interface.c revision 2113852b239ed4a93d04135372162252f9342bb6
1/*
2 * RTC subsystem, interface functions
3 *
4 * Copyright (C) 2005 Tower Technologies
5 * Author: Alessandro Zummo <a.zummo@towertech.it>
6 *
7 * based on arch/arm/common/rtctime.c
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12*/
13
14#include <linux/rtc.h>
15#include <linux/sched.h>
16#include <linux/module.h>
17#include <linux/log2.h>
18#include <linux/workqueue.h>
19
20static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer);
21static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer);
22
23static int __rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm)
24{
25	int err;
26	if (!rtc->ops)
27		err = -ENODEV;
28	else if (!rtc->ops->read_time)
29		err = -EINVAL;
30	else {
31		memset(tm, 0, sizeof(struct rtc_time));
32		err = rtc->ops->read_time(rtc->dev.parent, tm);
33	}
34	return err;
35}
36
37int rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm)
38{
39	int err;
40
41	err = mutex_lock_interruptible(&rtc->ops_lock);
42	if (err)
43		return err;
44
45	err = __rtc_read_time(rtc, tm);
46	mutex_unlock(&rtc->ops_lock);
47	return err;
48}
49EXPORT_SYMBOL_GPL(rtc_read_time);
50
51int rtc_set_time(struct rtc_device *rtc, struct rtc_time *tm)
52{
53	int err;
54
55	err = rtc_valid_tm(tm);
56	if (err != 0)
57		return err;
58
59	err = mutex_lock_interruptible(&rtc->ops_lock);
60	if (err)
61		return err;
62
63	if (!rtc->ops)
64		err = -ENODEV;
65	else if (rtc->ops->set_time)
66		err = rtc->ops->set_time(rtc->dev.parent, tm);
67	else if (rtc->ops->set_mmss) {
68		unsigned long secs;
69		err = rtc_tm_to_time(tm, &secs);
70		if (err == 0)
71			err = rtc->ops->set_mmss(rtc->dev.parent, secs);
72	} else
73		err = -EINVAL;
74
75	mutex_unlock(&rtc->ops_lock);
76	return err;
77}
78EXPORT_SYMBOL_GPL(rtc_set_time);
79
80int rtc_set_mmss(struct rtc_device *rtc, unsigned long secs)
81{
82	int err;
83
84	err = mutex_lock_interruptible(&rtc->ops_lock);
85	if (err)
86		return err;
87
88	if (!rtc->ops)
89		err = -ENODEV;
90	else if (rtc->ops->set_mmss)
91		err = rtc->ops->set_mmss(rtc->dev.parent, secs);
92	else if (rtc->ops->read_time && rtc->ops->set_time) {
93		struct rtc_time new, old;
94
95		err = rtc->ops->read_time(rtc->dev.parent, &old);
96		if (err == 0) {
97			rtc_time_to_tm(secs, &new);
98
99			/*
100			 * avoid writing when we're going to change the day of
101			 * the month. We will retry in the next minute. This
102			 * basically means that if the RTC must not drift
103			 * by more than 1 minute in 11 minutes.
104			 */
105			if (!((old.tm_hour == 23 && old.tm_min == 59) ||
106				(new.tm_hour == 23 && new.tm_min == 59)))
107				err = rtc->ops->set_time(rtc->dev.parent,
108						&new);
109		}
110	}
111	else
112		err = -EINVAL;
113
114	mutex_unlock(&rtc->ops_lock);
115
116	return err;
117}
118EXPORT_SYMBOL_GPL(rtc_set_mmss);
119
120static int rtc_read_alarm_internal(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
121{
122	int err;
123
124	err = mutex_lock_interruptible(&rtc->ops_lock);
125	if (err)
126		return err;
127
128	if (rtc->ops == NULL)
129		err = -ENODEV;
130	else if (!rtc->ops->read_alarm)
131		err = -EINVAL;
132	else {
133		memset(alarm, 0, sizeof(struct rtc_wkalrm));
134		err = rtc->ops->read_alarm(rtc->dev.parent, alarm);
135	}
136
137	mutex_unlock(&rtc->ops_lock);
138	return err;
139}
140
141int __rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
142{
143	int err;
144	struct rtc_time before, now;
145	int first_time = 1;
146	unsigned long t_now, t_alm;
147	enum { none, day, month, year } missing = none;
148	unsigned days;
149
150	/* The lower level RTC driver may return -1 in some fields,
151	 * creating invalid alarm->time values, for reasons like:
152	 *
153	 *   - The hardware may not be capable of filling them in;
154	 *     many alarms match only on time-of-day fields, not
155	 *     day/month/year calendar data.
