interface.c revision 8853c202b4a91713dbfb4d9b6e1c87cc2aa12392
1/*
2 * RTC subsystem, interface functions
3 *
4 * Copyright (C) 2005 Tower Technologies
5 * Author: Alessandro Zummo <a.zummo@towertech.it>
6 *
7 * based on arch/arm/common/rtctime.c
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12*/
13
14#include <linux/rtc.h>
15#include <linux/log2.h>
16
17int rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm)
18{
19	int err;
20
21	err = mutex_lock_interruptible(&rtc->ops_lock);
22	if (err)
23		return -EBUSY;
24
25	if (!rtc->ops)
26		err = -ENODEV;
27	else if (!rtc->ops->read_time)
28		err = -EINVAL;
29	else {
30		memset(tm, 0, sizeof(struct rtc_time));
31		err = rtc->ops->read_time(rtc->dev.parent, tm);
32	}
33
34	mutex_unlock(&rtc->ops_lock);
35	return err;
36}
37EXPORT_SYMBOL_GPL(rtc_read_time);
38
39int rtc_set_time(struct rtc_device *rtc, struct rtc_time *tm)
40{
41	int err;
42
43	err = rtc_valid_tm(tm);
44	if (err != 0)
45		return err;
46
47	err = mutex_lock_interruptible(&rtc->ops_lock);
48	if (err)
49		return -EBUSY;
50
51	if (!rtc->ops)
52		err = -ENODEV;
53	else if (!rtc->ops->set_time)
54		err = -EINVAL;
55	else
56		err = rtc->ops->set_time(rtc->dev.parent, tm);
57
58	mutex_unlock(&rtc->ops_lock);
59	return err;
60}
61EXPORT_SYMBOL_GPL(rtc_set_time);
62
63int rtc_set_mmss(struct rtc_device *rtc, unsigned long secs)
64{
65	int err;
66
67	err = mutex_lock_interruptible(&rtc->ops_lock);
68	if (err)
69		return -EBUSY;
70
71	if (!rtc->ops)
72		err = -ENODEV;
73	else if (rtc->ops->set_mmss)
74		err = rtc->ops->set_mmss(rtc->dev.parent, secs);
75	else if (rtc->ops->read_time && rtc->ops->set_time) {
76		struct rtc_time new, old;
77
78		err = rtc->ops->read_time(rtc->dev.parent, &old);
79		if (err == 0) {
80			rtc_time_to_tm(secs, &new);
81
82			/*
83			 * avoid writing when we're going to change the day of
84			 * the month. We will retry in the next minute. This
85			 * basically means that if the RTC must not drift
86			 * by more than 1 minute in 11 minutes.
87			 */
88			if (!((old.tm_hour == 23 && old.tm_min == 59) ||
89				(new.tm_hour == 23 && new.tm_min == 59)))
90				err = rtc->ops->set_time(rtc->dev.parent,
91						&new);
92		}
93	}
94	else
95		err = -EINVAL;
96
97	mutex_unlock(&rtc->ops_lock);
98
99	return err;
100}
101EXPORT_SYMBOL_GPL(rtc_set_mmss);
102
103static int rtc_read_alarm_internal(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
104{
105	int err;
106
107	err = mutex_lock_interruptible(&rtc->ops_lock);
108	if (err)
109		return -EBUSY;
110
111	if (rtc->ops == NULL)
112		err = -ENODEV;
113	else if (!rtc->ops->read_alarm)
114		err = -EINVAL;
115	else {
116		memset(alarm, 0, sizeof(struct rtc_wkalrm));
117		err = rtc->ops->read_alarm(rtc->dev.parent, alarm);
118	}
119
120	mutex_unlock(&rtc->ops_lock);
121	return err;
122}
123
124int rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
125{
126	int err;
127	struct rtc_time before, now;
128	int first_time = 1;
129
130	/* The lower level RTC driver may not be capable of filling
131	 * in all fields of the rtc_time struct (eg. rtc-cmos),
132	 * and so might instead return -1 in some fields.
133	 * We deal with that here by grabbing a current RTC timestamp
134	 * and using values from that for any missing (-1) values.
135	 *
136	 * But this can be racey, because some fields of the RTC timestamp
137	 * may have wrapped in the interval since we read the RTC alarm,
138	 * which would lead to us inserting inconsistent values in place
139	 * of the -1 fields.
140	 *
141	 * Reading the alarm and timestamp in the reverse sequence
142	 * would have the same race condition, and not solve the issue.
