSS))
4629						ipw_remove_current_network
4630						    (priv);
4631
4632					schedule_work(&priv->link_down);
4633
4634					break;
4635				}
4636
4637			case CMAS_RX_ASSOC_RESP:
4638				break;
4639
4640			default:
4641				IPW_ERROR("assoc: unknown (%d)\n",
4642					  assoc->state);
4643				break;
4644			}
4645
4646			break;
4647		}
4648
4649	case HOST_NOTIFICATION_STATUS_AUTHENTICATE:{
4650			struct notif_authenticate *auth = &notif->u.auth;
4651			switch (auth->state) {
4652			case CMAS_AUTHENTICATED:
4653				IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4654					  "authenticated: '%s' %pM \n",
4655					  print_ssid(ssid, priv->essid,
4656						     priv->essid_len),
4657					  priv->bssid);
4658				priv->status |= STATUS_AUTH;
4659				break;
4660
4661			case CMAS_INIT:
4662				if (priv->status & STATUS_AUTH) {
4663					IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4664						  IPW_DL_ASSOC,
4665						  "authentication failed (0x%04X): %s\n",
4666						  le16_to_cpu(auth->status),
4667						  ipw_get_status_code(le16_to_cpu
4668								      (auth->
4669								       status)));
4670				}
4671				IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4672					  IPW_DL_ASSOC,
4673					  "deauthenticated: '%s' %pM\n",
4674					  print_ssid(ssid, priv->essid,
4675						     priv->essid_len),
4676					  priv->bssid);
4677
4678				priv->status &= ~(STATUS_ASSOCIATING |
4679						  STATUS_AUTH |
4680						  STATUS_ASSOCIATED);
4681
4682				schedule_work(&priv->link_down);
4683				break;
4684
4685			case CMAS_TX_AUTH_SEQ_1:
4686				IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4687					  IPW_DL_ASSOC, "AUTH_SEQ_1\n");
4688				break;
4689			case CMAS_RX_AUTH_SEQ_2:
4690				IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4691					  IPW_DL_ASSOC, "AUTH_SEQ_2\n");
4692				break;
4693			case CMAS_AUTH_SEQ_1_PASS:
4694				IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4695					  IPW_DL_ASSOC, "AUTH_SEQ_1_PASS\n");
4696				break;
4697			case CMAS_AUTH_SEQ_1_FAIL:
4698				IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4699					  IPW_DL_ASSOC, "AUTH_SEQ_1_FAIL\n");
4700				break;
4701			case CMAS_TX_AUTH_SEQ_3:
4702				IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4703					  IPW_DL_ASSOC, "AUTH_SEQ_3\n");
4704				break;
4705			case CMAS_RX_AUTH_SEQ_4:
4706				IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4707					  IPW_DL_ASSOC, "RX_AUTH_SEQ_4\n");
4708				break;
4709			case CMAS_AUTH_SEQ_2_PASS:
4710				IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4711					  IPW_DL_ASSOC, "AUTH_SEQ_2_PASS\n");
4712				break;
4713			case CMAS_AUTH_SEQ_2_FAIL:
4714				IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4715					  IPW_DL_ASSOC, "AUT_SEQ_2_FAIL\n");
4716				break;
4717			case CMAS_TX_ASSOC:
4718				IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4719					  IPW_DL_ASSOC, "TX_ASSOC\n");
4720				break;
4721			case CMAS_RX_ASSOC_RESP:
4722				IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4723					  IPW_DL_ASSOC, "RX_ASSOC_RESP\n");
4724
4725				break;
4726			case CMAS_ASSOCIATED:
4727				IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4728					  IPW_DL_ASSOC, "ASSOCIATED\n");
4729				break;
4730			default:
4731				IPW_DEBUG_NOTIF("auth: failure - %d\n",
4732						auth->state);
4733				break;
4734			}
4735			break;
4736		}
4737
4738	case HOST_NOTIFICATION_STATUS_SCAN_CHANNEL_RESULT:{
4739			struct notif_channel_result *x =
4740			    &notif->u.channel_result;
4741
4742			if (size == sizeof(*x)) {
4743				IPW_DEBUG_SCAN("Scan result for channel %d\n",
4744					       x->channel_num);
4745			} else {
4746				IPW_DEBUG_SCAN("Scan result of wrong size %d "
4747					       "(should be %zd)\n",
4748					       size, sizeof(*x));
4749			}
4750			break;
4751		}
4752
4753	case HOST_NOTIFICATION_STATUS_SCAN_COMPLETED:{
4754			struct notif_scan_complete *x = &notif->u.scan_complete;
4755			if (size == sizeof(*x)) {
4756				IPW_DEBUG_SCAN
4757				    ("Scan completed: type %d, %d channels, "
4758				     "%d status\n", x->scan_type,
4759				     x->num_channels, x->status);
4760			} else {
4761				IPW_ERROR("Scan completed of wrong size %d "
4762					  "(should be %zd)\n",
4763					  size, sizeof(*x));
4764			}
4765
4766			priv->status &=
4767			    ~(STATUS_SCANNING | STATUS_SCAN_ABORTING);
4768
4769			wake_up_interruptible(&priv->wait_state);
4770			cancel_delayed_work(&priv->scan_check);
4771
4772			if (priv->status & STATUS_EXIT_PENDING)
4773				break;
4774
4775			priv->ieee->scans++;
4776
4777#ifdef CONFIG_IPW2200_MONITOR
4778			if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
4779				priv->status |= STATUS_SCAN_FORCED;
4780				queue_delayed_work(priv->workqueue,
4781						   &priv->request_scan, 0);
4782				break;
4783			}
4784			priv->status &= ~STATUS_SCAN_FORCED;
4785#endif				/* CONFIG_IPW2200_MONITOR */
4786
4787			/* Do queued direct scans first */
4788			if (priv->status & STATUS_DIRECT_SCAN_PENDING) {
4789				queue_delayed_work(priv->workqueue,
4790						   &priv->request_direct_scan, 0);
4791			}
4792
4793			if (!(priv->status & (STATUS_ASSOCIATED |
4794					      STATUS_ASSOCIATING |
4795					      STATUS_ROAMING |
4796					      STATUS_DISASSOCIATING)))
4797				queue_work(priv->workqueue, &priv->associate);
4798			else if (priv->status & STATUS_ROAMING) {
4799				if (x->status == SCAN_COMPLETED_STATUS_COMPLETE)
4800					/* If a scan completed and we are in roam mode, then
4801					 * the scan that completed was the one requested as a
4802					 * result of entering roam... so, schedule the
4803					 * roam work */
4804					queue_work(priv->workqueue,
4805						   &priv->roam);
4806				else
4807					/* Don't schedule if we aborted the scan */
4808					priv->status &= ~STATUS_ROAMING;
4809			} else if (priv->status & STATUS_SCAN_PENDING)
4810				queue_delayed_work(priv->workqueue,
4811						   &priv->request_scan, 0);
4812			else if (priv->config & CFG_BACKGROUND_SCAN
4813				 && priv->status & STATUS_ASSOCIATED)
4814				queue_delayed_work(priv->workqueue,
4815						   &priv->request_scan,
4816						   round_jiffies_relative(HZ));
4817
4818			/* Send an empty event to user space.
4819			 * We don't send the received data on the event because
4820			 * it would require us to do complex transcoding, and
4821			 * we want to minimise the work done in the irq handler
4822			 * Use a request to extract the data.
4823			 * Also, we generate this even for any scan, regardless
4824			 * on how the scan was initiated. User space can just
4825			 * sync on periodic scan to get fresh data...
4826			 * Jean II */
4827			if (x->status == SCAN_COMPLETED_STATUS_COMPLETE)
4828				handle_scan_event(priv);
4829			break;
4830		}
4831
4832	case HOST_NOTIFICATION_STATUS_FRAG_LENGTH:{
4833			struct notif_frag_length *x = &notif->u.frag_len;
4834
4835			if (size == sizeof(*x))
4836				IPW_ERROR("Frag length: %d\n",
4837					  le16_to_cpu(x->frag_length));
4838			else
4839				IPW_ERROR("Frag length of wrong size %d "
4840					  "(should be %zd)\n",
4841					  size, sizeof(*x));
4842			break;
4843		}
4844
4845	case HOST_NOTIFICATION_STATUS_LINK_DETERIORATION:{
4846			struct notif_link_deterioration *x =
4847			    &notif->u.link_deterioration;
4848
4849			if (size == sizeof(*x)) {
4850				IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4851					"link deterioration: type %d, cnt %d\n",
4852					x->silence_notification_type,
4853					x->silence_count);
4854				memcpy(&priv->last_link_deterioration, x,
4855				       sizeof(*x));
4856			} else {
4857				IPW_ERROR("Link Deterioration of wrong size %d "
4858					  "(should be %zd)\n",
4859					  size, sizeof(*x));
4860			}
4861			break;
4862		}
4863
4864	case HOST_NOTIFICATION_DINO_CONFIG_RESPONSE:{
4865			IPW_ERROR("Dino config\n");
4866			if (priv->hcmd
4867			    && priv->hcmd->cmd != HOST_CMD_DINO_CONFIG)
4868				IPW_ERROR("Unexpected DINO_CONFIG_RESPONSE\n");
4869
4870			break;
4871		}
4872
4873	case HOST_NOTIFICATION_STATUS_BEACON_STATE:{
4874			struct notif_beacon_state *x = &notif->u.beacon_state;
4875			if (size != sizeof(*x)) {
4876				IPW_ERROR
4877				    ("Beacon state of wrong size %d (should "
4878				     "be %zd)\n", size, sizeof(*x));
4879				break;
4880			}
4881
4882			if (le32_to_cpu(x->state) ==
4883			    HOST_NOTIFICATION_STATUS_BEACON_MISSING)
4884				ipw_handle_missed_beacon(priv,
4885							 le32_to_cpu(x->
4886								     number));
4887
4888			break;
4889		}
4890
4891	case HOST_NOTIFICATION_STATUS_TGI_TX_KEY:{
4892			struct notif_tgi_tx_key *x = &notif->u.tgi_tx_key;
4893			if (size == sizeof(*x)) {
4894				IPW_ERROR("TGi Tx Key: state 0x%02x sec type "
4895					  "0x%02x station %d\n",
4896					  x->key_state, x->security_type,
4897					  x->station_index);
4898				break;
4899			}
4900
4901			IPW_ERROR
4902			    ("TGi Tx Key of wrong size %d (should be %zd)\n",
4903			     size, sizeof(*x));
4904			break;
4905		}
4906
4907	case HOST_NOTIFICATION_CALIB_KEEP_RESULTS:{
4908			struct notif_calibration *x = &notif->u.calibration;
4909
4910			if (size == sizeof(*x)) {
4911				memcpy(&priv->calib, x, sizeof(*x));
4912				IPW_DEBUG_INFO("TODO: Calibration\n");
4913				break;
4914			}
4915
4916			IPW_ERROR
4917			    ("Calibration of wrong size %d (should be %zd)\n",
4918			     size, sizeof(*x));
4919			break;
4920		}
4921
4922	case HOST_NOTIFICATION_NOISE_STATS:{
4923			if (size == sizeof(u32)) {
4924				priv->exp_avg_noise =
4925				    exponential_average(priv->exp_avg_noise,
4926				    (u8) (le32_to_cpu(notif->u.noise.value) & 0xff),
4927				    DEPTH_NOISE);
4928				break;
4929			}
4930
4931			IPW_ERROR
4932			    ("Noise stat is wrong size %d (should be %zd)\n",
4933			     size, sizeof(u32));
4934			break;
4935		}
4936
4937	default:
4938		IPW_DEBUG_NOTIF("Unknown notification: "
4939				"subtype=%d,flags=0x%2x,size=%d\n",
4940				notif->subtype, notif->flags, size);
4941	}
4942}
4943
4944/**
4945 * Destroys all DMA structures and initialise them again
4946 *
4947 * @param priv
4948 * @return error code
4949 */
4950static int ipw_queue_reset(struct ipw_priv *priv)
4951{
4952	int rc = 0;
4953	/** @todo customize queue sizes */
4954	int nTx = 64, nTxCmd = 8;
4955	ipw_tx_queue_free(priv);
4956	/* Tx CMD queue */
4957	rc = ipw_queue_tx_init(priv, &priv->txq_cmd, nTxCmd,
4958			       IPW_TX_CMD_QUEUE_READ_INDEX,
4959			       IPW_TX_CMD_QUEUE_WRITE_INDEX,
4960			       IPW_TX_CMD_QUEUE_BD_BASE,
4961			       IPW_TX_CMD_QUEUE_BD_SIZE);
4962	if (rc) {
4963		IPW_ERROR("Tx Cmd queue init failed\n");
4964		goto error;
4965	}
4966	/* Tx queue(s) */
4967	rc = ipw_queue_tx_init(priv, &priv->txq[0], nTx,
4968			       IPW_TX_QUEUE_0_READ_INDEX,
4969			       IPW_TX_QUEUE_0_WRITE_INDEX,
4970			       IPW_TX_QUEUE_0_BD_BASE, IPW_TX_QUEUE_0_BD_SIZE);
4971	if (rc) {
4972		IPW_ERROR("Tx 0 queue init failed\n");
4973		goto error;
4974	}
4975	rc = ipw_queue_tx_init(priv, &priv->txq[1], nTx,
4976			       IPW_TX_QUEUE_1_READ_INDEX,
4977			       IPW_TX_QUEUE_1_WRITE_INDEX,
4978			       IPW_TX_QUEUE_1_BD_BASE, IPW_TX_QUEUE_1_BD_SIZE);
4979	if (rc) {
4980		IPW_ERROR("Tx 1 queue init failed\n");
4981		goto error;
4982	}
4983	rc = ipw_queue_tx_init(priv, &priv->txq[2], nTx,
4984			       IPW_TX_QUEUE_2_READ_INDEX,
4985			       IPW_TX_QUEUE_2_WRITE_INDEX,
4986			       IPW_TX_QUEUE_2_BD_BASE, IPW_TX_QUEUE_2_BD_SIZE);
4987	if (rc) {
4988		IPW_ERROR("Tx 2 queue init failed\n");
4989		goto error;
4990	}
4991	rc = ipw_queue_tx_init(priv, &priv->txq[3], nTx,
4992			       IPW_TX_QUEUE_3_READ_INDEX,
4993			       IPW_TX_QUEUE_3_WRITE_INDEX,
4994			       IPW_TX_QUEUE_3_BD_BASE, IPW_TX_QUEUE_3_BD_SIZE);
4995	if (rc) {
4996		IPW_ERROR("Tx 3 queue init failed\n");
4997		goto error;
4998	}
4999	/* statistics */
5000	priv->rx_bufs_min = 0;
5001	priv->rx_pend_max = 0;
5002	return rc;
5003
5004      error:
5005	ipw_tx_queue_free(priv);
5006	return rc;
5007}
5008
5009/**
5010 * Reclaim Tx queue entries no more used by NIC.
5011 *
5012 * When FW advances 'R' index, all entries between old and
5013 * new 'R' index need to be reclaimed. As result, some free space
5014 * forms. If there is enough free space (> low mark), wake Tx queue.
5015 *
5016 * @note Need to protect against garbage in 'R' index
5017 * @param priv
5018 * @param txq
5019 * @param qindex
5020 * @return Number of used entries remains in the queue
5021 */
5022static int ipw_queue_tx_reclaim(struct ipw_priv *priv,
5023				struct clx2_tx_queue *txq, int qindex)
5024{
5025	u32 hw_tail;
5026	int used;
5027	struct clx2_queue *q = &txq->q;
5028
5029	hw_tail = ipw_read32(priv, q->reg_r);
5030	if (hw_tail >= q->n_bd) {
5031		IPW_ERROR
5032		    ("Read index for DMA queue (%d) is out of range [0-%d)\n",
5033		     hw_tail, q->n_bd);
5034		goto done;
5035	}
5036	for (; q->last_used != hw_tail;
5037	     q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) {
5038		ipw_queue_tx_free_tfd(priv, txq);
5039		priv->tx_packets++;
5040	}
5041      done:
5042	if ((ipw_tx_queue_space(q) > q->low_mark) &&
5043	    (qindex >= 0))
5044		netif_wake_queue(priv->net_dev);
5045	used = q->first_empty - q->last_used;
5046	if (used < 0)
5047		used += q->n_bd;
5048
5049	return used;
5050}
5051
5052static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, void *buf,
5053			     int len, int sync)
5054{
5055	struct clx2_tx_queue *txq = &priv->txq_cmd;
5056	struct clx2_queue *q = &txq->q;
5057	struct tfd_frame *tfd;
5058
5059	if (ipw_tx_queue_space(q) < (sync ? 1 : 2)) {
5060		IPW_ERROR("No space for Tx\n");
5061		return -EBUSY;
5062	}
5063
5064	tfd = &txq->bd[q->first_empty];
5065	txq->txb[q->first_empty] = NULL;
5066
5067	memset(tfd, 0, sizeof(*tfd));
5068	tfd->control_flags.message_type = TX_HOST_COMMAND_TYPE;
5069	tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK;
5070	priv->hcmd_seq++;
5071	tfd->u.cmd.index = hcmd;
5072	tfd->u.cmd.length = len;
5073	memcpy(tfd->u.cmd.payload, buf, len);
5074	q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd);
5075	ipw_write32(priv, q->reg_w, q->first_empty);
5076	_ipw_read32(priv, 0x90);
5077
5078	return 0;
5079}
5080
5081/*
5082 * Rx theory of operation
5083 *
5084 * The host allocates 32 DMA target addresses and passes the host address
5085 * to the firmware at register IPW_RFDS_TABLE_LOWER + N * RFD_SIZE where N is
5086 * 0 to 31
5087 *
5088 * Rx Queue Indexes
5089 * The host/firmware share two index registers for managing the Rx buffers.
5090 *
5091 * The READ index maps to the first position that the firmware may be writing
5092 * to -- the driver can read up to (but not including) this position and get
5093 * good data.
5094 * The READ index is managed by the firmware once the card is enabled.
5095 *
5096 * The WRITE index maps to the last position the driver has read from -- the
5097 * position preceding WRITE is the last slot the firmware can place a packet.
5098 *
5099 * The queue is empty (no good data) if WRITE = READ - 1, and is full if
5100 * WRITE = READ.
5101 *
5102 * During initialization the host sets up the READ queue position to the first
5103 * INDEX position, and WRITE to the last (READ - 1 wrapped)
5104 *
5105 * When the firmware places a packet in a buffer it will advance the READ index
5106 * and fire the RX interrupt.  The driver can then query the READ index and
5107 * process as many packets as possible, moving the WRITE index forward as it
5108 * resets the Rx queue buffers with new memory.
5109 *
5110 * The management in the driver is as follows:
5111 * + A list of pre-allocated SKBs is stored in ipw->rxq->rx_free.  When
5112 *   ipw->rxq->free_count drops to or below RX_LOW_WATERMARK, work is scheduled
5113 *   to replensish the ipw->rxq->rx_free.
5114 * + In ipw_rx_queue_replenish (scheduled) if 'processed' != 'read' then the
5115 *   ipw->rxq is replenished and the READ INDEX is updated (updating the
5116 *   'processed' and 'read' driver indexes as well)
5117 * + A received packet is processed and handed to the kernel network stack,
5118 *   detached from the ipw->rxq.  The driver 'processed' index is updated.
5119 * + The Host/Firmware ipw->rxq is replenished at tasklet time from the rx_free
5120 *   list. If there are no allocated buffers in ipw->rxq->rx_free, the READ
5121 *   INDEX is not incremented and ipw->status(RX_STALLED) is set.  If there
5122 *   were enough free buffers and RX_STALLED is set it is cleared.
5123 *
5124 *
5125 * Driver sequence:
5126 *
5127 * ipw_rx_queue_alloc()       Allocates rx_free
5128 * ipw_rx_queue_replenish()   Replenishes rx_free list from rx_used, and calls
5129 *                            ipw_rx_queue_restock
5130 * ipw_rx_queue_restock()     Moves available buffers from rx_free into Rx
5131 *                            queue, updates firmware pointers, and updates
5132 *                            the WRITE index.  If insufficient rx_free buffers
5133 *                            are available, schedules ipw_rx_queue_replenish
5134 *
5135 * -- enable interrupts --
5136 * ISR - ipw_rx()             Detach ipw_rx_mem_buffers from pool up to the
5137 *                            READ INDEX, detaching the SKB from the pool.
5138 *                            Moves the packet buffer from queue to rx_used.
5139 *                            Calls ipw_rx_queue_restock to refill any empty
5140 *                            slots.
5141 * ...
5142 *
5143 */
5144
5145/*
5146 * If there are slots in the RX queue that  need to be restocked,
5147 * and we have free pre-allocated buffers, fill the ranks as much
5148 * as we can pulling from rx_free.
5149 *
5150 * This moves the 'write' index forward to catch up with 'processed', and
5151 * also updates the memory address in the firmware to reference the new
5152 * target buffer.
5153 */
5154static void ipw_rx_queue_restock(struct ipw_priv *priv)
5155{
5156	struct ipw_rx_queue *rxq = priv->rxq;
5157	struct list_head *element;
5158	struct ipw_rx_mem_buffer *rxb;
5159	unsigned long flags;
5160	int write;
5161
5162	spin_lock_irqsave(&rxq->lock, flags);
5163	write = rxq->write;
5164	while ((ipw_rx_queue_space(rxq) > 0) && (rxq->free_count)) {
5165		element = rxq->rx_free.next;
5166		rxb = list_entry(element, struct ipw_rx_mem_buffer, list);
5167		list_del(element);
5168
5169		ipw_write32(priv, IPW_RFDS_TABLE_LOWER + rxq->write * RFD_SIZE,
5170			    rxb->dma_addr);
5171		rxq->queue[rxq->write] = rxb;
5172		rxq->write = (rxq->write + 1) % RX_QUEUE_SIZE;
5173		rxq->free_count--;
5174	}
5175	spin_unlock_irqrestore(&rxq->lock, flags);
5176
5177	/* If the pre-allocated buffer pool is dropping low, schedule to
5178	 * refill it */
5179	if (rxq->free_count <= RX_LOW_WATERMARK)
5180		queue_work(priv->workqueue, &priv->rx_replenish);
5181
5182	/* If we've added more space for the firmware to place data, tell it */
5183	if (write != rxq->write)
5184		ipw_write32(priv, IPW_RX_WRITE_INDEX, rxq->write);
5185}
5186
5187/*
5188 * Move all used packet from rx_used to rx_free, allocating a new SKB for each.
5189 * Also restock the Rx queue via ipw_rx_queue_restock.
5190 *
5191 * This is called as a scheduled work item (except for during intialization)
5192 */
5193static void ipw_rx_queue_replenish(void *data)
5194{
5195	struct ipw_priv *priv = data;
5196	struct ipw_rx_queue *rxq = priv->rxq;
5197	struct list_head *element;
5198	struct ipw_rx_mem_buffer *rxb;
5199	unsigned long flags;
5200
5201	spin_lock_irqsave(&rxq->lock, flags);
5202	while (!list_empty(&rxq->rx_used)) {
5203		element = rxq->rx_used.next;
5204		rxb = list_entry(element, struct ipw_rx_mem_buffer, list);
5205		rxb->skb = alloc_skb(IPW_RX_BUF_SIZE, GFP_ATOMIC);
5206		if (!rxb->skb) {
5207			printk(KERN_CRIT "%s: Can not allocate SKB buffers.\n",
5208			       priv->net_dev->name);
5209			/* We don't reschedule replenish work here -- we will
5210			 * call the restock method and if it still needs
5211			 * more buffers it will schedule replenish */
5212			break;
5213		}
5214		list_del(element);
5215
5216		rxb->dma_addr =
5217		    pci_map_single(priv->pci_dev, rxb->skb->data,
5218				   IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
5219
5220		list_add_tail(&rxb->list, &rxq->rx_free);
5221		rxq->free_count++;
5222	}
5223	spin_unlock_irqrestore(&rxq->lock, flags);
5224
5225	ipw_rx_queue_restock(priv);
5226}
5227
5228static void ipw_bg_rx_queue_replenish(struct work_struct *work)
5229{
5230	struct ipw_priv *priv =
5231		container_of(work, struct ipw_priv, rx_replenish);
5232	mutex_lock(&priv->mutex);
5233	ipw_rx_queue_replenish(priv);
5234	mutex_unlock(&priv->mutex);
5235}
5236
5237/* Assumes that the skb field of the buffers in 'pool' is kept accurate.
5238 * If an SKB has been detached, the POOL needs to have its SKB set to NULL
5239 * This free routine walks the list of POOL entries and if SKB is set to
5240 * non NULL it is unmapped and freed
5241 */
5242static void ipw_rx_queue_free(struct ipw_priv *priv, struct ipw_rx_queue *rxq)
5243{
5244	int i;
5245
5246	if (!rxq)
5247		return;
5248
5249	for (i = 0; i < RX_QUEUE_SIZE + RX_FREE_BUFFERS; i++) {
5250		if (rxq->pool[i].skb != NULL) {
5251			pci_unmap_single(priv->pci_dev, rxq->pool[i].dma_addr,
5252					 IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
5253			dev_kfree_skb(rxq->pool[i].skb);
5254		}
5255	}
5256
5257	kfree(rxq);
5258}
5259
5260static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *priv)
5261{
5262	struct ipw_rx_queue *rxq;
5263	int i;
5264
5265	rxq = kzalloc(sizeof(*rxq), GFP_KERNEL);
5266	if (unlikely(!rxq)) {
5267		IPW_ERROR("memory allocation failed\n");
5268		return NULL;
5269	}
5270	spin_lock_init(&rxq->lock);
5271	INIT_LIST_HEAD(&rxq->rx_free);
5272	INIT_LIST_HEAD(&rxq->rx_used);
5273
5274	/* Fill the rx_used queue with _all_ of the Rx buffers */
5275	for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++)
5276		list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
5277
5278	/* Set us so that we have processed and used all buffers, but have
5279	 * not restocked the Rx queue with fresh buffers */
5280	rxq->read = rxq->write = 0;
5281	rxq->free_count = 0;
5282
5283	return rxq;
5284}
5285
5286static int ipw_is_rate_in_mask(struct ipw_priv *priv, int ieee_mode, u8 rate)
5287{
5288	rate &= ~LIBIPW_BASIC_RATE_MASK;
5289	if (ieee_mode == IEEE_A) {
5290		switch (rate) {
5291		case LIBIPW_OFDM_RATE_6MB:
5292			return priv->rates_mask & LIBIPW_OFDM_RATE_6MB_MASK ?
5293			    1 : 0;
5294		case LIBIPW_OFDM_RATE_9MB:
5295			return priv->rates_mask & LIBIPW_OFDM_RATE_9MB_MASK ?
5296			    1 : 0;
5297		case LIBIPW_OFDM_RATE_12MB:
5298			return priv->
5299			    rates_mask & LIBIPW_OFDM_RATE_12MB_MASK ? 1 : 0;
5300		case LIBIPW_OFDM_RATE_18MB:
5301			return priv->
5302			    rates_mask & LIBIPW_OFDM_RATE_18MB_MASK ? 1 : 0;
5303		case LIBIPW_OFDM_RATE_24MB:
5304			return priv->
5305			    rates_mask & LIBIPW_OFDM_RATE_24MB_MASK ? 1 : 0;
5306		case LIBIPW_OFDM_RATE_36MB:
5307			return priv->
5308			    rates_mask & LIBIPW_OFDM_RATE_36MB_MASK ? 1 : 0;
5309		case LIBIPW_OFDM_RATE_48MB:
5310			return priv->
5311			    rates_mask & LIBIPW_OFDM_RATE_48MB_MASK ? 1 : 0;
5312		case LIBIPW_OFDM_RATE_54MB:
5313			return priv->
5314			    rates_mask & LIBIPW_OFDM_RATE_54MB_MASK ? 1 : 0;
5315		default:
5316			return 0;
5317		}
5318	}
5319
5320	/* B and G mixed */
5321	switch (rate) {
5322	case LIBIPW_CCK_RATE_1MB:
5323		return priv->rates_mask & LIBIPW_CCK_RATE_1MB_MASK ? 1 : 0;
5324	case LIBIPW_CCK_RATE_2MB:
5325		return priv->rates_mask & LIBIPW_CCK_RATE_2MB_MASK ? 1 : 0;
5326	case LIBIPW_CCK_RATE_5MB:
5327		return priv->rates_mask & LIBIPW_CCK_RATE_5MB_MASK ? 1 : 0;
5328	case LIBIPW_CCK_RATE_11MB:
5329		return priv->rates_mask & LIBIPW_CCK_RATE_11MB_MASK ? 1 : 0;
5330	}
5331
5332	/* If we are limited to B modulations, bail at this point */
5333	if (ieee_mode == IEEE_B)
5334		return 0;
5335
5336	/* G */
5337	switch (rate) {
5338	case LIBIPW_OFDM_RATE_6MB:
5339		return priv->rates_mask & LIBIPW_OFDM_RATE_6MB_MASK ? 1 : 0;
5340	case LIBIPW_OFDM_RATE_9MB:
5341		return priv->rates_mask & LIBIPW_OFDM_RATE_9MB_MASK ? 1 : 0;
5342	case LIBIPW_OFDM_RATE_12MB:
5343		return priv->rates_mask & LIBIPW_OFDM_RATE_12MB_MASK ? 1 : 0;
5344	case LIBIPW_OFDM_RATE_18MB:
5345		return priv->rates_mask & LIBIPW_OFDM_RATE_18MB_MASK ? 1 : 0;
5346	case LIBIPW_OFDM_RATE_24MB:
5347		return priv->rates_mask & LIBIPW_OFDM_RATE_24MB_MASK ? 1 : 0;
5348	case LIBIPW_OFDM_RATE_36MB:
5349		return priv->rates_mask & LIBIPW_OFDM_RATE_36MB_MASK ? 1 : 0;
5350	case LIBIPW_OFDM_RATE_48MB:
5351		return priv->rates_mask & LIBIPW_OFDM_RATE_48MB_MASK ? 1 : 0;
5352	case LIBIPW_OFDM_RATE_54MB:
5353		return priv->rates_mask & LIBIPW_OFDM_RATE_54MB_MASK ? 1 : 0;
5354	}
5355
5356	return 0;
5357}
5358
5359static int ipw_compatible_rates(struct ipw_priv *priv,
5360				const struct libipw_network *network,
5361				struct ipw_supported_rates *rates)
5362{
5363	int num_rates, i;
5364
5365	memset(rates, 0, sizeof(*rates));
5366	num_rates = min(network->rates_len, (u8) IPW_MAX_RATES);
5367	rates->num_rates = 0;
5368	for (i = 0; i < num_rates; i++) {
5369		if (!ipw_is_rate_in_mask(priv, network->mode,
5370					 network->rates[i])) {
5371
5372			if (network->rates[i] & LIBIPW_BASIC_RATE_MASK) {
5373				IPW_DEBUG_SCAN("Adding masked mandatory "
5374					       "rate %02X\n",
5375					       network->rates[i]);
5376				rates->supported_rates[rates->num_rates++] =
5377				    network->rates[i];
5378				continue;
5379			}
5380
5381			IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
5382				       network->rates[i], priv->rates_mask);
5383			continue;
5384		}
5385
5386		rates->supported_rates[rates->num_rates++] = network->rates[i];
5387	}
5388
5389	num_rates = min(network->rates_ex_len,
5390			(u8) (IPW_MAX_RATES - num_rates));
5391	for (i = 0; i < num_rates; i++) {
5392		if (!ipw_is_rate_in_mask(priv, network->mode,
5393					 network->rates_ex[i])) {
5394			if (network->rates_ex[i] & LIBIPW_BASIC_RATE_MASK) {
5395				IPW_DEBUG_SCAN("Adding masked mandatory "
5396					       "rate %02X\n",
5397					       network->rates_ex[i]);
5398				rates->supported_rates[rates->num_rates++] =
5399				    network->rates[i];
5400				continue;
5401			}
5402
5403			IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
5404				       network->rates_ex[i], priv->rates_mask);
5405			continue;
5406		}
5407
5408		rates->supported_rates[rates->num_rates++] =
5409		    network->rates_ex[i];
5410	}
5411
5412	return 1;
5413}
5414
5415static void ipw_copy_rates(struct ipw_supported_rates *dest,
5416				  const struct ipw_supported_rates *src)
5417{
5418	u8 i;
5419	for (i = 0; i < src->num_rates; i++)
5420		dest->supported_rates[i] = src->supported_rates[i];
5421	dest->num_rates = src->num_rates;
5422}
5423
5424/* TODO: Look at sniffed packets in the air to determine if the basic rate
5425 * mask should ever be used -- right now all callers to add the scan rates are
5426 * set with the modulation = CCK, so BASIC_RATE_MASK is never set... */
5427static void ipw_add_cck_scan_rates(struct ipw_supported_rates *rates,
5428				   u8 modulation, u32 rate_mask)
5429{
5430	u8 basic_mask = (LIBIPW_OFDM_MODULATION == modulation) ?
5431	    LIBIPW_BASIC_RATE_MASK : 0;
5432
5433	if (rate_mask & LIBIPW_CCK_RATE_1MB_MASK)
5434		rates->supported_rates[rates->num_rates++] =
5435		    LIBIPW_BASIC_RATE_MASK | LIBIPW_CCK_RATE_1MB;
5436
5437	if (rate_mask & LIBIPW_CCK_RATE_2MB_MASK)
5438		rates->supported_rates[rates->num_rates++] =
5439		    LIBIPW_BASIC_RATE_MASK | LIBIPW_CCK_RATE_2MB;
5440
5441	if (rate_mask & LIBIPW_CCK_RATE_5MB_MASK)
5442		rates->supported_rates[rates->num_rates++] = basic_mask |
5443		    LIBIPW_CCK_RATE_5MB;
5444
5445	if (rate_mask & LIBIPW_CCK_RATE_11MB_MASK)
5446		rates->supported_rates[rates->num_rates++] = basic_mask |
5447		    LIBIPW_CCK_RATE_11MB;
5448}
5449
5450static void ipw_add_ofdm_scan_rates(struct ipw_supported_rates *rates,
5451				    u8 modulation, u32 rate_mask)
5452{
5453	u8 basic_mask = (LIBIPW_OFDM_MODULATION == modulation) ?