156	 *
157	 *   - Some hardware uses illegal values as "wildcard" match
158	 *     values, which non-Linux firmware (like a BIOS) may try
159	 *     to set up as e.g. "alarm 15 minutes after each hour".
160	 *     Linux uses only oneshot alarms.
161	 *
162	 * When we see that here, we deal with it by using values from
163	 * a current RTC timestamp for any missing (-1) values.  The
164	 * RTC driver prevents "periodic alarm" modes.
165	 *
166	 * But this can be racey, because some fields of the RTC timestamp
167	 * may have wrapped in the interval since we read the RTC alarm,
168	 * which would lead to us inserting inconsistent values in place
169	 * of the -1 fields.
170	 *
171	 * Reading the alarm and timestamp in the reverse sequence
172	 * would have the same race condition, and not solve the issue.
173	 *
174	 * So, we must first read the RTC timestamp,
175	 * then read the RTC alarm value,
176	 * and then read a second RTC timestamp.
177	 *
178	 * If any fields of the second timestamp have changed
179	 * when compared with the first timestamp, then we know
180	 * our timestamp may be inconsistent with that used by
181	 * the low-level rtc_read_alarm_internal() function.
182	 *
183	 * So, when the two timestamps disagree, we just loop and do
184	 * the process again to get a fully consistent set of values.
185	 *
186	 * This could all instead be done in the lower level driver,
187	 * but since more than one lower level RTC implementation needs it,
188	 * then it's probably best best to do it here instead of there..
189	 */
190
191	/* Get the "before" timestamp */
192	err = rtc_read_time(rtc, &before);
193	if (err < 0)
194		return err;
195	do {
196		if (!first_time)
197			memcpy(&before, &now, sizeof(struct rtc_time));
198		first_time = 0;
199
200		/* get the RTC alarm values, which may be incomplete */
201		err = rtc_read_alarm_internal(rtc, alarm);
202		if (err)
203			return err;
204
205		/* full-function RTCs won't have such missing fields */
206		if (rtc_valid_tm(&alarm->time) == 0)
207			return 0;
208
209		/* get the "after" timestamp, to detect wrapped fields */
210		err = rtc_read_time(rtc, &now);
211		if (err < 0)
212			return err;
213
214		/* note that tm_sec is a "don't care" value here: */
215	} while (   before.tm_min   != now.tm_min
216		 || before.tm_hour  != now.tm_hour
217		 || before.tm_mon   != now.tm_mon
218		 || before.tm_year  != now.tm_year);
219
220	/* Fill in the missing alarm fields using the timestamp; we
221	 * know there's at least one since alarm->time is invalid.
222	 */
223	if (alarm->time.tm_sec == -1)
224		alarm->time.tm_sec = now.tm_sec;
225	if (alarm->time.tm_min == -1)
226		alarm->time.tm_min = now.tm_min;
227	if (alarm->time.tm_hour == -1)
228		alarm->time.tm_hour = now.tm_hour;
229
230	/* For simplicity, only support date rollover for now */
231	if (alarm->time.tm_mday == -1) {
232		alarm->time.tm_mday = now.tm_mday;
233		missing = day;
234	}
235	if (alarm->time.tm_mon == -1) {
236		alarm->time.tm_mon = now.tm_mon;
237		if (missing == none)
238			missing = month;
239	}
240	if (alarm->time.tm_year == -1) {
241		alarm->time.tm_year = now.tm_year;
242		if (missing == none)
243			missing = year;
244	}
245
246	/* with luck, no rollover is needed */
247	rtc_tm_to_time(&now, &t_now);
248	rtc_tm_to_time(&alarm->time, &t_alm);
249	if (t_now < t_alm)
250		goto done;
251
252	switch (missing) {
253
254	/* 24 hour rollover ... if it's now 10am Monday, an alarm that
255	 * that will trigger at 5am will do so at 5am Tuesday, which
256	 * could also be in the next month or year.  This is a common
257	 * case, especially for PCs.
