request.c revision 424a6f6ef990b7e9f56f6627bfc6c46b493faeb4
1/*
2 * This file is provided under a dual BSD/GPLv2 license.  When using or
3 * redistributing this file, you may do so under either license.
4 *
5 * GPL LICENSE SUMMARY
6 *
7 * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of version 2 of the GNU General Public License as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16 * General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
21 * The full GNU General Public License is included in this distribution
22 * in the file called LICENSE.GPL.
23 *
24 * BSD LICENSE
25 *
26 * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
27 * All rights reserved.
28 *
29 * Redistribution and use in source and binary forms, with or without
30 * modification, are permitted provided that the following conditions
31 * are met:
32 *
33 *   * Redistributions of source code must retain the above copyright
34 *     notice, this list of conditions and the following disclaimer.
35 *   * Redistributions in binary form must reproduce the above copyright
36 *     notice, this list of conditions and the following disclaimer in
37 *     the documentation and/or other materials provided with the
38 *     distribution.
39 *   * Neither the name of Intel Corporation nor the names of its
40 *     contributors may be used to endorse or promote products derived
41 *     from this software without specific prior written permission.
42 *
43 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
44 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
45 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
46 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
47 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
48 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
49 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
50 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
51 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
52 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
53 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
54 */
55
56#include <scsi/scsi_cmnd.h>
57#include "isci.h"
58#include "task.h"
59#include "request.h"
60#include "scu_completion_codes.h"
61#include "scu_event_codes.h"
62#include "sas.h"
63
64#undef C
65#define C(a) (#a)
66const char *req_state_name(enum sci_base_request_states state)
67{
68	static const char * const strings[] = REQUEST_STATES;
69
70	return strings[state];
71}
72#undef C
73
74static struct scu_sgl_element_pair *to_sgl_element_pair(struct isci_request *ireq,
75							int idx)
76{
77	if (idx == 0)
78		return &ireq->tc->sgl_pair_ab;
79	else if (idx == 1)
80		return &ireq->tc->sgl_pair_cd;
81	else if (idx < 0)
82		return NULL;
83	else
84		return &ireq->sg_table[idx - 2];
85}
86
87static dma_addr_t to_sgl_element_pair_dma(struct isci_host *ihost,
88					  struct isci_request *ireq, u32 idx)
89{
90	u32 offset;
91
92	if (idx == 0) {
93		offset = (void *) &ireq->tc->sgl_pair_ab -
94			 (void *) &ihost->task_context_table[0];
95		return ihost->task_context_dma + offset;
96	} else if (idx == 1) {
97		offset = (void *) &ireq->tc->sgl_pair_cd -
98			 (void *) &ihost->task_context_table[0];
99		return ihost->task_context_dma + offset;
100	}
101
102	return sci_io_request_get_dma_addr(ireq, &ireq->sg_table[idx - 2]);
103}
104
105static void init_sgl_element(struct scu_sgl_element *e, struct scatterlist *sg)
106{
107	e->length = sg_dma_len(sg);
108	e->address_upper = upper_32_bits(sg_dma_address(sg));
109	e->address_lower = lower_32_bits(sg_dma_address(sg));
110	e->address_modifier = 0;
111}
112
113static void sci_request_build_sgl(struct isci_request *ireq)
114{
115	struct isci_host *ihost = ireq->isci_host;
116	struct sas_task *task = isci_request_access_task(ireq);
117	struct scatterlist *sg = NULL;
118	dma_addr_t dma_addr;
119	u32 sg_idx = 0;
120	struct scu_sgl_element_pair *scu_sg   = NULL;
121	struct scu_sgl_element_pair *prev_sg  = NULL;
122
123	if (task->num_scatter > 0) {
124		sg = task->scatter;
125
126		while (sg) {
127			scu_sg = to_sgl_element_pair(ireq, sg_idx);
128			init_sgl_element(&scu_sg->A, sg);
129			sg = sg_next(sg);
130			if (sg) {
131				init_sgl_element(&scu_sg->B, sg);
132				sg = sg_next(sg);
133			} else
134				memset(&scu_sg->B, 0, sizeof(scu_sg->B));
135
136			if (prev_sg) {
137				dma_addr = to_sgl_element_pair_dma(ihost,
138								   ireq,
139								   sg_idx);
140
141				prev_sg->next_pair_upper =
142					upper_32_bits(dma_addr);
143				prev_sg->next_pair_lower =
144					lower_32_bits(dma_addr);
145			}
146
147			prev_sg = scu_sg;
148			sg_idx++;
149		}
150	} else {	/* handle when no sg */
151		scu_sg = to_sgl_element_pair(ireq, sg_idx);
152
153		dma_addr = dma_map_single(&ihost->pdev->dev,
154					  task->scatter,
155					  task->total_xfer_len,
156					  task->data_dir);
157
158		ireq->zero_scatter_daddr = dma_addr;
159
160		scu_sg->A.length = task->total_xfer_len;
161		scu_sg->A.address_upper = upper_32_bits(dma_addr);
162		scu_sg->A.address_lower = lower_32_bits(dma_addr);
163	}
164
165	if (scu_sg) {
166		scu_sg->next_pair_upper = 0;
167		scu_sg->next_pair_lower = 0;
168	}
169}
170
171static void sci_io_request_build_ssp_command_iu(struct isci_request *ireq)
172{
173	struct ssp_cmd_iu *cmd_iu;
174	struct sas_task *task = isci_request_access_task(ireq);
175
176	cmd_iu = &ireq->ssp.cmd;
177
178	memcpy(cmd_iu->LUN, task->ssp_task.LUN, 8);
179	cmd_iu->add_cdb_len = 0;
180	cmd_iu->_r_a = 0;
181	cmd_iu->_r_b = 0;
182	cmd_iu->en_fburst = 0; /* unsupported */
183	cmd_iu->task_prio = task->ssp_task.task_prio;
184	cmd_iu->task_attr = task->ssp_task.task_attr;
185	cmd_iu->_r_c = 0;
186
187	sci_swab32_cpy(&cmd_iu->cdb, task->ssp_task.cdb,
188		       sizeof(task->ssp_task.cdb) / sizeof(u32));
189}
190
191static void sci_task_request_build_ssp_task_iu(struct isci_request *ireq)
192{
193	struct ssp_task_iu *task_iu;
194	struct sas_task *task = isci_request_access_task(ireq);
195	struct isci_tmf *isci_tmf = isci_request_access_tmf(ireq);
196
197	task_iu = &ireq->ssp.tmf;
198
199	memset(task_iu, 0, sizeof(struct ssp_task_iu));
200
201	memcpy(task_iu->LUN, task->ssp_task.LUN, 8);
202
203	task_iu->task_func = isci_tmf->tmf_code;
204	task_iu->task_tag =
205		(test_bit(IREQ_TMF, &ireq->flags)) ?
206		isci_tmf->io_tag :
207		SCI_CONTROLLER_INVALID_IO_TAG;
208}
209
210/**
211 * This method is will fill in the SCU Task Context for any type of SSP request.
212 * @sci_req:
213 * @task_context:
214 *
215 */
216static void scu_ssp_reqeust_construct_task_context(
217	struct isci_request *ireq,
218	struct scu_task_context *task_context)
219{
220	dma_addr_t dma_addr;
221	struct isci_remote_device *idev;
222	struct isci_port *iport;
223
224	idev = ireq->target_device;
225	iport = idev->owning_port;
226
227	/* Fill in the TC with the its required data */
228	task_context->abort = 0;
229	task_context->priority = 0;
230	task_context->initiator_request = 1;
231	task_context->connection_rate = idev->connection_rate;
232	task_context->protocol_engine_index = ISCI_PEG;
233	task_context->logical_port_index = iport->physical_port_index;
234	task_context->protocol_type = SCU_TASK_CONTEXT_PROTOCOL_SSP;
235	task_context->valid = SCU_TASK_CONTEXT_VALID;
236	task_context->context_type = SCU_TASK_CONTEXT_TYPE;
237
238	task_context->remote_node_index = idev->rnc.remote_node_index;
239	task_context->command_code = 0;
240
241	task_context->link_layer_control = 0;
242	task_context->do_not_dma_ssp_good_response = 1;
243	task_context->strict_ordering = 0;
244	task_context->control_frame = 0;
245	task_context->timeout_enable = 0;
246	task_context->block_guard_enable = 0;
247
248	task_context->address_modifier = 0;
249
250	/* task_context->type.ssp.tag = ireq->io_tag; */
251	task_context->task_phase = 0x01;
252
253	ireq->post_context = (SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_TC |
254			      (ISCI_PEG << SCU_CONTEXT_COMMAND_PROTOCOL_ENGINE_GROUP_SHIFT) |
255			      (iport->physical_port_index <<
256			       SCU_CONTEXT_COMMAND_LOGICAL_PORT_SHIFT) |
257			      ISCI_TAG_TCI(ireq->io_tag));
258
259	/*
260	 * Copy the physical address for the command buffer to the
261	 * SCU Task Context
262	 */
263	dma_addr = sci_io_request_get_dma_addr(ireq, &ireq->ssp.cmd);
264
265	task_context->command_iu_upper = upper_32_bits(dma_addr);
266	task_context->command_iu_lower = lower_32_bits(dma_addr);
267
268	/*
269	 * Copy the physical address for the response buffer to the
270	 * SCU Task Context
271	 */
272	dma_addr = sci_io_request_get_dma_addr(ireq, &ireq->ssp.rsp);
273
274	task_context->response_iu_upper = upper_32_bits(dma_addr);
275	task_context->response_iu_lower = lower_32_bits(dma_addr);
276}
277
278static u8 scu_bg_blk_size(struct scsi_device *sdp)
279{
280	switch (sdp->sector_size) {
281	case 512:
282		return 0;
283	case 1024:
284		return 1;
285	case 4096:
286		return 3;
287	default:
288		return 0xff;
289	}
290}
291
292static u32 scu_dif_bytes(u32 len, u32 sector_size)
293{
294	return (len >> ilog2(sector_size)) * 8;
295}
296
297static void scu_ssp_ireq_dif_insert(struct isci_request *ireq, u8 type, u8 op)
298{
299	struct scu_task_context *tc = ireq->tc;
300	struct scsi_cmnd *scmd = ireq->ttype_ptr.io_task_ptr->uldd_task;
301	u8 blk_sz = scu_bg_blk_size(scmd->device);
302
303	tc->block_guard_enable = 1;
304	tc->blk_prot_en = 1;
305	tc->blk_sz = blk_sz;
306	/* DIF write insert */
307	tc->blk_prot_func = 0x2;
308
309	tc->transfer_length_bytes += scu_dif_bytes(tc->transfer_length_bytes,
310						   scmd->device->sector_size);
311
312	/* always init to 0, used by hw */
313	tc->interm_crc_val = 0;
314
315	tc->init_crc_seed = 0;
316	tc->app_tag_verify = 0;
317	tc->app_tag_gen = 0;
318	tc->ref_tag_seed_verify = 0;
319
320	/* always init to same as bg_blk_sz */
321	tc->UD_bytes_immed_val = scmd->device->sector_size;
322
323	tc->reserved_DC_0 = 0;
324
325	/* always init to 8 */
326	tc->DIF_bytes_immed_val = 8;
327
328	tc->reserved_DC_1 = 0;
329	tc->bgc_blk_sz = scmd->device->sector_size;
330	tc->reserved_E0_0 = 0;
331	tc->app_tag_gen_mask = 0;
332
333	/** setup block guard control **/
334	tc->bgctl = 0;
335
336	/* DIF write insert */
337	tc->bgctl_f.op = 0x2;
338
339	tc->app_tag_verify_mask = 0;
340
341	/* must init to 0 for hw */
342	tc->blk_guard_err = 0;
343
344	tc->reserved_E8_0 = 0;
345
346	if ((type & SCSI_PROT_DIF_TYPE1) || (type & SCSI_PROT_DIF_TYPE2))
347		tc->ref_tag_seed_gen = scsi_get_lba(scmd) & 0xffffffff;
348	else if (type & SCSI_PROT_DIF_TYPE3)
349		tc->ref_tag_seed_gen = 0;
350}
351
352static void scu_ssp_ireq_dif_strip(struct isci_request *ireq, u8 type, u8 op)
353{
354	struct scu_task_context *tc = ireq->tc;
355	struct scsi_cmnd *scmd = ireq->ttype_ptr.io_task_ptr->uldd_task;
356	u8 blk_sz = scu_bg_blk_size(scmd->device);
357
358	tc->block_guard_enable = 1;
359	tc->blk_prot_en = 1;
360	tc->blk_sz = blk_sz;
361	/* DIF read strip */
362	tc->blk_prot_func = 0x1;
363
364	tc->transfer_length_bytes += scu_dif_bytes(tc->transfer_length_bytes,
365						   scmd->device->sector_size);
366
367	/* always init to 0, used by hw */
368	tc->interm_crc_val = 0;
369
370	tc->init_crc_seed = 0;
371	tc->app_tag_verify = 0;
372	tc->app_tag_gen = 0;
373
374	if ((type & SCSI_PROT_DIF_TYPE1) || (type & SCSI_PROT_DIF_TYPE2))
375		tc->ref_tag_seed_verify = scsi_get_lba(scmd) & 0xffffffff;
376	else if (type & SCSI_PROT_DIF_TYPE3)
377		tc->ref_tag_seed_verify = 0;
378
379	/* always init to same as bg_blk_sz */
380	tc->UD_bytes_immed_val = scmd->device->sector_size;
381
382	tc->reserved_DC_0 = 0;
383
384	/* always init to 8 */
385	tc->DIF_bytes_immed_val = 8;
386
387	tc->reserved_DC_1 = 0;
388	tc->bgc_blk_sz = scmd->device->sector_size;
389	tc->reserved_E0_0 = 0;
390	tc->app_tag_gen_mask = 0;
391
392	/** setup block guard control **/
393	tc->bgctl = 0;
394
395	/* DIF read strip */
396	tc->bgctl_f.crc_verify = 1;
397	tc->bgctl_f.op = 0x1;
398	if ((type & SCSI_PROT_DIF_TYPE1) || (type & SCSI_PROT_DIF_TYPE2)) {
399		tc->bgctl_f.ref_tag_chk = 1;
400		tc->bgctl_f.app_f_detect = 1;
401	} else if (type & SCSI_PROT_DIF_TYPE3)
402		tc->bgctl_f.app_ref_f_detect = 1;
403
404	tc->app_tag_verify_mask = 0;
405
406	/* must init to 0 for hw */
407	tc->blk_guard_err = 0;
408
409	tc->reserved_E8_0 = 0;
410	tc->ref_tag_seed_gen = 0;
411}
412
413/**
414 * This method is will fill in the SCU Task Context for a SSP IO request.
415 * @sci_req:
416 *
417 */
418static void scu_ssp_io_request_construct_task_context(struct isci_request *ireq,
419						      enum dma_data_direction dir,
420						      u32 len)
421{
422	struct scu_task_context *task_context = ireq->tc;
423	struct sas_task *sas_task = ireq->ttype_ptr.io_task_ptr;
424	struct scsi_cmnd *scmd = sas_task->uldd_task;
425	u8 prot_type = scsi_get_prot_type(scmd);
426	u8 prot_op = scsi_get_prot_op(scmd);
427
428	scu_ssp_reqeust_construct_task_context(ireq, task_context);
429
430	task_context->ssp_command_iu_length =
431		sizeof(struct ssp_cmd_iu) / sizeof(u32);
432	task_context->type.ssp.frame_type = SSP_COMMAND;
433
434	switch (dir) {
435	case DMA_FROM_DEVICE:
436	case DMA_NONE:
437	default:
438		task_context->task_type = SCU_TASK_TYPE_IOREAD;
439		break;
440	case DMA_TO_DEVICE:
441		task_context->task_type = SCU_TASK_TYPE_IOWRITE;
442		break;
443	}
444
445	task_context->transfer_length_bytes = len;
446
447	if (task_context->transfer_length_bytes > 0)
448		sci_request_build_sgl(ireq);
449
450	if (prot_type != SCSI_PROT_DIF_TYPE0) {
451		if (prot_op == SCSI_PROT_READ_STRIP)
452			scu_ssp_ireq_dif_strip(ireq, prot_type, prot_op);
453		else if (prot_op == SCSI_PROT_WRITE_INSERT)
454			scu_ssp_ireq_dif_insert(ireq, prot_type, prot_op);
455	}
456}
457
458/**
459 * This method will fill in the SCU Task Context for a SSP Task request.  The
460 *    following important settings are utilized: -# priority ==
461 *    SCU_TASK_PRIORITY_HIGH.  This ensures that the task request is issued
462 *    ahead of other task destined for the same Remote Node. -# task_type ==
463 *    SCU_TASK_TYPE_IOREAD.  This simply indicates that a normal request type
464 *    (i.e. non-raw frame) is being utilized to perform task management. -#
465 *    control_frame == 1.  This ensures that the proper endianess is set so
466 *    that the bytes are transmitted in the right order for a task frame.
467 * @sci_req: This parameter specifies the task request object being
468 *    constructed.