5454	    LIBIPW_BASIC_RATE_MASK : 0;
5455
5456	if (rate_mask & LIBIPW_OFDM_RATE_6MB_MASK)
5457		rates->supported_rates[rates->num_rates++] = basic_mask |
5458		    LIBIPW_OFDM_RATE_6MB;
5459
5460	if (rate_mask & LIBIPW_OFDM_RATE_9MB_MASK)
5461		rates->supported_rates[rates->num_rates++] =
5462		    LIBIPW_OFDM_RATE_9MB;
5463
5464	if (rate_mask & LIBIPW_OFDM_RATE_12MB_MASK)
5465		rates->supported_rates[rates->num_rates++] = basic_mask |
5466		    LIBIPW_OFDM_RATE_12MB;
5467
5468	if (rate_mask & LIBIPW_OFDM_RATE_18MB_MASK)
5469		rates->supported_rates[rates->num_rates++] =
5470		    LIBIPW_OFDM_RATE_18MB;
5471
5472	if (rate_mask & LIBIPW_OFDM_RATE_24MB_MASK)
5473		rates->supported_rates[rates->num_rates++] = basic_mask |
5474		    LIBIPW_OFDM_RATE_24MB;
5475
5476	if (rate_mask & LIBIPW_OFDM_RATE_36MB_MASK)
5477		rates->supported_rates[rates->num_rates++] =
5478		    LIBIPW_OFDM_RATE_36MB;
5479
5480	if (rate_mask & LIBIPW_OFDM_RATE_48MB_MASK)
5481		rates->supported_rates[rates->num_rates++] =
5482		    LIBIPW_OFDM_RATE_48MB;
5483
5484	if (rate_mask & LIBIPW_OFDM_RATE_54MB_MASK)
5485		rates->supported_rates[rates->num_rates++] =
5486		    LIBIPW_OFDM_RATE_54MB;
5487}
5488
5489struct ipw_network_match {
5490	struct libipw_network *network;
5491	struct ipw_supported_rates rates;
5492};
5493
5494static int ipw_find_adhoc_network(struct ipw_priv *priv,
5495				  struct ipw_network_match *match,
5496				  struct libipw_network *network,
5497				  int roaming)
5498{
5499	struct ipw_supported_rates rates;
5500	DECLARE_SSID_BUF(ssid);
5501
5502	/* Verify that this network's capability is compatible with the
5503	 * current mode (AdHoc or Infrastructure) */
5504	if ((priv->ieee->iw_mode == IW_MODE_ADHOC &&
5505	     !(network->capability & WLAN_CAPABILITY_IBSS))) {
5506		IPW_DEBUG_MERGE("Network '%s (%pM)' excluded due to "
5507				"capability mismatch.\n",
5508				print_ssid(ssid, network->ssid,
5509					   network->ssid_len),
5510				network->bssid);
5511		return 0;
5512	}
5513
5514	if (unlikely(roaming)) {
5515		/* If we are roaming, then ensure check if this is a valid
5516		 * network to try and roam to */
5517		if ((network->ssid_len != match->network->ssid_len) ||
5518		    memcmp(network->ssid, match->network->ssid,
5519			   network->ssid_len)) {
5520			IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5521					"because of non-network ESSID.\n",
5522					print_ssid(ssid, network->ssid,
5523						   network->ssid_len),
5524					network->bssid);
5525			return 0;
5526		}
5527	} else {
5528		/* If an ESSID has been configured then compare the broadcast
5529		 * ESSID to ours */
5530		if ((priv->config & CFG_STATIC_ESSID) &&
5531		    ((network->ssid_len != priv->essid_len) ||
5532		     memcmp(network->ssid, priv->essid,
5533			    min(network->ssid_len, priv->essid_len)))) {
5534			char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5535
5536			strncpy(escaped,
5537				print_ssid(ssid, network->ssid,
5538					   network->ssid_len),
5539				sizeof(escaped));
5540			IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5541					"because of ESSID mismatch: '%s'.\n",
5542					escaped, network->bssid,
5543					print_ssid(ssid, priv->essid,
5544						   priv->essid_len));
5545			return 0;
5546		}
5547	}
5548
5549	/* If the old network rate is better than this one, don't bother
5550	 * testing everything else. */
5551
5552	if (network->time_stamp[0] < match->network->time_stamp[0]) {
5553		IPW_DEBUG_MERGE("Network '%s excluded because newer than "
5554				"current network.\n",
5555				print_ssid(ssid, match->network->ssid,
5556					   match->network->ssid_len));
5557		return 0;
5558	} else if (network->time_stamp[1] < match->network->time_stamp[1]) {
5559		IPW_DEBUG_MERGE("Network '%s excluded because newer than "
5560				"current network.\n",
5561				print_ssid(ssid, match->network->ssid,
5562					   match->network->ssid_len));
5563		return 0;
5564	}
5565
5566	/* Now go through and see if the requested network is valid... */
5567	if (priv->ieee->scan_age != 0 &&
5568	    time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) {
5569		IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5570				"because of age: %ums.\n",
5571				print_ssid(ssid, network->ssid,
5572					   network->ssid_len),
5573				network->bssid,
5574				jiffies_to_msecs(jiffies -
5575						 network->last_scanned));
5576		return 0;
5577	}
5578
5579	if ((priv->config & CFG_STATIC_CHANNEL) &&
5580	    (network->channel != priv->channel)) {
5581		IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5582				"because of channel mismatch: %d != %d.\n",
5583				print_ssid(ssid, network->ssid,
5584					   network->ssid_len),
5585				network->bssid,
5586				network->channel, priv->channel);
5587		return 0;
5588	}
5589
5590	/* Verify privacy compatability */
5591	if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) !=
5592	    ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) {
5593		IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5594				"because of privacy mismatch: %s != %s.\n",
5595				print_ssid(ssid, network->ssid,
5596					   network->ssid_len),
5597				network->bssid,
5598				priv->
5599				capability & CAP_PRIVACY_ON ? "on" : "off",
5600				network->
5601				capability & WLAN_CAPABILITY_PRIVACY ? "on" :
5602				"off");
5603		return 0;
5604	}
5605
5606	if (!memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
5607		IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5608				"because of the same BSSID match: %pM"
5609				".\n", print_ssid(ssid, network->ssid,
5610						  network->ssid_len),
5611				network->bssid,
5612				priv->bssid);
5613		return 0;
5614	}
5615
5616	/* Filter out any incompatible freq / mode combinations */
5617	if (!libipw_is_valid_mode(priv->ieee, network->mode)) {
5618		IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5619				"because of invalid frequency/mode "
5620				"combination.\n",
5621				print_ssid(ssid, network->ssid,
5622					   network->ssid_len),
5623				network->bssid);
5624		return 0;
5625	}
5626
5627	/* Ensure that the rates supported by the driver are compatible with
5628	 * this AP, including verification of basic rates (mandatory) */
5629	if (!ipw_compatible_rates(priv, network, &rates)) {
5630		IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5631				"because configured rate mask excludes "
5632				"AP mandatory rate.\n",
5633				print_ssid(ssid, network->ssid,
5634					   network->ssid_len),
5635				network->bssid);
5636		return 0;
5637	}
5638
5639	if (rates.num_rates == 0) {
5640		IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5641				"because of no compatible rates.\n",
5642				print_ssid(ssid, network->ssid,
5643					   network->ssid_len),
5644				network->bssid);
5645		return 0;
5646	}
5647
5648	/* TODO: Perform any further minimal comparititive tests.  We do not
5649	 * want to put too much policy logic here; intelligent scan selection
5650	 * should occur within a generic IEEE 802.11 user space tool.  */
5651
5652	/* Set up 'new' AP to this network */
5653	ipw_copy_rates(&match->rates, &rates);
5654	match->network = network;
5655	IPW_DEBUG_MERGE("Network '%s (%pM)' is a viable match.\n",
5656			print_ssid(ssid, network->ssid, network->ssid_len),
5657			network->bssid);
5658
5659	return 1;
5660}
5661
5662static void ipw_merge_adhoc_network(struct work_struct *work)
5663{
5664	DECLARE_SSID_BUF(ssid);
5665	struct ipw_priv *priv =
5666		container_of(work, struct ipw_priv, merge_networks);
5667	struct libipw_network *network = NULL;
5668	struct ipw_network_match match = {
5669		.network = priv->assoc_network
5670	};
5671
5672	if ((priv->status & STATUS_ASSOCIATED) &&
5673	    (priv->ieee->iw_mode == IW_MODE_ADHOC)) {
5674		/* First pass through ROAM process -- look for a better
5675		 * network */
5676		unsigned long flags;
5677
5678		spin_lock_irqsave(&priv->ieee->lock, flags);
5679		list_for_each_entry(network, &priv->ieee->network_list, list) {
5680			if (network != priv->assoc_network)
5681				ipw_find_adhoc_network(priv, &match, network,
5682						       1);
5683		}
5684		spin_unlock_irqrestore(&priv->ieee->lock, flags);
5685
5686		if (match.network == priv->assoc_network) {
5687			IPW_DEBUG_MERGE("No better ADHOC in this network to "
5688					"merge to.\n");
5689			return;
5690		}
5691
5692		mutex_lock(&priv->mutex);
5693		if ((priv->ieee->iw_mode == IW_MODE_ADHOC)) {
5694			IPW_DEBUG_MERGE("remove network %s\n",
5695					print_ssid(ssid, priv->essid,
5696						   priv->essid_len));
5697			ipw_remove_current_network(priv);
5698		}
5699
5700		ipw_disassociate(priv);
5701		priv->assoc_network = match.network;
5702		mutex_unlock(&priv->mutex);
5703		return;
5704	}
5705}
5706
5707static int ipw_best_network(struct ipw_priv *priv,
5708			    struct ipw_network_match *match,
5709			    struct libipw_network *network, int roaming)
5710{
5711	struct ipw_supported_rates rates;
5712	DECLARE_SSID_BUF(ssid);
5713
5714	/* Verify that this network's capability is compatible with the
5715	 * current mode (AdHoc or Infrastructure) */
5716	if ((priv->ieee->iw_mode == IW_MODE_INFRA &&
5717	     !(network->capability & WLAN_CAPABILITY_ESS)) ||
5718	    (priv->ieee->iw_mode == IW_MODE_ADHOC &&
5719	     !(network->capability & WLAN_CAPABILITY_IBSS))) {
5720		IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded due to "
5721				"capability mismatch.\n",
5722				print_ssid(ssid, network->ssid,
5723					   network->ssid_len),
5724				network->bssid);
5725		return 0;
5726	}
5727
5728	if (unlikely(roaming)) {
5729		/* If we are roaming, then ensure check if this is a valid
5730		 * network to try and roam to */
5731		if ((network->ssid_len != match->network->ssid_len) ||
5732		    memcmp(network->ssid, match->network->ssid,
5733			   network->ssid_len)) {
5734			IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5735					"because of non-network ESSID.\n",
5736					print_ssid(ssid, network->ssid,
5737						   network->ssid_len),
5738					network->bssid);
5739			return 0;
5740		}
5741	} else {
5742		/* If an ESSID has been configured then compare the broadcast
5743		 * ESSID to ours */
5744		if ((priv->config & CFG_STATIC_ESSID) &&
5745		    ((network->ssid_len != priv->essid_len) ||
5746		     memcmp(network->ssid, priv->essid,
5747			    min(network->ssid_len, priv->essid_len)))) {
5748			char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5749			strncpy(escaped,
5750				print_ssid(ssid, network->ssid,
5751					   network->ssid_len),
5752				sizeof(escaped));
5753			IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5754					"because of ESSID mismatch: '%s'.\n",
5755					escaped, network->bssid,
5756					print_ssid(ssid, priv->essid,
5757						   priv->essid_len));
5758			return 0;
5759		}
5760	}
5761
5762	/* If the old network rate is better than this one, don't bother
5763	 * testing everything else. */
5764	if (match->network && match->network->stats.rssi > network->stats.rssi) {
5765		char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5766		strncpy(escaped,
5767			print_ssid(ssid, network->ssid, network->ssid_len),
5768			sizeof(escaped));
5769		IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded because "
5770				"'%s (%pM)' has a stronger signal.\n",
5771				escaped, network->bssid,
5772				print_ssid(ssid, match->network->ssid,
5773					   match->network->ssid_len),
5774				match->network->bssid);
5775		return 0;
5776	}
5777
5778	/* If this network has already had an association attempt within the
5779	 * last 3 seconds, do not try and associate again... */
5780	if (network->last_associate &&
5781	    time_after(network->last_associate + (HZ * 3UL), jiffies)) {
5782		IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5783				"because of storming (%ums since last "
5784				"assoc attempt).\n",
5785				print_ssid(ssid, network->ssid,
5786					   network->ssid_len),
5787				network->bssid,
5788				jiffies_to_msecs(jiffies -
5789						 network->last_associate));
5790		return 0;
5791	}
5792
5793	/* Now go through and see if the requested network is valid... */
5794	if (priv->ieee->scan_age != 0 &&
5795	    time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) {
5796		IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5797				"because of age: %ums.\n",
5798				print_ssid(ssid, network->ssid,
5799					   network->ssid_len),
5800				network->bssid,
5801				jiffies_to_msecs(jiffies -
5802						 network->last_scanned));
5803		return 0;
5804	}
5805
5806	if ((priv->config & CFG_STATIC_CHANNEL) &&
5807	    (network->channel != priv->channel)) {
5808		IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5809				"because of channel mismatch: %d != %d.\n",
5810				print_ssid(ssid, network->ssid,
5811					   network->ssid_len),
5812				network->bssid,
5813				network->channel, priv->channel);
5814		return 0;
5815	}
5816
5817	/* Verify privacy compatability */
5818	if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) !=
5819	    ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) {
5820		IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5821				"because of privacy mismatch: %s != %s.\n",
5822				print_ssid(ssid, network->ssid,
5823					   network->ssid_len),
5824				network->bssid,
5825				priv->capability & CAP_PRIVACY_ON ? "on" :
5826				"off",
5827				network->capability &
5828				WLAN_CAPABILITY_PRIVACY ? "on" : "off");
5829		return 0;
5830	}
5831
5832	if ((priv->config & CFG_STATIC_BSSID) &&
5833	    memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
5834		IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5835				"because of BSSID mismatch: %pM.\n",
5836				print_ssid(ssid, network->ssid,
5837					   network->ssid_len),
5838				network->bssid, priv->bssid);
5839		return 0;
5840	}
5841
5842	/* Filter out any incompatible freq / mode combinations */
5843	if (!libipw_is_valid_mode(priv->ieee, network->mode)) {
5844		IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5845				"because of invalid frequency/mode "
5846				"combination.\n",
5847				print_ssid(ssid, network->ssid,
5848					   network->ssid_len),
5849				network->bssid);
5850		return 0;
5851	}
5852
5853	/* Filter out invalid channel in current GEO */
5854	if (!libipw_is_valid_channel(priv->ieee, network->channel)) {
5855		IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5856				"because of invalid channel in current GEO\n",
5857				print_ssid(ssid, network->ssid,
5858					   network->ssid_len),
5859				network->bssid);
5860		return 0;
5861	}
5862
5863	/* Ensure that the rates supported by the driver are compatible with
5864	 * this AP, including verification of basic rates (mandatory) */
5865	if (!ipw_compatible_rates(priv, network, &rates)) {
5866		IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5867				"because configured rate mask excludes "
5868				"AP mandatory rate.\n",
5869				print_ssid(ssid, network->ssid,
5870					   network->ssid_len),
5871				network->bssid);
5872		return 0;
5873	}
5874
5875	if (rates.num_rates == 0) {
5876		IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5877				"because of no compatible rates.\n",
5878				print_ssid(ssid, network->ssid,
5879					   network->ssid_len),
5880				network->bssid);
5881		return 0;
5882	}
5883
5884	/* TODO: Perform any further minimal comparititive tests.  We do not
5885	 * want to put too much policy logic here; intelligent scan selection
5886	 * should occur within a generic IEEE 802.11 user space tool.  */
5887
5888	/* Set up 'new' AP to this network */
5889	ipw_copy_rates(&match->rates, &rates);
5890	match->network = network;
5891
5892	IPW_DEBUG_ASSOC("Network '%s (%pM)' is a viable match.\n",
5893			print_ssid(ssid, network->ssid, network->ssid_len),
5894			network->bssid);
5895
5896	return 1;
5897}
5898
5899static void ipw_adhoc_create(struct ipw_priv *priv,
5900			     struct libipw_network *network)
5901{
5902	const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
5903	int i;
5904
5905	/*
5906	 * For the purposes of scanning, we can set our wireless mode
5907	 * to trigger scans across combinations of bands, but when it
5908	 * comes to creating a new ad-hoc network, we have tell the FW
5909	 * exactly which band to use.
5910	 *
5911	 * We also have the possibility of an invalid channel for the
5912	 * chossen band.  Attempting to create a new ad-hoc network
5913	 * with an invalid channel for wireless mode will trigger a
5914	 * FW fatal error.
5915	 *
5916	 */
5917	switch (libipw_is_valid_channel(priv->ieee, priv->channel)) {
5918	case LIBIPW_52GHZ_BAND:
5919		network->mode = IEEE_A;
5920		i = libipw_channel_to_index(priv->ieee, priv->channel);
5921		BUG_ON(i == -1);
5922		if (geo->a[i].flags & LIBIPW_CH_PASSIVE_ONLY) {
5923			IPW_WARNING("Overriding invalid channel\n");
5924			priv->channel = geo->a[0].channel;
5925		}
5926		break;
5927
5928	case LIBIPW_24GHZ_BAND:
5929		if (priv->ieee->mode & IEEE_G)
5930			network->mode = IEEE_G;
5931		else
5932			network->mode = IEEE_B;
5933		i = libipw_channel_to_index(priv->ieee, priv->channel);
5934		BUG_ON(i == -1);
5935		if (geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY) {
5936			IPW_WARNING("Overriding invalid channel\n");
5937			priv->channel = geo->bg[0].channel;
5938		}
5939		break;
5940
5941	default:
5942		IPW_WARNING("Overriding invalid channel\n");
5943		if (priv->ieee->mode & IEEE_A) {
5944			network->mode = IEEE_A;
5945			priv->channel = geo->a[0].channel;
5946		} else if (priv->ieee->mode & IEEE_G) {
5947			network->mode = IEEE_G;
5948			priv->channel = geo->bg[0].channel;
5949		} else {
5950			network->mode = IEEE_B;
5951			priv->channel = geo->bg[0].channel;
5952		}
5953		break;
5954	}
5955
5956	network->channel = priv->channel;
5957	priv->config |= CFG_ADHOC_PERSIST;
5958	ipw_create_bssid(priv, network->bssid);
5959	network->ssid_len = priv->essid_len;
5960	memcpy(network->ssid, priv->essid, priv->essid_len);
5961	memset(&network->stats, 0, sizeof(network->stats));
5962	network->capability = WLAN_CAPABILITY_IBSS;
5963	if (!(priv->config & CFG_PREAMBLE_LONG))
5964		network->capability |= WLAN_CAPABILITY_SHORT_PREAMBLE;
5965	if (priv->capability & CAP_PRIVACY_ON)
5966		network->capability |= WLAN_CAPABILITY_PRIVACY;
5967	network->rates_len = min(priv->rates.num_rates, MAX_RATES_LENGTH);
5968	memcpy(network->rates, priv->rates.supported_rates, network->rates_len);
5969	network->rates_ex_len = priv->rates.num_rates - network->rates_len;
5970	memcpy(network->rates_ex,
5971	       &priv->rates.supported_rates[network->rates_len],
5972	       network->rates_ex_len);
5973	network->last_scanned = 0;
5974	network->flags = 0;
5975	network->last_associate = 0;
5976	network->time_stamp[0] = 0;
5977	network->time_stamp[1] = 0;
5978	network->beacon_interval = 100;	/* Default */
5979	network->listen_interval = 10;	/* Default */
5980	network->atim_window = 0;	/* Default */
5981	network->wpa_ie_len = 0;
5982	network->rsn_ie_len = 0;
5983}
5984
5985static void ipw_send_tgi_tx_key(struct ipw_priv *priv, int type, int index)
5986{
5987	struct ipw_tgi_tx_key key;
5988
5989	if (!(priv->ieee->sec.flags & (1 << index)))
5990		return;
5991
5992	key.key_id = index;
5993	memcpy(key.key, priv->ieee->sec.keys[index], SCM_TEMPORAL_KEY_LENGTH);
5994	key.security_type = type;
5995	key.station_index = 0;	/* always 0 for BSS */
5996	key.flags = 0;
5997	/* 0 for new key; previous value of counter (after fatal error) */
5998	key.tx_counter[0] = cpu_to_le32(0);
5999	key.tx_counter[1] = cpu_to_le32(0);
6000
6001	ipw_send_cmd_pdu(priv, IPW_CMD_TGI_TX_KEY, sizeof(key), &key);
6002}
6003
6004static void ipw_send_wep_keys(struct ipw_priv *priv, int type)
6005{
6006	struct ipw_wep_key key;
6007	int i;
6008
6009	key.cmd_id = DINO_CMD_WEP_KEY;
6010	key.seq_num = 0;
6011
6012	/* Note: AES keys cannot be set for multiple times.
6013	 * Only set it at the first time. */
6014	for (i = 0; i < 4; i++) {
6015		key.key_index = i | type;
6016		if (!(priv->ieee->sec.flags & (1 << i))) {
6017			key.key_size = 0;
6018			continue;
6019		}
6020
6021		key.key_size = priv->ieee->sec.key_sizes[i];
6022		memcpy(key.key, priv->ieee->sec.keys[i], key.key_size);
6023
6024		ipw_send_cmd_pdu(priv, IPW_CMD_WEP_KEY, sizeof(key), &key);
6025	}
6026}
6027
6028static void ipw_set_hw_decrypt_unicast(struct ipw_priv *priv, int level)
6029{
6030	if (priv->ieee->host_encrypt)
6031		return;
6032
6033	switch (level) {
6034	case SEC_LEVEL_3:
6035		priv->sys_config.disable_unicast_decryption = 0;
6036		priv->ieee->host_decrypt = 0;
6037		break;
6038	case SEC_LEVEL_2:
6039		priv->sys_config.disable_unicast_decryption = 1;
6040		priv->ieee->host_decrypt = 1;
6041		break;
6042	case SEC_LEVEL_1:
6043		priv->sys_config.disable_unicast_decryption = 0;
6044		priv->ieee->host_decrypt = 0;
6045		break;
6046	case SEC_LEVEL_0:
6047		priv->sys_config.disable_unicast_decryption = 1;
6048		break;
6049	default:
6050		break;
6051	}
6052}
6053
6054static void ipw_set_hw_decrypt_multicast(struct ipw_priv *priv, int level)
6055{
6056	if (priv->ieee->host_encrypt)
6057		return;
6058
6059	switch (level) {
6060	case SEC_LEVEL_3:
6061		priv->sys_config.disable_multicast_decryption = 0;
6062		break;
6063	case SEC_LEVEL_2:
6064		priv->sys_config.disable_multicast_decryption = 1;
6065		break;
6066	case SEC_LEVEL_1:
6067		priv->sys_config.disable_multicast_decryption = 0;
6068		break;
6069	case SEC_LEVEL_0:
6070		priv->sys_config.disable_multicast_decryption = 1;
6071		break;
6072	default:
6073		break;
6074	}
6075}
6076
6077static void ipw_set_hwcrypto_keys(struct ipw_priv *priv)
6078{
6079	switch (priv->ieee->sec.level) {
6080	case SEC_LEVEL_3:
6081		if (priv->ieee->sec.flags & SEC_ACTIVE_KEY)
6082			ipw_send_tgi_tx_key(priv,
6083					    DCT_FLAG_EXT_SECURITY_CCM,
6084					    priv->ieee->sec.active_key);
6085
6086		if (!priv->ieee->host_mc_decrypt)
6087			ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_CCM);
6088		break;
6089	case SEC_LEVEL_2:
6090		if (priv->ieee->sec.flags & SEC_ACTIVE_KEY)
6091			ipw_send_tgi_tx_key(priv,
6092					    DCT_FLAG_EXT_SECURITY_TKIP,
6093					    priv->ieee->sec.active_key);
6094		break;
6095	case SEC_LEVEL_1:
6096		ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP);
6097		ipw_set_hw_decrypt_unicast(priv, priv->ieee->sec.level);
6098		ipw_set_hw_decrypt_multicast(priv, priv->ieee->sec.level);
6099		break;
6100	case SEC_LEVEL_0:
6101	default:
6102		break;
6103	}
6104}
6105
6106static void ipw_adhoc_check(void *data)
6107{
6108	struct ipw_priv *priv = data;
6109
6110	if (priv->missed_adhoc_beacons++ > priv->disassociate_threshold &&
6111	    !(priv->config & CFG_ADHOC_PERSIST)) {
6112		IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
6113			  IPW_DL_STATE | IPW_DL_ASSOC,
6114			  "Missed beacon: %d - disassociate\n",
6115			  priv->missed_adhoc_beacons);
6116		ipw_remove_current_network(priv);
6117		ipw_disassociate(priv);
6118		return;
6119	}
6120
6121	queue_delayed_work(priv->workqueue, &priv->adhoc_check,
6122			   le16_to_cpu(priv->assoc_request.beacon_interval));
6123}
6124
6125static void ipw_bg_adhoc_check(struct work_struct *work)
6126{
6127	struct ipw_priv *priv =
6128		container_of(work, struct ipw_priv, adhoc_check.work);
6129	mutex_lock(&priv->mutex);
6130	ipw_adhoc_check(priv);
6131	mutex_unlock(&priv->mutex);
6132}
6133
6134static void ipw_debug_config(struct ipw_priv *priv)
6135{
6136	DECLARE_SSID_BUF(ssid);
6137	IPW_DEBUG_INFO("Scan completed, no valid APs matched "
6138		       "[CFG 0x%08X]\n", priv->config);
6139	if (priv->config & CFG_STATIC_CHANNEL)
6140		IPW_DEBUG_INFO("Channel locked to %d\n", priv->channel);
6141	else
6142		IPW_DEBUG_INFO("Channel unlocked.\n");
6143	if (priv->config & CFG_STATIC_ESSID)
6144		IPW_DEBUG_INFO("ESSID locked to '%s'\n",
6145			       print_ssid(ssid, priv->essid, priv->essid_len));
6146	else
6147		IPW_DEBUG_INFO("ESSID unlocked.\n");
6148	if (priv->config & CFG_STATIC_BSSID)
6149		IPW_DEBUG_INFO("BSSID locked to %pM\n", priv->bssid);
6150	else
6151		IPW_DEBUG_INFO("BSSID unlocked.\n");
6152	if (priv->capability & CAP_PRIVACY_ON)
6153		IPW_DEBUG_INFO("PRIVACY on\n");
6154	else
6155		IPW_DEBUG_INFO("PRIVACY off\n");
6156	IPW_DEBUG_INFO("RATE MASK: 0x%08X\n", priv->rates_mask);
6157}
6158
6159static void ipw_set_fixed_rate(struct ipw_priv *priv, int mode)
6160{
6161	/* TODO: Verify that this works... */
6162	struct ipw_fixed_rate fr;
6163	u32 reg;
6164	u16 mask = 0;
6165	u16 new_tx_rates = priv->rates_mask;
6166
6167	/* Identify 'current FW band' and match it with the fixed
6168	 * Tx rates */
6169
6170	switch (priv->ieee->freq_band) {
6171	case LIBIPW_52GHZ_BAND:	/* A only */
6172		/* IEEE_A */
6173		if (priv->rates_mask & ~LIBIPW_OFDM_RATES_MASK) {
6174			/* Invalid fixed rate mask */
6175			IPW_DEBUG_WX
6176			    ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6177			new_tx_rates = 0;
6178			break;
6179		}
6180
6181		new_tx_rates >>= LIBIPW_OFDM_SHIFT_MASK_A;
6182		break;
6183
6184	default:		/* 2.4Ghz or Mixed */
6185		/* IEEE_B */
6186		if (mode == IEEE_B) {
6187			if (new_tx_rates & ~LIBIPW_CCK_RATES_MASK) {
6188				/* Invalid fixed rate mask */
6189				IPW_DEBUG_WX
6190				    ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6191				new_tx_rates = 0;
6192			}
6193			break;
6194		}
6195
6196		/* IEEE_G */
6197		if (new_tx_rates & ~(LIBIPW_CCK_RATES_MASK |
6198				    LIBIPW_OFDM_RATES_MASK)) {
6199			/* Invalid fixed rate mask */
6200			IPW_DEBUG_WX
6201			    ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6202			new_tx_rates = 0;
6203			break;
6204		}
6205
6206		if (LIBIPW_OFDM_RATE_6MB_MASK & new_tx_rates) {
6207			mask |= (LIBIPW_OFDM_RATE_6MB_MASK >> 1);
6208			new_tx_rates &= ~LIBIPW_OFDM_RATE_6MB_MASK;
6209		}
6210
6211		if (LIBIPW_OFDM_RATE_9MB_MASK & new_tx_rates) {
6212			mask |= (LIBIPW_OFDM_RATE_9MB_MASK >> 1);
6213			new_tx_rates &= ~LIBIPW_OFDM_RATE_9MB_MASK;
6214		}
6215
6216		if (LIBIPW_OFDM_RATE_12MB_MASK & new_tx_rates) {
6217			mask |= (LIBIPW_OFDM_RATE_12MB_MASK >> 1);
6218			new_tx_rates &= ~LIBIPW_OFDM_RATE_12MB_MASK;
6219		}
6220
6221		new_tx_rates |= mask;
6222		break;
6223	}
6224
6225	fr.tx_rates = cpu_to_le16(new_tx_rates);
6226
6227	reg = ipw_read32(priv, IPW_MEM_FIXED_OVERRIDE);
6228	ipw_write_reg32(priv, reg, *(u32 *) & fr);
6229}
6230
6231static void ipw_abort_scan(struct ipw_priv *priv)
6232{
6233	int err;
6234
6235	if (priv->status & STATUS_SCAN_ABORTING) {
6236		IPW_DEBUG_HC("Ignoring concurrent scan abort request.\n");
6237		return;
6238	}
6239	priv->status |= STATUS_SCAN_ABORTING;
6240
6241	err = ipw_send_scan_abort(priv);
6242	if (err)
6243		IPW_DEBUG_HC("Request to abort scan failed.\n");
6244}
6245
6246static void ipw_add_scan_channels(struct ipw_priv *priv,
6247				  struct ipw_scan_request_ext *scan,
6248				  int scan_type)
6249{
6250	int channel_index = 0;
6251	const struct libipw_geo *geo;
6252	int i;
6253
6254	geo = libipw_get_geo(priv->ieee);
6255
6256	if (priv->ieee->freq_band & LIBIPW_52GHZ_BAND) {
6257		int start = channel_index;
6258		for (i = 0; i < geo->a_channels; i++) {
6259			if ((priv->status & STATUS_ASSOCIATED) &&
6260			    geo->a[i].channel == priv->channel)
6261				continue;
6262			channel_index++;
6263			scan->channels_list[channel_index] = geo->a[i].channel;
6264			ipw_set_scan_type(scan, channel_index,
6265					  geo->a[i].
6266					  flags & LIBIPW_CH_PASSIVE_ONLY ?
6267					  IPW_SCAN_PASSIVE_FULL_DWELL_SCAN :
6268					  scan_type);
6269		}
6270
6271		if (start != channel_index) {
6272			scan->channels_list[start] = (u8) (IPW_A_MODE << 6) |
6273			    (channel_index - start);
6274			channel_index++;
6275		}
6276	}
6277
6278	if (priv->ieee->freq_band & LIBIPW_24GHZ_BAND) {
6279		int start = channel_index;
6280		if (priv->config & CFG_SPEED_SCAN) {
6281			int index;
6282			u8 channels[LIBIPW_24GHZ_CHANNELS] = {
6283				/* nop out the list */
6284				[0] = 0
6285			};
6286
6287			u8 channel;
6288			while (channel_index < IPW_SCAN_CHANNELS - 1) {
6289				channel =
6290				    priv->speed_scan[priv->speed_scan_pos];
6291				if (channel == 0) {
6292					priv->speed_scan_pos = 0;
6293					channel = priv->speed_scan[0];
6294				}
6295				if ((priv->status & STATUS_ASSOCIATED) &&
6296				    channel == priv->channel) {
6297					priv->speed_scan_pos++;
6298					continue;
6299				}
6300
6301				/* If this channel has already been
6302				 * added in scan, break from loop
6303				 * and this will be the first channel
6304				 * in the next scan.
6305				 */
6306				if (channels[channel - 1] != 0)
6307					break;
6308
6309				channels[channel - 1] = 1;
6310				priv->speed_scan_pos++;
6311				channel_index++;
6312				scan->channels_list[channel_index] = channel;
6313				index =
6314				    libipw_channel_to_index(priv->ieee, channel);
6315				ipw_set_scan_type(scan, channel_index,
6316						  geo->bg[index].
6317						  flags &
6318						  LIBIPW_CH_PASSIVE_ONLY ?
6319						  IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
6320						  : scan_type);
6321			}
6322		} else {
6323			for (i = 0; i < geo->bg_channels; i++) {
6324				if ((priv->status & STATUS_ASSOCIATED) &&
6325				    geo->bg[i].channel == priv->channel)
6326					continue;
6327				channel_index++;
6328				scan->channels_list[channel_index] =
6329				    geo->bg[i].channel;
6330				ipw_set_scan_type(scan, channel_index,
6331						  geo->bg[i].
6332						  flags &
6333						  LIBIPW_CH_PASSIVE_ONLY ?
6334						  IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
6335						  : scan_type);
6336			}
6337		}
6338
6339		if (start != channel_index) {
6340			scan->channels_list[start] = (u8) (IPW_B_MODE << 6) |
6341			    (channel_index - start);
6342		}
6343	}
6344}
6345
6346static int ipw_passive_dwell_time(struct ipw_priv *priv)
6347{
6348	/* staying on passive channels longer than the DTIM interval during a
6349	 * scan, while associated, causes the firmware to cancel the scan
6350	 * without notification. Hence, don't stay on passive channels longer
6351	 * than the beacon interval.
6352	 */
6353	if (priv->status & STATUS_ASSOCIATED
6354	    && priv->assoc_network->beacon_interval > 10)
6355		return priv->assoc_network->beacon_interval - 10;
6356	else
6357		return 120;
6358}
6359
6360static int ipw_request_scan_helper(struct ipw_priv *priv, int type, int direct)
6361{
6362	struct ipw_scan_request_ext scan;
6363	int err = 0, scan_type;
6364
6365	if (!(priv->status & STATUS_INIT) ||
6366	    (priv->status & STATUS_EXIT_PENDING))
6367		return 0;
6368
6369	mutex_lock(&priv->mutex);
6370
6371	if (direct && (priv->direct_scan_ssid_len == 0)) {
6372		IPW_DEBUG_HC("Direct scan requested but no SSID to scan for\n");
6373		priv->status &= ~STATUS_DIRECT_SCAN_PENDING;
6374		goto done;
6375	}
6376
6377	if (priv->status & STATUS_SCANNING) {
6378		IPW_DEBUG_HC("Concurrent scan requested.  Queuing.\n");
6379		priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING :
6380					STATUS_SCAN_PENDING;
6381		goto done;
6382	}
6383
6384	if (!(priv->status & STATUS_SCAN_FORCED) &&
6385	    priv->status & STATUS_SCAN_ABORTING) {
6386		IPW_DEBUG_HC("Scan request while abort pending.  Queuing.\n");
6387		priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING :
6388					STATUS_SCAN_PENDING;
6389		goto done;
6390	}
6391
6392	if (priv->status & STATUS_RF_KILL_MASK) {
6393		IPW_DEBUG_HC("Queuing scan due to RF Kill activation\n");
6394		priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING :
6395					STATUS_SCAN_PENDING;
6396		goto done;
6397	}
6398
6399	memset(&scan, 0, sizeof(scan));
6400	scan.full_scan_index = cpu_to_le32(libipw_get_scans(priv->ieee));
6401
6402	if (type == IW_SCAN_TYPE_PASSIVE) {
6403		IPW_DEBUG_WX("use passive scanning\n");
6404		scan_type = IPW_SCAN_PASSIVE_FULL_DWELL_SCAN;
6405		scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6406			cpu_to_le16(ipw_passive_dwell_time(priv));
6407		ipw_add_scan_channels(priv, &scan, scan_type);
6408		goto send_request;
6409	}
6410
6411	/* Use active scan by default. */
6412	if (priv->config & CFG_SPEED_SCAN)
6413		scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
6414			cpu_to_le16(30);
6415	else
6416		scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
6417			cpu_to_le16(20);
6418
6419	scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN] =
6420		cpu_to_le16(20);
6421
6422	scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6423		cpu_to_le16(ipw_passive_dwell_time(priv));
6424	scan.dwell_time[IPW_SCAN_ACTIVE_DIRECT_SCAN] = cpu_to_le16(20);
6425
6426#ifdef CONFIG_IPW2200_MONITOR
6427	if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
6428		u8 channel;
6429		u8 band = 0;
6430
6431		switch (libipw_is_valid_channel(priv->ieee, priv->channel)) {
6432		case LIBIPW_52GHZ_BAND:
6433			band = (u8) (IPW_A_MODE << 6) | 1;
6434			channel = priv->channel;
6435			break;
6436
6437		case LIBIPW_24GHZ_BAND:
6438			band = (u8) (IPW_B_MODE << 6) | 1;
6439			channel = priv->channel;
6440			break;
6441
6442		default:
6443			band = (u8) (IPW_B_MODE << 6) | 1;
6444			channel = 9;
6445			break;
6446		}
6447
6448		scan.channels_list[0] = band;
6449		scan.channels_list[1] = channel;
6450		ipw_set_scan_type(&scan, 1, IPW_SCAN_PASSIVE_FULL_DWELL_SCAN);
6451
6452		/* NOTE:  The card will sit on this channel for this time
6453		 * period.  Scan aborts are timing sensitive and frequently
6454		 * result in firmware restarts.  As such, it is best to
6455		 * set a small dwell_time here and just keep re-issuing
6456		 * scans.  Otherwise fast channel hopping will not actually
6457		 * hop channels.
