remoteproc_core.c revision 6fd98c124c66b0b0001bc4217392d891b1ad4a02
1/*
2 * Remote Processor Framework
3 *
4 * Copyright (C) 2011 Texas Instruments, Inc.
5 * Copyright (C) 2011 Google, Inc.
6 *
7 * Ohad Ben-Cohen <ohad@wizery.com>
8 * Brian Swetland <swetland@google.com>
9 * Mark Grosen <mgrosen@ti.com>
10 * Fernando Guzman Lugo <fernando.lugo@ti.com>
11 * Suman Anna <s-anna@ti.com>
12 * Robert Tivy <rtivy@ti.com>
13 * Armando Uribe De Leon <x0095078@ti.com>
14 *
15 * This program is free software; you can redistribute it and/or
16 * modify it under the terms of the GNU General Public License
17 * version 2 as published by the Free Software Foundation.
18 *
19 * This program is distributed in the hope that it will be useful,
20 * but WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
22 * GNU General Public License for more details.
23 */
24
25#define pr_fmt(fmt)    "%s: " fmt, __func__
26
27#include <linux/kernel.h>
28#include <linux/module.h>
29#include <linux/device.h>
30#include <linux/slab.h>
31#include <linux/mutex.h>
32#include <linux/dma-mapping.h>
33#include <linux/firmware.h>
34#include <linux/string.h>
35#include <linux/debugfs.h>
36#include <linux/remoteproc.h>
37#include <linux/iommu.h>
38#include <linux/klist.h>
39#include <linux/elf.h>
40#include <linux/virtio_ids.h>
41#include <linux/virtio_ring.h>
42#include <asm/byteorder.h>
43
44#include "remoteproc_internal.h"
45
46static void klist_rproc_get(struct klist_node *n);
47static void klist_rproc_put(struct klist_node *n);
48
49/*
50 * klist of the available remote processors.
51 *
52 * We need this in order to support name-based lookups (needed by the
53 * rproc_get_by_name()).
54 *
55 * That said, we don't use rproc_get_by_name() at this point.
56 * The use cases that do require its existence should be
57 * scrutinized, and hopefully migrated to rproc_boot() using device-based
58 * binding.
59 *
60 * If/when this materializes, we could drop the klist (and the by_name
61 * API).
62 */
63static DEFINE_KLIST(rprocs, klist_rproc_get, klist_rproc_put);
64
65typedef int (*rproc_handle_resources_t)(struct rproc *rproc,
66				struct resource_table *table, int len);
67typedef int (*rproc_handle_resource_t)(struct rproc *rproc, void *, int avail);
68
69/*
70 * This is the IOMMU fault handler we register with the IOMMU API
71 * (when relevant; not all remote processors access memory through
72 * an IOMMU).
73 *
74 * IOMMU core will invoke this handler whenever the remote processor
75 * will try to access an unmapped device address.
76 *
77 * Currently this is mostly a stub, but it will be later used to trigger
78 * the recovery of the remote processor.
79 */
80static int rproc_iommu_fault(struct iommu_domain *domain, struct device *dev,
81		unsigned long iova, int flags)
82{
83	dev_err(dev, "iommu fault: da 0x%lx flags 0x%x\n", iova, flags);
84
85	/*
86	 * Let the iommu core know we're not really handling this fault;
87	 * we just plan to use this as a recovery trigger.
88	 */
89	return -ENOSYS;
90}
91
92static int rproc_enable_iommu(struct rproc *rproc)
93{
94	struct iommu_domain *domain;
95	struct device *dev = rproc->dev;
96	int ret;
97
98	/*
99	 * We currently use iommu_present() to decide if an IOMMU
100	 * setup is needed.
101	 *
102	 * This works for simple cases, but will easily fail with
103	 * platforms that do have an IOMMU, but not for this specific
104	 * rproc.
105	 *
106	 * This will be easily solved by introducing hw capabilities
107	 * that will be set by the remoteproc driver.
108	 */
109	if (!iommu_present(dev->bus)) {
110		dev_dbg(dev, "iommu not found\n");
111		return 0;
112	}
113
114	domain = iommu_domain_alloc(dev->bus);
115	if (!domain) {
116		dev_err(dev, "can't alloc iommu domain\n");
117		return -ENOMEM;
118	}
119
120	iommu_set_fault_handler(domain, rproc_iommu_fault);
121
122	ret = iommu_attach_device(domain, dev);
123	if (ret) {
124		dev_err(dev, "can't attach iommu device: %d\n", ret);
125		goto free_domain;
126	}
127
128	rproc->domain = domain;
129
130	return 0;
131
132free_domain:
133	iommu_domain_free(domain);
134	return ret;
135}
136
137static void rproc_disable_iommu(struct rproc *rproc)
138{
139	struct iommu_domain *domain = rproc->domain;
140	struct device *dev = rproc->dev;
141
142	if (!domain)
143		return;
144
145	iommu_detach_device(domain, dev);
146	iommu_domain_free(domain);
147
148	return;
149}
150
151/*
152 * Some remote processors will ask us to allocate them physically contiguous
153 * memory regions (which we call "carveouts"), and map them to specific
154 * device addresses (which are hardcoded in the firmware).
155 *
156 * They may then ask us to copy objects into specific device addresses (e.g.
157 * code/data sections) or expose us certain symbols in other device address
158 * (e.g. their trace buffer).
159 *
160 * This function is an internal helper with which we can go over the allocated
161 * carveouts and translate specific device address to kernel virtual addresses
162 * so we can access the referenced memory.
163 *
164 * Note: phys_to_virt(iommu_iova_to_phys(rproc->domain, da)) will work too,
165 * but only on kernel direct mapped RAM memory. Instead, we're just using
166 * here the output of the DMA API, which should be more correct.
167 */
168static void *rproc_da_to_va(struct rproc *rproc, u64 da, int len)
169{
170	struct rproc_mem_entry *carveout;
171	void *ptr = NULL;
172
173	list_for_each_entry(carveout, &rproc->carveouts, node) {
174		int offset = da - carveout->da;
175
176		/* try next carveout if da is too small */
177		if (offset < 0)
178			continue;
179
180		/* try next carveout if da is too large */
181		if (offset + len > carveout->len)
182			continue;
183
184		ptr = carveout->va + offset;
185
186		break;
187	}
188
189	return ptr;
190}
191
192/**
193 * rproc_load_segments() - load firmware segments to memory
194 * @rproc: remote processor which will be booted using these fw segments
195 * @elf_data: the content of the ELF firmware image
196 * @len: firmware size (in bytes)
197 *
198 * This function loads the firmware segments to memory, where the remote
199 * processor expects them.
200 *
201 * Some remote processors will expect their code and data to be placed
202 * in specific device addresses, and can't have them dynamically assigned.
203 *
204 * We currently support only those kind of remote processors, and expect
205 * the program header's paddr member to contain those addresses. We then go
206 * through the physically contiguous "carveout" memory regions which we
207 * allocated (and mapped) earlier on behalf of the remote processor,
208 * and "translate" device address to kernel addresses, so we can copy the
209 * segments where they are expected.