258	 */
259	case day:
260		dev_dbg(&rtc->dev, "alarm rollover: %s\n", "day");
261		t_alm += 24 * 60 * 60;
262		rtc_time_to_tm(t_alm, &alarm->time);
263		break;
264
265	/* Month rollover ... if it's the 31th, an alarm on the 3rd will
266	 * be next month.  An alarm matching on the 30th, 29th, or 28th
267	 * may end up in the month after that!  Many newer PCs support
268	 * this type of alarm.
269	 */
270	case month:
271		dev_dbg(&rtc->dev, "alarm rollover: %s\n", "month");
272		do {
273			if (alarm->time.tm_mon < 11)
274				alarm->time.tm_mon++;
275			else {
276				alarm->time.tm_mon = 0;
277				alarm->time.tm_year++;
278			}
279			days = rtc_month_days(alarm->time.tm_mon,
280					alarm->time.tm_year);
281		} while (days < alarm->time.tm_mday);
282		break;
283
284	/* Year rollover ... easy except for leap years! */
285	case year:
286		dev_dbg(&rtc->dev, "alarm rollover: %s\n", "year");
287		do {
288			alarm->time.tm_year++;
289		} while (rtc_valid_tm(&alarm->time) != 0);
290		break;
291
292	default:
293		dev_warn(&rtc->dev, "alarm rollover not handled\n");
294	}
295
296done:
297	return 0;
298}
299
300int rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
301{
302	int err;
303
304	err = mutex_lock_interruptible(&rtc->ops_lock);
305	if (err)
306		return err;
307	if (rtc->ops == NULL)
308		err = -ENODEV;
309	else if (!rtc->ops->read_alarm)
310		err = -EINVAL;
311	else {
312		memset(alarm, 0, sizeof(struct rtc_wkalrm));
313		alarm->enabled = rtc->aie_timer.enabled;
314		alarm->time = rtc_ktime_to_tm(rtc->aie_timer.node.expires);
315	}
316	mutex_unlock(&rtc->ops_lock);
317
318	return err;
319}
320EXPORT_SYMBOL_GPL(rtc_read_alarm);
321
322static int __rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
323{
324	struct rtc_time tm;
325	long now, scheduled;
326	int err;
327
328	err = rtc_valid_tm(&alarm->time);
329	if (err)
330		return err;
331	rtc_tm_to_time(&alarm->time, &scheduled);
332
333	/* Make sure we're not setting alarms in the past */
334	err = __rtc_read_time(rtc, &tm);
335	rtc_tm_to_time(&tm, &now);
336	if (scheduled <= now)
337		return -ETIME;
338	/*
339	 * XXX - We just checked to make sure the alarm time is not
340	 * in the past, but there is still a race window where if
341	 * the is alarm set for the next second and the second ticks
342	 * over right here, before we set the alarm.
343	 */
344
345	if (!rtc->ops)
346		err = -ENODEV;
347	else if (!rtc->ops->set_alarm)
348		err = -EINVAL;
349	else
350		err = rtc->ops->set_alarm(rtc->dev.parent, alarm);
351
352	return err;
353}
354
355int rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
356{
357	int err;
358
359	err = rtc_valid_tm(&alarm->time);
360	if (err != 0)
361		return err;
362
363	err = mutex_lock_interruptible(&rtc->ops_lock);
364	if (err)
365		return err;
366	if (rtc->aie_timer.enabled) {
367		rtc_timer_remove(rtc, &rtc->aie_timer);
368	}
369	rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time);
370	rtc->aie_timer.period = ktime_set(0, 0);
371	if (alarm->enabled) {
372		err = rtc_timer_enqueue(rtc, &rtc->aie_timer);
373	}
374	mutex_unlock(&rtc->ops_lock);
375	return err;
376}
377EXPORT_SYMBOL_GPL(rtc_set_alarm);
378
379/* Called once per device from rtc_device_register */
380int rtc_initialize_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
381{
382	int err;
383
384	err = rtc_valid_tm(&alarm->time);
385	if (err != 0)
386		return err;
387
388	err = mutex_lock_interruptible(&rtc->ops_lock);
389	if (err)
390		return err;
391
392	rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time);
393	rtc->aie_timer.period = ktime_set(0, 0);
394	if (alarm->enabled) {
395		rtc->aie_timer.enabled = 1;