6458		 *
6459		 * TODO: Move SPEED SCAN support to all modes and bands */
6460		scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6461			cpu_to_le16(2000);
6462	} else {
6463#endif				/* CONFIG_IPW2200_MONITOR */
6464		/* Honor direct scans first, otherwise if we are roaming make
6465		 * this a direct scan for the current network.  Finally,
6466		 * ensure that every other scan is a fast channel hop scan */
6467		if (direct) {
6468			err = ipw_send_ssid(priv, priv->direct_scan_ssid,
6469			                    priv->direct_scan_ssid_len);
6470			if (err) {
6471				IPW_DEBUG_HC("Attempt to send SSID command  "
6472					     "failed\n");
6473				goto done;
6474			}
6475
6476			scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN;
6477		} else if ((priv->status & STATUS_ROAMING)
6478			   || (!(priv->status & STATUS_ASSOCIATED)
6479			       && (priv->config & CFG_STATIC_ESSID)
6480			       && (le32_to_cpu(scan.full_scan_index) % 2))) {
6481			err = ipw_send_ssid(priv, priv->essid, priv->essid_len);
6482			if (err) {
6483				IPW_DEBUG_HC("Attempt to send SSID command "
6484					     "failed.\n");
6485				goto done;
6486			}
6487
6488			scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN;
6489		} else
6490			scan_type = IPW_SCAN_ACTIVE_BROADCAST_SCAN;
6491
6492		ipw_add_scan_channels(priv, &scan, scan_type);
6493#ifdef CONFIG_IPW2200_MONITOR
6494	}
6495#endif
6496
6497send_request:
6498	err = ipw_send_scan_request_ext(priv, &scan);
6499	if (err) {
6500		IPW_DEBUG_HC("Sending scan command failed: %08X\n", err);
6501		goto done;
6502	}
6503
6504	priv->status |= STATUS_SCANNING;
6505	if (direct) {
6506		priv->status &= ~STATUS_DIRECT_SCAN_PENDING;
6507		priv->direct_scan_ssid_len = 0;
6508	} else
6509		priv->status &= ~STATUS_SCAN_PENDING;
6510
6511	queue_delayed_work(priv->workqueue, &priv->scan_check,
6512			   IPW_SCAN_CHECK_WATCHDOG);
6513done:
6514	mutex_unlock(&priv->mutex);
6515	return err;
6516}
6517
6518static void ipw_request_passive_scan(struct work_struct *work)
6519{
6520	struct ipw_priv *priv =
6521		container_of(work, struct ipw_priv, request_passive_scan.work);
6522	ipw_request_scan_helper(priv, IW_SCAN_TYPE_PASSIVE, 0);
6523}
6524
6525static void ipw_request_scan(struct work_struct *work)
6526{
6527	struct ipw_priv *priv =
6528		container_of(work, struct ipw_priv, request_scan.work);
6529	ipw_request_scan_helper(priv, IW_SCAN_TYPE_ACTIVE, 0);
6530}
6531
6532static void ipw_request_direct_scan(struct work_struct *work)
6533{
6534	struct ipw_priv *priv =
6535		container_of(work, struct ipw_priv, request_direct_scan.work);
6536	ipw_request_scan_helper(priv, IW_SCAN_TYPE_ACTIVE, 1);
6537}
6538
6539static void ipw_bg_abort_scan(struct work_struct *work)
6540{
6541	struct ipw_priv *priv =
6542		container_of(work, struct ipw_priv, abort_scan);
6543	mutex_lock(&priv->mutex);
6544	ipw_abort_scan(priv);
6545	mutex_unlock(&priv->mutex);
6546}
6547
6548static int ipw_wpa_enable(struct ipw_priv *priv, int value)
6549{
6550	/* This is called when wpa_supplicant loads and closes the driver
6551	 * interface. */
6552	priv->ieee->wpa_enabled = value;
6553	return 0;
6554}
6555
6556static int ipw_wpa_set_auth_algs(struct ipw_priv *priv, int value)
6557{
6558	struct libipw_device *ieee = priv->ieee;
6559	struct libipw_security sec = {
6560		.flags = SEC_AUTH_MODE,
6561	};
6562	int ret = 0;
6563
6564	if (value & IW_AUTH_ALG_SHARED_KEY) {
6565		sec.auth_mode = WLAN_AUTH_SHARED_KEY;
6566		ieee->open_wep = 0;
6567	} else if (value & IW_AUTH_ALG_OPEN_SYSTEM) {
6568		sec.auth_mode = WLAN_AUTH_OPEN;
6569		ieee->open_wep = 1;
6570	} else if (value & IW_AUTH_ALG_LEAP) {
6571		sec.auth_mode = WLAN_AUTH_LEAP;
6572		ieee->open_wep = 1;
6573	} else
6574		return -EINVAL;
6575
6576	if (ieee->set_security)
6577		ieee->set_security(ieee->dev, &sec);
6578	else
6579		ret = -EOPNOTSUPP;
6580
6581	return ret;
6582}
6583
6584static void ipw_wpa_assoc_frame(struct ipw_priv *priv, char *wpa_ie,
6585				int wpa_ie_len)
6586{
6587	/* make sure WPA is enabled */
6588	ipw_wpa_enable(priv, 1);
6589}
6590
6591static int ipw_set_rsn_capa(struct ipw_priv *priv,
6592			    char *capabilities, int length)
6593{
6594	IPW_DEBUG_HC("HOST_CMD_RSN_CAPABILITIES\n");
6595
6596	return ipw_send_cmd_pdu(priv, IPW_CMD_RSN_CAPABILITIES, length,
6597				capabilities);
6598}
6599
6600/*
6601 * WE-18 support
6602 */
6603
6604/* SIOCSIWGENIE */
6605static int ipw_wx_set_genie(struct net_device *dev,
6606			    struct iw_request_info *info,
6607			    union iwreq_data *wrqu, char *extra)
6608{
6609	struct ipw_priv *priv = libipw_priv(dev);
6610	struct libipw_device *ieee = priv->ieee;
6611	u8 *buf;
6612	int err = 0;
6613
6614	if (wrqu->data.length > MAX_WPA_IE_LEN ||
6615	    (wrqu->data.length && extra == NULL))
6616		return -EINVAL;
6617
6618	if (wrqu->data.length) {
6619		buf = kmalloc(wrqu->data.length, GFP_KERNEL);
6620		if (buf == NULL) {
6621			err = -ENOMEM;
6622			goto out;
6623		}
6624
6625		memcpy(buf, extra, wrqu->data.length);
6626		kfree(ieee->wpa_ie);
6627		ieee->wpa_ie = buf;
6628		ieee->wpa_ie_len = wrqu->data.length;
6629	} else {
6630		kfree(ieee->wpa_ie);
6631		ieee->wpa_ie = NULL;
6632		ieee->wpa_ie_len = 0;
6633	}
6634
6635	ipw_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len);
6636      out:
6637	return err;
6638}
6639
6640/* SIOCGIWGENIE */
6641static int ipw_wx_get_genie(struct net_device *dev,
6642			    struct iw_request_info *info,
6643			    union iwreq_data *wrqu, char *extra)
6644{
6645	struct ipw_priv *priv = libipw_priv(dev);
6646	struct libipw_device *ieee = priv->ieee;
6647	int err = 0;
6648
6649	if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) {
6650		wrqu->data.length = 0;
6651		goto out;
6652	}
6653
6654	if (wrqu->data.length < ieee->wpa_ie_len) {
6655		err = -E2BIG;
6656		goto out;
6657	}
6658
6659	wrqu->data.length = ieee->wpa_ie_len;
6660	memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len);
6661
6662      out:
6663	return err;
6664}
6665
6666static int wext_cipher2level(int cipher)
6667{
6668	switch (cipher) {
6669	case IW_AUTH_CIPHER_NONE:
6670		return SEC_LEVEL_0;
6671	case IW_AUTH_CIPHER_WEP40:
6672	case IW_AUTH_CIPHER_WEP104:
6673		return SEC_LEVEL_1;
6674	case IW_AUTH_CIPHER_TKIP:
6675		return SEC_LEVEL_2;
6676	case IW_AUTH_CIPHER_CCMP:
6677		return SEC_LEVEL_3;
6678	default:
6679		return -1;
6680	}
6681}
6682
6683/* SIOCSIWAUTH */
6684static int ipw_wx_set_auth(struct net_device *dev,
6685			   struct iw_request_info *info,
6686			   union iwreq_data *wrqu, char *extra)
6687{
6688	struct ipw_priv *priv = libipw_priv(dev);
6689	struct libipw_device *ieee = priv->ieee;
6690	struct iw_param *param = &wrqu->param;
6691	struct lib80211_crypt_data *crypt;
6692	unsigned long flags;
6693	int ret = 0;
6694
6695	switch (param->flags & IW_AUTH_INDEX) {
6696	case IW_AUTH_WPA_VERSION:
6697		break;
6698	case IW_AUTH_CIPHER_PAIRWISE:
6699		ipw_set_hw_decrypt_unicast(priv,
6700					   wext_cipher2level(param->value));
6701		break;
6702	case IW_AUTH_CIPHER_GROUP:
6703		ipw_set_hw_decrypt_multicast(priv,
6704					     wext_cipher2level(param->value));
6705		break;
6706	case IW_AUTH_KEY_MGMT:
6707		/*
6708		 * ipw2200 does not use these parameters
6709		 */
6710		break;
6711
6712	case IW_AUTH_TKIP_COUNTERMEASURES:
6713		crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
6714		if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags)
6715			break;
6716
6717		flags = crypt->ops->get_flags(crypt->priv);
6718
6719		if (param->value)
6720			flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
6721		else
6722			flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
6723
6724		crypt->ops->set_flags(flags, crypt->priv);
6725
6726		break;
6727
6728	case IW_AUTH_DROP_UNENCRYPTED:{
6729			/* HACK:
6730			 *
6731			 * wpa_supplicant calls set_wpa_enabled when the driver
6732			 * is loaded and unloaded, regardless of if WPA is being
6733			 * used.  No other calls are made which can be used to
6734			 * determine if encryption will be used or not prior to
6735			 * association being expected.  If encryption is not being
6736			 * used, drop_unencrypted is set to false, else true -- we
6737			 * can use this to determine if the CAP_PRIVACY_ON bit should
6738			 * be set.
6739			 */
6740			struct libipw_security sec = {
6741				.flags = SEC_ENABLED,
6742				.enabled = param->value,
6743			};
6744			priv->ieee->drop_unencrypted = param->value;
6745			/* We only change SEC_LEVEL for open mode. Others
6746			 * are set by ipw_wpa_set_encryption.
6747			 */
6748			if (!param->value) {
6749				sec.flags |= SEC_LEVEL;
6750				sec.level = SEC_LEVEL_0;
6751			} else {
6752				sec.flags |= SEC_LEVEL;
6753				sec.level = SEC_LEVEL_1;
6754			}
6755			if (priv->ieee->set_security)
6756				priv->ieee->set_security(priv->ieee->dev, &sec);
6757			break;
6758		}
6759
6760	case IW_AUTH_80211_AUTH_ALG:
6761		ret = ipw_wpa_set_auth_algs(priv, param->value);
6762		break;
6763
6764	case IW_AUTH_WPA_ENABLED:
6765		ret = ipw_wpa_enable(priv, param->value);
6766		ipw_disassociate(priv);
6767		break;
6768
6769	case IW_AUTH_RX_UNENCRYPTED_EAPOL:
6770		ieee->ieee802_1x = param->value;
6771		break;
6772
6773	case IW_AUTH_PRIVACY_INVOKED:
6774		ieee->privacy_invoked = param->value;
6775		break;
6776
6777	default:
6778		return -EOPNOTSUPP;
6779	}
6780	return ret;
6781}
6782
6783/* SIOCGIWAUTH */
6784static int ipw_wx_get_auth(struct net_device *dev,
6785			   struct iw_request_info *info,
6786			   union iwreq_data *wrqu, char *extra)
6787{
6788	struct ipw_priv *priv = libipw_priv(dev);
6789	struct libipw_device *ieee = priv->ieee;
6790	struct lib80211_crypt_data *crypt;
6791	struct iw_param *param = &wrqu->param;
6792	int ret = 0;
6793
6794	switch (param->flags & IW_AUTH_INDEX) {
6795	case IW_AUTH_WPA_VERSION:
6796	case IW_AUTH_CIPHER_PAIRWISE:
6797	case IW_AUTH_CIPHER_GROUP:
6798	case IW_AUTH_KEY_MGMT:
6799		/*
6800		 * wpa_supplicant will control these internally
6801		 */
6802		ret = -EOPNOTSUPP;
6803		break;
6804
6805	case IW_AUTH_TKIP_COUNTERMEASURES:
6806		crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
6807		if (!crypt || !crypt->ops->get_flags)
6808			break;
6809
6810		param->value = (crypt->ops->get_flags(crypt->priv) &
6811				IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0;
6812
6813		break;
6814
6815	case IW_AUTH_DROP_UNENCRYPTED:
6816		param->value = ieee->drop_unencrypted;
6817		break;
6818
6819	case IW_AUTH_80211_AUTH_ALG:
6820		param->value = ieee->sec.auth_mode;
6821		break;
6822
6823	case IW_AUTH_WPA_ENABLED:
6824		param->value = ieee->wpa_enabled;
6825		break;
6826
6827	case IW_AUTH_RX_UNENCRYPTED_EAPOL:
6828		param->value = ieee->ieee802_1x;
6829		break;
6830
6831	case IW_AUTH_ROAMING_CONTROL:
6832	case IW_AUTH_PRIVACY_INVOKED:
6833		param->value = ieee->privacy_invoked;
6834		break;
6835
6836	default:
6837		return -EOPNOTSUPP;
6838	}
6839	return 0;
6840}
6841
6842/* SIOCSIWENCODEEXT */
6843static int ipw_wx_set_encodeext(struct net_device *dev,
6844				struct iw_request_info *info,
6845				union iwreq_data *wrqu, char *extra)
6846{
6847	struct ipw_priv *priv = libipw_priv(dev);
6848	struct iw_encode_ext *ext = (struct iw_encode_ext *)extra;
6849
6850	if (hwcrypto) {
6851		if (ext->alg == IW_ENCODE_ALG_TKIP) {
6852			/* IPW HW can't build TKIP MIC,
6853			   host decryption still needed */
6854			if (ext->ext_flags & IW_ENCODE_EXT_GROUP_KEY)
6855				priv->ieee->host_mc_decrypt = 1;
6856			else {
6857				priv->ieee->host_encrypt = 0;
6858				priv->ieee->host_encrypt_msdu = 1;
6859				priv->ieee->host_decrypt = 1;
6860			}
6861		} else {
6862			priv->ieee->host_encrypt = 0;
6863			priv->ieee->host_encrypt_msdu = 0;
6864			priv->ieee->host_decrypt = 0;
6865			priv->ieee->host_mc_decrypt = 0;
6866		}
6867	}
6868
6869	return libipw_wx_set_encodeext(priv->ieee, info, wrqu, extra);
6870}
6871
6872/* SIOCGIWENCODEEXT */
6873static int ipw_wx_get_encodeext(struct net_device *dev,
6874				struct iw_request_info *info,
6875				union iwreq_data *wrqu, char *extra)
6876{
6877	struct ipw_priv *priv = libipw_priv(dev);
6878	return libipw_wx_get_encodeext(priv->ieee, info, wrqu, extra);
6879}
6880
6881/* SIOCSIWMLME */
6882static int ipw_wx_set_mlme(struct net_device *dev,
6883			   struct iw_request_info *info,
6884			   union iwreq_data *wrqu, char *extra)
6885{
6886	struct ipw_priv *priv = libipw_priv(dev);
6887	struct iw_mlme *mlme = (struct iw_mlme *)extra;
6888	__le16 reason;
6889
6890	reason = cpu_to_le16(mlme->reason_code);
6891
6892	switch (mlme->cmd) {
6893	case IW_MLME_DEAUTH:
6894		/* silently ignore */
6895		break;
6896
6897	case IW_MLME_DISASSOC:
6898		ipw_disassociate(priv);
6899		break;
6900
6901	default:
6902		return -EOPNOTSUPP;
6903	}
6904	return 0;
6905}
6906
6907#ifdef CONFIG_IPW2200_QOS
6908
6909/* QoS */
6910/*
6911* get the modulation type of the current network or
6912* the card current mode
6913*/
6914static u8 ipw_qos_current_mode(struct ipw_priv * priv)
6915{
6916	u8 mode = 0;
6917
6918	if (priv->status & STATUS_ASSOCIATED) {
6919		unsigned long flags;
6920
6921		spin_lock_irqsave(&priv->ieee->lock, flags);
6922		mode = priv->assoc_network->mode;
6923		spin_unlock_irqrestore(&priv->ieee->lock, flags);
6924	} else {
6925		mode = priv->ieee->mode;
6926	}
6927	IPW_DEBUG_QOS("QoS network/card mode %d \n", mode);
6928	return mode;
6929}
6930
6931/*
6932* Handle management frame beacon and probe response
6933*/
6934static int ipw_qos_handle_probe_response(struct ipw_priv *priv,
6935					 int active_network,
6936					 struct libipw_network *network)
6937{
6938	u32 size = sizeof(struct libipw_qos_parameters);
6939
6940	if (network->capability & WLAN_CAPABILITY_IBSS)
6941		network->qos_data.active = network->qos_data.supported;
6942
6943	if (network->flags & NETWORK_HAS_QOS_MASK) {
6944		if (active_network &&
6945		    (network->flags & NETWORK_HAS_QOS_PARAMETERS))
6946			network->qos_data.active = network->qos_data.supported;
6947
6948		if ((network->qos_data.active == 1) && (active_network == 1) &&
6949		    (network->flags & NETWORK_HAS_QOS_PARAMETERS) &&
6950		    (network->qos_data.old_param_count !=
6951		     network->qos_data.param_count)) {
6952			network->qos_data.old_param_count =
6953			    network->qos_data.param_count;
6954			schedule_work(&priv->qos_activate);
6955			IPW_DEBUG_QOS("QoS parameters change call "
6956				      "qos_activate\n");
6957		}
6958	} else {
6959		if ((priv->ieee->mode == IEEE_B) || (network->mode == IEEE_B))
6960			memcpy(&network->qos_data.parameters,
6961			       &def_parameters_CCK, size);
6962		else
6963			memcpy(&network->qos_data.parameters,
6964			       &def_parameters_OFDM, size);
6965
6966		if ((network->qos_data.active == 1) && (active_network == 1)) {
6967			IPW_DEBUG_QOS("QoS was disabled call qos_activate \n");
6968			schedule_work(&priv->qos_activate);
6969		}
6970
6971		network->qos_data.active = 0;
6972		network->qos_data.supported = 0;
6973	}
6974	if ((priv->status & STATUS_ASSOCIATED) &&
6975	    (priv->ieee->iw_mode == IW_MODE_ADHOC) && (active_network == 0)) {
6976		if (memcmp(network->bssid, priv->bssid, ETH_ALEN))
6977			if (network->capability & WLAN_CAPABILITY_IBSS)
6978				if ((network->ssid_len ==
6979				     priv->assoc_network->ssid_len) &&
6980				    !memcmp(network->ssid,
6981					    priv->assoc_network->ssid,
6982					    network->ssid_len)) {
6983					queue_work(priv->workqueue,
6984						   &priv->merge_networks);
6985				}
6986	}
6987
6988	return 0;
6989}
6990
6991/*
6992* This function set up the firmware to support QoS. It sends
6993* IPW_CMD_QOS_PARAMETERS and IPW_CMD_WME_INFO
6994*/
6995static int ipw_qos_activate(struct ipw_priv *priv,
6996			    struct libipw_qos_data *qos_network_data)
6997{
6998	int err;
6999	struct libipw_qos_parameters qos_parameters[QOS_QOS_SETS];
7000	struct libipw_qos_parameters *active_one = NULL;
7001	u32 size = sizeof(struct libipw_qos_parameters);
7002	u32 burst_duration;
7003	int i;
7004	u8 type;
7005
7006	type = ipw_qos_current_mode(priv);
7007
7008	active_one = &(qos_parameters[QOS_PARAM_SET_DEF_CCK]);
7009	memcpy(active_one, priv->qos_data.def_qos_parm_CCK, size);
7010	active_one = &(qos_parameters[QOS_PARAM_SET_DEF_OFDM]);
7011	memcpy(active_one, priv->qos_data.def_qos_parm_OFDM, size);
7012
7013	if (qos_network_data == NULL) {
7014		if (type == IEEE_B) {
7015			IPW_DEBUG_QOS("QoS activate network mode %d\n", type);
7016			active_one = &def_parameters_CCK;
7017		} else
7018			active_one = &def_parameters_OFDM;
7019
7020		memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
7021		burst_duration = ipw_qos_get_burst_duration(priv);
7022		for (i = 0; i < QOS_QUEUE_NUM; i++)
7023			qos_parameters[QOS_PARAM_SET_ACTIVE].tx_op_limit[i] =
7024			    cpu_to_le16(burst_duration);
7025	} else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
7026		if (type == IEEE_B) {
7027			IPW_DEBUG_QOS("QoS activate IBSS nework mode %d\n",
7028				      type);
7029			if (priv->qos_data.qos_enable == 0)
7030				active_one = &def_parameters_CCK;
7031			else
7032				active_one = priv->qos_data.def_qos_parm_CCK;
7033		} else {
7034			if (priv->qos_data.qos_enable == 0)
7035				active_one = &def_parameters_OFDM;
7036			else
7037				active_one = priv->qos_data.def_qos_parm_OFDM;
7038		}
7039		memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
7040	} else {
7041		unsigned long flags;
7042		int active;
7043
7044		spin_lock_irqsave(&priv->ieee->lock, flags);
7045		active_one = &(qos_network_data->parameters);
7046		qos_network_data->old_param_count =
7047		    qos_network_data->param_count;
7048		memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
7049		active = qos_network_data->supported;
7050		spin_unlock_irqrestore(&priv->ieee->lock, flags);
7051
7052		if (active == 0) {
7053			burst_duration = ipw_qos_get_burst_duration(priv);
7054			for (i = 0; i < QOS_QUEUE_NUM; i++)
7055				qos_parameters[QOS_PARAM_SET_ACTIVE].
7056				    tx_op_limit[i] = cpu_to_le16(burst_duration);
7057		}
7058	}
7059
7060	IPW_DEBUG_QOS("QoS sending IPW_CMD_QOS_PARAMETERS\n");
7061	err = ipw_send_qos_params_command(priv,
7062					  (struct libipw_qos_parameters *)
7063					  &(qos_parameters[0]));
7064	if (err)
7065		IPW_DEBUG_QOS("QoS IPW_CMD_QOS_PARAMETERS failed\n");
7066
7067	return err;
7068}
7069
7070/*
7071* send IPW_CMD_WME_INFO to the firmware
7072*/
7073static int ipw_qos_set_info_element(struct ipw_priv *priv)
7074{
7075	int ret = 0;
7076	struct libipw_qos_information_element qos_info;
7077
7078	if (priv == NULL)
7079		return -1;
7080
7081	qos_info.elementID = QOS_ELEMENT_ID;
7082	qos_info.length = sizeof(struct libipw_qos_information_element) - 2;
7083
7084	qos_info.version = QOS_VERSION_1;
7085	qos_info.ac_info = 0;
7086
7087	memcpy(qos_info.qui, qos_oui, QOS_OUI_LEN);
7088	qos_info.qui_type = QOS_OUI_TYPE;
7089	qos_info.qui_subtype = QOS_OUI_INFO_SUB_TYPE;
7090
7091	ret = ipw_send_qos_info_command(priv, &qos_info);
7092	if (ret != 0) {
7093		IPW_DEBUG_QOS("QoS error calling ipw_send_qos_info_command\n");
7094	}
7095	return ret;
7096}
7097
7098/*
7099* Set the QoS parameter with the association request structure
7100*/
7101static int ipw_qos_association(struct ipw_priv *priv,
7102			       struct libipw_network *network)
7103{
7104	int err = 0;
7105	struct libipw_qos_data *qos_data = NULL;
7106	struct libipw_qos_data ibss_data = {
7107		.supported = 1,
7108		.active = 1,
7109	};
7110
7111	switch (priv->ieee->iw_mode) {
7112	case IW_MODE_ADHOC:
7113		BUG_ON(!(network->capability & WLAN_CAPABILITY_IBSS));
7114
7115		qos_data = &ibss_data;
7116		break;
7117
7118	case IW_MODE_INFRA:
7119		qos_data = &network->qos_data;
7120		break;
7121
7122	default:
7123		BUG();
7124		break;
7125	}
7126
7127	err = ipw_qos_activate(priv, qos_data);
7128	if (err) {
7129		priv->assoc_request.policy_support &= ~HC_QOS_SUPPORT_ASSOC;
7130		return err;
7131	}
7132
7133	if (priv->qos_data.qos_enable && qos_data->supported) {
7134		IPW_DEBUG_QOS("QoS will be enabled for this association\n");
7135		priv->assoc_request.policy_support |= HC_QOS_SUPPORT_ASSOC;
7136		return ipw_qos_set_info_element(priv);
7137	}
7138
7139	return 0;
7140}
7141
7142/*
7143* handling the beaconing responses. if we get different QoS setting
7144* off the network from the associated setting, adjust the QoS
7145* setting
7146*/
7147static int ipw_qos_association_resp(struct ipw_priv *priv,
7148				    struct libipw_network *network)
7149{
7150	int ret = 0;
7151	unsigned long flags;
7152	u32 size = sizeof(struct libipw_qos_parameters);
7153	int set_qos_param = 0;
7154
7155	if ((priv == NULL) || (network == NULL) ||
7156	    (priv->assoc_network == NULL))
7157		return ret;
7158
7159	if (!(priv->status & STATUS_ASSOCIATED))
7160		return ret;
7161
7162	if ((priv->ieee->iw_mode != IW_MODE_INFRA))
7163		return ret;
7164
7165	spin_lock_irqsave(&priv->ieee->lock, flags);
7166	if (network->flags & NETWORK_HAS_QOS_PARAMETERS) {
7167		memcpy(&priv->assoc_network->qos_data, &network->qos_data,
7168		       sizeof(struct libipw_qos_data));
7169		priv->assoc_network->qos_data.active = 1;
7170		if ((network->qos_data.old_param_count !=
7171		     network->qos_data.param_count)) {
7172			set_qos_param = 1;
7173			network->qos_data.old_param_count =
7174			    network->qos_data.param_count;
7175		}
7176
7177	} else {
7178		if ((network->mode == IEEE_B) || (priv->ieee->mode == IEEE_B))
7179			memcpy(&priv->assoc_network->qos_data.parameters,
7180			       &def_parameters_CCK, size);
7181		else
7182			memcpy(&priv->assoc_network->qos_data.parameters,
7183			       &def_parameters_OFDM, size);
7184		priv->assoc_network->qos_data.active = 0;
7185		priv->assoc_network->qos_data.supported = 0;
7186		set_qos_param = 1;
7187	}
7188
7189	spin_unlock_irqrestore(&priv->ieee->lock, flags);
7190
7191	if (set_qos_param == 1)
7192		schedule_work(&priv->qos_activate);
7193
7194	return ret;
7195}
7196
7197static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv)
7198{
7199	u32 ret = 0;
7200
7201	if ((priv == NULL))
7202		return 0;
7203
7204	if (!(priv->ieee->modulation & LIBIPW_OFDM_MODULATION))
7205		ret = priv->qos_data.burst_duration_CCK;
7206	else
7207		ret = priv->qos_data.burst_duration_OFDM;
7208
7209	return ret;
7210}
7211
7212/*
7213* Initialize the setting of QoS global
7214*/
7215static void ipw_qos_init(struct ipw_priv *priv, int enable,
7216			 int burst_enable, u32 burst_duration_CCK,
7217			 u32 burst_duration_OFDM)
7218{
7219	priv->qos_data.qos_enable = enable;
7220
7221	if (priv->qos_data.qos_enable) {
7222		priv->qos_data.def_qos_parm_CCK = &def_qos_parameters_CCK;
7223		priv->qos_data.def_qos_parm_OFDM = &def_qos_parameters_OFDM;
7224		IPW_DEBUG_QOS("QoS is enabled\n");
7225	} else {
7226		priv->qos_data.def_qos_parm_CCK = &def_parameters_CCK;
7227		priv->qos_data.def_qos_parm_OFDM = &def_parameters_OFDM;
7228		IPW_DEBUG_QOS("QoS is not enabled\n");
7229	}
7230
7231	priv->qos_data.burst_enable = burst_enable;
7232
7233	if (burst_enable) {
7234		priv->qos_data.burst_duration_CCK = burst_duration_CCK;
7235		priv->qos_data.burst_duration_OFDM = burst_duration_OFDM;
7236	} else {
7237		priv->qos_data.burst_duration_CCK = 0;
7238		priv->qos_data.burst_duration_OFDM = 0;
7239	}
7240}
7241
7242/*
7243* map the packet priority to the right TX Queue
7244*/
7245static int ipw_get_tx_queue_number(struct ipw_priv *priv, u16 priority)
7246{
7247	if (priority > 7 || !priv->qos_data.qos_enable)
7248		priority = 0;
7249
7250	return from_priority_to_tx_queue[priority] - 1;
7251}
7252
7253static int ipw_is_qos_active(struct net_device *dev,
7254			     struct sk_buff *skb)
7255{
7256	struct ipw_priv *priv = libipw_priv(dev);
7257	struct libipw_qos_data *qos_data = NULL;
7258	int active, supported;
7259	u8 *daddr = skb->data + ETH_ALEN;
7260	int unicast = !is_multicast_ether_addr(daddr);
7261
7262	if (!(priv->status & STATUS_ASSOCIATED))
7263		return 0;
7264
7265	qos_data = &priv->assoc_network->qos_data;
7266
7267	if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
7268		if (unicast == 0)
7269			qos_data->active = 0;
7270		else
7271			qos_data->active = qos_data->supported;
7272	}
7273	active = qos_data->active;
7274	supported = qos_data->supported;
7275	IPW_DEBUG_QOS("QoS  %d network is QoS active %d  supported %d  "
7276		      "unicast %d\n",
7277		      priv->qos_data.qos_enable, active, supported, unicast);
7278	if (active && priv->qos_data.qos_enable)
7279		return 1;
7280
7281	return 0;
7282
7283}
7284/*
7285* add QoS parameter to the TX command
7286*/
7287static int ipw_qos_set_tx_queue_command(struct ipw_priv *priv,
7288					u16 priority,
7289					struct tfd_data *tfd)
7290{
7291	int tx_queue_id = 0;
7292
7293
7294	tx_queue_id = from_priority_to_tx_queue[priority] - 1;
7295	tfd->tx_flags_ext |= DCT_FLAG_EXT_QOS_ENABLED;
7296
7297	if (priv->qos_data.qos_no_ack_mask & (1UL << tx_queue_id)) {
7298		tfd->tx_flags &= ~DCT_FLAG_ACK_REQD;
7299		tfd->tfd.tfd_26.mchdr.qos_ctrl |= cpu_to_le16(CTRL_QOS_NO_ACK);
7300	}
7301	return 0;
7302}
7303
7304/*
7305* background support to run QoS activate functionality
7306*/
7307static void ipw_bg_qos_activate(struct work_struct *work)
7308{
7309	struct ipw_priv *priv =
7310		container_of(work, struct ipw_priv, qos_activate);
7311
7312	mutex_lock(&priv->mutex);
7313
7314	if (priv->status & STATUS_ASSOCIATED)
7315		ipw_qos_activate(priv, &(priv->assoc_network->qos_data));
7316
7317	mutex_unlock(&priv->mutex);
7318}
7319
7320static int ipw_handle_probe_response(struct net_device *dev,
7321				     struct libipw_probe_response *resp,
7322				     struct libipw_network *network)
7323{
7324	struct ipw_priv *priv = libipw_priv(dev);
7325	int active_network = ((priv->status & STATUS_ASSOCIATED) &&
7326			      (network == priv->assoc_network));
7327
7328	ipw_qos_handle_probe_response(priv, active_network, network);
7329
7330	return 0;
7331}
7332
7333static int ipw_handle_beacon(struct net_device *dev,
7334			     struct libipw_beacon *resp,
7335			     struct libipw_network *network)
7336{
7337	struct ipw_priv *priv = libipw_priv(dev);
7338	int active_network = ((priv->status & STATUS_ASSOCIATED) &&
7339			      (network == priv->assoc_network));
7340
7341	ipw_qos_handle_probe_response(priv, active_network, network);
7342
7343	return 0;
7344}
7345
7346static int ipw_handle_assoc_response(struct net_device *dev,
7347				     struct libipw_assoc_response *resp,
7348				     struct libipw_network *network)
7349{
7350	struct ipw_priv *priv = libipw_priv(dev);
7351	ipw_qos_association_resp(priv, network);
7352	return 0;
7353}
7354
7355static int ipw_send_qos_params_command(struct ipw_priv *priv, struct libipw_qos_parameters
7356				       *qos_param)
7357{
7358	return ipw_send_cmd_pdu(priv, IPW_CMD_QOS_PARAMETERS,
7359				sizeof(*qos_param) * 3, qos_param);
7360}
7361
7362static int ipw_send_qos_info_command(struct ipw_priv *priv, struct libipw_qos_information_element
7363				     *qos_param)
7364{
7365	return ipw_send_cmd_pdu(priv, IPW_CMD_WME_INFO, sizeof(*qos_param),
7366				qos_param);
7367}
7368
7369#endif				/* CONFIG_IPW2200_QOS */
7370
7371static int ipw_associate_network(struct ipw_priv *priv,
7372				 struct libipw_network *network,
7373				 struct ipw_supported_rates *rates, int roaming)
7374{
7375	int err;
7376	DECLARE_SSID_BUF(ssid);
7377
7378	if (priv->config & CFG_FIXED_RATE)
7379		ipw_set_fixed_rate(priv, network->mode);
7380
7381	if (!(priv->config & CFG_STATIC_ESSID)) {
7382		priv->essid_len = min(network->ssid_len,
7383				      (u8) IW_ESSID_MAX_SIZE);
7384		memcpy(priv->essid, network->ssid, priv->essid_len);
7385	}
7386
7387	network->last_associate = jiffies;
7388
7389	memset(&priv->assoc_request, 0, sizeof(priv->assoc_request));
7390	priv->assoc_request.channel = network->channel;
7391	priv->assoc_request.auth_key = 0;
7392
7393	if ((priv->capability & CAP_PRIVACY_ON) &&
7394	    (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY)) {
7395		priv->assoc_request.auth_type = AUTH_SHARED_KEY;
7396		priv->assoc_request.auth_key = priv->ieee->sec.active_key;
7397
7398		if (priv->ieee->sec.level == SEC_LEVEL_1)
7399			ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP);
7400
7401	} else if ((priv->capability & CAP_PRIVACY_ON) &&
7402		   (priv->ieee->sec.auth_mode == WLAN_AUTH_LEAP))
7403		priv->assoc_request.auth_type = AUTH_LEAP;
7404	else
7405		priv->assoc_request.auth_type = AUTH_OPEN;
7406
7407	if (priv->ieee->wpa_ie_len) {
7408		priv->assoc_request.policy_support = cpu_to_le16(0x02);	/* RSN active */
7409		ipw_set_rsn_capa(priv, priv->ieee->wpa_ie,
7410				 priv->ieee->wpa_ie_len);
7411	}
7412
7413	/*
7414	 * It is valid for our ieee device to support multiple modes, but
7415	 * when it comes to associating to a given network we have to choose
7416	 * just one mode.
7417	 */
7418	if (network->mode & priv->ieee->mode & IEEE_A)
7419		priv->assoc_request.ieee_mode = IPW_A_MODE;
7420	else if (network->mode & priv->ieee->mode & IEEE_G)
7421		priv->assoc_request.ieee_mode = IPW_G_MODE;
7422	else if (network->mode & priv->ieee->mode & IEEE_B)
7423		priv->assoc_request.ieee_mode = IPW_B_MODE;
7424
7425	priv->assoc_request.capability = cpu_to_le16(network->capability);
7426	if ((network->capability & WLAN_CAPABILITY_SHORT_PREAMBLE)
7427	    && !(priv->config & CFG_PREAMBLE_LONG)) {
7428		priv->assoc_request.preamble_length = DCT_FLAG_SHORT_PREAMBLE;
7429	} else {
7430		priv->assoc_request.preamble_length = DCT_FLAG_LONG_PREAMBLE;
7431
7432		/* Clear the short preamble if we won't be supporting it */
7433		priv->assoc_request.capability &=
7434		    ~cpu_to_le16(WLAN_CAPABILITY_SHORT_PREAMBLE);
7435	}
7436
7437	/* Clear capability bits that aren't used in Ad Hoc */
7438	if (priv->ieee->iw_mode == IW_MODE_ADHOC)
7439		priv->assoc_request.capability &=
7440		    ~cpu_to_le16(WLAN_CAPABILITY_SHORT_SLOT_TIME);
7441
7442	IPW_DEBUG_ASSOC("%sssocation attempt: '%s', channel %d, "
7443			"802.11%c [%d], %s[:%s], enc=%s%s%s%c%c\n",
7444			roaming ? "Rea" : "A",
7445			print_ssid(ssid, priv->essid, priv->essid_len),
7446			network->channel,
7447			ipw_modes[priv->assoc_request.ieee_mode],
7448			rates->num_rates,
7449			(priv->assoc_request.preamble_length ==
7450			 DCT_FLAG_LONG_PREAMBLE) ? "long" : "short",
7451			network->capability &
7452			WLAN_CAPABILITY_SHORT_PREAMBLE ? "short" : "long",
7453			priv->capability & CAP_PRIVACY_ON ? "on " : "off",
7454			priv->capability & CAP_PRIVACY_ON ?
7455			(priv->capability & CAP_SHARED_KEY ? "(shared)" :
7456			 "(open)") : "",
7457			priv->capability & CAP_PRIVACY_ON ? " key=" : "",
7458			priv->capability & CAP_PRIVACY_ON ?
7459			'1' + priv->ieee->sec.active_key : '.',
7460			priv->capability & CAP_PRIVACY_ON ? '.' : ' ');
7461
7462	priv->assoc_request.beacon_interval = cpu_to_le16(network->beacon_interval);
7463	if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
7464	    (network->time_stamp[0] == 0) && (network->time_stamp[1] == 0)) {
7465		priv->assoc_request.assoc_type = HC_IBSS_START;
7466		priv->assoc_request.assoc_tsf_msw = 0;
7467		priv->assoc_request.assoc_tsf_lsw = 0;
7468	} else {
7469		if (unlikely(roaming))
7470			priv->assoc_request.assoc_type = HC_REASSOCIATE;
7471		else
7472			priv->assoc_request.assoc_type = HC_ASSOCIATE;
7473		priv->assoc_request.assoc_tsf_msw = cpu_to_le32(network->time_stamp[1]);
7474		priv->assoc_request.assoc_tsf_lsw = cpu_to_le32(network->time_stamp[0]);
7475	}
7476
7477	memcpy(priv->assoc_request.bssid, network->bssid, ETH_ALEN);
7478
7479	if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
7480		memset(&priv->assoc_request.dest, 0xFF, ETH_ALEN);
7481		priv->assoc_request.atim_window = cpu_to_le16(network->atim_window);
7482	} else {
7483		memcpy(priv->assoc_request.dest, network->bssid, ETH_ALEN);
7484		priv->assoc_request.atim_window = 0;
7485	}
7486
7487	priv->assoc_request.listen_interval = cpu_to_le16(network->listen_interval);
7488
7489	err = ipw_send_ssid(priv, priv->essid, priv->essid_len);
7490	if (err) {
7491		IPW_DEBUG_HC("Attempt to send SSID command failed.\n");
7492		return err;
7493	}
7494
7495	rates->ieee_mode = priv->assoc_request.ieee_mode;
7496	rates->purpose = IPW_RATE_CONNECT;
7497	ipw_send_supported_rates(priv, rates);
7498
7499	if (priv->assoc_request.ieee_mode == IPW_G_MODE)
7500		priv->sys_config.dot11g_auto_detection = 1;
7501	else
7502		priv->sys_config.dot11g_auto_detection = 0;
7503
7504	if (priv->ieee->iw_mode == IW_MODE_ADHOC)
7505		priv->sys_config.answer_broadcast_ssid_probe = 1;
7506	else
7507		priv->sys_config.answer_broadcast_ssid_probe = 0;
7508
7509	err = ipw_send_system_config(priv);
7510	if (err) {
7511		IPW_DEBUG_HC("Attempt to send sys config command failed.\n");
7512		return err;
7513	}
7514
7515	IPW_DEBUG_ASSOC("Association sensitivity: %d\n", network->stats.rssi);
7516	err = ipw_set_sensitivity(priv, network->stats.rssi + IPW_RSSI_TO_DBM);
7517	if (err) {
7518		IPW_DEBUG_HC("Attempt to send associate command failed.\n");
7519		return err;
7520	}
7521
7522	/*
7523	 * If preemption is enabled, it is possible for the association
7524	 * to complete before we return from ipw_send_associate.  Therefore
7525	 * we have to be sure and update our priviate data first.