210 *
211 * Currently we only support remote processors that required carveout
212 * allocations and got them mapped onto their iommus. Some processors
213 * might be different: they might not have iommus, and would prefer to
214 * directly allocate memory for every segment/resource. This is not yet
215 * supported, though.
216 */
217static int
218rproc_load_segments(struct rproc *rproc, const u8 *elf_data, size_t len)
219{
220	struct device *dev = rproc->dev;
221	struct elf32_hdr *ehdr;
222	struct elf32_phdr *phdr;
223	int i, ret = 0;
224
225	ehdr = (struct elf32_hdr *)elf_data;
226	phdr = (struct elf32_phdr *)(elf_data + ehdr->e_phoff);
227
228	/* go through the available ELF segments */
229	for (i = 0; i < ehdr->e_phnum; i++, phdr++) {
230		u32 da = phdr->p_paddr;
231		u32 memsz = phdr->p_memsz;
232		u32 filesz = phdr->p_filesz;
233		u32 offset = phdr->p_offset;
234		void *ptr;
235
236		if (phdr->p_type != PT_LOAD)
237			continue;
238
239		dev_dbg(dev, "phdr: type %d da 0x%x memsz 0x%x filesz 0x%x\n",
240					phdr->p_type, da, memsz, filesz);
241
242		if (filesz > memsz) {
243			dev_err(dev, "bad phdr filesz 0x%x memsz 0x%x\n",
244							filesz, memsz);
245			ret = -EINVAL;
246			break;
247		}
248
249		if (offset + filesz > len) {
250			dev_err(dev, "truncated fw: need 0x%x avail 0x%x\n",
251					offset + filesz, len);
252			ret = -EINVAL;
253			break;
254		}
255
256		/* grab the kernel address for this device address */
257		ptr = rproc_da_to_va(rproc, da, memsz);
258		if (!ptr) {
259			dev_err(dev, "bad phdr da 0x%x mem 0x%x\n", da, memsz);
260			ret = -EINVAL;
261			break;
262		}
263
264		/* put the segment where the remote processor expects it */
265		if (phdr->p_filesz)
266			memcpy(ptr, elf_data + phdr->p_offset, filesz);
267
268		/*
269		 * Zero out remaining memory for this segment.
270		 *
271		 * This isn't strictly required since dma_alloc_coherent already
272		 * did this for us. albeit harmless, we may consider removing
273		 * this.
274		 */
275		if (memsz > filesz)
276			memset(ptr + filesz, 0, memsz - filesz);
277	}
278
279	return ret;
280}
281
282static int
283__rproc_handle_vring(struct rproc_vdev *rvdev, struct fw_rsc_vdev *rsc, int i)
284{
285	struct rproc *rproc = rvdev->rproc;
286	struct device *dev = rproc->dev;
287	struct fw_rsc_vdev_vring *vring = &rsc->vring[i];
288	dma_addr_t dma;
289	void *va;
290	int ret, size, notifyid;
291
292	dev_dbg(dev, "vdev rsc: vring%d: da %x, qsz %d, align %d\n",
293				i, vring->da, vring->num, vring->align);
294
295	/* make sure reserved bytes are zeroes */
296	if (vring->reserved) {
297		dev_err(dev, "vring rsc has non zero reserved bytes\n");
298		return -EINVAL;
299	}
300
301	/* verify queue size and vring alignment are sane */
302	if (!vring->num || !vring->align) {
303		dev_err(dev, "invalid qsz (%d) or alignment (%d)\n",
304						vring->num, vring->align);
305		return -EINVAL;
306	}
307
308	/* actual size of vring (in bytes) */
309	size = PAGE_ALIGN(vring_size(vring->num, vring->align));
310
311	if (!idr_pre_get(&rproc->notifyids, GFP_KERNEL)) {
312		dev_err(dev, "idr_pre_get failed\n");
313		return -ENOMEM;
314	}
315
316	/*
317	 * Allocate non-cacheable memory for the vring. In the future
318	 * this call will also configure the IOMMU for us
319	 */
320	va = dma_alloc_coherent(dev, size, &dma, GFP_KERNEL);
321	if (!va) {
322		dev_err(dev, "dma_alloc_coherent failed\n");
323		return -EINVAL;
324	}
325
326	/* assign an rproc-wide unique index for this vring */
327	/* TODO: assign a notifyid for rvdev updates as well */
328	ret = idr_get_new(&rproc->notifyids, &rvdev->vring[i], &notifyid);
329	if (ret) {
330		dev_err(dev, "idr_get_new failed: %d\n", ret);
331		dma_free_coherent(dev, size, va, dma);
332		return ret;
333	}
334
335	/* let the rproc know the da and notifyid of this vring */
336	/* TODO: expose this to remote processor */
337	vring->da = dma;
338	vring->notifyid = notifyid;
339
340	dev_dbg(dev, "vring%d: va %p dma %x size %x idr %d\n", i, va,
341					dma, size, notifyid);
342
343	rvdev->vring[i].len = vring->num;
344	rvdev->vring[i].align = vring->align;
345	rvdev->vring[i].va = va;
346	rvdev->vring[i].dma = dma;
347	rvdev->vring[i].notifyid = notifyid;
348	rvdev->vring[i].rvdev = rvdev;
349
350	return 0;
351}
352
353static void __rproc_free_vrings(struct rproc_vdev *rvdev, int i)
354{
355	struct rproc *rproc = rvdev->rproc;
356
357	for (i--; i >= 0; i--) {
358		struct rproc_vring *rvring = &rvdev->vring[i];
359		int size = PAGE_ALIGN(vring_size(rvring->len, rvring->align));
360
361		dma_free_coherent(rproc->dev, size, rvring->va, rvring->dma);
362		idr_remove(&rproc->notifyids, rvring->notifyid);
363	}
364}
365
366/**
367 * rproc_handle_vdev() - handle a vdev fw resource
368 * @rproc: the remote processor
369 * @rsc: the vring resource descriptor
370 * @avail: size of available data (for sanity checking the image)
371 *
372 * This resource entry requests the host to statically register a virtio
373 * device (vdev), and setup everything needed to support it. It contains
374 * everything needed to make it possible: the virtio device id, virtio
375 * device features, vrings information, virtio config space, etc...
376 *
377 * Before registering the vdev, the vrings are allocated from non-cacheable
378 * physically contiguous memory. Currently we only support two vrings per
379 * remote processor (temporary limitation). We might also want to consider
380 * doing the vring allocation only later when ->find_vqs() is invoked, and
381 * then release them upon ->del_vqs().
382 *
383 * Note: @da is currently not really handled correctly: we dynamically
384 * allocate it using the DMA API, ignoring requested hard coded addresses,
385 * and we don't take care of any required IOMMU programming. This is all
386 * going to be taken care of when the generic iommu-based DMA API will be
387 * merged. Meanwhile, statically-addressed iommu-based firmware images should
388 * use RSC_DEVMEM resource entries to map their required @da to the physical
389 * address of their base CMA region (ouch, hacky!).