469 *
470 */
471static void scu_ssp_task_request_construct_task_context(struct isci_request *ireq)
472{
473	struct scu_task_context *task_context = ireq->tc;
474
475	scu_ssp_reqeust_construct_task_context(ireq, task_context);
476
477	task_context->control_frame                = 1;
478	task_context->priority                     = SCU_TASK_PRIORITY_HIGH;
479	task_context->task_type                    = SCU_TASK_TYPE_RAW_FRAME;
480	task_context->transfer_length_bytes        = 0;
481	task_context->type.ssp.frame_type          = SSP_TASK;
482	task_context->ssp_command_iu_length =
483		sizeof(struct ssp_task_iu) / sizeof(u32);
484}
485
486/**
487 * This method is will fill in the SCU Task Context for any type of SATA
488 *    request.  This is called from the various SATA constructors.
489 * @sci_req: The general IO request object which is to be used in
490 *    constructing the SCU task context.
491 * @task_context: The buffer pointer for the SCU task context which is being
492 *    constructed.
493 *
494 * The general io request construction is complete. The buffer assignment for
495 * the command buffer is complete. none Revisit task context construction to
496 * determine what is common for SSP/SMP/STP task context structures.
497 */
498static void scu_sata_reqeust_construct_task_context(
499	struct isci_request *ireq,
500	struct scu_task_context *task_context)
501{
502	dma_addr_t dma_addr;
503	struct isci_remote_device *idev;
504	struct isci_port *iport;
505
506	idev = ireq->target_device;
507	iport = idev->owning_port;
508
509	/* Fill in the TC with the its required data */
510	task_context->abort = 0;
511	task_context->priority = SCU_TASK_PRIORITY_NORMAL;
512	task_context->initiator_request = 1;
513	task_context->connection_rate = idev->connection_rate;
514	task_context->protocol_engine_index = ISCI_PEG;
515	task_context->logical_port_index = iport->physical_port_index;
516	task_context->protocol_type = SCU_TASK_CONTEXT_PROTOCOL_STP;
517	task_context->valid = SCU_TASK_CONTEXT_VALID;
518	task_context->context_type = SCU_TASK_CONTEXT_TYPE;
519
520	task_context->remote_node_index = idev->rnc.remote_node_index;
521	task_context->command_code = 0;
522
523	task_context->link_layer_control = 0;
524	task_context->do_not_dma_ssp_good_response = 1;
525	task_context->strict_ordering = 0;
526	task_context->control_frame = 0;
527	task_context->timeout_enable = 0;
528	task_context->block_guard_enable = 0;
529
530	task_context->address_modifier = 0;
531	task_context->task_phase = 0x01;
532
533	task_context->ssp_command_iu_length =
534		(sizeof(struct host_to_dev_fis) - sizeof(u32)) / sizeof(u32);
535
536	/* Set the first word of the H2D REG FIS */
537	task_context->type.words[0] = *(u32 *)&ireq->stp.cmd;
538
539	ireq->post_context = (SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_TC |
540			      (ISCI_PEG << SCU_CONTEXT_COMMAND_PROTOCOL_ENGINE_GROUP_SHIFT) |
541			      (iport->physical_port_index <<
542			       SCU_CONTEXT_COMMAND_LOGICAL_PORT_SHIFT) |
543			      ISCI_TAG_TCI(ireq->io_tag));
544	/*
545	 * Copy the physical address for the command buffer to the SCU Task
546	 * Context. We must offset the command buffer by 4 bytes because the
547	 * first 4 bytes are transfered in the body of the TC.
548	 */
549	dma_addr = sci_io_request_get_dma_addr(ireq,
550						((char *) &ireq->stp.cmd) +
551						sizeof(u32));
552
553	task_context->command_iu_upper = upper_32_bits(dma_addr);
554	task_context->command_iu_lower = lower_32_bits(dma_addr);
555
556	/* SATA Requests do not have a response buffer */
557	task_context->response_iu_upper = 0;
558	task_context->response_iu_lower = 0;
559}
560
561static void scu_stp_raw_request_construct_task_context(struct isci_request *ireq)
562{
563	struct scu_task_context *task_context = ireq->tc;
564
565	scu_sata_reqeust_construct_task_context(ireq, task_context);
566
567	task_context->control_frame         = 0;
568	task_context->priority              = SCU_TASK_PRIORITY_NORMAL;
569	task_context->task_type             = SCU_TASK_TYPE_SATA_RAW_FRAME;
570	task_context->type.stp.fis_type     = FIS_REGH2D;
571	task_context->transfer_length_bytes = sizeof(struct host_to_dev_fis) - sizeof(u32);
572}
573
574static enum sci_status sci_stp_pio_request_construct(struct isci_request *ireq,
575							  bool copy_rx_frame)
576{
577	struct isci_stp_request *stp_req = &ireq->stp.req;
578
579	scu_stp_raw_request_construct_task_context(ireq);
580
581	stp_req->status = 0;
582	stp_req->sgl.offset = 0;
583	stp_req->sgl.set = SCU_SGL_ELEMENT_PAIR_A;
584
585	if (copy_rx_frame) {
586		sci_request_build_sgl(ireq);
587		stp_req->sgl.index = 0;
588	} else {
589		/* The user does not want the data copied to the SGL buffer location */
590		stp_req->sgl.index = -1;
591	}
592
593	return SCI_SUCCESS;
594}
595
596/**
597 *
598 * @sci_req: This parameter specifies the request to be constructed as an
599 *    optimized request.
600 * @optimized_task_type: This parameter specifies whether the request is to be
601 *    an UDMA request or a NCQ request. - A value of 0 indicates UDMA. - A
602 *    value of 1 indicates NCQ.
603 *
604 * This method will perform request construction common to all types of STP
605 * requests that are optimized by the silicon (i.e. UDMA, NCQ). This method
606 * returns an indication as to whether the construction was successful.
607 */
608static void sci_stp_optimized_request_construct(struct isci_request *ireq,
609						     u8 optimized_task_type,
610						     u32 len,
611						     enum dma_data_direction dir)
612{
613	struct scu_task_context *task_context = ireq->tc;
614
615	/* Build the STP task context structure */
616	scu_sata_reqeust_construct_task_context(ireq, task_context);
617
618	/* Copy over the SGL elements */
619	sci_request_build_sgl(ireq);
620
621	/* Copy over the number of bytes to be transfered */
622	task_context->transfer_length_bytes = len;
623
624	if (dir == DMA_TO_DEVICE) {
625		/*
626		 * The difference between the DMA IN and DMA OUT request task type
627		 * values are consistent with the difference between FPDMA READ
628		 * and FPDMA WRITE values.  Add the supplied task type parameter
629		 * to this difference to set the task type properly for this
630		 * DATA OUT (WRITE) case. */
631		task_context->task_type = optimized_task_type + (SCU_TASK_TYPE_DMA_OUT
632								 - SCU_TASK_TYPE_DMA_IN);
633	} else {
634		/*
635		 * For the DATA IN (READ) case, simply save the supplied
636		 * optimized task type. */
637		task_context->task_type = optimized_task_type;
638	}
639}
640
641static void sci_atapi_construct(struct isci_request *ireq)
642{
643	struct host_to_dev_fis *h2d_fis = &ireq->stp.cmd;
644	struct sas_task *task;
645
646	/* To simplify the implementation we take advantage of the
647	 * silicon's partial acceleration of atapi protocol (dma data
648	 * transfers), so we promote all commands to dma protocol.  This
649	 * breaks compatibility with ATA_HORKAGE_ATAPI_MOD16_DMA drives.
650	 */
651	h2d_fis->features |= ATAPI_PKT_DMA;
652
653	scu_stp_raw_request_construct_task_context(ireq);
654
655	task = isci_request_access_task(ireq);
656	if (task->data_dir == DMA_NONE)
657		task->total_xfer_len = 0;
658
659	/* clear the response so we can detect arrivial of an
660	 * unsolicited h2d fis
661	 */
662	ireq->stp.rsp.fis_type = 0;
663}
664
665static enum sci_status
666sci_io_request_construct_sata(struct isci_request *ireq,
667			       u32 len,
668			       enum dma_data_direction dir,
669			       bool copy)
670{
671	enum sci_status status = SCI_SUCCESS;
672	struct sas_task *task = isci_request_access_task(ireq);
673	struct domain_device *dev = ireq->target_device->domain_dev;
674
675	/* check for management protocols */
676	if (test_bit(IREQ_TMF, &ireq->flags)) {
677		struct isci_tmf *tmf = isci_request_access_tmf(ireq);
678
679		dev_err(&ireq->owning_controller->pdev->dev,
680			"%s: Request 0x%p received un-handled SAT "
681			"management protocol 0x%x.\n",
682			__func__, ireq, tmf->tmf_code);
683
684		return SCI_FAILURE;
685	}
686
687	if (!sas_protocol_ata(task->task_proto)) {
688		dev_err(&ireq->owning_controller->pdev->dev,
689			"%s: Non-ATA protocol in SATA path: 0x%x\n",
690			__func__,
691			task->task_proto);
692		return SCI_FAILURE;
693
694	}
695
696	/* ATAPI */
697	if (dev->sata_dev.command_set == ATAPI_COMMAND_SET &&
698	    task->ata_task.fis.command == ATA_CMD_PACKET) {
699		sci_atapi_construct(ireq);
700		return SCI_SUCCESS;
701	}
702
703	/* non data */
704	if (task->data_dir == DMA_NONE) {
705		scu_stp_raw_request_construct_task_context(ireq);
706		return SCI_SUCCESS;
707	}
708
709	/* NCQ */
710	if (task->ata_task.use_ncq) {
711		sci_stp_optimized_request_construct(ireq,
712							 SCU_TASK_TYPE_FPDMAQ_READ,
713							 len, dir);
714		return SCI_SUCCESS;
715	}
716
717	/* DMA */
718	if (task->ata_task.dma_xfer) {
719		sci_stp_optimized_request_construct(ireq,
720							 SCU_TASK_TYPE_DMA_IN,
721							 len, dir);
722		return SCI_SUCCESS;
723	} else /* PIO */
724		return sci_stp_pio_request_construct(ireq, copy);
725
726	return status;
727}
728
729static enum sci_status sci_io_request_construct_basic_ssp(struct isci_request *ireq)
730{
731	struct sas_task *task = isci_request_access_task(ireq);
732
733	ireq->protocol = SCIC_SSP_PROTOCOL;
734
735	scu_ssp_io_request_construct_task_context(ireq,
736						  task->data_dir,
737						  task->total_xfer_len);
738
739	sci_io_request_build_ssp_command_iu(ireq);
740
741	sci_change_state(&ireq->sm, SCI_REQ_CONSTRUCTED);
742
743	return SCI_SUCCESS;
744}
745
746enum sci_status sci_task_request_construct_ssp(
747	struct isci_request *ireq)
748{
749	/* Construct the SSP Task SCU Task Context */
750	scu_ssp_task_request_construct_task_context(ireq);
751
752	/* Fill in the SSP Task IU */
753	sci_task_request_build_ssp_task_iu(ireq);
754
755	sci_change_state(&ireq->sm, SCI_REQ_CONSTRUCTED);
756
757	return SCI_SUCCESS;
758}
759
760static enum sci_status sci_io_request_construct_basic_sata(struct isci_request *ireq)
761{
762	enum sci_status status;
763	bool copy = false;
764	struct sas_task *task = isci_request_access_task(ireq);
765
766	ireq->protocol = SCIC_STP_PROTOCOL;
767
768	copy = (task->data_dir == DMA_NONE) ? false : true;
769
770	status = sci_io_request_construct_sata(ireq,
771						task->total_xfer_len,
772						task->data_dir,
773						copy);
774
775	if (status == SCI_SUCCESS)
776		sci_change_state(&ireq->sm, SCI_REQ_CONSTRUCTED);
777
778	return status;
779}
780
781/**
782 * sci_req_tx_bytes - bytes transferred when reply underruns request
783 * @ireq: request that was terminated early
784 */
785#define SCU_TASK_CONTEXT_SRAM 0x200000
786static u32 sci_req_tx_bytes(struct isci_request *ireq)
787{
788	struct isci_host *ihost = ireq->owning_controller;
789	u32 ret_val = 0;
790
791	if (readl(&ihost->smu_registers->address_modifier) == 0) {
792		void __iomem *scu_reg_base = ihost->scu_registers;
793
794		/* get the bytes of data from the Address == BAR1 + 20002Ch + (256*TCi) where
795		 *   BAR1 is the scu_registers
796		 *   0x20002C = 0x200000 + 0x2c
797		 *            = start of task context SRAM + offset of (type.ssp.data_offset)
798		 *   TCi is the io_tag of struct sci_request
799		 */
800		ret_val = readl(scu_reg_base +
801				(SCU_TASK_CONTEXT_SRAM + offsetof(struct scu_task_context, type.ssp.data_offset)) +
802				((sizeof(struct scu_task_context)) * ISCI_TAG_TCI(ireq->io_tag)));
803	}
804
805	return ret_val;
806}
807
808enum sci_status sci_request_start(struct isci_request *ireq)
809{
810	enum sci_base_request_states state;
811	struct scu_task_context *tc = ireq->tc;
812	struct isci_host *ihost = ireq->owning_controller;
813
814	state = ireq->sm.current_state_id;
815	if (state != SCI_REQ_CONSTRUCTED) {
816		dev_warn(&ihost->pdev->dev,
817			"%s: SCIC IO Request requested to start while in wrong "
818			 "state %d\n", __func__, state);
819		return SCI_FAILURE_INVALID_STATE;
820	}
821
822	tc->task_index = ISCI_TAG_TCI(ireq->io_tag);
823
824	switch (tc->protocol_type) {
825	case SCU_TASK_CONTEXT_PROTOCOL_SMP:
826	case SCU_TASK_CONTEXT_PROTOCOL_SSP:
827		/* SSP/SMP Frame */
828		tc->type.ssp.tag = ireq->io_tag;
829		tc->type.ssp.target_port_transfer_tag = 0xFFFF;
830		break;
831
832	case SCU_TASK_CONTEXT_PROTOCOL_STP:
833		/* STP/SATA Frame
834		 * tc->type.stp.ncq_tag = ireq->ncq_tag;
835		 */
836		break;
837
838	case SCU_TASK_CONTEXT_PROTOCOL_NONE:
839		/* / @todo When do we set no protocol type? */
840		break;
841
842	default:
843		/* This should never happen since we build the IO
844		 * requests */
845		break;
846	}
847
848	/* Add to the post_context the io tag value */
849	ireq->post_context |= ISCI_TAG_TCI(ireq->io_tag);
850
851	/* Everything is good go ahead and change state */
852	sci_change_state(&ireq->sm, SCI_REQ_STARTED);
853
854	return SCI_SUCCESS;
855}
856
857enum sci_status
858sci_io_request_terminate(struct isci_request *ireq)
859{
860	enum sci_base_request_states state;
861
862	state = ireq->sm.current_state_id;
863
864	switch (state) {
865	case SCI_REQ_CONSTRUCTED:
866		ireq->scu_status = SCU_TASK_DONE_TASK_ABORT;
867		ireq->sci_status = SCI_FAILURE_IO_TERMINATED;
868		sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
869		return SCI_SUCCESS;
870	case SCI_REQ_STARTED:
871	case SCI_REQ_TASK_WAIT_TC_COMP:
872	case SCI_REQ_SMP_WAIT_RESP:
873	case SCI_REQ_SMP_WAIT_TC_COMP:
874	case SCI_REQ_STP_UDMA_WAIT_TC_COMP:
875	case SCI_REQ_STP_UDMA_WAIT_D2H:
876	case SCI_REQ_STP_NON_DATA_WAIT_H2D:
877	case SCI_REQ_STP_NON_DATA_WAIT_D2H:
878	case SCI_REQ_STP_PIO_WAIT_H2D:
879	case SCI_REQ_STP_PIO_WAIT_FRAME:
880	case SCI_REQ_STP_PIO_DATA_IN:
881	case SCI_REQ_STP_PIO_DATA_OUT:
882	case SCI_REQ_ATAPI_WAIT_H2D:
883	case SCI_REQ_ATAPI_WAIT_PIO_SETUP:
884	case SCI_REQ_ATAPI_WAIT_D2H:
885	case SCI_REQ_ATAPI_WAIT_TC_COMP:
886		sci_change_state(&ireq->sm, SCI_REQ_ABORTING);
887		return SCI_SUCCESS;
888	case SCI_REQ_TASK_WAIT_TC_RESP:
889		/* The task frame was already confirmed to have been
890		 * sent by the SCU HW.  Since the state machine is
891		 * now only waiting for the task response itself,
892		 * abort the request and complete it immediately
893		 * and don't wait for the task response.
894		 */
895		sci_change_state(&ireq->sm, SCI_REQ_ABORTING);
896		sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
897		return SCI_SUCCESS;
898	case SCI_REQ_ABORTING:
899		/* If a request has a termination requested twice, return
900		 * a failure indication, since HW confirmation of the first
901		 * abort is still outstanding.