7526	 */
7527	priv->channel = network->channel;
7528	memcpy(priv->bssid, network->bssid, ETH_ALEN);
7529	priv->status |= STATUS_ASSOCIATING;
7530	priv->status &= ~STATUS_SECURITY_UPDATED;
7531
7532	priv->assoc_network = network;
7533
7534#ifdef CONFIG_IPW2200_QOS
7535	ipw_qos_association(priv, network);
7536#endif
7537
7538	err = ipw_send_associate(priv, &priv->assoc_request);
7539	if (err) {
7540		IPW_DEBUG_HC("Attempt to send associate command failed.\n");
7541		return err;
7542	}
7543
7544	IPW_DEBUG(IPW_DL_STATE, "associating: '%s' %pM \n",
7545		  print_ssid(ssid, priv->essid, priv->essid_len),
7546		  priv->bssid);
7547
7548	return 0;
7549}
7550
7551static void ipw_roam(void *data)
7552{
7553	struct ipw_priv *priv = data;
7554	struct libipw_network *network = NULL;
7555	struct ipw_network_match match = {
7556		.network = priv->assoc_network
7557	};
7558
7559	/* The roaming process is as follows:
7560	 *
7561	 * 1.  Missed beacon threshold triggers the roaming process by
7562	 *     setting the status ROAM bit and requesting a scan.
7563	 * 2.  When the scan completes, it schedules the ROAM work
7564	 * 3.  The ROAM work looks at all of the known networks for one that
7565	 *     is a better network than the currently associated.  If none
7566	 *     found, the ROAM process is over (ROAM bit cleared)
7567	 * 4.  If a better network is found, a disassociation request is
7568	 *     sent.
7569	 * 5.  When the disassociation completes, the roam work is again
7570	 *     scheduled.  The second time through, the driver is no longer
7571	 *     associated, and the newly selected network is sent an
7572	 *     association request.
7573	 * 6.  At this point ,the roaming process is complete and the ROAM
7574	 *     status bit is cleared.
7575	 */
7576
7577	/* If we are no longer associated, and the roaming bit is no longer
7578	 * set, then we are not actively roaming, so just return */
7579	if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ROAMING)))
7580		return;
7581
7582	if (priv->status & STATUS_ASSOCIATED) {
7583		/* First pass through ROAM process -- look for a better
7584		 * network */
7585		unsigned long flags;
7586		u8 rssi = priv->assoc_network->stats.rssi;
7587		priv->assoc_network->stats.rssi = -128;
7588		spin_lock_irqsave(&priv->ieee->lock, flags);
7589		list_for_each_entry(network, &priv->ieee->network_list, list) {
7590			if (network != priv->assoc_network)
7591				ipw_best_network(priv, &match, network, 1);
7592		}
7593		spin_unlock_irqrestore(&priv->ieee->lock, flags);
7594		priv->assoc_network->stats.rssi = rssi;
7595
7596		if (match.network == priv->assoc_network) {
7597			IPW_DEBUG_ASSOC("No better APs in this network to "
7598					"roam to.\n");
7599			priv->status &= ~STATUS_ROAMING;
7600			ipw_debug_config(priv);
7601			return;
7602		}
7603
7604		ipw_send_disassociate(priv, 1);
7605		priv->assoc_network = match.network;
7606
7607		return;
7608	}
7609
7610	/* Second pass through ROAM process -- request association */
7611	ipw_compatible_rates(priv, priv->assoc_network, &match.rates);
7612	ipw_associate_network(priv, priv->assoc_network, &match.rates, 1);
7613	priv->status &= ~STATUS_ROAMING;
7614}
7615
7616static void ipw_bg_roam(struct work_struct *work)
7617{
7618	struct ipw_priv *priv =
7619		container_of(work, struct ipw_priv, roam);
7620	mutex_lock(&priv->mutex);
7621	ipw_roam(priv);
7622	mutex_unlock(&priv->mutex);
7623}
7624
7625static int ipw_associate(void *data)
7626{
7627	struct ipw_priv *priv = data;
7628
7629	struct libipw_network *network = NULL;
7630	struct ipw_network_match match = {
7631		.network = NULL
7632	};
7633	struct ipw_supported_rates *rates;
7634	struct list_head *element;
7635	unsigned long flags;
7636	DECLARE_SSID_BUF(ssid);
7637
7638	if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
7639		IPW_DEBUG_ASSOC("Not attempting association (monitor mode)\n");
7640		return 0;
7641	}
7642
7643	if (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
7644		IPW_DEBUG_ASSOC("Not attempting association (already in "
7645				"progress)\n");
7646		return 0;
7647	}
7648
7649	if (priv->status & STATUS_DISASSOCIATING) {
7650		IPW_DEBUG_ASSOC("Not attempting association (in "
7651				"disassociating)\n ");
7652		queue_work(priv->workqueue, &priv->associate);
7653		return 0;
7654	}
7655
7656	if (!ipw_is_init(priv) || (priv->status & STATUS_SCANNING)) {
7657		IPW_DEBUG_ASSOC("Not attempting association (scanning or not "
7658				"initialized)\n");
7659		return 0;
7660	}
7661
7662	if (!(priv->config & CFG_ASSOCIATE) &&
7663	    !(priv->config & (CFG_STATIC_ESSID | CFG_STATIC_BSSID))) {
7664		IPW_DEBUG_ASSOC("Not attempting association (associate=0)\n");
7665		return 0;
7666	}
7667
7668	/* Protect our use of the network_list */
7669	spin_lock_irqsave(&priv->ieee->lock, flags);
7670	list_for_each_entry(network, &priv->ieee->network_list, list)
7671	    ipw_best_network(priv, &match, network, 0);
7672
7673	network = match.network;
7674	rates = &match.rates;
7675
7676	if (network == NULL &&
7677	    priv->ieee->iw_mode == IW_MODE_ADHOC &&
7678	    priv->config & CFG_ADHOC_CREATE &&
7679	    priv->config & CFG_STATIC_ESSID &&
7680	    priv->config & CFG_STATIC_CHANNEL) {
7681		/* Use oldest network if the free list is empty */
7682		if (list_empty(&priv->ieee->network_free_list)) {
7683			struct libipw_network *oldest = NULL;
7684			struct libipw_network *target;
7685
7686			list_for_each_entry(target, &priv->ieee->network_list, list) {
7687				if ((oldest == NULL) ||
7688				    (target->last_scanned < oldest->last_scanned))
7689					oldest = target;
7690			}
7691
7692			/* If there are no more slots, expire the oldest */
7693			list_del(&oldest->list);
7694			target = oldest;
7695			IPW_DEBUG_ASSOC("Expired '%s' (%pM) from "
7696					"network list.\n",
7697					print_ssid(ssid, target->ssid,
7698						   target->ssid_len),
7699					target->bssid);
7700			list_add_tail(&target->list,
7701				      &priv->ieee->network_free_list);
7702		}
7703
7704		element = priv->ieee->network_free_list.next;
7705		network = list_entry(element, struct libipw_network, list);
7706		ipw_adhoc_create(priv, network);
7707		rates = &priv->rates;
7708		list_del(element);
7709		list_add_tail(&network->list, &priv->ieee->network_list);
7710	}
7711	spin_unlock_irqrestore(&priv->ieee->lock, flags);
7712
7713	/* If we reached the end of the list, then we don't have any valid
7714	 * matching APs */
7715	if (!network) {
7716		ipw_debug_config(priv);
7717
7718		if (!(priv->status & STATUS_SCANNING)) {
7719			if (!(priv->config & CFG_SPEED_SCAN))
7720				queue_delayed_work(priv->workqueue,
7721						   &priv->request_scan,
7722						   SCAN_INTERVAL);
7723			else
7724				queue_delayed_work(priv->workqueue,
7725						   &priv->request_scan, 0);
7726		}
7727
7728		return 0;
7729	}
7730
7731	ipw_associate_network(priv, network, rates, 0);
7732
7733	return 1;
7734}
7735
7736static void ipw_bg_associate(struct work_struct *work)
7737{
7738	struct ipw_priv *priv =
7739		container_of(work, struct ipw_priv, associate);
7740	mutex_lock(&priv->mutex);
7741	ipw_associate(priv);
7742	mutex_unlock(&priv->mutex);
7743}
7744
7745static void ipw_rebuild_decrypted_skb(struct ipw_priv *priv,
7746				      struct sk_buff *skb)
7747{
7748	struct ieee80211_hdr *hdr;
7749	u16 fc;
7750
7751	hdr = (struct ieee80211_hdr *)skb->data;
7752	fc = le16_to_cpu(hdr->frame_control);
7753	if (!(fc & IEEE80211_FCTL_PROTECTED))
7754		return;
7755
7756	fc &= ~IEEE80211_FCTL_PROTECTED;
7757	hdr->frame_control = cpu_to_le16(fc);
7758	switch (priv->ieee->sec.level) {
7759	case SEC_LEVEL_3:
7760		/* Remove CCMP HDR */
7761		memmove(skb->data + LIBIPW_3ADDR_LEN,
7762			skb->data + LIBIPW_3ADDR_LEN + 8,
7763			skb->len - LIBIPW_3ADDR_LEN - 8);
7764		skb_trim(skb, skb->len - 16);	/* CCMP_HDR_LEN + CCMP_MIC_LEN */
7765		break;
7766	case SEC_LEVEL_2:
7767		break;
7768	case SEC_LEVEL_1:
7769		/* Remove IV */
7770		memmove(skb->data + LIBIPW_3ADDR_LEN,
7771			skb->data + LIBIPW_3ADDR_LEN + 4,
7772			skb->len - LIBIPW_3ADDR_LEN - 4);
7773		skb_trim(skb, skb->len - 8);	/* IV + ICV */
7774		break;
7775	case SEC_LEVEL_0:
7776		break;
7777	default:
7778		printk(KERN_ERR "Unknown security level %d\n",
7779		       priv->ieee->sec.level);
7780		break;
7781	}
7782}
7783
7784static void ipw_handle_data_packet(struct ipw_priv *priv,
7785				   struct ipw_rx_mem_buffer *rxb,
7786				   struct libipw_rx_stats *stats)
7787{
7788	struct net_device *dev = priv->net_dev;
7789	struct libipw_hdr_4addr *hdr;
7790	struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7791
7792	/* We received data from the HW, so stop the watchdog */
7793	dev->trans_start = jiffies;
7794
7795	/* We only process data packets if the
7796	 * interface is open */
7797	if (unlikely((le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE) >
7798		     skb_tailroom(rxb->skb))) {
7799		dev->stats.rx_errors++;
7800		priv->wstats.discard.misc++;
7801		IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7802		return;
7803	} else if (unlikely(!netif_running(priv->net_dev))) {
7804		dev->stats.rx_dropped++;
7805		priv->wstats.discard.misc++;
7806		IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7807		return;
7808	}
7809
7810	/* Advance skb->data to the start of the actual payload */
7811	skb_reserve(rxb->skb, offsetof(struct ipw_rx_packet, u.frame.data));
7812
7813	/* Set the size of the skb to the size of the frame */
7814	skb_put(rxb->skb, le16_to_cpu(pkt->u.frame.length));
7815
7816	IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len);
7817
7818	/* HW decrypt will not clear the WEP bit, MIC, PN, etc. */
7819	hdr = (struct libipw_hdr_4addr *)rxb->skb->data;
7820	if (priv->ieee->iw_mode != IW_MODE_MONITOR &&
7821	    (is_multicast_ether_addr(hdr->addr1) ?
7822	     !priv->ieee->host_mc_decrypt : !priv->ieee->host_decrypt))
7823		ipw_rebuild_decrypted_skb(priv, rxb->skb);
7824
7825	if (!libipw_rx(priv->ieee, rxb->skb, stats))
7826		dev->stats.rx_errors++;
7827	else {			/* libipw_rx succeeded, so it now owns the SKB */
7828		rxb->skb = NULL;
7829		__ipw_led_activity_on(priv);
7830	}
7831}
7832
7833#ifdef CONFIG_IPW2200_RADIOTAP
7834static void ipw_handle_data_packet_monitor(struct ipw_priv *priv,
7835					   struct ipw_rx_mem_buffer *rxb,
7836					   struct libipw_rx_stats *stats)
7837{
7838	struct net_device *dev = priv->net_dev;
7839	struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7840	struct ipw_rx_frame *frame = &pkt->u.frame;
7841
7842	/* initial pull of some data */
7843	u16 received_channel = frame->received_channel;
7844	u8 antennaAndPhy = frame->antennaAndPhy;
7845	s8 antsignal = frame->rssi_dbm - IPW_RSSI_TO_DBM;	/* call it signed anyhow */
7846	u16 pktrate = frame->rate;
7847
7848	/* Magic struct that slots into the radiotap header -- no reason
7849	 * to build this manually element by element, we can write it much
7850	 * more efficiently than we can parse it. ORDER MATTERS HERE */
7851	struct ipw_rt_hdr *ipw_rt;
7852
7853	short len = le16_to_cpu(pkt->u.frame.length);
7854
7855	/* We received data from the HW, so stop the watchdog */
7856	dev->trans_start = jiffies;
7857
7858	/* We only process data packets if the
7859	 * interface is open */
7860	if (unlikely((le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE) >
7861		     skb_tailroom(rxb->skb))) {
7862		dev->stats.rx_errors++;
7863		priv->wstats.discard.misc++;
7864		IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7865		return;
7866	} else if (unlikely(!netif_running(priv->net_dev))) {
7867		dev->stats.rx_dropped++;
7868		priv->wstats.discard.misc++;
7869		IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7870		return;
7871	}
7872
7873	/* Libpcap 0.9.3+ can handle variable length radiotap, so we'll use
7874	 * that now */
7875	if (len > IPW_RX_BUF_SIZE - sizeof(struct ipw_rt_hdr)) {
7876		/* FIXME: Should alloc bigger skb instead */
7877		dev->stats.rx_dropped++;
7878		priv->wstats.discard.misc++;
7879		IPW_DEBUG_DROP("Dropping too large packet in monitor\n");
7880		return;
7881	}
7882
7883	/* copy the frame itself */
7884	memmove(rxb->skb->data + sizeof(struct ipw_rt_hdr),
7885		rxb->skb->data + IPW_RX_FRAME_SIZE, len);
7886
7887	ipw_rt = (struct ipw_rt_hdr *)rxb->skb->data;
7888
7889	ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
7890	ipw_rt->rt_hdr.it_pad = 0;	/* always good to zero */
7891	ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(struct ipw_rt_hdr));	/* total header+data */
7892
7893	/* Big bitfield of all the fields we provide in radiotap */
7894	ipw_rt->rt_hdr.it_present = cpu_to_le32(
7895	     (1 << IEEE80211_RADIOTAP_TSFT) |
7896	     (1 << IEEE80211_RADIOTAP_FLAGS) |
7897	     (1 << IEEE80211_RADIOTAP_RATE) |
7898	     (1 << IEEE80211_RADIOTAP_CHANNEL) |
7899	     (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL) |
7900	     (1 << IEEE80211_RADIOTAP_DBM_ANTNOISE) |
7901	     (1 << IEEE80211_RADIOTAP_ANTENNA));
7902
7903	/* Zero the flags, we'll add to them as we go */
7904	ipw_rt->rt_flags = 0;
7905	ipw_rt->rt_tsf = (u64)(frame->parent_tsf[3] << 24 |
7906			       frame->parent_tsf[2] << 16 |
7907			       frame->parent_tsf[1] << 8  |
7908			       frame->parent_tsf[0]);
7909
7910	/* Convert signal to DBM */
7911	ipw_rt->rt_dbmsignal = antsignal;
7912	ipw_rt->rt_dbmnoise = (s8) le16_to_cpu(frame->noise);
7913
7914	/* Convert the channel data and set the flags */
7915	ipw_rt->rt_channel = cpu_to_le16(ieee80211chan2mhz(received_channel));
7916	if (received_channel > 14) {	/* 802.11a */
7917		ipw_rt->rt_chbitmask =
7918		    cpu_to_le16((IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ));
7919	} else if (antennaAndPhy & 32) {	/* 802.11b */
7920		ipw_rt->rt_chbitmask =
7921		    cpu_to_le16((IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ));
7922	} else {		/* 802.11g */
7923		ipw_rt->rt_chbitmask =
7924		    cpu_to_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ);
7925	}
7926
7927	/* set the rate in multiples of 500k/s */
7928	switch (pktrate) {
7929	case IPW_TX_RATE_1MB:
7930		ipw_rt->rt_rate = 2;
7931		break;
7932	case IPW_TX_RATE_2MB:
7933		ipw_rt->rt_rate = 4;
7934		break;
7935	case IPW_TX_RATE_5MB:
7936		ipw_rt->rt_rate = 10;
7937		break;
7938	case IPW_TX_RATE_6MB:
7939		ipw_rt->rt_rate = 12;
7940		break;
7941	case IPW_TX_RATE_9MB:
7942		ipw_rt->rt_rate = 18;
7943		break;
7944	case IPW_TX_RATE_11MB:
7945		ipw_rt->rt_rate = 22;
7946		break;
7947	case IPW_TX_RATE_12MB:
7948		ipw_rt->rt_rate = 24;
7949		break;
7950	case IPW_TX_RATE_18MB:
7951		ipw_rt->rt_rate = 36;
7952		break;
7953	case IPW_TX_RATE_24MB:
7954		ipw_rt->rt_rate = 48;
7955		break;
7956	case IPW_TX_RATE_36MB:
7957		ipw_rt->rt_rate = 72;
7958		break;
7959	case IPW_TX_RATE_48MB:
7960		ipw_rt->rt_rate = 96;
7961		break;
7962	case IPW_TX_RATE_54MB:
7963		ipw_rt->rt_rate = 108;
7964		break;
7965	default:
7966		ipw_rt->rt_rate = 0;
7967		break;
7968	}
7969
7970	/* antenna number */
7971	ipw_rt->rt_antenna = (antennaAndPhy & 3);	/* Is this right? */
7972
7973	/* set the preamble flag if we have it */
7974	if ((antennaAndPhy & 64))
7975		ipw_rt->rt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
7976
7977	/* Set the size of the skb to the size of the frame */
7978	skb_put(rxb->skb, len + sizeof(struct ipw_rt_hdr));
7979
7980	IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len);
7981
7982	if (!libipw_rx(priv->ieee, rxb->skb, stats))
7983		dev->stats.rx_errors++;
7984	else {			/* libipw_rx succeeded, so it now owns the SKB */
7985		rxb->skb = NULL;
7986		/* no LED during capture */
7987	}
7988}
7989#endif
7990
7991#ifdef CONFIG_IPW2200_PROMISCUOUS
7992#define libipw_is_probe_response(fc) \
7993   ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT && \
7994    (fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_PROBE_RESP )
7995
7996#define libipw_is_management(fc) \
7997   ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT)
7998
7999#define libipw_is_control(fc) \
8000   ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_CTL)
8001
8002#define libipw_is_data(fc) \
8003   ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA)
8004
8005#define libipw_is_assoc_request(fc) \
8006   ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_ASSOC_REQ)
8007
8008#define libipw_is_reassoc_request(fc) \
8009   ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_REASSOC_REQ)
8010
8011static void ipw_handle_promiscuous_rx(struct ipw_priv *priv,
8012				      struct ipw_rx_mem_buffer *rxb,
8013				      struct libipw_rx_stats *stats)
8014{
8015	struct net_device *dev = priv->prom_net_dev;
8016	struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
8017	struct ipw_rx_frame *frame = &pkt->u.frame;
8018	struct ipw_rt_hdr *ipw_rt;
8019
8020	/* First cache any information we need before we overwrite
8021	 * the information provided in the skb from the hardware */
8022	struct ieee80211_hdr *hdr;
8023	u16 channel = frame->received_channel;
8024	u8 phy_flags = frame->antennaAndPhy;
8025	s8 signal = frame->rssi_dbm - IPW_RSSI_TO_DBM;
8026	s8 noise = (s8) le16_to_cpu(frame->noise);
8027	u8 rate = frame->rate;
8028	short len = le16_to_cpu(pkt->u.frame.length);
8029	struct sk_buff *skb;
8030	int hdr_only = 0;
8031	u16 filter = priv->prom_priv->filter;
8032
8033	/* If the filter is set to not include Rx frames then return */
8034	if (filter & IPW_PROM_NO_RX)
8035		return;
8036
8037	/* We received data from the HW, so stop the watchdog */
8038	dev->trans_start = jiffies;
8039
8040	if (unlikely((len + IPW_RX_FRAME_SIZE) > skb_tailroom(rxb->skb))) {
8041		dev->stats.rx_errors++;
8042		IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
8043		return;
8044	}
8045
8046	/* We only process data packets if the interface is open */
8047	if (unlikely(!netif_running(dev))) {
8048		dev->stats.rx_dropped++;
8049		IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
8050		return;
8051	}
8052
8053	/* Libpcap 0.9.3+ can handle variable length radiotap, so we'll use
8054	 * that now */
8055	if (len > IPW_RX_BUF_SIZE - sizeof(struct ipw_rt_hdr)) {
8056		/* FIXME: Should alloc bigger skb instead */
8057		dev->stats.rx_dropped++;
8058		IPW_DEBUG_DROP("Dropping too large packet in monitor\n");
8059		return;
8060	}
8061
8062	hdr = (void *)rxb->skb->data + IPW_RX_FRAME_SIZE;
8063	if (libipw_is_management(le16_to_cpu(hdr->frame_control))) {
8064		if (filter & IPW_PROM_NO_MGMT)
8065			return;
8066		if (filter & IPW_PROM_MGMT_HEADER_ONLY)
8067			hdr_only = 1;
8068	} else if (libipw_is_control(le16_to_cpu(hdr->frame_control))) {
8069		if (filter & IPW_PROM_NO_CTL)
8070			return;
8071		if (filter & IPW_PROM_CTL_HEADER_ONLY)
8072			hdr_only = 1;
8073	} else if (libipw_is_data(le16_to_cpu(hdr->frame_control))) {
8074		if (filter & IPW_PROM_NO_DATA)
8075			return;
8076		if (filter & IPW_PROM_DATA_HEADER_ONLY)
8077			hdr_only = 1;
8078	}
8079
8080	/* Copy the SKB since this is for the promiscuous side */
8081	skb = skb_copy(rxb->skb, GFP_ATOMIC);
8082	if (skb == NULL) {
8083		IPW_ERROR("skb_clone failed for promiscuous copy.\n");
8084		return;
8085	}
8086
8087	/* copy the frame data to write after where the radiotap header goes */
8088	ipw_rt = (void *)skb->data;
8089
8090	if (hdr_only)
8091		len = libipw_get_hdrlen(le16_to_cpu(hdr->frame_control));
8092
8093	memcpy(ipw_rt->payload, hdr, len);
8094
8095	ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
8096	ipw_rt->rt_hdr.it_pad = 0;	/* always good to zero */
8097	ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(*ipw_rt));	/* total header+data */
8098
8099	/* Set the size of the skb to the size of the frame */
8100	skb_put(skb, sizeof(*ipw_rt) + len);
8101
8102	/* Big bitfield of all the fields we provide in radiotap */
8103	ipw_rt->rt_hdr.it_present = cpu_to_le32(
8104	     (1 << IEEE80211_RADIOTAP_TSFT) |
8105	     (1 << IEEE80211_RADIOTAP_FLAGS) |
8106	     (1 << IEEE80211_RADIOTAP_RATE) |
8107	     (1 << IEEE80211_RADIOTAP_CHANNEL) |
8108	     (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL) |
8109	     (1 << IEEE80211_RADIOTAP_DBM_ANTNOISE) |
8110	     (1 << IEEE80211_RADIOTAP_ANTENNA));
8111
8112	/* Zero the flags, we'll add to them as we go */
8113	ipw_rt->rt_flags = 0;
8114	ipw_rt->rt_tsf = (u64)(frame->parent_tsf[3] << 24 |
8115			       frame->parent_tsf[2] << 16 |
8116			       frame->parent_tsf[1] << 8  |
8117			       frame->parent_tsf[0]);
8118
8119	/* Convert to DBM */
8120	ipw_rt->rt_dbmsignal = signal;
8121	ipw_rt->rt_dbmnoise = noise;
8122
8123	/* Convert the channel data and set the flags */
8124	ipw_rt->rt_channel = cpu_to_le16(ieee80211chan2mhz(channel));
8125	if (channel > 14) {	/* 802.11a */
8126		ipw_rt->rt_chbitmask =
8127		    cpu_to_le16((IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ));
8128	} else if (phy_flags & (1 << 5)) {	/* 802.11b */
8129		ipw_rt->rt_chbitmask =
8130		    cpu_to_le16((IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ));
8131	} else {		/* 802.11g */
8132		ipw_rt->rt_chbitmask =
8133		    cpu_to_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ);
8134	}
8135
8136	/* set the rate in multiples of 500k/s */
8137	switch (rate) {
8138	case IPW_TX_RATE_1MB:
8139		ipw_rt->rt_rate = 2;
8140		break;
8141	case IPW_TX_RATE_2MB:
8142		ipw_rt->rt_rate = 4;
8143		break;
8144	case IPW_TX_RATE_5MB:
8145		ipw_rt->rt_rate = 10;
8146		break;
8147	case IPW_TX_RATE_6MB:
8148		ipw_rt->rt_rate = 12;
8149		break;
8150	case IPW_TX_RATE_9MB:
8151		ipw_rt->rt_rate = 18;
8152		break;
8153	case IPW_TX_RATE_11MB:
8154		ipw_rt->rt_rate = 22;
8155		break;
8156	case IPW_TX_RATE_12MB:
8157		ipw_rt->rt_rate = 24;
8158		break;
8159	case IPW_TX_RATE_18MB:
8160		ipw_rt->rt_rate = 36;
8161		break;
8162	case IPW_TX_RATE_24MB:
8163		ipw_rt->rt_rate = 48;
8164		break;
8165	case IPW_TX_RATE_36MB:
8166		ipw_rt->rt_rate = 72;
8167		break;
8168	case IPW_TX_RATE_48MB:
8169		ipw_rt->rt_rate = 96;
8170		break;
8171	case IPW_TX_RATE_54MB:
8172		ipw_rt->rt_rate = 108;
8173		break;
8174	default:
8175		ipw_rt->rt_rate = 0;
8176		break;
8177	}
8178
8179	/* antenna number */
8180	ipw_rt->rt_antenna = (phy_flags & 3);
8181
8182	/* set the preamble flag if we have it */
8183	if (phy_flags & (1 << 6))
8184		ipw_rt->rt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
8185
8186	IPW_DEBUG_RX("Rx packet of %d bytes.\n", skb->len);
8187
8188	if (!libipw_rx(priv->prom_priv->ieee, skb, stats)) {
8189		dev->stats.rx_errors++;
8190		dev_kfree_skb_any(skb);
8191	}
8192}
8193#endif
8194
8195static int is_network_packet(struct ipw_priv *priv,
8196				    struct libipw_hdr_4addr *header)
8197{
8198	/* Filter incoming packets to determine if they are targetted toward
8199	 * this network, discarding packets coming from ourselves */
8200	switch (priv->ieee->iw_mode) {
8201	case IW_MODE_ADHOC:	/* Header: Dest. | Source    | BSSID */
8202		/* packets from our adapter are dropped (echo) */
8203		if (!memcmp(header->addr2, priv->net_dev->dev_addr, ETH_ALEN))
8204			return 0;
8205
8206		/* {broad,multi}cast packets to our BSSID go through */
8207		if (is_multicast_ether_addr(header->addr1))
8208			return !memcmp(header->addr3, priv->bssid, ETH_ALEN);
8209
8210		/* packets to our adapter go through */
8211		return !memcmp(header->addr1, priv->net_dev->dev_addr,
8212			       ETH_ALEN);
8213
8214	case IW_MODE_INFRA:	/* Header: Dest. | BSSID | Source */
8215		/* packets from our adapter are dropped (echo) */
8216		if (!memcmp(header->addr3, priv->net_dev->dev_addr, ETH_ALEN))
8217			return 0;
8218
8219		/* {broad,multi}cast packets to our BSS go through */
8220		if (is_multicast_ether_addr(header->addr1))
8221			return !memcmp(header->addr2, priv->bssid, ETH_ALEN);
8222
8223		/* packets to our adapter go through */
8224		return !memcmp(header->addr1, priv->net_dev->dev_addr,
8225			       ETH_ALEN);
8226	}
8227
8228	return 1;
8229}
8230
8231#define IPW_PACKET_RETRY_TIME HZ
8232
8233static  int is_duplicate_packet(struct ipw_priv *priv,
8234				      struct libipw_hdr_4addr *header)
8235{
8236	u16 sc = le16_to_cpu(header->seq_ctl);
8237	u16 seq = WLAN_GET_SEQ_SEQ(sc);
8238	u16 frag = WLAN_GET_SEQ_FRAG(sc);
8239	u16 *last_seq, *last_frag;
8240	unsigned long *last_time;
8241
8242	switch (priv->ieee->iw_mode) {
8243	case IW_MODE_ADHOC:
8244		{
8245			struct list_head *p;
8246			struct ipw_ibss_seq *entry = NULL;
8247			u8 *mac = header->addr2;
8248			int index = mac[5] % IPW_IBSS_MAC_HASH_SIZE;
8249
8250			__list_for_each(p, &priv->ibss_mac_hash[index]) {
8251				entry =
8252				    list_entry(p, struct ipw_ibss_seq, list);
8253				if (!memcmp(entry->mac, mac, ETH_ALEN))
8254					break;
8255			}
8256			if (p == &priv->ibss_mac_hash[index]) {
8257				entry = kmalloc(sizeof(*entry), GFP_ATOMIC);
8258				if (!entry) {
8259					IPW_ERROR
8260					    ("Cannot malloc new mac entry\n");
8261					return 0;
8262				}
8263				memcpy(entry->mac, mac, ETH_ALEN);
8264				entry->seq_num = seq;
8265				entry->frag_num = frag;
8266				entry->packet_time = jiffies;
8267				list_add(&entry->list,
8268					 &priv->ibss_mac_hash[index]);
8269				return 0;
8270			}
8271			last_seq = &entry->seq_num;
8272			last_frag = &entry->frag_num;
8273			last_time = &entry->packet_time;
8274			break;
8275		}
8276	case IW_MODE_INFRA:
8277		last_seq = &priv->last_seq_num;
8278		last_frag = &priv->last_frag_num;
8279		last_time = &priv->last_packet_time;
8280		break;
8281	default:
8282		return 0;
8283	}
8284	if ((*last_seq == seq) &&
8285	    time_after(*last_time + IPW_PACKET_RETRY_TIME, jiffies)) {
8286		if (*last_frag == frag)
8287			goto drop;
8288		if (*last_frag + 1 != frag)
8289			/* out-of-order fragment */
8290			goto drop;
8291	} else
8292		*last_seq = seq;
8293
8294	*last_frag = frag;
8295	*last_time = jiffies;
8296	return 0;
8297
8298      drop:
8299	/* Comment this line now since we observed the card receives
8300	 * duplicate packets but the FCTL_RETRY bit is not set in the
8301	 * IBSS mode with fragmentation enabled.
8302	 BUG_ON(!(le16_to_cpu(header->frame_control) & IEEE80211_FCTL_RETRY)); */
8303	return 1;
8304}
8305
8306static void ipw_handle_mgmt_packet(struct ipw_priv *priv,
8307				   struct ipw_rx_mem_buffer *rxb,
8308				   struct libipw_rx_stats *stats)
8309{
8310	struct sk_buff *skb = rxb->skb;
8311	struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)skb->data;
8312	struct libipw_hdr_4addr *header = (struct libipw_hdr_4addr *)
8313	    (skb->data + IPW_RX_FRAME_SIZE);
8314
8315	libipw_rx_mgt(priv->ieee, header, stats);
8316
8317	if (priv->ieee->iw_mode == IW_MODE_ADHOC &&
8318	    ((WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) ==
8319	      IEEE80211_STYPE_PROBE_RESP) ||
8320	     (WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) ==
8321	      IEEE80211_STYPE_BEACON))) {
8322		if (!memcmp(header->addr3, priv->bssid, ETH_ALEN))
8323			ipw_add_station(priv, header->addr2);
8324	}
8325
8326	if (priv->config & CFG_NET_STATS) {
8327		IPW_DEBUG_HC("sending stat packet\n");
8328
8329		/* Set the size of the skb to the size of the full
8330		 * ipw header and 802.11 frame */
8331		skb_put(skb, le16_to_cpu(pkt->u.frame.length) +
8332			IPW_RX_FRAME_SIZE);
8333
8334		/* Advance past the ipw packet header to the 802.11 frame */
8335		skb_pull(skb, IPW_RX_FRAME_SIZE);
8336
8337		/* Push the libipw_rx_stats before the 802.11 frame */
8338		memcpy(skb_push(skb, sizeof(*stats)), stats, sizeof(*stats));
8339
8340		skb->dev = priv->ieee->dev;
8341
8342		/* Point raw at the libipw_stats */
8343		skb_reset_mac_header(skb);
8344
8345		skb->pkt_type = PACKET_OTHERHOST;
8346		skb->protocol = cpu_to_be16(ETH_P_80211_STATS);
8347		memset(skb->cb, 0, sizeof(rxb->skb->cb));
8348		netif_rx(skb);
8349		rxb->skb = NULL;
8350	}
8351}
8352
8353/*
8354 * Main entry function for recieving a packet with 80211 headers.  This
8355 * should be called when ever the FW has notified us that there is a new
8356 * skb in the recieve queue.
8357 */
8358static void ipw_rx(struct ipw_priv *priv)
8359{
8360	struct ipw_rx_mem_buffer *rxb;
8361	struct ipw_rx_packet *pkt;
8362	struct libipw_hdr_4addr *header;
8363	u32 r, w, i;
8364	u8 network_packet;
8365	u8 fill_rx = 0;
8366
8367	r = ipw_read32(priv, IPW_RX_READ_INDEX);
8368	w = ipw_read32(priv, IPW_RX_WRITE_INDEX);
8369	i = priv->rxq->read;
8370
8371	if (ipw_rx_queue_space (priv->rxq) > (RX_QUEUE_SIZE / 2))
8372		fill_rx = 1;
8373
8374	while (i != r) {
8375		rxb = priv->rxq->queue[i];
8376		if (unlikely(rxb == NULL)) {
8377			printk(KERN_CRIT "Queue not allocated!\n");
8378			break;
8379		}
8380		priv->rxq->queue[i] = NULL;
8381
8382		pci_dma_sync_single_for_cpu(priv->pci_dev, rxb->dma_addr,
8383					    IPW_RX_BUF_SIZE,
8384					    PCI_DMA_FROMDEVICE);
8385
8386		pkt = (struct ipw_rx_packet *)rxb->skb->data;
8387		IPW_DEBUG_RX("Packet: type=%02X seq=%02X bits=%02X\n",
8388			     pkt->header.message_type,
8389			     pkt->header.rx_seq_num, pkt->header.control_bits);
8390
8391		switch (pkt->header.message_type) {
8392		case RX_FRAME_TYPE:	/* 802.11 frame */  {
8393				struct libipw_rx_stats stats = {
8394					.rssi = pkt->u.frame.rssi_dbm -
8395					    IPW_RSSI_TO_DBM,
8396					.signal =
8397					    pkt->u.frame.rssi_dbm -
8398					    IPW_RSSI_TO_DBM + 0x100,
8399					.noise =
8400					    le16_to_cpu(pkt->u.frame.noise),
8401					.rate = pkt->u.frame.rate,
8402					.mac_time = jiffies,
8403					.received_channel =
8404					    pkt->u.frame.received_channel,
8405					.freq =
8406					    (pkt->u.frame.
8407					     control & (1 << 0)) ?