390 *
391 * Returns 0 on success, or an appropriate error code otherwise
392 */
393static int rproc_handle_vdev(struct rproc *rproc, struct fw_rsc_vdev *rsc,
394								int avail)
395{
396	struct device *dev = rproc->dev;
397	struct rproc_vdev *rvdev;
398	int i, ret;
399
400	/* make sure resource isn't truncated */
401	if (sizeof(*rsc) + rsc->num_of_vrings * sizeof(struct fw_rsc_vdev_vring)
402			+ rsc->config_len > avail) {
403		dev_err(rproc->dev, "vdev rsc is truncated\n");
404		return -EINVAL;
405	}
406
407	/* make sure reserved bytes are zeroes */
408	if (rsc->reserved[0] || rsc->reserved[1]) {
409		dev_err(dev, "vdev rsc has non zero reserved bytes\n");
410		return -EINVAL;
411	}
412
413	dev_dbg(dev, "vdev rsc: id %d, dfeatures %x, cfg len %d, %d vrings\n",
414		rsc->id, rsc->dfeatures, rsc->config_len, rsc->num_of_vrings);
415
416	/* we currently support only two vrings per rvdev */
417	if (rsc->num_of_vrings > ARRAY_SIZE(rvdev->vring)) {
418		dev_err(dev, "too many vrings: %d\n", rsc->num_of_vrings);
419		return -EINVAL;
420	}
421
422	rvdev = kzalloc(sizeof(struct rproc_vdev), GFP_KERNEL);
423	if (!rvdev)
424		return -ENOMEM;
425
426	rvdev->rproc = rproc;
427
428	/* allocate the vrings */
429	for (i = 0; i < rsc->num_of_vrings; i++) {
430		ret = __rproc_handle_vring(rvdev, rsc, i);
431		if (ret)
432			goto free_vrings;
433	}
434
435	/* remember the device features */
436	rvdev->dfeatures = rsc->dfeatures;
437
438	list_add_tail(&rvdev->node, &rproc->rvdevs);
439
440	/* it is now safe to add the virtio device */
441	ret = rproc_add_virtio_dev(rvdev, rsc->id);
442	if (ret)
443		goto free_vrings;
444
445	return 0;
446
447free_vrings:
448	__rproc_free_vrings(rvdev, i);
449	kfree(rvdev);
450	return ret;
451}
452
453/**
454 * rproc_handle_trace() - handle a shared trace buffer resource
455 * @rproc: the remote processor
456 * @rsc: the trace resource descriptor
457 * @avail: size of available data (for sanity checking the image)
458 *
459 * In case the remote processor dumps trace logs into memory,
460 * export it via debugfs.
461 *
462 * Currently, the 'da' member of @rsc should contain the device address
463 * where the remote processor is dumping the traces. Later we could also
464 * support dynamically allocating this address using the generic
465 * DMA API (but currently there isn't a use case for that).
466 *
467 * Returns 0 on success, or an appropriate error code otherwise
468 */
469static int rproc_handle_trace(struct rproc *rproc, struct fw_rsc_trace *rsc,
470								int avail)
471{
472	struct rproc_mem_entry *trace;
473	struct device *dev = rproc->dev;
474	void *ptr;
475	char name[15];
476
477	if (sizeof(*rsc) > avail) {
478		dev_err(rproc->dev, "trace rsc is truncated\n");
479		return -EINVAL;
480	}
481
482	/* make sure reserved bytes are zeroes */
483	if (rsc->reserved) {
484		dev_err(dev, "trace rsc has non zero reserved bytes\n");
485		return -EINVAL;
486	}
487
488	/* what's the kernel address of this resource ? */
489	ptr = rproc_da_to_va(rproc, rsc->da, rsc->len);
490	if (!ptr) {
491		dev_err(dev, "erroneous trace resource entry\n");
492		return -EINVAL;
493	}
494
495	trace = kzalloc(sizeof(*trace), GFP_KERNEL);
496	if (!trace) {
497		dev_err(dev, "kzalloc trace failed\n");
498		return -ENOMEM;
499	}
500
501	/* set the trace buffer dma properties */
502	trace->len = rsc->len;
503	trace->va = ptr;
504
505	/* make sure snprintf always null terminates, even if truncating */
506	snprintf(name, sizeof(name), "trace%d", rproc->num_traces);
507
508	/* create the debugfs entry */
509	trace->priv = rproc_create_trace_file(name, rproc, trace);
510	if (!trace->priv) {
511		trace->va = NULL;
512		kfree(trace);
513		return -EINVAL;
514	}
515
516	list_add_tail(&trace->node, &rproc->traces);
517
518	rproc->num_traces++;
519
520	dev_dbg(dev, "%s added: va %p, da 0x%x, len 0x%x\n", name, ptr,
521						rsc->da, rsc->len);
522
523	return 0;
524}
525
526/**
527 * rproc_handle_devmem() - handle devmem resource entry
528 * @rproc: remote processor handle
529 * @rsc: the devmem resource entry
530 * @avail: size of available data (for sanity checking the image)
531 *
532 * Remote processors commonly need to access certain on-chip peripherals.
533 *
534 * Some of these remote processors access memory via an iommu device,
535 * and might require us to configure their iommu before they can access
536 * the on-chip peripherals they need.
537 *
538 * This resource entry is a request to map such a peripheral device.
539 *
540 * These devmem entries will contain the physical address of the device in
541 * the 'pa' member. If a specific device address is expected, then 'da' will
542 * contain it (currently this is the only use case supported). 'len' will
543 * contain the size of the physical region we need to map.
544 *
545 * Currently we just "trust" those devmem entries to contain valid physical
546 * addresses, but this is going to change: we want the implementations to
547 * tell us ranges of physical addresses the firmware is allowed to request,
548 * and not allow firmwares to request access to physical addresses that
549 * are outside those ranges.
550 */
551static int rproc_handle_devmem(struct rproc *rproc, struct fw_rsc_devmem *rsc,
552								int avail)
553{
554	struct rproc_mem_entry *mapping;
555	int ret;
556
557	/* no point in handling this resource without a valid iommu domain */
558	if (!rproc->domain)
559		return -EINVAL;
560
561	if (sizeof(*rsc) > avail) {
562		dev_err(rproc->dev, "devmem rsc is truncated\n");
563		return -EINVAL;
564	}
565
566	/* make sure reserved bytes are zeroes */
567	if (rsc->reserved) {
568		dev_err(rproc->dev, "devmem rsc has non zero reserved bytes\n");
569		return -EINVAL;
570	}
571
572	mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
573	if (!mapping) {
574		dev_err(rproc->dev, "kzalloc mapping failed\n");
575		return -ENOMEM;
576	}
577
578	ret = iommu_map(rproc->domain, rsc->da, rsc->pa, rsc->len, rsc->flags);
579	if (ret) {
580		dev_err(rproc->dev, "failed to map devmem: %d\n", ret);
581		goto out;
582	}
583
584	/*
585	 * We'll need this info later when we'll want to unmap everything
586	 * (e.g. on shutdown).