902		 */
903	case SCI_REQ_COMPLETED:
904	default:
905		dev_warn(&ireq->owning_controller->pdev->dev,
906			 "%s: SCIC IO Request requested to abort while in wrong "
907			 "state %d\n",
908			 __func__,
909			 ireq->sm.current_state_id);
910		break;
911	}
912
913	return SCI_FAILURE_INVALID_STATE;
914}
915
916enum sci_status sci_request_complete(struct isci_request *ireq)
917{
918	enum sci_base_request_states state;
919	struct isci_host *ihost = ireq->owning_controller;
920
921	state = ireq->sm.current_state_id;
922	if (WARN_ONCE(state != SCI_REQ_COMPLETED,
923		      "isci: request completion from wrong state (%s)\n",
924		      req_state_name(state)))
925		return SCI_FAILURE_INVALID_STATE;
926
927	if (ireq->saved_rx_frame_index != SCU_INVALID_FRAME_INDEX)
928		sci_controller_release_frame(ihost,
929						  ireq->saved_rx_frame_index);
930
931	/* XXX can we just stop the machine and remove the 'final' state? */
932	sci_change_state(&ireq->sm, SCI_REQ_FINAL);
933	return SCI_SUCCESS;
934}
935
936enum sci_status sci_io_request_event_handler(struct isci_request *ireq,
937						  u32 event_code)
938{
939	enum sci_base_request_states state;
940	struct isci_host *ihost = ireq->owning_controller;
941
942	state = ireq->sm.current_state_id;
943
944	if (state != SCI_REQ_STP_PIO_DATA_IN) {
945		dev_warn(&ihost->pdev->dev, "%s: (%x) in wrong state %s\n",
946			 __func__, event_code, req_state_name(state));
947
948		return SCI_FAILURE_INVALID_STATE;
949	}
950
951	switch (scu_get_event_specifier(event_code)) {
952	case SCU_TASK_DONE_CRC_ERR << SCU_EVENT_SPECIFIC_CODE_SHIFT:
953		/* We are waiting for data and the SCU has R_ERR the data frame.
954		 * Go back to waiting for the D2H Register FIS
955		 */
956		sci_change_state(&ireq->sm, SCI_REQ_STP_PIO_WAIT_FRAME);
957		return SCI_SUCCESS;
958	default:
959		dev_err(&ihost->pdev->dev,
960			"%s: pio request unexpected event %#x\n",
961			__func__, event_code);
962
963		/* TODO Should we fail the PIO request when we get an
964		 * unexpected event?
965		 */
966		return SCI_FAILURE;
967	}
968}
969
970/*
971 * This function copies response data for requests returning response data
972 *    instead of sense data.
973 * @sci_req: This parameter specifies the request object for which to copy
974 *    the response data.
975 */
976static void sci_io_request_copy_response(struct isci_request *ireq)
977{
978	void *resp_buf;
979	u32 len;
980	struct ssp_response_iu *ssp_response;
981	struct isci_tmf *isci_tmf = isci_request_access_tmf(ireq);
982
983	ssp_response = &ireq->ssp.rsp;
984
985	resp_buf = &isci_tmf->resp.resp_iu;
986
987	len = min_t(u32,
988		    SSP_RESP_IU_MAX_SIZE,
989		    be32_to_cpu(ssp_response->response_data_len));
990
991	memcpy(resp_buf, ssp_response->resp_data, len);
992}
993
994static enum sci_status
995request_started_state_tc_event(struct isci_request *ireq,
996			       u32 completion_code)
997{
998	struct ssp_response_iu *resp_iu;
999	u8 datapres;
1000
1001	/* TODO: Any SDMA return code of other than 0 is bad decode 0x003C0000
1002	 * to determine SDMA status
1003	 */
1004	switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
1005	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
1006		ireq->scu_status = SCU_TASK_DONE_GOOD;
1007		ireq->sci_status = SCI_SUCCESS;
1008		break;
1009	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_EARLY_RESP): {
1010		/* There are times when the SCU hardware will return an early
1011		 * response because the io request specified more data than is
1012		 * returned by the target device (mode pages, inquiry data,
1013		 * etc.).  We must check the response stats to see if this is
1014		 * truly a failed request or a good request that just got
1015		 * completed early.
1016		 */
1017		struct ssp_response_iu *resp = &ireq->ssp.rsp;
1018		ssize_t word_cnt = SSP_RESP_IU_MAX_SIZE / sizeof(u32);
1019
1020		sci_swab32_cpy(&ireq->ssp.rsp,
1021			       &ireq->ssp.rsp,
1022			       word_cnt);
1023
1024		if (resp->status == 0) {
1025			ireq->scu_status = SCU_TASK_DONE_GOOD;
1026			ireq->sci_status = SCI_SUCCESS_IO_DONE_EARLY;
1027		} else {
1028			ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
1029			ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID;
1030		}
1031		break;
1032	}
1033	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_CHECK_RESPONSE): {
1034		ssize_t word_cnt = SSP_RESP_IU_MAX_SIZE / sizeof(u32);
1035
1036		sci_swab32_cpy(&ireq->ssp.rsp,
1037			       &ireq->ssp.rsp,
1038			       word_cnt);
1039
1040		ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
1041		ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID;
1042		break;
1043	}
1044
1045	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_RESP_LEN_ERR):
1046		/* TODO With TASK_DONE_RESP_LEN_ERR is the response frame
1047		 * guaranteed to be received before this completion status is
1048		 * posted?
1049		 */
1050		resp_iu = &ireq->ssp.rsp;
1051		datapres = resp_iu->datapres;
1052
1053		if (datapres == 1 || datapres == 2) {
1054			ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
1055			ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID;
1056		} else {
1057			ireq->scu_status = SCU_TASK_DONE_GOOD;
1058			ireq->sci_status = SCI_SUCCESS;
1059		}
1060		break;
1061	/* only stp device gets suspended. */
1062	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_ACK_NAK_TO):
1063	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_LL_PERR):
1064	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_NAK_ERR):
1065	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_DATA_LEN_ERR):
1066	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_LL_ABORT_ERR):
1067	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_XR_WD_LEN):
1068	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_MAX_PLD_ERR):
1069	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_UNEXP_RESP):
1070	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_UNEXP_SDBFIS):
1071	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_REG_ERR):
1072	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SDB_ERR):
1073		if (ireq->protocol == SCIC_STP_PROTOCOL) {
1074			ireq->scu_status = SCU_GET_COMPLETION_TL_STATUS(completion_code) >>
1075					   SCU_COMPLETION_TL_STATUS_SHIFT;
1076			ireq->sci_status = SCI_FAILURE_REMOTE_DEVICE_RESET_REQUIRED;
1077		} else {
1078			ireq->scu_status = SCU_GET_COMPLETION_TL_STATUS(completion_code) >>
1079					   SCU_COMPLETION_TL_STATUS_SHIFT;
1080			ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1081		}
1082		break;
1083
1084	/* both stp/ssp device gets suspended */
1085	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_LF_ERR):
1086	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_WRONG_DESTINATION):
1087	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_1):
1088	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_2):
1089	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_3):
1090	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_BAD_DESTINATION):
1091	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_ZONE_VIOLATION):
1092	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_STP_RESOURCES_BUSY):
1093	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_PROTOCOL_NOT_SUPPORTED):
1094	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_CONNECTION_RATE_NOT_SUPPORTED):
1095		ireq->scu_status = SCU_GET_COMPLETION_TL_STATUS(completion_code) >>
1096				   SCU_COMPLETION_TL_STATUS_SHIFT;
1097		ireq->sci_status = SCI_FAILURE_REMOTE_DEVICE_RESET_REQUIRED;
1098		break;
1099
1100	/* neither ssp nor stp gets suspended. */
1101	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_NAK_CMD_ERR):
1102	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_UNEXP_XR):
1103	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_XR_IU_LEN_ERR):
1104	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SDMA_ERR):
1105	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_OFFSET_ERR):
1106	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_EXCESS_DATA):
1107	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_RESP_TO_ERR):
1108	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_UFI_ERR):
1109	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_FRM_TYPE_ERR):
1110	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_LL_RX_ERR):
1111	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_UNEXP_DATA):
1112	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_OPEN_FAIL):
1113	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_VIIT_ENTRY_NV):
1114	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_IIT_ENTRY_NV):
1115	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_RNCNV_OUTBOUND):
1116	default:
1117		ireq->scu_status = SCU_GET_COMPLETION_TL_STATUS(completion_code) >>
1118				   SCU_COMPLETION_TL_STATUS_SHIFT;
1119		ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1120		break;
1121	}
1122
1123	/*
1124	 * TODO: This is probably wrong for ACK/NAK timeout conditions
1125	 */
1126
1127	/* In all cases we will treat this as the completion of the IO req. */
1128	sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1129	return SCI_SUCCESS;
1130}
1131
1132static enum sci_status
1133request_aborting_state_tc_event(struct isci_request *ireq,
1134				u32 completion_code)
1135{
1136	switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
1137	case (SCU_TASK_DONE_GOOD << SCU_COMPLETION_TL_STATUS_SHIFT):
1138	case (SCU_TASK_DONE_TASK_ABORT << SCU_COMPLETION_TL_STATUS_SHIFT):
1139		ireq->scu_status = SCU_TASK_DONE_TASK_ABORT;
1140		ireq->sci_status = SCI_FAILURE_IO_TERMINATED;
1141		sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1142		break;
1143
1144	default:
1145		/* Unless we get some strange error wait for the task abort to complete
1146		 * TODO: Should there be a state change for this completion?
1147		 */
1148		break;
1149	}
1150
1151	return SCI_SUCCESS;
1152}
1153
1154static enum sci_status ssp_task_request_await_tc_event(struct isci_request *ireq,
1155						       u32 completion_code)
1156{
1157	switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
1158	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
1159		ireq->scu_status = SCU_TASK_DONE_GOOD;
1160		ireq->sci_status = SCI_SUCCESS;
1161		sci_change_state(&ireq->sm, SCI_REQ_TASK_WAIT_TC_RESP);
1162		break;
1163	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_ACK_NAK_TO):
1164		/* Currently, the decision is to simply allow the task request
1165		 * to timeout if the task IU wasn't received successfully.
1166		 * There is a potential for receiving multiple task responses if
1167		 * we decide to send the task IU again.
1168		 */
1169		dev_warn(&ireq->owning_controller->pdev->dev,
1170			 "%s: TaskRequest:0x%p CompletionCode:%x - "
1171			 "ACK/NAK timeout\n", __func__, ireq,
1172			 completion_code);
1173
1174		sci_change_state(&ireq->sm, SCI_REQ_TASK_WAIT_TC_RESP);
1175		break;
1176	default:
1177		/*
1178		 * All other completion status cause the IO to be complete.
1179		 * If a NAK was received, then it is up to the user to retry
1180		 * the request.
1181		 */
1182		ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code);
1183		ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1184		sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1185		break;
1186	}
1187
1188	return SCI_SUCCESS;
1189}
1190
1191static enum sci_status
1192smp_request_await_response_tc_event(struct isci_request *ireq,
1193				    u32 completion_code)
1194{
1195	switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
1196	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
1197		/* In the AWAIT RESPONSE state, any TC completion is
1198		 * unexpected.  but if the TC has success status, we
1199		 * complete the IO anyway.
1200		 */
1201		ireq->scu_status = SCU_TASK_DONE_GOOD;
1202		ireq->sci_status = SCI_SUCCESS;
1203		sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1204		break;
1205	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_RESP_TO_ERR):
1206	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_UFI_ERR):
1207	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_FRM_TYPE_ERR):
1208	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_LL_RX_ERR):
1209		/* These status has been seen in a specific LSI
1210		 * expander, which sometimes is not able to send smp
1211		 * response within 2 ms. This causes our hardware break
1212		 * the connection and set TC completion with one of
1213		 * these SMP_XXX_XX_ERR status. For these type of error,
1214		 * we ask ihost user to retry the request.
1215		 */
1216		ireq->scu_status = SCU_TASK_DONE_SMP_RESP_TO_ERR;
1217		ireq->sci_status = SCI_FAILURE_RETRY_REQUIRED;
1218		sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1219		break;
1220	default:
1221		/* All other completion status cause the IO to be complete.  If a NAK
1222		 * was received, then it is up to the user to retry the request
1223		 */
1224		ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code);
1225		ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1226		sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1227		break;
1228	}
1229
1230	return SCI_SUCCESS;
1231}
1232
1233static enum sci_status
1234smp_request_await_tc_event(struct isci_request *ireq,
1235			   u32 completion_code)
1236{
1237	switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
1238	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
1239		ireq->scu_status = SCU_TASK_DONE_GOOD;
1240		ireq->sci_status = SCI_SUCCESS;
1241		sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1242		break;
1243	default:
1244		/* All other completion status cause the IO to be
1245		 * complete.  If a NAK was received, then it is up to
1246		 * the user to retry the request.
1247		 */
1248		ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code);
1249		ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1250		sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1251		break;
1252	}
1253
1254	return SCI_SUCCESS;
1255}
1256
1257static struct scu_sgl_element *pio_sgl_next(struct isci_stp_request *stp_req)
1258{
1259	struct scu_sgl_element *sgl;
1260	struct scu_sgl_element_pair *sgl_pair;
1261	struct isci_request *ireq = to_ireq(stp_req);
1262	struct isci_stp_pio_sgl *pio_sgl = &stp_req->sgl;
1263
1264	sgl_pair = to_sgl_element_pair(ireq, pio_sgl->index);
1265	if (!sgl_pair)
1266		sgl = NULL;
1267	else if (pio_sgl->set == SCU_SGL_ELEMENT_PAIR_A) {
1268		if (sgl_pair->B.address_lower == 0 &&
1269		    sgl_pair->B.address_upper == 0) {
1270			sgl = NULL;
1271		} else {
1272			pio_sgl->set = SCU_SGL_ELEMENT_PAIR_B;
1273			sgl = &sgl_pair->B;
1274		}
1275	} else {
1276		if (sgl_pair->next_pair_lower == 0 &&
1277		    sgl_pair->next_pair_upper == 0) {
1278			sgl = NULL;
1279		} else {
1280			pio_sgl->index++;
1281			pio_sgl->set = SCU_SGL_ELEMENT_PAIR_A;
1282			sgl_pair = to_sgl_element_pair(ireq, pio_sgl->index);
1283			sgl = &sgl_pair->A;
1284		}
1285	}
1286
1287	return sgl;
1288}
1289
1290static enum sci_status
1291stp_request_non_data_await_h2d_tc_event(struct isci_request *ireq,
1292					u32 completion_code)
1293{
1294	switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
1295	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
1296		ireq->scu_status = SCU_TASK_DONE_GOOD;
1297		ireq->sci_status = SCI_SUCCESS;
1298		sci_change_state(&ireq->sm, SCI_REQ_STP_NON_DATA_WAIT_D2H);
1299		break;
1300
1301	default:
1302		/* All other completion status cause the IO to be
1303		 * complete.  If a NAK was received, then it is up to
1304		 * the user to retry the request.
1305		 */
1306		ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code);
1307		ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1308		sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1309		break;
1310	}
1311
1312	return SCI_SUCCESS;
1313}
1314
1315#define SCU_MAX_FRAME_BUFFER_SIZE  0x400  /* 1K is the maximum SCU frame data payload */
1316
1317/* transmit DATA_FIS from (current sgl + offset) for input
1318 * parameter length. current sgl and offset is alreay stored in the IO request
1319 */
1320static enum sci_status sci_stp_request_pio_data_out_trasmit_data_frame(
1321	struct isci_request *ireq,
1322	u32 length)
1323{
1324	struct isci_stp_request *stp_req = &ireq->stp.req;
1325	struct scu_task_context *task_context = ireq->tc;
1326	struct scu_sgl_element_pair *sgl_pair;
1327	struct scu_sgl_element *current_sgl;
1328
1329	/* Recycle the TC and reconstruct it for sending out DATA FIS containing
1330	 * for the data from current_sgl+offset for the input length
1331	 */
1332	sgl_pair = to_sgl_element_pair(ireq, stp_req->sgl.index);
1333	if (stp_req->sgl.set == SCU_SGL_ELEMENT_PAIR_A)
1334		current_sgl = &sgl_pair->A;
1335	else
1336		current_sgl = &sgl_pair->B;
1337
1338	/* update the TC */
1339	task_context->command_iu_upper = current_sgl->address_upper;
1340	task_context->command_iu_lower = current_sgl->address_lower;
1341	task_context->transfer_length_bytes = length;
1342	task_context->type.stp.fis_type = FIS_DATA;
1343
1344	/* send the new TC out. */
1345	return sci_controller_continue_io(ireq);
1346}
1347
1348static enum sci_status sci_stp_request_pio_data_out_transmit_data(struct isci_request *ireq)
1349{
1350	struct isci_stp_request *stp_req = &ireq->stp.req;
1351	struct scu_sgl_element_pair *sgl_pair;
1352	enum sci_status status = SCI_SUCCESS;
1353	struct scu_sgl_element *sgl;
1354	u32 offset;
1355	u32 len = 0;
1356
1357	offset = stp_req->sgl.offset;
1358	sgl_pair = to_sgl_element_pair(ireq, stp_req->sgl.index);
1359	if (WARN_ONCE(!sgl_pair, "%s: null sgl element", __func__))
1360		return SCI_FAILURE;
1361
1362	if (stp_req->sgl.set == SCU_SGL_ELEMENT_PAIR_A) {
1363		sgl = &sgl_pair->A;
1364		len = sgl_pair->A.length - offset;
1365	} else {
1366		sgl = &sgl_pair->B;
1367		len = sgl_pair->B.length - offset;
1368	}
1369
1370	if (stp_req->pio_len == 0)
1371		return SCI_SUCCESS;
1372
1373	if (stp_req->pio_len >= len) {
1374		status = sci_stp_request_pio_data_out_trasmit_data_frame(ireq, len);
1375		if (status != SCI_SUCCESS)
1376			return status;
1377		stp_req->pio_len -= len;
1378
1379		/* update the current sgl, offset and save for future */
1380		sgl = pio_sgl_next(stp_req);
1381		offset = 0;
1382	} else if (stp_req->pio_len < len) {
1383		sci_stp_request_pio_data_out_trasmit_data_frame(ireq, stp_req->pio_len);
1384
1385		/* Sgl offset will be adjusted and saved for future */
1386		offset += stp_req->pio_len;
1387		sgl->address_lower += stp_req->pio_len;
1388		stp_req->pio_len = 0;
1389	}
1390
1391	stp_req->sgl.offset = offset;
1392
1393	return status;
1394}
1395
1396/**
1397 *
1398 * @stp_request: The request that is used for the SGL processing.