8408					    LIBIPW_24GHZ_BAND :
8409					    LIBIPW_52GHZ_BAND,
8410					.len = le16_to_cpu(pkt->u.frame.length),
8411				};
8412
8413				if (stats.rssi != 0)
8414					stats.mask |= LIBIPW_STATMASK_RSSI;
8415				if (stats.signal != 0)
8416					stats.mask |= LIBIPW_STATMASK_SIGNAL;
8417				if (stats.noise != 0)
8418					stats.mask |= LIBIPW_STATMASK_NOISE;
8419				if (stats.rate != 0)
8420					stats.mask |= LIBIPW_STATMASK_RATE;
8421
8422				priv->rx_packets++;
8423
8424#ifdef CONFIG_IPW2200_PROMISCUOUS
8425	if (priv->prom_net_dev && netif_running(priv->prom_net_dev))
8426		ipw_handle_promiscuous_rx(priv, rxb, &stats);
8427#endif
8428
8429#ifdef CONFIG_IPW2200_MONITOR
8430				if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
8431#ifdef CONFIG_IPW2200_RADIOTAP
8432
8433                ipw_handle_data_packet_monitor(priv,
8434					       rxb,
8435					       &stats);
8436#else
8437		ipw_handle_data_packet(priv, rxb,
8438				       &stats);
8439#endif
8440					break;
8441				}
8442#endif
8443
8444				header =
8445				    (struct libipw_hdr_4addr *)(rxb->skb->
8446								   data +
8447								   IPW_RX_FRAME_SIZE);
8448				/* TODO: Check Ad-Hoc dest/source and make sure
8449				 * that we are actually parsing these packets
8450				 * correctly -- we should probably use the
8451				 * frame control of the packet and disregard
8452				 * the current iw_mode */
8453
8454				network_packet =
8455				    is_network_packet(priv, header);
8456				if (network_packet && priv->assoc_network) {
8457					priv->assoc_network->stats.rssi =
8458					    stats.rssi;
8459					priv->exp_avg_rssi =
8460					    exponential_average(priv->exp_avg_rssi,
8461					    stats.rssi, DEPTH_RSSI);
8462				}
8463
8464				IPW_DEBUG_RX("Frame: len=%u\n",
8465					     le16_to_cpu(pkt->u.frame.length));
8466
8467				if (le16_to_cpu(pkt->u.frame.length) <
8468				    libipw_get_hdrlen(le16_to_cpu(
8469						    header->frame_ctl))) {
8470					IPW_DEBUG_DROP
8471					    ("Received packet is too small. "
8472					     "Dropping.\n");
8473					priv->net_dev->stats.rx_errors++;
8474					priv->wstats.discard.misc++;
8475					break;
8476				}
8477
8478				switch (WLAN_FC_GET_TYPE
8479					(le16_to_cpu(header->frame_ctl))) {
8480
8481				case IEEE80211_FTYPE_MGMT:
8482					ipw_handle_mgmt_packet(priv, rxb,
8483							       &stats);
8484					break;
8485
8486				case IEEE80211_FTYPE_CTL:
8487					break;
8488
8489				case IEEE80211_FTYPE_DATA:
8490					if (unlikely(!network_packet ||
8491						     is_duplicate_packet(priv,
8492									 header)))
8493					{
8494						IPW_DEBUG_DROP("Dropping: "
8495							       "%pM, "
8496							       "%pM, "
8497							       "%pM\n",
8498							       header->addr1,
8499							       header->addr2,
8500							       header->addr3);
8501						break;
8502					}
8503
8504					ipw_handle_data_packet(priv, rxb,
8505							       &stats);
8506
8507					break;
8508				}
8509				break;
8510			}
8511
8512		case RX_HOST_NOTIFICATION_TYPE:{
8513				IPW_DEBUG_RX
8514				    ("Notification: subtype=%02X flags=%02X size=%d\n",
8515				     pkt->u.notification.subtype,
8516				     pkt->u.notification.flags,
8517				     le16_to_cpu(pkt->u.notification.size));
8518				ipw_rx_notification(priv, &pkt->u.notification);
8519				break;
8520			}
8521
8522		default:
8523			IPW_DEBUG_RX("Bad Rx packet of type %d\n",
8524				     pkt->header.message_type);
8525			break;
8526		}
8527
8528		/* For now we just don't re-use anything.  We can tweak this
8529		 * later to try and re-use notification packets and SKBs that
8530		 * fail to Rx correctly */
8531		if (rxb->skb != NULL) {
8532			dev_kfree_skb_any(rxb->skb);
8533			rxb->skb = NULL;
8534		}
8535
8536		pci_unmap_single(priv->pci_dev, rxb->dma_addr,
8537				 IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
8538		list_add_tail(&rxb->list, &priv->rxq->rx_used);
8539
8540		i = (i + 1) % RX_QUEUE_SIZE;
8541
8542		/* If there are a lot of unsued frames, restock the Rx queue
8543		 * so the ucode won't assert */
8544		if (fill_rx) {
8545			priv->rxq->read = i;
8546			ipw_rx_queue_replenish(priv);
8547		}
8548	}
8549
8550	/* Backtrack one entry */
8551	priv->rxq->read = i;
8552	ipw_rx_queue_restock(priv);
8553}
8554
8555#define DEFAULT_RTS_THRESHOLD     2304U
8556#define MIN_RTS_THRESHOLD         1U
8557#define MAX_RTS_THRESHOLD         2304U
8558#define DEFAULT_BEACON_INTERVAL   100U
8559#define	DEFAULT_SHORT_RETRY_LIMIT 7U
8560#define	DEFAULT_LONG_RETRY_LIMIT  4U
8561
8562/**
8563 * ipw_sw_reset
8564 * @option: options to control different reset behaviour
8565 * 	    0 = reset everything except the 'disable' module_param
8566 * 	    1 = reset everything and print out driver info (for probe only)
8567 * 	    2 = reset everything
8568 */
8569static int ipw_sw_reset(struct ipw_priv *priv, int option)
8570{
8571	int band, modulation;
8572	int old_mode = priv->ieee->iw_mode;
8573
8574	/* Initialize module parameter values here */
8575	priv->config = 0;
8576
8577	/* We default to disabling the LED code as right now it causes
8578	 * too many systems to lock up... */
8579	if (!led_support)
8580		priv->config |= CFG_NO_LED;
8581
8582	if (associate)
8583		priv->config |= CFG_ASSOCIATE;
8584	else
8585		IPW_DEBUG_INFO("Auto associate disabled.\n");
8586
8587	if (auto_create)
8588		priv->config |= CFG_ADHOC_CREATE;
8589	else
8590		IPW_DEBUG_INFO("Auto adhoc creation disabled.\n");
8591
8592	priv->config &= ~CFG_STATIC_ESSID;
8593	priv->essid_len = 0;
8594	memset(priv->essid, 0, IW_ESSID_MAX_SIZE);
8595
8596	if (disable && option) {
8597		priv->status |= STATUS_RF_KILL_SW;
8598		IPW_DEBUG_INFO("Radio disabled.\n");
8599	}
8600
8601	if (default_channel != 0) {
8602		priv->config |= CFG_STATIC_CHANNEL;
8603		priv->channel = default_channel;
8604		IPW_DEBUG_INFO("Bind to static channel %d\n", default_channel);
8605		/* TODO: Validate that provided channel is in range */
8606	}
8607#ifdef CONFIG_IPW2200_QOS
8608	ipw_qos_init(priv, qos_enable, qos_burst_enable,
8609		     burst_duration_CCK, burst_duration_OFDM);
8610#endif				/* CONFIG_IPW2200_QOS */
8611
8612	switch (network_mode) {
8613	case 1:
8614		priv->ieee->iw_mode = IW_MODE_ADHOC;
8615		priv->net_dev->type = ARPHRD_ETHER;
8616
8617		break;
8618#ifdef CONFIG_IPW2200_MONITOR
8619	case 2:
8620		priv->ieee->iw_mode = IW_MODE_MONITOR;
8621#ifdef CONFIG_IPW2200_RADIOTAP
8622		priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
8623#else
8624		priv->net_dev->type = ARPHRD_IEEE80211;
8625#endif
8626		break;
8627#endif
8628	default:
8629	case 0:
8630		priv->net_dev->type = ARPHRD_ETHER;
8631		priv->ieee->iw_mode = IW_MODE_INFRA;
8632		break;
8633	}
8634
8635	if (hwcrypto) {
8636		priv->ieee->host_encrypt = 0;
8637		priv->ieee->host_encrypt_msdu = 0;
8638		priv->ieee->host_decrypt = 0;
8639		priv->ieee->host_mc_decrypt = 0;
8640	}
8641	IPW_DEBUG_INFO("Hardware crypto [%s]\n", hwcrypto ? "on" : "off");
8642
8643	/* IPW2200/2915 is abled to do hardware fragmentation. */
8644	priv->ieee->host_open_frag = 0;
8645
8646	if ((priv->pci_dev->device == 0x4223) ||
8647	    (priv->pci_dev->device == 0x4224)) {
8648		if (option == 1)
8649			printk(KERN_INFO DRV_NAME
8650			       ": Detected Intel PRO/Wireless 2915ABG Network "
8651			       "Connection\n");
8652		priv->ieee->abg_true = 1;
8653		band = LIBIPW_52GHZ_BAND | LIBIPW_24GHZ_BAND;
8654		modulation = LIBIPW_OFDM_MODULATION |
8655		    LIBIPW_CCK_MODULATION;
8656		priv->adapter = IPW_2915ABG;
8657		priv->ieee->mode = IEEE_A | IEEE_G | IEEE_B;
8658	} else {
8659		if (option == 1)
8660			printk(KERN_INFO DRV_NAME
8661			       ": Detected Intel PRO/Wireless 2200BG Network "
8662			       "Connection\n");
8663
8664		priv->ieee->abg_true = 0;
8665		band = LIBIPW_24GHZ_BAND;
8666		modulation = LIBIPW_OFDM_MODULATION |
8667		    LIBIPW_CCK_MODULATION;
8668		priv->adapter = IPW_2200BG;
8669		priv->ieee->mode = IEEE_G | IEEE_B;
8670	}
8671
8672	priv->ieee->freq_band = band;
8673	priv->ieee->modulation = modulation;
8674
8675	priv->rates_mask = LIBIPW_DEFAULT_RATES_MASK;
8676
8677	priv->disassociate_threshold = IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT;
8678	priv->roaming_threshold = IPW_MB_ROAMING_THRESHOLD_DEFAULT;
8679
8680	priv->rts_threshold = DEFAULT_RTS_THRESHOLD;
8681	priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT;
8682	priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT;
8683
8684	/* If power management is turned on, default to AC mode */
8685	priv->power_mode = IPW_POWER_AC;
8686	priv->tx_power = IPW_TX_POWER_DEFAULT;
8687
8688	return old_mode == priv->ieee->iw_mode;
8689}
8690
8691/*
8692 * This file defines the Wireless Extension handlers.  It does not
8693 * define any methods of hardware manipulation and relies on the
8694 * functions defined in ipw_main to provide the HW interaction.
8695 *
8696 * The exception to this is the use of the ipw_get_ordinal()
8697 * function used to poll the hardware vs. making unecessary calls.
8698 *
8699 */
8700
8701static int ipw_set_channel(struct ipw_priv *priv, u8 channel)
8702{
8703	if (channel == 0) {
8704		IPW_DEBUG_INFO("Setting channel to ANY (0)\n");
8705		priv->config &= ~CFG_STATIC_CHANNEL;
8706		IPW_DEBUG_ASSOC("Attempting to associate with new "
8707				"parameters.\n");
8708		ipw_associate(priv);
8709		return 0;
8710	}
8711
8712	priv->config |= CFG_STATIC_CHANNEL;
8713
8714	if (priv->channel == channel) {
8715		IPW_DEBUG_INFO("Request to set channel to current value (%d)\n",
8716			       channel);
8717		return 0;
8718	}
8719
8720	IPW_DEBUG_INFO("Setting channel to %i\n", (int)channel);
8721	priv->channel = channel;
8722
8723#ifdef CONFIG_IPW2200_MONITOR
8724	if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
8725		int i;
8726		if (priv->status & STATUS_SCANNING) {
8727			IPW_DEBUG_SCAN("Scan abort triggered due to "
8728				       "channel change.\n");
8729			ipw_abort_scan(priv);
8730		}
8731
8732		for (i = 1000; i && (priv->status & STATUS_SCANNING); i--)
8733			udelay(10);
8734
8735		if (priv->status & STATUS_SCANNING)
8736			IPW_DEBUG_SCAN("Still scanning...\n");
8737		else
8738			IPW_DEBUG_SCAN("Took %dms to abort current scan\n",
8739				       1000 - i);
8740
8741		return 0;
8742	}
8743#endif				/* CONFIG_IPW2200_MONITOR */
8744
8745	/* Network configuration changed -- force [re]association */
8746	IPW_DEBUG_ASSOC("[re]association triggered due to channel change.\n");
8747	if (!ipw_disassociate(priv))
8748		ipw_associate(priv);
8749
8750	return 0;
8751}
8752
8753static int ipw_wx_set_freq(struct net_device *dev,
8754			   struct iw_request_info *info,
8755			   union iwreq_data *wrqu, char *extra)
8756{
8757	struct ipw_priv *priv = libipw_priv(dev);
8758	const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
8759	struct iw_freq *fwrq = &wrqu->freq;
8760	int ret = 0, i;
8761	u8 channel, flags;
8762	int band;
8763
8764	if (fwrq->m == 0) {
8765		IPW_DEBUG_WX("SET Freq/Channel -> any\n");
8766		mutex_lock(&priv->mutex);
8767		ret = ipw_set_channel(priv, 0);
8768		mutex_unlock(&priv->mutex);
8769		return ret;
8770	}
8771	/* if setting by freq convert to channel */
8772	if (fwrq->e == 1) {
8773		channel = libipw_freq_to_channel(priv->ieee, fwrq->m);
8774		if (channel == 0)
8775			return -EINVAL;
8776	} else
8777		channel = fwrq->m;
8778
8779	if (!(band = libipw_is_valid_channel(priv->ieee, channel)))
8780		return -EINVAL;
8781
8782	if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
8783		i = libipw_channel_to_index(priv->ieee, channel);
8784		if (i == -1)
8785			return -EINVAL;
8786
8787		flags = (band == LIBIPW_24GHZ_BAND) ?
8788		    geo->bg[i].flags : geo->a[i].flags;
8789		if (flags & LIBIPW_CH_PASSIVE_ONLY) {
8790			IPW_DEBUG_WX("Invalid Ad-Hoc channel for 802.11a\n");
8791			return -EINVAL;
8792		}
8793	}
8794
8795	IPW_DEBUG_WX("SET Freq/Channel -> %d \n", fwrq->m);
8796	mutex_lock(&priv->mutex);
8797	ret = ipw_set_channel(priv, channel);
8798	mutex_unlock(&priv->mutex);
8799	return ret;
8800}
8801
8802static int ipw_wx_get_freq(struct net_device *dev,
8803			   struct iw_request_info *info,
8804			   union iwreq_data *wrqu, char *extra)
8805{
8806	struct ipw_priv *priv = libipw_priv(dev);
8807
8808	wrqu->freq.e = 0;
8809
8810	/* If we are associated, trying to associate, or have a statically
8811	 * configured CHANNEL then return that; otherwise return ANY */
8812	mutex_lock(&priv->mutex);
8813	if (priv->config & CFG_STATIC_CHANNEL ||
8814	    priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED)) {
8815		int i;
8816
8817		i = libipw_channel_to_index(priv->ieee, priv->channel);
8818		BUG_ON(i == -1);
8819		wrqu->freq.e = 1;
8820
8821		switch (libipw_is_valid_channel(priv->ieee, priv->channel)) {
8822		case LIBIPW_52GHZ_BAND:
8823			wrqu->freq.m = priv->ieee->geo.a[i].freq * 100000;
8824			break;
8825
8826		case LIBIPW_24GHZ_BAND:
8827			wrqu->freq.m = priv->ieee->geo.bg[i].freq * 100000;
8828			break;
8829
8830		default:
8831			BUG();
8832		}
8833	} else
8834		wrqu->freq.m = 0;
8835
8836	mutex_unlock(&priv->mutex);
8837	IPW_DEBUG_WX("GET Freq/Channel -> %d \n", priv->channel);
8838	return 0;
8839}
8840
8841static int ipw_wx_set_mode(struct net_device *dev,
8842			   struct iw_request_info *info,
8843			   union iwreq_data *wrqu, char *extra)
8844{
8845	struct ipw_priv *priv = libipw_priv(dev);
8846	int err = 0;
8847
8848	IPW_DEBUG_WX("Set MODE: %d\n", wrqu->mode);
8849
8850	switch (wrqu->mode) {
8851#ifdef CONFIG_IPW2200_MONITOR
8852	case IW_MODE_MONITOR:
8853#endif
8854	case IW_MODE_ADHOC:
8855	case IW_MODE_INFRA:
8856		break;
8857	case IW_MODE_AUTO:
8858		wrqu->mode = IW_MODE_INFRA;
8859		break;
8860	default:
8861		return -EINVAL;
8862	}
8863	if (wrqu->mode == priv->ieee->iw_mode)
8864		return 0;
8865
8866	mutex_lock(&priv->mutex);
8867
8868	ipw_sw_reset(priv, 0);
8869
8870#ifdef CONFIG_IPW2200_MONITOR
8871	if (priv->ieee->iw_mode == IW_MODE_MONITOR)
8872		priv->net_dev->type = ARPHRD_ETHER;
8873
8874	if (wrqu->mode == IW_MODE_MONITOR)
8875#ifdef CONFIG_IPW2200_RADIOTAP
8876		priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
8877#else
8878		priv->net_dev->type = ARPHRD_IEEE80211;
8879#endif
8880#endif				/* CONFIG_IPW2200_MONITOR */
8881
8882	/* Free the existing firmware and reset the fw_loaded
8883	 * flag so ipw_load() will bring in the new firmware */
8884	free_firmware();
8885
8886	priv->ieee->iw_mode = wrqu->mode;
8887
8888	queue_work(priv->workqueue, &priv->adapter_restart);
8889	mutex_unlock(&priv->mutex);
8890	return err;
8891}
8892
8893static int ipw_wx_get_mode(struct net_device *dev,
8894			   struct iw_request_info *info,
8895			   union iwreq_data *wrqu, char *extra)
8896{
8897	struct ipw_priv *priv = libipw_priv(dev);
8898	mutex_lock(&priv->mutex);
8899	wrqu->mode = priv->ieee->iw_mode;
8900	IPW_DEBUG_WX("Get MODE -> %d\n", wrqu->mode);
8901	mutex_unlock(&priv->mutex);
8902	return 0;
8903}
8904
8905/* Values are in microsecond */
8906static const s32 timeout_duration[] = {
8907	350000,
8908	250000,
8909	75000,
8910	37000,
8911	25000,
8912};
8913
8914static const s32 period_duration[] = {
8915	400000,
8916	700000,
8917	1000000,
8918	1000000,
8919	1000000
8920};
8921
8922static int ipw_wx_get_range(struct net_device *dev,
8923			    struct iw_request_info *info,
8924			    union iwreq_data *wrqu, char *extra)
8925{
8926	struct ipw_priv *priv = libipw_priv(dev);
8927	struct iw_range *range = (struct iw_range *)extra;
8928	const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
8929	int i = 0, j;
8930
8931	wrqu->data.length = sizeof(*range);
8932	memset(range, 0, sizeof(*range));
8933
8934	/* 54Mbs == ~27 Mb/s real (802.11g) */
8935	range->throughput = 27 * 1000 * 1000;
8936
8937	range->max_qual.qual = 100;
8938	/* TODO: Find real max RSSI and stick here */
8939	range->max_qual.level = 0;
8940	range->max_qual.noise = 0;
8941	range->max_qual.updated = 7;	/* Updated all three */
8942
8943	range->avg_qual.qual = 70;
8944	/* TODO: Find real 'good' to 'bad' threshold value for RSSI */
8945	range->avg_qual.level = 0;	/* FIXME to real average level */
8946	range->avg_qual.noise = 0;
8947	range->avg_qual.updated = 7;	/* Updated all three */
8948	mutex_lock(&priv->mutex);
8949	range->num_bitrates = min(priv->rates.num_rates, (u8) IW_MAX_BITRATES);
8950
8951	for (i = 0; i < range->num_bitrates; i++)
8952		range->bitrate[i] = (priv->rates.supported_rates[i] & 0x7F) *
8953		    500000;
8954
8955	range->max_rts = DEFAULT_RTS_THRESHOLD;
8956	range->min_frag = MIN_FRAG_THRESHOLD;
8957	range->max_frag = MAX_FRAG_THRESHOLD;
8958
8959	range->encoding_size[0] = 5;
8960	range->encoding_size[1] = 13;
8961	range->num_encoding_sizes = 2;
8962	range->max_encoding_tokens = WEP_KEYS;
8963
8964	/* Set the Wireless Extension versions */
8965	range->we_version_compiled = WIRELESS_EXT;
8966	range->we_version_source = 18;
8967
8968	i = 0;
8969	if (priv->ieee->mode & (IEEE_B | IEEE_G)) {
8970		for (j = 0; j < geo->bg_channels && i < IW_MAX_FREQUENCIES; j++) {
8971			if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
8972			    (geo->bg[j].flags & LIBIPW_CH_PASSIVE_ONLY))
8973				continue;
8974
8975			range->freq[i].i = geo->bg[j].channel;
8976			range->freq[i].m = geo->bg[j].freq * 100000;
8977			range->freq[i].e = 1;
8978			i++;
8979		}
8980	}
8981
8982	if (priv->ieee->mode & IEEE_A) {
8983		for (j = 0; j < geo->a_channels && i < IW_MAX_FREQUENCIES; j++) {
8984			if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
8985			    (geo->a[j].flags & LIBIPW_CH_PASSIVE_ONLY))
8986				continue;
8987
8988			range->freq[i].i = geo->a[j].channel;
8989			range->freq[i].m = geo->a[j].freq * 100000;
8990			range->freq[i].e = 1;
8991			i++;
8992		}
8993	}
8994
8995	range->num_channels = i;
8996	range->num_frequency = i;
8997
8998	mutex_unlock(&priv->mutex);
8999
9000	/* Event capability (kernel + driver) */
9001	range->event_capa[0] = (IW_EVENT_CAPA_K_0 |
9002				IW_EVENT_CAPA_MASK(SIOCGIWTHRSPY) |
9003				IW_EVENT_CAPA_MASK(SIOCGIWAP) |
9004				IW_EVENT_CAPA_MASK(SIOCGIWSCAN));
9005	range->event_capa[1] = IW_EVENT_CAPA_K_1;
9006
9007	range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 |
9008		IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP;
9009
9010	range->scan_capa = IW_SCAN_CAPA_ESSID | IW_SCAN_CAPA_TYPE;
9011
9012	IPW_DEBUG_WX("GET Range\n");
9013	return 0;
9014}
9015
9016static int ipw_wx_set_wap(struct net_device *dev,
9017			  struct iw_request_info *info,
9018			  union iwreq_data *wrqu, char *extra)
9019{
9020	struct ipw_priv *priv = libipw_priv(dev);
9021
9022	static const unsigned char any[] = {
9023		0xff, 0xff, 0xff, 0xff, 0xff, 0xff
9024	};
9025	static const unsigned char off[] = {
9026		0x00, 0x00, 0x00, 0x00, 0x00, 0x00
9027	};
9028
9029	if (wrqu->ap_addr.sa_family != ARPHRD_ETHER)
9030		return -EINVAL;
9031	mutex_lock(&priv->mutex);
9032	if (!memcmp(any, wrqu->ap_addr.sa_data, ETH_ALEN) ||
9033	    !memcmp(off, wrqu->ap_addr.sa_data, ETH_ALEN)) {
9034		/* we disable mandatory BSSID association */
9035		IPW_DEBUG_WX("Setting AP BSSID to ANY\n");
9036		priv->config &= ~CFG_STATIC_BSSID;
9037		IPW_DEBUG_ASSOC("Attempting to associate with new "
9038				"parameters.\n");
9039		ipw_associate(priv);
9040		mutex_unlock(&priv->mutex);
9041		return 0;
9042	}
9043
9044	priv->config |= CFG_STATIC_BSSID;
9045	if (!memcmp(priv->bssid, wrqu->ap_addr.sa_data, ETH_ALEN)) {
9046		IPW_DEBUG_WX("BSSID set to current BSSID.\n");
9047		mutex_unlock(&priv->mutex);
9048		return 0;
9049	}
9050
9051	IPW_DEBUG_WX("Setting mandatory BSSID to %pM\n",
9052		     wrqu->ap_addr.sa_data);
9053
9054	memcpy(priv->bssid, wrqu->ap_addr.sa_data, ETH_ALEN);
9055
9056	/* Network configuration changed -- force [re]association */
9057	IPW_DEBUG_ASSOC("[re]association triggered due to BSSID change.\n");
9058	if (!ipw_disassociate(priv))
9059		ipw_associate(priv);
9060
9061	mutex_unlock(&priv->mutex);
9062	return 0;
9063}
9064
9065static int ipw_wx_get_wap(struct net_device *dev,
9066			  struct iw_request_info *info,
9067			  union iwreq_data *wrqu, char *extra)
9068{
9069	struct ipw_priv *priv = libipw_priv(dev);
9070
9071	/* If we are associated, trying to associate, or have a statically
9072	 * configured BSSID then return that; otherwise return ANY */
9073	mutex_lock(&priv->mutex);
9074	if (priv->config & CFG_STATIC_BSSID ||
9075	    priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
9076		wrqu->ap_addr.sa_family = ARPHRD_ETHER;
9077		memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN);
9078	} else
9079		memset(wrqu->ap_addr.sa_data, 0, ETH_ALEN);
9080
9081	IPW_DEBUG_WX("Getting WAP BSSID: %pM\n",
9082		     wrqu->ap_addr.sa_data);
9083	mutex_unlock(&priv->mutex);
9084	return 0;
9085}
9086
9087static int ipw_wx_set_essid(struct net_device *dev,
9088			    struct iw_request_info *info,
9089			    union iwreq_data *wrqu, char *extra)
9090{
9091	struct ipw_priv *priv = libipw_priv(dev);
9092        int length;
9093	DECLARE_SSID_BUF(ssid);
9094
9095        mutex_lock(&priv->mutex);
9096
9097        if (!wrqu->essid.flags)
9098        {
9099                IPW_DEBUG_WX("Setting ESSID to ANY\n");
9100                ipw_disassociate(priv);
9101                priv->config &= ~CFG_STATIC_ESSID;
9102                ipw_associate(priv);
9103                mutex_unlock(&priv->mutex);
9104                return 0;
9105        }
9106
9107	length = min((int)wrqu->essid.length, IW_ESSID_MAX_SIZE);
9108
9109	priv->config |= CFG_STATIC_ESSID;
9110
9111	if (priv->essid_len == length && !memcmp(priv->essid, extra, length)
9112	    && (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING))) {
9113		IPW_DEBUG_WX("ESSID set to current ESSID.\n");
9114		mutex_unlock(&priv->mutex);
9115		return 0;
9116	}
9117
9118	IPW_DEBUG_WX("Setting ESSID: '%s' (%d)\n",
9119		     print_ssid(ssid, extra, length), length);
9120
9121	priv->essid_len = length;
9122	memcpy(priv->essid, extra, priv->essid_len);
9123
9124	/* Network configuration changed -- force [re]association */
9125	IPW_DEBUG_ASSOC("[re]association triggered due to ESSID change.\n");
9126	if (!ipw_disassociate(priv))
9127		ipw_associate(priv);
9128
9129	mutex_unlock(&priv->mutex);
9130	return 0;
9131}
9132
9133static int ipw_wx_get_essid(struct net_device *dev,
9134			    struct iw_request_info *info,
9135			    union iwreq_data *wrqu, char *extra)
9136{
9137	struct ipw_priv *priv = libipw_priv(dev);
9138	DECLARE_SSID_BUF(ssid);
9139
9140	/* If we are associated, trying to associate, or have a statically
9141	 * configured ESSID then return that; otherwise return ANY */
9142	mutex_lock(&priv->mutex);
9143	if (priv->config & CFG_STATIC_ESSID ||
9144	    priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
9145		IPW_DEBUG_WX("Getting essid: '%s'\n",
9146			     print_ssid(ssid, priv->essid, priv->essid_len));
9147		memcpy(extra, priv->essid, priv->essid_len);
9148		wrqu->essid.length = priv->essid_len;
9149		wrqu->essid.flags = 1;	/* active */
9150	} else {
9151		IPW_DEBUG_WX("Getting essid: ANY\n");
9152		wrqu->essid.length = 0;
9153		wrqu->essid.flags = 0;	/* active */
9154	}
9155	mutex_unlock(&priv->mutex);
9156	return 0;
9157}
9158
9159static int ipw_wx_set_nick(struct net_device *dev,
9160			   struct iw_request_info *info,
9161			   union iwreq_data *wrqu, char *extra)
9162{
9163	struct ipw_priv *priv = libipw_priv(dev);
9164
9165	IPW_DEBUG_WX("Setting nick to '%s'\n", extra);
9166	if (wrqu->data.length > IW_ESSID_MAX_SIZE)
9167		return -E2BIG;
9168	mutex_lock(&priv->mutex);
9169	wrqu->data.length = min((size_t) wrqu->data.length, sizeof(priv->nick));
9170	memset(priv->nick, 0, sizeof(priv->nick));
9171	memcpy(priv->nick, extra, wrqu->data.length);
9172	IPW_DEBUG_TRACE("<<\n");
9173	mutex_unlock(&priv->mutex);
9174	return 0;
9175
9176}
9177
9178static int ipw_wx_get_nick(struct net_device *dev,
9179			   struct iw_request_info *info,
9180			   union iwreq_data *wrqu, char *extra)
9181{
9182	struct ipw_priv *priv = libipw_priv(dev);
9183	IPW_DEBUG_WX("Getting nick\n");
9184	mutex_lock(&priv->mutex);
9185	wrqu->data.length = strlen(priv->nick);
9186	memcpy(extra, priv->nick, wrqu->data.length);
9187	wrqu->data.flags = 1;	/* active */
9188	mutex_unlock(&priv->mutex);
9189	return 0;
9190}
9191
9192static int ipw_wx_set_sens(struct net_device *dev,
9193			    struct iw_request_info *info,
9194			    union iwreq_data *wrqu, char *extra)
9195{
9196	struct ipw_priv *priv = libipw_priv(dev);
9197	int err = 0;
9198
9199	IPW_DEBUG_WX("Setting roaming threshold to %d\n", wrqu->sens.value);
9200	IPW_DEBUG_WX("Setting disassociate threshold to %d\n", 3*wrqu->sens.value);
9201	mutex_lock(&priv->mutex);
9202
9203	if (wrqu->sens.fixed == 0)
9204	{
9205		priv->roaming_threshold = IPW_MB_ROAMING_THRESHOLD_DEFAULT;
9206		priv->disassociate_threshold = IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT;
9207		goto out;
9208	}
9209	if ((wrqu->sens.value > IPW_MB_ROAMING_THRESHOLD_MAX) ||
9210	    (wrqu->sens.value < IPW_MB_ROAMING_THRESHOLD_MIN)) {
9211		err = -EINVAL;
9212		goto out;
9213	}
9214
9215	priv->roaming_threshold = wrqu->sens.value;
9216	priv->disassociate_threshold = 3*wrqu->sens.value;
9217      out:
9218	mutex_unlock(&priv->mutex);
9219	return err;
9220}
9221
9222static int ipw_wx_get_sens(struct net_device *dev,
9223			    struct iw_request_info *info,
9224			    union iwreq_data *wrqu, char *extra)
9225{
9226	struct ipw_priv *priv = libipw_priv(dev);
9227	mutex_lock(&priv->mutex);
9228	wrqu->sens.fixed = 1;
9229	wrqu->sens.value = priv->roaming_threshold;
9230	mutex_unlock(&priv->mutex);
9231
9232	IPW_DEBUG_WX("GET roaming threshold -> %s %d \n",
9233		     wrqu->power.disabled ? "OFF" : "ON", wrqu->power.value);
9234
9235	return 0;
9236}
9237
9238static int ipw_wx_set_rate(struct net_device *dev,
9239			   struct iw_request_info *info,
9240			   union iwreq_data *wrqu, char *extra)
9241{
9242	/* TODO: We should use semaphores or locks for access to priv */
9243	struct ipw_priv *priv = libipw_priv(dev);
9244	u32 target_rate = wrqu->bitrate.value;
9245	u32 fixed, mask;
9246
9247	/* value = -1, fixed = 0 means auto only, so we should use all rates offered by AP */
9248	/* value = X, fixed = 1 means only rate X */
9249	/* value = X, fixed = 0 means all rates lower equal X */
9250
9251	if (target_rate == -1) {
9252		fixed = 0;
9253		mask = LIBIPW_DEFAULT_RATES_MASK;
9254		/* Now we should reassociate */
9255		goto apply;
9256	}
9257
9258	mask = 0;
9259	fixed = wrqu->bitrate.fixed;
9260
9261	if (target_rate == 1000000 || !fixed)
9262		mask |= LIBIPW_CCK_RATE_1MB_MASK;
9263	if (target_rate == 1000000)
9264		goto apply;
9265
9266	if (target_rate == 2000000 || !fixed)
9267		mask |= LIBIPW_CCK_RATE_2MB_MASK;
9268	if (target_rate == 2000000)
9269		goto apply;
9270
9271	if (target_rate == 5500000 || !fixed)
9272		mask |= LIBIPW_CCK_RATE_5MB_MASK;
9273	if (target_rate == 5500000)
9274		goto apply;
9275
9276	if (target_rate == 6000000 || !fixed)
9277		mask |= LIBIPW_OFDM_RATE_6MB_MASK;
9278	if (target_rate == 6000000)
9279		goto apply;
9280
9281	if (target_rate == 9000000 || !fixed)
9282		mask |= LIBIPW_OFDM_RATE_9MB_MASK;
9283	if (target_rate == 9000000)
9284		goto apply;
9285
9286	if (target_rate == 11000000 || !fixed)
9287		mask |= LIBIPW_CCK_RATE_11MB_MASK;
9288	if (target_rate == 11000000)
9289		goto apply;
9290
9291	if (target_rate == 12000000 || !fixed)
9292		mask |= LIBIPW_OFDM_RATE_12MB_MASK;
9293	if (target_rate == 12000000)
9294		goto apply;
9295
9296	if (target_rate == 18000000 || !fixed)
9297		mask |= LIBIPW_OFDM_RATE_18MB_MASK;
9298	if (target_rate == 18000000)
9299		goto apply;
9300
9301	if (target_rate == 24000000 || !fixed)
9302		mask |= LIBIPW_OFDM_RATE_24MB_MASK;
9303	if (target_rate == 24000000)
9304		goto apply;
9305
9306	if (target_rate == 36000000 || !fixed)
9307		mask |= LIBIPW_OFDM_RATE_36MB_MASK;
9308	if (target_rate == 36000000)
9309		goto apply;
9310
9311	if (target_rate == 48000000 || !fixed)
9312		mask |= LIBIPW_OFDM_RATE_48MB_MASK;
9313	if (target_rate == 48000000)
9314		goto apply;
9315
9316	if (target_rate == 54000000 || !fixed)
9317		mask |= LIBIPW_OFDM_RATE_54MB_MASK;
9318	if (target_rate == 54000000)
9319		goto apply;
9320
9321	IPW_DEBUG_WX("invalid rate specified, returning error\n");
9322	return -EINVAL;
9323
9324      apply:
9325	IPW_DEBUG_WX("Setting rate mask to 0x%08X [%s]\n",