396		timerqueue_add(&rtc->timerqueue, &rtc->aie_timer.node);
397	}
398	mutex_unlock(&rtc->ops_lock);
399	return err;
400}
401EXPORT_SYMBOL_GPL(rtc_initialize_alarm);
402
403
404
405int rtc_alarm_irq_enable(struct rtc_device *rtc, unsigned int enabled)
406{
407	int err = mutex_lock_interruptible(&rtc->ops_lock);
408	if (err)
409		return err;
410
411	if (rtc->aie_timer.enabled != enabled) {
412		if (enabled)
413			err = rtc_timer_enqueue(rtc, &rtc->aie_timer);
414		else
415			rtc_timer_remove(rtc, &rtc->aie_timer);
416	}
417
418	if (err)
419		/* nothing */;
420	else if (!rtc->ops)
421		err = -ENODEV;
422	else if (!rtc->ops->alarm_irq_enable)
423		err = -EINVAL;
424	else
425		err = rtc->ops->alarm_irq_enable(rtc->dev.parent, enabled);
426
427	mutex_unlock(&rtc->ops_lock);
428	return err;
429}
430EXPORT_SYMBOL_GPL(rtc_alarm_irq_enable);
431
432int rtc_update_irq_enable(struct rtc_device *rtc, unsigned int enabled)
433{
434	int err = mutex_lock_interruptible(&rtc->ops_lock);
435	if (err)
436		return err;
437
438#ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
439	if (enabled == 0 && rtc->uie_irq_active) {
440		mutex_unlock(&rtc->ops_lock);
441		return rtc_dev_update_irq_enable_emul(rtc, 0);
442	}
443#endif
444	/* make sure we're changing state */
445	if (rtc->uie_rtctimer.enabled == enabled)
446		goto out;
447
448	if (enabled) {
449		struct rtc_time tm;
450		ktime_t now, onesec;
451
452		__rtc_read_time(rtc, &tm);
453		onesec = ktime_set(1, 0);
454		now = rtc_tm_to_ktime(tm);
455		rtc->uie_rtctimer.node.expires = ktime_add(now, onesec);
456		rtc->uie_rtctimer.period = ktime_set(1, 0);
457		err = rtc_timer_enqueue(rtc, &rtc->uie_rtctimer);
458	} else
459		rtc_timer_remove(rtc, &rtc->uie_rtctimer);
460
461out:
462	mutex_unlock(&rtc->ops_lock);
463#ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
464	/*
465	 * Enable emulation if the driver did not provide
466	 * the update_irq_enable function pointer or if returned
467	 * -EINVAL to signal that it has been configured without
468	 * interrupts or that are not available at the moment.
469	 */
470	if (err == -EINVAL)
471		err = rtc_dev_update_irq_enable_emul(rtc, enabled);
472#endif
473	return err;
474
475}
476EXPORT_SYMBOL_GPL(rtc_update_irq_enable);
477
478
479/**
480 * rtc_handle_legacy_irq - AIE, UIE and PIE event hook
481 * @rtc: pointer to the rtc device
482 *
483 * This function is called when an AIE, UIE or PIE mode interrupt
484 * has occurred (or been emulated).
485 *
486 * Triggers the registered irq_task function callback.
487 */
488void rtc_handle_legacy_irq(struct rtc_device *rtc, int num, int mode)
489{
490	unsigned long flags;
491
492	/* mark one irq of the appropriate mode */
493	spin_lock_irqsave(&rtc->irq_lock, flags);
494	rtc->irq_data = (rtc->irq_data + (num << 8)) | (RTC_IRQF|mode);
495	spin_unlock_irqrestore(&rtc->irq_lock, flags);
496
497	/* call the task func */
498	spin_lock_irqsave(&rtc->irq_task_lock, flags);
499	if (rtc->irq_task)
500		rtc->irq_task->func(rtc->irq_task->private_data);
501	spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
502
503	wake_up_interruptible(&rtc->irq_queue);
504	kill_fasync(&rtc->async_queue, SIGIO, POLL_IN);
505}
506
507
508/**
509 * rtc_aie_update_irq - AIE mode rtctimer hook
510 * @private: pointer to the rtc_device
511 *
512 * This functions is called when the aie_timer expires.
513 */
514void rtc_aie_update_irq(void *private)
515{
516	struct rtc_device *rtc = (struct rtc_device *)private;
517	rtc_handle_legacy_irq(rtc, 1, RTC_AF);
518}
519
520
521/**
522 * rtc_uie_update_irq - UIE mode rtctimer hook
523 * @private: pointer to the rtc_device
524 *
525 * This functions is called when the uie_timer expires.