587	 *
588	 * We can't trust the remote processor not to change the resource
589	 * table, so we must maintain this info independently.
590	 */
591	mapping->da = rsc->da;
592	mapping->len = rsc->len;
593	list_add_tail(&mapping->node, &rproc->mappings);
594
595	dev_dbg(rproc->dev, "mapped devmem pa 0x%x, da 0x%x, len 0x%x\n",
596					rsc->pa, rsc->da, rsc->len);
597
598	return 0;
599
600out:
601	kfree(mapping);
602	return ret;
603}
604
605/**
606 * rproc_handle_carveout() - handle phys contig memory allocation requests
607 * @rproc: rproc handle
608 * @rsc: the resource entry
609 * @avail: size of available data (for image validation)
610 *
611 * This function will handle firmware requests for allocation of physically
612 * contiguous memory regions.
613 *
614 * These request entries should come first in the firmware's resource table,
615 * as other firmware entries might request placing other data objects inside
616 * these memory regions (e.g. data/code segments, trace resource entries, ...).
617 *
618 * Allocating memory this way helps utilizing the reserved physical memory
619 * (e.g. CMA) more efficiently, and also minimizes the number of TLB entries
620 * needed to map it (in case @rproc is using an IOMMU). Reducing the TLB
621 * pressure is important; it may have a substantial impact on performance.
622 */
623static int rproc_handle_carveout(struct rproc *rproc,
624				struct fw_rsc_carveout *rsc, int avail)
625{
626	struct rproc_mem_entry *carveout, *mapping;
627	struct device *dev = rproc->dev;
628	dma_addr_t dma;
629	void *va;
630	int ret;
631
632	if (sizeof(*rsc) > avail) {
633		dev_err(rproc->dev, "carveout rsc is truncated\n");
634		return -EINVAL;
635	}
636
637	/* make sure reserved bytes are zeroes */
638	if (rsc->reserved) {
639		dev_err(dev, "carveout rsc has non zero reserved bytes\n");
640		return -EINVAL;
641	}
642
643	dev_dbg(dev, "carveout rsc: da %x, pa %x, len %x, flags %x\n",
644			rsc->da, rsc->pa, rsc->len, rsc->flags);
645
646	mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
647	if (!mapping) {
648		dev_err(dev, "kzalloc mapping failed\n");
649		return -ENOMEM;
650	}
651
652	carveout = kzalloc(sizeof(*carveout), GFP_KERNEL);
653	if (!carveout) {
654		dev_err(dev, "kzalloc carveout failed\n");
655		ret = -ENOMEM;
656		goto free_mapping;
657	}
658
659	va = dma_alloc_coherent(dev, rsc->len, &dma, GFP_KERNEL);
660	if (!va) {
661		dev_err(dev, "failed to dma alloc carveout: %d\n", rsc->len);
662		ret = -ENOMEM;
663		goto free_carv;
664	}
665
666	dev_dbg(dev, "carveout va %p, dma %x, len 0x%x\n", va, dma, rsc->len);
667
668	/*
669	 * Ok, this is non-standard.
670	 *
671	 * Sometimes we can't rely on the generic iommu-based DMA API
672	 * to dynamically allocate the device address and then set the IOMMU
673	 * tables accordingly, because some remote processors might
674	 * _require_ us to use hard coded device addresses that their
675	 * firmware was compiled with.
676	 *
677	 * In this case, we must use the IOMMU API directly and map
678	 * the memory to the device address as expected by the remote
679	 * processor.
680	 *
681	 * Obviously such remote processor devices should not be configured
682	 * to use the iommu-based DMA API: we expect 'dma' to contain the
683	 * physical address in this case.
684	 */
685	if (rproc->domain) {
686		ret = iommu_map(rproc->domain, rsc->da, dma, rsc->len,
687								rsc->flags);
688		if (ret) {
689			dev_err(dev, "iommu_map failed: %d\n", ret);
690			goto dma_free;
691		}
692
693		/*
694		 * We'll need this info later when we'll want to unmap
695		 * everything (e.g. on shutdown).
696		 *
697		 * We can't trust the remote processor not to change the
698		 * resource table, so we must maintain this info independently.
699		 */
700		mapping->da = rsc->da;
701		mapping->len = rsc->len;
702		list_add_tail(&mapping->node, &rproc->mappings);
703
704		dev_dbg(dev, "carveout mapped 0x%x to 0x%x\n", rsc->da, dma);
705
706		/*
707		 * Some remote processors might need to know the pa
708		 * even though they are behind an IOMMU. E.g., OMAP4's
709		 * remote M3 processor needs this so it can control
710		 * on-chip hardware accelerators that are not behind
711		 * the IOMMU, and therefor must know the pa.
712		 *
713		 * Generally we don't want to expose physical addresses
714		 * if we don't have to (remote processors are generally
715		 * _not_ trusted), so we might want to do this only for
716		 * remote processor that _must_ have this (e.g. OMAP4's
717		 * dual M3 subsystem).
718		 */
719		rsc->pa = dma;
720	}
721
722	carveout->va = va;
723	carveout->len = rsc->len;
724	carveout->dma = dma;
725	carveout->da = rsc->da;
726
727	list_add_tail(&carveout->node, &rproc->carveouts);
728
729	return 0;
730
731dma_free:
732	dma_free_coherent(dev, rsc->len, va, dma);
733free_carv:
734	kfree(carveout);
735free_mapping:
736	kfree(mapping);
737	return ret;
738}
739
740/*
741 * A lookup table for resource handlers. The indices are defined in
742 * enum fw_resource_type.