1399 * @data_buffer: The buffer of data to be copied.
1400 * @length: The length of the data transfer.
1401 *
1402 * Copy the data from the buffer for the length specified to the IO reqeust SGL
1403 * specified data region. enum sci_status
1404 */
1405static enum sci_status
1406sci_stp_request_pio_data_in_copy_data_buffer(struct isci_stp_request *stp_req,
1407					     u8 *data_buf, u32 len)
1408{
1409	struct isci_request *ireq;
1410	u8 *src_addr;
1411	int copy_len;
1412	struct sas_task *task;
1413	struct scatterlist *sg;
1414	void *kaddr;
1415	int total_len = len;
1416
1417	ireq = to_ireq(stp_req);
1418	task = isci_request_access_task(ireq);
1419	src_addr = data_buf;
1420
1421	if (task->num_scatter > 0) {
1422		sg = task->scatter;
1423
1424		while (total_len > 0) {
1425			struct page *page = sg_page(sg);
1426
1427			copy_len = min_t(int, total_len, sg_dma_len(sg));
1428			kaddr = kmap_atomic(page);
1429			memcpy(kaddr + sg->offset, src_addr, copy_len);
1430			kunmap_atomic(kaddr);
1431			total_len -= copy_len;
1432			src_addr += copy_len;
1433			sg = sg_next(sg);
1434		}
1435	} else {
1436		BUG_ON(task->total_xfer_len < total_len);
1437		memcpy(task->scatter, src_addr, total_len);
1438	}
1439
1440	return SCI_SUCCESS;
1441}
1442
1443/**
1444 *
1445 * @sci_req: The PIO DATA IN request that is to receive the data.
1446 * @data_buffer: The buffer to copy from.
1447 *
1448 * Copy the data buffer to the io request data region. enum sci_status
1449 */
1450static enum sci_status sci_stp_request_pio_data_in_copy_data(
1451	struct isci_stp_request *stp_req,
1452	u8 *data_buffer)
1453{
1454	enum sci_status status;
1455
1456	/*
1457	 * If there is less than 1K remaining in the transfer request
1458	 * copy just the data for the transfer */
1459	if (stp_req->pio_len < SCU_MAX_FRAME_BUFFER_SIZE) {
1460		status = sci_stp_request_pio_data_in_copy_data_buffer(
1461			stp_req, data_buffer, stp_req->pio_len);
1462
1463		if (status == SCI_SUCCESS)
1464			stp_req->pio_len = 0;
1465	} else {
1466		/* We are transfering the whole frame so copy */
1467		status = sci_stp_request_pio_data_in_copy_data_buffer(
1468			stp_req, data_buffer, SCU_MAX_FRAME_BUFFER_SIZE);
1469
1470		if (status == SCI_SUCCESS)
1471			stp_req->pio_len -= SCU_MAX_FRAME_BUFFER_SIZE;
1472	}
1473
1474	return status;
1475}
1476
1477static enum sci_status
1478stp_request_pio_await_h2d_completion_tc_event(struct isci_request *ireq,
1479					      u32 completion_code)
1480{
1481	enum sci_status status = SCI_SUCCESS;
1482
1483	switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
1484	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
1485		ireq->scu_status = SCU_TASK_DONE_GOOD;
1486		ireq->sci_status = SCI_SUCCESS;
1487		sci_change_state(&ireq->sm, SCI_REQ_STP_PIO_WAIT_FRAME);
1488		break;
1489
1490	default:
1491		/* All other completion status cause the IO to be
1492		 * complete.  If a NAK was received, then it is up to
1493		 * the user to retry the request.
1494		 */
1495		ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code);
1496		ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1497		sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1498		break;
1499	}
1500
1501	return status;
1502}
1503
1504static enum sci_status
1505pio_data_out_tx_done_tc_event(struct isci_request *ireq,
1506			      u32 completion_code)
1507{
1508	enum sci_status status = SCI_SUCCESS;
1509	bool all_frames_transferred = false;
1510	struct isci_stp_request *stp_req = &ireq->stp.req;
1511
1512	switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
1513	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
1514		/* Transmit data */
1515		if (stp_req->pio_len != 0) {
1516			status = sci_stp_request_pio_data_out_transmit_data(ireq);
1517			if (status == SCI_SUCCESS) {
1518				if (stp_req->pio_len == 0)
1519					all_frames_transferred = true;
1520			}
1521		} else if (stp_req->pio_len == 0) {
1522			/*
1523			 * this will happen if the all data is written at the
1524			 * first time after the pio setup fis is received
1525			 */
1526			all_frames_transferred  = true;
1527		}
1528
1529		/* all data transferred. */
1530		if (all_frames_transferred) {
1531			/*
1532			 * Change the state to SCI_REQ_STP_PIO_DATA_IN
1533			 * and wait for PIO_SETUP fis / or D2H REg fis. */
1534			sci_change_state(&ireq->sm, SCI_REQ_STP_PIO_WAIT_FRAME);
1535		}
1536		break;
1537
1538	default:
1539		/*
1540		 * All other completion status cause the IO to be complete.
1541		 * If a NAK was received, then it is up to the user to retry
1542		 * the request.
1543		 */
1544		ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code);
1545		ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1546		sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1547		break;
1548	}
1549
1550	return status;
1551}
1552
1553static enum sci_status sci_stp_request_udma_general_frame_handler(struct isci_request *ireq,
1554								       u32 frame_index)
1555{
1556	struct isci_host *ihost = ireq->owning_controller;
1557	struct dev_to_host_fis *frame_header;
1558	enum sci_status status;
1559	u32 *frame_buffer;
1560
1561	status = sci_unsolicited_frame_control_get_header(&ihost->uf_control,
1562							       frame_index,
1563							       (void **)&frame_header);
1564
1565	if ((status == SCI_SUCCESS) &&
1566	    (frame_header->fis_type == FIS_REGD2H)) {
1567		sci_unsolicited_frame_control_get_buffer(&ihost->uf_control,
1568							      frame_index,
1569							      (void **)&frame_buffer);
1570
1571		sci_controller_copy_sata_response(&ireq->stp.rsp,
1572						       frame_header,
1573						       frame_buffer);
1574	}
1575
1576	sci_controller_release_frame(ihost, frame_index);
1577
1578	return status;
1579}
1580
1581static enum sci_status process_unsolicited_fis(struct isci_request *ireq,
1582					       u32 frame_index)
1583{
1584	struct isci_host *ihost = ireq->owning_controller;
1585	enum sci_status status;
1586	struct dev_to_host_fis *frame_header;
1587	u32 *frame_buffer;
1588
1589	status = sci_unsolicited_frame_control_get_header(&ihost->uf_control,
1590							  frame_index,
1591							  (void **)&frame_header);
1592
1593	if (status != SCI_SUCCESS)
1594		return status;
1595
1596	if (frame_header->fis_type != FIS_REGD2H) {
1597		dev_err(&ireq->isci_host->pdev->dev,
1598			"%s ERROR: invalid fis type 0x%X\n",
1599			__func__, frame_header->fis_type);
1600		return SCI_FAILURE;
1601	}
1602
1603	sci_unsolicited_frame_control_get_buffer(&ihost->uf_control,
1604						 frame_index,
1605						 (void **)&frame_buffer);
1606
1607	sci_controller_copy_sata_response(&ireq->stp.rsp,
1608					  (u32 *)frame_header,
1609					  frame_buffer);
1610
1611	/* Frame has been decoded return it to the controller */
1612	sci_controller_release_frame(ihost, frame_index);
1613
1614	return status;
1615}
1616
1617static enum sci_status atapi_d2h_reg_frame_handler(struct isci_request *ireq,
1618						   u32 frame_index)
1619{
1620	struct sas_task *task = isci_request_access_task(ireq);
1621	enum sci_status status;
1622
1623	status = process_unsolicited_fis(ireq, frame_index);
1624
1625	if (status == SCI_SUCCESS) {
1626		if (ireq->stp.rsp.status & ATA_ERR)
1627			status = SCI_IO_FAILURE_RESPONSE_VALID;
1628	} else {
1629		status = SCI_IO_FAILURE_RESPONSE_VALID;
1630	}
1631
1632	if (status != SCI_SUCCESS) {
1633		ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
1634		ireq->sci_status = status;
1635	} else {
1636		ireq->scu_status = SCU_TASK_DONE_GOOD;
1637		ireq->sci_status = SCI_SUCCESS;
1638	}
1639
1640	/* the d2h ufi is the end of non-data commands */
1641	if (task->data_dir == DMA_NONE)
1642		sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1643
1644	return status;
1645}
1646
1647static void scu_atapi_reconstruct_raw_frame_task_context(struct isci_request *ireq)
1648{
1649	struct ata_device *dev = sas_to_ata_dev(ireq->target_device->domain_dev);
1650	void *atapi_cdb = ireq->ttype_ptr.io_task_ptr->ata_task.atapi_packet;
1651	struct scu_task_context *task_context = ireq->tc;
1652
1653	/* fill in the SCU Task Context for a DATA fis containing CDB in Raw Frame
1654	 * type. The TC for previous Packet fis was already there, we only need to
1655	 * change the H2D fis content.
1656	 */
1657	memset(&ireq->stp.cmd, 0, sizeof(struct host_to_dev_fis));
1658	memcpy(((u8 *)&ireq->stp.cmd + sizeof(u32)), atapi_cdb, ATAPI_CDB_LEN);
1659	memset(&(task_context->type.stp), 0, sizeof(struct stp_task_context));
1660	task_context->type.stp.fis_type = FIS_DATA;
1661	task_context->transfer_length_bytes = dev->cdb_len;
1662}
1663
1664static void scu_atapi_construct_task_context(struct isci_request *ireq)
1665{
1666	struct ata_device *dev = sas_to_ata_dev(ireq->target_device->domain_dev);
1667	struct sas_task *task = isci_request_access_task(ireq);
1668	struct scu_task_context *task_context = ireq->tc;
1669	int cdb_len = dev->cdb_len;
1670
1671	/* reference: SSTL 1.13.4.2
1672	 * task_type, sata_direction
1673	 */
1674	if (task->data_dir == DMA_TO_DEVICE) {
1675		task_context->task_type = SCU_TASK_TYPE_PACKET_DMA_OUT;
1676		task_context->sata_direction = 0;
1677	} else {
1678		/* todo: for NO_DATA command, we need to send out raw frame. */
1679		task_context->task_type = SCU_TASK_TYPE_PACKET_DMA_IN;
1680		task_context->sata_direction = 1;
1681	}
1682
1683	memset(&task_context->type.stp, 0, sizeof(task_context->type.stp));
1684	task_context->type.stp.fis_type = FIS_DATA;
1685
1686	memset(&ireq->stp.cmd, 0, sizeof(ireq->stp.cmd));
1687	memcpy(&ireq->stp.cmd.lbal, task->ata_task.atapi_packet, cdb_len);
1688	task_context->ssp_command_iu_length = cdb_len / sizeof(u32);
1689
1690	/* task phase is set to TX_CMD */
1691	task_context->task_phase = 0x1;
1692
1693	/* retry counter */
1694	task_context->stp_retry_count = 0;
1695
1696	/* data transfer size. */
1697	task_context->transfer_length_bytes = task->total_xfer_len;
1698
1699	/* setup sgl */
1700	sci_request_build_sgl(ireq);
1701}
1702
1703enum sci_status
1704sci_io_request_frame_handler(struct isci_request *ireq,
1705				  u32 frame_index)
1706{
1707	struct isci_host *ihost = ireq->owning_controller;
1708	struct isci_stp_request *stp_req = &ireq->stp.req;
1709	enum sci_base_request_states state;
1710	enum sci_status status;
1711	ssize_t word_cnt;
1712
1713	state = ireq->sm.current_state_id;
1714	switch (state)  {
1715	case SCI_REQ_STARTED: {
1716		struct ssp_frame_hdr ssp_hdr;
1717		void *frame_header;
1718
1719		sci_unsolicited_frame_control_get_header(&ihost->uf_control,
1720							      frame_index,
1721							      &frame_header);
1722
1723		word_cnt = sizeof(struct ssp_frame_hdr) / sizeof(u32);
1724		sci_swab32_cpy(&ssp_hdr, frame_header, word_cnt);
1725
1726		if (ssp_hdr.frame_type == SSP_RESPONSE) {
1727			struct ssp_response_iu *resp_iu;
1728			ssize_t word_cnt = SSP_RESP_IU_MAX_SIZE / sizeof(u32);
1729
1730			sci_unsolicited_frame_control_get_buffer(&ihost->uf_control,
1731								      frame_index,
1732								      (void **)&resp_iu);
1733
1734			sci_swab32_cpy(&ireq->ssp.rsp, resp_iu, word_cnt);
1735
1736			resp_iu = &ireq->ssp.rsp;
1737
1738			if (resp_iu->datapres == 0x01 ||
1739			    resp_iu->datapres == 0x02) {
1740				ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
1741				ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1742			} else {
1743				ireq->scu_status = SCU_TASK_DONE_GOOD;
1744				ireq->sci_status = SCI_SUCCESS;
1745			}
1746		} else {
1747			/* not a response frame, why did it get forwarded? */
1748			dev_err(&ihost->pdev->dev,
1749				"%s: SCIC IO Request 0x%p received unexpected "
1750				"frame %d type 0x%02x\n", __func__, ireq,
1751				frame_index, ssp_hdr.frame_type);
1752		}
1753
1754		/*
1755		 * In any case we are done with this frame buffer return it to
1756		 * the controller
1757		 */
1758		sci_controller_release_frame(ihost, frame_index);
1759
1760		return SCI_SUCCESS;
1761	}
1762
1763	case SCI_REQ_TASK_WAIT_TC_RESP:
1764		sci_io_request_copy_response(ireq);
1765		sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1766		sci_controller_release_frame(ihost, frame_index);
1767		return SCI_SUCCESS;
1768
1769	case SCI_REQ_SMP_WAIT_RESP: {
1770		struct sas_task *task = isci_request_access_task(ireq);
1771		struct scatterlist *sg = &task->smp_task.smp_resp;
1772		void *frame_header, *kaddr;
1773		u8 *rsp;
1774
1775		sci_unsolicited_frame_control_get_header(&ihost->uf_control,
1776							 frame_index,
1777							 &frame_header);
1778		kaddr = kmap_atomic(sg_page(sg));
1779		rsp = kaddr + sg->offset;
1780		sci_swab32_cpy(rsp, frame_header, 1);
1781
1782		if (rsp[0] == SMP_RESPONSE) {
1783			void *smp_resp;
1784
1785			sci_unsolicited_frame_control_get_buffer(&ihost->uf_control,
1786								 frame_index,
1787								 &smp_resp);
1788
1789			word_cnt = (sg->length/4)-1;
1790			if (word_cnt > 0)
1791				word_cnt = min_t(unsigned int, word_cnt,
1792						 SCU_UNSOLICITED_FRAME_BUFFER_SIZE/4);
1793			sci_swab32_cpy(rsp + 4, smp_resp, word_cnt);
1794
1795			ireq->scu_status = SCU_TASK_DONE_GOOD;
1796			ireq->sci_status = SCI_SUCCESS;
1797			sci_change_state(&ireq->sm, SCI_REQ_SMP_WAIT_TC_COMP);
1798		} else {
1799			/*
1800			 * This was not a response frame why did it get
1801			 * forwarded?