526 */
527void rtc_uie_update_irq(void *private)
528{
529	struct rtc_device *rtc = (struct rtc_device *)private;
530	rtc_handle_legacy_irq(rtc, 1,  RTC_UF);
531}
532
533
534/**
535 * rtc_pie_update_irq - PIE mode hrtimer hook
536 * @timer: pointer to the pie mode hrtimer
537 *
538 * This function is used to emulate PIE mode interrupts
539 * using an hrtimer. This function is called when the periodic
540 * hrtimer expires.
541 */
542enum hrtimer_restart rtc_pie_update_irq(struct hrtimer *timer)
543{
544	struct rtc_device *rtc;
545	ktime_t period;
546	int count;
547	rtc = container_of(timer, struct rtc_device, pie_timer);
548
549	period = ktime_set(0, NSEC_PER_SEC/rtc->irq_freq);
550	count = hrtimer_forward_now(timer, period);
551
552	rtc_handle_legacy_irq(rtc, count, RTC_PF);
553
554	return HRTIMER_RESTART;
555}
556
557/**
558 * rtc_update_irq - Triggered when a RTC interrupt occurs.
559 * @rtc: the rtc device
560 * @num: how many irqs are being reported (usually one)
561 * @events: mask of RTC_IRQF with one or more of RTC_PF, RTC_AF, RTC_UF
562 * Context: any
563 */
564void rtc_update_irq(struct rtc_device *rtc,
565		unsigned long num, unsigned long events)
566{
567	schedule_work(&rtc->irqwork);
568}
569EXPORT_SYMBOL_GPL(rtc_update_irq);
570
571static int __rtc_match(struct device *dev, void *data)
572{
573	char *name = (char *)data;
574
575	if (strcmp(dev_name(dev), name) == 0)
576		return 1;
577	return 0;
578}
579
580struct rtc_device *rtc_class_open(char *name)
581{
582	struct device *dev;
583	struct rtc_device *rtc = NULL;
584
585	dev = class_find_device(rtc_class, NULL, name, __rtc_match);
586	if (dev)
587		rtc = to_rtc_device(dev);
588
589	if (rtc) {
590		if (!try_module_get(rtc->owner)) {
591			put_device(dev);
592			rtc = NULL;
593		}
594	}
595
596	return rtc;
597}
598EXPORT_SYMBOL_GPL(rtc_class_open);
599
600void rtc_class_close(struct rtc_device *rtc)
601{
602	module_put(rtc->owner);
603	put_device(&rtc->dev);
604}
605EXPORT_SYMBOL_GPL(rtc_class_close);
606
607int rtc_irq_register(struct rtc_device *rtc, struct rtc_task *task)
608{
609	int retval = -EBUSY;
610
611	if (task == NULL || task->func == NULL)
612		return -EINVAL;
613
614	/* Cannot register while the char dev is in use */
615	if (test_and_set_bit_lock(RTC_DEV_BUSY, &rtc->flags))
616		return -EBUSY;
617
618	spin_lock_irq(&rtc->irq_task_lock);
619	if (rtc->irq_task == NULL) {
620		rtc->irq_task = task;
621		retval = 0;
622	}
623	spin_unlock_irq(&rtc->irq_task_lock);
624
625	clear_bit_unlock(RTC_DEV_BUSY, &rtc->flags);
626
627	return retval;
628}
629EXPORT_SYMBOL_GPL(rtc_irq_register);
630
631void rtc_irq_unregister(struct rtc_device *rtc, struct rtc_task *task)
632{
633	spin_lock_irq(&rtc->irq_task_lock);
634	if (rtc->irq_task == task)
635		rtc->irq_task = NULL;
636	spin_unlock_irq(&rtc->irq_task_lock);
637}
638EXPORT_SYMBOL_GPL(rtc_irq_unregister);
639
640static int rtc_update_hrtimer(struct rtc_device *rtc, int enabled)
641{
642	/*
643	 * We always cancel the timer here first, because otherwise
644	 * we could run into BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
645	 * when we manage to start the timer before the callback
646	 * returns HRTIMER_RESTART.
647	 *
648	 * We cannot use hrtimer_cancel() here as a running callback
649	 * could be blocked on rtc->irq_task_lock and hrtimer_cancel()
650	 * would spin forever.