9326		     mask, fixed ? "fixed" : "sub-rates");
9327	mutex_lock(&priv->mutex);
9328	if (mask == LIBIPW_DEFAULT_RATES_MASK) {
9329		priv->config &= ~CFG_FIXED_RATE;
9330		ipw_set_fixed_rate(priv, priv->ieee->mode);
9331	} else
9332		priv->config |= CFG_FIXED_RATE;
9333
9334	if (priv->rates_mask == mask) {
9335		IPW_DEBUG_WX("Mask set to current mask.\n");
9336		mutex_unlock(&priv->mutex);
9337		return 0;
9338	}
9339
9340	priv->rates_mask = mask;
9341
9342	/* Network configuration changed -- force [re]association */
9343	IPW_DEBUG_ASSOC("[re]association triggered due to rates change.\n");
9344	if (!ipw_disassociate(priv))
9345		ipw_associate(priv);
9346
9347	mutex_unlock(&priv->mutex);
9348	return 0;
9349}
9350
9351static int ipw_wx_get_rate(struct net_device *dev,
9352			   struct iw_request_info *info,
9353			   union iwreq_data *wrqu, char *extra)
9354{
9355	struct ipw_priv *priv = libipw_priv(dev);
9356	mutex_lock(&priv->mutex);
9357	wrqu->bitrate.value = priv->last_rate;
9358	wrqu->bitrate.fixed = (priv->config & CFG_FIXED_RATE) ? 1 : 0;
9359	mutex_unlock(&priv->mutex);
9360	IPW_DEBUG_WX("GET Rate -> %d \n", wrqu->bitrate.value);
9361	return 0;
9362}
9363
9364static int ipw_wx_set_rts(struct net_device *dev,
9365			  struct iw_request_info *info,
9366			  union iwreq_data *wrqu, char *extra)
9367{
9368	struct ipw_priv *priv = libipw_priv(dev);
9369	mutex_lock(&priv->mutex);
9370	if (wrqu->rts.disabled || !wrqu->rts.fixed)
9371		priv->rts_threshold = DEFAULT_RTS_THRESHOLD;
9372	else {
9373		if (wrqu->rts.value < MIN_RTS_THRESHOLD ||
9374		    wrqu->rts.value > MAX_RTS_THRESHOLD) {
9375			mutex_unlock(&priv->mutex);
9376			return -EINVAL;
9377		}
9378		priv->rts_threshold = wrqu->rts.value;
9379	}
9380
9381	ipw_send_rts_threshold(priv, priv->rts_threshold);
9382	mutex_unlock(&priv->mutex);
9383	IPW_DEBUG_WX("SET RTS Threshold -> %d \n", priv->rts_threshold);
9384	return 0;
9385}
9386
9387static int ipw_wx_get_rts(struct net_device *dev,
9388			  struct iw_request_info *info,
9389			  union iwreq_data *wrqu, char *extra)
9390{
9391	struct ipw_priv *priv = libipw_priv(dev);
9392	mutex_lock(&priv->mutex);
9393	wrqu->rts.value = priv->rts_threshold;
9394	wrqu->rts.fixed = 0;	/* no auto select */
9395	wrqu->rts.disabled = (wrqu->rts.value == DEFAULT_RTS_THRESHOLD);
9396	mutex_unlock(&priv->mutex);
9397	IPW_DEBUG_WX("GET RTS Threshold -> %d \n", wrqu->rts.value);
9398	return 0;
9399}
9400
9401static int ipw_wx_set_txpow(struct net_device *dev,
9402			    struct iw_request_info *info,
9403			    union iwreq_data *wrqu, char *extra)
9404{
9405	struct ipw_priv *priv = libipw_priv(dev);
9406	int err = 0;
9407
9408	mutex_lock(&priv->mutex);
9409	if (ipw_radio_kill_sw(priv, wrqu->power.disabled)) {
9410		err = -EINPROGRESS;
9411		goto out;
9412	}
9413
9414	if (!wrqu->power.fixed)
9415		wrqu->power.value = IPW_TX_POWER_DEFAULT;
9416
9417	if (wrqu->power.flags != IW_TXPOW_DBM) {
9418		err = -EINVAL;
9419		goto out;
9420	}
9421
9422	if ((wrqu->power.value > IPW_TX_POWER_MAX) ||
9423	    (wrqu->power.value < IPW_TX_POWER_MIN)) {
9424		err = -EINVAL;
9425		goto out;
9426	}
9427
9428	priv->tx_power = wrqu->power.value;
9429	err = ipw_set_tx_power(priv);
9430      out:
9431	mutex_unlock(&priv->mutex);
9432	return err;
9433}
9434
9435static int ipw_wx_get_txpow(struct net_device *dev,
9436			    struct iw_request_info *info,
9437			    union iwreq_data *wrqu, char *extra)
9438{
9439	struct ipw_priv *priv = libipw_priv(dev);
9440	mutex_lock(&priv->mutex);
9441	wrqu->power.value = priv->tx_power;
9442	wrqu->power.fixed = 1;
9443	wrqu->power.flags = IW_TXPOW_DBM;
9444	wrqu->power.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0;
9445	mutex_unlock(&priv->mutex);
9446
9447	IPW_DEBUG_WX("GET TX Power -> %s %d \n",
9448		     wrqu->power.disabled ? "OFF" : "ON", wrqu->power.value);
9449
9450	return 0;
9451}
9452
9453static int ipw_wx_set_frag(struct net_device *dev,
9454			   struct iw_request_info *info,
9455			   union iwreq_data *wrqu, char *extra)
9456{
9457	struct ipw_priv *priv = libipw_priv(dev);
9458	mutex_lock(&priv->mutex);
9459	if (wrqu->frag.disabled || !wrqu->frag.fixed)
9460		priv->ieee->fts = DEFAULT_FTS;
9461	else {
9462		if (wrqu->frag.value < MIN_FRAG_THRESHOLD ||
9463		    wrqu->frag.value > MAX_FRAG_THRESHOLD) {
9464			mutex_unlock(&priv->mutex);
9465			return -EINVAL;
9466		}
9467
9468		priv->ieee->fts = wrqu->frag.value & ~0x1;
9469	}
9470
9471	ipw_send_frag_threshold(priv, wrqu->frag.value);
9472	mutex_unlock(&priv->mutex);
9473	IPW_DEBUG_WX("SET Frag Threshold -> %d \n", wrqu->frag.value);
9474	return 0;
9475}
9476
9477static int ipw_wx_get_frag(struct net_device *dev,
9478			   struct iw_request_info *info,
9479			   union iwreq_data *wrqu, char *extra)
9480{
9481	struct ipw_priv *priv = libipw_priv(dev);
9482	mutex_lock(&priv->mutex);
9483	wrqu->frag.value = priv->ieee->fts;
9484	wrqu->frag.fixed = 0;	/* no auto select */
9485	wrqu->frag.disabled = (wrqu->frag.value == DEFAULT_FTS);
9486	mutex_unlock(&priv->mutex);
9487	IPW_DEBUG_WX("GET Frag Threshold -> %d \n", wrqu->frag.value);
9488
9489	return 0;
9490}
9491
9492static int ipw_wx_set_retry(struct net_device *dev,
9493			    struct iw_request_info *info,
9494			    union iwreq_data *wrqu, char *extra)
9495{
9496	struct ipw_priv *priv = libipw_priv(dev);
9497
9498	if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled)
9499		return -EINVAL;
9500
9501	if (!(wrqu->retry.flags & IW_RETRY_LIMIT))
9502		return 0;
9503
9504	if (wrqu->retry.value < 0 || wrqu->retry.value >= 255)
9505		return -EINVAL;
9506
9507	mutex_lock(&priv->mutex);
9508	if (wrqu->retry.flags & IW_RETRY_SHORT)
9509		priv->short_retry_limit = (u8) wrqu->retry.value;
9510	else if (wrqu->retry.flags & IW_RETRY_LONG)
9511		priv->long_retry_limit = (u8) wrqu->retry.value;
9512	else {
9513		priv->short_retry_limit = (u8) wrqu->retry.value;
9514		priv->long_retry_limit = (u8) wrqu->retry.value;
9515	}
9516
9517	ipw_send_retry_limit(priv, priv->short_retry_limit,
9518			     priv->long_retry_limit);
9519	mutex_unlock(&priv->mutex);
9520	IPW_DEBUG_WX("SET retry limit -> short:%d long:%d\n",
9521		     priv->short_retry_limit, priv->long_retry_limit);
9522	return 0;
9523}
9524
9525static int ipw_wx_get_retry(struct net_device *dev,
9526			    struct iw_request_info *info,
9527			    union iwreq_data *wrqu, char *extra)
9528{
9529	struct ipw_priv *priv = libipw_priv(dev);
9530
9531	mutex_lock(&priv->mutex);
9532	wrqu->retry.disabled = 0;
9533
9534	if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME) {
9535		mutex_unlock(&priv->mutex);
9536		return -EINVAL;
9537	}
9538
9539	if (wrqu->retry.flags & IW_RETRY_LONG) {
9540		wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_LONG;
9541		wrqu->retry.value = priv->long_retry_limit;
9542	} else if (wrqu->retry.flags & IW_RETRY_SHORT) {
9543		wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_SHORT;
9544		wrqu->retry.value = priv->short_retry_limit;
9545	} else {
9546		wrqu->retry.flags = IW_RETRY_LIMIT;
9547		wrqu->retry.value = priv->short_retry_limit;
9548	}
9549	mutex_unlock(&priv->mutex);
9550
9551	IPW_DEBUG_WX("GET retry -> %d \n", wrqu->retry.value);
9552
9553	return 0;
9554}
9555
9556static int ipw_wx_set_scan(struct net_device *dev,
9557			   struct iw_request_info *info,
9558			   union iwreq_data *wrqu, char *extra)
9559{
9560	struct ipw_priv *priv = libipw_priv(dev);
9561	struct iw_scan_req *req = (struct iw_scan_req *)extra;
9562	struct delayed_work *work = NULL;
9563
9564	mutex_lock(&priv->mutex);
9565
9566	priv->user_requested_scan = 1;
9567
9568	if (wrqu->data.length == sizeof(struct iw_scan_req)) {
9569		if (wrqu->data.flags & IW_SCAN_THIS_ESSID) {
9570			int len = min((int)req->essid_len,
9571			              (int)sizeof(priv->direct_scan_ssid));
9572			memcpy(priv->direct_scan_ssid, req->essid, len);
9573			priv->direct_scan_ssid_len = len;
9574			work = &priv->request_direct_scan;
9575		} else if (req->scan_type == IW_SCAN_TYPE_PASSIVE) {
9576			work = &priv->request_passive_scan;
9577		}
9578	} else {
9579		/* Normal active broadcast scan */
9580		work = &priv->request_scan;
9581	}
9582
9583	mutex_unlock(&priv->mutex);
9584
9585	IPW_DEBUG_WX("Start scan\n");
9586
9587	queue_delayed_work(priv->workqueue, work, 0);
9588
9589	return 0;
9590}
9591
9592static int ipw_wx_get_scan(struct net_device *dev,
9593			   struct iw_request_info *info,
9594			   union iwreq_data *wrqu, char *extra)
9595{
9596	struct ipw_priv *priv = libipw_priv(dev);
9597	return libipw_wx_get_scan(priv->ieee, info, wrqu, extra);
9598}
9599
9600static int ipw_wx_set_encode(struct net_device *dev,
9601			     struct iw_request_info *info,
9602			     union iwreq_data *wrqu, char *key)
9603{
9604	struct ipw_priv *priv = libipw_priv(dev);
9605	int ret;
9606	u32 cap = priv->capability;
9607
9608	mutex_lock(&priv->mutex);
9609	ret = libipw_wx_set_encode(priv->ieee, info, wrqu, key);
9610
9611	/* In IBSS mode, we need to notify the firmware to update
9612	 * the beacon info after we changed the capability. */
9613	if (cap != priv->capability &&
9614	    priv->ieee->iw_mode == IW_MODE_ADHOC &&
9615	    priv->status & STATUS_ASSOCIATED)
9616		ipw_disassociate(priv);
9617
9618	mutex_unlock(&priv->mutex);
9619	return ret;
9620}
9621
9622static int ipw_wx_get_encode(struct net_device *dev,
9623			     struct iw_request_info *info,
9624			     union iwreq_data *wrqu, char *key)
9625{
9626	struct ipw_priv *priv = libipw_priv(dev);
9627	return libipw_wx_get_encode(priv->ieee, info, wrqu, key);
9628}
9629
9630static int ipw_wx_set_power(struct net_device *dev,
9631			    struct iw_request_info *info,
9632			    union iwreq_data *wrqu, char *extra)
9633{
9634	struct ipw_priv *priv = libipw_priv(dev);
9635	int err;
9636	mutex_lock(&priv->mutex);
9637	if (wrqu->power.disabled) {
9638		priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
9639		err = ipw_send_power_mode(priv, IPW_POWER_MODE_CAM);
9640		if (err) {
9641			IPW_DEBUG_WX("failed setting power mode.\n");
9642			mutex_unlock(&priv->mutex);
9643			return err;
9644		}
9645		IPW_DEBUG_WX("SET Power Management Mode -> off\n");
9646		mutex_unlock(&priv->mutex);
9647		return 0;
9648	}
9649
9650	switch (wrqu->power.flags & IW_POWER_MODE) {
9651	case IW_POWER_ON:	/* If not specified */
9652	case IW_POWER_MODE:	/* If set all mask */
9653	case IW_POWER_ALL_R:	/* If explicitly state all */
9654		break;
9655	default:		/* Otherwise we don't support it */
9656		IPW_DEBUG_WX("SET PM Mode: %X not supported.\n",
9657			     wrqu->power.flags);
9658		mutex_unlock(&priv->mutex);
9659		return -EOPNOTSUPP;
9660	}
9661
9662	/* If the user hasn't specified a power management mode yet, default
9663	 * to BATTERY */
9664	if (IPW_POWER_LEVEL(priv->power_mode) == IPW_POWER_AC)
9665		priv->power_mode = IPW_POWER_ENABLED | IPW_POWER_BATTERY;
9666	else
9667		priv->power_mode = IPW_POWER_ENABLED | priv->power_mode;
9668
9669	err = ipw_send_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode));
9670	if (err) {
9671		IPW_DEBUG_WX("failed setting power mode.\n");
9672		mutex_unlock(&priv->mutex);
9673		return err;
9674	}
9675
9676	IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode);
9677	mutex_unlock(&priv->mutex);
9678	return 0;
9679}
9680
9681static int ipw_wx_get_power(struct net_device *dev,
9682			    struct iw_request_info *info,
9683			    union iwreq_data *wrqu, char *extra)
9684{
9685	struct ipw_priv *priv = libipw_priv(dev);
9686	mutex_lock(&priv->mutex);
9687	if (!(priv->power_mode & IPW_POWER_ENABLED))
9688		wrqu->power.disabled = 1;
9689	else
9690		wrqu->power.disabled = 0;
9691
9692	mutex_unlock(&priv->mutex);
9693	IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode);
9694
9695	return 0;
9696}
9697
9698static int ipw_wx_set_powermode(struct net_device *dev,
9699				struct iw_request_info *info,
9700				union iwreq_data *wrqu, char *extra)
9701{
9702	struct ipw_priv *priv = libipw_priv(dev);
9703	int mode = *(int *)extra;
9704	int err;
9705
9706	mutex_lock(&priv->mutex);
9707	if ((mode < 1) || (mode > IPW_POWER_LIMIT))
9708		mode = IPW_POWER_AC;
9709
9710	if (IPW_POWER_LEVEL(priv->power_mode) != mode) {
9711		err = ipw_send_power_mode(priv, mode);
9712		if (err) {
9713			IPW_DEBUG_WX("failed setting power mode.\n");
9714			mutex_unlock(&priv->mutex);
9715			return err;
9716		}
9717		priv->power_mode = IPW_POWER_ENABLED | mode;
9718	}
9719	mutex_unlock(&priv->mutex);
9720	return 0;
9721}
9722
9723#define MAX_WX_STRING 80
9724static int ipw_wx_get_powermode(struct net_device *dev,
9725				struct iw_request_info *info,
9726				union iwreq_data *wrqu, char *extra)
9727{
9728	struct ipw_priv *priv = libipw_priv(dev);
9729	int level = IPW_POWER_LEVEL(priv->power_mode);
9730	char *p = extra;
9731
9732	p += snprintf(p, MAX_WX_STRING, "Power save level: %d ", level);
9733
9734	switch (level) {
9735	case IPW_POWER_AC:
9736		p += snprintf(p, MAX_WX_STRING - (p - extra), "(AC)");
9737		break;
9738	case IPW_POWER_BATTERY:
9739		p += snprintf(p, MAX_WX_STRING - (p - extra), "(BATTERY)");
9740		break;
9741	default:
9742		p += snprintf(p, MAX_WX_STRING - (p - extra),
9743			      "(Timeout %dms, Period %dms)",
9744			      timeout_duration[level - 1] / 1000,
9745			      period_duration[level - 1] / 1000);
9746	}
9747
9748	if (!(priv->power_mode & IPW_POWER_ENABLED))
9749		p += snprintf(p, MAX_WX_STRING - (p - extra), " OFF");
9750
9751	wrqu->data.length = p - extra + 1;
9752
9753	return 0;
9754}
9755
9756static int ipw_wx_set_wireless_mode(struct net_device *dev,
9757				    struct iw_request_info *info,
9758				    union iwreq_data *wrqu, char *extra)
9759{
9760	struct ipw_priv *priv = libipw_priv(dev);
9761	int mode = *(int *)extra;
9762	u8 band = 0, modulation = 0;
9763
9764	if (mode == 0 || mode & ~IEEE_MODE_MASK) {
9765		IPW_WARNING("Attempt to set invalid wireless mode: %d\n", mode);
9766		return -EINVAL;
9767	}
9768	mutex_lock(&priv->mutex);
9769	if (priv->adapter == IPW_2915ABG) {
9770		priv->ieee->abg_true = 1;
9771		if (mode & IEEE_A) {
9772			band |= LIBIPW_52GHZ_BAND;
9773			modulation |= LIBIPW_OFDM_MODULATION;
9774		} else
9775			priv->ieee->abg_true = 0;
9776	} else {
9777		if (mode & IEEE_A) {
9778			IPW_WARNING("Attempt to set 2200BG into "
9779				    "802.11a mode\n");
9780			mutex_unlock(&priv->mutex);
9781			return -EINVAL;
9782		}
9783
9784		priv->ieee->abg_true = 0;
9785	}
9786
9787	if (mode & IEEE_B) {
9788		band |= LIBIPW_24GHZ_BAND;
9789		modulation |= LIBIPW_CCK_MODULATION;
9790	} else
9791		priv->ieee->abg_true = 0;
9792
9793	if (mode & IEEE_G) {
9794		band |= LIBIPW_24GHZ_BAND;
9795		modulation |= LIBIPW_OFDM_MODULATION;
9796	} else
9797		priv->ieee->abg_true = 0;
9798
9799	priv->ieee->mode = mode;
9800	priv->ieee->freq_band = band;
9801	priv->ieee->modulation = modulation;
9802	init_supported_rates(priv, &priv->rates);
9803
9804	/* Network configuration changed -- force [re]association */
9805	IPW_DEBUG_ASSOC("[re]association triggered due to mode change.\n");
9806	if (!ipw_disassociate(priv)) {
9807		ipw_send_supported_rates(priv, &priv->rates);
9808		ipw_associate(priv);
9809	}
9810
9811	/* Update the band LEDs */
9812	ipw_led_band_on(priv);
9813
9814	IPW_DEBUG_WX("PRIV SET MODE: %c%c%c\n",
9815		     mode & IEEE_A ? 'a' : '.',
9816		     mode & IEEE_B ? 'b' : '.', mode & IEEE_G ? 'g' : '.');
9817	mutex_unlock(&priv->mutex);
9818	return 0;
9819}
9820
9821static int ipw_wx_get_wireless_mode(struct net_device *dev,
9822				    struct iw_request_info *info,
9823				    union iwreq_data *wrqu, char *extra)
9824{
9825	struct ipw_priv *priv = libipw_priv(dev);
9826	mutex_lock(&priv->mutex);
9827	switch (priv->ieee->mode) {
9828	case IEEE_A:
9829		strncpy(extra, "802.11a (1)", MAX_WX_STRING);
9830		break;
9831	case IEEE_B:
9832		strncpy(extra, "802.11b (2)", MAX_WX_STRING);
9833		break;
9834	case IEEE_A | IEEE_B:
9835		strncpy(extra, "802.11ab (3)", MAX_WX_STRING);
9836		break;
9837	case IEEE_G:
9838		strncpy(extra, "802.11g (4)", MAX_WX_STRING);
9839		break;
9840	case IEEE_A | IEEE_G:
9841		strncpy(extra, "802.11ag (5)", MAX_WX_STRING);
9842		break;
9843	case IEEE_B | IEEE_G:
9844		strncpy(extra, "802.11bg (6)", MAX_WX_STRING);
9845		break;
9846	case IEEE_A | IEEE_B | IEEE_G:
9847		strncpy(extra, "802.11abg (7)", MAX_WX_STRING);
9848		break;
9849	default:
9850		strncpy(extra, "unknown", MAX_WX_STRING);
9851		break;
9852	}
9853
9854	IPW_DEBUG_WX("PRIV GET MODE: %s\n", extra);
9855
9856	wrqu->data.length = strlen(extra) + 1;
9857	mutex_unlock(&priv->mutex);
9858
9859	return 0;
9860}
9861
9862static int ipw_wx_set_preamble(struct net_device *dev,
9863			       struct iw_request_info *info,
9864			       union iwreq_data *wrqu, char *extra)
9865{
9866	struct ipw_priv *priv = libipw_priv(dev);
9867	int mode = *(int *)extra;
9868	mutex_lock(&priv->mutex);
9869	/* Switching from SHORT -> LONG requires a disassociation */
9870	if (mode == 1) {
9871		if (!(priv->config & CFG_PREAMBLE_LONG)) {
9872			priv->config |= CFG_PREAMBLE_LONG;
9873
9874			/* Network configuration changed -- force [re]association */
9875			IPW_DEBUG_ASSOC
9876			    ("[re]association triggered due to preamble change.\n");
9877			if (!ipw_disassociate(priv))
9878				ipw_associate(priv);
9879		}
9880		goto done;
9881	}
9882
9883	if (mode == 0) {
9884		priv->config &= ~CFG_PREAMBLE_LONG;
9885		goto done;
9886	}
9887	mutex_unlock(&priv->mutex);
9888	return -EINVAL;
9889
9890      done:
9891	mutex_unlock(&priv->mutex);
9892	return 0;
9893}
9894
9895static int ipw_wx_get_preamble(struct net_device *dev,
9896			       struct iw_request_info *info,
9897			       union iwreq_data *wrqu, char *extra)
9898{
9899	struct ipw_priv *priv = libipw_priv(dev);
9900	mutex_lock(&priv->mutex);
9901	if (priv->config & CFG_PREAMBLE_LONG)
9902		snprintf(wrqu->name, IFNAMSIZ, "long (1)");
9903	else
9904		snprintf(wrqu->name, IFNAMSIZ, "auto (0)");
9905	mutex_unlock(&priv->mutex);
9906	return 0;
9907}
9908
9909#ifdef CONFIG_IPW2200_MONITOR
9910static int ipw_wx_set_monitor(struct net_device *dev,
9911			      struct iw_request_info *info,
9912			      union iwreq_data *wrqu, char *extra)
9913{
9914	struct ipw_priv *priv = libipw_priv(dev);
9915	int *parms = (int *)extra;
9916	int enable = (parms[0] > 0);
9917	mutex_lock(&priv->mutex);
9918	IPW_DEBUG_WX("SET MONITOR: %d %d\n", enable, parms[1]);
9919	if (enable) {
9920		if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
9921#ifdef CONFIG_IPW2200_RADIOTAP
9922			priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
9923#else
9924			priv->net_dev->type = ARPHRD_IEEE80211;
9925#endif
9926			queue_work(priv->workqueue, &priv->adapter_restart);
9927		}
9928
9929		ipw_set_channel(priv, parms[1]);
9930	} else {
9931		if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
9932			mutex_unlock(&priv->mutex);
9933			return 0;
9934		}
9935		priv->net_dev->type = ARPHRD_ETHER;
9936		queue_work(priv->workqueue, &priv->adapter_restart);
9937	}
9938	mutex_unlock(&priv->mutex);
9939	return 0;
9940}
9941
9942#endif				/* CONFIG_IPW2200_MONITOR */
9943
9944static int ipw_wx_reset(struct net_device *dev,
9945			struct iw_request_info *info,
9946			union iwreq_data *wrqu, char *extra)
9947{
9948	struct ipw_priv *priv = libipw_priv(dev);
9949	IPW_DEBUG_WX("RESET\n");
9950	queue_work(priv->workqueue, &priv->adapter_restart);
9951	return 0;
9952}
9953
9954static int ipw_wx_sw_reset(struct net_device *dev,
9955			   struct iw_request_info *info,
9956			   union iwreq_data *wrqu, char *extra)
9957{
9958	struct ipw_priv *priv = libipw_priv(dev);
9959	union iwreq_data wrqu_sec = {
9960		.encoding = {
9961			     .flags = IW_ENCODE_DISABLED,
9962			     },
9963	};
9964	int ret;
9965
9966	IPW_DEBUG_WX("SW_RESET\n");
9967
9968	mutex_lock(&priv->mutex);
9969
9970	ret = ipw_sw_reset(priv, 2);
9971	if (!ret) {
9972		free_firmware();
9973		ipw_adapter_restart(priv);
9974	}
9975
9976	/* The SW reset bit might have been toggled on by the 'disable'
9977	 * module parameter, so take appropriate action */
9978	ipw_radio_kill_sw(priv, priv->status & STATUS_RF_KILL_SW);
9979
9980	mutex_unlock(&priv->mutex);
9981	libipw_wx_set_encode(priv->ieee, info, &wrqu_sec, NULL);
9982	mutex_lock(&priv->mutex);
9983
9984	if (!(priv->status & STATUS_RF_KILL_MASK)) {
9985		/* Configuration likely changed -- force [re]association */
9986		IPW_DEBUG_ASSOC("[re]association triggered due to sw "
9987				"reset.\n");
9988		if (!ipw_disassociate(priv))
9989			ipw_associate(priv);
9990	}
9991
9992	mutex_unlock(&priv->mutex);
9993
9994	return 0;
9995}
9996
9997/* Rebase the WE IOCTLs to zero for the handler array */
9998#define IW_IOCTL(x) [(x)-SIOCSIWCOMMIT]
9999static iw_handler ipw_wx_handlers[] = {
10000	IW_IOCTL(SIOCGIWNAME) = (iw_handler) cfg80211_wext_giwname,
10001	IW_IOCTL(SIOCSIWFREQ) = ipw_wx_set_freq,
10002	IW_IOCTL(SIOCGIWFREQ) = ipw_wx_get_freq,
10003	IW_IOCTL(SIOCSIWMODE) = ipw_wx_set_mode,
10004	IW_IOCTL(SIOCGIWMODE) = ipw_wx_get_mode,
10005	IW_IOCTL(SIOCSIWSENS) = ipw_wx_set_sens,
10006	IW_IOCTL(SIOCGIWSENS) = ipw_wx_get_sens,
10007	IW_IOCTL(SIOCGIWRANGE) = ipw_wx_get_range,
10008	IW_IOCTL(SIOCSIWAP) = ipw_wx_set_wap,
10009	IW_IOCTL(SIOCGIWAP) = ipw_wx_get_wap,
10010	IW_IOCTL(SIOCSIWSCAN) = ipw_wx_set_scan,
10011	IW_IOCTL(SIOCGIWSCAN) = ipw_wx_get_scan,
10012	IW_IOCTL(SIOCSIWESSID) = ipw_wx_set_essid,
10013	IW_IOCTL(SIOCGIWESSID) = ipw_wx_get_essid,
10014	IW_IOCTL(SIOCSIWNICKN) = ipw_wx_set_nick,
10015	IW_IOCTL(SIOCGIWNICKN) = ipw_wx_get_nick,
10016	IW_IOCTL(SIOCSIWRATE) = ipw_wx_set_rate,
10017	IW_IOCTL(SIOCGIWRATE) = ipw_wx_get_rate,
10018	IW_IOCTL(SIOCSIWRTS) = ipw_wx_set_rts,
10019	IW_IOCTL(SIOCGIWRTS) = ipw_wx_get_rts,
10020	IW_IOCTL(SIOCSIWFRAG) = ipw_wx_set_frag,
10021	IW_IOCTL(SIOCGIWFRAG) = ipw_wx_get_frag,
10022	IW_IOCTL(SIOCSIWTXPOW) = ipw_wx_set_txpow,
10023	IW_IOCTL(SIOCGIWTXPOW) = ipw_wx_get_txpow,
10024	IW_IOCTL(SIOCSIWRETRY) = ipw_wx_set_retry,
10025	IW_IOCTL(SIOCGIWRETRY) = ipw_wx_get_retry,
10026	IW_IOCTL(SIOCSIWENCODE) = ipw_wx_set_encode,
10027	IW_IOCTL(SIOCGIWENCODE) = ipw_wx_get_encode,
10028	IW_IOCTL(SIOCSIWPOWER) = ipw_wx_set_power,
10029	IW_IOCTL(SIOCGIWPOWER) = ipw_wx_get_power,
10030	IW_IOCTL(SIOCSIWSPY) = iw_handler_set_spy,
10031	IW_IOCTL(SIOCGIWSPY) = iw_handler_get_spy,
10032	IW_IOCTL(SIOCSIWTHRSPY) = iw_handler_set_thrspy,
10033	IW_IOCTL(SIOCGIWTHRSPY) = iw_handler_get_thrspy,
10034	IW_IOCTL(SIOCSIWGENIE) = ipw_wx_set_genie,
10035	IW_IOCTL(SIOCGIWGENIE) = ipw_wx_get_genie,
10036	IW_IOCTL(SIOCSIWMLME) = ipw_wx_set_mlme,
10037	IW_IOCTL(SIOCSIWAUTH) = ipw_wx_set_auth,
10038	IW_IOCTL(SIOCGIWAUTH) = ipw_wx_get_auth,
10039	IW_IOCTL(SIOCSIWENCODEEXT) = ipw_wx_set_encodeext,
10040	IW_IOCTL(SIOCGIWENCODEEXT) = ipw_wx_get_encodeext,
10041};
10042
10043enum {
10044	IPW_PRIV_SET_POWER = SIOCIWFIRSTPRIV,
10045	IPW_PRIV_GET_POWER,
10046	IPW_PRIV_SET_MODE,
10047	IPW_PRIV_GET_MODE,
10048	IPW_PRIV_SET_PREAMBLE,
10049	IPW_PRIV_GET_PREAMBLE,
10050	IPW_PRIV_RESET,
10051	IPW_PRIV_SW_RESET,
10052#ifdef CONFIG_IPW2200_MONITOR
10053	IPW_PRIV_SET_MONITOR,
10054#endif
10055};
10056
10057static struct iw_priv_args ipw_priv_args[] = {
10058	{
10059	 .cmd = IPW_PRIV_SET_POWER,
10060	 .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
10061	 .name = "set_power"},
10062	{
10063	 .cmd = IPW_PRIV_GET_POWER,
10064	 .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING,
10065	 .name = "get_power"},
10066	{
10067	 .cmd = IPW_PRIV_SET_MODE,
10068	 .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
10069	 .name = "set_mode"},
10070	{
10071	 .cmd = IPW_PRIV_GET_MODE,
10072	 .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING,
10073	 .name = "get_mode"},
10074	{
10075	 .cmd = IPW_PRIV_SET_PREAMBLE,
10076	 .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
10077	 .name = "set_preamble"},
10078	{
10079	 .cmd = IPW_PRIV_GET_PREAMBLE,
10080	 .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ,
10081	 .name = "get_preamble"},
10082	{
10083	 IPW_PRIV_RESET,
10084	 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"},
10085	{
10086	 IPW_PRIV_SW_RESET,
10087	 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "sw_reset"},
10088#ifdef CONFIG_IPW2200_MONITOR
10089	{
10090	 IPW_PRIV_SET_MONITOR,
10091	 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"},
10092#endif				/* CONFIG_IPW2200_MONITOR */
10093};
10094
10095static iw_handler ipw_priv_handler[] = {
10096	ipw_wx_set_powermode,
10097	ipw_wx_get_powermode,
10098	ipw_wx_set_wireless_mode,
10099	ipw_wx_get_wireless_mode,
10100	ipw_wx_set_preamble,
10101	ipw_wx_get_preamble,
10102	ipw_wx_reset,
10103	ipw_wx_sw_reset,
10104#ifdef CONFIG_IPW2200_MONITOR
10105	ipw_wx_set_monitor,
10106#endif
10107};
10108
10109static struct iw_handler_def ipw_wx_handler_def = {
10110	.standard = ipw_wx_handlers,
10111	.num_standard = ARRAY_SIZE(ipw_wx_handlers),
10112	.num_private = ARRAY_SIZE(ipw_priv_handler),
10113	.num_private_args = ARRAY_SIZE(ipw_priv_args),
10114	.private = ipw_priv_handler,
10115	.private_args = ipw_priv_args,
10116	.get_wireless_stats = ipw_get_wireless_stats,
10117};
10118
10119/*
10120 * Get wireless statistics.
10121 * Called by /proc/net/wireless
10122 * Also called by SIOCGIWSTATS
10123 */
10124static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev)
10125{
10126	struct ipw_priv *priv = libipw_priv(dev);
10127	struct iw_statistics *wstats;
10128
10129	wstats = &priv->wstats;
10130
10131	/* if hw is disabled, then ipw_get_ordinal() can't be called.
10132	 * netdev->get_wireless_stats seems to be called before fw is
10133	 * initialized.  STATUS_ASSOCIATED will only be set if the hw is up
10134	 * and associated; if not associcated, the values are all meaningless
10135	 * anyway, so set them all to NULL and INVALID */
10136	if (!(priv->status & STATUS_ASSOCIATED)) {
10137		wstats->miss.beacon = 0;
10138		wstats->discard.retries = 0;
10139		wstats->qual.qual = 0;
10140		wstats->qual.level = 0;
10141		wstats->qual.noise = 0;
10142		wstats->qual.updated = 7;
10143		wstats->qual.updated |= IW_QUAL_NOISE_INVALID |
10144		    IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID;
10145		return wstats;
10146	}
10147
10148	wstats->qual.qual = priv->quality;
10149	wstats->qual.level = priv->exp_avg_rssi;
10150	wstats->qual.noise = priv->exp_avg_noise;
10151	wstats->qual.updated = IW_QUAL_QUAL_UPDATED | IW_QUAL_LEVEL_UPDATED |
10152	    IW_QUAL_NOISE_UPDATED | IW_QUAL_DBM;
10153
10154	wstats->miss.beacon = average_value(&priv->average_missed_beacons);
10155	wstats->discard.retries = priv->last_tx_failures;
10156	wstats->discard.code = priv->ieee->ieee_stats.rx_discards_undecryptable;
10157
10158/*	if (ipw_get_ordinal(priv, IPW_ORD_STAT_TX_RETRY, &tx_retry, &len))
10159	goto fail_get_ordinal;
10160	wstats->discard.retries += tx_retry; */
10161
10162	return wstats;
10163}
10164
10165/* net device stuff */
10166
10167static  void init_sys_config(struct ipw_sys_config *sys_config)
10168{
10169	memset(sys_config, 0, sizeof(struct ipw_sys_config));
10170	sys_config->bt_coexistence = 0;
10171	sys_config->answer_broadcast_ssid_probe = 0;
10172	sys_config->accept_all_data_frames = 0;
10173	sys_config->accept_non_directed_frames = 1;
10174	sys_config->exclude_unicast_unencrypted = 0;
10175	sys_config->disable_unicast_decryption = 1;
10176	sys_config->exclude_multicast_unencrypted = 0;
10177	sys_config->disable_multicast_decryption = 1;
10178	if (antenna < CFG_SYS_ANTENNA_BOTH || antenna > CFG_SYS_ANTENNA_B)
10179		antenna = CFG_SYS_ANTENNA_BOTH;
10180	sys_config->antenna_diversity = antenna;
10181	sys_config->pass_crc_to_host = 0;	/* TODO: See if 1 gives us FCS */
10182	sys_config->dot11g_auto_detection = 0;
10183	sys_config->enable_cts_to_self = 0;
10184	sys_config->bt_coexist_collision_thr = 0;
10185	sys_config->pass_noise_stats_to_host = 1;	/* 1 -- fix for 256 */
10186	sys_config->silence_threshold = 0x1e;
10187}
10188
10189static int ipw_net_open(struct net_device *dev)
10190{
10191	IPW_DEBUG_INFO("dev->open\n");
10192	netif_start_queue(dev);
10193	return 0;
10194}
10195
10196static int ipw_net_stop(struct net_device *dev)
10197{
10198	IPW_DEBUG_INFO("dev->close\n");
10199	netif_stop_queue(dev);
10200	return 0;
10201}
10202
10203/*
10204todo:
10205
10206modify to send one tfd per fragment instead of using chunking.  otherwise
10207we need to heavily modify the libipw_skb_to_txb.