743 */
744static rproc_handle_resource_t rproc_handle_rsc[] = {
745	[RSC_CARVEOUT] = (rproc_handle_resource_t)rproc_handle_carveout,
746	[RSC_DEVMEM] = (rproc_handle_resource_t)rproc_handle_devmem,
747	[RSC_TRACE] = (rproc_handle_resource_t)rproc_handle_trace,
748	[RSC_VDEV] = NULL, /* VDEVs were handled upon registrarion */
749};
750
751/* handle firmware resource entries before booting the remote processor */
752static int
753rproc_handle_boot_rsc(struct rproc *rproc, struct resource_table *table, int len)
754{
755	struct device *dev = rproc->dev;
756	rproc_handle_resource_t handler;
757	int ret = 0, i;
758
759	for (i = 0; i < table->num; i++) {
760		int offset = table->offset[i];
761		struct fw_rsc_hdr *hdr = (void *)table + offset;
762		int avail = len - offset - sizeof(*hdr);
763		void *rsc = (void *)hdr + sizeof(*hdr);
764
765		/* make sure table isn't truncated */
766		if (avail < 0) {
767			dev_err(dev, "rsc table is truncated\n");
768			return -EINVAL;
769		}
770
771		dev_dbg(dev, "rsc: type %d\n", hdr->type);
772
773		if (hdr->type >= RSC_LAST) {
774			dev_warn(dev, "unsupported resource %d\n", hdr->type);
775			continue;
776		}
777
778		handler = rproc_handle_rsc[hdr->type];
779		if (!handler)
780			continue;
781
782		ret = handler(rproc, rsc, avail);
783		if (ret)
784			break;
785	}
786
787	return ret;
788}
789
790/* handle firmware resource entries while registering the remote processor */
791static int
792rproc_handle_virtio_rsc(struct rproc *rproc, struct resource_table *table, int len)
793{
794	struct device *dev = rproc->dev;
795	int ret = 0, i;
796
797	for (i = 0; i < table->num; i++) {
798		int offset = table->offset[i];
799		struct fw_rsc_hdr *hdr = (void *)table + offset;
800		int avail = len - offset - sizeof(*hdr);
801		struct fw_rsc_vdev *vrsc;
802
803		/* make sure table isn't truncated */
804		if (avail < 0) {
805			dev_err(dev, "rsc table is truncated\n");
806			return -EINVAL;
807		}
808
809		dev_dbg(dev, "%s: rsc type %d\n", __func__, hdr->type);
810
811		if (hdr->type != RSC_VDEV)
812			continue;
813
814		vrsc = (struct fw_rsc_vdev *)hdr->data;
815
816		ret = rproc_handle_vdev(rproc, vrsc, avail);
817		if (ret)
818			break;
819	}
820
821	return ret;
822}
823
824/**
825 * rproc_find_rsc_table() - find the resource table
826 * @rproc: the rproc handle
827 * @elf_data: the content of the ELF firmware image
828 * @len: firmware size (in bytes)
829 * @tablesz: place holder for providing back the table size
830 *
831 * This function finds the resource table inside the remote processor's
832 * firmware. It is used both upon the registration of @rproc (in order
833 * to look for and register the supported virito devices), and when the
834 * @rproc is booted.
835 *
836 * Returns the pointer to the resource table if it is found, and write its
837 * size into @tablesz. If a valid table isn't found, NULL is returned
838 * (and @tablesz isn't set).
839 */
840static struct resource_table *
841rproc_find_rsc_table(struct rproc *rproc, const u8 *elf_data, size_t len,
842							int *tablesz)
843{
844	struct elf32_hdr *ehdr;
845	struct elf32_shdr *shdr;
846	const char *name_table;
847	struct device *dev = rproc->dev;
848	struct resource_table *table = NULL;
849	int i;
850
851	ehdr = (struct elf32_hdr *)elf_data;
852	shdr = (struct elf32_shdr *)(elf_data + ehdr->e_shoff);
853	name_table = elf_data + shdr[ehdr->e_shstrndx].sh_offset;
854
855	/* look for the resource table and handle it */
856	for (i = 0; i < ehdr->e_shnum; i++, shdr++) {
857		int size = shdr->sh_size;
858		int offset = shdr->sh_offset;
859
860		if (strcmp(name_table + shdr->sh_name, ".resource_table"))
861			continue;
862
863		table = (struct resource_table *)(elf_data + offset);
864
865		/* make sure we have the entire table */
866		if (offset + size > len) {
867			dev_err(dev, "resource table truncated\n");
868			return NULL;
869		}
870
871		/* make sure table has at least the header */
872		if (sizeof(struct resource_table) > size) {
873			dev_err(dev, "header-less resource table\n");
874			return NULL;
875		}
876
877		/* we don't support any version beyond the first */
878		if (table->ver != 1) {
879			dev_err(dev, "unsupported fw ver: %d\n", table->ver);
880			return NULL;
881		}
882
883		/* make sure reserved bytes are zeroes */
884		if (table->reserved[0] || table->reserved[1]) {
885			dev_err(dev, "non zero reserved bytes\n");
886			return NULL;
887		}
888
889		/* make sure the offsets array isn't truncated */
890		if (table->num * sizeof(table->offset[0]) +
891				sizeof(struct resource_table) > size) {
892			dev_err(dev, "resource table incomplete\n");
893			return NULL;
894		}
895
896		*tablesz = shdr->sh_size;
897		break;
898	}
899
900	return table;
901}
902
903/**
904 * rproc_resource_cleanup() - clean up and free all acquired resources
905 * @rproc: rproc handle
906 *
907 * This function will free all resources acquired for @rproc, and it
908 * is called whenever @rproc either shuts down or fails to boot.
909 */
910static void rproc_resource_cleanup(struct rproc *rproc)
911{
912	struct rproc_mem_entry *entry, *tmp;
913	struct device *dev = rproc->dev;
914
915	/* clean up debugfs trace entries */
916	list_for_each_entry_safe(entry, tmp, &rproc->traces, node) {
917		rproc_remove_trace_file(entry->priv);
918		rproc->num_traces--;
919		list_del(&entry->node);
920		kfree(entry);
921	}
922
923	/* clean up carveout allocations */
924	list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) {
925		dma_free_coherent(dev, entry->len, entry->va, entry->dma);
926		list_del(&entry->node);
927		kfree(entry);
928	}
929
930	/* clean up iommu mapping entries */
931	list_for_each_entry_safe(entry, tmp, &rproc->mappings, node) {
932		size_t unmapped;
933
934		unmapped = iommu_unmap(rproc->domain, entry->da, entry->len);
935		if (unmapped != entry->len) {
936			/* nothing much to do besides complaining */
937			dev_err(dev, "failed to unmap %u/%u\n", entry->len,
938								unmapped);
939		}
940
941		list_del(&entry->node);
942		kfree(entry);
943	}
944}
945
946/* make sure this fw image is sane */
947static int rproc_fw_sanity_check(struct rproc *rproc, const struct firmware *fw)
948{
949	const char *name = rproc->firmware;
950	struct device *dev = rproc->dev;
951	struct elf32_hdr *ehdr;
952	char class;
953
954	if (!fw) {
955		dev_err(dev, "failed to load %s\n", name);
956		return -EINVAL;
957	}
958
959	if (fw->size < sizeof(struct elf32_hdr)) {
960		dev_err(dev, "Image is too small\n");
961		return -EINVAL;
962	}
963
964	ehdr = (struct elf32_hdr *)fw->data;
965
966	/* We only support ELF32 at this point */
967	class = ehdr->e_ident[EI_CLASS];
968	if (class != ELFCLASS32) {
969		dev_err(dev, "Unsupported class: %d\n", class);
970		return -EINVAL;
971	}
972
973	/* We assume the firmware has the same endianess as the host */
974# ifdef __LITTLE_ENDIAN
975	if (ehdr->e_ident[EI_DATA] != ELFDATA2LSB) {
976# else /* BIG ENDIAN */
977	if (ehdr->e_ident[EI_DATA] != ELFDATA2MSB) {
978# endif
979		dev_err(dev, "Unsupported firmware endianess\n");
980		return -EINVAL;
981	}
982
983	if (fw->size < ehdr->e_shoff + sizeof(struct elf32_shdr)) {
984		dev_err(dev, "Image is too small\n");
985		return -EINVAL;
986	}
987
988	if (memcmp(ehdr->e_ident, ELFMAG, SELFMAG)) {
989		dev_err(dev, "Image is corrupted (bad magic)\n");
990		return -EINVAL;
991	}
992
993	if (ehdr->e_phnum == 0) {
994		dev_err(dev, "No loadable segments\n");
995		return -EINVAL;
996	}
997
998	if (ehdr->e_phoff > fw->size) {
999		dev_err(dev, "Firmware size is too small\n");
1000		return -EINVAL;
1001	}
1002
1003	return 0;
1004}
1005
1006/*
1007 * take a firmware and boot a remote processor with it.