651	 */
652	if (hrtimer_try_to_cancel(&rtc->pie_timer) < 0)
653		return -1;
654
655	if (enabled) {
656		ktime_t period = ktime_set(0, NSEC_PER_SEC / rtc->irq_freq);
657
658		hrtimer_start(&rtc->pie_timer, period, HRTIMER_MODE_REL);
659	}
660	return 0;
661}
662
663/**
664 * rtc_irq_set_state - enable/disable 2^N Hz periodic IRQs
665 * @rtc: the rtc device
666 * @task: currently registered with rtc_irq_register()
667 * @enabled: true to enable periodic IRQs
668 * Context: any
669 *
670 * Note that rtc_irq_set_freq() should previously have been used to
671 * specify the desired frequency of periodic IRQ task->func() callbacks.
672 */
673int rtc_irq_set_state(struct rtc_device *rtc, struct rtc_task *task, int enabled)
674{
675	int err = 0;
676	unsigned long flags;
677
678retry:
679	spin_lock_irqsave(&rtc->irq_task_lock, flags);
680	if (rtc->irq_task != NULL && task == NULL)
681		err = -EBUSY;
682	if (rtc->irq_task != task)
683		err = -EACCES;
684	if (!err) {
685		if (rtc_update_hrtimer(rtc, enabled) < 0) {
686			spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
687			cpu_relax();
688			goto retry;
689		}
690		rtc->pie_enabled = enabled;
691	}
692	spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
693	return err;
694}
695EXPORT_SYMBOL_GPL(rtc_irq_set_state);
696
697/**
698 * rtc_irq_set_freq - set 2^N Hz periodic IRQ frequency for IRQ
699 * @rtc: the rtc device
700 * @task: currently registered with rtc_irq_register()
701 * @freq: positive frequency with which task->func() will be called
702 * Context: any
703 *
704 * Note that rtc_irq_set_state() is used to enable or disable the
705 * periodic IRQs.
706 */
707int rtc_irq_set_freq(struct rtc_device *rtc, struct rtc_task *task, int freq)
708{
709	int err = 0;
710	unsigned long flags;
711
712	if (freq <= 0 || freq > RTC_MAX_FREQ)
713		return -EINVAL;
714retry:
715	spin_lock_irqsave(&rtc->irq_task_lock, flags);
716	if (rtc->irq_task != NULL && task == NULL)
717		err = -EBUSY;
718	if (rtc->irq_task != task)
719		err = -EACCES;
720	if (!err) {
721		rtc->irq_freq = freq;
722		if (rtc->pie_enabled && rtc_update_hrtimer(rtc, 1) < 0) {
723			spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
724			cpu_relax();
725			goto retry;
726		}
727	}
728	spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
729	return err;
730}
731EXPORT_SYMBOL_GPL(rtc_irq_set_freq);
732
733/**
734 * rtc_timer_enqueue - Adds a rtc_timer to the rtc_device timerqueue
735 * @rtc rtc device
736 * @timer timer being added.
737 *
738 * Enqueues a timer onto the rtc devices timerqueue and sets
739 * the next alarm event appropriately.
740 *
741 * Sets the enabled bit on the added timer.
742 *
743 * Must hold ops_lock for proper serialization of timerqueue
744 */
745static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer)
746{
747	timer->enabled = 1;
748	timerqueue_add(&rtc->timerqueue, &timer->node);
749	if (&timer->node == timerqueue_getnext(&rtc->timerqueue)) {
750		struct rtc_wkalrm alarm;
751		int err;
752		alarm.time = rtc_ktime_to_tm(timer->node.expires);
753		alarm.enabled = 1;
754		err = __rtc_set_alarm(rtc, &alarm);
755		if (err == -ETIME)
756			schedule_work(&rtc->irqwork);
757		else if (err) {
758			timerqueue_del(&rtc->timerqueue, &timer->node);
759			timer->enabled = 0;
760			return err;
761		}
762	}
763	return 0;
764}
765
766/**
767 * rtc_timer_remove - Removes a rtc_timer from the rtc_device timerqueue
768 * @rtc rtc device
769 * @timer timer being removed.
770 *
771 * Removes a timer onto the rtc devices timerqueue and sets
772 * the next alarm event appropriately.
773 *
774 * Clears the enabled bit on the removed timer.