10208*/
10209
10210static int ipw_tx_skb(struct ipw_priv *priv, struct libipw_txb *txb,
10211			     int pri)
10212{
10213	struct libipw_hdr_3addrqos *hdr = (struct libipw_hdr_3addrqos *)
10214	    txb->fragments[0]->data;
10215	int i = 0;
10216	struct tfd_frame *tfd;
10217#ifdef CONFIG_IPW2200_QOS
10218	int tx_id = ipw_get_tx_queue_number(priv, pri);
10219	struct clx2_tx_queue *txq = &priv->txq[tx_id];
10220#else
10221	struct clx2_tx_queue *txq = &priv->txq[0];
10222#endif
10223	struct clx2_queue *q = &txq->q;
10224	u8 id, hdr_len, unicast;
10225	int fc;
10226
10227	if (!(priv->status & STATUS_ASSOCIATED))
10228		goto drop;
10229
10230	hdr_len = libipw_get_hdrlen(le16_to_cpu(hdr->frame_ctl));
10231	switch (priv->ieee->iw_mode) {
10232	case IW_MODE_ADHOC:
10233		unicast = !is_multicast_ether_addr(hdr->addr1);
10234		id = ipw_find_station(priv, hdr->addr1);
10235		if (id == IPW_INVALID_STATION) {
10236			id = ipw_add_station(priv, hdr->addr1);
10237			if (id == IPW_INVALID_STATION) {
10238				IPW_WARNING("Attempt to send data to "
10239					    "invalid cell: %pM\n",
10240					    hdr->addr1);
10241				goto drop;
10242			}
10243		}
10244		break;
10245
10246	case IW_MODE_INFRA:
10247	default:
10248		unicast = !is_multicast_ether_addr(hdr->addr3);
10249		id = 0;
10250		break;
10251	}
10252
10253	tfd = &txq->bd[q->first_empty];
10254	txq->txb[q->first_empty] = txb;
10255	memset(tfd, 0, sizeof(*tfd));
10256	tfd->u.data.station_number = id;
10257
10258	tfd->control_flags.message_type = TX_FRAME_TYPE;
10259	tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK;
10260
10261	tfd->u.data.cmd_id = DINO_CMD_TX;
10262	tfd->u.data.len = cpu_to_le16(txb->payload_size);
10263
10264	if (priv->assoc_request.ieee_mode == IPW_B_MODE)
10265		tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_CCK;
10266	else
10267		tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_OFDM;
10268
10269	if (priv->assoc_request.preamble_length == DCT_FLAG_SHORT_PREAMBLE)
10270		tfd->u.data.tx_flags |= DCT_FLAG_SHORT_PREAMBLE;
10271
10272	fc = le16_to_cpu(hdr->frame_ctl);
10273	hdr->frame_ctl = cpu_to_le16(fc & ~IEEE80211_FCTL_MOREFRAGS);
10274
10275	memcpy(&tfd->u.data.tfd.tfd_24.mchdr, hdr, hdr_len);
10276
10277	if (likely(unicast))
10278		tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD;
10279
10280	if (txb->encrypted && !priv->ieee->host_encrypt) {
10281		switch (priv->ieee->sec.level) {
10282		case SEC_LEVEL_3:
10283			tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10284			    cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10285			/* XXX: ACK flag must be set for CCMP even if it
10286			 * is a multicast/broadcast packet, because CCMP
10287			 * group communication encrypted by GTK is
10288			 * actually done by the AP. */
10289			if (!unicast)
10290				tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD;
10291
10292			tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP;
10293			tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_SECURITY_CCM;
10294			tfd->u.data.key_index = 0;
10295			tfd->u.data.key_index |= DCT_WEP_INDEX_USE_IMMEDIATE;
10296			break;
10297		case SEC_LEVEL_2:
10298			tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10299			    cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10300			tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP;
10301			tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_SECURITY_TKIP;
10302			tfd->u.data.key_index = DCT_WEP_INDEX_USE_IMMEDIATE;
10303			break;
10304		case SEC_LEVEL_1:
10305			tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10306			    cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10307			tfd->u.data.key_index = priv->ieee->crypt_info.tx_keyidx;
10308			if (priv->ieee->sec.key_sizes[priv->ieee->crypt_info.tx_keyidx] <=
10309			    40)
10310				tfd->u.data.key_index |= DCT_WEP_KEY_64Bit;
10311			else
10312				tfd->u.data.key_index |= DCT_WEP_KEY_128Bit;
10313			break;
10314		case SEC_LEVEL_0:
10315			break;
10316		default:
10317			printk(KERN_ERR "Unknown security level %d\n",
10318			       priv->ieee->sec.level);
10319			break;
10320		}
10321	} else
10322		/* No hardware encryption */
10323		tfd->u.data.tx_flags |= DCT_FLAG_NO_WEP;
10324
10325#ifdef CONFIG_IPW2200_QOS
10326	if (fc & IEEE80211_STYPE_QOS_DATA)
10327		ipw_qos_set_tx_queue_command(priv, pri, &(tfd->u.data));
10328#endif				/* CONFIG_IPW2200_QOS */
10329
10330	/* payload */
10331	tfd->u.data.num_chunks = cpu_to_le32(min((u8) (NUM_TFD_CHUNKS - 2),
10332						 txb->nr_frags));
10333	IPW_DEBUG_FRAG("%i fragments being sent as %i chunks.\n",
10334		       txb->nr_frags, le32_to_cpu(tfd->u.data.num_chunks));
10335	for (i = 0; i < le32_to_cpu(tfd->u.data.num_chunks); i++) {
10336		IPW_DEBUG_FRAG("Adding fragment %i of %i (%d bytes).\n",
10337			       i, le32_to_cpu(tfd->u.data.num_chunks),
10338			       txb->fragments[i]->len - hdr_len);
10339		IPW_DEBUG_TX("Dumping TX packet frag %i of %i (%d bytes):\n",
10340			     i, tfd->u.data.num_chunks,
10341			     txb->fragments[i]->len - hdr_len);
10342		printk_buf(IPW_DL_TX, txb->fragments[i]->data + hdr_len,
10343			   txb->fragments[i]->len - hdr_len);
10344
10345		tfd->u.data.chunk_ptr[i] =
10346		    cpu_to_le32(pci_map_single
10347				(priv->pci_dev,
10348				 txb->fragments[i]->data + hdr_len,
10349				 txb->fragments[i]->len - hdr_len,
10350				 PCI_DMA_TODEVICE));
10351		tfd->u.data.chunk_len[i] =
10352		    cpu_to_le16(txb->fragments[i]->len - hdr_len);
10353	}
10354
10355	if (i != txb->nr_frags) {
10356		struct sk_buff *skb;
10357		u16 remaining_bytes = 0;
10358		int j;
10359
10360		for (j = i; j < txb->nr_frags; j++)
10361			remaining_bytes += txb->fragments[j]->len - hdr_len;
10362
10363		printk(KERN_INFO "Trying to reallocate for %d bytes\n",
10364		       remaining_bytes);
10365		skb = alloc_skb(remaining_bytes, GFP_ATOMIC);
10366		if (skb != NULL) {
10367			tfd->u.data.chunk_len[i] = cpu_to_le16(remaining_bytes);
10368			for (j = i; j < txb->nr_frags; j++) {
10369				int size = txb->fragments[j]->len - hdr_len;
10370
10371				printk(KERN_INFO "Adding frag %d %d...\n",
10372				       j, size);
10373				memcpy(skb_put(skb, size),
10374				       txb->fragments[j]->data + hdr_len, size);
10375			}
10376			dev_kfree_skb_any(txb->fragments[i]);
10377			txb->fragments[i] = skb;
10378			tfd->u.data.chunk_ptr[i] =
10379			    cpu_to_le32(pci_map_single
10380					(priv->pci_dev, skb->data,
10381					 remaining_bytes,
10382					 PCI_DMA_TODEVICE));
10383
10384			le32_add_cpu(&tfd->u.data.num_chunks, 1);
10385		}
10386	}
10387
10388	/* kick DMA */
10389	q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd);
10390	ipw_write32(priv, q->reg_w, q->first_empty);
10391
10392	if (ipw_tx_queue_space(q) < q->high_mark)
10393		netif_stop_queue(priv->net_dev);
10394
10395	return NETDEV_TX_OK;
10396
10397      drop:
10398	IPW_DEBUG_DROP("Silently dropping Tx packet.\n");
10399	libipw_txb_free(txb);
10400	return NETDEV_TX_OK;
10401}
10402
10403static int ipw_net_is_queue_full(struct net_device *dev, int pri)
10404{
10405	struct ipw_priv *priv = libipw_priv(dev);
10406#ifdef CONFIG_IPW2200_QOS
10407	int tx_id = ipw_get_tx_queue_number(priv, pri);
10408	struct clx2_tx_queue *txq = &priv->txq[tx_id];
10409#else
10410	struct clx2_tx_queue *txq = &priv->txq[0];
10411#endif				/* CONFIG_IPW2200_QOS */
10412
10413	if (ipw_tx_queue_space(&txq->q) < txq->q.high_mark)
10414		return 1;
10415
10416	return 0;
10417}
10418
10419#ifdef CONFIG_IPW2200_PROMISCUOUS
10420static void ipw_handle_promiscuous_tx(struct ipw_priv *priv,
10421				      struct libipw_txb *txb)
10422{
10423	struct libipw_rx_stats dummystats;
10424	struct ieee80211_hdr *hdr;
10425	u8 n;
10426	u16 filter = priv->prom_priv->filter;
10427	int hdr_only = 0;
10428
10429	if (filter & IPW_PROM_NO_TX)
10430		return;
10431
10432	memset(&dummystats, 0, sizeof(dummystats));
10433
10434	/* Filtering of fragment chains is done agains the first fragment */
10435	hdr = (void *)txb->fragments[0]->data;
10436	if (libipw_is_management(le16_to_cpu(hdr->frame_control))) {
10437		if (filter & IPW_PROM_NO_MGMT)
10438			return;
10439		if (filter & IPW_PROM_MGMT_HEADER_ONLY)
10440			hdr_only = 1;
10441	} else if (libipw_is_control(le16_to_cpu(hdr->frame_control))) {
10442		if (filter & IPW_PROM_NO_CTL)
10443			return;
10444		if (filter & IPW_PROM_CTL_HEADER_ONLY)
10445			hdr_only = 1;
10446	} else if (libipw_is_data(le16_to_cpu(hdr->frame_control))) {
10447		if (filter & IPW_PROM_NO_DATA)
10448			return;
10449		if (filter & IPW_PROM_DATA_HEADER_ONLY)
10450			hdr_only = 1;
10451	}
10452
10453	for(n=0; n<txb->nr_frags; ++n) {
10454		struct sk_buff *src = txb->fragments[n];
10455		struct sk_buff *dst;
10456		struct ieee80211_radiotap_header *rt_hdr;
10457		int len;
10458
10459		if (hdr_only) {
10460			hdr = (void *)src->data;
10461			len = libipw_get_hdrlen(le16_to_cpu(hdr->frame_control));
10462		} else
10463			len = src->len;
10464
10465		dst = alloc_skb(len + sizeof(*rt_hdr), GFP_ATOMIC);
10466		if (!dst)
10467			continue;
10468
10469		rt_hdr = (void *)skb_put(dst, sizeof(*rt_hdr));
10470
10471		rt_hdr->it_version = PKTHDR_RADIOTAP_VERSION;
10472		rt_hdr->it_pad = 0;
10473		rt_hdr->it_present = 0; /* after all, it's just an idea */
10474		rt_hdr->it_present |=  cpu_to_le32(1 << IEEE80211_RADIOTAP_CHANNEL);
10475
10476		*(__le16*)skb_put(dst, sizeof(u16)) = cpu_to_le16(
10477			ieee80211chan2mhz(priv->channel));
10478		if (priv->channel > 14) 	/* 802.11a */
10479			*(__le16*)skb_put(dst, sizeof(u16)) =
10480				cpu_to_le16(IEEE80211_CHAN_OFDM |
10481					     IEEE80211_CHAN_5GHZ);
10482		else if (priv->ieee->mode == IEEE_B) /* 802.11b */
10483			*(__le16*)skb_put(dst, sizeof(u16)) =
10484				cpu_to_le16(IEEE80211_CHAN_CCK |
10485					     IEEE80211_CHAN_2GHZ);
10486		else 		/* 802.11g */
10487			*(__le16*)skb_put(dst, sizeof(u16)) =
10488				cpu_to_le16(IEEE80211_CHAN_OFDM |
10489				 IEEE80211_CHAN_2GHZ);
10490
10491		rt_hdr->it_len = cpu_to_le16(dst->len);
10492
10493		skb_copy_from_linear_data(src, skb_put(dst, len), len);
10494
10495		if (!libipw_rx(priv->prom_priv->ieee, dst, &dummystats))
10496			dev_kfree_skb_any(dst);
10497	}
10498}
10499#endif
10500
10501static netdev_tx_t ipw_net_hard_start_xmit(struct libipw_txb *txb,
10502					   struct net_device *dev, int pri)
10503{
10504	struct ipw_priv *priv = libipw_priv(dev);
10505	unsigned long flags;
10506	netdev_tx_t ret;
10507
10508	IPW_DEBUG_TX("dev->xmit(%d bytes)\n", txb->payload_size);
10509	spin_lock_irqsave(&priv->lock, flags);
10510
10511#ifdef CONFIG_IPW2200_PROMISCUOUS
10512	if (rtap_iface && netif_running(priv->prom_net_dev))
10513		ipw_handle_promiscuous_tx(priv, txb);
10514#endif
10515
10516	ret = ipw_tx_skb(priv, txb, pri);
10517	if (ret == NETDEV_TX_OK)
10518		__ipw_led_activity_on(priv);
10519	spin_unlock_irqrestore(&priv->lock, flags);
10520
10521	return ret;
10522}
10523
10524static void ipw_net_set_multicast_list(struct net_device *dev)
10525{
10526
10527}
10528
10529static int ipw_net_set_mac_address(struct net_device *dev, void *p)
10530{
10531	struct ipw_priv *priv = libipw_priv(dev);
10532	struct sockaddr *addr = p;
10533
10534	if (!is_valid_ether_addr(addr->sa_data))
10535		return -EADDRNOTAVAIL;
10536	mutex_lock(&priv->mutex);
10537	priv->config |= CFG_CUSTOM_MAC;
10538	memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
10539	printk(KERN_INFO "%s: Setting MAC to %pM\n",
10540	       priv->net_dev->name, priv->mac_addr);
10541	queue_work(priv->workqueue, &priv->adapter_restart);
10542	mutex_unlock(&priv->mutex);
10543	return 0;
10544}
10545
10546static void ipw_ethtool_get_drvinfo(struct net_device *dev,
10547				    struct ethtool_drvinfo *info)
10548{
10549	struct ipw_priv *p = libipw_priv(dev);
10550	char vers[64];
10551	char date[32];
10552	u32 len;
10553
10554	strcpy(info->driver, DRV_NAME);
10555	strcpy(info->version, DRV_VERSION);
10556
10557	len = sizeof(vers);
10558	ipw_get_ordinal(p, IPW_ORD_STAT_FW_VERSION, vers, &len);
10559	len = sizeof(date);
10560	ipw_get_ordinal(p, IPW_ORD_STAT_FW_DATE, date, &len);
10561
10562	snprintf(info->fw_version, sizeof(info->fw_version), "%s (%s)",
10563		 vers, date);
10564	strcpy(info->bus_info, pci_name(p->pci_dev));
10565	info->eedump_len = IPW_EEPROM_IMAGE_SIZE;
10566}
10567
10568static u32 ipw_ethtool_get_link(struct net_device *dev)
10569{
10570	struct ipw_priv *priv = libipw_priv(dev);
10571	return (priv->status & STATUS_ASSOCIATED) != 0;
10572}
10573
10574static int ipw_ethtool_get_eeprom_len(struct net_device *dev)
10575{
10576	return IPW_EEPROM_IMAGE_SIZE;
10577}
10578
10579static int ipw_ethtool_get_eeprom(struct net_device *dev,
10580				  struct ethtool_eeprom *eeprom, u8 * bytes)
10581{
10582	struct ipw_priv *p = libipw_priv(dev);
10583
10584	if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE)
10585		return -EINVAL;
10586	mutex_lock(&p->mutex);
10587	memcpy(bytes, &p->eeprom[eeprom->offset], eeprom->len);
10588	mutex_unlock(&p->mutex);
10589	return 0;
10590}
10591
10592static int ipw_ethtool_set_eeprom(struct net_device *dev,
10593				  struct ethtool_eeprom *eeprom, u8 * bytes)
10594{
10595	struct ipw_priv *p = libipw_priv(dev);
10596	int i;
10597
10598	if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE)
10599		return -EINVAL;
10600	mutex_lock(&p->mutex);
10601	memcpy(&p->eeprom[eeprom->offset], bytes, eeprom->len);
10602	for (i = 0; i < IPW_EEPROM_IMAGE_SIZE; i++)
10603		ipw_write8(p, i + IPW_EEPROM_DATA, p->eeprom[i]);
10604	mutex_unlock(&p->mutex);
10605	return 0;
10606}
10607
10608static const struct ethtool_ops ipw_ethtool_ops = {
10609	.get_link = ipw_ethtool_get_link,
10610	.get_drvinfo = ipw_ethtool_get_drvinfo,
10611	.get_eeprom_len = ipw_ethtool_get_eeprom_len,
10612	.get_eeprom = ipw_ethtool_get_eeprom,
10613	.set_eeprom = ipw_ethtool_set_eeprom,
10614};
10615
10616static irqreturn_t ipw_isr(int irq, void *data)
10617{
10618	struct ipw_priv *priv = data;
10619	u32 inta, inta_mask;
10620
10621	if (!priv)
10622		return IRQ_NONE;
10623
10624	spin_lock(&priv->irq_lock);
10625
10626	if (!(priv->status & STATUS_INT_ENABLED)) {
10627		/* IRQ is disabled */
10628		goto none;
10629	}
10630
10631	inta = ipw_read32(priv, IPW_INTA_RW);
10632	inta_mask = ipw_read32(priv, IPW_INTA_MASK_R);
10633
10634	if (inta == 0xFFFFFFFF) {
10635		/* Hardware disappeared */
10636		IPW_WARNING("IRQ INTA == 0xFFFFFFFF\n");
10637		goto none;
10638	}
10639
10640	if (!(inta & (IPW_INTA_MASK_ALL & inta_mask))) {
10641		/* Shared interrupt */
10642		goto none;
10643	}
10644
10645	/* tell the device to stop sending interrupts */
10646	__ipw_disable_interrupts(priv);
10647
10648	/* ack current interrupts */
10649	inta &= (IPW_INTA_MASK_ALL & inta_mask);
10650	ipw_write32(priv, IPW_INTA_RW, inta);
10651
10652	/* Cache INTA value for our tasklet */
10653	priv->isr_inta = inta;
10654
10655	tasklet_schedule(&priv->irq_tasklet);
10656
10657	spin_unlock(&priv->irq_lock);
10658
10659	return IRQ_HANDLED;
10660      none:
10661	spin_unlock(&priv->irq_lock);
10662	return IRQ_NONE;
10663}
10664
10665static void ipw_rf_kill(void *adapter)
10666{
10667	struct ipw_priv *priv = adapter;
10668	unsigned long flags;
10669
10670	spin_lock_irqsave(&priv->lock, flags);
10671
10672	if (rf_kill_active(priv)) {
10673		IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
10674		if (priv->workqueue)
10675			queue_delayed_work(priv->workqueue,
10676					   &priv->rf_kill, 2 * HZ);
10677		goto exit_unlock;
10678	}
10679
10680	/* RF Kill is now disabled, so bring the device back up */
10681
10682	if (!(priv->status & STATUS_RF_KILL_MASK)) {
10683		IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
10684				  "device\n");
10685
10686		/* we can not do an adapter restart while inside an irq lock */
10687		queue_work(priv->workqueue, &priv->adapter_restart);
10688	} else
10689		IPW_DEBUG_RF_KILL("HW RF Kill deactivated.  SW RF Kill still "
10690				  "enabled\n");
10691
10692      exit_unlock:
10693	spin_unlock_irqrestore(&priv->lock, flags);
10694}
10695
10696static void ipw_bg_rf_kill(struct work_struct *work)
10697{
10698	struct ipw_priv *priv =
10699		container_of(work, struct ipw_priv, rf_kill.work);
10700	mutex_lock(&priv->mutex);
10701	ipw_rf_kill(priv);
10702	mutex_unlock(&priv->mutex);
10703}
10704
10705static void ipw_link_up(struct ipw_priv *priv)
10706{
10707	priv->last_seq_num = -1;
10708	priv->last_frag_num = -1;
10709	priv->last_packet_time = 0;
10710
10711	netif_carrier_on(priv->net_dev);
10712
10713	cancel_delayed_work(&priv->request_scan);
10714	cancel_delayed_work(&priv->request_direct_scan);
10715	cancel_delayed_work(&priv->request_passive_scan);
10716	cancel_delayed_work(&priv->scan_event);
10717	ipw_reset_stats(priv);
10718	/* Ensure the rate is updated immediately */
10719	priv->last_rate = ipw_get_current_rate(priv);
10720	ipw_gather_stats(priv);
10721	ipw_led_link_up(priv);
10722	notify_wx_assoc_event(priv);
10723
10724	if (priv->config & CFG_BACKGROUND_SCAN)
10725		queue_delayed_work(priv->workqueue, &priv->request_scan, HZ);
10726}
10727
10728static void ipw_bg_link_up(struct work_struct *work)
10729{
10730	struct ipw_priv *priv =
10731		container_of(work, struct ipw_priv, link_up);
10732	mutex_lock(&priv->mutex);
10733	ipw_link_up(priv);
10734	mutex_unlock(&priv->mutex);
10735}
10736
10737static void ipw_link_down(struct ipw_priv *priv)
10738{
10739	ipw_led_link_down(priv);
10740	netif_carrier_off(priv->net_dev);
10741	notify_wx_assoc_event(priv);
10742
10743	/* Cancel any queued work ... */
10744	cancel_delayed_work(&priv->request_scan);
10745	cancel_delayed_work(&priv->request_direct_scan);
10746	cancel_delayed_work(&priv->request_passive_scan);
10747	cancel_delayed_work(&priv->adhoc_check);
10748	cancel_delayed_work(&priv->gather_stats);
10749
10750	ipw_reset_stats(priv);
10751
10752	if (!(priv->status & STATUS_EXIT_PENDING)) {
10753		/* Queue up another scan... */
10754		queue_delayed_work(priv->workqueue, &priv->request_scan, 0);
10755	} else
10756		cancel_delayed_work(&priv->scan_event);
10757}
10758
10759static void ipw_bg_link_down(struct work_struct *work)
10760{
10761	struct ipw_priv *priv =
10762		container_of(work, struct ipw_priv, link_down);
10763	mutex_lock(&priv->mutex);
10764	ipw_link_down(priv);
10765	mutex_unlock(&priv->mutex);
10766}
10767
10768static int __devinit ipw_setup_deferred_work(struct ipw_priv *priv)
10769{
10770	int ret = 0;
10771
10772	priv->workqueue = create_workqueue(DRV_NAME);
10773	init_waitqueue_head(&priv->wait_command_queue);
10774	init_waitqueue_head(&priv->wait_state);
10775
10776	INIT_DELAYED_WORK(&priv->adhoc_check, ipw_bg_adhoc_check);
10777	INIT_WORK(&priv->associate, ipw_bg_associate);
10778	INIT_WORK(&priv->disassociate, ipw_bg_disassociate);
10779	INIT_WORK(&priv->system_config, ipw_system_config);
10780	INIT_WORK(&priv->rx_replenish, ipw_bg_rx_queue_replenish);
10781	INIT_WORK(&priv->adapter_restart, ipw_bg_adapter_restart);
10782	INIT_DELAYED_WORK(&priv->rf_kill, ipw_bg_rf_kill);
10783	INIT_WORK(&priv->up, ipw_bg_up);
10784	INIT_WORK(&priv->down, ipw_bg_down);
10785	INIT_DELAYED_WORK(&priv->request_scan, ipw_request_scan);
10786	INIT_DELAYED_WORK(&priv->request_direct_scan, ipw_request_direct_scan);
10787	INIT_DELAYED_WORK(&priv->request_passive_scan, ipw_request_passive_scan);
10788	INIT_DELAYED_WORK(&priv->scan_event, ipw_scan_event);
10789	INIT_DELAYED_WORK(&priv->gather_stats, ipw_bg_gather_stats);
10790	INIT_WORK(&priv->abort_scan, ipw_bg_abort_scan);
10791	INIT_WORK(&priv->roam, ipw_bg_roam);
10792	INIT_DELAYED_WORK(&priv->scan_check, ipw_bg_scan_check);
10793	INIT_WORK(&priv->link_up, ipw_bg_link_up);
10794	INIT_WORK(&priv->link_down, ipw_bg_link_down);
10795	INIT_DELAYED_WORK(&priv->led_link_on, ipw_bg_led_link_on);
10796	INIT_DELAYED_WORK(&priv->led_link_off, ipw_bg_led_link_off);
10797	INIT_DELAYED_WORK(&priv->led_act_off, ipw_bg_led_activity_off);
10798	INIT_WORK(&priv->merge_networks, ipw_merge_adhoc_network);
10799
10800#ifdef CONFIG_IPW2200_QOS
10801	INIT_WORK(&priv->qos_activate, ipw_bg_qos_activate);
10802#endif				/* CONFIG_IPW2200_QOS */
10803
10804	tasklet_init(&priv->irq_tasklet, (void (*)(unsigned long))
10805		     ipw_irq_tasklet, (unsigned long)priv);
10806
10807	return ret;
10808}
10809
10810static void shim__set_security(struct net_device *dev,
10811			       struct libipw_security *sec)
10812{
10813	struct ipw_priv *priv = libipw_priv(dev);
10814	int i;
10815	for (i = 0; i < 4; i++) {
10816		if (sec->flags & (1 << i)) {
10817			priv->ieee->sec.encode_alg[i] = sec->encode_alg[i];
10818			priv->ieee->sec.key_sizes[i] = sec->key_sizes[i];
10819			if (sec->key_sizes[i] == 0)
10820				priv->ieee->sec.flags &= ~(1 << i);
10821			else {
10822				memcpy(priv->ieee->sec.keys[i], sec->keys[i],
10823				       sec->key_sizes[i]);
10824				priv->ieee->sec.flags |= (1 << i);
10825			}
10826			priv->status |= STATUS_SECURITY_UPDATED;
10827		} else if (sec->level != SEC_LEVEL_1)
10828			priv->ieee->sec.flags &= ~(1 << i);
10829	}
10830
10831	if (sec->flags & SEC_ACTIVE_KEY) {
10832		if (sec->active_key <= 3) {
10833			priv->ieee->sec.active_key = sec->active_key;
10834			priv->ieee->sec.flags |= SEC_ACTIVE_KEY;
10835		} else
10836			priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
10837		priv->status |= STATUS_SECURITY_UPDATED;
10838	} else
10839		priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
10840
10841	if ((sec->flags & SEC_AUTH_MODE) &&
10842	    (priv->ieee->sec.auth_mode != sec->auth_mode)) {
10843		priv->ieee->sec.auth_mode = sec->auth_mode;
10844		priv->ieee->sec.flags |= SEC_AUTH_MODE;
10845		if (sec->auth_mode == WLAN_AUTH_SHARED_KEY)
10846			priv->capability |= CAP_SHARED_KEY;
10847		else
10848			priv->capability &= ~CAP_SHARED_KEY;
10849		priv->status |= STATUS_SECURITY_UPDATED;
10850	}
10851
10852	if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) {
10853		priv->ieee->sec.flags |= SEC_ENABLED;
10854		priv->ieee->sec.enabled = sec->enabled;
10855		priv->status |= STATUS_SECURITY_UPDATED;
10856		if (sec->enabled)
10857			priv->capability |= CAP_PRIVACY_ON;
10858		else
10859			priv->capability &= ~CAP_PRIVACY_ON;
10860	}
10861
10862	if (sec->flags & SEC_ENCRYPT)
10863		priv->ieee->sec.encrypt = sec->encrypt;
10864
10865	if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) {
10866		priv->ieee->sec.level = sec->level;
10867		priv->ieee->sec.flags |= SEC_LEVEL;
10868		priv->status |= STATUS_SECURITY_UPDATED;
10869	}
10870
10871	if (!priv->ieee->host_encrypt && (sec->flags & SEC_ENCRYPT))
10872		ipw_set_hwcrypto_keys(priv);
10873
10874	/* To match current functionality of ipw2100 (which works well w/
10875	 * various supplicants, we don't force a disassociate if the
10876	 * privacy capability changes ... */
10877#if 0
10878	if ((priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) &&
10879	    (((priv->assoc_request.capability &
10880	       cpu_to_le16(WLAN_CAPABILITY_PRIVACY)) && !sec->enabled) ||
10881	     (!(priv->assoc_request.capability &
10882		cpu_to_le16(WLAN_CAPABILITY_PRIVACY)) && sec->enabled))) {
10883		IPW_DEBUG_ASSOC("Disassociating due to capability "
10884				"change.\n");
10885		ipw_disassociate(priv);
10886	}
10887#endif
10888}
10889
10890static int init_supported_rates(struct ipw_priv *priv,
10891				struct ipw_supported_rates *rates)
10892{
10893	/* TODO: Mask out rates based on priv->rates_mask */
10894
10895	memset(rates, 0, sizeof(*rates));
10896	/* configure supported rates */
10897	switch (priv->ieee->freq_band) {
10898	case LIBIPW_52GHZ_BAND:
10899		rates->ieee_mode = IPW_A_MODE;
10900		rates->purpose = IPW_RATE_CAPABILITIES;
10901		ipw_add_ofdm_scan_rates(rates, LIBIPW_CCK_MODULATION,
10902					LIBIPW_OFDM_DEFAULT_RATES_MASK);
10903		break;
10904
10905	default:		/* Mixed or 2.4Ghz */
10906		rates->ieee_mode = IPW_G_MODE;
10907		rates->purpose = IPW_RATE_CAPABILITIES;
10908		ipw_add_cck_scan_rates(rates, LIBIPW_CCK_MODULATION,
10909				       LIBIPW_CCK_DEFAULT_RATES_MASK);
10910		if (priv->ieee->modulation & LIBIPW_OFDM_MODULATION) {
10911			ipw_add_ofdm_scan_rates(rates, LIBIPW_CCK_MODULATION,
10912						LIBIPW_OFDM_DEFAULT_RATES_MASK);
10913		}
10914		break;
10915	}
10916
10917	return 0;
10918}
10919
10920static int ipw_config(struct ipw_priv *priv)
10921{
10922	/* This is only called from ipw_up, which resets/reloads the firmware
10923	   so, we don't need to first disable the card before we configure
10924	   it */
10925	if (ipw_set_tx_power(priv))
10926		goto error;
10927
10928	/* initialize adapter address */
10929	if (ipw_send_adapter_address(priv, priv->net_dev->dev_addr))
10930		goto error;
10931
10932	/* set basic system config settings */
10933	init_sys_config(&priv->sys_config);
10934
10935	/* Support Bluetooth if we have BT h/w on board, and user wants to.
10936	 * Does not support BT priority yet (don't abort or defer our Tx) */
10937	if (bt_coexist) {
10938		unsigned char bt_caps = priv->eeprom[EEPROM_SKU_CAPABILITY];
10939
10940		if (bt_caps & EEPROM_SKU_CAP_BT_CHANNEL_SIG)
10941			priv->sys_config.bt_coexistence
10942			    |= CFG_BT_COEXISTENCE_SIGNAL_CHNL;
10943		if (bt_caps & EEPROM_SKU_CAP_BT_OOB)
10944			priv->sys_config.bt_coexistence
10945			    |= CFG_BT_COEXISTENCE_OOB;
10946	}
10947
10948#ifdef CONFIG_IPW2200_PROMISCUOUS
10949	if (priv->prom_net_dev && netif_running(priv->prom_net_dev)) {
10950		priv->sys_config.accept_all_data_frames = 1;
10951		priv->sys_config.accept_non_directed_frames = 1;
10952		priv->sys_config.accept_all_mgmt_bcpr = 1;
10953		priv->sys_config.accept_all_mgmt_frames = 1;
10954	}
10955#endif
10956
10957	if (priv->ieee->iw_mode == IW_MODE_ADHOC)
10958		priv->sys_config.answer_broadcast_ssid_probe = 1;
10959	else
10960		priv->sys_config.answer_broadcast_ssid_probe = 0;
10961
10962	if (ipw_send_system_config(priv))
10963		goto error;
10964
10965	init_supported_rates(priv, &priv->rates);
10966	if (ipw_send_supported_rates(priv, &priv->rates))
10967		goto error;
10968
10969	/* Set request-to-send threshold */
10970	if (priv->rts_threshold) {
10971		if (ipw_send_rts_threshold(priv, priv->rts_threshold))
10972			goto error;
10973	}
10974#ifdef CONFIG_IPW2200_QOS
10975	IPW_DEBUG_QOS("QoS: call ipw_qos_activate\n");
10976	ipw_qos_activate(priv, NULL);
10977#endif				/* CONFIG_IPW2200_QOS */
10978
10979	if (ipw_set_random_seed(priv))
10980		goto error;
10981
10982	/* final state transition to the RUN state */
10983	if (ipw_send_host_complete(priv))
10984		goto error;
10985
10986	priv->status |= STATUS_INIT;
10987
10988	ipw_led_init(priv);
10989	ipw_led_radio_on(priv);
10990	priv->notif_missed_beacons = 0;
10991
10992	/* Set hardware WEP key if it is configured. */
10993	if ((priv->capability & CAP_PRIVACY_ON) &&
10994	    (priv->ieee->sec.level == SEC_LEVEL_1) &&
10995	    !(priv->ieee->host_encrypt || priv->ieee->host_decrypt))
10996		ipw_set_hwcrypto_keys(priv);
10997
10998	return 0;
10999
11000      error:
11001	return -EIO;
11002}
11003
11004/*
11005 * NOTE:
11006 *
11007 * These tables have been tested in conjunction with the
11008 * Intel PRO/Wireless 2200BG and 2915ABG Network Connection Adapters.
11009 *
11010 * Altering this values, using it on other hardware, or in geographies
11011 * not intended for resale of the above mentioned Intel adapters has
11012 * not been tested.
11013 *
11014 * Remember to update the table in README.ipw2200 when changing this
11015 * table.
11016 *
11017 */
11018static const struct libipw_geo ipw_geos[] = {
11019	{			/* Restricted */
11020	 "---",
11021	 .bg_channels = 11,
11022	 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11023		{2427, 4}, {2432, 5}, {2437, 6},
11024		{2442, 7}, {2447, 8}, {2452, 9},
11025		{2457, 10}, {2462, 11}},
11026	 },
11027
11028	{			/* Custom US/Canada */
11029	 "ZZF",
11030	 .bg_channels = 11,
11031	 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11032		{2427, 4}, {2432, 5}, {2437, 6},
11033		{2442, 7}, {2447, 8}, {2452, 9},
11034		{2457, 10}, {2462, 11}},
11035	 .a_channels = 8,
11036	 .a = {{5180, 36},
11037	       {5200, 40},
11038	       {5220, 44},
11039	       {5240, 48},
11040	       {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
11041	       {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
11042	       {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
11043	       {5320, 64, LIBIPW_CH_PASSIVE_ONLY}},
11044	 },
11045
11046	{			/* Rest of World */
11047	 "ZZD",
11048	 .bg_channels = 13,
11049	 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11050		{2427, 4}, {2432, 5}, {2437, 6},
11051		{2442, 7}, {2447, 8}, {2452, 9},
11052		{2457, 10}, {2462, 11}, {2467, 12},
11053		{2472, 13}},
11054	 },
11055
11056	{			/* Custom USA & Europe & High */
11057	 "ZZA",
11058	 .bg_channels = 11,
11059	 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11060		{2427, 4}, {2432, 5}, {2437, 6},
11061		{2442, 7}, {2447, 8}, {2452, 9},
11062		{2457, 10}, {2462, 11}},
11063	 .a_channels = 13,
11064	 .a = {{5180, 36},
11065	       {5200, 40},
11066	       {5220, 44},
11067	       {5240, 48},
11068	       {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
11069	       {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
11070	       {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
11071	       {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
11072	       {5745, 149},
11073	       {5765, 153},
11074	       {5785, 157},
11075	       {5805, 161},
11076	       {5825, 165}},
11077	 },
11078
11079	{			/* Custom NA & Europe */
11080	 "ZZB",
11081	 .bg_channels = 11,
11082	 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11083		{2427, 4}, {2432, 5}, {2437, 6},
11084		{2442, 7}, {2447, 8}, {2452, 9},
11085		{2457, 10}, {2462, 11}},
11086	 .a_channels = 13,
11087	 .a = {{5180, 36},
11088	       {5200, 40},
11089	       {5220, 44},
11090	       {5240, 48},
11091	       {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
11092	       {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
11093	       {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
11094	       {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
11095	       {5745, 149, LIBIPW_CH_PASSIVE_ONLY},
11096	       {5765, 153, LIBIPW_CH_PASSIVE_ONLY},
11097	       {5785, 157, LIBIPW_CH_PASSIVE_ONLY},
11098	       {5805, 161, LIBIPW_CH_PASSIVE_ONLY},
11099	       {5825, 165, LIBIPW_CH_PASSIVE_ONLY}},
11100	 },
11101
11102	{			/* Custom Japan */
11103	 "ZZC",
11104	 .bg_channels = 11,
11105	 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11106		{2427, 4}, {2432, 5}, {2437, 6},
11107		{2442, 7}, {2447, 8}, {2452, 9},
11108		{2457, 10}, {2462, 11}},
11109	 .a_channels = 4,
11110	 .a = {{5170, 34}, {5190, 38},
11111	       {5210, 42}, {5230, 46}},
11112	 },
11113
11114	{			/* Custom */
11115	 "ZZM",
11116	 .bg_channels = 11,
11117	 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11118		{2427, 4}, {2432, 5}, {2437, 6},
11119		{2442, 7}, {2447, 8}, {2452, 9},
11120		{2457, 10}, {2462, 11}},
11121	 },
11122
11123	{			/* Europe */
11124	 "ZZE",
11125	 .bg_channels = 13,
11126	 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11127		{2427, 4}, {2432, 5}, {2437, 6},
11128		{2442, 7}, {2447, 8}, {2452, 9},
11129		{2457, 10}, {2462, 11}, {2467, 12},
11130		{2472, 13}},
11131	 .a_channels = 19,
11132	 .a = {{5180, 36},
11133	       {5200, 40},
11134	       {5220, 44},
11135	       {5240, 48},
11136	       {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
11137	       {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
11138	       {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
11139	       {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
11140	       {5500, 100, LIBIPW_CH_PASSIVE_ONLY},
11141	       {5520, 104, LIBIPW_CH_PASSIVE_ONLY},
11142	       {5540, 108, LIBIPW_CH_PASSIVE_ONLY},
11143	       {5560, 112, LIBIPW_CH_PASSIVE_ONLY},
11144	       {5580, 116, LIBIPW_CH_PASSIVE_ONLY},
11145	       {5600, 120, LIBIPW_CH_PASSIVE_ONLY},
11146	       {5620, 124, LIBIPW_CH_PASSIVE_ONLY},
11147	       {5640, 128, LIBIPW_CH_PASSIVE_ONLY},
11148	       {5660, 132, LIBIPW_CH_PASSIVE_ONLY},
11149	       {5680, 136, LIBIPW_CH_PASSIVE_ONLY},
11150	       {5700, 140, LIBIPW_CH_PASSIVE_ONLY}},
11151	 },
11152
11153	{			/* Custom Japan */
11154	 "ZZJ",
11155	 .bg_channels = 14,
11156	 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11157		{2427, 4}, {2432, 5}, {2437, 6},
11158		{2442, 7}, {2447, 8}, {2452, 9},
11159		{2457, 10}, {2462, 11}, {2467, 12},
11160		{2472, 13}, {2484, 14, LIBIPW_CH_B_ONLY}},
11161	 .a_channels = 4,
11162	 .a = {{5170, 34}, {5190, 38},
11163	       {5210, 42}, {5230, 46}},
11164	 },
11165
11166	{			/* Rest of World */
11167	 "ZZR",
11168	 .bg_channels = 14,
11169	 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11170		{2427, 4}, {2432, 5}, {2437, 6},
11171		{2442, 7}, {2447, 8}, {2452, 9},
11172		{2457, 10}, {2462, 11}, {2467, 12},
11173		{2472, 13}, {2484, 14, LIBIPW_CH_B_ONLY |
11174			     LIBIPW_CH_PASSIVE_ONLY}},
11175	 },
11176
11177	{			/* High Band */
11178	 "ZZH",
11179	 .bg_channels = 13,
11180	 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11181		{2427, 4}, {2432, 5}, {2437, 6},
11182		{2442, 7}, {2447, 8}, {2452, 9},
11183		{2457, 10}, {2462, 11},
11184		{2467, 12, LIBIPW_CH_PASSIVE_ONLY},
11185		{2472, 13, LIBIPW_CH_PASSIVE_ONLY}},
11186	 .a_channels = 4,
11187	 .a = {{5745, 149}, {5765, 153},
11188	       {5785, 157}, {5805, 161}},
11189	 },
11190
11191	{			/* Custom Europe */
11192	 "ZZG",
11193	 .bg_channels = 13,
11194	 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11195		{2427, 4}, {2432, 5}, {2437, 6},
11196		{2442, 7}, {2447, 8}, {2452, 9},
11197		{2457, 10}, {2462, 11},
11198		{2467, 12}, {2472, 13}},
11199	 .a_channels = 4,
11200	 .a = {{5180, 36}, {5200, 40},
11201	       {5220, 44}, {5240, 48}},
11202	 },
11203
11204	{			/* Europe */
11205	 "ZZK",
11206	 .bg_channels = 13,
11207	 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11208		{2427, 4}, {2432, 5}, {2437, 6},
11209		{2442, 7}, {2447, 8}, {2452, 9},
11210		{2457, 10}, {2462, 11},
11211		{2467, 12, LIBIPW_CH_PASSIVE_ONLY},
11212		{2472, 13, LIBIPW_CH_PASSIVE_ONLY}},
11213	 .a_channels = 24,
11214	 .a = {{5180, 36, LIBIPW_CH_PASSIVE_ONLY},
11215	       {5200, 40, LIBIPW_CH_PASSIVE_ONLY},
11216	       {5220, 44, LIBIPW_CH_PASSIVE_ONLY},
11217	       {5240, 48, LIBIPW_CH_PASSIVE_ONLY},
11218	       {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
11219	       {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
11220	       {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
11221	       {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
11222	       {5500, 100, LIBIPW_CH_PASSIVE_ONLY},
11223	       {5520, 104, LIBIPW_CH_PASSIVE_ONLY},
11224	       {5540, 108, LIBIPW_CH_PASSIVE_ONLY},
11225	       {5560, 112, LIBIPW_CH_PASSIVE_ONLY},
11226	       {5580, 116, LIBIPW_CH_PASSIVE_ONLY},
11227	       {5600, 120, LIBIPW_CH_PASSIVE_ONLY},
11228	       {5620, 124, LIBIPW_CH_PASSIVE_ONLY},
11229	       {5640, 128, LIBIPW_CH_PASSIVE_ONLY},
11230	       {5660, 132, LIBIPW_CH_PASSIVE_ONLY},
11231	       {5680, 136, LIBIPW_CH_PASSIVE_ONLY},
11232	       {5700, 140, LIBIPW_CH_PASSIVE_ONLY},
11233	       {5745, 149, LIBIPW_CH_PASSIVE_ONLY},
11234	       {5765, 153, LIBIPW_CH_PASSIVE_ONLY},
11235	       {5785, 157, LIBIPW_CH_PASSIVE_ONLY},
11236	       {5805, 161, LIBIPW_CH_PASSIVE_ONLY},
11237	       {5825, 165, LIBIPW_CH_PASSIVE_ONLY}},
11238	 },
11239
11240	{			/* Europe */
11241	 "ZZL",
11242	 .bg_channels = 11,
11243	 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11244		{2427, 4}, {2432, 5}, {2437, 6},
11245		{2442, 7}, {2447, 8}, {2452, 9},
11246		{2457, 10}, {2462, 11}},
11247	 .a_channels = 13,
11248	 .a = {{5180, 36, LIBIPW_CH_PASSIVE_ONLY},
11249	       {5200, 40, LIBIPW_CH_PASSIVE_ONLY},
11250	       {5220, 44, LIBIPW_CH_PASSIVE_ONLY},
11251	       {5240, 48, LIBIPW_CH_PASSIVE_ONLY},
11252	       {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
11253	       {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
11254	       {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
11255	       {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
11256	       {5745, 149, LIBIPW_CH_PASSIVE_ONLY},
11257	       {5765, 153, LIBIPW_CH_PASSIVE_ONLY},
11258	       {5785, 157, LIBIPW_CH_PASSIVE_ONLY},
11259	       {5805, 161, LIBIPW_CH_PASSIVE_ONLY},
11260	       {5825, 165, LIBIPW_CH_PASSIVE_ONLY}},
11261	 }
11262};
11263
11264#define MAX_HW_RESTARTS 5
11265static int ipw_up(struct ipw_priv *priv)
11266{
11267	int rc, i, j;
11268
11269	/* Age scan list entries found before suspend */
11270	if (priv->suspend_time) {
11271		libipw_networks_age(priv->ieee, priv->suspend_time);
11272		priv->suspend_time = 0;
11273	}
11274
11275	if (priv->status & STATUS_EXIT_PENDING)
11276		return -EIO;
11277
11278	if (cmdlog && !priv->cmdlog) {
11279		priv->cmdlog = kcalloc(cmdlog, sizeof(*priv->cmdlog),
11280				       GFP_KERNEL);
11281		if (priv->cmdlog == NULL) {
11282			IPW_ERROR("Error allocating %d command log entries.\n",
11283				  cmdlog);
11284			return -ENOMEM;
11285		} else {
11286			priv->cmdlog_len = cmdlog;
11287		}
11288	}
11289
11290	for (i = 0; i < MAX_HW_RESTARTS; i++) {
11291		/* Load the microcode, firmware, and eeprom.