143	 *
144	 * So, we must first read the RTC timestamp,
145	 * then read the RTC alarm value,
146	 * and then read a second RTC timestamp.
147	 *
148	 * If any fields of the second timestamp have changed
149	 * when compared with the first timestamp, then we know
150	 * our timestamp may be inconsistent with that used by
151	 * the low-level rtc_read_alarm_internal() function.
152	 *
153	 * So, when the two timestamps disagree, we just loop and do
154	 * the process again to get a fully consistent set of values.
155	 *
156	 * This could all instead be done in the lower level driver,
157	 * but since more than one lower level RTC implementation needs it,
158	 * then it's probably best best to do it here instead of there..
159	 */
160
161	/* Get the "before" timestamp */
162	err = rtc_read_time(rtc, &before);
163	if (err < 0)
164		return err;
165	do {
166		if (!first_time)
167			memcpy(&before, &now, sizeof(struct rtc_time));
168		first_time = 0;
169
170		/* get the RTC alarm values, which may be incomplete */
171		err = rtc_read_alarm_internal(rtc, alarm);
172		if (err)
173			return err;
174		if (!alarm->enabled)
175			return 0;
176
177		/* get the "after" timestamp, to detect wrapped fields */
178		err = rtc_read_time(rtc, &now);
179		if (err < 0)
180			return err;
181
182		/* note that tm_sec is a "don't care" value here: */
183	} while (   before.tm_min   != now.tm_min
184		 || before.tm_hour  != now.tm_hour
185		 || before.tm_mon   != now.tm_mon
186		 || before.tm_year  != now.tm_year
187		 || before.tm_isdst != now.tm_isdst);
188
189	/* Fill in any missing alarm fields using the timestamp */
190	if (alarm->time.tm_sec == -1)
191		alarm->time.tm_sec = now.tm_sec;
192	if (alarm->time.tm_min == -1)
193		alarm->time.tm_min = now.tm_min;
194	if (alarm->time.tm_hour == -1)
195		alarm->time.tm_hour = now.tm_hour;
196	if (alarm->time.tm_mday == -1)
197		alarm->time.tm_mday = now.tm_mday;
198	if (alarm->time.tm_mon == -1)
199		alarm->time.tm_mon = now.tm_mon;
200	if (alarm->time.tm_year == -1)
201		alarm->time.tm_year = now.tm_year;
202	return 0;
203}
204EXPORT_SYMBOL_GPL(rtc_read_alarm);
205
206int rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
207{
208	int err;
209
210	err = rtc_valid_tm(&alarm->time);
211	if (err != 0)
212		return err;
213
214	err = mutex_lock_interruptible(&rtc->ops_lock);
215	if (err)
216		return -EBUSY;
217
218	if (!rtc->ops)
219		err = -ENODEV;
220	else if (!rtc->ops->set_alarm)
221		err = -EINVAL;
222	else
223		err = rtc->ops->set_alarm(rtc->dev.parent, alarm);
224
225	mutex_unlock(&rtc->ops_lock);
226	return err;
227}
228EXPORT_SYMBOL_GPL(rtc_set_alarm);
229
230/**
231 * rtc_update_irq - report RTC periodic, alarm, and/or update irqs
232 * @rtc: the rtc device
233 * @num: how many irqs are being reported (usually one)
234 * @events: mask of RTC_IRQF with one or more of RTC_PF, RTC_AF, RTC_UF
235 * Context: in_interrupt(), irqs blocked
236 */
237void rtc_update_irq(struct rtc_device *rtc,
238		unsigned long num, unsigned long events)
239{
240	spin_lock(&rtc->irq_lock);
241	rtc->irq_data = (rtc->irq_data + (num << 8)) | events;
242	spin_unlock(&rtc->irq_lock);
243
244	spin_lock(&rtc->irq_task_lock);
245	if (rtc->irq_task)
246		rtc->irq_task->func(rtc->irq_task->private_data);
247	spin_unlock(&rtc->irq_task_lock);
248
249	wake_up_interruptible(&rtc->irq_queue);
250	kill_fasync(&rtc->async_queue, SIGIO, POLL_IN);
251}
252EXPORT_SYMBOL_GPL(rtc_update_irq);
253
254struct rtc_device *rtc_class_open(char *name)
255{