1802			 */
1803			dev_err(&ihost->pdev->dev,
1804				"%s: SCIC SMP Request 0x%p received unexpected "
1805				"frame %d type 0x%02x\n",
1806				__func__,
1807				ireq,
1808				frame_index,
1809				rsp[0]);
1810
1811			ireq->scu_status = SCU_TASK_DONE_SMP_FRM_TYPE_ERR;
1812			ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1813			sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1814		}
1815		kunmap_atomic(kaddr);
1816
1817		sci_controller_release_frame(ihost, frame_index);
1818
1819		return SCI_SUCCESS;
1820	}
1821
1822	case SCI_REQ_STP_UDMA_WAIT_TC_COMP:
1823		return sci_stp_request_udma_general_frame_handler(ireq,
1824								       frame_index);
1825
1826	case SCI_REQ_STP_UDMA_WAIT_D2H:
1827		/* Use the general frame handler to copy the resposne data */
1828		status = sci_stp_request_udma_general_frame_handler(ireq, frame_index);
1829
1830		if (status != SCI_SUCCESS)
1831			return status;
1832
1833		ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
1834		ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID;
1835		sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1836		return SCI_SUCCESS;
1837
1838	case SCI_REQ_STP_NON_DATA_WAIT_D2H: {
1839		struct dev_to_host_fis *frame_header;
1840		u32 *frame_buffer;
1841
1842		status = sci_unsolicited_frame_control_get_header(&ihost->uf_control,
1843								       frame_index,
1844								       (void **)&frame_header);
1845
1846		if (status != SCI_SUCCESS) {
1847			dev_err(&ihost->pdev->dev,
1848				"%s: SCIC IO Request 0x%p could not get frame "
1849				"header for frame index %d, status %x\n",
1850				__func__,
1851				stp_req,
1852				frame_index,
1853				status);
1854
1855			return status;
1856		}
1857
1858		switch (frame_header->fis_type) {
1859		case FIS_REGD2H:
1860			sci_unsolicited_frame_control_get_buffer(&ihost->uf_control,
1861								      frame_index,
1862								      (void **)&frame_buffer);
1863
1864			sci_controller_copy_sata_response(&ireq->stp.rsp,
1865							       frame_header,
1866							       frame_buffer);
1867
1868			/* The command has completed with error */
1869			ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
1870			ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID;
1871			break;
1872
1873		default:
1874			dev_warn(&ihost->pdev->dev,
1875				 "%s: IO Request:0x%p Frame Id:%d protocol "
1876				  "violation occurred\n", __func__, stp_req,
1877				  frame_index);
1878
1879			ireq->scu_status = SCU_TASK_DONE_UNEXP_FIS;
1880			ireq->sci_status = SCI_FAILURE_PROTOCOL_VIOLATION;
1881			break;
1882		}
1883
1884		sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1885
1886		/* Frame has been decoded return it to the controller */
1887		sci_controller_release_frame(ihost, frame_index);
1888
1889		return status;
1890	}
1891
1892	case SCI_REQ_STP_PIO_WAIT_FRAME: {
1893		struct sas_task *task = isci_request_access_task(ireq);
1894		struct dev_to_host_fis *frame_header;
1895		u32 *frame_buffer;
1896
1897		status = sci_unsolicited_frame_control_get_header(&ihost->uf_control,
1898								       frame_index,
1899								       (void **)&frame_header);
1900
1901		if (status != SCI_SUCCESS) {
1902			dev_err(&ihost->pdev->dev,
1903				"%s: SCIC IO Request 0x%p could not get frame "
1904				"header for frame index %d, status %x\n",
1905				__func__, stp_req, frame_index, status);
1906			return status;
1907		}
1908
1909		switch (frame_header->fis_type) {
1910		case FIS_PIO_SETUP:
1911			/* Get from the frame buffer the PIO Setup Data */
1912			sci_unsolicited_frame_control_get_buffer(&ihost->uf_control,
1913								      frame_index,
1914								      (void **)&frame_buffer);
1915
1916			/* Get the data from the PIO Setup The SCU Hardware
1917			 * returns first word in the frame_header and the rest
1918			 * of the data is in the frame buffer so we need to
1919			 * back up one dword
1920			 */
1921
1922			/* transfer_count: first 16bits in the 4th dword */
1923			stp_req->pio_len = frame_buffer[3] & 0xffff;
1924
1925			/* status: 4th byte in the 3rd dword */
1926			stp_req->status = (frame_buffer[2] >> 24) & 0xff;
1927
1928			sci_controller_copy_sata_response(&ireq->stp.rsp,
1929							       frame_header,
1930							       frame_buffer);
1931
1932			ireq->stp.rsp.status = stp_req->status;
1933
1934			/* The next state is dependent on whether the
1935			 * request was PIO Data-in or Data out
1936			 */
1937			if (task->data_dir == DMA_FROM_DEVICE) {
1938				sci_change_state(&ireq->sm, SCI_REQ_STP_PIO_DATA_IN);
1939			} else if (task->data_dir == DMA_TO_DEVICE) {
1940				/* Transmit data */
1941				status = sci_stp_request_pio_data_out_transmit_data(ireq);
1942				if (status != SCI_SUCCESS)
1943					break;
1944				sci_change_state(&ireq->sm, SCI_REQ_STP_PIO_DATA_OUT);
1945			}
1946			break;
1947
1948		case FIS_SETDEVBITS:
1949			sci_change_state(&ireq->sm, SCI_REQ_STP_PIO_WAIT_FRAME);
1950			break;
1951
1952		case FIS_REGD2H:
1953			if (frame_header->status & ATA_BUSY) {
1954				/*
1955				 * Now why is the drive sending a D2H Register
1956				 * FIS when it is still busy?  Do nothing since
1957				 * we are still in the right state.
1958				 */
1959				dev_dbg(&ihost->pdev->dev,
1960					"%s: SCIC PIO Request 0x%p received "
1961					"D2H Register FIS with BSY status "
1962					"0x%x\n",
1963					__func__,
1964					stp_req,
1965					frame_header->status);
1966				break;
1967			}
1968
1969			sci_unsolicited_frame_control_get_buffer(&ihost->uf_control,
1970								      frame_index,
1971								      (void **)&frame_buffer);
1972
1973			sci_controller_copy_sata_response(&ireq->stp.req,
1974							       frame_header,
1975							       frame_buffer);
1976
1977			ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
1978			ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID;
1979			sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1980			break;
1981
1982		default:
1983			/* FIXME: what do we do here? */
1984			break;
1985		}
1986
1987		/* Frame is decoded return it to the controller */
1988		sci_controller_release_frame(ihost, frame_index);
1989
1990		return status;
1991	}
1992
1993	case SCI_REQ_STP_PIO_DATA_IN: {
1994		struct dev_to_host_fis *frame_header;
1995		struct sata_fis_data *frame_buffer;
1996
1997		status = sci_unsolicited_frame_control_get_header(&ihost->uf_control,
1998								       frame_index,
1999								       (void **)&frame_header);
2000
2001		if (status != SCI_SUCCESS) {
2002			dev_err(&ihost->pdev->dev,
2003				"%s: SCIC IO Request 0x%p could not get frame "
2004				"header for frame index %d, status %x\n",
2005				__func__,
2006				stp_req,
2007				frame_index,
2008				status);
2009			return status;
2010		}
2011
2012		if (frame_header->fis_type != FIS_DATA) {
2013			dev_err(&ihost->pdev->dev,
2014				"%s: SCIC PIO Request 0x%p received frame %d "
2015				"with fis type 0x%02x when expecting a data "
2016				"fis.\n",
2017				__func__,
2018				stp_req,
2019				frame_index,
2020				frame_header->fis_type);
2021
2022			ireq->scu_status = SCU_TASK_DONE_GOOD;
2023			ireq->sci_status = SCI_FAILURE_IO_REQUIRES_SCSI_ABORT;
2024			sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
2025
2026			/* Frame is decoded return it to the controller */
2027			sci_controller_release_frame(ihost, frame_index);
2028			return status;
2029		}
2030
2031		if (stp_req->sgl.index < 0) {
2032			ireq->saved_rx_frame_index = frame_index;
2033			stp_req->pio_len = 0;
2034		} else {
2035			sci_unsolicited_frame_control_get_buffer(&ihost->uf_control,
2036								      frame_index,
2037								      (void **)&frame_buffer);
2038
2039			status = sci_stp_request_pio_data_in_copy_data(stp_req,
2040									    (u8 *)frame_buffer);
2041
2042			/* Frame is decoded return it to the controller */
2043			sci_controller_release_frame(ihost, frame_index);
2044		}
2045
2046		/* Check for the end of the transfer, are there more
2047		 * bytes remaining for this data transfer
2048		 */
2049		if (status != SCI_SUCCESS || stp_req->pio_len != 0)
2050			return status;
2051
2052		if ((stp_req->status & ATA_BUSY) == 0) {
2053			ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
2054			ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID;
2055			sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
2056		} else {
2057			sci_change_state(&ireq->sm, SCI_REQ_STP_PIO_WAIT_FRAME);
2058		}
2059		return status;
2060	}
2061
2062	case SCI_REQ_ATAPI_WAIT_PIO_SETUP: {
2063		struct sas_task *task = isci_request_access_task(ireq);
2064
2065		sci_controller_release_frame(ihost, frame_index);
2066		ireq->target_device->working_request = ireq;
2067		if (task->data_dir == DMA_NONE) {
2068			sci_change_state(&ireq->sm, SCI_REQ_ATAPI_WAIT_TC_COMP);
2069			scu_atapi_reconstruct_raw_frame_task_context(ireq);
2070		} else {
2071			sci_change_state(&ireq->sm, SCI_REQ_ATAPI_WAIT_D2H);
2072			scu_atapi_construct_task_context(ireq);
2073		}
2074
2075		sci_controller_continue_io(ireq);
2076		return SCI_SUCCESS;
2077	}
2078	case SCI_REQ_ATAPI_WAIT_D2H:
2079		return atapi_d2h_reg_frame_handler(ireq, frame_index);
2080	case SCI_REQ_ABORTING:
2081		/*
2082		 * TODO: Is it even possible to get an unsolicited frame in the
2083		 * aborting state?
2084		 */
2085		sci_controller_release_frame(ihost, frame_index);
2086		return SCI_SUCCESS;
2087
2088	default:
2089		dev_warn(&ihost->pdev->dev,
2090			 "%s: SCIC IO Request given unexpected frame %x while "
2091			 "in state %d\n",
2092			 __func__,
2093			 frame_index,
2094			 state);
2095
2096		sci_controller_release_frame(ihost, frame_index);
2097		return SCI_FAILURE_INVALID_STATE;
2098	}
2099}
2100
2101static enum sci_status stp_request_udma_await_tc_event(struct isci_request *ireq,
2102						       u32 completion_code)
2103{
2104	enum sci_status status = SCI_SUCCESS;
2105
2106	switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
2107	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
2108		ireq->scu_status = SCU_TASK_DONE_GOOD;
2109		ireq->sci_status = SCI_SUCCESS;
2110		sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
2111		break;
2112	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_UNEXP_FIS):
2113	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_REG_ERR):
2114		/* We must check ther response buffer to see if the D2H
2115		 * Register FIS was received before we got the TC
2116		 * completion.
2117		 */
2118		if (ireq->stp.rsp.fis_type == FIS_REGD2H) {
2119			sci_remote_device_suspend(ireq->target_device,
2120				SCU_EVENT_SPECIFIC(SCU_NORMALIZE_COMPLETION_STATUS(completion_code)));
2121
2122			ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
2123			ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID;
2124			sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
2125		} else {
2126			/* If we have an error completion status for the
2127			 * TC then we can expect a D2H register FIS from
2128			 * the device so we must change state to wait
2129			 * for it
2130			 */
2131			sci_change_state(&ireq->sm, SCI_REQ_STP_UDMA_WAIT_D2H);
2132		}
2133		break;
2134
2135	/* TODO Check to see if any of these completion status need to
2136	 * wait for the device to host register fis.
2137	 */
2138	/* TODO We can retry the command for SCU_TASK_DONE_CMD_LL_R_ERR
2139	 * - this comes only for B0
2140	 */
2141	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_INV_FIS_LEN):
2142	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_MAX_PLD_ERR):
2143	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_LL_R_ERR):
2144	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_CMD_LL_R_ERR):
2145		sci_remote_device_suspend(ireq->target_device,
2146			SCU_EVENT_SPECIFIC(SCU_NORMALIZE_COMPLETION_STATUS(completion_code)));
2147		/* Fall through to the default case */
2148	default:
2149		/* All other completion status cause the IO to be complete. */
2150		ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code);
2151		ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
2152		sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
2153		break;
2154	}
2155
2156	return status;
2157}
2158
2159static enum sci_status atapi_raw_completion(struct isci_request *ireq, u32 completion_code,
2160						  enum sci_base_request_states next)
2161{
2162	enum sci_status status = SCI_SUCCESS;
2163
2164	switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
2165	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
2166		ireq->scu_status = SCU_TASK_DONE_GOOD;
2167		ireq->sci_status = SCI_SUCCESS;
2168		sci_change_state(&ireq->sm, next);
2169		break;
2170	default:
2171		/* All other completion status cause the IO to be complete.
2172		 * If a NAK was received, then it is up to the user to retry
2173		 * the request.
2174		 */
2175		ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code);
2176		ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
2177
2178		sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
2179		break;
2180	}
2181
2182	return status;
2183}
2184
2185static enum sci_status atapi_data_tc_completion_handler(struct isci_request *ireq,
2186							u32 completion_code)
2187{
2188	struct isci_remote_device *idev = ireq->target_device;
2189	struct dev_to_host_fis *d2h = &ireq->stp.rsp;
2190	enum sci_status status = SCI_SUCCESS;
2191
2192	switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
2193	case (SCU_TASK_DONE_GOOD << SCU_COMPLETION_TL_STATUS_SHIFT):
2194		sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
2195		break;
2196
2197	case (SCU_TASK_DONE_UNEXP_FIS << SCU_COMPLETION_TL_STATUS_SHIFT): {
2198		u16 len = sci_req_tx_bytes(ireq);
2199
2200		/* likely non-error data underrrun, workaround missing
2201		 * d2h frame from the controller
2202		 */
2203		if (d2h->fis_type != FIS_REGD2H) {
2204			d2h->fis_type = FIS_REGD2H;
2205			d2h->flags = (1 << 6);
2206			d2h->status = 0x50;
2207			d2h->error = 0;
2208			d2h->lbal = 0;
2209			d2h->byte_count_low = len & 0xff;
2210			d2h->byte_count_high = len >> 8;
2211			d2h->device = 0xa0;
2212			d2h->lbal_exp = 0;
2213			d2h->lbam_exp = 0;
2214			d2h->lbah_exp = 0;
2215			d2h->_r_a = 0;
2216			d2h->sector_count = 0x3;
2217			d2h->sector_count_exp = 0;
2218			d2h->_r_b = 0;
2219			d2h->_r_c = 0;
2220			d2h->_r_d = 0;
2221		}
2222
2223		ireq->scu_status = SCU_TASK_DONE_GOOD;
2224		ireq->sci_status = SCI_SUCCESS_IO_DONE_EARLY;
2225		status = ireq->sci_status;
2226
2227		/* the hw will have suspended the rnc, so complete the
2228		 * request upon pending resume
2229		 */
2230		sci_change_state(&idev->sm, SCI_STP_DEV_ATAPI_ERROR);
2231		break;
2232	}
2233	case (SCU_TASK_DONE_EXCESS_DATA << SCU_COMPLETION_TL_STATUS_SHIFT):
2234		/* In this case, there is no UF coming after.
2235		 * compelte the IO now.
2236		 */
2237		ireq->scu_status = SCU_TASK_DONE_GOOD;
2238		ireq->sci_status = SCI_SUCCESS;
2239		sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
2240		break;
2241
2242	default:
2243		if (d2h->fis_type == FIS_REGD2H) {
2244			/* UF received change the device state to ATAPI_ERROR */
2245			status = ireq->sci_status;
2246			sci_change_state(&idev->sm, SCI_STP_DEV_ATAPI_ERROR);
2247		} else {
2248			/* If receiving any non-sucess TC status, no UF
2249			 * received yet, then an UF for the status fis
2250			 * is coming after (XXX: suspect this is
2251			 * actually a protocol error or a bug like the
2252			 * DONE_UNEXP_FIS case)
2253			 */
2254			ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
2255			ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID;
2256
2257			sci_change_state(&ireq->sm, SCI_REQ_ATAPI_WAIT_D2H);
2258		}
2259		break;
2260	}
2261
2262	return status;
2263}
2264
2265enum sci_status
2266sci_io_request_tc_completion(struct isci_request *ireq,
2267				  u32 completion_code)
2268{
2269	enum sci_base_request_states state;
2270	struct isci_host *ihost = ireq->owning_controller;
2271
2272	state = ireq->sm.current_state_id;
2273
2274	switch (state) {
2275	case SCI_REQ_STARTED:
2276		return request_started_state_tc_event(ireq, completion_code);
2277
2278	case SCI_REQ_TASK_WAIT_TC_COMP:
2279		return ssp_task_request_await_tc_event(ireq,
2280						       completion_code);
2281
2282	case SCI_REQ_SMP_WAIT_RESP:
2283		return smp_request_await_response_tc_event(ireq,
2284							   completion_code);
2285
2286	case SCI_REQ_SMP_WAIT_TC_COMP:
2287		return smp_request_await_tc_event(ireq, completion_code);
2288
2289	case SCI_REQ_STP_UDMA_WAIT_TC_COMP:
2290		return stp_request_udma_await_tc_event(ireq,
2291						       completion_code);
2292
2293	case SCI_REQ_STP_NON_DATA_WAIT_H2D:
2294		return stp_request_non_data_await_h2d_tc_event(ireq,
2295							       completion_code);
2296
2297	case SCI_REQ_STP_PIO_WAIT_H2D:
2298		return stp_request_pio_await_h2d_completion_tc_event(ireq,
2299								     completion_code);
2300
2301	case SCI_REQ_STP_PIO_DATA_OUT:
2302		return pio_data_out_tx_done_tc_event(ireq, completion_code);
2303
2304	case SCI_REQ_ABORTING:
2305		return request_aborting_state_tc_event(ireq,
2306						       completion_code);
2307
2308	case SCI_REQ_ATAPI_WAIT_H2D:
2309		return atapi_raw_completion(ireq, completion_code,
2310					    SCI_REQ_ATAPI_WAIT_PIO_SETUP);
2311
2312	case SCI_REQ_ATAPI_WAIT_TC_COMP:
2313		return atapi_raw_completion(ireq, completion_code,
2314					    SCI_REQ_ATAPI_WAIT_D2H);
2315
2316	case SCI_REQ_ATAPI_WAIT_D2H:
2317		return atapi_data_tc_completion_handler(ireq, completion_code);
2318
2319	default:
2320		dev_warn(&ihost->pdev->dev, "%s: %x in wrong state %s\n",
2321			 __func__, completion_code, req_state_name(state));
2322		return SCI_FAILURE_INVALID_STATE;
2323	}
2324}
2325
2326/**
2327 * isci_request_process_response_iu() - This function sets the status and
2328 *    response iu, in the task struct, from the request object for the upper
2329 *    layer driver.