11292		 * Also start the clocks. */
11293		rc = ipw_load(priv);
11294		if (rc) {
11295			IPW_ERROR("Unable to load firmware: %d\n", rc);
11296			return rc;
11297		}
11298
11299		ipw_init_ordinals(priv);
11300		if (!(priv->config & CFG_CUSTOM_MAC))
11301			eeprom_parse_mac(priv, priv->mac_addr);
11302		memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
11303		memcpy(priv->net_dev->perm_addr, priv->mac_addr, ETH_ALEN);
11304
11305		for (j = 0; j < ARRAY_SIZE(ipw_geos); j++) {
11306			if (!memcmp(&priv->eeprom[EEPROM_COUNTRY_CODE],
11307				    ipw_geos[j].name, 3))
11308				break;
11309		}
11310		if (j == ARRAY_SIZE(ipw_geos)) {
11311			IPW_WARNING("SKU [%c%c%c] not recognized.\n",
11312				    priv->eeprom[EEPROM_COUNTRY_CODE + 0],
11313				    priv->eeprom[EEPROM_COUNTRY_CODE + 1],
11314				    priv->eeprom[EEPROM_COUNTRY_CODE + 2]);
11315			j = 0;
11316		}
11317		if (libipw_set_geo(priv->ieee, &ipw_geos[j])) {
11318			IPW_WARNING("Could not set geography.");
11319			return 0;
11320		}
11321
11322		if (priv->status & STATUS_RF_KILL_SW) {
11323			IPW_WARNING("Radio disabled by module parameter.\n");
11324			return 0;
11325		} else if (rf_kill_active(priv)) {
11326			IPW_WARNING("Radio Frequency Kill Switch is On:\n"
11327				    "Kill switch must be turned off for "
11328				    "wireless networking to work.\n");
11329			queue_delayed_work(priv->workqueue, &priv->rf_kill,
11330					   2 * HZ);
11331			return 0;
11332		}
11333
11334		rc = ipw_config(priv);
11335		if (!rc) {
11336			IPW_DEBUG_INFO("Configured device on count %i\n", i);
11337
11338			/* If configure to try and auto-associate, kick
11339			 * off a scan. */
11340			queue_delayed_work(priv->workqueue,
11341					   &priv->request_scan, 0);
11342
11343			return 0;
11344		}
11345
11346		IPW_DEBUG_INFO("Device configuration failed: 0x%08X\n", rc);
11347		IPW_DEBUG_INFO("Failed to config device on retry %d of %d\n",
11348			       i, MAX_HW_RESTARTS);
11349
11350		/* We had an error bringing up the hardware, so take it
11351		 * all the way back down so we can try again */
11352		ipw_down(priv);
11353	}
11354
11355	/* tried to restart and config the device for as long as our
11356	 * patience could withstand */
11357	IPW_ERROR("Unable to initialize device after %d attempts.\n", i);
11358
11359	return -EIO;
11360}
11361
11362static void ipw_bg_up(struct work_struct *work)
11363{
11364	struct ipw_priv *priv =
11365		container_of(work, struct ipw_priv, up);
11366	mutex_lock(&priv->mutex);
11367	ipw_up(priv);
11368	mutex_unlock(&priv->mutex);
11369}
11370
11371static void ipw_deinit(struct ipw_priv *priv)
11372{
11373	int i;
11374
11375	if (priv->status & STATUS_SCANNING) {
11376		IPW_DEBUG_INFO("Aborting scan during shutdown.\n");
11377		ipw_abort_scan(priv);
11378	}
11379
11380	if (priv->status & STATUS_ASSOCIATED) {
11381		IPW_DEBUG_INFO("Disassociating during shutdown.\n");
11382		ipw_disassociate(priv);
11383	}
11384
11385	ipw_led_shutdown(priv);
11386
11387	/* Wait up to 1s for status to change to not scanning and not
11388	 * associated (disassociation can take a while for a ful 802.11
11389	 * exchange */
11390	for (i = 1000; i && (priv->status &
11391			     (STATUS_DISASSOCIATING |
11392			      STATUS_ASSOCIATED | STATUS_SCANNING)); i--)
11393		udelay(10);
11394
11395	if (priv->status & (STATUS_DISASSOCIATING |
11396			    STATUS_ASSOCIATED | STATUS_SCANNING))
11397		IPW_DEBUG_INFO("Still associated or scanning...\n");
11398	else
11399		IPW_DEBUG_INFO("Took %dms to de-init\n", 1000 - i);
11400
11401	/* Attempt to disable the card */
11402	ipw_send_card_disable(priv, 0);
11403
11404	priv->status &= ~STATUS_INIT;
11405}
11406
11407static void ipw_down(struct ipw_priv *priv)
11408{
11409	int exit_pending = priv->status & STATUS_EXIT_PENDING;
11410
11411	priv->status |= STATUS_EXIT_PENDING;
11412
11413	if (ipw_is_init(priv))
11414		ipw_deinit(priv);
11415
11416	/* Wipe out the EXIT_PENDING status bit if we are not actually
11417	 * exiting the module */
11418	if (!exit_pending)
11419		priv->status &= ~STATUS_EXIT_PENDING;
11420
11421	/* tell the device to stop sending interrupts */
11422	ipw_disable_interrupts(priv);
11423
11424	/* Clear all bits but the RF Kill */
11425	priv->status &= STATUS_RF_KILL_MASK | STATUS_EXIT_PENDING;
11426	netif_carrier_off(priv->net_dev);
11427
11428	ipw_stop_nic(priv);
11429
11430	ipw_led_radio_off(priv);
11431}
11432
11433static void ipw_bg_down(struct work_struct *work)
11434{
11435	struct ipw_priv *priv =
11436		container_of(work, struct ipw_priv, down);
11437	mutex_lock(&priv->mutex);
11438	ipw_down(priv);
11439	mutex_unlock(&priv->mutex);
11440}
11441
11442/* Called by register_netdev() */
11443static int ipw_net_init(struct net_device *dev)
11444{
11445	int i, rc = 0;
11446	struct ipw_priv *priv = libipw_priv(dev);
11447	const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
11448	struct wireless_dev *wdev = &priv->ieee->wdev;
11449	mutex_lock(&priv->mutex);
11450
11451	if (ipw_up(priv)) {
11452		rc = -EIO;
11453		goto out;
11454	}
11455
11456	memcpy(wdev->wiphy->perm_addr, priv->mac_addr, ETH_ALEN);
11457
11458	/* fill-out priv->ieee->bg_band */
11459	if (geo->bg_channels) {
11460		struct ieee80211_supported_band *bg_band = &priv->ieee->bg_band;
11461
11462		bg_band->band = IEEE80211_BAND_2GHZ;
11463		bg_band->n_channels = geo->bg_channels;
11464		bg_band->channels =
11465			kzalloc(geo->bg_channels *
11466				sizeof(struct ieee80211_channel), GFP_KERNEL);
11467		/* translate geo->bg to bg_band.channels */
11468		for (i = 0; i < geo->bg_channels; i++) {
11469			bg_band->channels[i].band = IEEE80211_BAND_2GHZ;
11470			bg_band->channels[i].center_freq = geo->bg[i].freq;
11471			bg_band->channels[i].hw_value = geo->bg[i].channel;
11472			bg_band->channels[i].max_power = geo->bg[i].max_power;
11473			if (geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY)
11474				bg_band->channels[i].flags |=
11475					IEEE80211_CHAN_PASSIVE_SCAN;
11476			if (geo->bg[i].flags & LIBIPW_CH_NO_IBSS)
11477				bg_band->channels[i].flags |=
11478					IEEE80211_CHAN_NO_IBSS;
11479			if (geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT)
11480				bg_band->channels[i].flags |=
11481					IEEE80211_CHAN_RADAR;
11482			/* No equivalent for LIBIPW_CH_80211H_RULES,
11483			   LIBIPW_CH_UNIFORM_SPREADING, or
11484			   LIBIPW_CH_B_ONLY... */
11485		}
11486		/* point at bitrate info */
11487		bg_band->bitrates = ipw2200_bg_rates;
11488		bg_band->n_bitrates = ipw2200_num_bg_rates;
11489
11490		wdev->wiphy->bands[IEEE80211_BAND_2GHZ] = bg_band;
11491	}
11492
11493	/* fill-out priv->ieee->a_band */
11494	if (geo->a_channels) {
11495		struct ieee80211_supported_band *a_band = &priv->ieee->a_band;
11496
11497		a_band->band = IEEE80211_BAND_5GHZ;
11498		a_band->n_channels = geo->a_channels;
11499		a_band->channels =
11500			kzalloc(geo->a_channels *
11501				sizeof(struct ieee80211_channel), GFP_KERNEL);
11502		/* translate geo->bg to a_band.channels */
11503		for (i = 0; i < geo->a_channels; i++) {
11504			a_band->channels[i].band = IEEE80211_BAND_2GHZ;
11505			a_band->channels[i].center_freq = geo->a[i].freq;
11506			a_band->channels[i].hw_value = geo->a[i].channel;
11507			a_band->channels[i].max_power = geo->a[i].max_power;
11508			if (geo->a[i].flags & LIBIPW_CH_PASSIVE_ONLY)
11509				a_band->channels[i].flags |=
11510					IEEE80211_CHAN_PASSIVE_SCAN;
11511			if (geo->a[i].flags & LIBIPW_CH_NO_IBSS)
11512				a_band->channels[i].flags |=
11513					IEEE80211_CHAN_NO_IBSS;
11514			if (geo->a[i].flags & LIBIPW_CH_RADAR_DETECT)
11515				a_band->channels[i].flags |=
11516					IEEE80211_CHAN_RADAR;
11517			/* No equivalent for LIBIPW_CH_80211H_RULES,
11518			   LIBIPW_CH_UNIFORM_SPREADING, or
11519			   LIBIPW_CH_B_ONLY... */
11520		}
11521		/* point at bitrate info */
11522		a_band->bitrates = ipw2200_a_rates;
11523		a_band->n_bitrates = ipw2200_num_a_rates;
11524
11525		wdev->wiphy->bands[IEEE80211_BAND_5GHZ] = a_band;
11526	}
11527
11528	set_wiphy_dev(wdev->wiphy, &priv->pci_dev->dev);
11529
11530	/* With that information in place, we can now register the wiphy... */
11531	if (wiphy_register(wdev->wiphy)) {
11532		rc = -EIO;
11533		goto out;
11534	}
11535
11536out:
11537	mutex_unlock(&priv->mutex);
11538	return rc;
11539}
11540
11541/* PCI driver stuff */
11542static DEFINE_PCI_DEVICE_TABLE(card_ids) = {
11543	{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2701, 0, 0, 0},
11544	{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2702, 0, 0, 0},
11545	{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2711, 0, 0, 0},
11546	{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2712, 0, 0, 0},
11547	{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2721, 0, 0, 0},
11548	{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2722, 0, 0, 0},
11549	{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2731, 0, 0, 0},
11550	{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2732, 0, 0, 0},
11551	{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2741, 0, 0, 0},
11552	{PCI_VENDOR_ID_INTEL, 0x1043, 0x103c, 0x2741, 0, 0, 0},
11553	{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2742, 0, 0, 0},
11554	{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2751, 0, 0, 0},
11555	{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2752, 0, 0, 0},
11556	{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2753, 0, 0, 0},
11557	{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2754, 0, 0, 0},
11558	{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2761, 0, 0, 0},
11559	{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2762, 0, 0, 0},
11560	{PCI_VDEVICE(INTEL, 0x104f), 0},
11561	{PCI_VDEVICE(INTEL, 0x4220), 0},	/* BG */
11562	{PCI_VDEVICE(INTEL, 0x4221), 0},	/* BG */
11563	{PCI_VDEVICE(INTEL, 0x4223), 0},	/* ABG */
11564	{PCI_VDEVICE(INTEL, 0x4224), 0},	/* ABG */
11565
11566	/* required last entry */
11567	{0,}
11568};
11569
11570MODULE_DEVICE_TABLE(pci, card_ids);
11571
11572static struct attribute *ipw_sysfs_entries[] = {
11573	&dev_attr_rf_kill.attr,
11574	&dev_attr_direct_dword.attr,
11575	&dev_attr_indirect_byte.attr,
11576	&dev_attr_indirect_dword.attr,
11577	&dev_attr_mem_gpio_reg.attr,
11578	&dev_attr_command_event_reg.attr,
11579	&dev_attr_nic_type.attr,
11580	&dev_attr_status.attr,
11581	&dev_attr_cfg.attr,
11582	&dev_attr_error.attr,
11583	&dev_attr_event_log.attr,
11584	&dev_attr_cmd_log.attr,
11585	&dev_attr_eeprom_delay.attr,
11586	&dev_attr_ucode_version.attr,
11587	&dev_attr_rtc.attr,
11588	&dev_attr_scan_age.attr,
11589	&dev_attr_led.attr,
11590	&dev_attr_speed_scan.attr,
11591	&dev_attr_net_stats.attr,
11592	&dev_attr_channels.attr,
11593#ifdef CONFIG_IPW2200_PROMISCUOUS
11594	&dev_attr_rtap_iface.attr,
11595	&dev_attr_rtap_filter.attr,
11596#endif
11597	NULL
11598};
11599
11600static struct attribute_group ipw_attribute_group = {
11601	.name = NULL,		/* put in device directory */
11602	.attrs = ipw_sysfs_entries,
11603};
11604
11605#ifdef CONFIG_IPW2200_PROMISCUOUS
11606static int ipw_prom_open(struct net_device *dev)
11607{
11608	struct ipw_prom_priv *prom_priv = libipw_priv(dev);
11609	struct ipw_priv *priv = prom_priv->priv;
11610
11611	IPW_DEBUG_INFO("prom dev->open\n");
11612	netif_carrier_off(dev);
11613
11614	if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
11615		priv->sys_config.accept_all_data_frames = 1;
11616		priv->sys_config.accept_non_directed_frames = 1;
11617		priv->sys_config.accept_all_mgmt_bcpr = 1;
11618		priv->sys_config.accept_all_mgmt_frames = 1;
11619
11620		ipw_send_system_config(priv);
11621	}
11622
11623	return 0;
11624}
11625
11626static int ipw_prom_stop(struct net_device *dev)
11627{
11628	struct ipw_prom_priv *prom_priv = libipw_priv(dev);
11629	struct ipw_priv *priv = prom_priv->priv;
11630
11631	IPW_DEBUG_INFO("prom dev->stop\n");
11632
11633	if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
11634		priv->sys_config.accept_all_data_frames = 0;
11635		priv->sys_config.accept_non_directed_frames = 0;
11636		priv->sys_config.accept_all_mgmt_bcpr = 0;
11637		priv->sys_config.accept_all_mgmt_frames = 0;
11638
11639		ipw_send_system_config(priv);
11640	}
11641
11642	return 0;
11643}
11644
11645static netdev_tx_t ipw_prom_hard_start_xmit(struct sk_buff *skb,
11646					    struct net_device *dev)
11647{
11648	IPW_DEBUG_INFO("prom dev->xmit\n");
11649	dev_kfree_skb(skb);
11650	return NETDEV_TX_OK;
11651}
11652
11653static const struct net_device_ops ipw_prom_netdev_ops = {
11654	.ndo_open 		= ipw_prom_open,
11655	.ndo_stop		= ipw_prom_stop,
11656	.ndo_start_xmit		= ipw_prom_hard_start_xmit,
11657	.ndo_change_mtu		= libipw_change_mtu,
11658	.ndo_set_mac_address 	= eth_mac_addr,
11659	.ndo_validate_addr	= eth_validate_addr,
11660};
11661
11662static int ipw_prom_alloc(struct ipw_priv *priv)
11663{
11664	int rc = 0;
11665
11666	if (priv->prom_net_dev)
11667		return -EPERM;
11668
11669	priv->prom_net_dev = alloc_libipw(sizeof(struct ipw_prom_priv), 1);
11670	if (priv->prom_net_dev == NULL)
11671		return -ENOMEM;
11672
11673	priv->prom_priv = libipw_priv(priv->prom_net_dev);
11674	priv->prom_priv->ieee = netdev_priv(priv->prom_net_dev);
11675	priv->prom_priv->priv = priv;
11676
11677	strcpy(priv->prom_net_dev->name, "rtap%d");
11678	memcpy(priv->prom_net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
11679
11680	priv->prom_net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
11681	priv->prom_net_dev->netdev_ops = &ipw_prom_netdev_ops;
11682
11683	priv->prom_priv->ieee->iw_mode = IW_MODE_MONITOR;
11684	SET_NETDEV_DEV(priv->prom_net_dev, &priv->pci_dev->dev);
11685
11686	rc = register_netdev(priv->prom_net_dev);
11687	if (rc) {
11688		free_libipw(priv->prom_net_dev, 1);
11689		priv->prom_net_dev = NULL;
11690		return rc;
11691	}
11692
11693	return 0;
11694}
11695
11696static void ipw_prom_free(struct ipw_priv *priv)
11697{
11698	if (!priv->prom_net_dev)
11699		return;
11700
11701	unregister_netdev(priv->prom_net_dev);
11702	free_libipw(priv->prom_net_dev, 1);
11703
11704	priv->prom_net_dev = NULL;
11705}
11706
11707#endif
11708
11709static const struct net_device_ops ipw_netdev_ops = {
11710	.ndo_init		= ipw_net_init,
11711	.ndo_open		= ipw_net_open,
11712	.ndo_stop		= ipw_net_stop,
11713	.ndo_set_multicast_list	= ipw_net_set_multicast_list,
11714	.ndo_set_mac_address	= ipw_net_set_mac_address,
11715	.ndo_start_xmit		= libipw_xmit,
11716	.ndo_change_mtu		= libipw_change_mtu,
11717	.ndo_validate_addr	= eth_validate_addr,
11718};
11719
11720static int __devinit ipw_pci_probe(struct pci_dev *pdev,
11721				   const struct pci_device_id *ent)
11722{
11723	int err = 0;
11724	struct net_device *net_dev;
11725	void __iomem *base;
11726	u32 length, val;
11727	struct ipw_priv *priv;
11728	int i;
11729
11730	net_dev = alloc_libipw(sizeof(struct ipw_priv), 0);
11731	if (net_dev == NULL) {
11732		err = -ENOMEM;
11733		goto out;
11734	}
11735
11736	priv = libipw_priv(net_dev);
11737	priv->ieee = netdev_priv(net_dev);
11738
11739	priv->net_dev = net_dev;
11740	priv->pci_dev = pdev;
11741	ipw_debug_level = debug;
11742	spin_lock_init(&priv->irq_lock);
11743	spin_lock_init(&priv->lock);
11744	for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++)
11745		INIT_LIST_HEAD(&priv->ibss_mac_hash[i]);
11746
11747	mutex_init(&priv->mutex);
11748	if (pci_enable_device(pdev)) {
11749		err = -ENODEV;
11750		goto out_free_libipw;
11751	}
11752
11753	pci_set_master(pdev);
11754
11755	err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
11756	if (!err)
11757		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
11758	if (err) {
11759		printk(KERN_WARNING DRV_NAME ": No suitable DMA available.\n");
11760		goto out_pci_disable_device;
11761	}
11762
11763	pci_set_drvdata(pdev, priv);
11764
11765	err = pci_request_regions(pdev, DRV_NAME);
11766	if (err)
11767		goto out_pci_disable_device;
11768
11769	/* We disable the RETRY_TIMEOUT register (0x41) to keep
11770	 * PCI Tx retries from interfering with C3 CPU state */
11771	pci_read_config_dword(pdev, 0x40, &val);
11772	if ((val & 0x0000ff00) != 0)
11773		pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
11774
11775	length = pci_resource_len(pdev, 0);
11776	priv->hw_len = length;
11777
11778	base = pci_ioremap_bar(pdev, 0);
11779	if (!base) {
11780		err = -ENODEV;
11781		goto out_pci_release_regions;
11782	}
11783
11784	priv->hw_base = base;
11785	IPW_DEBUG_INFO("pci_resource_len = 0x%08x\n", length);
11786	IPW_DEBUG_INFO("pci_resource_base = %p\n", base);
11787
11788	err = ipw_setup_deferred_work(priv);
11789	if (err) {
11790		IPW_ERROR("Unable to setup deferred work\n");
11791		goto out_iounmap;
11792	}
11793
11794	ipw_sw_reset(priv, 1);
11795
11796	err = request_irq(pdev->irq, ipw_isr, IRQF_SHARED, DRV_NAME, priv);
11797	if (err) {
11798		IPW_ERROR("Error allocating IRQ %d\n", pdev->irq);
11799		goto out_destroy_workqueue;
11800	}
11801
11802	SET_NETDEV_DEV(net_dev, &pdev->dev);
11803
11804	mutex_lock(&priv->mutex);
11805
11806	priv->ieee->hard_start_xmit = ipw_net_hard_start_xmit;
11807	priv->ieee->set_security = shim__set_security;
11808	priv->ieee->is_queue_full = ipw_net_is_queue_full;
11809
11810#ifdef CONFIG_IPW2200_QOS
11811	priv->ieee->is_qos_active = ipw_is_qos_active;
11812	priv->ieee->handle_probe_response = ipw_handle_beacon;
11813	priv->ieee->handle_beacon = ipw_handle_probe_response;
11814	priv->ieee->handle_assoc_response = ipw_handle_assoc_response;
11815#endif				/* CONFIG_IPW2200_QOS */
11816
11817	priv->ieee->perfect_rssi = -20;
11818	priv->ieee->worst_rssi = -85;
11819
11820	net_dev->netdev_ops = &ipw_netdev_ops;
11821	priv->wireless_data.spy_data = &priv->ieee->spy_data;
11822	net_dev->wireless_data = &priv->wireless_data;
11823	net_dev->wireless_handlers = &ipw_wx_handler_def;
11824	net_dev->ethtool_ops = &ipw_ethtool_ops;
11825	net_dev->irq = pdev->irq;
11826	net_dev->base_addr = (unsigned long)priv->hw_base;
11827	net_dev->mem_start = pci_resource_start(pdev, 0);
11828	net_dev->mem_end = net_dev->mem_start + pci_resource_len(pdev, 0) - 1;
11829
11830	err = sysfs_create_group(&pdev->dev.kobj, &ipw_attribute_group);
11831	if (err) {
11832		IPW_ERROR("failed to create sysfs device attributes\n");
11833		mutex_unlock(&priv->mutex);
11834		goto out_release_irq;
11835	}
11836
11837	mutex_unlock(&priv->mutex);
11838	err = register_netdev(net_dev);
11839	if (err) {
11840		IPW_ERROR("failed to register network device\n");
11841		goto out_remove_sysfs;
11842	}
11843
11844#ifdef CONFIG_IPW2200_PROMISCUOUS
11845	if (rtap_iface) {
11846	        err = ipw_prom_alloc(priv);
11847		if (err) {
11848			IPW_ERROR("Failed to register promiscuous network "
11849				  "device (error %d).\n", err);
11850			unregister_netdev(priv->net_dev);
11851			goto out_remove_sysfs;
11852		}
11853	}
11854#endif
11855
11856	printk(KERN_INFO DRV_NAME ": Detected geography %s (%d 802.11bg "
11857	       "channels, %d 802.11a channels)\n",
11858	       priv->ieee->geo.name, priv->ieee->geo.bg_channels,
11859	       priv->ieee->geo.a_channels);
11860
11861	return 0;
11862
11863      out_remove_sysfs:
11864	sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group);
11865      out_release_irq:
11866	free_irq(pdev->irq, priv);
11867      out_destroy_workqueue:
11868	destroy_workqueue(priv->workqueue);
11869	priv->workqueue = NULL;
11870      out_iounmap:
11871	iounmap(priv->hw_base);
11872      out_pci_release_regions:
11873	pci_release_regions(pdev);
11874      out_pci_disable_device:
11875	pci_disable_device(pdev);
11876	pci_set_drvdata(pdev, NULL);
11877      out_free_libipw:
11878	free_libipw(priv->net_dev, 0);
11879      out:
11880	return err;
11881}
11882
11883static void __devexit ipw_pci_remove(struct pci_dev *pdev)
11884{
11885	struct ipw_priv *priv = pci_get_drvdata(pdev);
11886	struct list_head *p, *q;
11887	int i;
11888
11889	if (!priv)
11890		return;
11891
11892	mutex_lock(&priv->mutex);
11893
11894	priv->status |= STATUS_EXIT_PENDING;
11895	ipw_down(priv);
11896	sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group);
11897
11898	mutex_unlock(&priv->mutex);
11899
11900	unregister_netdev(priv->net_dev);
11901
11902	if (priv->rxq) {
11903		ipw_rx_queue_free(priv, priv->rxq);
11904		priv->rxq = NULL;
11905	}
11906	ipw_tx_queue_free(priv);
11907
11908	if (priv->cmdlog) {
11909		kfree(priv->cmdlog);
11910		priv->cmdlog = NULL;
11911	}
11912	/* ipw_down will ensure that there is no more pending work
11913	 * in the workqueue's, so we can safely remove them now. */
11914	cancel_delayed_work(&priv->adhoc_check);
11915	cancel_delayed_work(&priv->gather_stats);
11916	cancel_delayed_work(&priv->request_scan);
11917	cancel_delayed_work(&priv->request_direct_scan);
11918	cancel_delayed_work(&priv->request_passive_scan);
11919	cancel_delayed_work(&priv->scan_event);
11920	cancel_delayed_work(&priv->rf_kill);
11921	cancel_delayed_work(&priv->scan_check);
11922	destroy_workqueue(priv->workqueue);
11923	priv->workqueue = NULL;
11924
11925	/* Free MAC hash list for ADHOC */
11926	for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++) {
11927		list_for_each_safe(p, q, &priv->ibss_mac_hash[i]) {
11928			list_del(p);
11929			kfree(list_entry(p, struct ipw_ibss_seq, list));
11930		}
11931	}
11932
11933	kfree(priv->error);
11934	priv->error = NULL;
11935
11936#ifdef CONFIG_IPW2200_PROMISCUOUS
11937	ipw_prom_free(priv);
11938#endif
11939
11940	free_irq(pdev->irq, priv);
11941	iounmap(priv->hw_base);
11942	pci_release_regions(pdev);
11943	pci_disable_device(pdev);
11944	pci_set_drvdata(pdev, NULL);
11945	/* wiphy_unregister needs to be here, before free_libipw */
11946	wiphy_unregister(priv->ieee->wdev.wiphy);
11947	kfree(priv->ieee->a_band.channels);
11948	kfree(priv->ieee->bg_band.channels);
11949	free_libipw(priv->net_dev, 0);
11950	free_firmware();
11951}
11952
11953#ifdef CONFIG_PM
11954static int ipw_pci_suspend(struct pci_dev *pdev, pm_message_t state)
11955{
11956	struct ipw_priv *priv = pci_get_drvdata(pdev);
11957	struct net_device *dev = priv->net_dev;
11958
11959	printk(KERN_INFO "%s: Going into suspend...\n", dev->name);
11960
11961	/* Take down the device; powers it off, etc. */
11962	ipw_down(priv);
11963
11964	/* Remove the PRESENT state of the device */
11965	netif_device_detach(dev);
11966
11967	pci_save_state(pdev);
11968	pci_disable_device(pdev);
11969	pci_set_power_state(pdev, pci_choose_state(pdev, state));
11970
11971	priv->suspend_at = get_seconds();
11972
11973	return 0;
11974}
11975
11976static int ipw_pci_resume(struct pci_dev *pdev)
11977{
11978	struct ipw_priv *priv = pci_get_drvdata(pdev);
11979	struct net_device *dev = priv->net_dev;
11980	int err;
11981	u32 val;
11982
11983	printk(KERN_INFO "%s: Coming out of suspend...\n", dev->name);
11984
11985	pci_set_power_state(pdev, PCI_D0);
11986	err = pci_enable_device(pdev);
11987	if (err) {
11988		printk(KERN_ERR "%s: pci_enable_device failed on resume\n",
11989		       dev->name);
11990		return err;
11991	}
11992	pci_restore_state(pdev);
11993
11994	/*
11995	 * Suspend/Resume resets the PCI configuration space, so we have to
11996	 * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
11997	 * from interfering with C3 CPU state. pci_restore_state won't help
11998	 * here since it only restores the first 64 bytes pci config header.
11999	 */
12000	pci_read_config_dword(pdev, 0x40, &val);
12001	if ((val & 0x0000ff00) != 0)
12002		pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
12003
12004	/* Set the device back into the PRESENT state; this will also wake
12005	 * the queue of needed */
12006	netif_device_attach(dev);
12007
12008	priv->suspend_time = get_seconds() - priv->suspend_at;
12009
12010	/* Bring the device back up */
12011	queue_work(priv->workqueue, &priv->up);
12012
12013	return 0;
12014}
12015#endif
12016
12017static void ipw_pci_shutdown(struct pci_dev *pdev)
12018{
12019	struct ipw_priv *priv = pci_get_drvdata(pdev);
12020
12021	/* Take down the device; powers it off, etc. */
12022	ipw_down(priv);
12023
12024	pci_disable_device(pdev);
12025}
12026
12027/* driver initialization stuff */
12028static struct pci_driver ipw_driver = {
12029	.name = DRV_NAME,
12030	.id_table = card_ids,
12031	.probe = ipw_pci_probe,
12032	.remove = __devexit_p(ipw_pci_remove),
12033#ifdef CONFIG_PM
12034	.suspend = ipw_pci_suspend,
12035	.resume = ipw_pci_resume,
12036#endif
12037	.shutdown = ipw_pci_shutdown,
12038};
12039
12040static int __init ipw_init(void)
12041{
12042	int ret;
12043
12044	printk(KERN_INFO DRV_NAME ": " DRV_DESCRIPTION ", " DRV_VERSION "\n");
12045	printk(KERN_INFO DRV_NAME ": " DRV_COPYRIGHT "\n");
12046
12047	ret = pci_register_driver(&ipw_driver);
12048	if (ret) {
12049		IPW_ERROR("Unable to initialize PCI module\n");
12050		return ret;
12051	}
12052
12053	ret = driver_create_file(&ipw_driver.driver, &driver_attr_debug_level);
12054	if (ret) {
12055		IPW_ERROR("Unable to create driver sysfs file\n");
12056		pci_unregister_driver(&ipw_driver);
12057		return ret;
12058	}
12059
12060	return ret;
12061}
12062
12063static void __exit ipw_exit(void)
12064{
12065	driver_remove_file(&ipw_driver.driver, &driver_attr_debug_level);
12066	pci_unregister_driver(&ipw_driver);
12067}
12068
12069module_param(disable, int, 0444);
12070MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
12071
12072module_param(associate, int, 0444);
12073MODULE_PARM_DESC(associate, "auto associate when scanning (default off)");
12074
12075module_param(auto_create, int, 0444);
12076MODULE_PARM_DESC(auto_create, "auto create adhoc network (default on)");
12077
12078module_param_named(led, led_support, int, 0444);
12079MODULE_PARM_DESC(led, "enable led control on some systems (default 0 off)");
12080
12081module_param(debug, int, 0444);
12082MODULE_PARM_DESC(debug, "debug output mask");
12083
12084module_param_named(channel, default_channel, int, 0444);
12085MODULE_PARM_DESC(channel, "channel to limit associate to (default 0 [ANY])");
12086
12087#ifdef CONFIG_IPW2200_PROMISCUOUS
12088module_param(rtap_iface, int, 0444);
12089MODULE_PARM_DESC(rtap_iface, "create the rtap interface (1 - create, default 0)");
12090#endif
12091
12092#ifdef CONFIG_IPW2200_QOS
12093module_param(qos_enable, int, 0444);
12094MODULE_PARM_DESC(qos_enable, "enable all QoS functionalitis");
12095
12096module_param(qos_burst_enable, int, 0444);
12097MODULE_PARM_DESC(qos_burst_enable, "enable QoS burst mode");
12098
12099module_param(qos_no_ack_mask, int, 0444);
12100MODULE_PARM_DESC(qos_no_ack_mask, "mask Tx_Queue to no ack");
12101
12102module_param(burst_duration_CCK, int, 0444);
12103MODULE_PARM_DESC(burst_duration_CCK, "set CCK burst value");
12104
12105module_param(burst_duration_OFDM, int, 0444);
12106MODULE_PARM_DESC(burst_duration_OFDM, "set OFDM burst value");
12107#endif				/* CONFIG_IPW2200_QOS */
12108
12109#ifdef CONFIG_IPW2200_MONITOR
12110module_param_named(mode, network_mode, int, 0444);
12111MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
12112#else
12113module_param_named(mode, network_mode, int, 0444);
12114MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS)");
12115#endif
12116
12117module_param(bt_coexist, int, 0444);
12118MODULE_PARM_DESC(bt_coexist, "enable bluetooth coexistence (default off)");
12119
12120module_param(hwcrypto, int, 0444);
12121MODULE_PARM_DESC(hwcrypto, "enable hardware crypto (default off)");
12122
12123module_param(cmdlog, int, 0444);
12124MODULE_PARM_DESC(cmdlog,
12125		 "allocate a ring buffer for logging firmware commands");
12126
12127module_param(roaming, int, 0444);
12128MODULE_PARM_DESC(roaming, "enable roaming support (default on)");
12129
12130module_param(antenna, int, 0444);
12131MODULE_PARM_DESC(antenna, "select antenna 1=Main, 3=Aux, default 0 [both], 2=slow_diversity (choose the one with lower background noise)");
12132
12133module_exit(ipw_exit);
12134module_init(ipw_init);
12135