775 *
776 * Must hold ops_lock for proper serialization of timerqueue
777 */
778static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer)
779{
780	struct timerqueue_node *next = timerqueue_getnext(&rtc->timerqueue);
781	timerqueue_del(&rtc->timerqueue, &timer->node);
782	timer->enabled = 0;
783	if (next == &timer->node) {
784		struct rtc_wkalrm alarm;
785		int err;
786		next = timerqueue_getnext(&rtc->timerqueue);
787		if (!next)
788			return;
789		alarm.time = rtc_ktime_to_tm(next->expires);
790		alarm.enabled = 1;
791		err = __rtc_set_alarm(rtc, &alarm);
792		if (err == -ETIME)
793			schedule_work(&rtc->irqwork);
794	}
795}
796
797/**
798 * rtc_timer_do_work - Expires rtc timers
799 * @rtc rtc device
800 * @timer timer being removed.
801 *
802 * Expires rtc timers. Reprograms next alarm event if needed.
803 * Called via worktask.
804 *
805 * Serializes access to timerqueue via ops_lock mutex
806 */
807void rtc_timer_do_work(struct work_struct *work)
808{
809	struct rtc_timer *timer;
810	struct timerqueue_node *next;
811	ktime_t now;
812	struct rtc_time tm;
813
814	struct rtc_device *rtc =
815		container_of(work, struct rtc_device, irqwork);
816
817	mutex_lock(&rtc->ops_lock);
818again:
819	__rtc_read_time(rtc, &tm);
820	now = rtc_tm_to_ktime(tm);
821	while ((next = timerqueue_getnext(&rtc->timerqueue))) {
822		if (next->expires.tv64 > now.tv64)
823			break;
824
825		/* expire timer */
826		timer = container_of(next, struct rtc_timer, node);
827		timerqueue_del(&rtc->timerqueue, &timer->node);
828		timer->enabled = 0;
829		if (timer->task.func)
830			timer->task.func(timer->task.private_data);
831
832		/* Re-add/fwd periodic timers */
833		if (ktime_to_ns(timer->period)) {
834			timer->node.expires = ktime_add(timer->node.expires,
835							timer->period);
836			timer->enabled = 1;
837			timerqueue_add(&rtc->timerqueue, &timer->node);
838		}
839	}
840
841	/* Set next alarm */
842	if (next) {
843		struct rtc_wkalrm alarm;
844		int err;
845		alarm.time = rtc_ktime_to_tm(next->expires);
846		alarm.enabled = 1;
847		err = __rtc_set_alarm(rtc, &alarm);
848		if (err == -ETIME)
849			goto again;
850	}
851
852	mutex_unlock(&rtc->ops_lock);
853}
854
855
856/* rtc_timer_init - Initializes an rtc_timer
857 * @timer: timer to be intiialized
858 * @f: function pointer to be called when timer fires
859 * @data: private data passed to function pointer
860 *
861 * Kernel interface to initializing an rtc_timer.
862 */
863void rtc_timer_init(struct rtc_timer *timer, void (*f)(void* p), void* data)
864{
865	timerqueue_init(&timer->node);
866	timer->enabled = 0;
867	timer->task.func = f;
868	timer->task.private_data = data;
869}
870
871/* rtc_timer_start - Sets an rtc_timer to fire in the future
872 * @ rtc: rtc device to be used
873 * @ timer: timer being set
874 * @ expires: time at which to expire the timer
875 * @ period: period that the timer will recur
876 *
877 * Kernel interface to set an rtc_timer
878 */
879int rtc_timer_start(struct rtc_device *rtc, struct rtc_timer* timer,
880			ktime_t expires, ktime_t period)
881{
882	int ret = 0;
883	mutex_lock(&rtc->ops_lock);
884	if (timer->enabled)
885		rtc_timer_remove(rtc, timer);
886
887	timer->node.expires = expires;
888	timer->period = period;
889
890	ret = rtc_timer_enqueue(rtc, timer);
891
892	mutex_unlock(&rtc->ops_lock);
893	return ret;
894}
895
896/* rtc_timer_cancel - Stops an rtc_timer
897 * @ rtc: rtc device to be used
898 * @ timer: timer being set
899 *
900 * Kernel interface to cancel an rtc_timer
901 */
902int rtc_timer_cancel(struct rtc_device *rtc, struct rtc_timer* timer)
903{
904	int ret = 0;
905	mutex_lock(&rtc->ops_lock);
906	if (timer->enabled)
907		rtc_timer_remove(rtc, timer);
908	mutex_unlock(&rtc->ops_lock);
909	return ret;
910}
911
912
913