2330 * @sas_task: This parameter is the task struct from the upper layer driver.
2331 * @resp_iu: This parameter points to the response iu of the completed request.
2332 * @dev: This parameter specifies the linux device struct.
2333 *
2334 * none.
2335 */
2336static void isci_request_process_response_iu(
2337	struct sas_task *task,
2338	struct ssp_response_iu *resp_iu,
2339	struct device *dev)
2340{
2341	dev_dbg(dev,
2342		"%s: resp_iu = %p "
2343		"resp_iu->status = 0x%x,\nresp_iu->datapres = %d "
2344		"resp_iu->response_data_len = %x, "
2345		"resp_iu->sense_data_len = %x\nrepsonse data: ",
2346		__func__,
2347		resp_iu,
2348		resp_iu->status,
2349		resp_iu->datapres,
2350		resp_iu->response_data_len,
2351		resp_iu->sense_data_len);
2352
2353	task->task_status.stat = resp_iu->status;
2354
2355	/* libsas updates the task status fields based on the response iu. */
2356	sas_ssp_task_response(dev, task, resp_iu);
2357}
2358
2359/**
2360 * isci_request_set_open_reject_status() - This function prepares the I/O
2361 *    completion for OPEN_REJECT conditions.
2362 * @request: This parameter is the completed isci_request object.
2363 * @response_ptr: This parameter specifies the service response for the I/O.
2364 * @status_ptr: This parameter specifies the exec status for the I/O.
2365 * @complete_to_host_ptr: This parameter specifies the action to be taken by
2366 *    the LLDD with respect to completing this request or forcing an abort
2367 *    condition on the I/O.
2368 * @open_rej_reason: This parameter specifies the encoded reason for the
2369 *    abandon-class reject.
2370 *
2371 * none.
2372 */
2373static void isci_request_set_open_reject_status(
2374	struct isci_request *request,
2375	struct sas_task *task,
2376	enum service_response *response_ptr,
2377	enum exec_status *status_ptr,
2378	enum isci_completion_selection *complete_to_host_ptr,
2379	enum sas_open_rej_reason open_rej_reason)
2380{
2381	/* Task in the target is done. */
2382	set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2383	*response_ptr                     = SAS_TASK_UNDELIVERED;
2384	*status_ptr                       = SAS_OPEN_REJECT;
2385	*complete_to_host_ptr             = isci_perform_normal_io_completion;
2386	task->task_status.open_rej_reason = open_rej_reason;
2387}
2388
2389/**
2390 * isci_request_handle_controller_specific_errors() - This function decodes
2391 *    controller-specific I/O completion error conditions.
2392 * @request: This parameter is the completed isci_request object.
2393 * @response_ptr: This parameter specifies the service response for the I/O.
2394 * @status_ptr: This parameter specifies the exec status for the I/O.
2395 * @complete_to_host_ptr: This parameter specifies the action to be taken by
2396 *    the LLDD with respect to completing this request or forcing an abort
2397 *    condition on the I/O.
2398 *
2399 * none.
2400 */
2401static void isci_request_handle_controller_specific_errors(
2402	struct isci_remote_device *idev,
2403	struct isci_request *request,
2404	struct sas_task *task,
2405	enum service_response *response_ptr,
2406	enum exec_status *status_ptr,
2407	enum isci_completion_selection *complete_to_host_ptr)
2408{
2409	unsigned int cstatus;
2410
2411	cstatus = request->scu_status;
2412
2413	dev_dbg(&request->isci_host->pdev->dev,
2414		"%s: %p SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR "
2415		"- controller status = 0x%x\n",
2416		__func__, request, cstatus);
2417
2418	/* Decode the controller-specific errors; most
2419	 * important is to recognize those conditions in which
2420	 * the target may still have a task outstanding that
2421	 * must be aborted.
2422	 *
2423	 * Note that there are SCU completion codes being
2424	 * named in the decode below for which SCIC has already
2425	 * done work to handle them in a way other than as
2426	 * a controller-specific completion code; these are left
2427	 * in the decode below for completeness sake.
2428	 */
2429	switch (cstatus) {
2430	case SCU_TASK_DONE_DMASETUP_DIRERR:
2431	/* Also SCU_TASK_DONE_SMP_FRM_TYPE_ERR: */
2432	case SCU_TASK_DONE_XFERCNT_ERR:
2433		/* Also SCU_TASK_DONE_SMP_UFI_ERR: */
2434		if (task->task_proto == SAS_PROTOCOL_SMP) {
2435			/* SCU_TASK_DONE_SMP_UFI_ERR == Task Done. */
2436			*response_ptr = SAS_TASK_COMPLETE;
2437
2438			/* See if the device has been/is being stopped. Note
2439			 * that we ignore the quiesce state, since we are
2440			 * concerned about the actual device state.
2441			 */
2442			if (!idev)
2443				*status_ptr = SAS_DEVICE_UNKNOWN;
2444			else
2445				*status_ptr = SAS_ABORTED_TASK;
2446
2447			set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2448
2449			*complete_to_host_ptr =
2450				isci_perform_normal_io_completion;
2451		} else {
2452			/* Task in the target is not done. */
2453			*response_ptr = SAS_TASK_UNDELIVERED;
2454
2455			if (!idev)
2456				*status_ptr = SAS_DEVICE_UNKNOWN;
2457			else
2458				*status_ptr = SAM_STAT_TASK_ABORTED;
2459
2460			clear_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2461
2462			*complete_to_host_ptr =
2463				isci_perform_error_io_completion;
2464		}
2465
2466		break;
2467
2468	case SCU_TASK_DONE_CRC_ERR:
2469	case SCU_TASK_DONE_NAK_CMD_ERR:
2470	case SCU_TASK_DONE_EXCESS_DATA:
2471	case SCU_TASK_DONE_UNEXP_FIS:
2472	/* Also SCU_TASK_DONE_UNEXP_RESP: */
2473	case SCU_TASK_DONE_VIIT_ENTRY_NV:       /* TODO - conditions? */
2474	case SCU_TASK_DONE_IIT_ENTRY_NV:        /* TODO - conditions? */
2475	case SCU_TASK_DONE_RNCNV_OUTBOUND:      /* TODO - conditions? */
2476		/* These are conditions in which the target
2477		 * has completed the task, so that no cleanup
2478		 * is necessary.
2479		 */
2480		*response_ptr = SAS_TASK_COMPLETE;
2481
2482		/* See if the device has been/is being stopped. Note
2483		 * that we ignore the quiesce state, since we are
2484		 * concerned about the actual device state.
2485		 */
2486		if (!idev)
2487			*status_ptr = SAS_DEVICE_UNKNOWN;
2488		else
2489			*status_ptr = SAS_ABORTED_TASK;
2490
2491		set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2492
2493		*complete_to_host_ptr = isci_perform_normal_io_completion;
2494		break;
2495
2496
2497	/* Note that the only open reject completion codes seen here will be
2498	 * abandon-class codes; all others are automatically retried in the SCU.
2499	 */
2500	case SCU_TASK_OPEN_REJECT_WRONG_DESTINATION:
2501
2502		isci_request_set_open_reject_status(
2503			request, task, response_ptr, status_ptr,
2504			complete_to_host_ptr, SAS_OREJ_WRONG_DEST);
2505		break;
2506
2507	case SCU_TASK_OPEN_REJECT_ZONE_VIOLATION:
2508
2509		/* Note - the return of AB0 will change when
2510		 * libsas implements detection of zone violations.
2511		 */
2512		isci_request_set_open_reject_status(
2513			request, task, response_ptr, status_ptr,
2514			complete_to_host_ptr, SAS_OREJ_RESV_AB0);
2515		break;
2516
2517	case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_1:
2518
2519		isci_request_set_open_reject_status(
2520			request, task, response_ptr, status_ptr,
2521			complete_to_host_ptr, SAS_OREJ_RESV_AB1);
2522		break;
2523
2524	case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_2:
2525
2526		isci_request_set_open_reject_status(
2527			request, task, response_ptr, status_ptr,
2528			complete_to_host_ptr, SAS_OREJ_RESV_AB2);
2529		break;
2530
2531	case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_3:
2532
2533		isci_request_set_open_reject_status(
2534			request, task, response_ptr, status_ptr,
2535			complete_to_host_ptr, SAS_OREJ_RESV_AB3);
2536		break;
2537
2538	case SCU_TASK_OPEN_REJECT_BAD_DESTINATION:
2539
2540		isci_request_set_open_reject_status(
2541			request, task, response_ptr, status_ptr,
2542			complete_to_host_ptr, SAS_OREJ_BAD_DEST);
2543		break;
2544
2545	case SCU_TASK_OPEN_REJECT_STP_RESOURCES_BUSY:
2546
2547		isci_request_set_open_reject_status(
2548			request, task, response_ptr, status_ptr,
2549			complete_to_host_ptr, SAS_OREJ_STP_NORES);
2550		break;
2551
2552	case SCU_TASK_OPEN_REJECT_PROTOCOL_NOT_SUPPORTED:
2553
2554		isci_request_set_open_reject_status(
2555			request, task, response_ptr, status_ptr,
2556			complete_to_host_ptr, SAS_OREJ_EPROTO);
2557		break;
2558
2559	case SCU_TASK_OPEN_REJECT_CONNECTION_RATE_NOT_SUPPORTED:
2560
2561		isci_request_set_open_reject_status(
2562			request, task, response_ptr, status_ptr,
2563			complete_to_host_ptr, SAS_OREJ_CONN_RATE);
2564		break;
2565
2566	case SCU_TASK_DONE_LL_R_ERR:
2567	/* Also SCU_TASK_DONE_ACK_NAK_TO: */
2568	case SCU_TASK_DONE_LL_PERR:
2569	case SCU_TASK_DONE_LL_SY_TERM:
2570	/* Also SCU_TASK_DONE_NAK_ERR:*/
2571	case SCU_TASK_DONE_LL_LF_TERM:
2572	/* Also SCU_TASK_DONE_DATA_LEN_ERR: */
2573	case SCU_TASK_DONE_LL_ABORT_ERR:
2574	case SCU_TASK_DONE_SEQ_INV_TYPE:
2575	/* Also SCU_TASK_DONE_UNEXP_XR: */
2576	case SCU_TASK_DONE_XR_IU_LEN_ERR:
2577	case SCU_TASK_DONE_INV_FIS_LEN:
2578	/* Also SCU_TASK_DONE_XR_WD_LEN: */
2579	case SCU_TASK_DONE_SDMA_ERR:
2580	case SCU_TASK_DONE_OFFSET_ERR:
2581	case SCU_TASK_DONE_MAX_PLD_ERR:
2582	case SCU_TASK_DONE_LF_ERR:
2583	case SCU_TASK_DONE_SMP_RESP_TO_ERR:  /* Escalate to dev reset? */
2584	case SCU_TASK_DONE_SMP_LL_RX_ERR:
2585	case SCU_TASK_DONE_UNEXP_DATA:
2586	case SCU_TASK_DONE_UNEXP_SDBFIS:
2587	case SCU_TASK_DONE_REG_ERR:
2588	case SCU_TASK_DONE_SDB_ERR:
2589	case SCU_TASK_DONE_TASK_ABORT:
2590	default:
2591		/* Task in the target is not done. */
2592		*response_ptr = SAS_TASK_UNDELIVERED;
2593		*status_ptr = SAM_STAT_TASK_ABORTED;
2594
2595		if (task->task_proto == SAS_PROTOCOL_SMP) {
2596			set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2597
2598			*complete_to_host_ptr = isci_perform_normal_io_completion;
2599		} else {
2600			clear_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2601
2602			*complete_to_host_ptr = isci_perform_error_io_completion;
2603		}
2604		break;
2605	}
2606}
2607
2608/**
2609 * isci_task_save_for_upper_layer_completion() - This function saves the
2610 *    request for later completion to the upper layer driver.
2611 * @host: This parameter is a pointer to the host on which the the request
2612 *    should be queued (either as an error or success).
2613 * @request: This parameter is the completed request.
2614 * @response: This parameter is the response code for the completed task.
2615 * @status: This parameter is the status code for the completed task.
2616 *
2617 * none.
2618 */
2619static void isci_task_save_for_upper_layer_completion(
2620	struct isci_host *host,
2621	struct isci_request *request,
2622	enum service_response response,
2623	enum exec_status status,
2624	enum isci_completion_selection task_notification_selection)
2625{
2626	struct sas_task *task = isci_request_access_task(request);
2627
2628	task_notification_selection
2629		= isci_task_set_completion_status(task, response, status,
2630						  task_notification_selection);
2631
2632	/* Tasks aborted specifically by a call to the lldd_abort_task
2633	 * function should not be completed to the host in the regular path.
2634	 */
2635	switch (task_notification_selection) {
2636
2637	case isci_perform_normal_io_completion:
2638		/* Normal notification (task_done) */
2639
2640		/* Add to the completed list. */
2641		list_add(&request->completed_node,
2642			 &host->requests_to_complete);
2643
2644		/* Take the request off the device's pending request list. */
2645		list_del_init(&request->dev_node);
2646		break;
2647
2648	case isci_perform_aborted_io_completion:
2649		/* No notification to libsas because this request is
2650		 * already in the abort path.
2651		 */
2652		/* Wake up whatever process was waiting for this
2653		 * request to complete.
2654		 */
2655		WARN_ON(request->io_request_completion == NULL);
2656
2657		if (request->io_request_completion != NULL) {
2658
2659			/* Signal whoever is waiting that this
2660			* request is complete.
2661			*/
2662			complete(request->io_request_completion);
2663		}
2664		break;
2665
2666	case isci_perform_error_io_completion:
2667		/* Use sas_task_abort */
2668		/* Add to the aborted list. */
2669		list_add(&request->completed_node,
2670			 &host->requests_to_errorback);
2671		break;
2672
2673	default:
2674		/* Add to the error to libsas list. */
2675		list_add(&request->completed_node,
2676			 &host->requests_to_errorback);
2677		break;
2678	}
2679	dev_dbg(&host->pdev->dev,
2680		"%s: %d - task = %p, response=%d (%d), status=%d (%d)\n",
2681		__func__, task_notification_selection, task,
2682		(task) ? task->task_status.resp : 0, response,
2683		(task) ? task->task_status.stat : 0, status);
2684}
2685
2686static void isci_process_stp_response(struct sas_task *task, struct dev_to_host_fis *fis)
2687{
2688	struct task_status_struct *ts = &task->task_status;
2689	struct ata_task_resp *resp = (void *)&ts->buf[0];
2690
2691	resp->frame_len = sizeof(*fis);
2692	memcpy(resp->ending_fis, fis, sizeof(*fis));
2693	ts->buf_valid_size = sizeof(*resp);
2694
2695	/* If the device fault bit is set in the status register, then
2696	 * set the sense data and return.
2697	 */
2698	if (fis->status & ATA_DF)
2699		ts->stat = SAS_PROTO_RESPONSE;
2700	else if (fis->status & ATA_ERR)
2701		ts->stat = SAM_STAT_CHECK_CONDITION;
2702	else
2703		ts->stat = SAM_STAT_GOOD;
2704
2705	ts->resp = SAS_TASK_COMPLETE;
2706}
2707
2708static void isci_request_io_request_complete(struct isci_host *ihost,
2709					     struct isci_request *request,
2710					     enum sci_io_status completion_status)
2711{
2712	struct sas_task *task = isci_request_access_task(request);
2713	struct ssp_response_iu *resp_iu;
2714	unsigned long task_flags;
2715	struct isci_remote_device *idev = request->target_device;
2716	enum service_response response = SAS_TASK_UNDELIVERED;
2717	enum exec_status status = SAS_ABORTED_TASK;
2718	enum isci_request_status request_status;
2719	enum isci_completion_selection complete_to_host
2720		= isci_perform_normal_io_completion;
2721
2722	dev_dbg(&ihost->pdev->dev,
2723		"%s: request = %p, task = %p,\n"
2724		"task->data_dir = %d completion_status = 0x%x\n",
2725		__func__,
2726		request,
2727		task,
2728		task->data_dir,
2729		completion_status);
2730
2731	spin_lock(&request->state_lock);
2732	request_status = request->status;
2733
2734	/* Decode the request status.  Note that if the request has been
2735	 * aborted by a task management function, we don't care
2736	 * what the status is.