1008 */
1009static int rproc_fw_boot(struct rproc *rproc, const struct firmware *fw)
1010{
1011	struct device *dev = rproc->dev;
1012	const char *name = rproc->firmware;
1013	struct elf32_hdr *ehdr;
1014	struct resource_table *table;
1015	int ret, tablesz;
1016
1017	ret = rproc_fw_sanity_check(rproc, fw);
1018	if (ret)
1019		return ret;
1020
1021	ehdr = (struct elf32_hdr *)fw->data;
1022
1023	dev_info(dev, "Booting fw image %s, size %d\n", name, fw->size);
1024
1025	/*
1026	 * if enabling an IOMMU isn't relevant for this rproc, this is
1027	 * just a nop
1028	 */
1029	ret = rproc_enable_iommu(rproc);
1030	if (ret) {
1031		dev_err(dev, "can't enable iommu: %d\n", ret);
1032		return ret;
1033	}
1034
1035	/*
1036	 * The ELF entry point is the rproc's boot addr (though this is not
1037	 * a configurable property of all remote processors: some will always
1038	 * boot at a specific hardcoded address).
1039	 */
1040	rproc->bootaddr = ehdr->e_entry;
1041
1042	/* look for the resource table */
1043	table = rproc_find_rsc_table(rproc, fw->data, fw->size, &tablesz);
1044	if (!table)
1045		goto clean_up;
1046
1047	/* handle fw resources which are required to boot rproc */
1048	ret = rproc_handle_boot_rsc(rproc, table, tablesz);
1049	if (ret) {
1050		dev_err(dev, "Failed to process resources: %d\n", ret);
1051		goto clean_up;
1052	}
1053
1054	/* load the ELF segments to memory */
1055	ret = rproc_load_segments(rproc, fw->data, fw->size);
1056	if (ret) {
1057		dev_err(dev, "Failed to load program segments: %d\n", ret);
1058		goto clean_up;
1059	}
1060
1061	/* power up the remote processor */
1062	ret = rproc->ops->start(rproc);
1063	if (ret) {
1064		dev_err(dev, "can't start rproc %s: %d\n", rproc->name, ret);
1065		goto clean_up;
1066	}
1067
1068	rproc->state = RPROC_RUNNING;
1069
1070	dev_info(dev, "remote processor %s is now up\n", rproc->name);
1071
1072	return 0;
1073
1074clean_up:
1075	rproc_resource_cleanup(rproc);
1076	rproc_disable_iommu(rproc);
1077	return ret;
1078}
1079
1080/*
1081 * take a firmware and look for virtio devices to register.
1082 *
1083 * Note: this function is called asynchronously upon registration of the
1084 * remote processor (so we must wait until it completes before we try
1085 * to unregister the device. one other option is just to use kref here,
1086 * that might be cleaner).
1087 */
1088static void rproc_fw_config_virtio(const struct firmware *fw, void *context)
1089{
1090	struct rproc *rproc = context;
1091	struct resource_table *table;
1092	int ret, tablesz;
1093
1094	if (rproc_fw_sanity_check(rproc, fw) < 0)
1095		goto out;
1096
1097	/* look for the resource table */
1098	table = rproc_find_rsc_table(rproc, fw->data, fw->size, &tablesz);
1099	if (!table)
1100		goto out;
1101
1102	/* look for virtio devices and register them */
1103	ret = rproc_handle_virtio_rsc(rproc, table, tablesz);
1104	if (ret)
1105		goto out;
1106
1107out:
1108	if (fw)
1109		release_firmware(fw);
1110	/* allow rproc_unregister() contexts, if any, to proceed */
1111	complete_all(&rproc->firmware_loading_complete);
1112}
1113
1114/**
1115 * rproc_boot() - boot a remote processor
1116 * @rproc: handle of a remote processor
1117 *
1118 * Boot a remote processor (i.e. load its firmware, power it on, ...).
1119 *
1120 * If the remote processor is already powered on, this function immediately
1121 * returns (successfully).
1122 *
1123 * Returns 0 on success, and an appropriate error value otherwise.
1124 */
1125int rproc_boot(struct rproc *rproc)
1126{
1127	const struct firmware *firmware_p;
1128	struct device *dev;
1129	int ret;
1130
1131	if (!rproc) {
1132		pr_err("invalid rproc handle\n");
1133		return -EINVAL;
1134	}
1135
1136	dev = rproc->dev;
1137
1138	ret = mutex_lock_interruptible(&rproc->lock);
1139	if (ret) {
1140		dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
1141		return ret;
1142	}
1143
1144	/* loading a firmware is required */
1145	if (!rproc->firmware) {
1146		dev_err(dev, "%s: no firmware to load\n", __func__);
1147		ret = -EINVAL;
1148		goto unlock_mutex;
1149	}
1150
1151	/* prevent underlying implementation from being removed */
1152	if (!try_module_get(dev->driver->owner)) {
1153		dev_err(dev, "%s: can't get owner\n", __func__);
1154		ret = -EINVAL;
1155		goto unlock_mutex;
1156	}
1157
1158	/* skip the boot process if rproc is already powered up */
1159	if (atomic_inc_return(&rproc->power) > 1) {
1160		ret = 0;
1161		goto unlock_mutex;
1162	}
1163
1164	dev_info(dev, "powering up %s\n", rproc->name);
1165
1166	/* load firmware */
1167	ret = request_firmware(&firmware_p, rproc->firmware, dev);
1168	if (ret < 0) {
1169		dev_err(dev, "request_firmware failed: %d\n", ret);
1170		goto downref_rproc;
1171	}
1172
1173	ret = rproc_fw_boot(rproc, firmware_p);
1174
1175	release_firmware(firmware_p);
1176
1177downref_rproc:
1178	if (ret) {
1179		module_put(dev->driver->owner);
1180		atomic_dec(&rproc->power);
1181	}
1182unlock_mutex:
1183	mutex_unlock(&rproc->lock);
1184	return ret;
1185}
1186EXPORT_SYMBOL(rproc_boot);
1187
1188/**
1189 * rproc_shutdown() - power off the remote processor
1190 * @rproc: the remote processor
1191 *
1192 * Power off a remote processor (previously booted with rproc_boot()).
1193 *
1194 * In case @rproc is still being used by an additional user(s), then
1195 * this function will just decrement the power refcount and exit,
1196 * without really powering off the device.
1197 *
1198 * Every call to rproc_boot() must (eventually) be accompanied by a call
1199 * to rproc_shutdown(). Calling rproc_shutdown() redundantly is a bug.