256	struct device *dev;
257	struct rtc_device *rtc = NULL;
258
259	down(&rtc_class->sem);
260	list_for_each_entry(dev, &rtc_class->devices, node) {
261		if (strncmp(dev->bus_id, name, BUS_ID_SIZE) == 0) {
262			dev = get_device(dev);
263			if (dev)
264				rtc = to_rtc_device(dev);
265			break;
266		}
267	}
268
269	if (rtc) {
270		if (!try_module_get(rtc->owner)) {
271			put_device(dev);
272			rtc = NULL;
273		}
274	}
275	up(&rtc_class->sem);
276
277	return rtc;
278}
279EXPORT_SYMBOL_GPL(rtc_class_open);
280
281void rtc_class_close(struct rtc_device *rtc)
282{
283	module_put(rtc->owner);
284	put_device(&rtc->dev);
285}
286EXPORT_SYMBOL_GPL(rtc_class_close);
287
288int rtc_irq_register(struct rtc_device *rtc, struct rtc_task *task)
289{
290	int retval = -EBUSY;
291
292	if (task == NULL || task->func == NULL)
293		return -EINVAL;
294
295	/* Cannot register while the char dev is in use */
296	if (test_and_set_bit(RTC_DEV_BUSY, &rtc->flags))
297		return -EBUSY;
298
299	spin_lock_irq(&rtc->irq_task_lock);
300	if (rtc->irq_task == NULL) {
301		rtc->irq_task = task;
302		retval = 0;
303	}
304	spin_unlock_irq(&rtc->irq_task_lock);
305
306	clear_bit(RTC_DEV_BUSY, &rtc->flags);
307
308	return retval;
309}
310EXPORT_SYMBOL_GPL(rtc_irq_register);
311
312void rtc_irq_unregister(struct rtc_device *rtc, struct rtc_task *task)
313{
314	spin_lock_irq(&rtc->irq_task_lock);
315	if (rtc->irq_task == task)
316		rtc->irq_task = NULL;
317	spin_unlock_irq(&rtc->irq_task_lock);
318}
319EXPORT_SYMBOL_GPL(rtc_irq_unregister);
320
321/**
322 * rtc_irq_set_state - enable/disable 2^N Hz periodic IRQs
323 * @rtc: the rtc device
324 * @task: currently registered with rtc_irq_register()
325 * @enabled: true to enable periodic IRQs
326 * Context: any
327 *
328 * Note that rtc_irq_set_freq() should previously have been used to
329 * specify the desired frequency of periodic IRQ task->func() callbacks.
330 */
331int rtc_irq_set_state(struct rtc_device *rtc, struct rtc_task *task, int enabled)
332{
333	int err = 0;
334	unsigned long flags;
335
336	if (rtc->ops->irq_set_state == NULL)
337		return -ENXIO;
338
339	spin_lock_irqsave(&rtc->irq_task_lock, flags);
340	if (rtc->irq_task != NULL && task == NULL)
341		err = -EBUSY;
342	if (rtc->irq_task != task)
343		err = -EACCES;
344	spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
345
346	if (err == 0)
347		err = rtc->ops->irq_set_state(rtc->dev.parent, enabled);
348
349	return err;
350}
351EXPORT_SYMBOL_GPL(rtc_irq_set_state);
352
353/**
354 * rtc_irq_set_freq - set 2^N Hz periodic IRQ frequency for IRQ
355 * @rtc: the rtc device
356 * @task: currently registered with rtc_irq_register()
357 * @freq: positive frequency with which task->func() will be called
358 * Context: any
359 *
360 * Note that rtc_irq_set_state() is used to enable or disable the
361 * periodic IRQs.
362 */
363int rtc_irq_set_freq(struct rtc_device *rtc, struct rtc_task *task, int freq)
364{
365	int err = 0;
366	unsigned long flags;
367
368	if (rtc->ops->irq_set_freq == NULL)
369		return -ENXIO;
370
371	if (!is_power_of_2(freq))
372		return -EINVAL;
373
374	spin_lock_irqsave(&rtc->irq_task_lock, flags);
375	if (rtc->irq_task != NULL && task == NULL)
376		err = -EBUSY;
377	if (rtc->irq_task != task)
378		err = -EACCES;
379	spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
380
381	if (err == 0) {
382		err = rtc->ops->irq_set_freq(rtc->dev.parent, freq);
383		if (err == 0)
384			rtc->irq_freq = freq;
385	}
386	return err;
387}
388EXPORT_SYMBOL_GPL(rtc_irq_set_freq);
389