2737	 */
2738	switch (request_status) {
2739
2740	case aborted:
2741		/* "aborted" indicates that the request was aborted by a task
2742		 * management function, since once a task management request is
2743		 * perfomed by the device, the request only completes because
2744		 * of the subsequent driver terminate.
2745		 *
2746		 * Aborted also means an external thread is explicitly managing
2747		 * this request, so that we do not complete it up the stack.
2748		 *
2749		 * The target is still there (since the TMF was successful).
2750		 */
2751		set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2752		response = SAS_TASK_COMPLETE;
2753
2754		/* See if the device has been/is being stopped. Note
2755		 * that we ignore the quiesce state, since we are
2756		 * concerned about the actual device state.
2757		 */
2758		if (!idev)
2759			status = SAS_DEVICE_UNKNOWN;
2760		else
2761			status = SAS_ABORTED_TASK;
2762
2763		complete_to_host = isci_perform_aborted_io_completion;
2764		/* This was an aborted request. */
2765
2766		spin_unlock(&request->state_lock);
2767		break;
2768
2769	case aborting:
2770		/* aborting means that the task management function tried and
2771		 * failed to abort the request. We need to note the request
2772		 * as SAS_TASK_UNDELIVERED, so that the scsi mid layer marks the
2773		 * target as down.
2774		 *
2775		 * Aborting also means an external thread is explicitly managing
2776		 * this request, so that we do not complete it up the stack.
2777		 */
2778		set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2779		response = SAS_TASK_UNDELIVERED;
2780
2781		if (!idev)
2782			/* The device has been /is being stopped. Note that
2783			 * we ignore the quiesce state, since we are
2784			 * concerned about the actual device state.
2785			 */
2786			status = SAS_DEVICE_UNKNOWN;
2787		else
2788			status = SAS_PHY_DOWN;
2789
2790		complete_to_host = isci_perform_aborted_io_completion;
2791
2792		/* This was an aborted request. */
2793
2794		spin_unlock(&request->state_lock);
2795		break;
2796
2797	case terminating:
2798
2799		/* This was an terminated request.  This happens when
2800		 * the I/O is being terminated because of an action on
2801		 * the device (reset, tear down, etc.), and the I/O needs
2802		 * to be completed up the stack.
2803		 */
2804		set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2805		response = SAS_TASK_UNDELIVERED;
2806
2807		/* See if the device has been/is being stopped. Note
2808		 * that we ignore the quiesce state, since we are
2809		 * concerned about the actual device state.
2810		 */
2811		if (!idev)
2812			status = SAS_DEVICE_UNKNOWN;
2813		else
2814			status = SAS_ABORTED_TASK;
2815
2816		complete_to_host = isci_perform_aborted_io_completion;
2817
2818		/* This was a terminated request. */
2819
2820		spin_unlock(&request->state_lock);
2821		break;
2822
2823	case dead:
2824		/* This was a terminated request that timed-out during the
2825		 * termination process.  There is no task to complete to
2826		 * libsas.
2827		 */
2828		complete_to_host = isci_perform_normal_io_completion;
2829		spin_unlock(&request->state_lock);
2830		break;
2831
2832	default:
2833
2834		/* The request is done from an SCU HW perspective. */
2835		request->status = completed;
2836
2837		spin_unlock(&request->state_lock);
2838
2839		/* This is an active request being completed from the core. */
2840		switch (completion_status) {
2841
2842		case SCI_IO_FAILURE_RESPONSE_VALID:
2843			dev_dbg(&ihost->pdev->dev,
2844				"%s: SCI_IO_FAILURE_RESPONSE_VALID (%p/%p)\n",
2845				__func__,
2846				request,
2847				task);
2848
2849			if (sas_protocol_ata(task->task_proto)) {
2850				isci_process_stp_response(task, &request->stp.rsp);
2851			} else if (SAS_PROTOCOL_SSP == task->task_proto) {
2852
2853				/* crack the iu response buffer. */
2854				resp_iu = &request->ssp.rsp;
2855				isci_request_process_response_iu(task, resp_iu,
2856								 &ihost->pdev->dev);
2857
2858			} else if (SAS_PROTOCOL_SMP == task->task_proto) {
2859
2860				dev_err(&ihost->pdev->dev,
2861					"%s: SCI_IO_FAILURE_RESPONSE_VALID: "
2862					"SAS_PROTOCOL_SMP protocol\n",
2863					__func__);
2864
2865			} else
2866				dev_err(&ihost->pdev->dev,
2867					"%s: unknown protocol\n", __func__);
2868
2869			/* use the task status set in the task struct by the
2870			 * isci_request_process_response_iu call.
2871			 */
2872			set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2873			response = task->task_status.resp;
2874			status = task->task_status.stat;
2875			break;
2876
2877		case SCI_IO_SUCCESS:
2878		case SCI_IO_SUCCESS_IO_DONE_EARLY:
2879
2880			response = SAS_TASK_COMPLETE;
2881			status   = SAM_STAT_GOOD;
2882			set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2883
2884			if (completion_status == SCI_IO_SUCCESS_IO_DONE_EARLY) {
2885
2886				/* This was an SSP / STP / SATA transfer.
2887				 * There is a possibility that less data than
2888				 * the maximum was transferred.
2889				 */
2890				u32 transferred_length = sci_req_tx_bytes(request);
2891
2892				task->task_status.residual
2893					= task->total_xfer_len - transferred_length;
2894
2895				/* If there were residual bytes, call this an
2896				 * underrun.
2897				 */
2898				if (task->task_status.residual != 0)
2899					status = SAS_DATA_UNDERRUN;
2900
2901				dev_dbg(&ihost->pdev->dev,
2902					"%s: SCI_IO_SUCCESS_IO_DONE_EARLY %d\n",
2903					__func__,
2904					status);
2905
2906			} else
2907				dev_dbg(&ihost->pdev->dev,
2908					"%s: SCI_IO_SUCCESS\n",
2909					__func__);
2910
2911			break;
2912
2913		case SCI_IO_FAILURE_TERMINATED:
2914			dev_dbg(&ihost->pdev->dev,
2915				"%s: SCI_IO_FAILURE_TERMINATED (%p/%p)\n",
2916				__func__,
2917				request,
2918				task);
2919
2920			/* The request was terminated explicitly.  No handling
2921			 * is needed in the SCSI error handler path.
2922			 */
2923			set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2924			response = SAS_TASK_UNDELIVERED;
2925
2926			/* See if the device has been/is being stopped. Note
2927			 * that we ignore the quiesce state, since we are
2928			 * concerned about the actual device state.
2929			 */
2930			if (!idev)
2931				status = SAS_DEVICE_UNKNOWN;
2932			else
2933				status = SAS_ABORTED_TASK;
2934
2935			complete_to_host = isci_perform_normal_io_completion;
2936			break;
2937
2938		case SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR:
2939
2940			isci_request_handle_controller_specific_errors(
2941				idev, request, task, &response, &status,
2942				&complete_to_host);
2943
2944			break;
2945
2946		case SCI_IO_FAILURE_REMOTE_DEVICE_RESET_REQUIRED:
2947			/* This is a special case, in that the I/O completion
2948			 * is telling us that the device needs a reset.
2949			 * In order for the device reset condition to be
2950			 * noticed, the I/O has to be handled in the error
2951			 * handler.  Set the reset flag and cause the
2952			 * SCSI error thread to be scheduled.
2953			 */
2954			spin_lock_irqsave(&task->task_state_lock, task_flags);
2955			task->task_state_flags |= SAS_TASK_NEED_DEV_RESET;
2956			spin_unlock_irqrestore(&task->task_state_lock, task_flags);
2957
2958			/* Fail the I/O. */
2959			response = SAS_TASK_UNDELIVERED;
2960			status = SAM_STAT_TASK_ABORTED;
2961
2962			complete_to_host = isci_perform_error_io_completion;
2963			clear_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2964			break;
2965
2966		case SCI_FAILURE_RETRY_REQUIRED:
2967
2968			/* Fail the I/O so it can be retried. */
2969			response = SAS_TASK_UNDELIVERED;
2970			if (!idev)
2971				status = SAS_DEVICE_UNKNOWN;
2972			else
2973				status = SAS_ABORTED_TASK;
2974
2975			complete_to_host = isci_perform_normal_io_completion;
2976			set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2977			break;
2978
2979
2980		default:
2981			/* Catch any otherwise unhandled error codes here. */
2982			dev_dbg(&ihost->pdev->dev,
2983				 "%s: invalid completion code: 0x%x - "
2984				 "isci_request = %p\n",
2985				 __func__, completion_status, request);
2986
2987			response = SAS_TASK_UNDELIVERED;
2988
2989			/* See if the device has been/is being stopped. Note
2990			 * that we ignore the quiesce state, since we are
2991			 * concerned about the actual device state.
2992			 */
2993			if (!idev)
2994				status = SAS_DEVICE_UNKNOWN;
2995			else
2996				status = SAS_ABORTED_TASK;
2997
2998			if (SAS_PROTOCOL_SMP == task->task_proto) {
2999				set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
3000				complete_to_host = isci_perform_normal_io_completion;
3001			} else {
3002				clear_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
3003				complete_to_host = isci_perform_error_io_completion;
3004			}
3005			break;
3006		}
3007		break;
3008	}
3009
3010	switch (task->task_proto) {
3011	case SAS_PROTOCOL_SSP:
3012		if (task->data_dir == DMA_NONE)
3013			break;
3014		if (task->num_scatter == 0)
3015			/* 0 indicates a single dma address */
3016			dma_unmap_single(&ihost->pdev->dev,
3017					 request->zero_scatter_daddr,
3018					 task->total_xfer_len, task->data_dir);
3019		else  /* unmap the sgl dma addresses */
3020			dma_unmap_sg(&ihost->pdev->dev, task->scatter,
3021				     request->num_sg_entries, task->data_dir);
3022		break;
3023	case SAS_PROTOCOL_SMP: {
3024		struct scatterlist *sg = &task->smp_task.smp_req;
3025		struct smp_req *smp_req;
3026		void *kaddr;
3027
3028		dma_unmap_sg(&ihost->pdev->dev, sg, 1, DMA_TO_DEVICE);
3029
3030		/* need to swab it back in case the command buffer is re-used */
3031		kaddr = kmap_atomic(sg_page(sg));
3032		smp_req = kaddr + sg->offset;
3033		sci_swab32_cpy(smp_req, smp_req, sg->length / sizeof(u32));
3034		kunmap_atomic(kaddr);
3035		break;
3036	}
3037	default:
3038		break;
3039	}
3040
3041	/* Put the completed request on the correct list */
3042	isci_task_save_for_upper_layer_completion(ihost, request, response,
3043						  status, complete_to_host
3044						  );
3045
3046	/* complete the io request to the core. */
3047	sci_controller_complete_io(ihost, request->target_device, request);
3048
3049	/* set terminated handle so it cannot be completed or
3050	 * terminated again, and to cause any calls into abort
3051	 * task to recognize the already completed case.
3052	 */
3053	set_bit(IREQ_TERMINATED, &request->flags);
3054}
3055
3056static void sci_request_started_state_enter(struct sci_base_state_machine *sm)
3057{
3058	struct isci_request *ireq = container_of(sm, typeof(*ireq), sm);
3059	struct domain_device *dev = ireq->target_device->domain_dev;
3060	enum sci_base_request_states state;
3061	struct sas_task *task;
3062
3063	/* XXX as hch said always creating an internal sas_task for tmf
3064	 * requests would simplify the driver
3065	 */
3066	task = (test_bit(IREQ_TMF, &ireq->flags)) ? NULL : isci_request_access_task(ireq);
3067
3068	/* all unaccelerated request types (non ssp or ncq) handled with
3069	 * substates
3070	 */
3071	if (!task && dev->dev_type == SAS_END_DEV) {
3072		state = SCI_REQ_TASK_WAIT_TC_COMP;
3073	} else if (task && task->task_proto == SAS_PROTOCOL_SMP) {
3074		state = SCI_REQ_SMP_WAIT_RESP;
3075	} else if (task && sas_protocol_ata(task->task_proto) &&
3076		   !task->ata_task.use_ncq) {
3077		if (dev->sata_dev.command_set == ATAPI_COMMAND_SET &&
3078			task->ata_task.fis.command == ATA_CMD_PACKET) {
3079			state = SCI_REQ_ATAPI_WAIT_H2D;
3080		} else if (task->data_dir == DMA_NONE) {
3081			state = SCI_REQ_STP_NON_DATA_WAIT_H2D;
3082		} else if (task->ata_task.dma_xfer) {
3083			state = SCI_REQ_STP_UDMA_WAIT_TC_COMP;
3084		} else /* PIO */ {
3085			state = SCI_REQ_STP_PIO_WAIT_H2D;
3086		}
3087	} else {
3088		/* SSP or NCQ are fully accelerated, no substates */
3089		return;
3090	}
3091	sci_change_state(sm, state);
3092}
3093
3094static void sci_request_completed_state_enter(struct sci_base_state_machine *sm)
3095{
3096	struct isci_request *ireq = container_of(sm, typeof(*ireq), sm);
3097	struct isci_host *ihost = ireq->owning_controller;
3098
3099	/* Tell the SCI_USER that the IO request is complete */
3100	if (!test_bit(IREQ_TMF, &ireq->flags))
3101		isci_request_io_request_complete(ihost, ireq,
3102						 ireq->sci_status);
3103	else
3104		isci_task_request_complete(ihost, ireq, ireq->sci_status);
3105}
3106
3107static void sci_request_aborting_state_enter(struct sci_base_state_machine *sm)
3108{
3109	struct isci_request *ireq = container_of(sm, typeof(*ireq), sm);
3110
3111	/* Setting the abort bit in the Task Context is required by the silicon. */
3112	ireq->tc->abort = 1;
3113}
3114
3115static void sci_stp_request_started_non_data_await_h2d_completion_enter(struct sci_base_state_machine *sm)
3116{
3117	struct isci_request *ireq = container_of(sm, typeof(*ireq), sm);
3118
3119	ireq->target_device->working_request = ireq;
3120}
3121
3122static void sci_stp_request_started_pio_await_h2d_completion_enter(struct sci_base_state_machine *sm)
3123{
3124	struct isci_request *ireq = container_of(sm, typeof(*ireq), sm);
3125
3126	ireq->target_device->working_request = ireq;
3127}
3128
3129static const struct sci_base_state sci_request_state_table[] = {
3130	[SCI_REQ_INIT] = { },
3131	[SCI_REQ_CONSTRUCTED] = { },
3132	[SCI_REQ_STARTED] = {
3133		.enter_state = sci_request_started_state_enter,
3134	},
3135	[SCI_REQ_STP_NON_DATA_WAIT_H2D] = {
3136		.enter_state = sci_stp_request_started_non_data_await_h2d_completion_enter,
3137	},
3138	[SCI_REQ_STP_NON_DATA_WAIT_D2H] = { },
3139	[SCI_REQ_STP_PIO_WAIT_H2D] = {
3140		.enter_state = sci_stp_request_started_pio_await_h2d_completion_enter,
3141	},
3142	[SCI_REQ_STP_PIO_WAIT_FRAME] = { },
3143	[SCI_REQ_STP_PIO_DATA_IN] = { },
3144	[SCI_REQ_STP_PIO_DATA_OUT] = { },
3145	[SCI_REQ_STP_UDMA_WAIT_TC_COMP] = { },
3146	[SCI_REQ_STP_UDMA_WAIT_D2H] = { },
3147	[SCI_REQ_TASK_WAIT_TC_COMP] = { },
3148	[SCI_REQ_TASK_WAIT_TC_RESP] = { },
3149	[SCI_REQ_SMP_WAIT_RESP] = { },
3150	[SCI_REQ_SMP_WAIT_TC_COMP] = { },
3151	[SCI_REQ_ATAPI_WAIT_H2D] = { },
3152	[SCI_REQ_ATAPI_WAIT_PIO_SETUP] = { },
3153	[SCI_REQ_ATAPI_WAIT_D2H] = { },
3154	[SCI_REQ_ATAPI_WAIT_TC_COMP] = { },
3155	[SCI_REQ_COMPLETED] = {
3156		.enter_state = sci_request_completed_state_enter,
3157	},
3158	[SCI_REQ_ABORTING] = {
3159		.enter_state = sci_request_aborting_state_enter,
3160	},
3161	[SCI_REQ_FINAL] = { },
3162};
3163
3164static void
3165sci_general_request_construct(struct isci_host *ihost,
3166				   struct isci_remote_device *idev,
3167				   struct isci_request *ireq)
3168{
3169	sci_init_sm(&ireq->sm, sci_request_state_table, SCI_REQ_INIT);
3170
3171	ireq->target_device = idev;
3172	ireq->protocol = SCIC_NO_PROTOCOL;
3173	ireq->saved_rx_frame_index = SCU_INVALID_FRAME_INDEX;
3174
3175	ireq->sci_status   = SCI_SUCCESS;
3176	ireq->scu_status   = 0;
3177	ireq->post_context = 0xFFFFFFFF;
3178}
3179
3180static enum sci_status
3181sci_io_request_construct(struct isci_host *ihost,
3182			  struct isci_remote_device *idev,
3183			  struct isci_request *ireq)
3184{
3185	struct domain_device *dev = idev->domain_dev;
3186	enum sci_status status = SCI_SUCCESS;
3187
3188	/* Build the common part of the request */
3189	sci_general_request_construct(ihost, idev, ireq);
3190
3191	if (idev->rnc.remote_node_index == SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX)
3192		return SCI_FAILURE_INVALID_REMOTE_DEVICE;
3193
3194	if (dev->dev_type == SAS_END_DEV)
3195		/* pass */;
3196	else if (dev->dev_type == SATA_DEV || (dev->tproto & SAS_PROTOCOL_STP))
3197		memset(&ireq->stp.cmd, 0, sizeof(ireq->stp.cmd));
3198	else if (dev_is_expander(dev))
3199		/* pass */;
3200	else
3201		return SCI_FAILURE_UNSUPPORTED_PROTOCOL;
3202
3203	memset(ireq->tc, 0, offsetof(struct scu_task_context, sgl_pair_ab));
3204
3205	return status;
3206}
3207
3208enum sci_status sci_task_request_construct(struct isci_host *ihost,
3209					    struct isci_remote_device *idev,
3210					    u16 io_tag, struct isci_request *ireq)
3211{
3212	struct domain_device *dev = idev->domain_dev;
3213	enum sci_status status = SCI_SUCCESS;
3214
3215	/* Build the common part of the request */
3216	sci_general_request_construct(ihost, idev, ireq);
3217
3218	if (dev->dev_type == SAS_END_DEV ||
3219	    dev->dev_type == SATA_DEV || (dev->tproto & SAS_PROTOCOL_STP)) {
3220		set_bit(IREQ_TMF, &ireq->flags);
3221		memset(ireq->tc, 0, sizeof(struct scu_task_context));
3222	} else
3223		status = SCI_FAILURE_UNSUPPORTED_PROTOCOL;
3224
3225	return status;
3226}
3227
3228static enum sci_status isci_request_ssp_request_construct(
3229	struct isci_request *request)
3230{
3231	enum sci_status status;
3232
3233	dev_dbg(&request->isci_host->pdev->dev,
3234		"%s: request = %p\n",
3235		__func__,
3236		request);
3237	status = sci_io_request_construct_basic_ssp(request);
3238	return status;
3239}
3240
3241static enum sci_status isci_request_stp_request_construct(struct isci_request *ireq)
3242{
3243	struct sas_task *task = isci_request_access_task(ireq);
3244	struct host_to_dev_fis *fis = &ireq->stp.cmd;
3245	struct ata_queued_cmd *qc = task->uldd_task;
3246	enum sci_status status;
3247
3248	dev_dbg(&ireq->isci_host->pdev->dev,
3249		"%s: ireq = %p\n",
3250		__func__,
3251		ireq);
3252
3253	memcpy(fis, &task->ata_task.fis, sizeof(struct host_to_dev_fis));
3254	if (!task->ata_task.device_control_reg_update)
3255		fis->flags |= 0x80;
3256	fis->flags &= 0xF0;
3257
3258	status = sci_io_request_construct_basic_sata(ireq);
3259
3260	if (qc && (qc->tf.command == ATA_CMD_FPDMA_WRITE ||
3261		   qc->tf.command == ATA_CMD_FPDMA_READ)) {
3262		fis->sector_count = qc->tag << 3;
3263		ireq->tc->type.stp.ncq_tag = qc->tag;
3264	}
3265
3266	return status;
3267}
3268
3269static enum sci_status
3270sci_io_request_construct_smp(struct device *dev,
3271			      struct isci_request *ireq,
3272			      struct sas_task *task)
3273{
3274	struct scatterlist *sg = &task->smp_task.smp_req;
3275	struct isci_remote_device *idev;
3276	struct scu_task_context *task_context;
3277	struct isci_port *iport;
3278	struct smp_req *smp_req;
3279	void *kaddr;
3280	u8 req_len;
3281	u32 cmd;
3282
3283	kaddr = kmap_atomic(sg_page(sg));
3284	smp_req = kaddr + sg->offset;
3285	/*
3286	 * Look at the SMP requests' header fields; for certain SAS 1.x SMP
3287	 * functions under SAS 2.0, a zero request length really indicates
3288	 * a non-zero default length.