1200 *
1201 * Notes:
1202 * - we're not decrementing the rproc's refcount, only the power refcount.
1203 *   which means that the @rproc handle stays valid even after rproc_shutdown()
1204 *   returns, and users can still use it with a subsequent rproc_boot(), if
1205 *   needed.
1206 * - don't call rproc_shutdown() to unroll rproc_get_by_name(), exactly
1207 *   because rproc_shutdown() _does not_ decrement the refcount of @rproc.
1208 *   To decrement the refcount of @rproc, use rproc_put() (but _only_ if
1209 *   you acquired @rproc using rproc_get_by_name()).
1210 */
1211void rproc_shutdown(struct rproc *rproc)
1212{
1213	struct device *dev = rproc->dev;
1214	int ret;
1215
1216	ret = mutex_lock_interruptible(&rproc->lock);
1217	if (ret) {
1218		dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
1219		return;
1220	}
1221
1222	/* if the remote proc is still needed, bail out */
1223	if (!atomic_dec_and_test(&rproc->power))
1224		goto out;
1225
1226	/* power off the remote processor */
1227	ret = rproc->ops->stop(rproc);
1228	if (ret) {
1229		atomic_inc(&rproc->power);
1230		dev_err(dev, "can't stop rproc: %d\n", ret);
1231		goto out;
1232	}
1233
1234	/* clean up all acquired resources */
1235	rproc_resource_cleanup(rproc);
1236
1237	rproc_disable_iommu(rproc);
1238
1239	rproc->state = RPROC_OFFLINE;
1240
1241	dev_info(dev, "stopped remote processor %s\n", rproc->name);
1242
1243out:
1244	mutex_unlock(&rproc->lock);
1245	if (!ret)
1246		module_put(dev->driver->owner);
1247}
1248EXPORT_SYMBOL(rproc_shutdown);
1249
1250/**
1251 * rproc_release() - completely deletes the existence of a remote processor
1252 * @kref: the rproc's kref
1253 *
1254 * This function should _never_ be called directly.
1255 *
1256 * The only reasonable location to use it is as an argument when kref_put'ing
1257 * @rproc's refcount.
1258 *
1259 * This way it will be called when no one holds a valid pointer to this @rproc
1260 * anymore (and obviously after it is removed from the rprocs klist).
1261 *
1262 * Note: this function is not static because rproc_vdev_release() needs it when
1263 * it decrements @rproc's refcount.
1264 */
1265void rproc_release(struct kref *kref)
1266{
1267	struct rproc *rproc = container_of(kref, struct rproc, refcount);
1268	struct rproc_vdev *rvdev, *rvtmp;
1269
1270	dev_info(rproc->dev, "removing %s\n", rproc->name);
1271
1272	rproc_delete_debug_dir(rproc);
1273
1274	/* clean up remote vdev entries */
1275	list_for_each_entry_safe(rvdev, rvtmp, &rproc->rvdevs, node) {
1276		__rproc_free_vrings(rvdev, RVDEV_NUM_VRINGS);
1277		list_del(&rvdev->node);
1278	}
1279
1280	/*
1281	 * At this point no one holds a reference to rproc anymore,
1282	 * so we can directly unroll rproc_alloc()
1283	 */
1284	rproc_free(rproc);
1285}
1286
1287/* will be called when an rproc is added to the rprocs klist */
1288static void klist_rproc_get(struct klist_node *n)
1289{
1290	struct rproc *rproc = container_of(n, struct rproc, node);
1291
1292	kref_get(&rproc->refcount);
1293}
1294
1295/* will be called when an rproc is removed from the rprocs klist */
1296static void klist_rproc_put(struct klist_node *n)
1297{
1298	struct rproc *rproc = container_of(n, struct rproc, node);
1299
1300	kref_put(&rproc->refcount, rproc_release);
1301}
1302
1303static struct rproc *next_rproc(struct klist_iter *i)
1304{
1305	struct klist_node *n;
1306
1307	n = klist_next(i);
1308	if (!n)
1309		return NULL;
1310
1311	return container_of(n, struct rproc, node);
1312}
1313
1314/**
1315 * rproc_get_by_name() - find a remote processor by name and boot it
1316 * @name: name of the remote processor
1317 *
1318 * Finds an rproc handle using the remote processor's name, and then
1319 * boot it. If it's already powered on, then just immediately return
1320 * (successfully).
1321 *
1322 * Returns the rproc handle on success, and NULL on failure.
1323 *
1324 * This function increments the remote processor's refcount, so always
1325 * use rproc_put() to decrement it back once rproc isn't needed anymore.
1326 *
1327 * Note: currently this function (and its counterpart rproc_put()) are not
1328 * being used. We need to scrutinize the use cases
1329 * that still need them, and see if we can migrate them to use the non
1330 * name-based boot/shutdown interface.
1331 */
1332struct rproc *rproc_get_by_name(const char *name)
1333{
1334	struct rproc *rproc;
1335	struct klist_iter i;
1336	int ret;
1337
1338	/* find the remote processor, and upref its refcount */
1339	klist_iter_init(&rprocs, &i);
1340	while ((rproc = next_rproc(&i)) != NULL)
1341		if (!strcmp(rproc->name, name)) {
1342			kref_get(&rproc->refcount);
1343			break;
1344		}
1345	klist_iter_exit(&i);
1346
1347	/* can't find this rproc ? */
1348	if (!rproc) {
1349		pr_err("can't find remote processor %s\n", name);
1350		return NULL;
1351	}
1352
1353	ret = rproc_boot(rproc);
1354	if (ret < 0) {
1355		kref_put(&rproc->refcount, rproc_release);
1356		return NULL;
1357	}
1358
1359	return rproc;
1360}
1361EXPORT_SYMBOL(rproc_get_by_name);
1362
1363/**
1364 * rproc_put() - decrement the refcount of a remote processor, and shut it down
1365 * @rproc: the remote processor
1366 *
1367 * This function tries to shutdown @rproc, and it then decrements its
1368 * refcount.
1369 *
1370 * After this function returns, @rproc may _not_ be used anymore, and its
1371 * handle should be considered invalid.
1372 *
1373 * This function should be called _iff_ the @rproc handle was grabbed by
1374 * calling rproc_get_by_name().
1375 */
1376void rproc_put(struct rproc *rproc)
1377{
1378	/* try to power off the remote processor */
1379	rproc_shutdown(rproc);
1380
1381	/* downref rproc's refcount */
1382	kref_put(&rproc->refcount, rproc_release);
1383}
1384EXPORT_SYMBOL(rproc_put);
1385
1386/**
1387 * rproc_register() - register a remote processor
1388 * @rproc: the remote processor handle to register
1389 *
1390 * Registers @rproc with the remoteproc framework, after it has been
1391 * allocated with rproc_alloc().
1392 *
1393 * This is called by the platform-specific rproc implementation, whenever
1394 * a new remote processor device is probed.
1395 *
1396 * Returns 0 on success and an appropriate error code otherwise.
1397 *
1398 * Note: this function initiates an asynchronous firmware loading
1399 * context, which will look for virtio devices supported by the rproc's
1400 * firmware.
1401 *
1402 * If found, those virtio devices will be created and added, so as a result
1403 * of registering this remote processor, additional virtio drivers might be
1404 * probed.
1405 */
1406int rproc_register(struct rproc *rproc)
1407{
1408	struct device *dev = rproc->dev;
1409	int ret = 0;
1410
1411	/* expose to rproc_get_by_name users */
1412	klist_add_tail(&rproc->node, &rprocs);
1413
1414	dev_info(rproc->dev, "%s is available\n", rproc->name);
1415
1416	dev_info(dev, "Note: remoteproc is still under development and considered experimental.\n");
1417	dev_info(dev, "THE BINARY FORMAT IS NOT YET FINALIZED, and backward compatibility isn't yet guaranteed.\n");
1418
1419	/* create debugfs entries */
1420	rproc_create_debug_dir(rproc);
1421
1422	/* rproc_unregister() calls must wait until async loader completes */
1423	init_completion(&rproc->firmware_loading_complete);
1424
1425	/*
1426	 * We must retrieve early virtio configuration info from
1427	 * the firmware (e.g. whether to register a virtio device,
1428	 * what virtio features does it support, ...).
1429	 *
1430	 * We're initiating an asynchronous firmware loading, so we can
1431	 * be built-in kernel code, without hanging the boot process.
1432	 */
1433	ret = request_firmware_nowait(THIS_MODULE, FW_ACTION_HOTPLUG,
1434					rproc->firmware, dev, GFP_KERNEL,
1435					rproc, rproc_fw_config_virtio);
1436	if (ret < 0) {
1437		dev_err(dev, "request_firmware_nowait failed: %d\n", ret);
1438		complete_all(&rproc->firmware_loading_complete);
1439		klist_remove(&rproc->node);
1440	}
1441
1442	return ret;
1443}
1444EXPORT_SYMBOL(rproc_register);
1445
1446/**
1447 * rproc_alloc() - allocate a remote processor handle
1448 * @dev: the underlying device
1449 * @name: name of this remote processor
1450 * @ops: platform-specific handlers (mainly start/stop)
1451 * @firmware: name of firmware file to load
1452 * @len: length of private data needed by the rproc driver (in bytes)
1453 *
1454 * Allocates a new remote processor handle, but does not register
1455 * it yet.
1456 *
1457 * This function should be used by rproc implementations during initialization
1458 * of the remote processor.
1459 *
1460 * After creating an rproc handle using this function, and when ready,
1461 * implementations should then call rproc_register() to complete
1462 * the registration of the remote processor.
1463 *
1464 * On success the new rproc is returned, and on failure, NULL.
1465 *
1466 * Note: _never_ directly deallocate @rproc, even if it was not registered
1467 * yet. Instead, if you just need to unroll rproc_alloc(), use rproc_free().
1468 */
1469struct rproc *rproc_alloc(struct device *dev, const char *name,
1470				const struct rproc_ops *ops,
1471				const char *firmware, int len)
1472{
1473	struct rproc *rproc;
1474
1475	if (!dev || !name || !ops)
1476		return NULL;
1477
1478	rproc = kzalloc(sizeof(struct rproc) + len, GFP_KERNEL);
1479	if (!rproc) {
1480		dev_err(dev, "%s: kzalloc failed\n", __func__);
1481		return NULL;
1482	}
1483
1484	rproc->dev = dev;
1485	rproc->name = name;
1486	rproc->ops = ops;
1487	rproc->firmware = firmware;
1488	rproc->priv = &rproc[1];
1489
1490	atomic_set(&rproc->power, 0);
1491
1492	kref_init(&rproc->refcount);
1493
1494	mutex_init(&rproc->lock);
1495
1496	idr_init(&rproc->notifyids);
1497
1498	INIT_LIST_HEAD(&rproc->carveouts);
1499	INIT_LIST_HEAD(&rproc->mappings);
1500	INIT_LIST_HEAD(&rproc->traces);
1501	INIT_LIST_HEAD(&rproc->rvdevs);
1502
1503	rproc->state = RPROC_OFFLINE;
1504
1505	return rproc;
1506}
1507EXPORT_SYMBOL(rproc_alloc);
1508
1509/**
1510 * rproc_free() - free an rproc handle that was allocated by rproc_alloc
1511 * @rproc: the remote processor handle
1512 *
1513 * This function should _only_ be used if @rproc was only allocated,
1514 * but not registered yet.
1515 *
1516 * If @rproc was already successfully registered (by calling rproc_register()),
1517 * then use rproc_unregister() instead.
1518 */
1519void rproc_free(struct rproc *rproc)
1520{
1521	idr_remove_all(&rproc->notifyids);
1522	idr_destroy(&rproc->notifyids);
1523
1524	kfree(rproc);
1525}
1526EXPORT_SYMBOL(rproc_free);
1527
1528/**
1529 * rproc_unregister() - unregister a remote processor
1530 * @rproc: rproc handle to unregister
1531 *
1532 * Unregisters a remote processor, and decrements its refcount.
1533 * If its refcount drops to zero, then @rproc will be freed. If not,
1534 * it will be freed later once the last reference is dropped.
1535 *
1536 * This function should be called when the platform specific rproc
1537 * implementation decides to remove the rproc device. it should
1538 * _only_ be called if a previous invocation of rproc_register()
1539 * has completed successfully.
1540 *
1541 * After rproc_unregister() returns, @rproc is _not_ valid anymore and
1542 * it shouldn't be used. More specifically, don't call rproc_free()
1543 * or try to directly free @rproc after rproc_unregister() returns;
1544 * none of these are needed, and calling them is a bug.
1545 *
1546 * Returns 0 on success and -EINVAL if @rproc isn't valid.
1547 */
1548int rproc_unregister(struct rproc *rproc)
1549{
1550	struct rproc_vdev *rvdev;
1551
1552	if (!rproc)
1553		return -EINVAL;
1554
1555	/* if rproc is just being registered, wait */
1556	wait_for_completion(&rproc->firmware_loading_complete);
1557
1558	/* clean up remote vdev entries */
1559	list_for_each_entry(rvdev, &rproc->rvdevs, node)
1560		rproc_remove_virtio_dev(rvdev);
1561
1562	/* the rproc is downref'ed as soon as it's removed from the klist */
1563	klist_del(&rproc->node);
1564
1565	/* the rproc will only be released after its refcount drops to zero */
1566	kref_put(&rproc->refcount, rproc_release);
1567
1568	return 0;
1569}
1570EXPORT_SYMBOL(rproc_unregister);
1571
1572static int __init remoteproc_init(void)
1573{
1574	rproc_init_debugfs();
1575	return 0;
1576}
1577module_init(remoteproc_init);
1578
1579static void __exit remoteproc_exit(void)
1580{
1581	rproc_exit_debugfs();
1582}
1583module_exit(remoteproc_exit);
1584
1585MODULE_LICENSE("GPL v2");
1586MODULE_DESCRIPTION("Generic Remote Processor Framework");
1587