3289	 */
3290	if (smp_req->req_len == 0) {
3291		switch (smp_req->func) {
3292		case SMP_DISCOVER:
3293		case SMP_REPORT_PHY_ERR_LOG:
3294		case SMP_REPORT_PHY_SATA:
3295		case SMP_REPORT_ROUTE_INFO:
3296			smp_req->req_len = 2;
3297			break;
3298		case SMP_CONF_ROUTE_INFO:
3299		case SMP_PHY_CONTROL:
3300		case SMP_PHY_TEST_FUNCTION:
3301			smp_req->req_len = 9;
3302			break;
3303			/* Default - zero is a valid default for 2.0. */
3304		}
3305	}
3306	req_len = smp_req->req_len;
3307	sci_swab32_cpy(smp_req, smp_req, sg->length / sizeof(u32));
3308	cmd = *(u32 *) smp_req;
3309	kunmap_atomic(kaddr);
3310
3311	if (!dma_map_sg(dev, sg, 1, DMA_TO_DEVICE))
3312		return SCI_FAILURE;
3313
3314	ireq->protocol = SCIC_SMP_PROTOCOL;
3315
3316	/* byte swap the smp request. */
3317
3318	task_context = ireq->tc;
3319
3320	idev = ireq->target_device;
3321	iport = idev->owning_port;
3322
3323	/*
3324	 * Fill in the TC with the its required data
3325	 * 00h
3326	 */
3327	task_context->priority = 0;
3328	task_context->initiator_request = 1;
3329	task_context->connection_rate = idev->connection_rate;
3330	task_context->protocol_engine_index = ISCI_PEG;
3331	task_context->logical_port_index = iport->physical_port_index;
3332	task_context->protocol_type = SCU_TASK_CONTEXT_PROTOCOL_SMP;
3333	task_context->abort = 0;
3334	task_context->valid = SCU_TASK_CONTEXT_VALID;
3335	task_context->context_type = SCU_TASK_CONTEXT_TYPE;
3336
3337	/* 04h */
3338	task_context->remote_node_index = idev->rnc.remote_node_index;
3339	task_context->command_code = 0;
3340	task_context->task_type = SCU_TASK_TYPE_SMP_REQUEST;
3341
3342	/* 08h */
3343	task_context->link_layer_control = 0;
3344	task_context->do_not_dma_ssp_good_response = 1;
3345	task_context->strict_ordering = 0;
3346	task_context->control_frame = 1;
3347	task_context->timeout_enable = 0;
3348	task_context->block_guard_enable = 0;
3349
3350	/* 0ch */
3351	task_context->address_modifier = 0;
3352
3353	/* 10h */
3354	task_context->ssp_command_iu_length = req_len;
3355
3356	/* 14h */
3357	task_context->transfer_length_bytes = 0;
3358
3359	/*
3360	 * 18h ~ 30h, protocol specific
3361	 * since commandIU has been build by framework at this point, we just
3362	 * copy the frist DWord from command IU to this location. */
3363	memcpy(&task_context->type.smp, &cmd, sizeof(u32));
3364
3365	/*
3366	 * 40h
3367	 * "For SMP you could program it to zero. We would prefer that way
3368	 * so that done code will be consistent." - Venki
3369	 */
3370	task_context->task_phase = 0;
3371
3372	ireq->post_context = (SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_TC |
3373			      (ISCI_PEG << SCU_CONTEXT_COMMAND_PROTOCOL_ENGINE_GROUP_SHIFT) |
3374			       (iport->physical_port_index <<
3375				SCU_CONTEXT_COMMAND_LOGICAL_PORT_SHIFT) |
3376			      ISCI_TAG_TCI(ireq->io_tag));
3377	/*
3378	 * Copy the physical address for the command buffer to the SCU Task
3379	 * Context command buffer should not contain command header.
3380	 */
3381	task_context->command_iu_upper = upper_32_bits(sg_dma_address(sg));
3382	task_context->command_iu_lower = lower_32_bits(sg_dma_address(sg) + sizeof(u32));
3383
3384	/* SMP response comes as UF, so no need to set response IU address. */
3385	task_context->response_iu_upper = 0;
3386	task_context->response_iu_lower = 0;
3387
3388	sci_change_state(&ireq->sm, SCI_REQ_CONSTRUCTED);
3389
3390	return SCI_SUCCESS;
3391}
3392
3393/*
3394 * isci_smp_request_build() - This function builds the smp request.
3395 * @ireq: This parameter points to the isci_request allocated in the
3396 *    request construct function.
3397 *
3398 * SCI_SUCCESS on successfull completion, or specific failure code.
3399 */
3400static enum sci_status isci_smp_request_build(struct isci_request *ireq)
3401{
3402	struct sas_task *task = isci_request_access_task(ireq);
3403	struct device *dev = &ireq->isci_host->pdev->dev;
3404	enum sci_status status = SCI_FAILURE;
3405
3406	status = sci_io_request_construct_smp(dev, ireq, task);
3407	if (status != SCI_SUCCESS)
3408		dev_dbg(&ireq->isci_host->pdev->dev,
3409			 "%s: failed with status = %d\n",
3410			 __func__,
3411			 status);
3412
3413	return status;
3414}
3415
3416/**
3417 * isci_io_request_build() - This function builds the io request object.
3418 * @ihost: This parameter specifies the ISCI host object
3419 * @request: This parameter points to the isci_request object allocated in the
3420 *    request construct function.
3421 * @sci_device: This parameter is the handle for the sci core's remote device
3422 *    object that is the destination for this request.
3423 *
3424 * SCI_SUCCESS on successfull completion, or specific failure code.
3425 */
3426static enum sci_status isci_io_request_build(struct isci_host *ihost,
3427					     struct isci_request *request,
3428					     struct isci_remote_device *idev)
3429{
3430	enum sci_status status = SCI_SUCCESS;
3431	struct sas_task *task = isci_request_access_task(request);
3432
3433	dev_dbg(&ihost->pdev->dev,
3434		"%s: idev = 0x%p; request = %p, "
3435		"num_scatter = %d\n",
3436		__func__,
3437		idev,
3438		request,
3439		task->num_scatter);
3440
3441	/* map the sgl addresses, if present.
3442	 * libata does the mapping for sata devices
3443	 * before we get the request.
3444	 */
3445	if (task->num_scatter &&
3446	    !sas_protocol_ata(task->task_proto) &&
3447	    !(SAS_PROTOCOL_SMP & task->task_proto)) {
3448
3449		request->num_sg_entries = dma_map_sg(
3450			&ihost->pdev->dev,
3451			task->scatter,
3452			task->num_scatter,
3453			task->data_dir
3454			);
3455
3456		if (request->num_sg_entries == 0)
3457			return SCI_FAILURE_INSUFFICIENT_RESOURCES;
3458	}
3459
3460	status = sci_io_request_construct(ihost, idev, request);
3461
3462	if (status != SCI_SUCCESS) {
3463		dev_dbg(&ihost->pdev->dev,
3464			 "%s: failed request construct\n",
3465			 __func__);
3466		return SCI_FAILURE;
3467	}
3468
3469	switch (task->task_proto) {
3470	case SAS_PROTOCOL_SMP:
3471		status = isci_smp_request_build(request);
3472		break;
3473	case SAS_PROTOCOL_SSP:
3474		status = isci_request_ssp_request_construct(request);
3475		break;
3476	case SAS_PROTOCOL_SATA:
3477	case SAS_PROTOCOL_STP:
3478	case SAS_PROTOCOL_SATA | SAS_PROTOCOL_STP:
3479		status = isci_request_stp_request_construct(request);
3480		break;
3481	default:
3482		dev_dbg(&ihost->pdev->dev,
3483			 "%s: unknown protocol\n", __func__);
3484		return SCI_FAILURE;
3485	}
3486
3487	return SCI_SUCCESS;
3488}
3489
3490static struct isci_request *isci_request_from_tag(struct isci_host *ihost, u16 tag)
3491{
3492	struct isci_request *ireq;
3493
3494	ireq = ihost->reqs[ISCI_TAG_TCI(tag)];
3495	ireq->io_tag = tag;
3496	ireq->io_request_completion = NULL;
3497	ireq->flags = 0;
3498	ireq->num_sg_entries = 0;
3499	INIT_LIST_HEAD(&ireq->completed_node);
3500	INIT_LIST_HEAD(&ireq->dev_node);
3501	isci_request_change_state(ireq, allocated);
3502
3503	return ireq;
3504}
3505
3506static struct isci_request *isci_io_request_from_tag(struct isci_host *ihost,
3507						     struct sas_task *task,
3508						     u16 tag)
3509{
3510	struct isci_request *ireq;
3511
3512	ireq = isci_request_from_tag(ihost, tag);
3513	ireq->ttype_ptr.io_task_ptr = task;
3514	clear_bit(IREQ_TMF, &ireq->flags);
3515	task->lldd_task = ireq;
3516
3517	return ireq;
3518}
3519
3520struct isci_request *isci_tmf_request_from_tag(struct isci_host *ihost,
3521					       struct isci_tmf *isci_tmf,
3522					       u16 tag)
3523{
3524	struct isci_request *ireq;
3525
3526	ireq = isci_request_from_tag(ihost, tag);
3527	ireq->ttype_ptr.tmf_task_ptr = isci_tmf;
3528	set_bit(IREQ_TMF, &ireq->flags);
3529
3530	return ireq;
3531}
3532
3533int isci_request_execute(struct isci_host *ihost, struct isci_remote_device *idev,
3534			 struct sas_task *task, u16 tag)
3535{
3536	enum sci_status status = SCI_FAILURE_UNSUPPORTED_PROTOCOL;
3537	struct isci_request *ireq;
3538	unsigned long flags;
3539	int ret = 0;
3540
3541	/* do common allocation and init of request object. */
3542	ireq = isci_io_request_from_tag(ihost, task, tag);
3543
3544	status = isci_io_request_build(ihost, ireq, idev);
3545	if (status != SCI_SUCCESS) {
3546		dev_dbg(&ihost->pdev->dev,
3547			 "%s: request_construct failed - status = 0x%x\n",
3548			 __func__,
3549			 status);
3550		return status;
3551	}
3552
3553	spin_lock_irqsave(&ihost->scic_lock, flags);
3554
3555	if (test_bit(IDEV_IO_NCQERROR, &idev->flags)) {
3556
3557		if (isci_task_is_ncq_recovery(task)) {
3558
3559			/* The device is in an NCQ recovery state.  Issue the
3560			 * request on the task side.  Note that it will
3561			 * complete on the I/O request side because the
3562			 * request was built that way (ie.
3563			 * ireq->is_task_management_request is false).
3564			 */
3565			status = sci_controller_start_task(ihost,
3566							    idev,
3567							    ireq);
3568		} else {
3569			status = SCI_FAILURE;
3570		}
3571	} else {
3572		/* send the request, let the core assign the IO TAG.	*/
3573		status = sci_controller_start_io(ihost, idev,
3574						  ireq);
3575	}
3576
3577	if (status != SCI_SUCCESS &&
3578	    status != SCI_FAILURE_REMOTE_DEVICE_RESET_REQUIRED) {
3579		dev_dbg(&ihost->pdev->dev,
3580			 "%s: failed request start (0x%x)\n",
3581			 __func__, status);
3582		spin_unlock_irqrestore(&ihost->scic_lock, flags);
3583		return status;
3584	}
3585
3586	/* Either I/O started OK, or the core has signaled that
3587	 * the device needs a target reset.
3588	 *
3589	 * In either case, hold onto the I/O for later.
3590	 *
3591	 * Update it's status and add it to the list in the
3592	 * remote device object.
3593	 */
3594	list_add(&ireq->dev_node, &idev->reqs_in_process);
3595
3596	if (status == SCI_SUCCESS) {
3597		isci_request_change_state(ireq, started);
3598	} else {
3599		/* The request did not really start in the
3600		 * hardware, so clear the request handle
3601		 * here so no terminations will be done.
3602		 */
3603		set_bit(IREQ_TERMINATED, &ireq->flags);
3604		isci_request_change_state(ireq, completed);
3605	}
3606	spin_unlock_irqrestore(&ihost->scic_lock, flags);
3607
3608	if (status ==
3609	    SCI_FAILURE_REMOTE_DEVICE_RESET_REQUIRED) {
3610		/* Signal libsas that we need the SCSI error
3611		 * handler thread to work on this I/O and that
3612		 * we want a device reset.
3613		 */
3614		spin_lock_irqsave(&task->task_state_lock, flags);
3615		task->task_state_flags |= SAS_TASK_NEED_DEV_RESET;
3616		spin_unlock_irqrestore(&task->task_state_lock, flags);
3617
3618		/* Cause this task to be scheduled in the SCSI error
3619		 * handler thread.
3620		 */
3621		sas_task_abort(task);
3622
3623		/* Change the status, since we are holding
3624		 * the I/O until it is managed by the SCSI
3625		 * error handler.
3626		 */
3627		status = SCI_SUCCESS;
3628	}
3629
3630	return ret;
3631}
3632